
Lorenzo Anardu

M2DF: a Macro Data Flow interpreter

targeting multi-cores

Tesi di Laurea Specialistica

Università degli Studi di Pisa
Giugno 2011

Università degli Studi di Pisa
Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Specialistica in Tecnologie Informatiche
Indirizzo Piattaforme Abilitanti ad Alte Prestazioni

M2DF: a Macro Data Flow interpreter

targeting multi-cores

RELATORE
Prof. Marco DANELUTTO

Candidato
Lorenzo ANARDU

Sessione di Laurea 24 Giugno 2011
Anno Accademico 2010-11

Abstract

The recent ”Moore law crisis” led CPU manufacturers to shift their produc-
tion to multi-core chips.

Efficient exploitation of such a technology by programmers is a non-
trivial issue and requires deep background knowledge.

In order to help programmers some high level libraries and tools based
on multi-threading have been developed.

In this thesis we propose an alternative way to efficiently exploit off-the-
shelf multi-core chips based on the Macro Data Flow technique.

We describe the implementation of a multi-threaded Macro Data Flow
run-time support for multi-core architectures.

The interpreter is assumed to be the target back-end for the compilation
of high level, structured parallel programs.

Experimental results are shown on state-of-the-art Intel R© multi-cores.

Ringraziamenti

Sarò breve.

Vorrei ringraziare il professor Marco Danelutto per il supporto e l’aiuto
datomi durante tutto lo svolgimento della tesi.

Ringrazio anche il professor Luca Gemignani per avermi dedicato il suo
tempo ed Alessio Pascucci, sempre presente e disponibile.

Grazie a Giulia per avermi sempre incoraggiato, e per le correzioni stilis-
tiche. Grazie a Giorgio per la supervisione linguistica.

Grazie alla mia famiglia: ai miei genitori per avermi sempre incoraggiato,
sopportato e mantenuto, a mio fratello (ormai non più -ino) che mi ha dato
per due volte l’opportunità di laurearmi il giorno del suo compleanno (anche
se la seconda non la sto cogliendo) ed ai miei zii (con annessi cuginetti) per
avermi fatto sentire a casa pur essendone lontano.

Un grazie anche a tutti gli amici che mi sono stati vicini per i bei mo-
menti che mi hanno fatto passare.

Infine vorrei fare un grosso ‘in bocca al lupo’ a mio fratello per l’imminente
maturità, e per tutto cià che verrà dopo.

Sono stato meno breve di quanto pensassi all’inizio, ma va bene cos̀ı.

Contents

1 Itroduction 6

1.1 m2df in a nutshell . 7

1.2 Multi-threading . 7

1.2.1 Processes vs threads 7

1.2.2 Multi-threading pros and cons 9

1.3 Macro Data Flow . 11

1.4 Organization of the work . 12

2 Related work 13

2.1 Thread programming . 13

2.2 Data flow models . 14

2.2.1 Scheduled data flow 14

2.2.2 Data-driven multi-threading and TFlux 15

2.3 Limitations of the approaches 17

3 Support tools 18

3.1 The POSIX standard . 18

3.1.1 File descriptors control 19

3.1.2 Thread handling . 21

3.1.3 Miscellaneous functions 27

3.2 System dependent calls . 28

3.2.1 The pipe communication mechanism 28

4 Logical design 30

4.1 Overall picture . 30

4.2 Design of the support . 31

4.2.1 Graph management 31

4.2.2 Data management . 34

4.2.3 Computation management 36

4.2.4 Communications management 37

4.2.5 Global overview . 38

4.3 Life cycle . 40

4

5 Implementative aspects 42
5.1 General choices . 42
5.2 Communication implementation 43

5.2.1 Pthread-based mechanism 44
5.2.2 Pipe-based mechanism 45

5.3 Semaphore implementation 46
5.4 Thread creation and pinning 48
5.5 Interpreter and Scheduler loops 50
5.6 Scheduling . 51
5.7 Global variables . 53

6 Experiments 54
6.1 Target architectures . 54
6.2 Experiment setup . 55
6.3 Comparison with OpenMP 67
6.4 Experiment results . 71

7 Conclusions and future work 73
7.1 Contribution of the work . 73

7.1.1 The idea . 73
7.1.2 The implementation 74
7.1.3 The results . 74

7.2 Future work . 75
7.3 Conclusions/Summary . 76

A Source code 78

5

Chapter 1

Itroduction

With improving of manufacturing technology the size of individual gates
has reduced, permitting to have more powerful single processor systems.
For decades the Moore’s law described this trend.

In the early ’00 the physical limitations of semiconductor-based mi-
croelectronics lead to significant heat dissipation and power consumption.
In order to deliver performance improvements, manufacturers have turned
to multi-core architectures, also for commodity processors. Actually the
Moore’s law is applied to the number of cores on a single die, i.e. manufac-
turers increment the number of cores having about the same clock cycle.

Existing dusty-deck code is not capable of delivering increased perfor-
mance with these new technologies, i.e. it is not able to exploit the paral-
lelism offered by multi-core processors.

The exploitation of the improvements offered by a multi-core processor
can be obtained operating on two different sides.

Implicit parallelism is exploited transparently, i.e. without user inter-
vention, with both hardware and software techniques. Hardware techniques
for exploiting parallelism transparently include pipelining, super-scalar ex-
ecution and dynamic instruction reordering while software techniques are
actually oriented on the use of parallelizing compilers such as Polaris [22].

Actually the exploitation of implicit parallelism is limited to a moderate
level of parallelism. In order to achieve higher degrees of parallelism the
user identifies tasks which are able to execute in parallel. This exploitation
pattern is known as explicit parallelism. It is possible to express explicit
parallelism using both shared memory and message passing models.

The improvement of single-core processors made the existing sequential
code to automatically exploit the new resources. I.e. a sequential algorithm
written for a certain processor, when re-compiled for a processor two times
faster, scales with a factor two without any modification.

6

Unfortunately the exploitation of multi-core resources is not ”automatic”
such as in the single-core case. Programming code which efficiently exploits
multi-cores require significant programming efforts. Furthermore the effort
is multiplied when someone wants to write code parametric with respect to
the parallelism degree.

In this thesis we target this problem proposing m2df (Multi-threaded
Macro Data Flow), a multi-threading high level framework based on Macro
Data Flow (MDF) technique, as a viable solution.

1.1 m2df in a nutshell

This framework allows the user to express the computations in the form
of graphs. The user can then instantiate multiple times these graphs and
submit instances for the execution in a streamed fashion.

When an instance is submitted, the tasks composing it are distributed to
a set of workers which carry out the computation, adapting to the number
of available cores.

As said before the parallelism is exploited through the multi-threading
technique, using the shared memory as a communication mechanism. These
concepts will be deepened in the next Sections.

The framework is assumed to be the target back-end of the compilation
process of high level parallel programs.

1.2 Multi-threading

With the massive advent of shared memory multi-core architectures the
multi-threaded programming paradigm has become a viable alternative for
the exploitation of distributed on-chip architectures.

1.2.1 Processes vs threads

With the term process we identify a program which is able to be executed
together with other programs, and to co-operate with them. While a pro-
gram is a passive set of instructions, a process is an execution instance of
the instructions representing the program.

Several processes are allowed to run at the same time. Multiprogram-
ming allows multiple processes to share processors and other system re-
sources. The simultaneity of the execution can be simulated (in this case
we speak about concurrency) or effective (in this case we speak about par-
allelism). [1]

7

Each CPU executes a single process at a time, however multitasking
allows each processor to switch between tasks ready to execution. The
switch between processes in execution happens frequently enough to give
the user the perception of multiple processes running at the same time.

The switch operation is triggered and implemented differently, depend-
ing on the operating system.

Each process owns a set of resources, including:

Instructions an image of the executable, representing the program being
executed;

Memory includes executable code, process specific data (such as global
variables), a call stack to keep trace of active routines and a heap to
support ”dynamic allocation” of memory space;

Descriptors describe the system resources allocated to the process, such
as files or sockets;

Other security attributes (e.g. permissions) and process context, consisting
in register images, physical memory addressing supporting structures
(Relocation Table) and so on and so forth.

Usually, a process consists of a single thread of execution but, depending
on the operating system, it may be made up of multiple threads of execution
which execute different parts of the process’ instructions concurrently.

A thread of execution, briefly called thread, is defined as an independent
stream of instructions that can be scheduled by an operating system. It is
the smallest unit of scheduling.

While processes are not able to share resources, multiple threads within
the same process can share instructions (i.e. the process’ code), resources
and the context of the process. Moreover the thread handling is generally
cheaper than the process’ one: thread creation and context switch is typ-
ically faster with respect to the case of processes, due to the sharing of
resources.

Maintaining multiple control flows is accomplished because each thread
owns a private

• Register set;

• Stack pointer;

• Scheduling properties;

• Program counter.

8

Figure 1.1: Comparison of a single-threaded and a multi-threaded process.

Figure 1.1 shows the comparison between a single-threaded Unix process
and a multi-threaded Unix process.

Looking at the Figure we can easily notice that a thread exists within a
process and uses the process resources. A thread represents an independent
flow of control in the parent process, because of this a thread dies when the
supporting process dies.

In order to exist, a thread duplicates the essential resources it needs in
order to be independently schedulable.

Threads share the process’ resources, this fact imply that changes made
by a thread to some shared resource will be seen by all other threads. The
operations on shared resources require explicit synchronization, generally
provided by the programmer.

1.2.2 Multi-threading pros and cons

Multi-threaded programming model provides developers with an abstraction
of concurrent execution.

This programming model takes advantages to both single-CPU and multi-
core systems.

In the first case a multi-threaded application is able to remain responsive
to input. In a single-threaded program, if the execution blocks on a long-
running task, the entire application can appear to freeze. This approach
is heavily used by graphic libraries, which make the user interface support
running on different threads than the business logic.

9

Figure 1.2: Example of a race hazard caused by calls to external routines.

In the latter case, which is more interesting from our point of view, this
programming model allows to work faster on multi-core and multi-processor
(i.e. systems having more than one CPU) systems.

In fact the inter-process communication must be implemented through
system mechanisms, and requires at least one memory operation. As threads
in the same process share the same address space no intermediate copy is
required, resulting in a faster communication mechanism.

On the other hand having multiple flows of execution operating on the
same addressing space can lead to subtle issues.

Shared data may lead to race hazards: if two or more threads simultane-
ously try to update the same data structure they will find the data changing
unexpectedly and becoming inconsistent. Bugs of this kind are often difficult
to reproduce and isolate.

To prevent this kind of problems, multi-threading libraries often provide
synchronization primitives such as mutexes and locks. These primitives al-
low the calling thread to atomically and exclusively operate on the shared
data. Obviously a careless usage of these primitives may lead to other prob-
lems, such as deadlocks.

Another problem when working with threads relates to third party func-
tions. If multiple threads need to call an external library routine, it must be
guaranteed to be thread-safe (i.e. not leading to deadlocks or inconsistent
data sets). If the routine is not thread-safe calls to that routines should be
serialized. Figure 1.2 shows this situation.

10

Figure 1.3: Data flow graph for the expression (x+y)/(z*t)

1.3 Macro Data Flow

The data flow (DF) computational model is a purely functional model of
computation, born as an alternative to the imperative one [2]. According to
this model executable programs are represented as graphs, called data flow
graphs, rather than as linear sequences of instructions, as shown in Figure
1.3.
In a data flow graph, nodes correspond to instructions, and edges correspond
to data dependencies between instructions. An instruction is enabled to the
execution if and only if all of its input values, called tokens, are available.
Once the instruction has been executed the input tokens are removed, and
result tokens are produced and delivered the nodes next in the graph.
In this approach the instruction, instead of the process, is the unit of par-
allelism. In the DF model the ordering of the instructions is guaranteed by
the data dependencies, hence it can be obtained through the application of
the Bernstein’s conditions.

The data flow model was not adopted because of some inherent limita-
tions:

1. too fine grain parallelism: instruction level parallelism caused instruc-
tion fetching and result delivery costs to overcome performance gains;

2. difficulty in exploiting memory hierarchies and registers;

3. asynchronous triggering of instructions.

In order to overcome some of the issues presented by the data flow model, in
the late ’90s Macro Data Flow (MDF) technique was introduced. Informally,
this technique applies all the data flow main concepts with a coarser grain:
MDF instructions consists in entire portions of user code, also called tasks.
This property of MDF makes it implementable in software without requiring

11

new architectures. Furthermore the execution of the single user instructions
can exploit all hardware optimizations offered by current processors.

A software implementation of MDF can offer several benefits:

• can run on existing multi core processors;

• it is possible to implement a MDF run-time support with standard
tools, so it doesn’t require ad-hoc compilers and tools (e.g. MPI);

• a general purpose interpreter can be used to express skeleton-based
computations;

• the use of coarse grain instructions enables efficient serial code to be
used to implement the tasks’s behaviour.

In a multi-core environment most of the problems that the MDF ex-
poses in a distributed implementation are naturally solved. First, there are
no problems related to the execution of the MDF instructions by remote in-
terpreters, such as cross-compilation or data serialization. Second, it is not
mandatory the use of the message passing technique, in a local environment
shared memory mechanism is efficient and worthwhile.

1.4 Organization of the work

In Chapter 2 we will take a look to the related work, in Chapter 3 we will
examine the tools upon which m2df relies.

In Chapters 4 and 5 we will deepen the design and the implementation
of the framework. In Chapter 6 we will examine the m2df performances and,
finally, in Chapter 7 we will take the conclusions of this thesis, exposing
some possible future perspective.

12

Chapter 2

Related work

This chapter targets the principal research trends around data flow and
multi-threading.

First, in Section 2.1 we will present the main industrial standard tools
for thread programming. Then, in Section 2.2 we will discuss the two main
models related to data flow present in the state of the art: Scheduled Data
Flow and Data Driven Multi-threading. Finally, in Section 2.3 we will discuss
the main limitations of the presented approaches.

2.1 Thread programming

Programming truly multi-threaded code often requires complex co-ordination
of threads. This can easily introduce subtle bugs due to the interleaving and
synchronization of different processing flows on shared data. Furthermore,
the efficient programming of parallel systems is mostly performed at a low
level of abstraction (e.g. POSIX threads) and requires a deep knowledge of
the target system features and makes.

In order to help the programmer in this work some higher level libraries,
such as OpenMP [23], and languages, such as Cilk/Cilk++ [25] were devel-
oped.

These libraries provide a programming model based on shared memory
and work-sharing: new threads are forked for performing the work in parallel
and then they are joint together when the parallel section is completed.
This sequence of operations happens for each parallel section occurs in the
program.

Both OpenMP and Cilk leave to the user the handling of thread syn-
chronization providing proper constructs.

The languages and libraries discussed above are industrial products which
have affirmed during the last years.

13

2.2 Data flow models

Many research trends are related to the data flow technique. Some of these
look for optimizations of the data flow model, in order to overcome its lim-
itations. Some other trends are oriented to the use of data flow extensions,
such as Macro Data Flow, in order to exploit commodity hardware. Other
trends explore the field of scheduling and optimization of graph-based com-
putations according to different criteria.

2.2.1 Scheduled data flow

Scheduled Data Flow (SDF) [5, 6, 7] is an architectural approach which ad-
dresses some of the limitations of the pure data flow model. SDF aims to
provide high performance decoupling instructions execution from memory
accesses.

In this architecture a thread is a set of SDF instructions associated with
a data frame and a state, called Continuation, present in memory. At thread
level the system behaviour is the data flow one.

On the other hand the execution engine, also called Execution Pipeline,
relies on control flow-like sequencing of instructions (i.e. it relies on a pro-
gram counter). Instructions are fetched by an instruction fetch unit. The
correct ordering of instruction is guaranteed by compile-time analysis. Ex-
ecution Pipeline executes the instructions of a thread using only registers.

The decoupling of execution and memory access is performed by the
Synchronization Pipeline. This component of the architecture is in charge
of load the data of a thread from the memory to a register set before the
execution of a thread (pre-load operation) and store the results of the exe-
cution from the register set to the memory after the execution of a thread
(post-store operation).

According to the configuration of its continuation, a thread can be in
one of four possible states: Waiting Continuation (WTC), Pre-load Con-
tinuation (PLC), Enabled Continuation (EXC), or Post-store Continuation
(PSC).

A special unit, called Scheduling Unit, handles the management of con-
tinuations. Figure 2.1 shows the life cycle of a thread among the functional
units.

Both Synchronization and Execution Pipeline must be able to communi-
cate with local memory, registers and control logic in one clock cycle. This is
a reasonable assumption as long as the number of pipelines in a chip remains
low. As the number of pipelines grows the communication times between
architectural components grows, becoming a limiting factor for the system

14

Figure 2.1: Life cycle of a thread in SDF. Figure taken from [5].

scalability.
In order to make the SDF architecture more scalable, the concept of

clustering resources has been added [8]. In this architecture each cluster
has the same architecture. A cluster consists of a set of processing elements
and a Distributed Scheduler Element, which is in charge of balance the work
among the processing elements.

2.2.2 Data-driven multi-threading and TFlux

Data Driven Multi-threading (DDM) is a non-blocking multi-threading model
[9]. In this model a thread is scheduled for execution in a data flow fashion,
thus eliminating the synchronization latencies.

The scheduling of threads is performed by an off-chip memory-mapped
module, called Thread Synchronization Unit (TSU). TSU communicates
with the CPU through the system bus.

The main difference between this approach and the SDF one consists in
the fact that DDM doesn’t require a special design processor, on the con-
trary it is studied to work with commodity microprocessors.

The core of this model consists in the TSU. This unit is in charge of
handle synchronization between threads and schedule ready threads for ex-
ecution.

Scheduling of threads is done dynamically at run-time according to data
availability or to some cache management policy.

TSU is made out of three units. The Thread Issue Unit (TIU), the Post
Processing Unit (PPU) and the Network Interface Unit (NIU). In addition
the TSU contains a Graph Memory and a Synchronization Memory.

The TIU is in charge of scheduling ready threads. The queue containing
the ready threads is split in two: the Waiting Queue and the Firing Queue.
The first one contains the thread identification number (Thread#) of ready
threads that are waiting for the prefetch of their own data from memory.
Once the data is gathered the Thread# is shifted into the Firing Queue.

15

Figure 2.2: Thread Synchronization Unit structure and interaction. Figure
taken from [9].

When the computation processor completes a thread, it passes the in-
formation about the completed thread to the PPU through the Acknowl-
edgement Queue. The PPU uses the Thread# of the completed thread to
index an associative memory, called Graph Memory, and get the Thread#
of completed thread’s consumers. The ready count of each consumer thread
is decremented and, if it becomes zero (i.e. the thread becomes ready), the
corresponding Thread# is forwarded to the TIU.
If a ready thread belongs to a remote node, its Thread# is forwarded to the
NIU.

The last unit, the NIU, is responsible for handling the communications
between the TSU and the interconnection network.
Figure 2.2 shows the overall picture of the TSU structure.

The DDM approach has been used to implement the Thread Flux System
(TFlux). TFlux is a complete system implementation, from the hardware
to the programming tools. The TFlux design is shown in Figure 2.3.

In order to make TFlux running on top of existing hardware and Op-
erating Systems virtualization techniques have been used. First, the entire
support is implemented at user level; second, the TSU functionalities are ac-
cessed through calls to high level library functions; third, the identification
of the thread’s bodies is done by the user through preprocessor directives.

These solutions allow TFlux to run on commodity Operating Systems,
abstracting from the TSU implementation technique and permit an easy
porting of existing C code to the TFlux system.

Abstracting from the TSU implementation technique led to different
TFlux implementations. TFlux Hard implements the TSU using a dedi-
cated hardware device, as in the DDM case. TFlux Cell is an optimized
implementation for the IBM-Cell processor, in which the TSU functionali-
ties are executed by the PPC element of the processor. At last TFlux Soft
implements TSU as a software module running on a dedicated core of the
target architecture.

16

Figure 2.3: TFlux layered design. Figure taken from [12].

2.3 Limitations of the approaches

The approaches we discussed in this chapter have some limiting factors.
SDF is an hardware design approach, as such it requires a special design

processor. This causes limitations to the usability of the architecture. A us-
able system should rely on off-the-shelf hardware and commodity Operating
Systems.

DDM partially overcomes the SDF’s limitations. It doesn’t require a
special processor, but requires additional custom hardware for implementing
the synchronization functionalities.

Again, TFlux abstracts from the TSU implementation technique making
its functionalities implementable in software. However, the implementation
of the TSU functionalities requires a dedicated core to run.

In a MDF interpreter the scheduling entity is often idle (specially for
coarser grain computations). It arises when tasks are completed for execut-
ing pre and post-processing phases. These facts imply a bad handling of the
cores pool.

In this thesis we aim to overcome this limitation by implementing a
different MDF-based system in which the scheduling entity arises just when
needed, leaving for the rest of the time the entire cores pool to the computing
entities.

17

Chapter 3

Support tools

In order to implement a portable system, m2df was developed in such a way
only standard libraries and mechanisms were used.

This chapter discusses the main tools on which m2df relies for its func-
tioning.

First, in Section 3.1, we will introduce the POSIX standard specifying
in Sections 3.1.1, 3.1.2 and 3.1.3 the functions utilized in m2df.

Then, in Section 3.2 we will introduce the system-dependent calls we
have used deepening, in Section 3.2.1 the pipe mechanism.

3.1 The POSIX standard

POSIX (Portable Operating System Interface for uniX) is the name of a
family of standards specified by the IEEE. The standard defines the Ap-
plication Programming Interface (API), utilities and interfaces for software
compatible with the Unix operating system family. The standard is cur-
rently supported by the majority of existing operating systems, although
not Unix.

The last version of the standard, POSIX:2008, consists of three groups
of specifications concerning:

• POSIX Base Definitions;

• System Interfaces and Headers;

• Commands and Utilities.

Depending on the degree of compliance with the POSIX standard, the
operating systems can be classified on fully or partly POSIX-compliant.
Between the fully POSIX-compliant systems one can mention Mac OS X,
Solaris, LynxOS, MINIX and many others.

18

Other systems, while not officially certified, conform in large part includ-
ing Linux, FreeBSD, NetBSD and many others.

Under Windows different solutions are possible, depending on the ver-
sion. In Windows Vista and Windows 7 the UNIX subsystem is built-in,
while in previous versions it must be explicitly installed.

The API functions specified by the standard are implemented in the
POSIX C Library. This is a language-independent library, which uses C
calling conventions. POSIX functionalities are often implemented relying
on the C standard library.

These functionalities may be used by including several header files and
target file system interaction, inter process communication, time handling
and thread handling.

m2df uses some POSIX facilities, mainly regarding thread handling, file
descriptors control and system information gathering.

These functions are defined in the fcntl.h, pthread.h and unistd.h

header files.

3.1.1 File descriptors control

In order to guarantee correctness, m2df implementation needs the possibility
of checking whether a pipe is full or is empty. The pipe mechanism, as we
will see in Section 3.2.1, provides the a file abstraction and therefore we can
use all the operations allowed on a file descriptor.

Flags control

The header file fcntl.h defines three function prototypes and a set of sym-
bolic constants to be used by these functions.

In order to have non-blocking communications between interpreter threads
and scheduler thread the function

int f c n t l (
int f i l e d e s ,
int cmd ,
. . .

)

has been used. This function takes as input a file descriptor, i.e. the filedes
parameter, a command, i.e. the cmd parameter and additional parameters
related to the specified command.

It is possible to have a pipe with non-blocking behaviour by suitably
setting the flags related to the file descriptor. This operation occurs in three
steps: first, we need to get the value of the flags setted for the considered
file descriptor; second, we modify the value of these flags by setting the
non-blocking flag and finally we submit the new flag value.

19

For performing step one and step three we need to use the fcntl func-
tion. In particular the F GETFL command tells fcntl to get the actual flags
value and F SETFL command tells fcntl to the new flags value.

File descriptors polling

The header file poll.h declares the poll routine and defines several struc-
tures used by this routine.

int p o l l (
struct p o l l f d fd s [] ,
n f d s t nfds ,
int t imeout

)

The poll routine examines a set of file descriptors contained in the fds
array checking if some of them is ready for a set of events. The input array
contains nfds entries. The timeout parameter specifies the maximum interval
to wait for any file descriptor to become ready, in milliseconds. Relating
to the value of the timeout parameter the function behaves differently: if
timeout is INFTIM (-1), poll will block indefinitely, while if poll is zero the
function will return without blocking.

This system call returns an integer value indicating the number of de-
scriptors that are ready for I/O. If the timeout occurs with no descriptors
ready poll will return zero. If some error occurs it will return -1.

In case of successful completion the occurred events will be stored, for
each file descriptor, in the appropriate position of the fds array. In case of
error, the fds array will be unmodified.

The routine’s input array is composed of pollfd data structures. poll.h
declares this structure as follows

struct p o l l f d {
int fd ;
short events ;
short r event s ;

} ;

The fd field contains the file descriptor to poll, the events field contains
the events to poll for. The first two are input fields while the revents field
is an output field. It will eventually contain the occurred events.

In order to simplify the events handling the same header file declares a
set of bitmasks describing the events.

20

3.1.2 Thread handling

POSIX specifies a set of interfaces (functions, header files) for threaded
programming commonly known as POSIX threads, or Pthreads. The access
to the Pthreads functionalities occurs through the header file pthread.h.

In this file types are defined as well as constants and the prototypes
of around 100 functions, all prefixed pthread and divided in four major
groups:

Thread management functions handling the life cycle of a thread and
for handling thread attributes;

Mutexes functions to support the mutual exclusion (mutex) mechanism
usage. These functions permit creating, destroying, locking and un-
locking mutexes;

Condition variables functions concerning communications between threads
that share a mutex, based upon programmer specified conditions;

Synchronize functions to manage read/write locks and barriers.

m2df heavily relies on Pthreads functionalities for creating and handling
the multi-threading.

Thread creation

Once the scheduler or an interpreter is launched, by calling the run()

method, a new thread is created. The creation phase consists in a call
to the

int pthr ead c r ea t e
(

pthread t ∗ thread ,
const p t h r e a d a t t r t ∗ att r ,
void ∗(∗ s t a r t r o u t i n e) (void ∗) ,
void ∗ arg

)

function. Quoting the Pthread manual

The pthread create() function is used to create a new thread,
with attributes specified by attr, within a process. If attr is
NULL, the default attributes are used. If the attributes spec-
ified by attr are modified later, the thread’s attributes are not
affected. Upon successful completion, pthread create() stores
the ID of the created thread in the location referenced by thread.

The new thread will execute the function pointed by start routine argument
with arguments pointed by arg parameter.

21

Thread pinning

POSIX models different cores of a single multi-core chip as processors, there-
fore in this text the terms core and CPU will assumed to be interchangeable.

CPU affinity is the ability of enforcing the binding of single threads to
subsets of the available cores or processors. This operation is very important
in order to get reliable results on actual multi-core chips.

CPU affinity can be divided in two main types:

Soft affinity also called natural affinity, is the capacity of the scheduler to
keep processes/threads on the same core as long as possible. This is
an attempt: if the scheduling of a certain process on the same core
is infeasible, it will migrate on another core, resulting in the so called
ping-pong effect;

Hard affinity is a requirement, provided through system calls, that en-
forces the scheduling of specific processes/threads to specific cores.

Why is CPU affinity so important? Three main benefits can be achieved.

The first one is that CPU affinity allows to exploit cache hierarchies.
Binding a thread on a single core simplifies cache management and the data
needed by that thread can be easily maintained on the cache of a single
processor.

A second benefit is related to the first one: pinning multiple threads
that access the same data to the same core will make these threads not
contending over data, avoiding or reducing cache invalidation overhead.

The last benefit is not related to caches. Pinning the thread to a single
core will avoid the ping-pong effect, resulting in a saving of clock cycles due
to the reduced scheduler activity.

In order to provide hard CPU affinity the POSIX library provide a set
of function and macros, different for processes and threads. Thread affinity
can be set through the function

int p t h r e a d s e t a f f i n i t y n p (
pthread t thread ,
s i z e t cpu s e t s i z e ,
const c p u s e t t ∗ cpuset

)

Concerning this function, the Pthread manual says

The pthread setaffinity np() function sets the CPU affinity
mask of the thread thread to the CPU set pointed to by cpuset.
If the call is successful, and the thread is not currently running
on one of the CPUs in cpuset, then it is migrated to one of those
CPUs.

22

Type cpu set t is a data structure representing a set of CPUs. This data
type is implemented as a bitset. cpu set t is treated as an opaque object.1.
All manipulations of this structure should be done via the set of macros
defined in the sched.h header file.

Only a few of these macros are useful for our purposes

void CPU ZERO(
c p u s e t t ∗ s e t

)

void CPU SET(
int cpu ,
c p u s e t t ∗ s e t

)

int CPU ISSET(
int cpu ,
c p u s e t t ∗ s e t

)

The use of these macros is quite intuitive. CPU ZERO takes as input a
pointer to a cpu set t and clears it, so it contains no CPUs. CPU SET adds
the CPU identified by cpu parameter to the set pointed by set. CPU ISSET
simply tests whether the set pointed by set contains the cpu identified by
cpu, this macro returns 0 if cpu is not contained in set and a non-zero value
otherwise.

CPUs are identified by integer numbers between 0 and NCPUs − 1.

In m2df the scheduling of each interpreter is enforced to a single pro-
cessor identified by its id number. Id numbers are integers between 0 and
Ninterpreters − 1.

If the support is launched with a number of interpreters greater then the
number of available CPUs, all the supernumerary interpreters are allowed
to run on each available CPU.

The scheduler thread is allowed to run on any available CPU, for effi-
ciency reasons. In this way any time an interpreter thread stops because it
has no work to do, the scheduler runs on the free core and schedules other
ready tasks according to the scheduling policy.

Thread termination

There are several ways in which a Pthread may be terminated. First,
the thread may return from its starting routine; second, it may call the
pthread exit function; third, the thread can be terminated by other threads

1Opaque objects are allocated and deallocated by calls that are specific
to each object type. Size and shape of these objects are not visible
to the user, who accesses these objects via handles. More information at
http://www.mpi-forum.org/docs/mpi-11-html/node13.html

23

through pthread cancel or pthread kill functions and fourth the entire pro-
cess can terminate due to SIGKILL signals or to a call to exec or exit

routines.

In m2df the thread termination occurs differently for interpreters threads
and scheduler thread. The first ones terminate by receiving a kill signal from
the scheduler, while the second one terminates by calling the exit function.

void p t h r e a d e x i t (
void ∗ r e t v a l

)

int pthread cance l (
pthread t thread

)

As the Pthread man page says

The pthread exit() function terminates the calling thread and
returns a value via retval that (if the thread is joinable) is avail-
able to another thread in the same process that calls pthread join.
[. . .] When a thread terminates, process-shared resources (e.g.,
mutexes, condition variables, semaphores, and file descriptors)
are not released. [. . .] After the last thread in a process ter-
minates, the process terminates as by calling exit with an exit
status of zero; thus, process-shared resources are released.

The pthread cancel routine requests to the thread indicated by thread
to be cancelled. The cancellation operation takes place according to the
target thread cancellation state. The target thread controls how quickly it
terminates, according to its cancellation state.

The cancelation state consists in cancelability state and cancelability type.
Cancelability state can be set to PTHREAD CANCEL ENABLE or PTHREAD CANCEL

DISABLE while cancelability type can be set to PTHREAD CANCEL DEFERRED

or PTHREAD CANCEL ASYNCHRONOUS.

Cancelability state determines whether a thread can receive a cance-
lation request or not. Cancelability type determines when a thread can
receive cancelation requests. A thread with deferred cancelability can re-
ceive requests only at determined cancelation points, while asynchronous
cancelability means that the thread can receive requests at any time.

By default a thread has cancelation state enabled and type deferred.
These values can be set through the pthread setcancelstate and pthread

setcanceltype routines.

In m2df the scheduler cancels the interpreter threads, in this way inter-
preters must not check for termination messages.

The pthread exit description is related to joinable threads. The join
operation permits synchronization between threads.

24

int p t h r e a d j o i n (
pthread t thread ,
void ∗∗ r e t v a l

)

The pthread join function makes the calling thread to wait for thread
to complete. retval is a placeholder for the thread exit status passed when
calling pthread exit.

The life cycle of the threads in m2df will be targeted in the next chapter.

Inter-thread synchronization

The pthread library provides several mechanisms to suggest synchronization
between threads. The main ones are mutexes and condition variables.

m2df uses both of these mechanisms. Mutexes have been used in order
to have exclusive and atomic access to the shared communication queues
and conditions have been used for the implementation of semaphores.

Pthread mutexes Mutexes can be used for preventing race conditions.
Typically the action performed by a thread owning a mutex consists in
the updating of shared variables. Using a mutex represents a safe way of
updating shared variables.

Mutex stands for mutual exclusion. A mutex acts like a lock protecting
the access to a shared resource.

The basic concept of a mutex is that only one thread at a time can lock
a mutex. Even if multiple threads try to lock the same mutex, only one
will succeed. Other threads will actively have to wait until the owning one
unlocks the mutex.

When several threads compete for a mutex, the losers will block at the
lock call. Pthread also provides a non-blocking call, the trylock operation.

Mutexes in pthread must have the type pthread mutex t. A mutex must
be initialized before it can be used. When initialized a mutex is unlocked.
The initialization operation can be performed statically, through a macro,
or dynamically through the function

int pthread mutex in i t (
pthread mutex t ∗mutex ,
const pthread mutexatt r t ∗ a t t r

)

This function initializes the mutex referenced by mutex. The attr object
is used to establish properties for the mutex object, and must be of type
pthread mutexattr t. If attr is NULL, a default attribute will be used.
Multiple initializations of the same mutex result in an indefinite behaviour.

It is possible to free a no longer needed mutex through the function

25

int pthread mutex destroy (
pthread mutex t ∗mutex

)

This function destroys the object referenced by mutex. It is safe to
destroy an unlocked mutex; trying to destroy a locked mutex results on un-
defined behaviour. A destroyed mutex becomes uninitialized, this object
can be re-initialized using pthread mutex init.

The possible operations on a mutex are

int pthread mutex lock (
pthread mutex t ∗mutex

)

int pthread mutex try lock (
pthread mutex t ∗mutex

)

int pthread mutex unlock (
pthread mutex t ∗mutex

)

All these operation operate on the object referenced by mutex.

The mutex is locked by calling pthread mutex lock. If the mutex was
already locked the calling thread blocks until the mutex become available.

The pthread mutex trylock routine behaves exactly as pthread mutex lock
except that if the mutex was already locked (by any thread, including the
calling one) the call return immediately with an appropriate error.

A mutex can be unlocked using the pthread mutex unlock function.
This function releases the referenced mutex. When this routine is called the
mutex becomes available again. If some thread is suspended on the mutex
the scheduling policy will be used in order to determine which thread shall
acquire the mutex.

Pthread conditions The second synchronization mechanism provided by
the pthread library consists in the condition variables.

While mutexes implement synchronization by controlling the access of
the threads to the shared data, condition variables allow the threads to
synchronize basing on the actual value of data.
Without mutexes, the programmer should make threads to continuously
check if the condition is met. This busy waiting is very resource consuming,
since the processor cannot be used by other threads.

A condition variable achieves the same result without busy waiting.

The initialization and destroying of a condition variable occurs similarly
to the mutex one.

26

int p t h r e a d c o n d i n i t (
pthread cond t ∗cond ,
const pthr ead condat t r t ∗ a t t r

)

int pthread cond des t roy (
pthread cond t ∗cond

)

The pthread cond init routine initializes the variable referenced by cond,
with the attribute attr. If attr is NULL a default attribute will be used.
Attempting to initialize an already initialized condition variable results on
undefined behaviour.

The pthread cond destroy function deletes the condition variable passed
through reference. Attempting to destroy a condition variable upon which
other threads are currently blocked results on undefined behaviour.

All the operations allowed on a condition variable are performed in con-
junction with a mutex lock. These operations consist in

int pthread cond wait (
pthread cond t ∗cond ,
pthread mutex t ∗mutex

)

int pth r ead cond s i gna l (
pthread cond t ∗cond

)

int pthread cond broadcast (
pthread cond t ∗cond

)

The pthread cond wait function blocks the calling thread until the con-
dition referenced by cond is signalled. This function should be called when
the mutex referenced by mutex is locked. This function automatically re-
leases the mutex while it waits. When a signal is received the mutex will
be automatically locked, so the programmer is in charge of unlocking the
mutex when the thread terminates the critical section.

To wake up a single thread which is waiting on a condition variable the
pthread cond signal routine is used. Instead, the pthread cond broadcadst
unlocks all threads blocked in the condition variable cond.

3.1.3 Miscellaneous functions

POSIX allows an application to test either at compile or run-time the value
of certain options and constants.

At compile-time this operation can be done by including unistd.h or
limits.h and testing the values with the macros therein defined.

27

Figure 3.1: Working scheme of a pipe.

At run-time the programmers can ask for numerical values using the
function

long sy s con f (
int name

)

the return value meaning will depending on the request explicated by name.
Anyway the values returned from this function are guaranteed not to change
during the lifetime of a process.

In m2df this function has been used to get the number of available cores
using as command the constant SC NPROCESSORS ONLN.

3.2 System dependent calls

The system dependent calls in m2df are limited to the pipes communication
system. For the sake of portability a version based on user-level communi-
cation mechanisms have also been implemented.

At compile-time is it possible to choose whether rely on the more efficient
pipes mechanism or on the more portable pthread-based communication
mechanism.

3.2.1 The pipe communication mechanism

Pipes provide a unidirectional interprocess communication channel. From
the user viewpoint a pipe is a pair of file descriptors connected in such a
way that the data written to the write end of the pipe will be available in
the read end of the same pipe.

The file descriptors composing a pipe are not related to a real file. They
are related to a buffer created and handled by the operative system kernel
in main memory.

28

A pipe has a limited capacity. The capacity of the pipe is implementation-
dependent, application should not rely on a particular capacity.

Read and write operation are performed through the functions used for
reading and writing on a file, since the pipe mechanism provides a file ab-
straction.

A write operation on a full pipe will cause the writing thread to block
until all the data have been written on the pipe. Similarly, a read operation
will cause the calling thread to block until some data will be available on
the pipe.

Read and write operation may be made non-blocking by setting the
O NONBLOCK flag on the read end or on the write end respectively. This
flag can be set or clear independently for each end.How to set an operation
non-blocking has been shown in Section 3.1.1.

In case the O NONBLOCK flag have been set writing on a full pipe or read-
ing on a empty pipe will fail.

A pipe is created using

int pipe (
int f i l e d e s [2]

)

This function creates a pair of file descriptors, pointing to the pipe buffer,
and places them in the array filedes. filedes[0] will represent the read end
and filedes[1] will represent the write end.

POSIX standard defines the parameter PIPE BUF. This parameter speci-
fies the number of bytes that can be atomically written into a pipe. The value
of this parameter is implementation-dependent, but the standard guarantees
to be at least 512 bytes.

Since threads in the same process share the file descriptors defined for the
process, the pipe mechanism, can be used for inter thread communications
even if it was originally designed to support inter process communications.
Threads can exchange informations through a pipe which will efficiently
synchronize them.

29

Chapter 4

Logical design

In this chapter we will discuss the design and the structure of the support
this thesis proposes.

In Section 4.1 we will examine the global structure of the system and
then, in Section 4.2 we will discuss the design of the m2df system modules.

4.1 Overall picture

Figure 4.1 shows the overall picture of the m2df system.

Figure 4.1: Overall picture of the m2df system.

Several entities co-operate in order to guarantee the system working
correctly. Especially, we can notice a set of interpreter threads and a single
scheduler thread.

30

Each interpreter is pinned to (i.e. it is forced to run on) a specific avail-
able core while the scheduler thread can run on any available core.

Each interpreter thread simply executes the tasks delivered to it and
signals their completion to the scheduler thread. If the tasks queue is empty
the interpreter will suspend its execution letting the scheduler thread arise.

The scheduler thread is the once operating on the task pool. It handles
the post-completion phase of the tasks by updating the ready counters of
the successor tasks of a completed one, and pushing the ready tasks (i.e.
the tasks whose ready counter has become zero) into a queue.

This thread then distribute the ready tasks among the interpreters, ac-
cording to a scheduling policy.

It is possible, for the user, to submit different instances of the same graph
for the execution with different input data sets. The task pool shown in the
Figure contains instances instead of graphs. An instance is a graph copy
associated with some input data.

The user thread invoking m2df functionalities is allowed to run concur-
rently with the other threads until it invokes the m2df’s termination function.
A call to this routine will cause the calling thread to suspend its execution
until the support terminates its execution.

This feature allows the user to operate in a streamed fashion, by asyn-
chronously submitting new instances for the execution, and to wait for their
completion safely.

4.2 Design of the support

m2df provides functionalities for handling the MDF graph creation and in-
stantiation and functionalities relative to the management of the compu-
tation. These functionalities co-operate in order to have an efficient and
easy-to-use MDF computation.

In the following pages we will deeply describe the design of the modules
composing m2df, exploring the motivations that led to the actual design.

4.2.1 Graph management

The first class of functionalities provides the user with abstractions needed
to operate on the internal implementation of the graph.

In m2df there are two representations of the graph representing the com-
putation: an abstract representation and a concrete representation.

The first one regards the aspects necessary for handling the dependencies
between nodes of the graph. Hence the abstract representation keeps track

31

of the ready count of each node and of its consumers.
The second one regards the aspects strictly related to the computation.

This representation will keep track of the code to be executed, of the input
data needed and of the locations where to put the results after the compu-
tation has completed.

These representations have been implemented through two data struc-
tures. The abstract representation keeps track of the concrete representation
in order to speedy the scheduling operations.

The abstract representation contains information needed by the sched-
uler for handling the task pool, such as the consumer tasks or the ready
count. The interpreters don’t mind about these informations.

On the other hand, the concrete representation contains the informa-
tions strictly needed by the interpreters to execute the task, i.e. the code,
the input data and the results placeholders.

Anyway the user doesn’t access these structures. All the operations on
the graph are performed through the wrapper class Graph.

This class exposes all the functionalities needed to operate on the graph,
e.g. to create it by adding nodes and edges and to submit new instances for
the execution.

As the user builds the graph, the class creates an internal representation
of the computation. This representation separately keeps track of the graph
structure and of the routines to be executed by each node of the graph.

The graph structure consists in an array of abstract node structs. Each
abstract node refers to its consumers as a list of indexes in the array.

When the user submits a new instance for the execution a new concrete
representation of the graph is created. This representation is ready to the
execution.

The concrete representation consists in a copy of the abstract one in
which each node points to a task structure. The task is created and correctly
initialized during the instantiation operation.

Each task contains the code to be executed, an array of input data and
an array of pointers used to put the results in the correct places. In more
detail the results array contains pointers to the correct locations (according
to with the graph structure) in the input buffers of the consumer tasks. The
set-up of the pointers is performed during the instantiation.

Each instance of the graph, represented by the Instance class, can run
only one time. An instance manages a concrete graph, this class allows two
operations: 1) the starting of the execution, through the start method and
2) the management of the completion of a task.

The first operation consists in pushing the first task of the graph into
the ready queue (i.e. enabling it to the execution).

32

Figure 4.2: Class diagram of the graph management.

The second operation consists in decrementing the ready counters of all
the consumers, and pushing them in the ready queue whether their counter
becomes zero.

Figure 4.2 shows the class diagram related to this part of the support.

The functionalities related to the graph management are exposed to the
user through the Graph class. The user creates a graph through the meth-
ods addNode and addEdge and submits new instances through the method
submitInstance.

At present we manually built the testing graphs but, from the perspec-
tive of future work, the user should be represented by a compiler, eventually
driven by user directives (e.g. #pragma) indicating the tasks and their in-
terconnections.

Submitting a new instance will cause the creation of an object of the
class Instance. This object will contain a concrete representation of the
graph. The constructor of the Instance class will ensure that the concrete
representation is correct.

Once the new instance has been created, it is passed to the scheduler
which will begin the execution by putting the first task in the ready queue,
through the start routine.

When a task is completed the scheduler will call the setCompleted

method. This method will decrement the ready counter of all the consumers
of the completed task. If the ready counter of some task will reach zero this

33

method will enable them for execution, by pushing them in the ready queue.
The return value of this method indicates the number of tasks which have
been enabled. In order to reduce latencies due to the fetching of data from
memory when a task becomes ready its input data is pre-fetched.

Actually, the pre-fetching is supported only for the gcc toolchain through
the builtin prefetch function. Quoting the gcc docs:

This function is used to minimize cache-miss latency by moving
data into a cache before it is accessed. You can insert calls to
builtin prefetch into code for which you know addresses of

data in memory that is likely to be accessed soon. If the target
supports them, data prefetch instructions will be generated. If
the pre-fetch is done early enough before the access then the data
will be in the cache by the time it is accessed.

For the sake of portability the calls to builtin prefetch should be
substituted by inlined segments of assembler code, implementing the pre-
fetching of data. Modern architectures provide assembler annotations which
make it simple to implement.

4.2.2 Data management

For the sake of portability m2df was conceived to work with tasks respecting
the pattern void** void**.

Dealing with raw memory pointers is often difficult, especially for inex-
pert C/C++ programmers, and can lead to memory corruptions and seg-
mentation faults.

In order to simplify the data management, i.e. input and output from a
task, some utility classes were designed. Figure 4.3 shows the class diagram
of these classes.

Figure 4.3: Class diagram of the data management support.

The hierarchy shown in the Figure above consists in three classes and

34

Figure 4.4: Organization of data.

two container classes.

The class ParameterBase implements the basic methods needed to han-
dle the raw memory chunk. These methods gives the user the possibility to
implicitly or explicitly allocate a memory block and to deallocate it.

Implicit allocation is allowed by the operator() overload. It is possi-
ble to allocate a new memory segment through the operator()(unsigned)

method or to handle a pre-existent one, through the operator()(void**).

Explicit allocation is allowed only for new chunks. It is implemented by
the allocate method.

In order to guarantee a correct memory handling the deallocation of
the memory is leaved up to the user. The user can explicitly deallocate a
memory chunk through the deallocate method.

The get method simply returns the row pointer. This pointer can be
used to return the output from the task or to set a tuple into the parameter.

Two classes extend the previous one. The first one, the Tuple class,
represents an heterogeneous set of elements. It is possible to set the elements
into the tuple using the setElementAt method and to get them using the
getElementAt method.

These methods operate with void* type. In order to have a simple and
safe cast from and to this type two template classes have been implemented.

The cast operation is slightly different for simple types and pointer types.
Because of this the parameter cast<T> was thought to cast simple types
while parameter cast<T*> specifies its behaviour for pointers.

These classes have just two overloads of the same cast static method.
The overloads implement the cast from and to void* type.

The second class is the Parameter class. This class represent an aggre-
gation of tuples. Tuples can be set and get through the setTupleAt and
getTupleAt methods.

This model, as shown in Figure 4.4, allows to easily create and manage
parameters consisting of multiple and heterogeneous elements.

35

Figure 4.5: Class diagram of the MDF support.

4.2.3 Computation management

The remaining part of the design relates to the support to the computation.
This part consists in a MDF run-time support.

The support is provided by a pool of classes describing the workers which
execute the tasks and the master which distributes the tasks to be computed
among the workers.

In the model shown in Figure 4.5 class Interpreter represents the
behaviour of the workers above, while class Scheduler represents the be-
haviour of the master.

The classes Scheduler and Interpreter are strictly coupled, since they
have deep interactions. The scheduler needs to send the tasks to be exe-
cuted to the interpreter and to receive an acknowledgement when a task is
completed. These communications are inherently asynchronous.

In order to reduce the coupling between these classes we designed a
hierarchy of interfaces.

Both scheduler and interpreters are Runnable classes. As such they must
implement two methods: exec and run. The first is a private one, it imple-
ments the behaviour of the class. The second instead has the aim of creating
a new thread to execute the behaviour coded by exec method.

36

Subsequently the interfaces specify the functionalities required from the
single class.

As far as the interpreter is concerned, the scheduler is a Notifiable

object. Interpreter can notify the completion of the task <gid, tid> through
the method notifyCompletion.

The scheduler perceives the interpreter as a Schedulable object. The
scheduler can submit a new task for the execution through the method
pushTask and, once terminated the execution, can kill the interpreter through
the kill method.

The computation is entirely managed by the run-time support. The user
isn’t aware of these interactions, he/she interacts with the support through
some interface functions.

It is possible to start the support through the start function, to specify
the number of interpreters needed through the tune function and to wait
for the end of the computation through the finalize function.

If the user doesn’t explicitly specify the number of interpreters the sup-
port automatically use one interpreter for each available core in the target
architecture.

4.2.4 Communications management

All the communication concerns have been grouped and handled by the
shared queue class. This class implements a thread-safe queue. Each inter-
preter has a shared queue by which receives the tasks to be executed. The
scheduler has a shared queue by which it receives the notifications of the
task completion.

These queues are private fields of the classes, and the access occurs
through appropriate methods.

Figure 4.6 shows the design of this part of the support. The class
shared queue implements a thread-safe FIFO queue. All the operations
on the queue are guaranteed to be atomic and deadlocks free.

The shared queue class provides methods to push a new element, to
pop the top element, to test whether the queue is full or empty and setting
read and write operation as blocking or non-blocking.

For the sake of portability this class has been designed as a generic one,
its implementation must not rely on the type of data contained by the queue.

In order to handle the blocking communications and to keep track of the
empty or full queue cases the Semaphore class have been used. This class
implements the functions of a semaphore relying on the pthread synchro-
nization primitives.

37

Figure 4.6: Class diagram of the communications support.

The Semaphore supports the wait and post operations. In addition to
these operations Semaphore allows the tryWait operation, which performs
the wait operation iff this operation doesn’t block the calling thread, and
testing whether the semaphore is safely waitable or postable.

Also the operations on the Semaphore are guaranteed to be atomic,
however avoiding deadlocks is in charge to the user.

4.2.5 Global overview

Figure 4.7 shows the overall picture of the classes used to implement the
system.

In particular it is possible to point out the interactions between different
classes.

The scheduler and the interpreters communicate through different shared
queues: each interpreter receives the tasks to execute into a private queue
and sends the completed tasks’s ids into a scheduler’s private queue. Ap-
propriate methods mediate the access to these queues.

The function schedule is in charge of performing the scheduling of tasks.
The scheduler calls this function when it needs to schedule the ready tasks.

This function groups all the scheduling issues. When we need to modify
the scheduling policy it is sufficient to change the behaviour of this function.

The diagram in Figure 4.7 shows another pure function, which was
not discussed before. The function thunk is a pure function which takes
as parameter a pointer to a Runnable class and uses it for calling the
Runnable::exec method. In order to perform this method call the function
thunk is a friend of the Runnable interface.

Indeed, it is needed to run the exec behaviour only after the forking of
the supporting thread has been performed. The pthread create function,

38

called by the run method, receives as parameter the thunk body.

Figure 4.7: Global picture of the m2df’s system.

The interpreters notify a task completion by calling the notifyCompletion
method. This method creates a new completion structure, which simply
aggregates a graph id and a task id in a unique object, and pushes it into
the queue of the scheduler.

Each interpreter maintains a reference to the scheduler in order to no-
tify the completion in a simple way. This design also allows multiple levels
of scheduling in which hierarchical schedulers distribute the tasks at their
disposal to a set of subordinate interpreters.

The UML class diagram also shows that the Graph class is friend of the
Scheduler one. This allows the Graph class to safely submit a new instance
to the scheduler.

The method for adding a new instance (i.e. Scheduler::addInstance)
has been set private since it represents a critical operation which implies syn-

39

chronizations, deep knowledge of the scheduler’s structure and some checks
on the graph.

Keeping that method private enforces the user to submit new instances
only through the Graph::submitInstance method. This method makes
the appropriate controls on the graph to be submitted and submits in an
efficient way the new instance to the graph (i.e. limiting at the most the
synchronizations between threads).

4.3 Life cycle

m2df is a multithreaded MDF run-time support. In this section we will
describe how the threads in m2df interact in order to carry out their com-
putations.

Figure 4.8: Life cicle and interaction of threads in m2df.

Figure 4.8 shows the threads interactions. Initially, the application con-
sists in a single thread, i.e. the user one. This thread builds the graphs and
prepares the input data for the instances.

Once the user thread calls the start function, a new thread is created.
This thread executes the scheduler function. The scheduler, when launched,
creates a new thread for each interpreter and starts the delivering of tasks.

In the meanwhile the user thread is allowed to run, in parallel. It is
possible to execute streamed computations, submitting new instances of the
graph as soon as the input data is available, or to do other work. The
user thread can wait for the end of the MDF computations by calling the
finalize function.

40

A call to finalize will enable m2df to terminate, as soon as it terminates
to execute the submitted instances. Up to the point this function has not
been called yet, the scheduler will wait for new instances when it terminates
the scheduling of the submitted ones. A call to the finalize function will
block the calling thread until m2df has terminated its execution.

After a call to finalize a new computation can be started, with different
configurations, by calling the function start once again.

Only one instance of the scheduler is allowed to run at a time. Multiple
calls to the start routine, before finalize is called, will produce an exception.

41

Chapter 5

Implementative aspects

This chapter deals with the implementation concerns relative to the devel-
opment of m2df.

In Section 5.1 we will expose the general choices which influenced the
entire project. In Section 5.2 we will discuss the implementation of the
communication mechanism, specifying the two different versions we have
implemented in Sections 5.2.1 and 5.2.2. Section 5.3 discusses the semaphore
class’ implementation.

In Section 5.4 we will treat the aspects related with the thread man-
agement, then in Section 5.5 we will examine the interpreter and scheduler
behaviour, discussing in Section 5.6 the scheduling mechanism’s implemen-
tation.

Finally in Section 5.7 we will enumerate the global variables we used in
the project, describing their meaning.

5.1 General choices

In this section we will briefly explain some high level implementation choices
related to the m2df’s development.

First, the language chosen for developing this programming framework
was C++. Indeed the decision of relying on the POSIX standard restricts
the possible languages to C and C++.

C++ provides several benefits such as the possibility to use all object-
oriented features, the templates mechanism, namespaces and all the func-
tionalities and the containers of the C++ standard library maintaining per-
formance comparable to that of the C language.

The second choice relates to the naming conventions. All the files com-
posing m2df are named following the pattern mtdf <component name>.
The user can access all the m2df’s functionalities by including the header

42

file mtdf.h.

In order to avoid naming collisions all the classes and routines composing
m2df have been grouped into the m2df namespace.

To simplify some interactions among threads the shared memory mech-
anism have been exploited through the use of global variables. The inner
namespace m2df::global groups all the global variables, which meaning
will be discussed in Section 5.7.

5.2 Communication implementation

The class shared queue embeds all the communication concerns.1 This
class provides the abstraction of a FIFO queue, abstracting from the inner
implementation details.

Actually two different communication mechanisms have been implemented.
The fist one relies on the pthread synchronization primitives, while the sec-
ond one relies on the pipe mechanism.

In order to have more performant communications the code implement-
ing the shared queue is chosen at compile time through the use of condi-
tional groups #ifdef ... #endif.

It is possible to switch the communication mechanism by setting (or un-
setting) the appropriate flag, defined in the m2df debug.h header file.

The shared queue class, is a template class. This allows implementing
a generic shared queue, abstracting from the details related to the content
of the queue. Listing 5.1 shows this chass’ signature.

class shared queue
{

bool w block , r b l o c k ;
#i f d e f M2DF SYNC VERSION
pthread mutex t mutex ;
Semaphore e n t r i e s n ;
queue<T> data ;
#e n d i f
#i f d e f M2DF PIPES VERSION
int p i p e d e s [2] ;
#e n d i f

public :
inl ine shared queue () ;
virtual ˜ shared queue () ;

void se tOperat ion (short op , bool b l o c k i n g) ;
inl ine void push (T& data) ;

1Because of design choices, as previously discussed in Chapter 4.

43

inl ine T pop () ;
inl ine T tryPop () ;
inl ine T timedPop (unsigned time , bool ∗ v a l i d) ;
bool isEmpty () ;
bool i s F u l l () ;

} ; �
Listing 5.1: shared queue class’ signature.

5.2.1 Pthread-based mechanism

This version guarantees the FIFO ordering of the data through the std::queue
class. This queue is maintained as a private field. The access to the queue
is mediated through appropriate methods.

In addition to the queue, this class maintains a pthread mutex in order
to guarantee the atomicity of the operations on the queue.

In order to provide blocking operations a Semaphore instance is main-
tained. The implementation details of the Semaphore class will be treated
in Section 5.3.

Listing 5.1 shows the structure of the shared queue class. When the
framework is compiled according to this version, the preprocessor makes the
class to have the structure defined through the #ifdef M2DF SYNC VERSION

... #endif guards.

Both the read and write operation can be set as blocking or non-blocking,
the relative information is maintained by the w block and r block flags.

The implementation of the push and pop methods uses the entries n

semaphore is such a way that a thread can safely (i.e. without causing
deadlocks) suspend its execution. Figure 5.1 shows the behaviour of these
operations.

Figure 5.1: Push and pop operation on a queue with pthread primitives.

In case an of empty queue, the wait operation will cause the calling
thread to block. Similarly, in case of a full queue, the post operation will

44

cause the calling thread to block.

In case an operation is set as non-blocking and the considered operation
cannot be performed (e.g. a push operation on a full queue or a pop op-
eration on an empty queue) the invoked method will throw an appropriate
exception.

Other operations allow to check whether the queue is full or empty. In
this implementation these methods simply check if the associated Semaphore

is postable or waitable, and return the result.

For the sake of extensibility different versions of the pop operation have
been implemented. Precisely a non-blocking version, called tryPop, and a
timed version, called timedPop.

These methods behave the same way if the queue is not empty: they
return the top element, removint it from the queue. In case of empty queue
the first one immediately returns false, while the second one waits up to
time2 milliseconds for the queue to become ready. If the timeout expires
then it returns a false value, otherwise it returns a true value and the top
element.

5.2.2 Pipe-based mechanism

In the version based on the pipe mechanism the FIFO ordering is guaranteed
by the pipe itself. In this implementation the class only contains the file
descriptors needed by the underlying mechanism. These descriptors figure
through the #ifdef M2DF PIPES VERSION ... #endif guards, as shown
in Listing 5.1.

In this case, setting an operation blocking or non-blocking is a little bit
more complicated with respect to the other version. The setOperation

method is in charge of setting the value of the appropriate field of the class
and, in addition, it is in charge of setting the flags on the appropriate file
descriptor through the fcntl routine.

The push and pop operation will simply invoke the write and read

operations on the appropriate file descriptor.
As previously explained in Section 3.2.1 the POSIX standard provides

the PIPE BUF parameter specifying the number of bytes that can be atomi-
cally written to a pipe. The standard doesn’t specify this parameter’s value,
but guarantees to be at least 512 bytes. In order to ensure the atomicity of
these operations we decided to send only pointers to the tasks through the
pipe3.
The write operation will write a pointer to the object to push into the pipe,

2time is an input parameter of the method.
3This choice also allows to abstract from the task’s structure, increasing expandability.

45

and the read operation will read it from the pipe. The invoked operation
will not return before it has completed.

In case an operation is set as non-blocking the invoked routine (i.e.
read or write) will return an error in case the requested operation cannot
be completed. The method will throw an appropriate exception in case it
gets the above error.

The following listings show this behaviour.

void push (T& data) {
T∗ temp=& data ;
i f (wr i t e (p ipe de s [1] , &

temp , s izeof (T∗)) ==
−1) { // wr i t i n g error
i f (! w block) throw

FullQueueException
() ; // throw
excep t i on only i f
non−b l o c k i n g

cerr<<” Error in
wr i t i ng in to pipe :
”<<s t r e r r o r (errno

)<<endl ;
c e r r . f l u s h () ;
throw

PipeWriteException
() ;

}
} �

T pop () {
T ∗ r e t ;
i f (read (p ipe de s [0] , &ret ,

s izeof (T∗)) == −1) {
// reading error
i f (! r b l o c k) throw

EmptyQueueException
() ; // throw
excep t i on only i f
non−b l o c k i n g

cerr<<” Error in
read ing from pipe :
”<<s t r e r r o r (errno

)<<endl ;
c e r r . f l u s h () ;
throw

PipeReadException
() ;

}
return (∗ r e t) ;

} �
In order to check if the queue is full or empty the class relies on the poll

function. The isEmpty method polls the read-end of the pipe, checking if
there is something to read. Similarly, the isFull method polls the write-end
of the pipe, checking if it is possible to write something.

The poll method returns an integer which indicates several possible sit-
uations. These methods will convert this value to a boolean and return that
value.

5.3 Semaphore implementation

As shown in Section 4.2.4 the Semaphore class provides methods for execut-
ing classical semaphore operations. The implementation of this class relies
on some pthread synchronization primitives, mainly on pthread mutexes and
conditions.

We choose to re-implement the semaphore functionalities from scratch,
instead of using POSIX semaphores, because of some inherent problem

46

with this API4. Furthermore we needed to easily and safely check whether
the semaphore was waitable or postable, operation not permitted with the
POSIX semaphore.

Listing 5.2 shows the declaration of the class. This class maintains a
counter (i.e. the val field), an upper bound for this counter, a mutex and a
condition.

class Semaphore {
unsigned long val , max ;
pthread mutex t mutex ;
pthread cond t cond ;

public :
/∗Methods∗/

} ; �
Listing 5.2: Semaphore class declaration.

All the operations on the semaphore are guaranteed to be atomic. The
mutex is utilized in order to implement the atomicity.

The suspension is performed using the pthread condition.

In case the user invokes a wait operation on a semaphore with val equal
to zero the calling thread will wait the condition. The condition mechanism
guarantees a correct blocking, without deadlocks. When the thread will
be waked-up it will decrement the val counter and continue the execution.
Again, the condition mechanism guarantees to wake-up a single thread in
case more than one is waiting.

The tryWait operation will decrement the val counter if and only if
this operation will not block the calling thread. Otherwise the method will
return the false value.

On the contrary, the post operation is in charge to increment the val

counter. This operation is correctly performed if val is lower than the upper
bound set for the semaphore, otherwise it returns a negative response.

Having a value equal to one after the counter increment, means that
some thread is suspended on the semaphore. In this case the method posts
the condition variable in order to wake-up one of the waiting threads.

The remaining operations allow to test whether the semaphore is wait-
able or postable. These tests are performed in an atomic way too.

The first control returns true if the val counter is equal to zero. The
second one returns true if the val counter is less than the upper bound.

4Mainly related to the errno variable.

47

The following listings show the implementation of wait and post opera-
tions.

void Semaphore : : wait ()
{

pthread mutex lock(&mutex)
;

i f (va l == 0) {
suspended = true ;
pthread cond wait (&

cond , &mutex) ;
suspended = fa l se ;

}
val−−;
pthread mutex unlock(&

mutex) ;
} �

bool Semaphore : : post ()
{

bool s u c c e s s = true ;
pthread mutex lock(&mutex)

;
i f (va l < max) va l++;
else s u c c e s s = fa l se ;
i f (va l == 1 && s u c c e s s ==

true) {
pth r ead cond s i gna l (&

cond) ;
}
pthread mutex unlock(&

mutex) ;
return s u c c e s s ;

} �

5.4 Thread creation and pinning

The pthread create routine requires, as input, a start routine which must
respect the template void*(void*). In m2df we need to create new threads
executing methods related to classes.

In order to overcome this limitation we defined a thunk function. As
shown in Listing 5.3 this function takes as an input parameter a pointer to
the object on which invoke the method, casts the pointer to the Runnable

interface and invokes the exec() method.

void ∗ thunk (void ∗ c l a s s p t r) {
Runnable ∗ i n s t ance = (Runnable ∗) c l a s s p t r ;
in s tance−>exec () ;
return NULL;

} �
Listing 5.3: Thunk routine.

The Runnable::run() method is in charge of creating the new thread.
This operation is shown in Listing 5.4, for the scheduler creation. The
interpreter creation is similar, but no parameter attribute is passed to the
pthread create function.

struct sched param my param ;
p t h r e a d a t t r t my attr ;
int e r r o r c o d e ;

48

// s e t h igh s chedu l i n g p r i o r i t y
p t h r e a d a t t r i n i t (&my attr) ;
p t h r e a d a t t r s e t i n h e r i t s c h e d (&my attr , PTHREAD EXPLICIT SCHED) ;
p t h r e a d a t t r s e t s c h e d p o l i c y (&my attr , SCHED OTHER) ;
my param . s c h e d p r i o r i t y = s c h e d g e t p r i o r i t y m a x (SCHED OTHER) ;
pthread at t r se t schedparam(&my attr , &my param) ;

i f ((e r r o r c o d e = pthr ead c r ea t e (& thr ead in f o , &my attr , thunk , (
void ∗) this)) != 0)
throw ThreadForkException (e r r o r c o d e) ; �

Listing 5.4: Thread creation.

After the threads have been fired, in m2df we need to set the CPU affinity
of threads to subsets of the available cores.

The programmer specifies, through an appropriate parameter, the num-
ber of interpreters he wants to start. This value is maintained into the
global::processors number global variable.

This variable is set into the tune function, during the initialization phase.
If the user doen’t specify this value, m2df will fire an interpreter for each
available core in the target architecture. We retrieve the number of available
core through the sysconf function, as described in Section ??.

The interpreters are identified through an id. Ids are unsigned integers
between 0 and Nint − 1. Each interpreter is allowed to run on the ith core,
where i is the interpreter’s id.

In case the programmer launches some excess interpreters, namely Nint >
Ncores, the excess interpreters are allowed to run on any available core.
Listing 5.5 shows the pinning of the interpreter threads played by Inter-
preter::run() method.

c p u s e t t cpu se t ;
unsigned cpu num = g l o b a l : : processors number ;

CPU ZERO(& cpu se t) ;
i f (i i d < cpu num)

CPU SET(i i d % cpu num , &cpu se t) ;
else for (unsigned i = 0 ; i < cpu num ; i++)

CPU SET(i , &cpu se t) ; // exce s s p a r a l l e l i sm i n t e r p r e t e r s
can run in any cpu

i f ((e r r o r c o d e = p t h r e a d s e t a f f i n i t y n p (th r ead in f o , s izeof (
c p u s e t t) , &cpu se t)) != 0) //some error occurred
throw ThreadSchedul ingException (e r r o r c o d e) ; �

Listing 5.5: Pinning of interpreter threads.

Similarly, the scheduler is allowed to run on any available core. We can
permit this thread to run on any free core because its tasks are often quick

49

and, in addition its intervention is fundamental to make the computation to
proceed, since it schedules the new tasks to be calculated.

Furthermore the scheduler has higher scheduling priority to prevent it to
be a performance bottleneck. Listing 5.6 shows part of the Scheduler::run()
method.

unsigned cpu number = MIN(g l o b a l : : processors number , procs . s i z e
()) ;

c p u s e t t cpu se t ;

CPU ZERO(& cpu se t) ;
for (unsigned cpu id = 0 ; cpu id < cpu number ; cpu id++)

CPU SET(cpu id , &cpu se t) ; // s chedu l e r can run in any core

i f ((e r r o r c o d e = p t h r e a d s e t a f f i n i t y n p (th r ead in f o , s izeof (
c p u s e t t) , &cpu se t)) != 0) //some error occurred
throw ThreadSchedul ingException (e r r o r c o d e) ; �

Listing 5.6: Pinning of scheduler thread

5.5 Interpreter and Scheduler loops

Both interpreter and scheduler classes implement the Runnable interface.
This interface declares a public method run and a private method exec.

The first method is in charge of creating the new thread and setting
its properties, such as scheduling priority. This method also performs the
pinning of the thread on one of the available cores.

Once the thread has been created the exec method implements the spe-
cific behaviour of the class.

The interpreter implementation of this method executes a loop in which:

• waits for a new task;

• executes the received tasks;

• stores the results in the consumer tasks;

• notifies the completion to the scheduler.

Listing 5.7 shows this behaviour. The execution is terminated by the
scheduler which cancels the executing thread.

Looking at the code in Listing 5.7 we can observe that it copies res into
t.results. That line means that the interpreter, once it has completed a task,
copies the results tokens directly into the neighbour tasks’ input buffers.
In this way no intermediate copies are required and the scheduler’s work
amount is minimized.

50

while (true) { // i n t e r p r e t e r i s ” k i l l e d ” by the s chedu l e r
register task t = task s . pop () ;

void ∗∗ r e s = t . code (t . data) ;

copy r e s into t . r e s u l t s

sched addr−>not i fyComplet ion (t . gid , t . t i d) ;
} �

Listing 5.7: Interpreter loop pseudo-code.

On the other hand the scheduler thread executes a different loop, shown
in Listing 5.8. The first thing we can notice is that the scheduler loop

contains some mutex operations. These operations are necessary in order
to guarantee the user to operate in a streamed fashion: he can submit new
instances to the execution, through the Graph::submitInstance method.
This method is allowed to invoke the Scheduler::addInstance private
method5. The concerned method loads the new tasks, and pushes the in-
stance’s root task into the ready queue, these operation must be performed
in an atomic way with respect to the scheduler loop.

We can also see that the scheduler terminates its execution only when
all tasks have been completed and it was enabled to complete. The enabling
is performed through the Scheduler::enableCompletion method, which
simply sets a flag. This method is invoked by the finalize function, so
m2df cannot terminate before the finalize function has been called.

Once the loop is terminated, the scheduler cancels all the interpreter
threads (which are all idle) and exits.

5.6 Scheduling

The scheduler instance performs the scheduling operation. This operation
is performed by invoking the schedule routine.6

This function implements the scheduling policy: takes a std::queue

of ready tasks and a std::vector of interpreters as input and returns a
boolean value indicating whether a task was scheduled or not.

The scheduling is task-based. Actually the schedule function pops a
ready task from the queue and sends it to one interpreter in a round-robin
fashion.

5Since the Graph class were declared as friend of the Scheduler one, as described in
Section 4.2.5.

6As we saw in Section 4.2.5

51

while (true) {
register unsigned enab l ed ta sk s = 0 ;

i f complet ion i s enabled && a l l t a sk s have been completed :
break

while (s chedu le (ready tasks , procs)) ; // schedu l e u n t i l t h e r e
i s something to schedu l e

pthread mutex unlock(&mutex) ;
//now i t i s p o s s i b l e to submit new in s t ance s
register bool cond ;
do {

complet ion compl task = completed tasks . pop () ;
unsigned c g i d = compl task . gid , c t i d = compl task . t i d ;

pthread mutex lock(&mutex) ;

enab l ed ta sk s = graphs [c g i d] . setCompleted (c t i d ,
r eady ta sk s) ;

compl tasks++;

i f (enab l ed ta sk s) {
while (s chedu le (ready tasks , procs)) ;
enab l ed ta sk s = 0 ;

}

cond = (compl tasks < t a sk s n) ;
pthread mutex unlock(&mutex) ;

} while (cond) ;
}

for (unsigned i = 0 ; i < procs . s i z e () ; i++) {
procs [i]−> k i l l () ; // cance l i n t e r p r e t e r th reads

}

p t h r e a d e x i t (&compl tasks) ; �
Listing 5.8: Scheduler loop pseudo-code.

52

In case changes to the scheduling policy are needed, it is sufficient to
modify the behaviour of this function.

5.7 Global variables

In order to simplify the interactions between different parts of the support
a set of global shared variables have been grouped into the m2df::global

namespace.
These variables are setted once and accessed in a read-only fashion.

processors number this variable represents the number of available core.
It is set by the tune routine when starting the computation and is
read by the scheduler and the interpreters for simplify the pinning
operations. It is possible to receive this value from the user, i.e. as
an input to the tune routine, or to automatically set it, i.e. getting it
through the sysconf routine, as described in Section 3.1.3;

scheduler addr this variable is a pointer to the scheduler instance. It is
set by the start routine. The Graph class uses this variable in order to
submit new instances to the scheduler, and the finalize routine uses this
pointer for enabling the completion and joining the scheduler thread;

comm mutex almost all classes use this mutex for printing debug messages
having single access to the output buffer.

53

Chapter 6

Experiments

In this chapter we will discuss the experiments performed in order to evaluate
m2df performance.

In Section 6.1 we will present the target architectures used for the tests,
in Section 6.2 we will examine the benchmarks used and present the results
and finally in Section 6.4 we will discuss the presented results.

6.1 Target architectures

The m2df’s validation experiments have been performed on two machines:

• The first one, called ottavinareale, is a multiprocessor with two Intel
Xeon R© model E5420.

This model relies on the Penryn architecture. It provides 32 KB L1-
data cache, 32 KB L1-instruction cache dedicated to each core. The
L2 cache is shared between cores of the same processor and it is sized
6 MB.

The system runs a Linux kernel version 2.6.18-194.

• The second one, called andromeda, is a multiprocessor with two Intel
Xeon R© model E5520 [28].

This CPU is based on the Nehalem architecture. With this architec-
ture Intel leaves the Multi-Chip Package approach for the monolithic
one. All the cores composing the CPU are integrated on the same die,
differently from the Core2-Quad which was composed by two Core2-
Duo dies on the same base.

The specific CPU model provides 4-cores, each of which has a dedi-
cated 64 KB L1 Cache (further divided in 32 KB L1-data cache and
32 KB L1-instructions cache) and a dedicated 256 KB L2 cache. The

54

chip also contains a shared 8 MB L3 cache. In this configuration the
L2 cache behaves as a buffer with respect to the L3 cache.

Furthermore this model adopts the QuickPath Interconnect technology
[29]. This technology allows any processor to efficiently access the data
contained into other processors’ caches in a NUMA fashion by-passing
the system bus.

The Xeon processor also implements the Hyper-ThreadingTM technol-
ogy. This is a Simultaneous Multi-Threading implementation which
makes the Operative System ”to see” a number of logical proces-
sors higher than the physical one. Specifically, this model has four
2-threaded cores.

The utilized model has a clock frequency of 2.26 GHz, with a TurboBoostTM

of 2.53 GHz.

andromeda is a multi-processor with 8 physical cores and 16 logical
cores running a Linux kernel 2.6.18-164. The experimental results
bring out that the Hyper-Threading does not add further benefits with
respect to the exploitation of the physical cores.

Some tests required the use of optimized linear algebra routines, mainly
related to the BLAS standard API and the Lapack library.

As efficient implementation of these functionalities we targeted the libFLAME
routines. libFLAME is an open-source C library with Lapack functionali-
ties, developed and maintained by the University of Texas. For our tests we
used libFLAME, version 3.0-5861.

All tests were built using compilers of the GCC suite, version 4.1.2.

6.2 Experiment setup

In this Section we will describe the tests performed on m2df.

For each test we measured the completion times of the sequential imple-
mentation, namely Tseq, and of the parallel one, namely T (N), with paral-
lelism degrees of N = 2, 4, 8.

In order to have more precise results we took as completion time the
average time of five runs.

For each test we evaluated the speed-up as

s(N) =
Tseq

T (N)

55

(a) Generic (b) Pipeline (c) Map

Figure 6.1: Kind of graphs used for synthetic application tests.

and we extracted the efficiency as

ε(N) =
Tseq

N

T (N)
=

s(N)

N

Speed-up measures how much the parallel version of the computation im-
proves with respect to the sequential implementation while the efficiency
normalizes that measure with respect to the parallelism degree.

Preliminary tests

The first tests we performed on m2df mainly consisted in synthetic applica-
tions. These tests were performed in order to test the correct working of the
run-time support and to study its behaviour with different grains.

For the sake of completeness we will describe these tests too, reporting
their results.

For these tests we used a generic graph, i.e. a graph without a particular
structure, a 13-stages pipeline graph and a map graph with 8 workers.

Figure 6.1 shows the structure of these graphs. Each node in the graph,
but the input nodes, simply increment the value of a variable for a number
N of times.

Figures 6.2, 6.3 and 6.4 show the results of the preliminary tests per-
formed on ottavinareale and on andromeda without variance on the task’s
work amount.

Tests have been performed also with a random variance up to 25% on
the N value, i.e. new N = N ± rand()%N · 0.25.

For these tests, which operate on a stream of 128 instances, we also
measured the completion time the single instance as the average time on
ten runs. In this way we can have in mind the order of magnitude of the
elaboration time of the single stream element. The measures relative to this
time are reported in Table 6.2.

56

ottavinareale andromeda

Version 1 - 0% 2.4189 ± 0.0039 2.8902 ± 0.0015
Version 1 - 25% 2.5457 ± 0.2573 2.8752 ± 0.2931

Version 2 - 0% 3.0766 ± 0.0165 3.1876 ± 0.0031
Version 2 - 25% 2.6473 ± 0.8621 3.1784 ± 1.0349

Version 3 - 0% 1.7045 ± 0.005 1.9614 ± 0.0019
Version 3 - 25% 1.6174 ± 0.086 1.9237 ± 0.103

Table 6.1: Single shot execution times for synthetic applications, in seconds.

Figures 6.5, 6.6 and 6.7 show the results of these tests.
We can notice how the tests have a different behaviour in the two ma-

chines: while on andromeda the pipe-version and the pthread-version have
the same trend, on ottavinareale the two versions have slightly different
trends (Figures 6.2(a), 6.5(a), etc).

More in general we can notice how on andromeda speed up always follow
the ideal linear trend, independently from the variance. On the other hand,
on ottavinareale, speed up follow the linear trend with one of the two
version, while the less performant is at worst at 80% of the ideal speed up.1

 0

 50

 100

 150

 200

 250

 300

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Generic Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Generic Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

 350

 400

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Generic Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Generic Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.2: Results of Generic Graph computation, with variance of 0%.

1Computed as described in Section 6.2.

57

 0

 50

 100

 150

 200

 250

 300

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Pipeline Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Pipeline Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Pipeline Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Pipeline Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.3: Results of Pipeline Graph computation, with variance of 0%.

 0

 50

 100

 150

 200

 250

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Map Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Map Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Map Graph - Variance 0%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Map Graph - Variance 0%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.4: Results of Map Graph computation, with variance of 0%.

58

 0

 50

 100

 150

 200

 250

 300

 350

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Generic Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Generic Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

 350

 400

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Generic Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Generic Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.5: Results of Generic Graph computation, with variance of 25%.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Pipeline Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Pipeline Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Pipeline Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Pipeline Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.6: Results of Pipeline Graph computation, with variance of 25%.

59

 0

 50

 100

 150

 200

 250

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Map Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Map Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 50

 100

 150

 200

 250

 300

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Map Graph - Variance 25%

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Map Graph - Variance 25%

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.7: Results of Map Graph computation, with variance of 25%.

Matrix power raising

In order to test the behaviour of the support with applications involving
data transfers from the main memory and the exploitation of the memory
hierarchy we implemented the power raising of a matrix.

This computation is structured as a pipeline, in which each stage per-
forms a matrix product, as shown in Figure 6.8.

Each mul stage receives as input two matrices, A and B. It computes a
naive matrix multiplication B = B ×A and produces as output the matrix
A and the updated matrix B.

Figure 6.8: Graph structure of the matrix power raising.

In order to guarantee correctness at the beginning of the computation
(i.e. the first stage’s input) we have B = A.

We performed tests for both fine and coarse grain tasks. Fine grain tests

60

consist in streams of 2048 128×128 matrices while coarse grain computations
consist in streams of 64 640 × 640 matrices. All tests have been performed
using optimized compilation.2

Also in this case we evaluated the single shot execution time, in order to
have an idea of the computation grain.

ottavinareale andromeda

128 × 128 Matrix 0.1491 ± 0.0069 0.0478 ± 0.0023

640 × 640 Matrix 23.2389 ± 0.8902 27.0391 ± 0.0759

Table 6.2: Single shot execution times for matrix power raising, in seconds.

Figure 6.9 shows the fine grain test results and Figure 6.10 shows the
coarse grain test results.

For fine grain computations both ottavinareale and andromeda doesn’t
suffer from cache misses. ottavinareale overscales and andromeda scales
about 85/90% of the ideal speed up. Moving to coarse grain computations
andromeda maintains the same performances of the fine grain case while
ottavinareale scales about 60% of the ideal speed up for a degree of 8.

We can impute this difference in the two machines performance to the
different cache sizes and policies implemented. Indeed, as described in Sec-
tion 6.1, andromeda has a bigger cache than ottavinareale, moreover
andromeda adopts the QuickPath Interconnect technology, which makes
communications between the caches of the two processors faster.

In order to confirm this fact we performed further tests in which we
studied the efficiency trend as a function of the matrix size, and hence of
the cache exploitation. Figure 6.11 shows the efficiency trend for a fixed
parallelism degree of 8, on ottavinareale.

Cholesky Decomposition

The Cholesky decomposition is the decomposition of a Hermitian, positive-
definite matrix into the product of a lower triangular matrix and its conju-
gate transpose:

A = LLT .

The Cholesky decomposition is mainly used for the numerical solution
of linear equations Ax = b. Real-world applications often generate systems
having the A matrix positive-definite.

As a test algorithm we took the tiled implementation exposed in [15].
This version behaves exactly as the blocked Cholesky decomposition algo-
rithm but, in this case the matrix is processed by tiles.

2g++ -O3 compiler option

61

 0

 50

 100

 150

 200

 250

 300

 350

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Matrix Size 128x128

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Matrix Size 128x128

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 128x128

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 128x128

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.9: Test results for the power raising of a 128×128 matrices stream.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Matrix Size 640x640

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-sync)

(a) Completion time

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Matrix Size 640x640

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-sync)

(b) Speed up1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 640x640

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 640x640

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.10: Test results for the power raising of a 640×640 matrices stream.

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

128x128 256x256 384x384 512x512 640x640

E
ff
ic

ie
n
c
y

Problem Size (Elements#)

Ottavina

Efficiency (m
2
df-pipe)

Efficiency (m
2
df-sync)

Figure 6.11: Trend of the efficiency1 with respect to the problem size for a
fixed parallelism degree of 8.

for (n = 0 ; n < k−1; n++)
A[k] [k] ← DSYRK(A[k] [n] , A[k] [k])

A[k] [k] ← DPOTRF(A[k] [k])

for (m = k+1; m < TILES ; m++) {
for (n = 0 ; n < k−1; n++)

A[m] [k] ← DGEMM(A[k] [n] , A[m] [n] , A[m] [k])
A[m] [k] ← DTRSM(A[k] [k] , A[m] [k])

}
} �

Listing 6.1: Pseudocode of the tiled Cholesky decomposition.

A tile is a piece of the input matrix, which is stored contiguously in memory.
This representation format is referred ad Block Data Layout [14]. Listing
6.1 shows the pseudocode of the algorithm utilized.

The algorithm relies on some BLAS and Lapack routines. Specially:

DPOTRF is a Lapack routine which performs the Cholesky factorization
of a diagonal tile, and overrides the lower triangular part of the input
tile with the result elements;

DSYRK is a BLAS routine which applies a symmetric rank-k update. In
Listing 6.1 it is used to update a diagonal tile, departing from the tiles
to the left of it;

DGEMM is a BLAS routine which performs a general matrix-matrix prod-
uct. In Listing 6.1 it is used to update an off-diagonal tile, departing
from the tiles to the left of it;

DTRSM is a BLAS routine which performs a triangular solve. In Listing
6.1 it is used to update an off-diagonal tile, departing from the tile
above of it.

The average single shot execution time, i.e. the completion time of the
single element of the stream, was measured as 0.9429 ± 0.0092 seconds.

63

Figure 6.12 shows the graph corresponding to the execution of this algo-
rithm on a matrix composed of 5x5 tiles. We can observe that even though
the number of tiles is low the graph structure is quite far from being intuitive.

Figure 6.13 shows the experimental results of the Cholesky decomposi-
tion on andromeda. All tests have been performed using optimized compi-
lation.2

We can observe how the factorization follows the ideal speed up trend.

DPOTRF

DPOTRF

DPOTRF

DPOTRF

DPOTRF

DTRSM

DTRSM DTRSM DTRSM

DTRSM DTRSM DTRSM

DTRSM DTRSM

DTRSM

DSYRK

DSYRK DSYRK DSYRK

DSYRK DSYRK DSYRK

DSYRK DSYRK

DSYRK

DGEMMDGEMM DGEMM DGEMM DGEMM DGEMM

DGEMM DGEMM DGEMM

DGEMM

Figure 6.12: Task graph of the Cholesky decomposition on a 5x5 tiles matrix.
Figure taken from [15].

QR Factorization

The QR factorization is a decomposition of a matrix A into the product of
an orthogonal matrix by an upper triangular matrix:

A = QR,

where Q is the orthogonal matrix and R is the upper triangular matrix.
It is demonstrated that this factorization is applicable to all invertible

matrices. This decomposition is generally used in the solving systems of

64

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 1536x1536

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p
Parallelism Degree (Cores #)

Andromeda - Matrix Size 1536x1536

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

Figure 6.13: Results of Cholesky Decomposition on andromeda.

linear equations, and is the basis for the QR eigenvalues algorithm.

Also in this case we used the tiled version of the algorithm. It behaves
as the blocked version, except that the matrix is processed by tiles. Listing
6.2 shows the pseudocode of the algorithm.

for (k = 0 ; k < TILES ; k++) {
A[k] [k] , T[k] [k] ← DGEQRT(A[k] [k])
for (m = k+1; m < TILES ; m++)

A[k] [k] , A[m] [k] , T[m] [k] ← DTSQRT(A[k] [k] , A[m] [k] , T[m
] [k])

for (n = k+1; n < TILES ; n++) {
A[k] [n] ← DLARFB(A[k] [k] , T[k] [k] , A[k] [n])
for (m = k+1; m < TILES ; m++)

A[k] [n] , A[m] [n] ← DSSRFB(A[m] [k] , T[m] [k] , A[k] [n] ,
A[m] [n])

}
} �

Listing 6.2: Pseudocode of the tiled QR factorization.

This algorithm is based on some routines relying on BLAS and Lapack
functionalities:

DGEQRT performs the QR factorization of a diagonal tile, storing the R
factor on the upper triangular part of the input tile, and the House-
holder reflectors V on the lower triangular part of the input tile. This
routine also produces an auxiliary upper triangular matrix T contain-
ing a compact representation of the reflectors;

DTSQRT updates two tiles of the input matrix by applying the QR fac-
torization on a matrix obtained merging the R factor calculated by
DGEQRT or a previous call to DTSQRT and a tile below it. This

65

routine overrides the R factor, the sub-diagonal tile with the House-
holder reflectors V and produces an auxiliary tile T containing the
compact representation;

DLARFB applies the reflectors calculated by DGEQRT V, along with the
matrix T to a tile to the right of it;

DSSRFB applies the reflectors calculated by DTSQRT V, along with the
matrix T to two tiles on the right of the factorized one.

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DGEQRT

DLARFBDLARFB DLARFB DLARFB

DLARFB DLARFB DLARFB

DLARFB DLARFB

DLARFB

DTSQRT

DTSQRT

DTSQRT

DTSQRTDTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DTSQRT

DSSRFBDSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB DSSRFB

DSSRFB

Figure 6.14: Task graph of the QR factorization on a 5x5 tiles matrix. Figure
taken from [15].

Also in this case, in order to have an idea of the computation grain, we
measured the average completion time of the single instance of the graph as
0.6471 ± 0.0041 seconds.

Figure 6.14 shows the graph resulting from the application of this algo-
rithm to a 5x5 tiles matrix. In this case the resulting graph is much more

66

complex than the Cholesky one.

Figure 6.15 shows the experimental results on andromeda. Tests ran
using optimized compilation.2

 0

 50

 100

 150

 200

 250

 300

 350

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 576x576

Completion Time (m
2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 576x576

SpeedUp (Ideal)
SpeedUp (m

2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

Figure 6.15: Results of the QR Factorization on andromeda.

The Figure shows how the speed up follows the linear trend, overscaling
for higher parallelism degrees.

6.3 Comparison with OpenMP

In order to deepen the study of the m2df’s behaviour we tested a very simple
algorithm, comparing the results with a standard industrial product such as
OpenMP.

Unlike m2df OpenMP adopts a fork/join model. In such a model a new
thread pool is forked when a parallel section arises. The threads composing
the thread pool are then joint together when the computation has done, as
shown in Figure 6.16.

In order to compare the two models we choose a simple naive matrix
product, in which the available parallelism is exploited at the outermost
loop level. In this parallelization each row of the result matrix is computed
in parallel.

Obtaining the same graph for more complex algorithms is not trivial and
anyway we cannot be sure that the computation is parallelized the same way.
Using such a simple algorithm we are sure that the computations have the
same structure, hence comparing the results actually makes sense.

This parallelization results on a #pragma omp for directive on the out-
ermost loop, in the OpenMP version, as shown in Listing 6.3, and in a
map-type graph in the m2df version, as shown in Figure 6.17.

67

Figure 6.16: OpenMP multi-threading model of execution. Figure taken
from [24]

Figure 6.17: Graph structure for the matrix product parallelization.

For the OpenMP parallelization of this algorithm we used static schedul-
ing since we are multiplying dense matrices. This fact makes the computa-
tion of different rows a naturally balanced computation. Furthermore the
actual m2df scheduling policy is a static one.

#pragma omp paral le l \
default (none) num threads (np) \
shared (a , b , c) private (i , j , k)
{
#pragma omp for schedule (stat ic) nowait
for (i = 0 ; i < MAT SIZE ; i++) {

for (j = 0 ; j < MAT SIZE ; j++) {
for (k = 0 ; k < MAT SIZE ; k++) {

c [i ∗MAT SIZE+j]+=(a [i ∗MAT SIZE+k]∗b [k∗MAT SIZE+j]) ;
}

}
}
} �

Listing 6.3: OpenMP parallelization of matrix multiply

68

The comparison have been performed for different grains. As a fine grain
computation we considered the product of two 512× 512 elements matrices,
as a medium grain computation we considered the product of two 1024×1024
elements matrices and as a coarse grain computation we considered the prod-
uct of two 2048 × 2048 elements matrices.

Figures 6.18, 6.19 and 6.20 show the completion times and speed-ups
comparing OpenMP with the two versions of m2df.

Figure 6.21 shows the efficiency trend with respect to the problem size
for a fixed parallelism degree of 4. Also for these tests we used optimized
compilation.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Matrix Size 512x512

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Matrix Size 512x512

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 512x512

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 512x512

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.18: Test results for fine grained matrix product.

69

 0

 2

 4

 6

 8

 10

 12

 14

 16

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Matrix Size 1024x1024

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Matrix Size 1024x1024

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 2

 4

 6

 8

 10

 12

 14

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 1024x1024

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 1024x1024

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.19: Test results for medium grained matrix product.

 0

 100

 200

 300

 400

 500

 600

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Ottavina - Matrix Size 2048x2048

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(a) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Ottavina - Matrix Size 2048x2048

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(b) Speed up1

 0

 20

 40

 60

 80

 100

 120

 140

Tseq 2 4 8

T
im

e
 (

s
)

Parallelism Degree (Cores #)

Andromeda - Matrix Size 2048x2048

Completion Time (OpenMP)
Completion Time (m

2
df-pipe)

Completion Time (m
2
df-pthread)

(c) Completion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p
e
e
d
 u

p

Parallelism Degree (Cores #)

Andromeda - Matrix Size 2048x2048

SpeedUp (Ideal)
SpeedUp (OpenMP)

SpeedUp (m
2
df-pipe)

SpeedUp (m
2
df-pthread)

(d) Speed up1

Figure 6.20: Test results for coarse grained matrix product.

70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

512x512 1024x1024 2048x2048

E
ff
ic

ie
n
c
y

Problem Size (Elements#)

Ottavina

Efficiency (OpenMP)
Efficiency (m

2
df-pipe)

Efficiency (m
2
df-sync)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

512x512 1024x1024 2048x2048

E
ff
ic

ie
n
c
y

Problem Size (Elements#)

Andromeda

Efficiency (OpenMP)
Efficiency (m

2
df-pipe)

Efficiency (m
2
df-sync)

Figure 6.21: Trend of the efficiency1 with respect to the problem size for a
fixed parallelism degree of 4.

In these Figures we can appreciate how m2df behaves, compared to
OpenMP. For both fine and coarse grain computations m2dfovercomes OpenMP,
while for medium grain computations it doesn’t happen. In spite of this the
speed up always follows the linear trend.

6.4 Experiment results

To recap, we presented several tests performed on m2df:

• first we tested some synthetic application in order to verify the correct
completion of the assigned computations and to study the framework
behaviour with CPU-intensive computations not involving the mem-
ory;

• subsequently we tested an application involving memory accesses. This
application consisted in a matrix power raising in which all stages
computed a cache-unaware matrix multiply. We this application we
studied the behaviour of m2df for applications suffering of high cache-
miss rates;

• then we implemented some real world applications, consisting in Cholesky
and QR factorizations of a matrix. These applications used highly op-
timized routines, and a cache-aware implementation;

• finally we compared the m2df’s performance with a standard state-of-
the-art tool such as OpenMP.

All test have been performed on state-of-the-art multi-core processors
and using standard tools.3

3Described in Section 6.1.

71

Test results shown that the proposed framework is able to reach sig-
nificant speed up and has comparable with optimized industrial products.
Nevertheless there are many possible optimizations and improvements to be
studied.

72

Chapter 7

Conclusions and future work

In this thesis we presented m2df, a prototype system implementing a multi-
threaded Macro Data Flow interpreter. In this Chapter we recap the work
that has been done and we suggest some possible extensions.

7.1 Contribution of the work

In this work we designed and implemented a multi-threaded system, which
implements a Macro Data Flow interpreter targeting multi-cores.

7.1.1 The idea

Looking to some state-of-the-art systems we targeted Macro Data Flow as a
viable alternative for efficiently exploiting off-the-shelf multi-core processors.

We designed the overall structure of a multi-threaded system composed
of entities which interact together in order through the shared memory com-
munication mechanism in order to finalize the computation.

The main actors of the system are a set of interpreter threads which
execute the tasks assigned to them and a scheduler thread, which is in charge
of distributing the tasks composing an instance among the interpreters.

Along with these entities have been designed a set of supporting struc-
tures for making the system interact with the user.

The resulting system allows the user to create different graphs repre-
senting computations and to submit several instances of the graphs for the
executions in a streamed fashion.

The system is capable to automatically determine the number of inter-
preters to launch or, alternatively, to get it from the user.

73

The user is only aware of the outermost structure of the graph (since he
creates it) but, once an instance is submitted for the execution it is entirely
handled by the scheduler.

7.1.2 The implementation

After the design phase we discussed implementative choices relating the
language and the supporting tools.

In order to have high portability we choose C++ as implementation lan-
guage and the POSIX standard as portability layer.

We implemented a run-time support abstracting from the communica-
tion mechanism, relegating the communication concerns to a class shared queue.

We gave two different implementations of this class. The first implemen-
tation relies on the pthread synchronization primitives and the second one
relies on the pipe mechanism.

In order to have a correct working of the communication mechanism we
implemented other supporting structures such as a semaphore.

During the implementation we faced problems related to the handling of
the threads. In order to have the interpreters working independently it was
necessary to enforce each interpreter to run on the same core for all of its
lifetime.

On the contrary, the scheduler thread is allowed to run on any free core.
In this way the scheduler takes over the idle interpreters and distributes the
ready tasks, according to the scheduling policy.

7.1.3 The results

We tested m2df with different applications on state-of-the-art Intel multi-
cores.

We used several kind of applications spacing from synthetic applications
to complex matrix factorization algorithms.

We studied the run-time support behaviour with respect to the compu-
tation grain and to the memory hierarchy exploitation.

First, we tested m2df with synthetic CPU-dominant computations.

Second, we tested the system with the matrix power raising, a synthetic
memory-dominant application.

Then we implemented some real-world applications such as the Cholesky
and QR decomposition of a matrix.

Finally we compared m2df with a standard tool such as OpenMP using
a simple naive matrix multiply algorithm with different computation grains,

74

in order to be sure that the parallelization was equal in the two cases.
Experimental results shown how the proposed framework has good per-

formances, comparable with standard state-of-the-art tools.

7.2 Future work

There are many ways in which the proposed system can be improved. Fur-
thermore this thesis leaves some open research trend.

First of all a complete system should be implemented. m2df was con-
ceived to be the back-end of a compiler which builds graphs out of a struc-
tured application.

In order to remark this point Listing 7.1 shows the creation of the tiled
QR graph used to test m2df. Looking to the sequential version of the same
algorithm, shown by Listing 6.2, we can notice structural similarities be-
tween the two codes.

A compiler could be able to derive such a graph following appropriate
rules to find the data dependencies during the pre-processing phase.

Another possible development of the system could be a skeleton library
built upon the system. Other research groups already demonstrated how
skeletons can be reduced to MDF graphs [17, 18].

Other open trends relate to the scheduling of MDF graphs.
m2df indeed implements the scheduling policy in a single point of the

code. This design choice makes it simple to change policy.
Different scheduling policies should be implemented and used to test the

performance with respect to this factor.
Scheduling policies could be developed targeting some non-functional

aspects of the computation such as:

• load balancing with respect to ”big” tasks;

• fault tolerance;

• smart cache hierarchy exploitation [13, 20].

The support should be tested into a many-cores architecture. In these
environments a single scheduler could represent a performance bottleneck.

To overcome this (potential) problem hierarchic scheduling should be a
solution. In order to implement such a hierarchy it is sufficient to modify
the scheduler loop behaviour.

From the usability viewpoint functionalities related to the graph han-
dling could be added, such as the merging of graph pre-existing graphs.

75

This functionality allow the user to create pieces of basic graphs and
instantiate them into other graphs. An example could be represented by
the matrix power raising: the user should be able to create a parallel matrix
multiply graph and then connect different instances of the graph in a pipeline
fashion.

unsigned d g e q r t i d = g . addNode (test : : dgeqrt) ;
i f (k > 0) {g . addEdge (d s s r f b i d s [k] [k] , d g e q r t i d) ;}

p r e c i d = d g e q r t i d ;
vec to r < unsigned > d t s q r t i d s ;
for (int m = k+1; m < n t i l e s ; m++) {

unsigned d t s q r t i d = g . addNode (test : : dtsqrt) ;
g . addEdge (prec id , d t s q r t i d) ;
i f (k > 0) {g . addEdge (d s s r f b i d s [m] [k] , d t s q r t i d) ;}
p r e c i d = d t s q r t i d ;
d t s q r t i d s . push back (d t s q r t i d) ;

}

for (int n = k+1; n < n t i l e s ; n++) {
unsigned d l a r f b i d = g . addNode (test : : dlarfb) ;
g . addEdge (dgeqr t id , d l a r f b i d) ;
i f (k > 0) { g . addEdge (d s s r f b i d s [k] [n] , d l a r f b i d) ;}

p r e c i d = d l a r f b i d ;
unsigned i = 0 ;
for (int m = k+1; m < n t i l e s ; m++) {

unsigned d s s r f b i d = g . addNode (test : : dssrfb) ;
g . addEdge (d t s q r t i d s [i] , d s s r f b i d) ;
g . addEdge (prec id , d s s r f b i d) ;
i f (k > 0) g . addEdge (d s s r f b i d s [m] [n] , d s s r f b i d) ;

d s s r f b i d s [k] [n] = d s s r f b i d s [m] [n] = d s s r f b i d ;
p r e c i d = d s s r f b i d ;
i ++;

}
}

} �
Listing 7.1: Creation of the tiled QR graph.

7.3 Conclusions/Summary

To summarize this thesis:

• addresses Macro Data Flow computing model as a viable alternative
for exploiting state-of-the-art multi-cores;

• discusses the design phase of such an interpreter;

• deepens implementation aspects of the system;

76

• evaluate its performances on state-of-the-art multi-cores comparing it
with serial versions and similar tools.

77

Appendix A

Source code

m2df

Next Listings show the source code for the user interface routines.

m2df.h

#ifndef M2DF H
2 #define M2DF H 1

4 #include ”m2df graph . h”
#include ” m 2 d f i n t e r p r e t e r . h”

6 #include ” m2df queues . h”
#include ” m2df scheduler . h”

8 #include ”m2df semaphore . h”

10 #include <c l i m i t s >
#include <uni s td . h>

12
namespace m2df

14 {
/∗∗

16 ∗ \ b r i e f This f unc t i on tunes the r t s . Gets the cores number
and c r ea t e s the s chedu l e r and the i n t e r p r e t e r s .

∗ \param i n t e r p r e t e r s n [De fau l t va lue 0(meaning cores
number)] Number o f i n t e r p r e t e r s to run wi th .

18 ∗/
void tune (unsigned i n t e r p r e t e r s n = 0) throw(

MultipleTuneException) ;
20 /∗∗

∗ \ b r i e f This f unc t i on launches the p a r a l l e l e xecu t i on o f
the graphs submi t ted to the r t s .

22 ∗/
void s t a r t (unsigned i n t e r p r e t e r s n = 0) ;

24 /∗∗
∗ \ b r i e f This f unc t i on execu t e s the terminat ion phase , i t

mus t be c a l l e d b e f o r e t e rmina t ing the execu t i on .
26 ∗/

void f i n a l i z e () ;

78

28 /∗∗
∗ \ b r i e f This f unc t i on re turns the number o f cores

a v a i l a b l e in the machine .
30 ∗ \ re turn The number o f cores which are be ing used (i f RTS

has been tuned) .
∗/

32 unsigned get cores number () ;
/∗∗

34 ∗ \ b r i e f This f unc t i on re turns the e f f e c t i v e p a r a l l e l i sm
degree e x p l o i t e d by the RTS.

∗ \ re turn The number o f cores which are be ing used (i f RTS
has been tuned) .

36 ∗/
unsigned g e t p a r a l l e l i s m d e g r e e () ;

38 }

40 #endif //M2DF H �
m2df.cpp

#include ”m2df . h”
2

namespace m2df
4 {

namespace g l o b a l
6 {

unsigned processors number , in t e rp r e t e r s number ;
8 Scheduler ∗ s chedu l e r addr = NULL;

#ifde f M2DF DEBUG
10 extern pthread mutex t comm mutex ;

#endif
12 }

14 void tune (unsigned i n t e r p r e t e r s n) throw(MultipleTuneException
)

{
16 i f (g l o b a l : : s chedu l e r addr != NULL) throw

MultipleTuneException () ;
#i f d e f M2DF DEBUG

18 pthread mutex in i t (& g l o b a l : : comm mutex , NULL) ;
#e n d i f

20
g l o b a l : : processors number = sys con f (SC NPROCESSORS ONLN) ;

22 i f (g l o b a l : : processors number == −1) g l o b a l : :
processors number = 1 ; // i f t h e r e i s some error , goes
s e q u e n t i a l .

g l o b a l : : i n t e rp r e t e r s number = g l o b a l : : processors number ;
24

i f (i n t e r p r e t e r s n == 0)
26 g l o b a l : : s chedu l e r addr = new Scheduler (g l o b a l : :

processors number) ;
else {

28 g l o b a l : : s chedu l e r addr = new Scheduler (i n t e r p r e t e r s n)
;

79

g l o b a l : : i n t e rp r e t e r s number = i n t e r p r e t e r s n ;
30 }

}
32

void s t a r t (unsigned i n t e r p r e t e r s n) // a c t ua l l y , i t i s a non−
b l o c k i n g c a l l

34 {
i f (g l o b a l : : s chedu l e r addr != NULL) g l o b a l : : s chedu le r addr−>

run () ;
36 else tune (i n t e r p r e t e r s n) ;

}
38

void f i n a l i z e ()
40 {

i f (g l o b a l : : s chedu l e r addr != NULL) {
42 g l o b a l : : s chedu le r addr−>enableCompletion () ;

44 void ∗dummy;
p t h r e a d j o i n (g l o b a l : : s chedu le r addr−>GetThreadInfo () , &

dummy) ;
46 delete g l o b a l : : s chedu l e r addr ;

g l o b a l : : s chedu l e r addr = NULL;
48 }

#i f d e f M2DF DEBUG
50 pthread mutex destroy(& g l o b a l : : comm mutex) ;

#e n d i f
52 }

54 unsigned get cores number ()
{

56 i f (g l o b a l : : s chedu l e r addr != NULL) return (g l o b a l : :
processors number) ;

else return 0 ;
58 }

60 unsigned g e t p a r a l l e l i s m d e g r e e ()
{

62 unsigned par deg ;
i f (g l o b a l : : i n t e rp re t e r s number < g l o b a l : : processors number)

64 par deg = g l o b a l : : i n t e rp r e t e r s number ;
else

66 par deg = g l o b a l : : processors number ;

68 return par deg ;
}

70
} �

80

Abstract Node

Next Listings show the implementation of the abstract node structure.

m2df abstract node.h

1 #ifndef ABSTRACT NODE H
#define ABSTRACT NODE H 1

3 #include ”m2df debug . h”
#include ” m2df task . h”

5
#include <pthread . h>

7 #include <vector>

9 using namespace std ;

11 namespace m2df
{

13
/∗∗

15 ∗ \ s t r u c t a b s t r a c t nod e
∗ \ author Lorenzo Anardu

17 ∗ \ date 09/12/2010
∗ \ f i l e m2d f abs t rac t node . h

19 ∗ \ b r i e f Abs t rac t r e p r e s en t a t i on o f a MDF ta sk .
∗/

21 struct abs t r a c t node {
private :

23 unsigned ∗ c o p i e s c n t ; // counts the cop i e s o f an ins tance
unsigned uid ; // un i que i d

25 pthread mutex t mutex ;

27 /∗∗
∗ \ b r i e f Creates a new unique id f o r the node .

29 ∗ \ re turn Unique id va lue .
∗/

31 unsigned getNewUid () ; // g e t s a new uid
public :

33 unsigned t id , ready cnt ; // t a s k i d , ready counter
vector<unsigned> consumers ; //consumer nodes o f the node

35 task ∗addr ; // concre te r epre san t i on

37 /∗∗
∗ \ b r i e f De fau l t cons t ruc tor , does noth ing .

39 ∗/
abs t r a c t node () ;

41 /∗∗
∗ \ b r i e f Constructor which i n i t i a l i z e s a new ab s t r a c t node

wi th t a s k i d .
43 ∗ \param t i d Id o f the t a s k in the graph .

∗/
45 abs t r a c t node (unsigned t i d) ;

/∗∗
47 ∗ \ b r i e f Copy cons t ruc t o r .

81

∗ \param n Abs t rac t node to copy .
49 ∗/

abs t r a c t node (const abs t r a c t node& n) ;
51 /∗∗

∗ \ b r i e f Des t ruc tor .
53 ∗/

virtual ˜ abs t r a c t node () ;
55

/∗∗
57 ∗ \ b r i e f Assignment opera tor .

∗ \param n Abs t rac t node to copy .
59 ∗/

abs t r a c t node& operator=(const abs t r a c t node& n) ;
61

/∗∗
63 ∗ \ b r i e f Get ter : g e t s the unique id o f the node .

∗ \ re turn Unique id va lue .
65 ∗/

unsigned getUid () const {
67 return uid ;

}
69 } ;

71 typedef struct abs t r a c t node abs t rac t node ;

73
inl ine unsigned abs t r a c t node : : getNewUid ()

75 {
//FIXME: add a mutex l o c k on the s t a t i c v a r i a b l e

77 stat ic unsigned new uid = 0 ;
return new uid++;

79 }

81 inl ine abs t r a c t node : : ab s t r a c t node ()
: uid (0) , t i d (0) , r eady cnt (0) , addr (NULL) , consumers ()

83 { }

85 inl ine abs t r a c t node : : ab s t r a c t node (unsigned t i d)
: t i d (t i d) , r eady cnt (0) , addr (NULL)

87 {
pthread mutex in i t (& mutex , NULL) ;

89 c o p i e s c n t = new unsigned (1) ;
uid = getNewUid () ;

91 }

93 } //end m2df namespace

95 #endif //ABSTRACT NODE H �

82

m2df abstract node.cpp

1 #include ” m2df abstract node . h”

3 namespace m2df
{

5 namespace g l o b a l
{

7 #ifde f M2DF DEBUG
extern pthread mutex t comm mutex ;

9 #endif
}

11

13 abs t r a c t node : : ab s t r a c t node (const abs t r a c t node& n)
: t i d (n . t i d) , r eady cnt (n . ready cnt) , consumers (n .

consumers) , addr (n . addr)
15 {

c o p i e s c n t = n . c o p i e s c n t ;
17 mutex = n . mutex ;

pthread mutex lock(& mutex) ;
19 (∗ c o p i e s c n t)++;

pthread mutex unlock(& mutex) ;
21 uid = n . getUid () ;

}
23

abs t r a c t node : : ˜ ab s t r a c t node ()
25 {

consumers . c l e a r () ;
27 pthread mutex lock(& mutex) ;

−−(∗ c o p i e s c n t) ;
29 unsigned c o p i e s n = ∗ c o p i e s c n t ;

pthread mutex unlock(& mutex) ;
31

i f (c o p i e s n == 0) {
33 delete c o p i e s c n t ;

i f (addr != NULL)
35 delete addr ;

pthread mutex destroy(& mutex) ;
37 }

}
39

abs t r a c t node& abs t r a c t node : : operator =(const abs t r a c t node&
n)

41 {
i f (this == & n) return ∗ this ;

43
uid = n . getUid () ;

45 t i d = n . t i d ;
r eady cnt = n . ready cnt ;

47 consumers = n . consumers ;
c o p i e s c n t = n . c o p i e s c n t ;

49 mutex = n . mutex ;

83

51 pthread mutex lock(& mutex) ;
(∗ c o p i e s c n t)++;

53 pthread mutex unlock(& mutex) ;

55 addr = n . addr ;

57 return ∗ this ;
}

59 } //end m2df namespace �
Completion

Next Listing shows the implementation of the completion structure.

m2df completion.h

1 #ifndef COMPLETION H
#define COMPLETION H 1

3 #include ”m2df debug . h”

5 namespace m2df
{

7
/∗∗

9 ∗ \ s t r u c t comp le t ion
∗ \ author Lorenzo Anardu

11 ∗ \ date 09/12/2010
∗ \ f i l e m2df complet ion . h

13 ∗ \ b r i e f Completion o f a t a s k .
∗/

15 struct complet ion {
unsigned gid , t i d ;

17
/∗∗

19 ∗ \ b r i e f De fau l t cons t ruc tor , does noth ing .
∗/

21 complet ion () : g id (0) , t i d (0) {}
/∗∗

23 ∗ \ b r i e f Constructor which i n i t i a l i z e s a new ab s t r a c t node
wi th t a s k i d .

∗ \param t a s k i d Id o f the t a s k .
25 ∗/

complet ion (unsigned g id , unsigned t i d) : g id (g i d) ,
t i d (t i d) {}

27 } ;

29 typedef struct complet ion complet ion ;

31 } //end m2df namespace

33 #endif //COMPLETION H �
84

Debug

Next Listings show the configuration flags declaration, and the declaration
of the mutex used for safe debug communications.

m2df debug.h

1 #ifndef DEBUG H
#define DEBUG H 1

3 #include <iostream>
#include <pthread . h>

5
/∗∗∗∗∗∗∗∗∗∗∗∗∗|−−−>DEFINITIONS<−−−|∗∗∗∗∗∗∗∗∗∗∗∗∗

7 ∗ M2DFDEBUG Makes debug messages to be p r in t ed .
∗ M2DF TRACING Makes the i n t e r p r e t e r s to keep t race o f

the computed t a s k s .
9 ∗ M2DF PIPES VERSION Makes m2df to be compi led wi th

communication system based on the p ipe mechanism .
∗ M2DF SYNC VERSION Makes m2df to be compi led wi th

communication system based on the pthread synchron i za t i on
p r im i t i v e s .

11 ∗
∗ Note : M2DF PIPES VERSION and M2DF SYNC VERSION are mutua l ly

e x c l u s i v e .
13 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗|−−−>END<−−−|∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

15 //#de f i n e M2DF DEBUG
//#de f i n e M2DF TRACING

17 #define M2DF PIPES VERSION

19 #ifndef M2DF PIPES VERSION
#define M2DF SYNC VERSION

21 #endif

23 #endif //DEBUG H �
m2df debug.cpp

1 /∗∗
m2df i s a run time suppor t a l l ow ing the e f f i c i e n t

e x p l o i t a t i o n o f
3 mult i−core processors , through mult i−t h r ead ing and macro

data f l ow
tech inque . I t r e l i e s on POSIX f u n c t i o n a l i t i e s .

5
Copyright (C) 2011 Lorenzo Anardu (l o r enzo . anardu AT l i v e

DOT com)
7

This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/
or modify

9 i t under the terms o f the GNU General Pub l i c License as
pub l i s h ed by

the Free Sof tware Foundation , e i t h e r ve r s i on 3 o f the
License , or

85

11 (a t your opt ion) any l a t e r ve r s i on .

13 This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be
u s e f u l ,

but WITHOUT ANY WARRANTY; wi thou t even the imp l i ed warranty
o f

15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the

GNU General Pub l i c License f o r more d e t a i l s .
17

You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c
License

19 a long wi th t h i s program . I f not , see <h t t p ://www. gnu . org /
l i c e n s e s />.

∗∗/
21 #include ”m2df debug . h”

23 namespace m2df
{

25 namespace g l o b a l
{

27 #ifde f M2DF DEBUG
pthread mutex t comm mutex ; //mutex used f o r s a f e debug

communications
29 #endif

} //end g l o b a l namespace
31

} //end m2df namespace �
Exceptions

Next Listing shows the m2df exceptions implementation.

m2df exceptions.h

#ifndef EXCEPTION H
2 #define EXCEPTION H

#include <cerrno>
4 #include <s t r i ng>

6 using namespace std ;

8 namespace m2df
{

10
class Exception {

12 protected :
s t r i n g cause ;

14
// Except ion () { }

16 public :
virtual const char ∗what () {return ”” ;}

86

18 } ;

20 /∗
∗ GRAPH EXCEPTIONS

22 ∗/
class BadEdgeException : public Exception

24 {
public :

26 const char ∗what () {
return ” I n s e r t e d edge i s not c o r r e c t . ” ;

28 }
} ;

30
class NotNormalizedException : public Exception

32 {
public :

34 const char ∗what () {
return ”Graph i s not normal ized (s i n g l e entry and s i n g l e

e x i t po int) . ” ;
36 }

} ;
38

/∗
40 ∗ QUEUES EXCEPTIONS

∗/
42 class EmptyQueueException : public Exception

{
44 public :

const char ∗what () {
46 return ”You are t ry ing to pop something from an empty

queue . ” ;
}

48 } ;

50 class FullQueueException : public Exception
{

52 public :
const char ∗what () {

54 return ”You are t ry ing to push something in a f u l l queue
. ” ;

}
56 } ;

58 /∗
∗ THREAD EXCEPTIONS

60 ∗/
class ThreadForkException : public Exception

62 {
// s t r i n g mesg ;

64 public :
ThreadForkException () {

66 cause = ” Error in p th r ead c r ea t e . ” ;
}

68 ThreadForkException (int e r r o r) {

87

switch (e r r o r) {
70 case EAGAIN: cause = ”EAGAIN” ;

break ;
72 case EINVAL: cause = ”EINVAL” ;

break ;
74 case EPERM: cause = ”EPERM” ;

}
76 cause += ” e r r o r in p th r ead c r ea t e . ” ;

}
78

const char ∗what () const{
80 return cause . c s t r () ;

}
82 } ;

84 class ThreadSchedul ingException : public Exception
{

86 s t r i n g mesg ;
public :

88 ThreadSchedul ingException (int e r r o r) {
switch (e r r o r) {

90 case EFAULT: mesg = ”EFAULT” ;
break ;

92 case EINVAL: mesg = ”EINVAL” ;
break ;

94 case ESRCH: mesg = ”ESRCH” ;
}

96 mesg += ” e r r o r in p t h r e a d s e t a f f i n i t y n p . ” ;
}

98
const char ∗what () {

100 return mesg . c s t r () ;
}

102 } ;

104 /∗
∗ MISCELLANEOUS EXCEPTIONS

106 ∗/
class BadAllocException : public Exception

108 {
public :

110 const char ∗what () {
return ” Error in a l l o c a t i n g memory (no space l e f t) . ” ;

112 }
} ;

114
class MultipleTuneException : public Exception

116 {
public :

118 const char ∗what () {
return ” tune () c a l l e d mul t ip l e t imes . ” ;

120 }
} ;

122

88

class PipeException : public Exception
124 {

public :
126 const char ∗what () {

return ” Error in c r e a t i n g Pipe . ” ;
128 }

} ;
130

class PipeReadException : public Exception
132 {

public :
134 const char ∗what () {

return ” Error in read ing from Pipe . ” ;
136 }

} ;
138

class PipeWriteException : public Exception
140 {

public :
142 const char ∗what () {

return ” Error in wr i t i ng in Pipe . ” ;
144 }

} ;
146

} //end m2df namespace
148

#endif // EXCEPTION H �
Graph

Next Listings show the graph class declaration and implementation.

m2df graph.h

1 #ifndef GRAPH H
#define GRAPH H 1

3 #include ”m2df . h”
#include ” m2df abstract node . h”

5 #include ” m2df except ions . h”
#include ” m2df scheduler . h”

7 #include ” m 2 d f u t i l s . h”

9 #include <c s t r i n g>
#include <queue>

11 #include <u t i l i t y >
#include <vector>

13
using namespace std ;

15
namespace m2df

17 {

89

19 /∗∗
∗ \ c l a s s Graph

21 ∗ \ author Lorenzo Anardu
∗ \ date 09/12/2010

23 ∗ \ f i l e m2df graph . h
∗ \ b r i e f This c l a s s r ep r e s en t s a MDF graph .

25 ∗/
class Graph {

27 bool checked ;
unsigned graph id ;

29 unsigned node id , i n s t i d , r o o t i d ;
queue< Edge > edges ;

31 vector<abstract node> abst r graph ;
vector<void ∗∗ (∗) (void ∗∗)> r o u t i n e s ;

33
unsigned get Id () ;

35 /∗∗
∗ \ b r i e f Check i f the graph has an unique input node and a

unique output node .
37 ∗ \ re turn true , i f the graph can be i n s t an c i a t e d ; f a l s e

o the rw i s e .
∗/

39 bool check () ;
public :

41 /∗∗
∗ \ b r i e f De fau l t cons t ruc t o r : does not ing .

43 ∗/
Graph () ;

45 /∗∗
∗ \ b r i e f Des t ruc tor .

47 ∗/
virtual ˜Graph () ;

49
/∗∗

51 ∗ \ b r i e f Adds a node to the graph , and a s s o c i a t e s i t the
code to be execu ted .

∗ \param rou t i n e Code to be execu ted .
53 ∗ \ re turn The id o f the node .

∗/
55 unsigned addNode (void ∗∗(∗ r o u t i n e) (void ∗∗)) ;

57 /∗∗
∗ \ b r i e f Adds an edge to the graph , l i n k i n g two e x i s t i n g

nodes .
59 ∗ \param from Id o f the o r i g i n node (re turned from

addNode) .
∗ \param t o Id o f the d e s t i n a t i o n node (re turned from

addNode) .
61 ∗/

void addEdge (unsigned f rom , unsigned t o) throw(
BadEdgeException) ;

63
/∗∗

65 ∗ \ b r i e f Creates a new ins tance o f the graph , and submits

90

i t to the RTS.
∗ \param inpu t d a t a [De fau l t va lue = NULL] Data to be

passed to the roo t o f the gaph .
67 ∗/

unsigned submitInstance (void ∗∗ i n p u t d a t a = NULL, void ∗∗
r e s p l a c e h o l d e r = NULL) throw(NotNormalizedException) ;

69 } ;

71 } //emn medf namespace

73 #endif //GRAPH H �
m2df graph.cpp

1 #include ”m2df graph . h”

3 using namespace std ;

5 namespace m2df
{

7 namespace g l o b a l
{

9 extern Scheduler ∗ s chedu l e r addr ;
#ifde f M2DF DEBUG

11 extern pthread mutex t comm mutex ;
#endif

13 }

15 Graph : : Graph ()
: node id (0) , i n s t i d (0) , r o o t i d (0) , checked (fa l se)

17 {
graph id = get Id () ;

19 }

21 /∗ ∗∗∗∗∗∗∗IMPORTANT∗∗∗∗∗∗∗∗
∗ Actua l l y , Graph c l a s s doesn ’ t e x p l i c i t l y

23 ∗ a l l o c a t e memory . Hence the r e i s no need
∗ o f an e x p l i c i t copy cons t ruc t o r and

25 ∗ opera tor=. IF i t w i l l a l l o c a t e some memory
∗ IT HAS to be implemented (l ook @ other

27 ∗ c l a s s e s f o r some implementat ion) .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

29
Graph : : ˜ Graph ()

31 {
abst r graph . c l e a r () ;

33 r o u t i n e s . c l e a r () ;
while (! edges . empty ())

35 edges . pop () ;
}

37
unsigned Graph : : addNode (void ∗∗(∗ r o u t i n e) (void ∗∗))

39 {

91

abs t rac t node node (node id++) ; // c r ea t e s a new node
41

abst r graph . push back (node) ;
43 r o u t i n e s . push back (r o u t i n e) ;

checked = fa l se ;
45

return node . t i d ;
47 }

49 void Graph : : addEdge (unsigned f rom , unsigned t o) throw(
BadEdgeException)

{
51 i f (f rom >= node id | | t o >= node id) throw

BadEdgeException () ;
Edge edge ;

53 edge . f i r s t = from ;
edge . second = t o ;

55
edges . push (edge) ;

57 abst r graph [f rom] . consumers . push back (t o) ;
abs t r graph [t o] . r eady cnt++;

59 checked = fa l se ;
}

61
unsigned Graph : : submitInstance (void ∗∗ i nput data , void ∗∗

r e s p l a c e h o l d e r) throw(NotNormalizedException)
63 {

unsigned r e t = 0 ;
65 i f (check () == fa l se) throw NotNormalizedException () ;

abs t rac t node ∗graph = new abs t rac t node [abs t r graph . s i z e ()
] ;

67 for (unsigned i = 0 ; i < abst r graph . s i z e () ; i++)
graph [i] = abst r graph [i] ; //new copy

69
for (unsigned i = 0 ; i < abst r graph . s i z e () ; i++) { // c r ea t e s

the concre te r e p r e s en t a t i on o f the graph (in s tance
dependant)

71 unsigned uid = abst r graph [i] . getUid () ;
i f (r o o t i d == i && i n p u t d a t a != NULL) // root node

73 graph [i] . addr = new task (i n s t i d , i , uid , r o u t i n e s [i
] , abs t r graph [i] . r eady cnt +1, abst r graph [i] .
consumers . s i z e () , i n p u t d a t a) ;

else
75 graph [i] . addr = new task (i n s t i d , i , uid , r o u t i n e s [i

] , abs t r graph [i] . ready cnt , abs t r graph [i] .
consumers . s i z e () , NULL) ;

}
77

Ins tance i n s t (graph id , i n s t i d , graph , abst r graph . s i z e () ,
edges , r o o t i d) ;

79
i f (m2df : : g l o b a l : : s chedu l e r addr == NULL) tune () ;

81 ((Scheduler ∗) m2df : : g l o b a l : : s chedu l e r addr)−>addInstance (i n s t
) ;

92

83 delete [] graph ;
r e t = i n s t i d ++;

85 return r e t ;
}

87
unsigned Graph : : ge t Id ()

89 {
stat ic unsigned nex t id = 0 ;

91 return (nex t id++) ;
}

93
bool Graph : : check ()

95 {
bool input node = false , output node = fa l se ;

97 i f (checked == true) return true ;

99 for (unsigned i = 0 ; i < abst r graph . s i z e () ; i++) {
i f (abs t r graph [i] . r eady cnt == 0)

101 i f (! input node) { input node = true ; r o o t i d = i ; }
else { input node = fa l se ; break ; }

103 i f (abs t r graph [i] . consumers . s i z e () == 0)
i f (! output node) output node = true ;

105 else { output node = fa l se ; break ; }
}

107
checked = (input node && output node) ;

109 return checked ;
}

111
} �
Instance

Next Listings show the instance class declaration and implementation.

m2df instance.h

1 #ifndef INSTANCE H
#define INSTANCE H

3 #include ” m2df abstract node . h”
#include ” m2df task . h”

5 #include ” m 2 d f u t i l s . h”

7 #include <iostream>
#include <queue>

9 #include <c l i m i t s >

11 using namespace std ;

13 namespace m2df
{

93

15
class In s tance {

17 unsigned ∗ c o p i e s c n t ; // counts the cop i e s o f an ins tance
unsigned graph id , i n s t i d ;

19 unsigned r oo t id , g r a p h s i z e ; // ins tance id , rood node ,
graph s i z e (expres sed in nodes number)

abs t rac t node ∗graph ; // the graph
21

public :
23 /∗∗

∗ \ b r i e f Constructor : c r e a t e s a new ins tance , from a graph
copy .

25 ∗ \param g i d Ins tance i d e n t i f i e r .
∗ \param graph Graph s t r u c t u r e .

27 ∗ \param g r a p h s i z e Graph s t r u c t u r e s i z e .
∗ \param edg e s Queue con ta in ing the edges (in order o f

i n s e r t i o n) .
29 ∗ \param r o o t i d Pos i t i on o f the roo t node .

∗/
31 Ins tance (unsigned g id , unsigned i i d , abs t rac t node ∗

graph , unsigned g r a p h s i z e , \
queue< Edge > edges , unsigned r o o t i d) ;

33 /∗∗
∗ \ b r i e f Copy cons t ruc t o r .

35 ∗ \param i Ins tance to copy .
∗/

37 Ins tance (const In s tance& i) ;
/∗∗

39 ∗ \ b r i e f Des t ruc tor .
∗/

41 virtual ˜ Ins tance () ;

43 /∗∗
∗ \ b r i e f Assignment opera tor .

45 ∗ \param i Ins tance to copy .
∗/

47 Ins tance& operator=(const In s tance& i) ;

49 /∗∗
∗ \ b r i e f Get ter : g e t s the in s tance id .

51 ∗/
unsigned getGid () const {

53 return graph id ;
}

55 /∗∗
∗ \ b r i e f Get ter : g e t s the in s tance nodes number .

57 ∗/
unsigned g e t S i z e () const {

59 return g r a p h s i z e ;
}

61 /∗∗
∗ \ b r i e f Se t s a t a s k as completed . Updates the ready counts

o f a l l t he completed
63 ∗ t a s k ’ s succes sors , and pushes the ready taska in to the

94

ready queue .
∗ \param t i d Id o f the completed t a s k (unique f o r the

in s tance) .
65 ∗ \param ready Reference to the ready queue .

∗/
67 unsigned setCompleted (unsigned t i d , queue<abstract node>&

ready) ;
/∗∗

69 ∗ \ b r i e f S t a r t s the execu t i on o f the in s tance . Pushes the
roo t t a s k in t o the ready queue .

∗ \param ready Reference to the ready queue .
71 ∗/

void s t a r t (queue<abstract node>& ready) ;
73 } ;

75 } //end m2df namespace

77 #endif // INSTANCE H �
m2df instance.cpp

1 #include ” m2df instance . h”

3 #include <vector>

5 using namespace std ;

7 namespace m2df
{

9
namespace g l o b a l

11 {
#ifde f M2DF DEBUG

13 extern pthread mutex t comm mutex ;
#endif

15 }

17 Ins tance : : In s tance (unsigned g id , unsigned i i d , abs t rac t node
∗ graph , unsigned g r a p h s i z e , \

queue< Edge > edges , unsigned r o o t i d)
19 : graph id (g i d) , g r a p h s i z e (g r a p h s i z e) , r o o t i d (

r o o t i d)
{

21 c o p i e s c n t = new unsigned (1) ;
unsigned ∗ d a t a d i s p l = new unsigned [g r a p h s i z e] ;

23 unsigned ∗ r e s d i s p l = new unsigned [g r a p h s i z e] ;

25 graph = new abs t rac t node [g r a p h s i z e] ;
for (unsigned i = 0 ; i < g r a p h s i z e ; i++)

27 graph [i] = graph [i] ; //new copy
memset(& d a t a d i s p l [0] , 0 , g r a p h s i z e ∗ s izeof (unsigned)) ;

29 memset(& r e s d i s p l [0] , 0 , g r a p h s i z e ∗ s izeof (unsigned)) ;

95

31 while (! e d g e s . empty ()) {
Edge edge = e d g e s . f r o n t () ; // . second ;

33 unsigned data pos = d a t a d i s p l [edge . second]++;
unsigned r e s p o s = r e s d i s p l [edge . f i r s t]++;

35
graph [edge . f i r s t] . addr−>r e s u l t s [r e s p o s] = &(graph [edge .

second] . addr−>data [data pos]) ;
37 e d g e s . pop () ;

}
39

delete [] d a t a d i s p l ;
41 delete [] r e s d i s p l ;

}
43

Ins tance : : In s tance (const In s tance& i)
45 : r o o t i d (i . r o o t i d) , g r a p h s i z e (i . g r a p h s i z e) ,

c o p i e s c n t (i . c o p i e s c n t)
{

47 (∗ c o p i e s c n t)++;
graph = i . graph ;

49 }

51 Ins tance : : ˜ Ins tance ()
{

53 −−(∗ c o p i e s c n t) ;
unsigned c o p i e s n = ∗ c o p i e s c n t ;

55
i f (c o p i e s n == 0) {

57 delete c o p i e s c n t ;
delete [] graph ;

59 graph = NULL;
}

61 }

63 Ins tance& Ins tance : : operator =(const In s tance& i)
{

65 r o o t i d = i . r o o t i d ;
g r a p h s i z e = i . g r a p h s i z e ;

67 graph = i . graph ;

69 c o p i e s c n t = i . c o p i e s c n t ;
(∗ c o p i e s c n t)++;

71 }

73 void In s tance : : s t a r t (queue<abstract node>& ready)
{

75 ready . push (graph [r o o t i d]) ;
}

77
unsigned In s tance : : setCompleted (unsigned t i d , queue<

abstract node>& ready)
79 {

abs t rac t node completed = graph [t i d] ;
81 register unsigned enabled = 0 ;

96

83 for (unsigned j = 0 ; j < completed . consumers . s i z e () ; j++) {
// decrease s rdy cn t o f a l l consumers
graph [completed . consumers [j]] . ready cnt−−;

85
i f (graph [completed . consumers [j]] . r eady cnt == 0) {

87 register task t = ∗graph [completed . consumers [j]] .
addr ;

89 r eady . push (graph [completed . consumers [j]]) ;
enabled++;

91 }
}

93
return enabled ;

95 }

97 } //end m2df namespace �
Interfaces

Next Listing shows the declaration of the inheritance hierarchy used by
scheduer and interpreter classes.

m2df interfaces.h

1 #ifndef M2DF INTERFACES H
#define M2DF INTERFACES H

3 #include ” m2df task . h”

5 namespace m2df
{

7 /∗∗
∗ \ b r i e f Function used f o r running Execu tab l e o b j e c t s wi th

pthread .
9 ∗ \param c l a s s p t r Pointer to the in s tance to be ran .

∗/
11 void ∗ thunk (void ∗ c l a s s p t r) ;

13 /∗∗
∗ \ c l a s s Runnable

15 ∗ \ author Lorenzo
∗ \ date 10/12/2010

17 ∗ \ f i l e m2d f i n t e r f a c e s . h
∗ \ b r i e f

19 ∗/
class Runnable {

21 friend void ∗ thunk (void ∗) ;

23 /∗∗
∗ \ b r i e f Method execu t ing the s p e c i f i c c l a s s behav iour . I t

i s invoked by the thunk rou t ine .

97

25 ∗/
virtual void exec () = 0 ;

27 public :
/∗∗

29 ∗ \ b r i e f Method s t a r t i n g the c l a s s execu t i on . I t w i l l
c r ea t e a new thread , invok ing the thunk rou t ine .

∗/
31 virtual void run () = 0 ; //TODO g i v e a d e f a u l t implementation

, in which we invoke thunk (??)
} ;

33
/∗∗

35 ∗ \ c l a s s K i l l a b l e
∗ \ author Lorenzo

37 ∗ \ date 10/12/2010
∗ \ f i l e m2d f i n t e r f a c e s . h

39 ∗ \ b r i e f
∗/

41 class K i l l a b l e {
public :

43 /∗∗
∗ \ b r i e f Method f o r k i l l i n g the thread .

45 ∗/
virtual void k i l l () = 0 ;

47 } ;

49 /∗∗
∗ \ c l a s s Schedu l ab l e

51 ∗ \ author Lorenzo
∗ \ date 10/12/2010

53 ∗ \ f i l e m2d f i n t e r f a c e s . h
∗ \ b r i e f

55 ∗/
class Schedulab le : public Runnable , public K i l l a b l e {

57 public :
/∗∗

59 ∗ \ b r i e f Method f o r pushing a new ta s k to be execu ted .
∗ \param t a s k Task to be execu ted .

61 ∗ \ re turn true , i f the push comple tes s u c c e s s f u l l y ; f a l s e
o the rw i s e .

∗/
63 virtual bool pushTask (task & t a s k) = 0 ;

} ;
65

/∗∗
67 ∗ \ c l a s s N o t i f i a b l e

∗ \ author Lorenzo
69 ∗ \ date 10/12/2010

∗ \ f i l e m2d f i n t e r f a c e s . h
71 ∗ \ b r i e f

∗/
73 class N o t i f i a b l e : public Runnable {

public :
75 /∗∗

98

∗ \ b r i e f Method f o r n o t i f y the comple t ion o f a t a s k .
77 ∗ \param g i d Ins tance id o f the completed t a s k .

∗ \param t i d Task id o f the completed t a s k .
79 ∗/

virtual void not i fyComplet ion (unsigned g id , unsigned t i d
) = 0 ;

81 } ;

83 } //end m2df namespace

85

87 namespace m2df
{

89
inl ine void ∗ thunk (void ∗ c l a s s p t r) {

91 Runnable ∗ i n s t ance = (Runnable ∗) c l a s s p t r ;
in s tance−>exec () ;

93 return NULL;
}

95
} //end m2df namespace

97
#endif //M2DF INTERFACES H �
Interpreter

Next Listings show the interpreter class declaration and implementation.

m2df interpreter.h

#ifndef INTERPRETER H
2 #define INTERPRETER H 1

#include ” m2df complet ion . h”
4 #include ”m2df debug . h”

#include ” m 2 d f i n t e r f a c e s . h”
6 #include ” m2df queues . h”

#include ”m2df semaphore . h”
8 #include ” m2df task . h”

#include ” m 2 d f u t i l s . h”
10

#include <c s t d l i b >
12 #include <c s t r i n g>

#include <pthread . h>
14

#ifde f M2DF PIPES VERSION
16 #include <uni s td . h>

#endif
18

#ifde f M2DF TRACING
20 #include <iostream>

#include <sstream>

99

22 #endif

24 using namespace std ;

26 namespace m2df
{

28
class Scheduler ;

30
/∗∗

32 ∗ \ c l a s s I n t e r p r e t e r
∗ \ author Lorenzo Anardu

34 ∗ \ date 10/12/2010
∗ \ f i l e m2d f i n t e r p r e t e r . h

36 ∗ \ b r i e f This c l a s s r ep r e s en t s a MDF in t e r p r e t e r , running on an
independent thread .

∗/
38 class I n t e r p r e t e r : public Schedulab le {

unsigned i i d ;
40 bool a v a i l a b l e , running ;

pthread t t h r e a d i n f o ;
42 N o t i f i a b l e ∗ sched addr ;

44 shared queue<task> t a s k s ;

46 #i f d e f M2DF TRACING
ost r ing s t r eam ∗ t r a c e ;

48 unsigned e l a b t a s k s ;
#e n d i f

50
/∗∗

52 ∗ \ b r i e f [Pr i va t e Method] Executes the i n t e r p r e t a t i o n loop .
∗/

54 void exec () ;
public :

56 /∗∗
∗ \ b r i e f De fau l t cons t ruc tor , does noth ing .

58 ∗/
I n t e r p r e t e r () ;

60 /∗∗
∗ \ b r i e f Constructor which i n i t i a l i z e s a new i n t e r p r e t e r .

62 ∗ \param i i d Id o f the i n t e r p r e t e r .
∗/

64 I n t e r p r e t e r (unsigned i i d , N o t i f i a b l e ∗ s ched addr) ;
/∗∗

66 ∗ \ b r i e f Des t ruc tor .
∗/

68 virtual ˜ I n t e r p r e t e r () ;

70 /∗∗
∗ \ b r i e f Launches the i n t e r p r e t e r , running on a new thread .

72 ∗/
void run () throw(ThreadForkException ,

ThreadSchedul ingException) ;

100

74 /∗∗
∗ \ b r i e f K i l l s the i n t e r p r e t e r thread .

76 ∗/
void k i l l () ;

78 /∗∗
∗ \ b r i e f Pushes a new ta s k in the queue .

80 ∗ \param t a s k Task to be execu ted .
∗ \ re turn true , i f the push comple tes s u c c e s s f u l l y ; f a l s e

o the rw i s e .
82 ∗/

bool pushTask (task& t a s k) ;
84 } ;

86 } //end m2df namespace

88 #endif //INTERPRETER H �
m2df interpreter.cpp

#include ” m 2 d f i n t e r p r e t e r . h”
2

namespace m2df
4 {

namespace g l o b a l
6 {

extern unsigned processors number ;
8 #ifde f M2DF DEBUG

extern pthread mutex t comm mutex ;
10 #endif

}
12

inl ine I n t e r p r e t e r : : I n t e r p r e t e r ()
14 : i i d (0) , a v a i l a b l e (true) , running (fa l se)

{
16 sched addr = NULL;

t a s k s . se tOperat ion (1 , fa l se) ; // wr i t e opera t ion non−
b l o c k i n g

18
#i f d e f M2DF TRACING

20 t r a c e = new os t r ing s t r eam () ;
e l a b t a s k s = 0 ;

22 #e n d i f
}

24
I n t e r p r e t e r : : I n t e r p r e t e r (unsigned i i d , N o t i f i a b l e ∗

s ched addr)
26 : i i d (i i d) , a v a i l a b l e (true) , running (fa l se)

{
28 sched addr = sched addr ;

t a s k s . se tOperat ion (1 , fa l se) ; // wr i t e opera t ion non−
b l o c k i n g

30
#i f d e f M2DF TRACING

101

32 t r a c e = new os t r ing s t r eam (i o s b a s e : : out) ;
e l a b t a s k s = 0 ;

34 #e n d i f

36 #i f d e f M2DF DEBUG
pthread mutex lock(& g l o b a l : : comm mutex) ;

38 std : : cout << ” I n t e r p r e t e r ” << i i d << ” created s u c c e s f u l l y
. ” << std : : endl ;

s td : : cout . f l u s h () ;
40 pthread mutex unlock(& g l o b a l : : comm mutex) ;

#e n d i f
42 }

44 I n t e r p r e t e r : : ˜ I n t e r p r e t e r ()
{

46 }

48 void I n t e r p r e t e r : : run () throw(ThreadForkException ,
ThreadSchedul ingException)

{
50 int e r r o r c o d e ;

i f (running == true) return ; // i t i s not p o s s i b l e launch ing
2 t imes the same i n t e r p r e t e r

52
i f ((e r r o r c o d e = pthr ead c r ea t e (& t h r e a d i n f o , NULL, thunk ,

(void ∗) this)) != 0) //some error occurred
54 throw ThreadForkException () ; // (e r ror code) ;

else running = true ;
56 }

58 inl ine void I n t e r p r e t e r : : k i l l ()
{

60 #i f d e f M2DF TRACING
(∗ t r a c e)<< i i d <<” ELABORATED ”<<e l ab ta sk s<<” TASKS\n” ;

62 #e n d i f
p thread cance l (t h r e a d i n f o) ;

64 }

66 bool I n t e r p r e t e r : : pushTask (task& t a s k)
{

68 i f (a v a i l a b l e == true) {
try {

70 t a s k s . push (t a s k) ;
} catch (FullQueueException e) {

72 cout << ” I n t e r p r e t e r ”<< i i d <<” f u l l q u e u e . ”<<endl ;
a v a i l a b l e = fa l se ;

74 return fa lse ;
}

76 return true ;
}

78 else return fa l se ;
}

80
void I n t e r p r e t e r : : exec ()

102

82 {
#i f d e f M2DF DEBUG

84 pthread mutex lock(& g l o b a l : : comm mutex) ;
s td : : cout << ” I n t e r p r e t e r ” << i i d << ” running . ” << std : :

endl ;
86 std : : cout . f l u s h () ;

pthread mutex unlock(& g l o b a l : : comm mutex) ;
88 #e n d i f

int e r r o r c o d e ;
90 c p u s e t t cpu se t ;

unsigned cpu num = g l o b a l : : processors number ;
92

CPU ZERO(& cpu se t) ;
94 i f (i i d < cpu num)

CPU SET(i i d % cpu num , &cpu se t) ;
96 else for (unsigned i = 0 ; i < cpu num ; i++)

CPU SET(i , &cpu se t) ; // exce s s p a r a l l e l i sm
i n t e r p r e t e r s can run in any cpu

98
i f ((e r r o r c o d e = p t h r e a d s e t a f f i n i t y n p (t h r e a d i n f o , s izeof

(c p u s e t t) , &cpu se t)) != 0) //some error occurred
100 throw ThreadSchedul ingException (e r r o r c o d e) ;

102 i f (p th r ead s e t cance l t ype (PTHREAD CANCEL ASYNCHRONOUS, NULL)
!= 0) {
cerr<<”Pthread s e t c a n c e l t y p e e r r o r ”<<endl ;

104 }

106 while (true) { // i n t e r p r e t e r i s k i l l e d by the s chedu l e r
register task t = t a s k s . pop () ;

108
for (unsigned i = 0 ; i < t . data n ; i++)

110 b u i l t i n p r e f e t c h (t . data [i] , 0 , 3) ; // t r an s f e r in t o
L1 cache

112 void ∗∗ r e s = t . code (t . data) ;

114 for (unsigned i = 0 ; i < t . r e s n ; i++) {
memcpy(t . r e s u l t s [i] , &r e s [i] , s izeof (void ∗)) ;

116 }
sched addr−>not i fyComplet ion (t . gid , t . t i d) ;

118 a v a i l a b l e = true ;

120 #i f d e f M2DF DEBUG
pthread mutex lock(& g l o b a l : : comm mutex) ;

122 std : : cout << ” I n t e r p r e t e r ” << i i d << ” : Task <” << t .
g id << ” , ” << t . t i d << ”> completed . ” << std : : endl ;

s td : : cout . f l u s h () ;
124 pthread mutex unlock(& g l o b a l : : comm mutex) ;

#e n d i f
126

#i f d e f M2DF TRACING
128 e l a b t a s k s ++;

(∗ t r a c e)<< i i d <<”\ t ”<<t . gid<<”\ t ”<<t . t id<<endl ;

103

130 #e n d i f
}

132 }
} �
Parameters

Next Listings show the declaration and implementation of the classes used
to manage the input and output of data from the task routines.

m2df parameters.h

#ifndef PARAMETERS H
2 #define PARAMETERS H 1

#include ” m2df except ions . h”
4

#include <c s t d l i b >
6

using namespace std ;
8

namespace m2df
10 {

/∗∗
12 ∗ \ c l a s s ParameterBase

∗ \ author Lorenzo
14 ∗ \ date 10/01/2011

∗ \ f i l e m2df parameters . h
16 ∗ \ b r i e f Base c l a s s f o r parameters management .

∗/
18 class ParameterBase {

protected :
20 void ∗∗ buf ;

public :
22 /∗∗

∗ \ b r i e f Creates an empty parameter .
24 ∗/

ParameterBase () : bu f (NULL) {}
26 /∗∗

∗ \ b r i e f Creates a parameter , a l l o c a t i n g the space f o r n
t u p l e s .

28 ∗ \param n elms Number o f t u p l e s composing the parameter .
∗/

30 ParameterBase (unsigned n elms) ;
/∗∗

32 ∗ \ b r i e f Creates a parameter by a pre−a l l o c a t e d b u f f e r .
∗ \param buf Buf f er con ta in ing the parameter data .

34 ∗/
ParameterBase (void ∗∗buf) : bu f (buf) {}

36 /∗∗
∗ \ b r i e f Des t ruc tor : Does noth ing .

38 ∗/
virtual ˜ParameterBase () {}

104

40
/∗∗

42 ∗ \ b r i e f Operator () : s imu la t e s the cons t ruc t i on o f an
o b j e c t .

∗ \param new n Number o f p o s i t i o n s in the b u f f e r .
44 ∗/

void operator () (unsigned new n) ;
46 /∗∗

∗ \ b r i e f Operator () : s imu la t e s the cons t ruc t i on o f an
o b j e c t .

48 ∗ \param newbuf Buf fer con ta in ing the parameter data .
∗/

50 void operator () (void ∗∗newbuf) ;

52 /∗∗
∗ \ b r i e f A l l o c a t e s the space f o r n t u p l e s .

54 ∗ \param n elms Number o f t u p l e s composing the parameter .
∗/

56 void a l l o c a t e (unsigned n elms) ;
/∗∗

58 ∗ \ b r i e f Dea l l o ca t e s the parameter .
∗/

60 void d e a l l o c a t e () ;

62 /∗∗
∗ \ b r i e f Returns a po in t e r to the space a l l o c a t e d .

64 ∗ \ re turn A po in t e r to the a l l o c a t e d b u f f e r .
∗/

66 void ∗∗ get () ;
} ;

68
/∗∗

70 ∗ \ c l a s s Parameter
∗ \ author Lorenzo

72 ∗ \ date 10/01/2011
∗ \ f i l e m2df parameters . h

74 ∗ \ b r i e f Class r ep r e s en t i n g a parameter . A parameter i s an
array o f Tuples .

∗/
76 class Parameter : public ParameterBase {

public :
78 Parameter () : ParameterBase () {}

/∗∗
80 ∗ \ b r i e f Creates a parameter , a l l o c a t i n g the space f o r n

t u p l e s .
∗ \param n elms Number o f t u p l e s composing the parameter .

82 ∗/
Parameter (unsigned n elms) : ParameterBase (n elms) {}

84 /∗∗
∗ \ b r i e f Creates a parameter by a pre−a l l o c a t e d b u f f e r .

86 ∗ \param buf Buf f er con ta in ing the parameter data .
∗/

88 Parameter (void ∗∗buf) : ParameterBase (buf) {}

105

90 /∗∗
∗ \ b r i e f Se t s the nˆ th t u p l e .

92 ∗ \param at Pos i t i on to be s e t .
∗ \param tup l e Buf f er o f the t u p l e to be s e t .

94 ∗/
void setTupleAt (unsigned at , void ∗∗ tup l e) ;

96 /∗∗
∗ \ b r i e f Gets the nˆ th t u p l e ’ s b u f f e r .

98 ∗ \param at Pos i t i on to be ge t .
∗/

100 void ∗∗ getTupleAt (unsigned at) ;
} ;

102
/∗∗

104 ∗ \ c l a s s Tuple
∗ \ author Lorenzo

106 ∗ \ date 10/01/2011
∗ \ f i l e m2df parameters . h

108 ∗ \ b r i e f Class r ep r e s en t i n g a Tuple . A Tuple i s an array o f
Elements .

∗/
110 class Tuple : public ParameterBase {

public :
112 /∗∗

∗ \ b r i e f Creates a tup l e , a l l o c a t i n g the space f o r n
e lements .

114 ∗ \param n elms Number o f e lements composing the parameter .
∗/

116 Tuple (unsigned n elms) : ParameterBase (n elms) {}
/∗∗

118 ∗ \ b r i e f Creates a t u p l e by a pre−a l l o c a t e d b u f f e r .
∗ \param buf Buf f er con ta in ing the parameter data .

120 ∗/
Tuple (void ∗∗buf) : ParameterBase (buf) {}

122
/∗∗

124 ∗ \ b r i e f Se t s the nˆ th element .
∗ \param at Pos i t i on to be s e t .

126 ∗ \param elm Address to the elment to be s e t .
∗/

128 void setElementAt (unsigned at , void ∗elm) ;
/∗∗

130 ∗ \ b r i e f Gets the nˆ th t u p l e ’ s e lement .
∗ \param at Pos i t i on to be ge t .

132 ∗/
void ∗getElementAt (unsigned at) ;

134 } ;

136
template<class T>

138 /∗∗
∗ \ c l a s s parameter cas t

140 ∗ \ author Lorenzo
∗ \ date 10/01/2011

106

142 ∗ \ f i l e m2df parameters . h
∗ \ b r i e f Class f o r easy and sa f e c a s t i n g o f parameters to /from

void ∗
144 ∗ Sp e c i f i c behav iour f o r base t ype s . A new element i s a l l o c a t e d

and
∗ i t s address i s conver ted to vo id ∗ . Inver se opera t ion c on s i s t s

in
146 ∗ a po in t e r d e r e f e r e n t i a t i o n .

∗/
148 class parameter cas t {

public :
150 /∗∗

∗ \ b r i e f Casts an element to vo id ∗ (d i f f e r e n t behav iour f o r
v a r i a b l e s and po in t e r s)

152 ∗ \param elm Element to be cas t ed .
∗ \ re turn Address o f a copy o f the element , ca s t ed to vo id ∗ .

154 ∗/
stat ic void ∗ ca s t (T elm) {

156 return new T(elm) ;
}

158 /∗∗
∗ \ b r i e f Casts an element from void ∗ (d i f f e r e n t behav iour f o r

v a r i a b l e s and po in t e r s)
160 ∗ \param elm Address o f the e lement to be cas t ed .

∗ \ re turn Element .
162 ∗/

stat ic T cas t (void ∗elm) {
164 return (∗ (T∗) elm) ;

}
166 } ;

168 template<class T>
/∗∗

170 ∗ \ c l a s s parameter cas t<T∗>
∗ \ author Lorenzo

172 ∗ \ date 10/01/2011
∗ \ f i l e m2df parameters . h

174 ∗ \ b r i e f Class f o r easy and sa f e c a s t i n g o f parameters to /from
void ∗

∗ Sp e c i f i c behav iour f o r po in t e r s to base t ype s . The element ’ s
address

176 ∗ i s conver ted to vo id ∗ . Inver se opera t ion c on s i s t s in a s imple
ca s t .

∗/
178 class parameter cast<T∗> {

public :
180 /∗∗

∗ \ b r i e f Casts a po in t e r to vo id ∗ (d i f f e r e n t behav iour f o r
v a r i a b l e s and po in t e r s)

182 ∗ \param elm Address o f the e lement to be cas t ed .
∗ \ re turn Address , ca s t ed to vo id ∗ .

184 ∗/
stat ic void ∗ ca s t (T ∗elm) {

186 return elm ;

107

}
188 /∗∗

∗ \ b r i e f Casts an element from void ∗ (d i f f e r e n t behav iour f o r
v a r i a b l e s and po in t e r s)

190 ∗ \param elm Address o f the e lement to be cas t ed .
∗ \ re turn Address , ca s t ed to T∗ .

192 ∗/
stat ic T∗ ca s t (void ∗elm) {

194 return ((T∗) elm) ;
}

196 } ;

198 } //end namespace m2df

200 #endif //PARAMETERSH �
m2df parameters.cpp

#include ” m2df parameters . h”
2

namespace m2df
4 {

ParameterBase : : ParameterBase (unsigned n elms)
6 {

buf = (void ∗∗) c a l l o c (n elms , s izeof (void ∗)) ;
8 i f (bu f == NULL) throw BadAllocException () ;
}

10
void ParameterBase : : operator () (unsigned new n)

12 {
this−>a l l o c a t e (new n) ;

14 }

16 void ParameterBase : : operator () (void ∗∗newbuf)
{

18 buf = newbuf ;
}

20
void ParameterBase : : a l l o c a t e (unsigned n elms)

22 {
buf = (void ∗∗) c a l l o c (n elms , s izeof (void ∗)) ;

24 i f (bu f == NULL) throw BadAllocException () ;
}

26
void ParameterBase : : d e a l l o c a t e ()

28 {
i f (bu f != NULL) {

30 f r e e (bu f) ;
bu f = NULL;

32 }
}

34
void ∗∗ParameterBase : : get ()

108

36 {
return buf ;

38 }

40
void Parameter : : setTupleAt (unsigned at , void ∗∗ tup l e)

42 {
i f (bu f != NULL)

44 buf [at] = tup l e ;
}

46
void ∗∗Parameter : : getTupleAt (unsigned at)

48 {
void ∗∗ out = NULL;

50
i f (bu f != NULL)

52 out = (void ∗∗) bu f [at] ;

54 return out ;
}

56

58 void Tuple : : setElementAt (unsigned at , void ∗elm)
{

60 i f (bu f != NULL)
buf [at] = elm ;

62 }

64 void ∗Tuple : : getElementAt (unsigned at)
{

66 void ∗∗ out = NULL;

68 i f (bu f != NULL)
out = (void ∗∗) bu f [at] ;

70
return out ;

72 }

74 } //end namespace m2df �

109

Queue

Next Listing shows the implementation of the shared queue class. Since it
is a template class, the implementation resides in the same .h file in which
it is declared.

m2df queues.h

#ifndef QUEUES H
2 #define QUEUES H 1

#include ” m2df complet ion . h”
4 #include ”m2df debug . h”

#include ”m2df semaphore . h”
6 #include ” m2df task . h”

8 #include <a s s e r t . h>
#include <c s t d l i b >

10 #include < f c n t l . h>
#include <p o l l . h>

12 #include <pthread . h>
#include <queue>

14 #include <uni s td . h>

16 using namespace std ;

18 namespace m2df
{

20 /∗∗
∗ \ c l a s s shared queue

22 ∗ \ author Lorenzo Anardu
∗ \ date 10/12/2010

24 ∗ \ f i l e m2df queues . h
∗ \ b r i e f A templa ted thread sa f e queue .

26 ∗/
template <class T>

28 class shared queue
{

30 bool w block , r b l o c k ;
#i f d e f M2DF SYNC VERSION

32 pthread mutex t mutex ;
Semaphore e n t r i e s n ;

34 queue<T> data ;
#e n d i f

36
#i f d e f M2DF PIPES VERSION

38 int p i p e d e s [2] ;
#e n d i f

40
public :

42 shared queue () ;
˜ shared queue () ;

44
/∗∗

46 ∗ \ b r i e f Se t s the va lue o f the b l o c k i n g f l a g f o r the

110

s p e c i f i e d opera t ion .
∗ \param op Operation to be s e t . (0=read , 1=wr i t e)

48 ∗ \param b l o c k i n g Flag va lue . (t rue=b lock ing , f a l s e=non−
b l o c k i n g) [De fau l t v a l=t rue]

∗/
50 void se tOperat ion (short op , bool b l o c k i n g) ;

52 /∗∗
∗ \ b r i e f Adds an element in the bottom of the queue .

Suspends on f u l l queue .
54 ∗ \param da t a Element to be added .

∗/
56 inl ine void push (T& data) ;

/∗∗
58 ∗ \ b r i e f Removes an element from the f r on t o f the queue .

Suspends on empty queue .
∗ \ re turn The element t ha t has been removed .

60 ∗/
inl ine T pop () ;

62 /∗∗
∗ \ b r i e f Removes an element from the f r on t o f the queue , i f

p re sen t . I f the queue i s empty throws an
EmptyQueueException .

64 ∗ \ re turn The element t ha t has been removed .
∗/

66 inl ine T tryPop () ;
/∗∗

68 ∗ \ b r i e f Removes an element from the f r on t o f the queue , i f
p re sen t . Waits a t max time m i l l i s e c ond s i f the queue i s
empty .

∗ \param time Time to wait , in m i l l i s e c ond s .
70 ∗ \param va l i d Output parameter . I nd i c a t e s whether the

re turned T i s v a l i d or not .
∗ \ re turn The element t ha t has been removed .

72 ∗/
inl ine T timedPop (unsigned time , bool ∗ v a l i d) ;

74 /∗∗
∗ \ b r i e f I n d i c a t e s whether the queue i s empty .

76 ∗ \ re turn t rue i f the queue i s empty , f a l s e o the rw i s e .
∗/

78 bool isEmpty () ;
/∗∗

80 ∗ \ b r i e f I n d i c a t e s whether the queue i s f u l l .
∗ \ re turn t rue i f the queue i s f u l l , f a l s e o the rw i s e .

82 ∗/
bool i s F u l l () ;

84 } ;

86 } //end m2df namespace

88

90 namespace m2df
{

111

92 template <class T>
inl ine shared queue<T> : : shared queue () : w block (true) ,

r b l o c k (true)
94 {

#i f d e f M2DF SYNC VERSION
96 pthread mutex in i t (& mutex , NULL) ;

e n t r i e s n = Semaphore (0 , ULONG MAX) ;
98 #e n d i f

100 #i f d e f M2DF PIPES VERSION
i f ((p ipe (p i p e d e s)) == −1) {

102 throw PipeException () ;
}

104 #e n d i f
}

106
template <class T>

108 shared queue<T> : :˜ shared queue ()
{

110 #i f d e f M2DF SYNC VERSION
pthread mutex destroy(& mutex) ;

112 #e n d i f

114 #i f d e f M2DF PIPES VERSION
c l o s e (p i p e d e s [1]) ; // wri te−end

116 c l o s e (p i p e d e s [0]) ; // read−end
#e n d i f

118 }

120 template <class T>
void shared queue<T> : : s e tOperat ion (short op , bool b l o c k i n g)

{
122 i f (op > 1) return ;

124 i f (op == 0) r b l o c k = b l o c k i n g ;
i f (op == 1) w block = b l o c k i n g ;

126
#i f d e f M2DF PIPES VERSION

128 int f l a g s = f c n t l (p i p e d e s [op] , F GETFL, 0) ;
a s s e r t (f l a g s != −1) ;

130
i f (b l o c k i n g) f c n t l (p i p e d e s [op] , F SETFL , f l a g s |

O NONBLOCK) ; // s e t opera t ion non−b l o c k i n g
132 else f c n t l (p i p e d e s [op] , F SETFL , f l a g s & ˜O NONBLOCK) ;

// s e t opera t ion b l o c k i n g
#e n d i f

134 }

136 template <class T>
inl ine void shared queue<T> : : push (T& data) {

138 #i f d e f M2DF SYNC VERSION
i f (! w block && ! e n t r i e s n . i s P o s t a b l e ())

140 throw FullQueueException () ; // throw excep t i on only i f
non−b l o c k i n g

112

142 pthread mutex lock(& mutex) ;
data . push (da ta) ;

144 pthread mutex unlock(& mutex) ;
e n t r i e s n . post () ; //ATTENTION, p o s s i b i l i t y o f race−

cond i t i on
146 #e n d i f

148 #i f d e f M2DF PIPES VERSION
T∗ temp=& data ;

150 i f (wr i t e (p i p e d e s [1] , &temp , s izeof (T∗)) == −1) { // wr i t i n g
error
i f (! w block) throw FullQueueException () ; // throw

excep t i on only i f non−b l o c k i n g
152

cerr<<” Error in wr i t i ng in to pipe : ”<<s t r e r r o r (errno)<<
endl ;

154 cout . f l u s h () ;
throw PipeWriteException () ;

156 }
#e n d i f

158 }

160 template <class T>
inl ine T shared queue<T> : : pop () {

162 #i f d e f M2DF SYNC VERSION
T r e t ;

164
i f (! r b l o c k && ! e n t r i e s n . i sWaitab le ())

166 throw EmptyQueueException () ; // throw excep t i on only i f
non−b l o c k i n g

168 e n t r i e s n . wait () ; // thread i s suspended u n t i l n == 0
pthread mutex lock(& mutex) ;

170 r e t = data . f r o n t () ;
data . pop () ;

172 pthread mutex unlock(& mutex) ;

174 return r e t ;
#e n d i f

176
#i f d e f M2DF PIPES VERSION

178 T ∗ r e t ;
i f (read (p i p e d e s [0] , &ret , s izeof (T∗)) == −1) { // reading

error
180 i f (! r b l o c k) throw EmptyQueueException () ; // throw

excep t i on only i f non−b l o c k i n g

182 cerr<<” Error in read ing from pipe : ”<<s t r e r r o r (errno)<<
endl ;

cout . f l u s h () ;
184 throw PipeReadException () ;

}
186

113

return (∗ r e t) ;
188 #e n d i f

}
190

template <class T>
192 inl ine T shared queue<T> : : tryPop () {

#i f d e f M2DF SYNC VERSION
194 T r e t ;

196 pthread mutex lock(& mutex) ;
i f (! e n t r i e s n . i sWaitab le ()) {

198 pthread mutex unlock(& mutex) ;
throw EmptyQueueException () ; // throw excep t i on only i f

non−b l o c k i n g
200 }

202 e n t r i e s n . wait () ; // thread i s suspended u n t i l n == 0
r e t = data . f r o n t () ;

204 data . pop () ;
pthread mutex unlock(& mutex) ;

206
return r e t ;

208 #e n d i f

210 #i f d e f M2DF PIPES VERSION
T ∗ r e t ;

212 i f (read (p i p e d e s [0] , &ret , s izeof (T∗)) == −1) { // reading
error −> empty p ipe
throw EmptyQueueException () ;

214 }

216 return (∗ r e t) ;
#e n d i f

218 }

220 template <class T>
inl ine T shared queue<T> : : timedPop (unsigned time , bool ∗ v a l i d) {

222 #i f d e f M2DF SYNC VERSION
T r e t ;

224
pthread mutex lock(& mutex) ;

226 ∗ v a l i d = e n t r i e s n . timedWait (time) ; // thread i s suspended
u n t i l n == 0

i f (∗ v a l i d) {
228 r e t = data . f r o n t () ;

data . pop () ;
230 }

else r e t = T() ; // t imeout
232 pthread mutex unlock(& mutex) ;

234 return r e t ;
#e n d i f

236
#i f d e f M2DF PIPES VERSION

114

238 struct p o l l f d p ;
int r e t ;

240
p . fd = p i p e d e s [0] ;

242 p . events = POLLIN; // p ipe i s empty i f i t i s not r eadab l e

244 i f ((r e t = p o l l (&p , 1 , time)) == −1) {
cerr<<” Error in p o l l i n g the pipe : ”<<s t r e r r o r (errno)<<

endl ;
246 cout . f l u s h () ;

throw PipeWriteException () ;
248 }

250 i f (r e t > 0) {
T ∗ r e t ;

252 i f (read (p i p e d e s [0] , &ret , s izeof (T∗)) == −1) { //
read ing error −> empty p ipe
throw EmptyQueueException () ;

254 }
∗ v a l i d = true ;

256 return (∗ r e t) ;
}

258 else {
∗ v a l i d = fa l se ;

260 return T() ;
}

262 #e n d i f
}

264
template <class T>

266 bool shared queue<T> : : isEmpty () {
#i f d e f M2DF SYNC VERSION

268 return ! e n t r i e s n . i sWaitab le () ;
#e n d i f

270
#i f d e f M2DF PIPES VERSION

272 struct p o l l f d p ;
int r e t ;

274
p . fd = p i p e d e s [0] ;

276 p . events = POLLIN; // p ipe i s empty i f i t i s not r eadab l e

278 i f ((r e t = p o l l (&p , 1 , 0)) == −1) {
cerr<<” Error in p o l l i n g the pipe : ”<<s t r e r r o r (errno)<<

endl ;
280 cout . f l u s h () ;

throw PipeWriteException () ;
282 }

284 return (r e t == 0) ;
#e n d i f

286 }

288 template <class T>

115

bool shared queue<T> : : i s F u l l ()
290 {

#i f d e f M2DF SYNC VERSION
292 return ! e n t r i e s n . i s P o s t a b l e () ;

#e n d i f
294

#i f d e f M2DF PIPES VERSION
296 struct p o l l f d p ;

int r e t ;
298

p . fd = p i p e d e s [1] ;
300 p . events = POLLOUT; // p ipe i s f u l l i f i t i s not w r i t a b l e

302 i f ((r e t = p o l l (&p , 1 , 0)) == −1) {
cer r<<” Error in p o l l i n g the pipe : ”<<s t r e r r o r (errno)<<

endl ;
304 cout . f l u s h () ;

throw PipeWriteException () ;
306 }

308 return (r e t == 0) ;
#e n d i f

310 }

312 } //end m2df namespace

314 #endif //QUEUES H �

116

Schedule

Next Listing shows the implementation of the scheduling policy. Since this
function was declared to be inline, its implementation resedes in the same
.h file in which it is declared.

In case someone wants to modify the scheduling policy this should be
the only modification point.

m2df schedule.h

#ifndef SCHEDULE H
2 #define SCHEDULE H 1

#include ” m2df abstract node . h”
4 #include ”m2df debug . h”

#include ” m 2 d f i n t e r f a c e s . h”
6 #include ” m 2d f p r i o r i t y . h”

#include ” m2df task . h”
8

#include <iostream>
10 #include <queue>

#include <vector>
12 using namespace std ;

14 namespace m2df
{

16 namespace g l o b a l
{

18 #ifde f M2DF DEBUG
extern pthread mutex t comm mutex ;

20 #endif
}

22
/∗∗

24 ∗ \ b r i e f Schedu l ing func t i on . I t implements the s chedu l i n g
p i l i c y used by the Schedu ler .

∗ Changes to the s chedu l i n g p o l i c y must be done HERE.
26 ∗ \param t a s k s Set o f t a s k s ready to be launched .

∗ \param proc s Set o f p roce s so r s (i n t e r p r e t e r s) f o r e x ecu t ing
the t a s k s .

28 ∗/
inl ine bool schedule (queue<abstract node>& t a s k s , vector<

Schedulab le∗>& p r o c s) {
30 i f (t a s k s . empty ()) return fa lse ;

task ∗ t = t a s k s . f r o n t () . addr ;
32

// I f u want to change the p o l i c y
34 // comment from here . . .

stat ic unsigned i = 0 ;
36 bool scheduled = fa l se ;

38 scheduled = p r o c s [i]−>pushTask (∗ t) ;
i f (scheduled) {

40 #i f d e f M2DF DEBUG

117

pthread mutex lock(& g l o b a l : : comm mutex) ;
42 std : : cout << ”Task <” << t−>g id << ” , ” << t−>t i d <<

”> sent to ” << i <<std : : endl ;
s td : : cout . f l u s h () ;

44 pthread mutex unlock(& g l o b a l : : comm mutex) ;
#e n d i f

46 t a s k s . pop () ;
i = (i + 1) % p r o c s . s i z e () ;

48 return true ;
}

50 else return fa l se ;
// . . . u n t i l here (or s o r t i t out y o u r s e l f !)

52
return scheduled ;

54 }

56 } //end m2df namespace

58 #endif //SCHEDULE H �
Scheduler

Next Listings show the declaration and implementation of the scheduler
class.

m2df scheduler.h

#ifndef SCHEDULER H
2 #define SCHEDULER H 1

#include ” m2df abstract node . h”
4 #include ” m2df complet ion . h”

#include ”m2df debug . h”
6 #include ” m2df instance . h”

#include ” m 2 d f i n t e r f a c e s . h”
8 #include ” m 2 d f i n t e r p r e t e r . h”

#include ” m 2d f p r i o r i t y . h”
10 #include ” m2df schedule . h”

#include ”m2df semaphore . h”
12

#include <a s s e r t . h>
14 #include <c s t d l i b >

#include < f c n t l . h>
16 #include <map>

#include <pthread . h>
18 #include <queue>

#include <s i g n a l . h>
20 #include <uni s td . h>

#include <u t i l i t y >
22 #include <vector>

24 #ifde f M2DF TRACING
#include <f stream>

118

26 #include <iostream>
#include <s t r i ng>

28 #endif

30 using namespace std ;

32 namespace m2df
{

34 class Graph ;

36 /∗∗
∗ \ c l a s s Schedu ler

38 ∗ \ author Lorenzo Anardu
∗ \ date 10/12/2010

40 ∗ \ f i l e m2df schedu ler . h
∗ \ b r i e f This c l a s s r ep r e s en t s a MDF schedu ler , running on the

master thread .
42 ∗/

class Scheduler : public N o t i f i a b l e {
44 bool enabled compl ;

unsigned ta sk s n , i n t n ;
46

pthread mutex t mutex ; //used f o r s a f e pushing o f new
graphs

48 pthread cond t b lo ck ; //used f o r b l o c k i n g when comple t ion
i s not enab led and we have to wai t f o r new in s t ance s

pthread t t h r e a d i n f o ;
50

vector< In s tance > graphs ;
52 queue< abs t rac t node > r e a d y t a s k s ;

vector< Schedulab le ∗ > proc s ;
54 shared queue< complet ion > comple t ed ta sk s ;

56
void addInstance (Ins tance i n s t) throw(BadAllocException) ;

58 void exec () ;

60 friend class Graph ;
public :

62 /∗∗
∗ \ b r i e f Constructor c r ea t i n g a s chedu l e r which runs on a

mu l t i core machine .
64 ∗ \param co r e s n Number o f cores a v a i l a b l e in the machine

.
∗/

66 Scheduler (unsigned i n t e r p n) ;
/∗∗

68 ∗ \ b r i e f Des t ruc tor .
∗/

70 virtual ˜ Scheduler () ;

72 /∗∗
∗ \ b r i e f Executes the s chedu l e r loop .

74 ∗/

119

void run () throw(ThreadForkException ,
ThreadSchedul ingException) ;

76 /∗∗
∗ \ b r i e f Gets the number o f i n t e r p r e t e r s t h a t a c t u a l l y

running .
78 ∗ \ re turn The number o f i n t e r p r e t e r s .

∗/
80 const unsigned GetInterpretersNumber () const {

return proc s . s i z e () ;
82 }

/∗∗
84 ∗ \ b r i e f Gets the thread in f o o f the s chedu l e r .

∗ \ re turn The thread in formet ion o f the s chedu l e r .
86 ∗/

const pthread t GetThreadInfo () const {
88 return t h r e a d i n f o ;

}
90

/∗∗
92 ∗ \ b r i e f Enables the s chedu l e r to terminate . The s chedu l e r

t e rmina tes i f f
∗ the comple t ion has been enab led AND a l l the submi t ted

t a s k s have been computed .
94 ∗/

void enableCompletion () ;
96 /∗∗

∗ \ b r i e f No t i f i e s to the s chedu l e r the comple t ion o f a t a s k
.

98 ∗ \param g i d Graph id o f the completed t a s k .
∗ \param t i d Task id o f the t a s k .

100 ∗/
void not i fyComplet ion (unsigned g id , unsigned t i d) ;

102 } ;

104 } //end m2df namespace

106 #endif //SCHEDULER H �
m2df scheduler.cpp

#include ” m2df scheduler . h”
2

#include <sys / time . h>
4 #include <iomanip>

6 #define MIN(X, Y) (X < Y) ? X : Y

8 namespace m2df
{

10
namespace g l o b a l

12 {
extern unsigned processors number ;

120

14 #ifde f M2DF DEBUG
extern pthread mutex t comm mutex ;

16 #endif
}

18
Scheduler : : Scheduler (unsigned i n t e r p n)

20 : enabled compl (fa l se) , t a s k s n (0)
{

22 #i f d e f M2DF SYNC VERSION
cout << ”|========|SYNC VERSION|========|”<<endl ;

24 #e n d i f
#i f d e f M2DF PIPES VERSION

26 cout << ”|========|PIPES VERSION|========|”<<endl ;
#e n d i f

28
for (unsigned i = 0 ; i < i n t e r p n ; i++) // c r ea t e s i n t e r p n

i n t e r p r e t e r s , but doesn ’ t launch them
30 proc s . push back (new I n t e r p r e t e r (i , this)) ;

32 pthread mutex in i t (& mutex , NULL) ;
p t h r e a d c o n d i n i t (& block , NULL) ;

34
#undef M2DF DEBUG

36 #i f d e f M2DF DEBUG
pthread mutex lock(& g l o b a l : : comm mutex) ;

38 cout << ” Scheduler c r ea ted s u c c e s f u l l y . ” << endl ;
s td : : cout . f l u s h () ;

40 pthread mutex unlock(& g l o b a l : : comm mutex) ;
#e n d i f

42 }

44 Scheduler : : ˜ Scheduler ()
{

46 proc s . c l e a r () ;
graphs . c l e a r () ;

48 pthread mutex destroy(& mutex) ;
pthread cond des t roy (& b lock) ;

50 }

52 void Scheduler : : addInstance (Ins tance i n s t) throw(
BadAllocException)

{
54 pthread mutex lock(& mutex) ;

graphs . push back (i n s t) ;
56 i n s t . s t a r t (r e a d y t a s k s) ;

58 t a s k s n += i n s t . g e t S i z e () ;

60 p th r ead cond s i gna l (& b lock) ;
pthread mutex unlock(& mutex) ;

62 }

64 void Scheduler : : enableCompletion () // c a l l e d by the user thread (
f i n a l i z e)

121

{
66 pthread mutex lock(& mutex) ;

enabled compl = true ;
68 p th r ead cond s i gna l (& b lock) ;

pthread mutex unlock(& mutex) ;
70 }

72 inl ine void Scheduler : : not i fyComplet ion (unsigned g id , unsigned
t i d)

{
74 complet ion ∗ compl task = new complet ion (g id , t i d) ;

76 comple t ed ta sk s . push (∗ compl task) ;
}

78
void Scheduler : : run () throw(ThreadForkException ,

ThreadSchedul ingException)
80 {

struct sched param my param ;
82 p t h r e a d a t t r t my attr ;

int e r r o r c o d e ;
84

// s e t h igh s chedu l i n g p r i o r i t y , IS IT EFFECTIVE?
86 p t h r e a d a t t r i n i t (&my attr) ;

p t h r e a d a t t r s e t i n h e r i t s c h e d (&my attr ,
PTHREAD EXPLICIT SCHED) ;

88 p t h r e a d a t t r s e t s c h e d p o l i c y (&my attr , SCHED OTHER) ;
my param . s c h e d p r i o r i t y = s c h e d g e t p r i o r i t y m a x (

SCHED OTHER) ;
90 pthread at t r se t schedparam(&my attr , &my param) ;

92 i f ((e r r o r c o d e = pthr ead c r ea t e (& t h r e a d i n f o , &my attr ,
thunk , (void ∗) this)) != 0)
throw ThreadForkException (e r r o r c o d e) ;

94
unsigned cpu number = MIN(g l o b a l : : processors number , p ro c s .

s i z e ()) ;
96 c p u s e t t cpu se t ;

98 CPU ZERO(& cpu se t) ;
for (unsigned cpu id = 0 ; cpu id < cpu number ; cpu id++)

100 CPU SET(cpu id , &cpu se t) ; // s chedu l e r can run in any (
as s i gned) core

102 i f ((e r r o r c o d e = p t h r e a d s e t a f f i n i t y n p (t h r e a d i n f o , s izeof
(c p u s e t t) , &cpu se t)) != 0) //some error occurred
throw ThreadSchedul ingException (e r r o r c o d e) ;

104

106 #i f d e f M2DF DEBUG
i f ((e r r o r c o d e = p t h r e a d g e t a f f i n i t y n p (t h r e a d i n f o , s izeof

(c p u s e t t) , &cpu se t)) != 0)
108 throw ThreadSchedul ingException (e r r o r c o d e) ;

122

110 pthread mutex lock(& g l o b a l : : comm mutex) ;
cout << ” Scheduler ’ s mask : ” ;

112 for (unsigned j = 0 ; j < CPU SETSIZE ; j++)
i f (CPU ISSET(j , &cpu se t)) cout<<j<<” ” ;

114 cout << endl ;
cout . f l u s h () ;

116 pthread mutex unlock(& g l o b a l : : comm mutex) ;
#e n d i f

118 }

120 void Scheduler : : exec ()
{

122 unsigned compl tasks = 0 ;

124 cout << ” Scheduler running with ” << t a s k s n << ” tasks ,
and ” << proc s . s i z e () << ” i n t e r p r e t e r s . ” << endl ;

s td : : cout . f l u s h () ;
126

for (unsigned i = 0 ; i < proc s . s i z e () ; i++)
128 proc s [i]−>run () ;

130 while (true) {
t imeva l s t a r t t , end t ;

132 double c u r t ;
pthread mutex lock(& mutex) ;

134
register unsigned enab l ed ta sk s = 0 ;

136 i f (enabled compl && compl tasks == t a s k s n) break ; //
f i n i s h e d !

else i f (compl tasks == t a s k s n) { // wai t f o r new
in s t ance s

138 pthread cond wait (& block , & mutex) ;
i f (enabled compl && compl tasks == t a s k s n) break ;

// f i n i s h e d !
140 // o therw i s e f u r t h e r in s t ance s were submi t ted

}
142

while (schedule (r eady ta sk s , p ro c s)) ; // schedu l e u n t i l
t h e r e i s something to schedu l e

144
pthread mutex unlock(& mutex) ;

146
#i f d e f M2DF DEBUG

148 pthread mutex lock(& g l o b a l : : comm mutex) ;
s td : : cout << ”Some task completed ” << std : : endl ;

150 std : : cout . f l u s h () ;
pthread mutex unlock(& g l o b a l : : comm mutex) ;

152 #e n d i f

154 register bool cond ;
do {

156 complet ion compl task = comple t ed ta sk s . pop () ;
unsigned c t i d = compl task . t i d ;

158 unsigned c g i d = compl task . g id ;

123

160 pthread mutex lock(& mutex) ;

162 enab l ed ta sk s = graphs [compl task . g id] . setCompleted
(c t i d , r e a d y t a s k s) ;

164 compl tasks++;
i f (enab l ed ta sk s) {

166 while (schedule (r eady ta sk s , p ro c s)) ;
enab l ed ta sk s = 0 ;

168 }

170 cond = (compl tasks < t a s k s n) ;

172 pthread mutex unlock(& mutex) ;
} while (cond) ;

174 }

176 pthread mutex unlock(& mutex) ;

178 for (unsigned i = 0 ; i < proc s . s i z e () ; i++)
proc s [i]−> k i l l () ;

180
#i f d e f M2DF TRACING

182 std : : f s t ream t r a c e f i l e (”/tmp/ t r a c i n g i n f o ” , std : : f s t ream : :
out | f s t ream : : b inary) ;

i f (! t r a c e f i l e . i s o p e n () | | t r a c e f i l e . e o f () | | ! t r a c e f i l e .
good ()) p t h r e a d e x i t (&compl tasks) ;

184
for (unsigned i = 0 ; i < procs . s i z e () ; i++) {

186 std : : s t r i n g s t r = procs [i]−>t race−>s t r () ;
t r a c e f i l e . wr i t e (s t r . c s t r () , s t r . s i z e ()) ;

188 }
t r a c e f i l e . c l o s e () ;

190 #e n d i f

192 p t h r e a d e x i t (&compl tasks) ;
}

194
} //end m2df namespace �

124

Semaphore

Next Listings show the declaration and implementation of the semaphore
class.

m2df semaphore.h

1 #ifndef SEMAPHORE H
#define SEMAPHORE H 1

3 #include ”m2df debug . h”

5 #include <cerrno>
#include <c l i m i t s >

7 #include <ctime>
#include <pthread . h>

9 #include <sys / time . h>

11 namespace m2df
{

13
/∗∗

15 ∗ \ c l a s s Semaphore
∗ \ author Lorenzo Anardu

17 ∗ \ date 10/12/2010
∗ \ f i l e m2df semaphore . h

19 ∗ \ b r i e f Semaphore implementation , based on pthread cond and
pthread mutex .

∗/
21 class Semaphore {

unsigned long val , max ;
23 bool suspended ;

pthread mutex t mutex ;
25 pthread cond t cond ;

27 public :
/∗∗

29 ∗ \ b r i e f Constructor which i n i t i a l i z e s the semaphore to 0 .
∗/

31 Semaphore () ;
/∗∗

33 ∗ \ b r i e f Constructor which i n i t i a l i z e s the semaphore to a
va lue d i f f e r e n t than 0 .

∗ \param v a l Value used f o r i n i t i a l i z i n g the semaphore .
35 ∗ \param max [De fau l t va lue = INT MAX]Maximum va lue t ha t

the semaphore can reach .
∗/

37 Semaphore (unsigned long v a l , unsigned long max =
ULONG MAX) ;

/∗∗
39 ∗ \ b r i e f Des t ruc tor .

∗/
41 ˜Semaphore () ;

/∗∗
43 ∗ \ b r i e f B lock ing wai t opera t ion .

125

∗/
45 void wait () ;

/∗∗
47 ∗ \ b r i e f Non−b l o c k i n g wai t opera t ion .

∗ \ re turn Returns whether the wai t was s u c c e s s f u l .
49 ∗/

bool tryWait () ;
51 /∗∗

∗ \ b r i e f Non−b l o c k i n g wai t opera t ion .
53 ∗ \param n Value to be decreased from the semaphore .

∗ \ re turn Returns whether the wai t was s u c c e s s f u l .
55 ∗/

bool tryWait (unsigned long n) ;
57 /∗∗

∗ \ b r i e f Timed wai t opera t ion .
59 ∗ \param time Time to wai t in m i l l i s e c ond s . I f t ime = −1

wa i t s f o r ever .
∗ \ re turn Returns whether the wai t was s u c c e s s f u l .

61 ∗/
bool timedWait (int w time) ;

63 /∗∗
∗ \ b r i e f Post opera t ion . Wakes up a suspended thread (i f

any) .
65 ∗/

bool post () ;
67 /∗∗

∗ \ b r i e f Gets the va lue o f the semaphore .
69 ∗ \ re turn The va lue o f the semaphore .

∗/
71 unsigned long getValue () ;

/∗∗
73 ∗ \ b r i e f Gets the maximum va lue o f the semaphore .

∗ \ re turn The maximum va lue o f the semaphore .
75 ∗/

const long getMax () ;
77 /∗∗

∗ \ b r i e f I n d i c a t e s whether the semaphore i s p o s t a b l e .
79 ∗ \ re turn A va lue i n d i c a t i n g whether the semaphore i s

p o s t a b l e .
∗/

81 bool i s P o s t a b l e () ;
/∗∗

83 ∗ \ b r i e f I n d i c a t e s whether the semaphore i s wa i t a b l e .
∗ \ re turn A va lue i n d i c a t i n g whether the semaphore i s

wa i t a b l e .
85 ∗/

bool i sWai tab le () ;
87 bool someWaiting () ;

} ;
89

} //end m2df namespace
91

#endif //SEMAPHOREH �
126

m2df semaphore.cpp

#include ”m2df semaphore . h”
2

namespace m2df
4 {

6 namespace g l o b a l
{

8 #ifde f M2DF DEBUG
extern pthread mutex t comm mutex ;

10 #endif
}

12
Semaphore : : Semaphore ()

14 : va l (0) , max(ULONG MAX) , suspended (fa l se)
{

16 pthread mutex in i t (&mutex , NULL) ;
p t h r e a d c o n d i n i t (&cond , NULL) ;

18 }

20 Semaphore : : Semaphore (unsigned long v a l , unsigned long max)
: va l (v a l) , max(max) , suspended (fa l se)

22 {
pthread mutex in i t (&mutex , NULL) ;

24 p t h r e a d c o n d i n i t (&cond , NULL) ;
}

26
Semaphore : : ˜ Semaphore ()

28 {
pthread mutex destroy(&mutex) ;

30 pthread cond des t roy (&cond) ;
}

32
unsigned long Semaphore : : getValue ()

34 {
unsigned long v ;

36 pthread mutex lock(&mutex) ;
v = va l ;

38 pthread mutex unlock(&mutex) ;
return v ;

40 }

42 bool Semaphore : : post ()
{

44 bool s u c c e s s = true ;
pthread mutex lock(&mutex) ;

46 i f (va l < max) va l++;
else s u c c e s s = fa l se ;

48 i f (va l == 1 && s u c c e s s == true) {
pth r ead cond s i gna l (&cond) ;

50 }
pthread mutex unlock(&mutex) ;

52 return s u c c e s s ;

127

}
54

bool Semaphore : : tryWait ()
56 {

bool r e t = true ;
58 pthread mutex lock(&mutex) ;

i f (va l > 0) val−−;
60 else r e t = fa l se ;

pthread mutex unlock(&mutex) ;
62 return r e t ;

}
64

bool Semaphore : : tryWait (unsigned long n)
66 {

bool r e t = true ;
68 i f (n == 0) return fa lse ; // throw Except ion ?

pthread mutex lock(&mutex) ;
70 i f (va l > n) va l −= n ;

else r e t = fa l se ;
72 pthread mutex unlock(&mutex) ;

return r e t ;
74 }

76 bool Semaphore : : timedWait (int w time)
{

78 bool r e t = true ;
t imespec t = {0 , 0} ;

80 t imeva l a c tua l ;

82 i f (w time == −1) { // wa i t s f o r ever
wait () ;

84 return true ;
}

86
pthread mutex lock(&mutex) ;

88 i f (va l == 0) {
gett imeofday(&actua l , NULL) ;

90
t . t v s e c = ac tua l . t v s e c + (w time / 1000) ;

92 t . t v n s e c = actua l . t v u s e c ∗ 1000 + (unsigned long) (
w time % 1000) ∗ 1000000;

94 int r e s u l t = pthread cond t imedwait (&cond , &mutex , &t) ;
i f (r e s u l t == ETIMEDOUT) {

96 pthread mutex unlock(&mutex) ;
return fa lse ;

98 }
}

100 val−−;
pthread mutex unlock(&mutex) ;

102 return true ;
}

104
void Semaphore : : wait ()

128

106 {
pthread mutex lock(&mutex) ;

108 i f (va l == 0)
pthread cond wait (&cond , &mutex) ;

110 val−−;
pthread mutex unlock(&mutex) ;

112 }

114 const long Semaphore : : getMax ()
{

116 return max ;
}

118
bool Semaphore : : i s P o s t a b l e ()

120 {
bool r e t ;

122 pthread mutex lock(&mutex) ;
i f (va l < max) r e t = true ;

124 else r e t = fa l se ;
pthread mutex unlock(&mutex) ;

126 return r e t ;
}

128
bool Semaphore : : i sWaitab le ()

130 {
bool r e t ;

132 pthread mutex lock(&mutex) ;
r e t = (va l > 0) ;

134 pthread mutex unlock(&mutex) ;
return r e t ;

136 }

138 bool Semaphore : : someWaiting ()
{

140 bool r e t ;
pthread mutex lock(&mutex) ;

142 r e t = suspended ;
pthread mutex unlock(&mutex) ;

144 return r e t ;
}

146
} //end m2df namespace �

129

Task

Next Listings show the declaration and implementation of the concrete task
representation.

m2df task.h

1 #ifndef TASK H
#define TASK H 1

3 #include ”m2df debug . h”
#include ” m2df except ions . h”

5
#include <c s t d l i b >

7 #include <c s t r i n g>
#include <pthread . h>

9
namespace m2df

11 {

13 /∗∗
∗ \ s t r u c t t a s k

15 ∗ \ author Lorenzo Anardu
∗ \ date 09/12/2010

17 ∗ \ f i l e m2df task . h
∗ \ b r i e f Concrete r e p r e s en t a t i on o f a MDF ta sk .

19 ∗/
struct t a sk {

21 private :
unsigned ∗ c o p i e s c n t ; // counts the cop i e s o f an ins tance

23 pthread mutex t mutex ;
public :

25 unsigned gid , t id , uid ; // graph id , i n s t ance i d , t a s k i d ,
un i que i d

unsigned data n , r e s n ; // s i z e o f data and r e s u l t s arrays
27 void ∗∗(∗ code) (void ∗∗) ; // po in t e r to the rou t ine

void ∗∗data , ∗∗ r e s u l t s ; // data and r e s u l t s arrays
29

/∗∗
31 ∗ \ b r i e f De fau l t cons t ruc tor , does noth ing .

∗/
33 ta sk () ;

/∗∗
35 ∗ \ b r i e f Creates the task , and a l l o c a t e s the re source s .

∗ \param g r a ph i d Id o f the r e f e r ence graph .
37 ∗ \param i n s t i d Id o f the in s tance o f r e f e r ence graph .

∗ \param t a s k i d Id o f the node wi th in the graph .
39 ∗ \param un i q u e i d Unique id o f the node .

∗ \param func Code to be execu ted .
41 ∗ \param da ta n Number o f input data r equ i r ed .

∗ \param r e s n Number o f r e s u l t s produced .
43 ∗/

t a sk (unsigned graph id , unsigned t a s k i d , unsigned
un ique id , \

45 void ∗∗(∗ f u n c) (void ∗∗) , unsigned data n , unsigned

130

r e s n , void ∗∗data = NULL) throw(BadAllocException)
;

/∗∗
47 ∗ \ b r i e f Copy cons t ruc t o r .

∗ \param t Task to be cop ied .
49 ∗/

t a sk (const t a sk& t) throw(BadAllocException) ;
51 /∗∗

∗ \ b r i e f Des t ruc tor .
53 ∗/

virtual ˜ ta sk () ;
55

/∗∗
57 ∗ \ b r i e f Assignment opera tor .

∗ \param t Task to copy .
59 ∗/

t a sk& operator=(const t a sk& t) throw(BadAllocException) ;
61 } ;

63 typedef struct t a sk task ;

65 } //end m2df namespace

67

69 namespace m2df
{

71 inl ine t a sk : : t a sk ()
: g id (0) , t i d (0) , uid (0) , data n (0) , r e s n (0) , code (NULL) ,

data (NULL) , r e s u l t s (NULL)
73 {

}
75

} //end m2df namespace
77

#endif //TASK H �
m2df task.cpp

#include ” m2df task . h”
2

using namespace std ;
4

namespace m2df
6 {

namespace g l o b a l
8 {

#ifde f M2DF DEBUG
10 extern pthread mutex t comm mutex ;

#endif
12 }

14 ta sk : : t a sk (unsigned graph id , unsigned t a s k i d , unsigned
un ique id , \

131

void ∗∗(∗ f u n c) (void ∗∗) , unsigned data n ,
unsigned r e s n , void ∗∗ data) throw(
BadAllocException)

16 : g id (g r a p h i d) , t i d (t a s k i d) , uid (u n i q u e i d) , \
code (f u n c) , data n (da ta n) , r e s n (r e s n)

18 {
pthread mutex in i t (& mutex , NULL) ;

20 c o p i e s c n t = new unsigned (1) ;

22 i f (da ta n > 0) {
i f ((data = (void ∗∗) c a l l o c (data n , s izeof (void ∗))) ==

NULL) throw BadAllocException () ;
24 i f (da ta != NULL) memcpy(data , data , da ta n ∗ s izeof (

void ∗)) ;
}

26 else data = NULL;
i f (r e s n > 0) {

28 i f ((r e s u l t s = (void ∗∗) c a l l o c (r e s n , s izeof (void ∗))) ==
NULL) throw BadAllocException () ;

}
30 else r e s u l t s = NULL;

32 #i f d e f M2DF DEBUG
pthread mutex lock(& g l o b a l : : comm mutex) ;

34 std : : cout<<”Task <”<<gid<<” , ”<<t id<<”> c r ea ted s u c c e s s f u l l y
! ”<<std : : endl ;

s td : : cout . f l u s h () ;
36 pthread mutex unlock(& g l o b a l : : comm mutex) ;

#e n d i f
38 }

40 ta sk : : t a sk (const t a sk& t) throw(BadAllocException)
: g id (t . g id) , t i d (t . t i d) , uid (t . uid) , \

42 code (t . code) , data n (t . data n) , r e s n (t . r e s n) ,
c o p i e s c n t (t . c o p i e s c n t) , mutex (t . mutex)

{
44 pthread mutex lock(& mutex) ;

(∗ c o p i e s c n t)++;
46 pthread mutex unlock(& mutex) ;

data = t . data ;
48 r e s u l t s = t . r e s u l t s ;

}
50

ta sk : : ˜ t a sk ()
52 {

pthread mutex lock(& mutex) ;
54 −−(∗ c o p i e s c n t) ;

unsigned c o p i e s n = ∗ c o p i e s c n t ;
56 pthread mutex unlock(& mutex) ;

58 i f (c o p i e s n == 0) {
cout<<”DELETING TASK(”<<t id<<” ”<<gid<<”) ”<<endl ;

60 delete c o p i e s c n t ;
i f (data != NULL)

132

62 f r e e (data) ;
i f (r e s u l t s != NULL)

64 f r e e (r e s u l t s) ;
pthread mutex destroy(& mutex) ;

66 }
}

68
ta sk& ta sk : : operator=(const t a sk& t) throw(

BadAllocException)
70 {

i f (this == & t) return ∗ this ;
72

g id = t . g id ;
74 t i d = t . t i d ;

uid = t . uid ;
76 code = t . code ;

data n = t . data n ;
78 r e s n = t . r e s n ;

c o p i e s c n t = t . c o p i e s c n t ;
80 mutex = t . mutex ;

82 pthread mutex lock(& mutex) ;
(∗ c o p i e s c n t)++;

84 pthread mutex unlock(& mutex) ;
data = t . data ;

86 r e s u l t s = t . r e s u l t s ;

88 return ∗ this ;
}

90
} //end m2df namespace �
Utils

Next Listings contains some utility functions and macros mainly used for
debugging concerns.

m2df utils.h

#ifndef UTILS H
2 #define UTILS H 1

#include ”m2df debug . h”
4

#include <errno . h>
6 #include <c s t d l i b >

#include <c s t r i n g>
8 #include <pthread . h>

#include <queue>
10

#ifde f M2DF PIPES VERSION
12 #include <uni s td . h>

#endif

133

14
#define Edge pair< unsigned , unsigned >

16
using namespace std ;

18
namespace m2df

20 {
/∗∗

22 ∗ \ b r i e f U t i l i t y f unc t i on used to p r i n t p thread e r ro r s .
∗ \param error code Code o f the error to be p r in t ed (errno

va lue) .
24 ∗/

void p r e r r o r (int e r r o r c o d e) ;
26

} //end m2df namespace
28

#endif //UTILS H �
m2df utils.cpp

1 #include ” m 2 d f u t i l s . h”

3 using namespace std ;

5 namespace m2df
{

7
void p r e r r o r (int e r r o r c o d e)

9 {
switch (e r r o r c o d e) {

11 case EAGAIN: cout << ”EAGAIN” ;
break ;

13 case EBADF: cout << ”EBADF” ;
break ;

15 case EBADMSG: cout << ”EBADMSG” ;
break ;

17 case EINTR: cout << ”EINTR” ;
break ;

19 case EINVAL: cout << ”EINVAL” ;
break ;

21 case EIO : cout << ”EIO” ;
break ;

23 case EISDIR : cout << ”EISDIR” ;
break ;

25 case EOVERFLOW: cout << ”EOVERFLOW” ;
break ;

27 case ENXIO: cout << ”ENXIO” ;
break ;

29 case ESPIPE : cout << ”ESPIPE” ;
}

31 }

33 } //end m2df namespace �
134

Bibliography

[1] Marco Vanneschi. Architettura degli Elaboratori. Edizioni PLUS, 2009.

[2] Jack B. Dennis Data Flow Supercomputers. In IEEE Journal, November
1980.

[3] Christopher Olston, Benjamin Reed Adam Silberstein and Utkarsh Sri-
vastava. Automatic Optimization of Parallel Dataflow Programs

[4] Krishna M. Kavi, Hyong-Shik Kim, Joseph M. Arul and Ali R. Hur-
son. A Decoupled Scheduled Dataflow Multithreaded Architecture. In
Fourth International Symposium on Parallel Architectures, Algorithms,
and Networks, I-SPAN ’99, pages 138–143, 1999.

[5] Krishna M. Kavi, Joseph M. Arul and Roberto Giorgi. Execution and
Cache Performance of the Scheduled Dataflow Architecture. In Journal
of Universal Computer Science, vol. 6, no. 10, pages 948–967, 2000.

[6] Krishna M. Kavi, Roberto Giorgi and Joseph M. Arul. Scheduled
dataflow: Execution paradigm, architecture, and performance evalu-
ation. In IEEE TRANSACTIONS ON COMPUTER, 50(8):834–846,
2001.

[7] Joseph M. Arul and Krishna M. Kavi. Scalability Of Scheduled Dataflow
Architecture (SDF) With Register Contexts. In Proceedings of the 2002
5th International Conference on Algorithms and Architectures for Par-
allel Processing, pages 214–221, 2002.

[8] Roberto Giorgi, Zdravko Popovic and Nikola Puzovic. DTA-C: A De-
coupled multi-Threaded Architecture for CMP Systems.

[9] Costas Kyriacou, Paraskevas Evripidou and Pedro Trancoso. Data-
driven multithreading using conventional microprocessors. IEEE Trans.
Parallel Distrib. Syst., 17:1176–1188, October 2006.

[10] Kyriakos Stavrou, Demos Pavlou, Marios Nikolaides, Panayiotis
Petrides, Paraskevas Evripidou and Pedro Trancoso. Programming Ab-
stractions and Toolchain for Dataflow Multithreading Architectures.

135

[11] Pedro Trancoso, Costas Kyriacou and Paraskevas Evripidou. DDM-
CPP: The Data-Driven Multithreading C Pre-Processor.

[12] Kyriakos Stavrou, Marios Nikolaides, Demos Pavlou, Samer Arandi,
Paraskevas Evripidou and Pedro Trancoso. Tflux: A Portable Platform
for Data-Driven Multithreading on Commodity Multicore Systems. In
Proceedings of the 2008 37th International Conference on Parallel Pro-
cessing, ICPP ’08, pages 25–34, Washington, DC, USA, 2008. IEEE
Computer Society.

[13] Costas Kyriacou, Paraskevas Evripidou and Pedro Trancoso
CacheFlow: A Short-Term Optimal Cache Management Policy for Data
Driven Multithreading In Euro-Par 2004 Parallel Processing, pages 561–
570, 2004.

[14] Neungsoo Park, Bo Hong and Viktor K. Prasanna Analysis of Memory
Hierarchy Performance of Block Data Layout In Proceedings of the 2002
International Conference on Parallel Processing, ICPP ’02, pages 35–45,
Washington, DC, USA, 2002. IEEE Computer Society

[15] Jakub Kurzak, Hatem Ltaief, Jack Dongarra and Rosa M. Badia.
Scheduling linear algebra operations on multicore processors.

[16] Alfredo Buttari, Julien Langou, Jakub Kurzak, Jack Dongarra. Par-
allel Tiled QR Factorization for Multicore Architectures. In LAPACK
working note #190.

[17] Marco Vanneschi The programming model of ASSIST, an environment
for parallel and distributed portable applications. In Parallel Computing,
28(12): 1709–1732, 2002.

[18] Marco Aldinucci, Marco Danelutto and Patrizio Dazzi. Muskel: an
expandable skeleton environment. In Scalable Computing: Practice and
Experience, 8(4):325–341, December 2007.

[19] Alessio Bonfietti, Luca Benini, Michele Lombardi and Michela Milano.
An Efficient and Complete Approach for Throughput-maximal SDF Al-
location and Scheduling on Multi-Core Platforms. In Design Automation
& Test in Europe, DATE ’10, pages 897–902, Dresden, Germany, 2010.

[20] Nan Guan, Martin Stigge, Wang Yi and Ge Yu. Cache-aware scheduling
and analysis for multicores. In Proceedings of the seventh ACM interna-
tional conference on Embedded software, EMSOFT ’09, pages 245–254,
Grenoble, France, 2009. ACM.

[21] Shankar Ramaswamy and Prithviraj Banerjee. Processor Allocation
and Scheduling of Macro Dataflow Graphs on Distributed Memory Mul-
ticomputers by the PARADIGM Compiler. In Proceedings of the 1993

136

International Conference on Parallel Processing - Volume 02 , ICPP ’93,
pages 134–138, Washington, DC, USA, 1993. IEEE Computer Society.

[22] Polaris Project Home Page.
http://www.ecn.purdue.edu/ParaMount/Polaris/

[23] OpenMP Home Page.
http://openmp.org/wp/

[24] OpenMP Wikipedia Page.
http://en.wikipedia.org/wiki/OpenMP/

[25] Cilk Project Home Page.
http://supertech.csail.mit.edu/cilk/

[26] libFLAME Home Page.
http://z.cs.utexas.edu/wiki/flame.wiki/

[27] ATLAS Project Home Page.
http://math-atlas.sourceforge.net/

[28] Intel. Intel R© Xeon Processor Family.
http://www.intel.com/en uk/business/itcenter/products/xeon/index.htm

[29] Intel. Intel R© QuickPath Technology.
http://www.intel.com/technology/quickpath/

137

