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Abstract

In Systems Biology, spatial modelling allows an accurate description of phenomena whose
behaviour is influenced by the spatial arrangement of the elements. In this thesis, we
present various modelling formalisms with spatial features, each using a different abstrac-
tion level of the real space. From the formalisms with the most abstract notion of space,
to the most concrete, we formally define the MIM Calculus with compartments, the Spatial
P systems, and the Spatial CLS. Each formalism is suitable for the description of different
kinds of systems, which call for the use of different space modelling abstractions. We
present models of various real-world systems which benefit from the ability to precisely
describe space-dependent behaviours.

We define the MIM Calculus, inspired by Molecular Interaction Maps, a graphical
notation for bioregulatory networks. The MIM Calculus provides high-level operators
with a direct biological meaning, which are used to describe the interaction capabilities
of the elements of such systems. Its spatial extension includes the most abstract notion
of space, namely it only allows the modelling of compartments. Such a feature allows
distinguishing only the abstract position where an element is, identified by the name of
the compartment.

Subsequently, we propose a spatial extension to the membrane computing formalism
P systems. In this case, we follow a more precise approach to spatial modelling, by
embedding membranes and objects in a two-dimensional discrete space. Some objects of
a Spatial P system can be declared as mutually exclusive objects, with the constraint that
each position can accommodate at most one of them. The distinction between ordinary
and mutually exclusive objects can be thought of as an abstraction on the size of the
objects. We study the computational complexity of the formalism and the problem of
efficient simulation of some kinds of models.

Finally, we present the Spatial Calculus of Looping Sequences (Spatial CLS), which is
an extension of the Calculus of Looping Sequences (CLS), a formalism geared towards the
modelling of cellular systems. In this case, models are based on two/three dimensional
continuous space, and allow an accurate description of the motion of the elements, and
of their size. In particular, Spatial CLS allows the description of the space occupied
by elements and membranes, which can change their sizes dynamically as the system
evolves. Space conflicts which may occur can be resolved by performing a rearrangement
of elements and membranes. As example applications of the calculus we present a model of
cell proliferation, and a model of the quorum sensing process in Pseudomonas aeruginosa.
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Chapter 1

Introduction

Understanding how a biological system works is a complex matter, that requires studying
its internal behaviour at different levels. For a long time, mathematical tools, such as
differential equations, have been used to describe and study the behaviour of complex
systems. Computer Science is also involved in this field of study. For example, computer
science tools are commonly used in Biology to help to reconstruct knowledge about the
internal functioning of biological systems, such as the reverse engineering of metabolic
networks from experimental data.

Another approach, which has seen a widespread development in recent years, concerns
the use of formal methods for the modelling and analysis of biological systems. An im-
portant aim of formal models is to enable the modeller to tackle the complexity of the
systems under study. This is supported by the fact that formal models are intrinsically
unambiguous, thus providing important advantages over the informal descriptions com-
monly used in Biology. Moreover, having a computational model of a biological system
allows in-silico experiments, that is simulations of the behaviour of biological processes,
which can be used by biologists as a support to rapidly test new hypotheses without hav-
ing to resort to expensive and time-consuming in-vivo experiments. Another approach to
the study of biological systems is given by the possibility of using formal analysis methods
from Computer Science, such as model checking.

Apart from some earlier approaches to the use of computing formalisms for biological
modelling, the most influential approach has been proposed by Regev, Shapiro and others
in [74, 75, 67, 72], where the π-calculus process algebra [58] is used to describe biomolec-
ular processes. The soundness of the approach is mainly due to the similarity between
systems of interacting components, as studied in Computer Science, and the biological
entities in a cell. In fact, the mentioned authors showed how molecules can be represented
as interacting agents, where the interaction is described by a communication between
the agents, and which results in a modification of the involved elements. Afterwards,
many other formalisms originally developed by computer scientists to model systems of
interacting components have been applied to Biology, and extended to allow more precise
descriptions of the biological behaviours. Some other formalisms have also been developed
expressly for being used in Biology.

Different formalisms allow studying different aspects of biological systems, depend-
ing on the features that they possess. Basic versions of formalisms usually allow only
the description of qualitative aspects of the systems, while extensions of them are often
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developed to also allow the description of quantitative aspects. Qualitative aspects deal
with abstract state properties, such as reachability of states, but without taking into ac-
count any form of “quantity”, such as time and probability, which instead constitute the
quantitative aspects of a system.

Quantitative aspects are often described by means of stochastic formalisms. Actually,
since stochastic modelling is particularly important in this field [88], the feature of stochas-
ticity is often provided by formalisms for Biology. In fact, biological processes cannot be
studied thoroughly by only using deterministic models, and stochasticity is mainly needed
to abstract over some details of processes that are not known, or that cannot be described
adequately. Gillespie’s algorithm [40] is a widely used simulation algorithm for stochastic
models of biological systems. Many other simulation methods have been proposed [41].
Apart from simulations, other analysis methods originated from Computer Science can be
used, such as model checking (in particular, its probabilistic variant [53]).

In this thesis, we are interested in spatial modelling, which allows the description of
the position of the elements of a system, with respect to some more or less abstract notion
of space. The simplest form of spatial modelling is given by the ability to represent
compartments, which allow the representation of different locations for the elements of the
system. They may be either entailed by biological membranes or simply used to represent
different abstract locations in a spatially heterogeneous environment.

The MIM Calculus, also extended with compartments, is the first formalism that we
define, and provides the most abstract form of spatial modelling among the formalisms
proposed in the thesis. We also investigate the possibility of going a step further in the
precision of modelling, by developing other two formalisms, the Spatial P systems and the
Spatial Calculus of Looping Sequences, which provide more concrete representations of the
real space. In particular, the former is based on discrete space, while the latter is based
on continuous space.

Various formalisms proposed in the literature allow different levels of representation
of the space. Due to the important role of membranes in many biological processes, most
computer science formalisms for biology allow some form of compartmental modelling.
As regards models allowing more concrete representations of the space, that have been
used to describe biological systems, we mention cellular automata [44, 62, 82], based on
discrete space, and models based on differential equations, such as those describing the
reaction diffusion process and spatial pattern formation [59, 60]. More recently, various
formalisms allowing more concrete spatial modelling than membranes have been proposed.
An extensive discussion on related works is presented in Chapter 2.

1.1 Motivations

In this thesis we develop various modelling formalisms with spatial features, namely with
the ability to keep track of the “position” of the elements of a system. Spatial modelling is
required to describe accurately many biological phenomena whose behaviour is influenced
by the spatial arrangement of the elements.

The notion of compartments allows distinguishing only the abstract position of an
element, identified by the name of the compartment. In this field, compartments are
intended as closed areas which may contain elements and other compartments. As in the
case of biological membranes, biological entities (such as molecules) can, in some cases,
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cross compartment bounds.

Membranes play an important role in many biological processes. For example, the com-
partmentalization of the elements inside a cell is fundamental for its correct functioning,
since it allows different processes to occur independently from one another in physically
separated regions, which can communicate only through the release of chemical substances
which can cross membrane bounds. Furthermore, membranes can actually play an active
role in such a communication, by modulating the passing of chemical substances and sig-
nals through them. The possibility of describing compartments is provided by most of the
formalisms for modelling biological systems. This often consists in the ability to represent
membranes directly in the syntax, by means of some form of containment operator which
also allows the building of hierarchies of compartments.

Another example involving membranes is that of signalling pathways, namely the pro-
cesses that allows a cell to react to external stimuli by regulating some internal processes.
In this case, receptors attached to the external membrane surface receive the external
stimuli and, as a result, can trigger some internal process by releasing signalling proteins
inside the membrane. A system of this kind is brought as an example of application in
Chapter 3.

According to the system under study, the simplest form of spatial modelling, namely
by means of membranes, may be enough to obtain faithful description of the system and of
its behaviour. However, there are cases in which the fundamental assumption of compart-
mental modelling, namely the well-stirred assumption of the content of compartments, is
not valid, since it would introduce too much approximation of the real situation.

For example, consider a reaction-diffusion system, which is composed of small elements
which can freely diffuse in the environment, and can interact with one another. In case the
rate of reaction is much higher than the rate of diffusion, the elements will tend to react
among themselves rather than diffuse in the environment. Thus the time needed for the
system to reach a well-stirred state is, with respect to the reaction rate, non-negligible.
Since the behaviour of the system in such a time span can be quite different than the
behaviour in the well-stirred state, this shows the importance of increasing the precision
of modelling by keeping track of the position of the involved elements [84]. A similar
situation happens in the model of the quorum sensing process described in Chapter 6.

Molecular crowding [84] is another case involving diffusion systems in which the well-
stirred assumption does not hold. This happens when the number of molecules in a limited
space is very high, effectively preventing the molecules from freely diffusing, and therefore
changing the behaviour of the system.

The above examples show that, in order to obtain a faithful description of some kinds
of systems, a more concrete spatial representation is necessary. Beyond microbiological
systems, ecological systems are another field in which a spatial representation is useful such
as, for example, in the description of population dynamics. In this case, compartments
can easily model spatially separated regions, in which different populations live, and where
individuals can move from a region to another. In Chapter 4 we present an example of
this kind of systems, which describes, in particular, the evolution of ring species.
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1.2 Contributions

We define three formalisms with spatial features, namely the MIM Calculus, the Spatial
P systems, and the Spatial Calculus of Looping Sequences, each providing a different level
of abstraction for the modelling of the real space. In fact, since they are tailored to the
modelling of a different kind of systems, the appropriate level of abstraction is different
from one another.

The first formalism that we define is the MIM Calculus, which is inspired by the Molec-
ular Interaction Maps, a graphical notation for bioregulatory networks used in Biology.
The MIM Calculus is defined in the style of a process calculus, and provides high-level
operators with a direct biological meaning, which are used to describe the interaction capa-
bilities of the elements of a system. We initially define the basic version of MIM Calculus,
without any notion of spatiality, then we propose the MIM Calculus with compartments.
As regards the basic version of MIM Calculus, we propose a notion of consistency of terms
of the calculus, with the aim of identifying which terms constitute a formal representation
of a MIM diagram. The MIM Calculus with compartments provides the most abstract
notion of space among the formalisms proposed in the thesis, namely it only allows the
modelling of compartments. We present a model of the G protein signalling pathway,
which shows that the modelling of compartments is well-suited for this kind of systems.

We then present a spatial extension of the P systems formalism. P systems [69, 70],
also known as membrane systems, originated as a computing formalism in the field of
Natural Computing, and are inspired by the functioning of living cells. Later, they have
been applied to the modelling of biological and ecological systems, usually by means of
extensions developed on purpose, such as with the inclusion of stochasticity. The basic
class of P systems is made of a hierarchy of membranes, where each membrane contains
objects, represented by symbols of an alphabet, and evolution rules, namely rewrite rules
which describe how the reactant objects evolve into products. In particular, objects can
be transformed into other objects, and can be sent into other membranes.

The spatial extension of P systems that we propose is based on discrete space. In
particular, membranes and objects are embedded in a two-dimensional discrete space with
integer coordinates. Evolution rules are associated with membranes, and are also extended
to allow specifying the (relative) positions of reactants and products with respect to the
concrete position in which the rule is to be applied. A distinctive feature of Spatial P
systems are the mutually exclusive objects, which are subject to the constraint that there
can be at most one of them in each position. There are no constraints on the other
(ordinary) objects. The distinction between ordinary and mutually exclusive objects can
be thought of as an abstraction on the size of the objects.

In order to increase the usefulness of the formalism for the modelling of systems, we
include in Spatial P systems the features of promoters and priorities among evolution
rules. Each rule can have a multiset of objects, called promoters, which are required to be
present inside the membrane in order for the rule to be applied. Priorities among evolution
rules instead mean that a rule can be applied in a position only if there is no other higher
priority rule which can be applied in place of it. Priorities are useful for the description
of object movements.

Since P systems were initially devised as a computing formalism, the computational
power of the basic class and various extensions, using different features and different forms
of evolution rules, has been studied in the literature [70, 68]. From this theoretical point of



1.2. CONTRIBUTIONS 5

view, the feature of mutually-exclusive objects provided by Spatial P systems is a powerful
feature. In fact, in order to study the computational power of Spatial P systems, we show
that Turing universality can be achieved, if mutually-exclusive objects are allowed, by
using only non-cooperating evolution rules, namely rules in which there is only one object
in their left-hand part. As a comparison, the basic form of P systems with only non-
cooperating rules are not universal. Conversely, if rules can have more than one object
among the reactants (i.e. if cooperating rules are allowed), then universality is achieved
also for the basic form of P systems.

We also study the problem of efficient simulation of some kinds of Spatial P system
models. In particular, the peculiar feature of mutually-exclusive objects, together with
priorities among evolution rules, makes it difficult to devise an efficient simulation algo-
rithm. We present various algorithms for the simulation of restricted models, and study
their complexity.

We exemplify the use of the formalism with a model of the evolution of ring species,
describing the spreading of a population around a geographical barrier, which uses a high-
level view of the spatial locations in which the populations spread. Moreover, we show
that the formalisms can be used as a lower-level tool, abstracting the continuous space,
by means of a model which simulates the schooling behaviour of herrings.

Finally, we present the Spatial Calculus of Looping Sequences (Spatial CLS), an ex-
tension of the Calculus of Looping Sequences (CLS) based on continuous space. CLS [15,
57, 10, 4] is a calculus, based on term rewriting, developed specifically for the modelling
of biological systems. Thus, a CLS model is composed of a term, which describes the
structure and elements of a biological system, and a set of rewrite rules describing the
possible evolutions. The fundamental concept of CLS is that of sequence, which comes
in two forms: simple sequences, which are used to represent simple entities of biological
systems, such as proteins and DNA strands, and looping sequences, which are meant to
represent closed circular sequences of elements. Looping sequences, together with a con-
tainment operator provided by the calculus, allow a direct modelling of membranes and of
the biological elements which are embedded in them. Therefore, membranes and elements
inside them can be directly modelled in the syntax.

Spatial CLS extends CLS by allowing to keep track of the position of biological elements
in a 2D or 3D continuous space, as time passes. The movement of elements in the space
can be precisely described by means of movement functions associated with them. The
application of rewrite rules to system elements can be constrained to the positions of
the involved elements, in such a way, for example, to allow the interaction between two
elements only when they are close enough.

An important feature of Spatial CLS is the ability to describe the space occupied
by elements and membranes. Moreover, the semantics of the calculus ensures that the
space occupied by different objects is always kept disjoint, namely different objects cannot
overlap, and each object must be correctly contained within the bounds of its containing
membrane, if any. In order to model specific behaviours, the modeller can provide different
algorithms to rearrange the position of objects in case of a space conflict. We propose an
algorithm for the resolution of space conflicts which is based on the assumption that
conflicting objects push each other when they are too close. In order to increase the
modelling power of the calculus, stochasticity is included in Spatial CLS by means of
stochastic rates associated with rewrite rules.

As example applications of the calculus, we present a model of the development of a
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biological tissue, which arises from the proliferation of cells performing the mitosis cycle.
This model takes advantage of the possibility of representing the space occupied by the
elements, in this case the cells, and demonstrates the use of a rearrangement algorithm. A
model of the quorum sensing process performed by the Pseudomonas aeruginosa bacterium
is also presented. In this model, bacteria diffuse small molecules in the environment, which
enable them to determine their concentration in a colony of bacteria. In the presented
model we keep track of the positions of the molecules diffusing in the environment, which
is useful to obtain faithful simulations of the system behaviour.

1.3 Structure of the thesis

In Chapter 2 we survey some formalisms for the formal description and analysis of biolog-
ical and ecological systems. In subsequent chapters, from the formalisms with the most
abstract notion of space, to the most concrete, we formally define the MIM Calculus, the
Spatial P systems, and the Spatial CLS.

In particular, the MIM calculus, and its extension for compartmental modelling are
presented in Chapter 3. Then, in Chapter 4, we formally define the semantics of Spatial
P systems, and study their computational power. In Chapter 5 we present the algorithms
for the simulations of some restricted kinds of Spatial P system models, and prove their
correctness with respect to the semantics. Lastly, in Chapter 6 we present the Spatial
Calculus of Looping Sequences, its formal syntax and semantics, and an algorithm for the
resolution of space conflicts.

For each formalism that we define, we develop models of real-world systems in order
to exemplify their use and demonstrate their practical usefulness. Finally, in Chapter 7
we draw some conclusions on the work presented in the thesis, and discuss possible future
works.

1.4 Published material

Part of the material presented in the thesis has been either published or submitted for
publication, as detailed in the following.

• The definition of the basic version of the MIM calculus, from Chapter 3, appeared
in [8].

• An earlier version of Spatial P systems, from Chapter 4, has been published in [9].

• The current definition of Spatial CLS, as presented in Chapter 6, has been published
in [7]. An earlier version appeared in [6].



Chapter 2

Related works

In this chapter we survey some formalisms which have been used or proposed as modelling
tools for biological and ecological systems. We start our survey from the π-calculus, and
exemplify its use for the description of biomolecular processes as proposed in [74, 75, 67,
72].

2.1 The π-calculus for the modelling of biological systems

The π-calculus [58] is a process algebra originally developed for describing concurrent
processes, that are able to communicate by using channels. The key feature of the calculus
is its ability to represent mobility, i.e. the movement of an agent to a different location
in a virtual space of processes. In the π-calculus, the concept of location is implicit, and
is determined by the collection of links to other processes. In this view, a change of the
location is represented by a change in the neighbours of a process, i.e. of the processes to
which it can talk to by exchanging messages through the links.

An important notion of the π-calculus is that of names, which represent both the
names of the links and the data which can be communicated (i.e. transmitted along a
link). The set of names is denoted by N ; its metavariables are a, b, . . . , x, y, z. π-calculus
processes and prefixes are defined by the following grammar:

P ::= 0
∣∣ α.P

∣∣ (new x)P
∣∣ P1 + P2

∣∣ P1 | P2

∣∣ A(x1, . . . xn)

α ::= x〈y〉
∣∣ x(y)

∣∣ τ

0 is the nil process, which cannot do anything. A process α.P can do an action α
and then behaves as P . There are three kinds of actions. An output action y〈x〉.P means
that the name x has to be sent along channel y, and then the process behaves as P . An
input action y(x).P , instead, means that a arbitrary name z can be received on channel
y, and then the process behaves as P where each free occurrence of x is replaced by the
received name z. An input prefix y(x).P binds name x in P . Finally, τ represents the
hidden action, meaning that the process can perform an unobservable (internal) action.

The construct (new x)P is used to declare private names. It binds the name x in P ,
and means that x is a private name P , i.e. it is different from any other name x appearing
outside. Operator + denotes choice, meaning that the process can behave either as P1 or as
P2. Operator | denotes the parallel composition of processes. Finally, given a set of process
identifiers K (A,B, . . . ∈ K) and process definitions of the form A(y1, . . . , yn) = P , the
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construct A(x1, . . . , xn) can be used to refer to the process P associated with the identifier
A. In this case, variables y1, . . . , yn in P are to be replaced by the actual names x1, . . . , xn.

According to the semantics of the calculus, a process can evolve by performing actions.
In particular, two processes can synchronize if they are able to perform two complementary
actions (an output and an input) on the same channel. This models a communication
between processes. Since channels and data are the same entity (they are names), it is
possible to send (the name of) a channel to another process, thus enabling the receiving
process to communicate through the channel. This models mobility, interpreted as a
change in the interaction network of processes.

The basic idea used to represent biochemical processes using the π-calculus, proposed
in [74, 75], is to represent molecules (and their domains) as processes, where chemical
interaction corresponds to communication. Since changes in the structure of molecules
determine a modification of their interaction capabilities, this is naturally modelled by
using mobility.

Example 2.1.1. To highlight the use of the π-calculus for modelling biochemical pro-
cesses, we report a part of the model of RTK-MAPK signal transduction pathway from [75].
A pathway describes a sequence of interactions among molecules. In this particular case,
we consider a signal transduction pathway, namely a process by which an external stimu-
lus, received by a receptor embedded in cell membrane, triggers a chain of reactions which,
in the end, results in some internal effect. In the RTK-MAPK pathway, the receptor RTK
receives an external stimulus which, in the end, causes the activation of the MAPK en-
zyme. The enzyme is a protein which is able to increase the rate of other reactions. Such
a modification of the internal behaviour constitutes the effect in response to the external
stimulus.

The pathway itself is modelled as the parallel composition of all the processes rep-
resenting molecules. In the following, π-calculus names are written in lower case, while
process identifiers are upper case. The pathway is modelled as a process formed by the
parallel composition of all the molecules present.

RTK MAPK pathway = Free ligand | RTK | Ras | · · ·

In this case, for example, there are a free ligand, a receptor tyrosine kinase (RTK) molecule,
and a Ras protein (the other molecules are omitted). A ligand is a biological element which
is able to bind to the receptor.

The following process definitions allow us to illustrate some important features.

Free extracellular domain ::= ligand binding.rtk binding.P ′ +

antagonist binding.0

Ligand ::= ligand binding.Bound ligand

Antagonist ::= antagonist binding.Bound antagonist

The receptor has an extracellular domain to which the ligand can bind to. The pro-
cess Free extracellular domain models the free extracellular domain, namely when the
ligand is not bound to it. The extracellular domain can interact through either channel
ligand binding, with the ligand, or channel antagonist binding, with the antagonist. This
models mutually exclusive interactions, in which the ligand and the antagonist compete to
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bind to the same domain. We can see that a ligand can become the process Bound ligand
(defined elsewhere), representing the bound ligand and its interaction capabilities. Simi-
larly, the antagonist can become a Bound antagonist.

It is interesting to note that if the extracellular domain binds to the ligand, then it
can still perform other interactions, i.e. through channel rtk binding, while if it binds
to the antagonist, then it becomes the nil process 0, which is not able to perform any
other interaction. The ability of an antagonist to unbind from the extracellular domain is
modelled inside process Bound antagonist.

The ability to send and receive channel names is used to model modifications of
molecules. For example, the following definition shows an active kinase and a binding
domain for it.

Active kinase ::= phosph site〈p tyr〉.P ′′

Binding domain ::= phosph site(tyr).tyr.P ′′′

When they interact, the name p tyr is sent to the binding domain, thus enabling it to
interact through the channel p tyr afterwards.

Lastly, the operator of scope restriction for names is used for modelling complexes,
that is two or more molecule bound together. A complex is modelled by processes sharing
a private name, thus the creation of a complex is obtained by exchanging private names.
Intuitively, when different molecules are bound together, they can interact with each other
through some private channel name, while external molecules cannot interact with them
through such a private name. Such an abstraction is also used to model compartments,
therefore the compartment containing a process is entailed implicitly by the (private)
channels that the process can access.

For example, in the following definition:

Free ligand ::= (new backbone)

(Free binding domain | Free binding domain)

Free binding domain ::= ligand binding〈backbone〉.Bound ligand

Extracellular domain ::= ligand binding(cross backbone).

Bound Extracellular domain

the ligand has two free domains identified by channel ligand binding, that can be bound
to the extracellular domains. When a free domain of the ligand binds to an extracellu-
lar domain, the scope of the private name backbone is extruded to also include process
Bound Extracellular domain. Once both domains of the ligand are bound, the following
process is obtained:

Free ligand ::= (new backbone)(Bound ligand | Bound ligand |
Bound Extracellular domain | Bound Extracellular domain)

where the sharing of the private name backbone among the processes represents the for-
mation of the complex.

These examples show that a π-calculus model of a biological system, while allowing
direct representation of molecules as processes, and precise descriptions of their behaviours,
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can be complicated and hard to read. Moreover, complex encodings may be needed for
modelling some complex behaviours. However, for constructing a model, one should try
to exploit the compositionality of the calculus, which can help to handle this complexity.

The basic π-calculus allows analysing only qualitative properties of systems. In or-
der to also enable the analysis of quantitative properties, an extension of the π-calculus
for biomolecular processes has been proposed in [67]. It is a variant of the Stochastic π-
calculus [65], where rates of reactions are computed according to their basal rates and the
concentrations (quantities) of reactants. In particular, as with other stochastic formalisms,
for each reaction (represented by an action in the π-calculus syntax) in which a certain
species can take part there is a rate coefficient describing how the its concentration changes
when the reaction occurs. Such a rate corresponds to the parameter of a negative expo-
nential random variable modelling the duration of the activity. The behaviour is driven
by a race condition, where all the enabled activities compete for proceeding, but only the
fastest one succeeds. Usually, the semantics of a stochastic calculus is given by a Contin-
uous Time Markov Chains (CTMC), which can be used either for stochastic simulation,
or to perform different kinds of analysis, such as (probabilistic) model checking.

Other calculi based on π-calculus are Bioambients [73, 21], Beta Binders [66, 34],
and π@ [85, 87, 86]. As regards extensions of the π-calculus providing more concrete
representation of the space, we cite SpacePI [46], and the 3π process algebra [24], which
embed processes in a continuous space.

2.2 Spatial modelling

The spatial features of biological systems can be studied by using many different means.
The most abstract spatial feature, provided by almost all computer science formalisms
for biology, regards the modelling of compartments. We survey various formalisms which
provide some form of compartmental modelling, then we present other formalisms based
on more concrete notions of space.

2.2.1 Compartmental modelling

Compartments are closed areas which may contain elements and other compartments.
They may be either entailed by biological membranes or simply used to represent different
abstract locations in a spatially heterogeneous environment. As in the case of biological
membranes, biological entities (such as molecules) can, in some cases, cross compartment
bounds. More complex calculi also allow describing reactions occurring on the surface of
membranes.

Bio-PEPA [31, 29, 30] is an extension of the PEPA process algebra, a stochastic process
algebra originally developed for performance analysis of computer systems [43]. Bio-PEPA
uses a different, more abstract, view of biological systems than the one used in the π-
calculus. Instead of representing molecules as processes, each Bio-PEPA process models
a species. It allows the use of general kinetic laws, namely functions for deriving the rate
of reactions from varying parameters, such as the rate coefficients and concentration of
reactants, or the size of compartments. In Bio-PEPA compartments are static and not
represented explicitly in the syntax, therefore a species which can appear in two different
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compartments is represented by two different species components in the model, having
different names.

The ability to directly describe compartments is quite common among computer science
formalisms for biology, since membranes often play an important role in many biological
processes. The widespread availability, among calculi for biology, of operators for the
direct description of compartments shows the usefulness of this feature.

For example, Brane Calculi [23] are process calculi devoted to the modelling of interac-
tions of biological membranes, which are active entities driving the evolution of the system.
Membranes can be nested, and their structure can change dynamically as the result of the
actions performed. The different calculi proposed differ form one another in the kind of
actions which can be associated with membranes. For instance, the simplest of such cal-
culi, the PEP calculus, models the processes of endocytosis, where an internal membrane
is created by capturing some other external material, and exocytosis, which is the reverse
process of the endocytosis. The PEP calculus provides the following three kinds of actions:
phagocytosis, in which a membrane engulfs one external membrane; pinocytosis, in which
a internal membrane is created (vesicle) without engulfing any membrane; and exocytosis,
in which the content of an internal membrane is released outside.

Another calculus for biological modelling providing a notion of compartments is
BioAmbients [73], which is inspired by Mobile Ambients [25]. Mobile Ambients is a
process calculus underlain by many π-calculus concepts, which allows the explicit repre-
sentation of movement of processes through ambients, intended as abstract places in which
computation is performed. Moreover, ambients can be nested, and can move themselves
from a place to another. Compartments can be emulated in calculi which do not allow
a direct representation of them, as it is the case, for example, of the π-calculus. The
BioAmbients calculus has been developed to address such a problem of compartmental
modelling in the π-calculus. In fact, as we have seen, compartmental modelling in the
π-calculus is based on the scope restriction operator, and does not provide a direct repre-
sentation of compartments in the syntax. Therefore complex encodings would be required
to deal with them, which may hamper the readability of models [75, 73].

A different approach to compartmental modelling is the one followed by Beta
Binders [66], which provides a notion of compartment by means of boxes enclosing
π-calculus processes. Processes in boxes are able to communicate with the external
environment through specific interaction sites. Boxes and their interaction sites can dy-
namically change. For example, there are operators for hiding (thus preventing it to be
used for an interaction) and unhiding interaction sites, and for joining and splitting boxes.
The calculus does not permit the nesting of boxes. An extension of Beta Binders for the
modelling of static nested compartments, and of the movement of objects across them, is
presented in [42].

The π@ calculus [85, 87] is an extension of the π-calculus, developed as a low-level
language for the implementation and comparison of calculi for the compartmental mod-
elling of biological systems. The π@ calculus can be used to formalize multi-compartment
systems with a dynamic structure. The syntax of the calculus does not provide the ability
to directly describe compartments (membranes), which are instead associated with chan-
nel names. In the stochastic extension Sπ@, proposed in [86], the volume of membranes
can change as result of interactions, and their sizes are taken into account for the simu-
lation, performed by a specialized (multi-compartmental) version of Gillespie stochastic
simulation algorithm.



12 CHAPTER 2. RELATED WORKS

The attributed π-calculus [48] provides the ability to associate attributes to processes,
and to constraint process communication (synchronization) on the basis of the values of
the attributes. The calculus is parametric with respect to the functional language used
to represent values and constraints. Static compartments can be easily modelled in the
calculus, by using attributes to denote the abstract location in which the process is present.
The attributed π-calculus has been extended with priorities in [49]. Such an extension
has been shown to be also able to model dynamic compartments, namely compartments
which can change their nesting structure dynamically, by means of an encoding of the π@
calculus.

A different approach to the modelling of dynamic compartments is proposed in the
Imperative π-calculus [47], which is another extension of the attributed π-calculus. The
Imperative π-calculus extends the attributed π-calculus with a global store. The language
embedded by the calculus provides operations for accessing the global store, namely for
reading and modifying the values of variables in the global store. By representing com-
partments with different names, and associating channel names with variables in the global
store, it is possible to keep track of the volume of compartments, and use their values to
compute reaction rates.

In the field of ecological modelling, PALPS [36] has been proposed as a domain-specific
process calculus for the modelling of population systems. In PALPS, each individual is
modelled by a process, each possessing a species and a location. Locations are related by
means of a neighbourhood relation, and individuals can either move non-deterministically
through nearby locations, or be involved in other actions, such as preying. The behaviour
of individuals can be determined by local conditions, for example by taking into account
the number of individuals present in a location.

Apart from process calculi, the Calculus of Looping Sequences (CLS) [15, 57, 4] is a
formalism based on term rewriting which allows a direct representation of membranes in
the syntax of the calculus. The evolution of a biological system is represented by means of
rewrite rules, which can be used to model both biochemical reactions and more complex
behaviours, such as rearrangements in the membrane structure of the system. For example,
the creation, dissolution and fusion of membranes can be easily expressed in a CLS model.

In the field of Natural Computing, P systems [69, 70, 68] (also known as membrane
systems) have been defined as a computational formalism based on the description of in-
teractions inside membranes. A P system is composed of a hierarchy of membranes, each
of them containing a multiset of objects, which are processed by evolution rules. Evolution
rules allow the description of the behaviour of a model, for example by representing chem-
ical reactions. A set of rules is associated with each membrane, which are to be applied
to the objects contained in the membrane itself, and can transform objects in different
objects, and send them into other membranes. In the basic class of P systems, membranes
are static and cannot be created nor destroyed. Many extensions of the basic formalism
have been developed [70, 68]. Moreover, in spite of being initially defined as a computing
formalism inspired by biological behaviour, they have also been applied to the modelling of
biological systems [71]. As regards quantitative modelling, which is particularly important
for obtaining executable models of systems, various probabilistic/stochastic extensions of
P systems have been proposed [64, 18, 28, 27, 78, 39].

Metabolic P systems [55, 54] are a deterministic variant of P systems, developed to
model the evolution of chemical substances driven by the laws of biochemistry. Differently
from basic P systems, metabolic P systems use a more abstract view of the system, in which
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different substances, representing populations of identical molecules, are transformed by
some reactions. In particular, the variation in time of the concentration of each substance
involved in a certain reaction is described by a flux regulation map, giving the amount
of substances which are consumed/produced by the reaction in the current state. Such a
transformation may depend on the concentration of the substances in the system, and by
parameters describing environmental factors such as temperature, pressure, pH, etc.

P systems have also been applied in the field of Ecology [18, 28, 27]. The extension of P
systems proposed in [18], based on a probabilistic extension of P systems introduced in [64],
is used to describe the behaviour of metapopulations. Metapopulations are local popula-
tions living in spatially separated areas (called patches), where populations can interact,
and individuals can disperse from a patch to nearby patches. Models for metapopulations
aim at discovering how the fragmented habitat influences local and global population be-
haviour. In the proposed model, objects are used to model different species (predators
and preys), and patches are represented as elementary membranes in a flat membrane
structure. Patches form the nodes of an undirected weighted graph, with edges describing
a neighbourhood relation between patches, modelling spatial proximity. Costs associated
with edges model the effort of individuals for migrating from a patch to another.

Another extension of P systems, called multienvironment P systems [78], has been
applied to the modelling of ecosystems [26, 33]. A multienvironment P system model is
composed of a set of environments, each containing a P system, from a particular class
of probabilistic P systems. All the P systems in environments have the same skeleton,
namely they use the same alphabet of symbols, membrane structure, and sets of evolution
rules. Objects in an environment, i.e. outside the skin membrane of a P system, can move
from an environment to another by means of the application of special communication
rules. The movement of objects to other environments, as well as the internal behaviour
of P systems, is driven by time-varying probabilistic values associated with the rules.

In Tissue-like P systems [56, 37] the membrane hierarchy is replaced by a graph whose
nodes are elementary membranes, called cells, and the edges describe the communica-
tions channels between cells. Such a device is useful to describe systems composed of
many entities living together, such as in tissues, organs and organisms. The structure of
graph models the protein channels among nearby membranes, through which inter-cellular
communication can happen. Tissue-like P systems have been extended to Population P
systems [17], which provide mechanisms to dynamically modify the structure of the com-
munication graph among cells.

Lattice Population P systems [79, 77] are another variant of population P systems in
which space is represented as a finite regular lattice where each cell of the lattice contains a
distinct stochastic P system describing the behaviour of an individual, such as a bacterium.
Translocation rules describe the possible movements of objects from a cell to another, thus
enabling different P systems to communicate by sending and receiving such objects.

2.2.2 Concrete spatial modelling

In order to faithfully describe some biological systems, less abstract representations of
space than the one provided by compartments, are needed. Beyond computer science
formalisms, one of the earliest approaches in this direction involved the use of differential
equations models, which allow the description of many different spatially-aware biological
processes, such as reaction diffusion systems. This kind of models and their extensions
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has been used, for example, as the basis for models of insect dispersal and chemotaxis [59].
Other kinds of spatial models involve spatial pattern formation [59, 60]. Since these models
are based on continuous variables, they may not be adequate to describe discrete biological
entities.

In computer science, a formalism including spatial features are the Cellular automata
(CA) [61], which has been initially devised as a computational formalisms inspired by
biological behaviours. A cellular automaton is composed of a finite grid of cells, where
each cell has an associated state taken from a finite set of different states. Time is discrete,
and at each step of the evolution all the cells change state in accordance with a rule, which
is characteristic of the particular cellular automaton model. The rule is deterministic and
“local”, in the sense that the new state of a cell is determined only on the basis of the
previous states of cell itself and of nearby cells. Many variants of cellular automata have
been defined.

CAs have been developed as a computational tool inspired by biological behaviours.
However, even if their focus has not been in the modelling of biological systems, they have
been later used for this purpose. In this view, CAs are particularly suitable for describing
the evolution of populations of many similar entities, whose behaviour is based on local
interactions. For example, they have been used to describe tumour growth [63], showing
how a simple rule driving the evolution can lead to a complex behaviour of the whole
population. Other extensions of cellular automata, for example including stochasticity,
have also been used [63].

A formalism developed for the modelling of biological systems, which provides a more
concrete representation of the space, is SpacePI [46], an extension of the π-calculus with
(continuous) space and time. In SpacePI, positions in a continuous space, such as R2, are
associated with processes, and processes can move autonomously according to a movement
function. In SpacePI, processes move uniformly, namely on a constant direction with con-
stant speed, during fixed time intervals, at the end of which they can change direction and
speed according to their movement function. The calculus is deterministic and processes
may, and are required to, communicate only when they are close enough, with respect to
their euclidean distance. In particular, an interaction radius is associated with each action
and co-action. Two processes communicate as soon as the sum of the interaction radii of
their complementary actions are equal to the distance between processes. SpacePI does
not allow the direct modelling of compartments and membranes.

Another extension of the π-calculus with spatial features is the 3π process algebra [24],
where processes are embedded in a 3D space. The calculus is based on affine geometry, and
processes can interact by exchanging channel names or geometric data. The movement
of a process is realized by applying a frame shift operation (described by an affine map)
to the process itself. A peculiarity of the calculus is that a process has no visibility of
its location in the global space, but can nevertheless communicate its position to other
processes which can be used, for example, to compute the distance between two processes.
Membranes and compartments cannot be described explicitly.



Chapter 3

A process calculus for Molecular
Interaction Maps

In this chapter, we present the formal definition of the MIM calculus, a modelling formalism
with a strong biological basis, which provides biologically-meaningful operators for repre-
senting the interaction capabilities of molecular species. The operators of the calculus are
inspired by the reaction symbols used in Molecular Interaction Maps (MIMs) [52], which
are a graphical language for describing bioregulatory networks used in biology. MIM dia-
grams are composed of nodes, representing molecular species, and edges connecting nodes,
which represent the possible reactions among species. Edges can express different kinds
of reactions, according to the reaction symbol used.

The basic version of the MIM calculus does not provide any feature for spatial mod-
elling. In order to improve its usefulness, we also present an extended version of the
calculus, namely the MIM calculus with compartments (MIMc-co) which provides the
ability to denote “abstract” locations for the elements.

The MIM calculus (MIMc) is defined in the style of process calculi, where each molecule
appearing in the system is described by a term. However, unlike most of the previously
proposed calculi for describing biological processes, which model reactions by means of pro-
cess communication, MIMc provides high-level operators with a direct biological meaning.
For example, there are operators for expressing the creation of a bond between two com-
pounds (complexation), and other biologically interesting events. We provide both a basic
version of the calculus, without any operator for space modelling, and an extension al-
lowing the description of compartments, thus the ability to indicate the abstract location
where an element occurs.

The calculus has a strong relationship with Molecular Interaction Maps. The presented
approach has a twofold advantage. On the one hand, we can exploit the features of process
calculi such as incremental definition of models, techniques for analysis and verification of
properties, and easy development of simulators. On the other hand, the correspondence of
the operators of the calculus with biological interactions allows an immediate translation
of Molecular Interaction Maps into the MIM calculus. Less immediate translations of
Molecular Interaction Maps into more general formalisms can be found in [5, 19, 32].

Since the MIM calculus is based on Molecular Interaction Maps, we introduce the MIM
notation first. Then we give a formal definition of the syntax and semantics of the MIM
calculus, and we study properties of the formalism. Finally, the extension of the MIM
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Figure 3.1: An example of MIM diagram.

A(a) (b)

DNA site2DNA site1(c)

Figure 3.2: Species in MIMs.

calculus for compartment modelling is presented. Two case studies are also presented to
show the use of the two versions of the calculus for modelling biomolecular networks.

3.1 Molecular Interaction Maps

MIM diagrams provide a static view of the molecular species in a system, and their possible
interactions. Interactions are represented by lines connecting nodes representing species,
and the meaning of each interaction depends on the symbol used to draw the line. Each
molecular species usually appears only once in a diagram. Moreover, since the diagram is
static, it does not contain any information about number of molecules (concentration) of
the molecular species.

Three classes of molecular species can be represented: elementary species (fig. 3.2a),
complex species (fig. 3.2b) and DNA sites (fig. 3.2c). Complex species represent either
a combination of elementary species or a modified elementary species. Figure 3.1 shows
a simple MIM diagram, containing the elementary species A and B which can interact.
A named elementary species is drawn as a rounded box, containing its name. A complex
molecular species, resulting from an interaction, is depicted as a small filled circle on the
corresponding interaction line. For instance, in Figure 3.1, the complex species obtained
by the binding of A and B is represented by the node x on the interaction line. To avoid
cluttering the diagram, an interaction line may contain more than one of such nodes, all
denoting the same complex species resulting from the depicted interaction.

MIM diagrams allow representing two kinds of interactions: reactions, which act on
molecular species, and contingencies, which act on reactions or other contingencies. An
interaction symbol represents a possible interaction that can happen if certain conditions
on the state hold. Interactions can have a kinetic constant k associated with them, that
describes its rate. Conceptually, a higher kinetic constant means that the interaction is
more likely to happen than an interaction with a lower kinetic constant.

For defining the MIM calculus we consider the reaction symbols shown in Figure 3.3.
Note that they are only a subset of the reaction symbols available for use in a MIM
diagram.

• Non-covalent binding (Figure 3.3a): denotes the reversible binding of the two pointed
species: a molecule of the first species can bind to a molecule of the second species,
forming a compound. Two species joined by means of a non-covalent bond can
eventually dissociate autonomously.

• Covalent modification (Figure 3.3b): denotes the covalent modification of the pointed
species; the modification type (such as phosphorylation or acetylation) is written at
the tail.
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Figure 3.3: Reaction symbols.

(a)

(b)

(c)

(d)

Figure 3.4: Contingency symbols.

• Covalent binding (Figure 3.3c): denotes the capability of the two connected species to
form a covalent bond that, differently from the non-covalent bond, cannot dissociate
autonomously but instead needs another molecular species which is able to break
such a bond.

• Cleavage of a covalent bond (Figure 3.3d): denotes the possibility of a covalent bond
at the head (right end) to be broken by the presence of the species at the tail (left
end). This symbol points from a species to a reaction symbol representing covalent
binding.

• Stoichiometric conversion (Figure 3.3e): denotes the conversion of the species at the
tail of the arrow, called reactant, into a corresponding number of product species,
i.e. the species written at the tail of the arrow disappears, while the pointed ones
appear.

• Lossless production (Figure 3.3f): it is similar to the stoichiometric conversion, but
without the loss of the reacting species.

• Degradation (Figure 3.3g): means that molecules of the species can disappear.

The following contingency symbols, shown in Figure 3.4, are provided by MIM dia-
grams:

• Stimulation (Figure 3.4a): means that the molecule of the species at the left end
stimulates the pointed reaction;

• Requirement (Figure 3.4b): means that the molecule of the species at the left end is
required in order for the pointed reaction to happen;

• Inhibition (Figure 3.4c): the presence of the species at the tail (left end) inhibits the
possibility for the pointed interaction to happen;

• Catalysis (Figure 3.4d): means that the pointed reaction has a much higher reaction
rate if the species is present than if it is not.

Since we will provide a qualitative definition of the MIM calculus, we will not deal with
the contingencies of stimulation and catalysis, whose effect is to change the rate of the
pointed reactions. The MIM calculus will allow describing, for each interaction, which
species are needed for the reaction (requirements), and which species are inhibitors for the
reaction.

A MIM diagram can be interpreted in different ways, namely the explicit interpretation,
the heuristic interpretation, and the combinatorial interpretation ([52, 51]). Whenever a
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Figure 3.5: An example of MIM diagram.

MIM diagram is presented, it is necessary to specify which kind of interpretation must be
used.

In the explicit interpretation, the interaction lines which are depicted represent the all
and only possible interactions among elements. For example, consider the MIM diagram
shown in Figure 3.5, in which a molecule B can either create a complex with an A, or create
a complex a C, or be phosphorilated. In the explicit interpretation, the possible complex
species which can be obtained are A : B, B : C, and pB. In particular, for example, it is
not possible for the B molecule in the complex B : C to become phosporilated, yielding
pB : C, since such an interaction is not depicted. The same is for the complex A : B : C.

On the other hand, in the combinatorial interpretation each interaction line concep-
tually represents the interaction among some sites (or domains) of the involved elements,
therefore an interaction on one site does not automatically preclude the possiblity of other
sites to interact with other elements. Therefore, by using the combinatorial interpretation,
the MIM diagram of Figure 3.5 means that, apart the species A : B, B : C, pB, also the
following species are possible: A : B : C, A : pB, pB : C and A : pB : C. An advantage of
the combinatorial interpretation is that a few depicted interactions can stand for a much
greater number of explicit interactions.

Finally, the heuristic interpretation does not specify which complex species are possible,
beyond those that are explicitly depicted. Therefore it is an intermediate interpretation
between the explicit interpretation and the combinatorial one. Actually, a heuristic map
needs some additional information, such as a textual description, to clarify which are
the possible interactions. For this reason, a heuristic map, in constrast to the other
interpretations, cannot be used directly as the input for a simulator. Nevertheless, they
are often used, since they allow representing what is currently known about some system,
leaving unspecified the interactions which are not known.

3.2 The MIM Calculus

In this section we formally introduce the syntax and semantics of the MIM calculus. MIM
calculus is defined in the style of process calculi, where an agent represents a molecule of
a certain named species. Names A,B,C, . . . are used to identify the different elementary
species, and we denote by E the set of names of elementary species. We also assume a set
Ec whose elements denote types of covalent modifications (such as phosphorylations).

Definition 3.2.1 (Syntax). Processes P , named species S and capabilities µ of the MIM
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calculus are defined by the following grammar:

P ::= 0
∣∣ S

∣∣ P | P
S ::= µ.IS

IS ::= A
∣∣ S : S

∣∣ qS
∣∣ SS

µ ::= rec x.µ
∣∣ M

∣∣ x

M ::= ∅
∣∣ M +M

∣∣ γ

where simple interaction capabilities γ are defined as follows:

γ ::= (ν, ι)
N−−→µ (non-covalent binding)∣∣ (ν, ι)
N

===µ (covalent binding)∣∣ (ν, ι)
q

=⇒µ (covalent modification)∣∣ (ν, ι) N

☇ (cleavage)∣∣ (ν, ι)−−▸P (conversion)∣∣ (ν, ι)−−▹P (lossless production)

where 0 is the empty process, A ∈ E denotes an elementary species, q ∈ Ec denotes the
type of modification, x ∈ X is a variable. Moreover, N denotes a species name, namely a
term in which each capability µ occurring in it is empty (µ = ∅). The set of all species
name, formally defined in the following, is denoted by N , thus N ∈ N . Finally, ν, ι ⊂ N
are sets of species names, denoting promoters and inhibitors, respectively.

Terms P of the calculus are made of a composition of molecules S, by means of
the parallel operator | . Each molecule is of the form µ.IS, where IS describes the
structure of the molecule, and µ describes its interaction capabilities. In particular, IS
denotes either an elementary molecule of species A, or a compound molecule. In the
case of compound molecules, IS is made of the single molecules forming the compound,
combined by means of different syntactical operators specifying the kind of bond that
keeps the molecules together: either a non-covalent bond S1 : S2 between the species S1

and S2, or a covalent modification qS of species S, or a covalent bond S1S2 between S1

and S2. Note that the capabilities of each molecule forming a compound are retained in
the compound description.

For example, term {γ}.A models a molecule of species A, having a single interaction
capability γ.1 A complex formed of two simple molecules A and B is instead represented
as µ1.(µ2.A : µ3.B), where µ1 are the capabilities of the compound, and µ2, µ3 are the
capabilities of molecules A and B, respectively.

We denote the set of species by S, and identify N ⊂ S as its subset of named
species without capabilities, i.e. where each µ is empty (µ = ∅). We assume a func-
tion b·c : S → N that strips all the capabilities from a named species S ∈ S. For example,
bµ1.(µ2.A : µ3.B)c = ∅.(∅.A : ∅.B). Moreover, we often avoid writing empty capabilities
when no ambiguities arise, therefore we simply write A : B instead of ∅.(∅.A : ∅.B). This
function is extended to processes b·c : P →P(N ) as bS1 | · · · | Snc = {bS1c, . . . , bSnc}.

1For the sake of readability, we have enclosed capabilities in curly brackets. From now on, we shall
systematically use curly brackets around capabilities, as in the example.
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Figure 3.6: An example of recursive MIM

The calculus allows expressing different capabilities for molecules. Operator
N−−→µ

means that a species can form a non-covalent bond with a molecule of species name N .
The result will be a compound of the form : made of the two involved species, and with

capabilities µ. Similarly, operator
N

===µ means that a species can form a covalent bond
with a N , resulting in a compound of the form S1 S2 with capabilities µ. The operator for
covalent modification

q
=⇒µ, similarly produces a compound qS with capabilities µ. The

operator for cleavage N

☇ means that a molecule can break the covalent bond specified by
N , where N has to be either of the form of N1N2 or qN . Finally, there are the operators
−−▸P , for expressing a conversion of a molecule into other molecules, and −−▹P for a
lossless production of molecules. In both cases, the resulting molecules are represented by
a process P .

We allow recursive definitions of capabilities, by means of the recursion operator rec.
As always, rec x.µ binds the free occurrences of the variable name x in µ. We assume
a substitution function µ[µ′/x] for replacing each free occurrence of x in µ with µ′. The
substitution function is also extended to processes. We use the notation rec x̃.µ with
x̃ = x1, . . . , xn ∈ V ar∗ as an abbreviation for rec x1. · · · .rec xn.µ.

Names ν, ι are used to express contingencies on the application of an operator, de-
pending on the species appearing in the environment. The former, ν, expresses the species
that must be present (promoters), while the latter, ι, expresses those that must be absent
(inhibitors). We omit writing contigencies when they are empty.

To give an example of a term in which recursive capabilities are used, let us consider
a system in which substrate A is transformed into product C by the enzyme E. The
MIM diagram in Figure 3.6 shows that enzyme E binds to A and the complex E : A is
subsequently transformed into C and E, thus recreating the enzyme. The enzyme E can

be modeled in MIMc by the following term: rec x.{ A−−→{−−▸(x.E | ∅.C)}}.E.

Definition 3.2.2 (Structural congruence). The congruence relations ≡x on the syntactical
categories x ∈ {P, S, IS, µ,M, γ} of the calculus are the least equivalence relations closed
under syntactical operators and such that the following laws hold:

1. P1 | P2 ≡P P2 | P1, P1 | (P2 | P3) ≡P (P1 | P2) | P3, P | 0 ≡P P ;

2. S1 : S2 ≡IS S2 : S1, S1S2 ≡IS S2S1;

3. M1 + M2 ≡M M2 + M1, M1 + (M2 + M3) ≡M (M1 + M2) + M3, M + ∅ ≡M M ,
M +M ≡M M ;

4. (α-conversion) µ1 ≡µ µ2 if they differ only on bound names;



3.2. THE MIM CALCULUS 21

5. rec x.µ ≡µ µ[rec x.µ/x].

We omit the indication of x in ≡x when no ambiguities arise.
We define a reduction semantics for the MIM calculus, given in terms of a Labelled

Transition System (LTS) representing the possible evolutions of a term. The labels of
the LTS are actions identifying the reactions that each single transition describes. The
following possible actions are defined by the calculus:

• N1↔N2: the creation of a non-covalent bond;

• N1 =N2: the cleavage of a non-covalent bond;

• N −−▸{N1, . . . , Nk}: a conversion;

• N −−▹{N1, . . . , Nk}: a lossless production;

• N1 ===N2: the creation of a covalent bond;

• N ☇N1N2: the cleavage of a covalent bond;

• q=⇒N : a covalent modification;

• N ☇qN1: the removal of a covalent modification;

where N,N1, N2 ∈ N denote species names. The set of all possible actions is denoted by
Act.

Definition 3.2.3 (Reduction semantics). The reduction semantics of MIM calculus is the
relation

α−→ on processes such that:

P
α−→ P ′ ⇐⇒ ∃ι ⊂ N . P (∅,ι) α−−−−→ P ′ (3.1)

where α ∈ Act is an action that represents the capability of P used for the reduction

step, and
(ν,ι) α−−−−→, with ν, ι ⊂ N , is the least relation on processes, closed under structural

congruence ≡P , and satifying the inference rules shown in Figure 3.7.

Rule 3.2 deals with the creation of a non-covalent bond between molecules µ1.S1 and
µ2.S2, thus producing a complex µ.(µ1.S1 : µ2.S2). Note that it is sufficient that only
molecule µ1.S1 has the capability of binding with a molecule with name bS2c; in fact,
the symmetric capability is not required for µ2.S2. Rule 3.3 deals with the cleavage of
a non-covalent bond. There are no conditions for the cleavage, therefore it can occur at
any time. Rule 3.4 deals with the conversion of a molecule µ.S into a number of other
molecules when µ.S has the proper capability. Rule 3.5 deals with the lossless production,
namely with the case in which µ.S produces a number of molecules without disappearing.
Rules 3.6 and 3.7 are the analogs of rules 3.2 and 3.3 for the case of the covalent binding.
The unbinding, expressed by rule 3.7, requires the presence of a molecule µ.S having the
capability of breaking the bond. Rules 3.8 and 3.9 deal with molecule covalent modification
of a type q and with the removal of the modification, respectively.

Rule 3.10 is used to apply a step of the reduction to the parallel composition of pro-
cesses. Given the term Q, with which P is composed, the conditions of the rule ensure
that the step is forbidden if any of the molecules present in Q are also inhibitors for the
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µ1 = {X + (ν, ι)
bS2c−−→µ} α = bS1c↔bS2c

µ1.S1 | µ2.S2
(ν,ι) α−−−−→ µ.(µ1.S1 : µ2.S2)

(3.2)

α = bS1c= bS2c

µ.(S1 : S2)
(∅,∅) α−−−−→ S1 | S2

(3.3)

µ = {X + (ν, ι)−−▸P} α = bSc−−▸ bPc

µ.S
(ν,ι) α−−−−→ P

(3.4)

µ = {X + (ν, ι)−−▹P} α = bSc−−▹ bPc

µ.S
(ν,ι) α−−−−→ µ.S | P

(3.5)

µ1 = {X + (ν, ι)
bS2c

====µ} α = bS1c=== bS2c

µ1.S1 | µ2.S2
(ν,ι) α−−−−→ µ.(µ1.S1)(µ2.S2)

(3.6)

µ = {X + (ν, ι)
bS1S2c

☇ } α = bSc ☇

⌊
S1S2

⌋
µ.S | µ′.S1S2

(ν,ι) α−−−−→ µ.S | S1 | S2

(3.7)

µ1 = {X + (ν, ι)
q

=⇒µ} α = q=⇒bS1c

µ1.S1
(ν,ι) α−−−−→ µ.q(µ1.S1)

(3.8)

µ = {X + (ν, ι)
bqS1c

☇ } α = bSc ☇

⌊
qS1

⌋
µ.S | µ′.qS1

(ν,ι) α−−−−→ µ.S | S1

(3.9)

P
(ν,ι) α−−−−→ P ′ bQc ∩ ι = ∅ ν ′ = ν \ bQc

P | Q (ν′,ι) α−−−−→ P ′ | Q
(3.10)

Figure 3.7: The inference rules defining the semantics of the MIM calculus.



3.2. THE MIM CALCULUS 23

Figure 3.8: A MIM diagram.

interaction, namely bQc ∩ ι = ∅. As regards the set of promoters ν, it is updated to re-
move those which are present in Q, since their constraint is satisfied. This last condition,
together with the fact that the semantics requires that the set ν of promoters is empty
to actually do the reduction step (Equation 3.1), ensures that all the promoters of the
capability used for that step are present in the parallel composition of processes, among
those elements which are not involved in the interaction. As usual, we define −→∗ as the
reflexive and transitive closure of relation

α−→.

Example 3.2.1. Consider an example of a MIM process which represents a molecular
system described by the MIM diagram shown in Figure 3.8.

A MIM process, differently from a MIM diagram, represents both the possible interac-
tions among the species and the number of molecules that are present in the system. For
the sake of conciseness, let us denote by µA, µB, µC the capabilities of species A, B and
C, respectively. These capabilities are defined as follows:

µA = { B−−→{ C−−→∅}}

µB = { A−−→{ C−−→∅}+
p

=⇒∅}

µC = { A:B−−−→∅}.C

The following MIM process corresponds to a system with species A, B and C, with the
interaction capabilities described by the diagram in Figure 3.8, and in which there are two
molecules of A, two of B and one of C:

P = µA.A | µA.A | µB.B | µB.B | µC .C

In the process P , the species A can complex with B, producing a molecule able to complex
with C. Species B is also able to form a complex with A, and it can also be phosphorilated.
Finally, species C can complex with A : B.

For example, species A and B can bind to form a complex, as described by the following
transition:

µA.A | µB.B | P ′
(∅,∅) A↔B−−−−−−−→ { C−−→∅}.(µA.A : µB.B) | P ′

where P ′ = µA.A | µB.B | µC .C. The term obtained, describing a complex species of

name A : B, can in turn react with a C, as expressed by the capability
C−−→∅. Such a

reaction is described by the following transition of the semantics:

{ C−−→∅}.(µA.A : µB.B) | µC .C | P ′′
(∅,∅) A:B↔C−−−−−−−−−→ ∅.

(
{ C−−→∅}.(µA.A : µB.B) : µC .C

)
| P ′′
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where P ′′ = µA.A | µB.B. Recall that the non-covalent bonds of A : B and (A : B) : C
can dissociate autonomously as described by rule 3.3 of the reduction semantics.

3.3 Consistency

In this section we investigate the relationship between Molecular Interaction Maps and
the MIM Calculus. We propose three consistency definitions, with the aim of identifying
the terms of the calculus which could be a formal representation of a MIM diagram.
Recall that an important difference between MIM diagrams and the MIM calculus is that
diagrams provide a static view of the species of a system, and of the interactions which
can occur among the species, while MIM calculus allows representing single molecules
and provides a semantics for deriving the evolution of the described system. In MIM
diagrams, the capabilities of each molecule depend only on the species of the molecule,
and are irrespective, for example, of the different reactions that might produce a molecule
of that species. On the contrary, the MIM calculus allows representing single molecules
µ.IS, and different molecules of the same species might have different capabilities.

For example, term P = { B−−→µ1}.A | ∅.A | P ′ contains two molecules of species A
with different capabilities: the first one can bind to another molecule of species B, while
the second one has no capabilities. Note that these two molecules of species A could
have been obtained as a result of other reactions (for example, by transformation of other
molecules), hence during any evolution of the system there may be some states in which
all the molecules of the same species have the same capabilities while, in other states, this
is not true.

It appears to be of particular interest to establish which terms of the MIM calculus
represent MIM diagrams, in the sense that a MIM diagram can be associated with a term,
and the term evolves in accordance with the behaviour intended by the diagram. One may
also ask that in a term molecules of a certain species always have the same capabilities.
This captures the constraint of uniqueness of species in MIM diagrams.

For this purpose, we present three different definitions of consistency of MIM calculus
terms, namely semantic consistency, (weak) syntactic consistency, and strong syntactic
consistency. Semantic consistency is the weakest form of consistency, and takes into
account only terms that can be reached from the initial state. This form of consistency
requires that, whenever a molecule of a certain species named N is produced, i.e. a
molecule S, with bSc = N , appears in the top-level parallel composition, it always has the
same capabilities.

Definition 3.3.1 (Semantic Consistency). A term P is semantically consistent iff

∀µ1.S1, µ2.S2, P
′, P ′′.

bS1c ≡ bS2c ∧ P −→∗ µ1.S1 | P ′ ∧ P −→∗ µ2.S2 | P ′′ =⇒ µ1 ≡ µ2

The definitions of syntactic consistencies deal instead with the species that syntactically
appear in a term. Before defining formally the two forms of syntactic consistencies, namely
the weak syntactic consistency and the strong syntactic consistency, we need to define
contexts. Contexts allow identifying the position inside a term in which a molecule of
a certain species (with its capabilities) appears. Formally, a context is a term with a
hole, denoted as �, which occurs in the position of a capability µ. Therefore the hole
corresponds to the collection of capabilities of a molecule.
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Definition 3.3.2 (Context). Contexts of MIM calculus are defined by the following gram-
mar:

C ::= P | Sc
Sc ::= µc.IS

∣∣ µ.ISc

ISc ::= S : Sc
∣∣ qSc

∣∣ SSc

µc ::= �
∣∣ M + γc

γc ::= (ν, ι)
N−−→µc (non-covalent binding)∣∣ (ν, ι)
N

===µc (covalent binding)∣∣ (ν, ι)
q

=⇒µc (covalent modification)∣∣ (ν, ι)−−▸C (conversion)∣∣ (ν, ι)−−▹C (lossless production)

The set of all contexts is denoted by C.

The syntax ensures that exactly one hole is present in a context. Given Sc, the hole
can occur either in the capabilities of Sc itself, when Sc = µc.IS, or in the capabilities of
one of the molecules of which the molecule is composed, Sc = µ.ISc. Given a capability
with a hole µc, the hole can be either the capability itself �, or it can occur in one of
the capabilities appearing in µc. In particular, if µc = γc (a basic capability) the hole can
occur inside the capabilities of the species which can be produced by γc. Given a context
C, its hole can be substituted with a capability µ, giving a process denoted C[µ].

For example, the context C1 = µ1.(µ2.A : �.B) represents a molecule complex A : B in
which the hole refers to the capability ofB forming the complex. Context C1 can be applied
to a capability µ3 obtaining C1[µ3] = µ1.(µ2.A : µ3.B). Note that in this case, the hole is
relative to a species named B, and this is clearly visible from the syntax of the context.
However, in other cases, the name of the species relative to a hole is not directly present

in the syntax of the context. For example, the hole in context C2 = { B−−→�+−−▹P}.A is
relative to the species obtained as a complexation between A and B, whose name is A : B,
which is not directly present in the syntax of the context. In order to extract, from a given
context, the name of the species relative to the hole, we use a function name : C → N
defined as follows.

Definition 3.3.3. Function name, from contexts C to molecular names N , and function
name′(µc, N) = N , from a context µc and a name N to a name N , are recursively defined
as follows:

name(P | Sc) = name(Sc) (3.11)

name(µ.ISc) = name(ISc) (3.12)

name(S : Sc) = name(Sc) (3.13)

name(qSc) = name(Sc) (3.14)

name(SSc) = name(Sc) (3.15)

name(µc.IS) = name′(µc, bISc) (3.16)

name′(�, N) = N (3.17)
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name′((ν, ι)
N ′−−→µc, N) = name′(µc, N : N ′) (3.18)

name′((ν, ι)
N ′

===µc, N) = name′(µc, N N ′) (3.19)

name′((ν, ι)
q

=⇒µc, N) = name′(µc, qN) (3.20)

name′((ν, ι)−−▸C,N) = name(C) (3.21)

name′((ν, ι)−−▹C,N) = name(C) (3.22)

name′(M + γc, N) = name(γc, N) (3.23)

Definition of function name is given by two mutually recursive functions name and
name′. In particular, name′ takes two parameters, a capability context µc and a name N ,
where N is the name of the species with which this capability is associated. The function
name′ is used in Equation 3.16, where extracting the name, relative to the hole, from a
context µc.IS is reduced to extracting the name from µc, knowing that the capability µc
is relative to a species named bISc.

Given the definition of contexts, we can formally define the weak syntactic consistency
and the strong syntactic consistency. The weak form requires that the capabilities of each
molecule of a species appearing in the term, including those forming compound molecules
and those that can be obtained as the result of reactions, always have the same capabilities.

Definition 3.3.4 ((Weak) Syntactic Consistency). A term P is (weakly) syntactic con-
sistent iff

∀C1, C2, µ1, µ2. name(C1) ≡ name(C2) ∧ P ≡ C1[µ1] ≡ C2[µ2] =⇒ µ1 ≡ µ2

Strong syntactic consistency adds a further constraint, by requiring also that, whenever
a non-covalent bond (−−→) or a covalent bond (==) can be created between two species,
then both species have the corresponding capability. In the definition, we write γ ∈ µ as
a shorthand for ∃M. µ ≡ {M + γ}.

Definition 3.3.5 (Strong Syntactic Consistency). A weakly syntactic consistent term P
is strongly syntactic consistent iff

∀C1, C2, µ1, µ2, N1, N2, µ.

name(C1) ≡ N1 ∧ name(C2) ≡ N2 ∧ P ≡ C1[µ1] ≡ C2[µ2] =⇒((
N2−−→µ

)
∈ µ1 ⇐⇒

(
N1−−→µ

)
∈ µ2

)
∧((

N2===µ
)
∈ µ1 ⇐⇒

(
N1===µ

)
∈ µ2

)
For example, term P1 = { B−−→µ1}.A | ∅.B is weakly syntactic consistent, but not

strongly syntactic consistent, since molecule B does not have the capability of binding
(with a non-covalent bond) to A. The strongly syntactic consistent term corresponding

to P1 is P2 = { B−−→µ1}.A | {
A−−→µ1}.B.

The following proposition shows that syntactic consistency implies semantic consis-
tency.

Proposition 3.3.1. ∀P. P is syntactically consistent =⇒ P is semantically consistent.
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Proof. It is sufficient to prove that P −→∗ µ.S | P ′ implies ∃C. C[µ] ≡ P and name(C) =
bSc. This proof is done by induction on the length of the sequence of transitions P −→∗
µ.S | P ′. Let us assume that such a sequence has the following form P ≡ P0

α1−→ P1
α2−→

· · · αn−−→ Pn ≡ µ.S | P ′.
As regards the base case (n = 0), we have P ≡ µ.S | P ′. Then, context C = �.S | P ′ is
such that C[µ] ≡ P and name(C) = bSc.

As regards the induction step, let n > 1 and suppose that the property holds for
all m < n. We have Pn ≡ µ.S | P ′ and there are two cases to be considered: either µ.S
already appeared before, i.e. ∃ n < n. Pn ≡ µ.S | P ′′ for some P ′′, or not. In the first case,
by induction hypothesis, there exists a context C such that C[µ] ≡ P and name(C) = bSc.
In the second case, µ.S has been created in the last execution step Pn−1

αn−−→ µ.S | P ′,
where µ.S does not occur in the top-level parallel composition, i.e. @Q. Pn−1 ≡ µ.S | Q.

According to the semantics, Pn−1
αn−−→ µ.S | P ′ iff Pn−1

(∅,ι) αn−−−−−→ µ.S | P ′ for some ι ⊂ N .
By rule induction on the rules 3.2–3.10 of the semantics, we prove that, for all transitions

Q
(ν,ι)αn−−−−→ Q′, for any µ.S created in the transition there is a context C such that C[µ] ≡ P

and name(C) = bSc.

• Rule 3.2: µ1.S1 | µ2.S2
(ν,ι) α−−−−→ µ.(µ1.S1 : µ2.S2) with µ1 ≡ {X + (ν, ι)

bS2c−−→µ}.
By induction hypothesis, there exists a context C such that C[µ1] ≡ P and

name(C) = bS1c. Therefore, context C = C[{X + (ν, ι)
bS2c−−→�}] is such that

C[µ] ≡ P and name(C) = b(µ1.S1 : µ2.S2)c.

• Rule 3.3: µ.(µ1.S1 : µ2.S2)
(∅,∅) α−−−−→ µ1.S1 | µ2.S2.

Let C be the context of µ.(µ1.S1 : µ2.S2) (by induction hypothesis). Context C
must contain the portion �.(µ1.S1 : µ2.S2). Suppose that at least one of µ1.S1 and
µ2.S2 never appeared before in any Pm, m < n (otherwise, by induction hypothesis,
their contexts are already known). Hence, term S = µ.(µ1.S1 : µ2.S2) has not been
obtained by applying rule 3.2, but by one of the rules 3.3,3.4,3.5, 3.7,3.9. This means
that S appeared literally in the inital term P , thus contexts C1 can be obtained
from C by replacing �.(µ1.S1 : µ2.S2) with µ.(�.S1 : µ2.S2) and contexts C2 can
be obtained from C by replacing �.(µ1.S1 : µ2.S2) with µ.(µ1.S1 : �.S2). Contexts
C1 and C2 are such that C1[µ1] ≡ P with name(C1) = bS1c and C2[µ2] ≡ P with
name(C2) = bS2c.

• Rule 3.4: µ1.S1
(ν,ι) α−−−−→ µ.S | P ′ with µ1 = {X + (ν, ι)−−▸(µ.S | P ′)}.

Let C be the context of µ1.S1. Then the context for µ.S is C = C[{X +
(ν, ι)−−▸(�.S | P ′)}].

• Rule 3.5: analogous to rule 3.4.

• Rule 3.6: analogous to rule 3.2.

• Rule 3.7: µ1.S1 | µ′.(µ2.S2)(µ3.S3)
(ν,ι) α−−−−→ µ1.S1 | µ2.S2 | µ3.S3.

Similarly to rule 3.3, if either µ2.S2 or µ3.S3 did not appear before, their con-
texts can be obtained from context C of µ′.(µ2.S2)(µ3.S3). Context C must con-
tain �.(µ2.S2)(µ3.S3). We obtain context C by replacing �.(µ2.S2)(µ3.S3) with
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Figure 3.9: Molecular interaction map representing interactions among E2F1, DP1, and
pRb.

µ′.(�.S2)(µ3.S3)) in C for µ2.S2. Similarly, we obtain context C by replacing
�.(µ2.S2)(µ3.S3) with µ′.(µ2.S2)(�.S3)) in C for µ3.S3.

• Rule 3.8: µ1.S1
(ν,ι) α−−−−→ µ.q(µ1.S1) with µ1 = {X + (ν, ι)

q
=⇒µ}.

Let C be the context of µ1.S1. Then the context for µ.q(µ1.S1) is C = C[{X +

(ν, ι)
q

=⇒�}].

• Rule 3.9: analogous to rules 3.3 and 3.7.

• Rule 3.10: P | Q (ν′,ι) α−−−−→ P ′ | Q.
Since Q is not modified by the transition, only terms µ.S in P ′ could have been
created by the transition. The contexts of any µ.S in P ′ is given by the induction
hypothesis on the rule.

3.4 An example of modelling

In this section we show an example of a real molecular interaction map, taken from [50],
and we show the corresponding term in the MIM calculus. Differently from Kohn maps,
the MIM calculus can contain multiple molecules of a same molecular species, thus it can
describe the evolution of the system starting from an initial configuration.

The example in [50] presents a comprehensive molecular interaction map of regulators
of cell cycle and DNA repair processes. The presented map is limited to the events in
the mammalian cell nucleus. We consider here only the interaction between a protein of
the E2F family and a gene promoter E2. This interaction is an important part of the cell
cycle. The transcription of the gene is activated or inhibited by the binding of different
complexes with the promoter. The molecular interaction map representing the interactions
among stimulatory and inhibitory complexes of E2F1, DP1 and pRb is shown in Figure
3.9.

The E2F1:DP1 dimer (indicated by nodes labelled (a) in Figure 3.9) and the
(E2F1:DP1):pRb trimer (node (b)) can be bound to the promoter element E2. When the
E2F1:DP1 dimer is bound to E2 the transcription activity is stimulated, while when the
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(E2F1:DP1):pRb trimer is bound to E2 the transcription is inhibited. The stimulation
is represented by the strongest constraint or requirement. We represent each species
involved by a MIMc term with the capabilities of the species itself. In particular we
use particular terms for representing the promoter E2 and the DNA. In the Kohn map
the DNA is implicitly represented, but in a MIMc term DNA must be represented ex-
plicitly, for assigning to it the capability of producing the mRNA. Remark that we can
have multiple copies of the species E2F1, DP1, and pRb in a MIMc term representing
the system. Coherently with the cell system we can have only one copy of the DNA
and of the gene promoter E2. Each basic element is identified by an elementary species
E2F1, DP1, pRb,E2, DNA,mRNA ∈ E .

The E2F1 species can be represented by the following term:

{ DP1−−−→{ E2−−→∅ +
pRb−−→{ E2−−→∅}}}.E2F1 = µ1.E2F1

which states that E2F1 can be bound to DP1, and then the dimer can either be bound
to E2 or to pRb. When the E2F1 : DP1 dimer is bound to pRb, it can in turn bind to
promoter E2 to inhibit the transcription. Note that the stimulation of DNA transcription
by the trimer is not modeled among the capability of the species, which are just empty.
Instead, this behaviour is captured by the DNA process, shown in the following. As for
stimulation, inhibition is captured inside the definiton of the DNA. Species DP1 and pRb
are represented by the following terms:

{ E2F1−−−−→{ E2−−→∅ +
pRb−−→{ E2−−→∅}}}.DP1 = µ2.DP1

{ E2F1:DP1−−−−−−−→{ E2−−→∅}}.pRb = µ3.pRb

Finally, the promoter E2 and the DNA can be represented by the terms:

{ E2F1:DP1−−−−−−−→∅ +
(E2F1:DP1):pRb−−−−−−−−−−−→∅}.E2 = µ4.E2

{(νDNA, ιDNA)−−▹mRNA}.DNA

where

νDNA = {(E2F1 : DP1) : E2}
ιDNA = {((E2F1 : DP1) : pRb) : E2}

The lossless production of mRNA by the DNA is regulated by the presence/absence of
the two complexes (E2F1 : DP1) : E2 and ((E2F1 : DP1) : pRb) : E2. In particular, the
former complex represents a promoter (triggering the reaction), while the latter represents
an inhibitor for the reaction.

An initial configuration in which two molecules of species E2F1, DP1 and pRb are
present is represented by the following MIMc term:

P1 = µ1.E2F1 | µ1.E2F1 | µ2.DP1 | µ2.DP1 | µ3.pRb | µ3.pRb | µ4.E2

| {(νDNA, ιDNA)−−▹mRNA}.DNA

The term can evolve towards different configurations. For example, after a complexation
between E2F1 and DP1 occurs, the processes µ1.E2F1 and µ2.DP1 are replaced by the
following term, representing a complex with name E2F1 : DP1:

{ E2−−→∅ +
pRb−−→{ E2−−→∅}}. (µ1.E2F1 : µ2.DP1)
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Thus the whole term becomes:

P2 = µ1.E2F1 | µ2.DP1 | µ3.pRb | µ3.pRb | µ4.E2

| {(νDNA, ιDNA)−−▹mRNA}.DNA

| { E2−−→∅ +
pRb−−→{ E2−−→∅}}. (µ1.E2F1 : µ2.DP1)

As a further evolution step we may have the binding of the dimer E2F1 : DP1 to the
promoter E2. The resulting term is:

P3 = µ1.E2F1 | µ2.DP1 | µ3.pRb | µ3.pRb

| {(νDNA, ιDNA)−−▹mRNA}.DNA

| ∅.
(

({ E2−−→∅ +
pRb−−→{ E2−−→∅}}.(µ1.E2F1 : µ2.DP1)) : µ4.E2

)
As an example of derivation, we show how the semantics is applied to the term P1

above obtaining the term P2 in a single reduction step. For the sake of readability, we
write the terms P1, P2 as:

P1 = µ1.E2F1 | µ2.DP1 | Q
P2 = µ. (µ1.E2F1 : µ2.DP1) | Q

where

Q = µ1.E2F1 | µ2.DP1 | µ3.pRb | µ3.pRb | µ4.E2

| {(νDNA, ιDNA)−−▹mRNA}.DNA

µ = { E2−−→∅ +
pRb−−→{ E2−−→∅}}.

The transition P1
(ν′,ι)−−−→ P2, with ν ′ = ι = ∅, is obtained with the following derivation, by

using the rules of the semantics:

µ1 = {X + (ν, ι)
DP1−−−→µ} ν = ι = ∅

µ1.E2F1 | µ2.DP1
(ν,ι) E2F1↔DP1−−−−−−−−−−−−→ µ. (µ1.E2F1 : µ2.DP1) bQc ∩ ι = ∅

µ1.E2F1 | µ2.DP1 | Q (ν′,ι) E2F1↔DP1−−−−−−−−−−−−−→ µ. (µ1.E2F1 : µ2.DP1) | Q

where ν ′ = ν \ bQc = ∅. Finally, according to the definition (Equation 3.1), we have the

transition P1
E2F1↔DP1−−−−−−−−→ P2.

3.5 Extension with compartments

In this section we extend the definition of the MIM calculus to allow specifying a position
for each element of a system. We provide a quite abstract notion of space, by assuming a
set of names of compartments H, where each term of the calculus can be associated with a
compartment name, for specifying its position. Therefore, also the interaction capabilities
of processes need to take into account the position of the involved elements. For example,
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it is possible to specify, for an element, the capability to bind to another element in a
different compartment.

The syntax of the MIM calculus with compartments (MIMc-co) is a straightforward
extension of the original syntax of the calculus, defined in Section 3.2. Each species µ.IS
now needs to specify the compartment in which it occurs using a new spatial operator
@. Formally, each species is of the form µ.IS@h, where h ∈ H is the name of the com-
partment. Moreover, it is necessary to extend the operators of the calculus for describing
the capabilities of creating bonds (both non-covalent −−→ and covalent ===), and for the
cleavage ☇, to allow specifying the compartment for the involved molecular species. As
regards the operators of conversion −−▸ and lossless production −−▹, the compartment for
each resulting species is specified inside the resulting term. The formal definition of the
syntax of the calculus follows.

Definition 3.5.1 (Syntax). Processes P , named species S and capabilities µ of the MIM
calculus with compartments are defined by the following grammar:

P ::= 0
∣∣ S

∣∣ P | P
S ::= µ.IS@h

IS ::= A
∣∣ S : S

∣∣ q S
∣∣ S S

µ ::= rec x.µ
∣∣ M

∣∣ x

M ::= ∅
∣∣ M +M

∣∣ γ

where simple interaction capabilities γ are defined as follows:

γ ::= (ν, ι)
N@h−−−→µ (non-covalent binding)∣∣ (ν, ι)
N@h

=====µ (covalent binding)∣∣ (ν, ι)
q

=⇒µ (covalent modification)∣∣ (ν, ι)N@h

☇ (cleavage)∣∣ (ν, ι)−−▸P (conversion)∣∣ (ν, ι)−−▹P (lossless production)

As for the original definition, 0 denotes the empty process, A ∈ E denotes an elementary
species name, and q ∈ Ec denotes the type of modification. As regards the capabilities,
x ∈ X is a variable, N is the species name, while ν and ι are sets of species names. As
before, the set of all species names is denoted by N , whose elements are terms with empty
capabilities.

We assume that the structural congruence relations, as defined in Definition 3.2.2, are
extended to terms of the MIM calculus with compartments.

In MIMc-co, species names from the set N specify also the compartment of each
molecular species appearing in it. For example, N1 = ∅.((∅.A@out) : (∅.B@in))@in is
the name of a complex formed by a molecule A originating from compartment out and
a molecule B originating from compartment in, and where the complex itself occurs in
compartment in. For readability, we usually omit the indication of the compartments of
subterms, when it does not introduce ambiguities; that is, name N1 can be written as
N1 = (A : B)@in. Moreover, we assume functions b·c, which give the names of either a
given named species µ.IS@h, or a process P , to be extended to the syntax of MIMc-co.
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3.5.1 The semantics of the binding operators

In the MIM calculus with compartments, an important distinction with respect to the
original semantics of the MIM calculus (Definition 3.2.3) concerns the behaviour of the
two binding operators, namely for the creation of non-covalent bonds −−→, and for covalent
bonds ===. Recall that, in the basic version of the MIM calculus, in order to model two
speciesA andB which can bind together, it is sufficient that one of the two terms describing
them possesses the capability of creating a bond with the other species. Moreover, such a
bond would create a complex with the same name, independently from the fact that only
the one or the other have such a capability. For example, consider the following terms:

PA = {}.A P ′A = { B−−→µ}.A

PB = {}.B P ′B = { A−−→µ}.B

The only term reachable with one transition of the semantics from term P1 = P ′A | PB
is P ′1 = µ.({ B−−→µ}.A : {}.B), labelled by the action of complexation A↔B, namely

P1
A↔B−−−−→ P ′1. Moreover, the reverse transition is also possible, that is: P ′1

A=B−−−−→ P1.
Note that P ′1 is composed of only one molecular species whose name is A : B, in fact
bP ′1c = {A : B}.

It is easy to see that also terms P2 = PA | P ′B and P3 = P ′A | P ′B, after a transition
labelled A↔B, both yield a term containing just one molecular species whose name is

A : B. That is, given P2
A↔B−−−−→ P ′2 and P3

A↔B−−−−→ P ′3, then P ′2 and P ′3 are such that

bP ′2c = bP ′3c = {A : B}. Therefore, let us consider term Q = { A:B−−−→µ′}.C, in which there is
another species C which can bind to the complex A : B. When term Q is put in parallel to
either one of P1, P2, or P3, then it is always possible to perform the following transitions:

Pi | Q
A↔B−−−−→ P ′i | Q

A:B↔C−−−−−→ µ′.(P ′i : Q) ∀ i = 1, 2, 3

yielding molecules µ′.(P ′i : Q) for i = 1, 2, 3, each having the same name (A : B) : C.
However, when using compartments, the semantics of terms like those of the example,

when A and B are in different compartments, is no longer the same. In fact, we assume

that, whenever a species µ1.S1@h1 has either a capability
S2@h2−−−−→ or

S2@h2======, then the
resulting complex has to be positioned in the compartment of the other species, namely
h2. As the following example shows, this allows us to avoid the specification of the com-
partment for the resulting compound molecule, since it is determined by which of the two
binding species has the capability of creating the bond.

For example, consider the term Q1 = { B@in−−−−→µ}.A@out | {}.B@in, in which there
is an element A in compartment out, an element B in compartment in, and where only
A has the capability to bind to B. Therefore, according to the informal semantics dis-
cussed previously, the interaction causes the resulting complex A : B to be positioned in
compartment in. Namely, term Q1 can perform the following transition:

Q1
A@out↔B@in−−−−−−−−−→ µ.

(
({ B@in−−−−→µ}.A@out) : ({}.B@in)

)
@in

where the name of the resulting complex is (A@out : B@in)@in. Instead, if such a
capability is given to B instead of A, then the resulting complex is put in compartment
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out. That is, given Q2 = {}.A@out | { A@out−−−−→µ}.B@in, the following transition is possible:

Q2
A@out↔B@in−−−−−−−−−→ µ.

(
({}.A@out) : ({ A@out−−−−→µ}.B@in)

)
@out

In this case, the name of the resulting complex is (A@out : B@in)@out. Finally, note that
if both A@out and B@in possess the capability of binding to the other element, then both
the complexes with names (A@out : B@in)@in and (A@out : B@in)@out are possible.

Therefore, in the MIM calculus with compartments, as regards to the capabilities of
creation of bonds, −−→ and ===, the location of the resulting complex depends on which
species has the capability to bind to the other.

3.5.2 Formal semantics

The formal definition of the semantics of the MIM calculus with compartments follows.
We assume the set of actions Act to be extended to the new syntax.

Definition 3.5.2. The semantics of the MIM calculus with compartments (MIMc-co) is
the relation

α−→ on processes such that:

P
α−→ P ′ ⇐⇒ ∃ι ⊂ N . P (∅,ι) α−−−−→ P ′ (3.33)

where α ∈ Act is an action that represents the capability of P used for the reduction

step, and
(ν,ι) α−−−−→, with ν, ι ⊂ N , is the least relation on processes, closed under structural

congruence ≡P , and satifying the inference rules shown in Figure 3.10.

The inference rules shown in Figure 3.10, defining the semantics of the calculus, are
a straightforward extension of those defined for the basic calculus (Figure 3.7). Note
that rules 3.24 and 3.28 put the resulting complex in the same compartment as the one
containing the target of the binding, identified by the name h2 in both cases.

3.5.3 Example of G protein signalling

In this section we develop a model of the G protein signalling pathway, which shows how
the features for spatial modelling provided by the MIM calulus with compartments can
be used. The G proteins are signal transducers, that enable a cell to react to external
stimuli, such as hormones and neurotransmitters, by regulating some internal processes.
Recall that the most important distinction with respect to the original definition of the
MIM calculus is in the behaviour of the two binding operators, namely for the creation of
non-covalent bonds −−→, and for covalent bonds ===.

Figure 3.11 shows an explicit MIM diagram depicting the interactions among elements
involved in the G protein signalling process, adapted from [52]. A G protein is composed of
Gα and Gβγ elements, which are attached to the internal surface of the cell membrane, and
can be activated by receptors embedded in the membrane. The G protein-coupled receptor
is represented in the diagram by the element GPR. The receptor GPR is composed of an
extracellular (external) receptor domain, and a cytoplasmic (internal) domain, through
which it can interact with both the external and internal elements. It receives external
stimuli, and provoke some internal modification as a result.
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µ1 = {X + (ν, ι)
bS2@h2c−−−−−→µ} α = bS1@h1c↔bS2@h2c

µ1.S1@h1 | µ2.S2@h2
(ν,ι) α−−−−→ µ.(µ1.S1@h1 : µ2.S2@h2)@h2

(3.24)

α = bS1c= bS2c

µ.(S1 : S2)
(∅,∅) α−−−−→ S1 | S2

(3.25)

µ = {X + (ν, ι)−−▸P} α = bS1@h1c−−▸ bPc

µ.S1@h1
(ν,ι) α−−−−→ P

(3.26)

µ = {X + (ν, ι)−−▹P} α = bS1@h1c−−▹ bPc

µ.S1@h1
(ν,ι) α−−−−→ µ.S1@h1 | P

(3.27)

µ1 = {X + (ν, ι)
bS2@h2c

=======µ} α = bS1@h1c=== bS2@h2c

µ1.S1@h1 | µ2.S2@h2
(ν,ι) α−−−−→ µ.(µ1.S1@h1)(µ2.S2@h2)@h2

(3.28)

µ = {X + (ν, ι)
bS1S2@h3c

☇ } α = bS@hc ☇

⌊
S1S2@h3

⌋
µ.S@h | µ′.S1S2@h3

(ν,ι) α−−−−→ µ.S@h | S1 | S2

(3.29)

µ1 = {X + (ν, ι)
q

=⇒µ} α = q=⇒bS1@h1c

µ1.S1@h1
(ν,ι) α−−−−→ µ.q(µ1.S1@h1)@h1

(3.30)

µ = {X + (ν, ι)
bq S2@h3c

☇ } α = bS1@h1c ☇

⌊
q S2@h3

⌋
µ.S1@h1 | µ′.q S2@h3

(ν,ι) α−−−−→ µ.S1@h1 | S2

(3.31)

P
(ν,ι) α−−−−→ P ′ bQc ∩ ι = ∅ ν ′ = ν \ bQc

P | Q (ν′,ι) α−−−−→ P ′ | Q
(3.32)

Figure 3.10: The inference rules defining the semantics of the MIM calculus with com-
partments.
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Figure 3.11: Molecular Interaction Map of the G protein signaling pathway.

A G protein is composed of three subunits, identified by the symbols α, β and γ.
The α subunit is represented in the MIM diagram by the element named Gα. The β
and γ subunits of the G protein form tight bonds which cannot dissociate under normal
conditions, therefore the dimer Gβγ is considered as an elementary molecule in the model.

The α subunit of the G protein can bind to either GDP or GTP . When the Gα
is bound to the GTP , it is the active state, while when bound to GDP is inactive.
On the one hand, the active G-protein complex Gα : GTP can bind to the adenylyl
cyclase protein on the membrane, which in turn causes the stimulation of the conversion
of ATP into cyclical-AMP, denoted by cAMP . Actually, we model such a stimulation
using the strongest constraint of requirement, as depicted by the arrow symbol shown in
Figure 3.4b. On the other hand, Gα : GTP complex can slowly convert to the inactive
complex Gα : GDP . The Gα cannot normally bind GTP (not shown in the diagram),
therefore the activated form Gα : GTP can be obtained only when an inactive complex
Gα : GDP exchanges the GDP for GTP .

In resting state, the inactive complex Gα : GDP binds to the other subunits Gβγ,
thus obtaining the complex (Gα : GDP ) : Gβγ. Unless the receptor GPR is activated by
the binding of a ligand, such as a hormone, to its the extracellular domain, the inactive
G protein complex (Gα : GDP ) : Gβγ cannot bind to the receptor (actually, to its
internal domain). On the other hand, when GPR is activated, it binds to (Gα : GDP ) :
Gβγ which, in turn, stimulates the conversion of Gα : GDP into Gα : GTP . This last
transformation is depicted by a forked conversion line, which points from the complex
((Gα : GDP ) : Gβγ) : (GPR : Ligand) to both Gα : GTP , and the other elements GPR,
Gβγ.

The model The various elements involved in the G protein signalling are described in
the following model of the MIM calculus with compartments. There are four compartments
defined, i.e. H = {out,m, cyt, in}, which represent the following compartments:

• out: denoting the outside of the cell, which contains only the element Ligand;

• m: denoting the membrane of the cell, which contains the two element which are
able to interact both with the inner space and with the outer space, namely the
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receptor GPR and the adenylyl cyclase;

• cyt: which denotes the cytoplasmic (internal) surface of the membrane, to which the
G protein is attached, i.e. the elements Gα and Gβγ;

• in: denoting the internal space of the cell, which contains the other elements GDP ,
GTP , ATP , and cAMP .

The ligand is described by the term µLigand.Ligand@out, having capabilities µLigand =

{ GPR@m−−−−−−→∅}, while the receptor is described by ∅.GPR@m. Note that, according to the
semantics of the binding operators (Definition 3.5.2), since only the ligand has the capa-
bility to create a complex with the receptor, then the resulting complex will be positioned
in compartment m. In fact, the semantics allows deriving the following transition:

µLigand.Ligand@out | ∅.GPR@m
(∅,∅) α−−−−→ ((µLigand.Ligand@out) : (∅.GPR@m))@m

with action α = Ligand@out↔GPR@m.

The G protein is attached to the internal surface of the cell membrane, therefore the
subunits are described by terms ∅.Gα@cyt and ∅.Gβγ@cyt. Their capabilities are empty
since the complexes resulting form interactions with other elements remain attached to
the membrane surface, i.e. in compartment cyt.

As regards GDP and GTP , they are described by terms µGDP .GDP@in and
∅.GTP@in. The capabilities of GTP@cyt are empty, since Gα cannot normally bind
GTP .

As regards GDP , it is defined by the term µGDP .GDP@in, where its capabilities are
as follows:

µGDP =
{

Gα@cyt−−−−−→µGαGDP

}
µGαGDP =

{
Gβγ@cyt−−−−−−→

{
((GPR@m):(Ligand@out))@m−−−−−−−−−−−−−−−−−−−→µGPRact

}}
µGPRact =

{
−−▸∅.((∅.GPR@m) : (µLigand.Ligand@out))@m | ∅.Gβγ@cyt |

µGαGTP .((∅.Gα@cyt) : (∅.GTP@in))@cyt
}

GDP@in can bind to G protein subunit Gα@cyt, which in turns binds to Gβγ@cyt and
then to the activated receptor, described by the complex (GPR : Ligand)@m. The
position of the complexes are precisely determined by which element has the capability of
binding to the other, between each pair of elements which can bind. In fact, complexes
Gα : GDP and (Gα : GDP ) : Gβγ end up into the cyt compartment, namely they
are attached to the internal membrane surface. Instead, when complex ((Gα : GDP ) :
Gβγ)@cyt binds to the activated receptor, the resulting complex is put in compartment
m, since we assume that the GPR receptor is kept in its place.

The resulting complex, whose capabilities are denoted by µGPRact, can be converted
back to (i) the complex (GPR : Ligand)@m, (ii) the G protein subunits Gβγ@cyt, and (iii)
the activated G protein subunit (Gα : GTP )@cyt. This models the expected behaviour
of the exchange of GDP for GTP , performed by the G protein once activated by the
receptor.
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Despite that Gα cannot normally bind GTP , we have seen that the activated G protein
subunit (Gα : GTP )@cyt can nevertheless be obtained once the receptor is activated. The
capabilities of such a complex are the following:

µGαGTP =
{
−−▸µGαGDP .(∅.Gα@cyt : µGDP .GDP@in)@cyt+

AdCyc@m−−−−−−−→∅
}

Complex (Gα : GTP )@cyt can either convert back to the inactive form (Gα : GDP )@cyt
or bind to the adenylyl cyclase AdCyc@m. When it binds to the adenylyl cyclase, it also
enables the conversion of ATP@in to cAMP@in, as formally defined by the following
term: {

(ν1, ∅)−−▸∅.cAMP@in
}
.ATP@in

where the set of promoters is ν1 = {((Gα@cyt : GTP@in) : AdCyc@m)@m}.
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Chapter 4

Spatial P systems

In the field of Membrane Computing, the P systems formalism [69] has been proposed as
a distributed and parallel computing model inspired by the structure and the functioning
of the living cell. A P system is composed of a hierarchy of membranes, each of them
containing a multiset of objects, which are processed by evolution rules. Evolution rules
allow the description of the behaviour of a model, for example by representing chemical
reactions. The basic P systems model associates a set of rules with each membrane,
which are to be applied to the (only) objects contained in the same membrane. A rule
specifies reactants and products: when a rule is applied, the reactants are removed from
the membrane and the products are either (i) added inside the membrane, (ii) sent into
an inner membrane, or (iii) sent outside the membrane.

Many variants and extensions of P systems exist that include features which increase
their expressiveness and which are based on different evolution strategies. In particular,
we cite P systems with promoters and inhibitors [20], and P systems with priority among
evolution rules [69], since Spatial P systems allow the specification of promoters, and
provide a form of priority among rules. In P systems with promoters and inhibitors, the
applicability of each rule can be constrained by the presence or absence of other objects
in the membrane. In particular, the multiset of promoters represent the objects which are
needed for the rule to be applicable. On the contrary, the multiset of inhibitors represent
those objects whose presence effectively blocks the application of the rule. As regards P
systems with priority among evolution rules, a rule is applicable in a membrane only if
no higher priority rule is applicable, namely only if each higher priority rule requires a
multiset of reactants which are not present in the membrane. See [70] for the definition of
variants of P systems, and [68] for a complete bibliography.

In this chapter, we present an extension of P systems, in which objects and membranes
are embedded into a two-dimensional discrete space. We call this extension Spatial P
systems. Objects are associated with precise positions inside membranes, and evolve by
means of the application of evolution rules. As for standard P systems, rules specify the
objects which are consumed and the ones which are produced. Moreover, promoters can be
specified in the rules. In addition, rules specify the relative positions of the various objects
involved, with respect to the position in which the rule is applied. A feature of Spatial P
systems is the distinction between ordinary objects and mutually exclusive objects. Every
position inside a membrane can accommodate an arbitrary number of ordinary objects,
but at most one mutually exclusive object. Finally, the calculus also allows a priority
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relation among evolution rules in a membrane, described by a partial order.

Spatial P systems use a representation of the space analogous to that of Cellular Au-
tomata (CA) [61]. However, in Spatial P systems, cells contain objects, and interactions
occur between objects. For this reason, each position in a Spatial P system can accom-
modate any number of objects, thus representing a possibly infinite number of different
“states”.

In this chapter we study the computational universality of the calculus when using
different features. In particular, we study the computational power of Spatial P systems
when using only non-cooperating rules, namely when evolution rules are restricted to have
only one reactant. This is a severe limitation, which makes standard P systems as powerful
as context free grammars, therefore not universal. We prove that the feature of mutually
exclusive objects is sufficient to achieve computational universality even when only non-
cooperating rules are allowed. In order to illustrate the use of the calculus we present a
model of the evolution of populations in the presence of geographical separations.

In the next chapter, we are going to investigate the problem of simulating some re-
stricted kinds of Spatial P system models. This is an interesting problem, which enables
a practical use of the formalism for the analysis of spatial models.

4.1 Background

In this section we recall the definition of standard P systems [70], along with the extension
with promoters and inhibitors, and the extension with priority among evolution rules.
These two extensions are particularly interesting because such features are also provided
by Spatial P systems. Moreover, we recall some known results on the computational power
of the different versions of P systems presented. Finally, we also recall the definition and
computational results of matrix grammars, a computational device that we use to prove
the universality of Spatial P systems. Formal semantics of different versions of P systems
are presented in [22, 1, 12, 11, 13, 14].

In the following, we often denote multisets over a finite alphabet as strings. More
precisely, let V ∗ be the set of all strings over an alphabet V , including the empty one,
denoted by λ. For a ∈ V and x ∈ V ∗ we denote by |x|a the number of occurrences of a in x.
Given an alphabet V = {a1, . . . , an}, where the ordering is important, the Parikh mapping
of a string x ∈ V ∗ is defined as ΨV (x) = (|x|a1 , . . . , |x|an), called the Parikh vector. That
is, given a string x ∈ V ∗, representing a multiset over V , the Parikh vector ΨV (x) gives the
multiplicities in x of each symbol. The definition is also extended to languages, namely,
given a language L ⊆ V ∗, the Parikh image of L is defined as ΨV (L) = {ΨV (x) | x ∈ L}.
Given a family of languages X, the family of Parikh images of languages in X is denoted
as PsX.

Finally, given a multiset M, the multiplicity of an element x in M is denoted by
m(M, x). We use the following notations for operations on multisets, where the multi-
plicity is significant. The union operator between multisets is denoted by ], while the
difference operator is denoted by \\. Inclusion between two multisets A,B is denoted by
A F B, meaning that A is a submultiset of B. Proper inclusion, namely if A F B and
A 6= B, is denoted by D.
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4.1.1 P systems

A P system is composed of a hierarchy of membranes, each of them containing a multiset
of objects, which are processed by evolution rules. We assume membranes to be labelled
by natural numbers. Evolution rules describe how the objects of the system evolve, for
example they can be used to describe chemical reactions, that is rules in which some
objects interact and, as a result, they are transformed into some other objects. A set of
rules is associated with each membrane. Given a membrane m, its evolution rules in the
set Rm can be applied only to the objects contained in the same membrane, and not in
any other membrane. In particular, a rule in a membrane m cannot be applied to objects
contained in any child membrane.

A rule is of the form u→ v, where u denote the multisets the reactants, and v denote
the products. When a rule is applied, the reactants are removed from the membrane and
the products are added to the target membrane, which could be a different membrane
than the one in which the rule is applied. Formally, given a membrane m, the products
of a rule associated with m are described by a multiset of tuples of the following forms:

• (a, here), usually written as ahere, meaning that the object a is added to the same
membrane m;

• (a, out), usually written as aout, meaning that the object a is to be sent out of the
membrane;

• (a, inx), usually written as ainx , meaning that the object a is to be sent into the
child membrane labelled by x.

The target indication here is often omitted, therefore a rule of the form u → v is to be
interpreted as if all the objects v have target indication here.

A characteristic of P systems is the way in which rules are applied in each step, namely
with maximal parallelism. In each step, evolution rules are applied in a maximal non-de-
terministic way in all membranes, that is, in each membrane, a multiset of rules is selected
non-deterministically to consume the membrane objects, in such a way that no other rule
can be applied to the objects which are not involved in any rule application.

Let TAR be the set of object targets {here, out}∪{ini | i ∈ N}, and let Vtar = V×TAR.
Formally, an evolution rule u → v is such that u ∈ V ∗ and v ∈ V ∗tar. The number of
reactants of a rule, that is the length of u, is called the radius of such a rule. An evolution
rule is said to be cooperating if its radius is greater than 1, otherwise the rule is called non-
cooperating. This naming is also extended to P system models, that is a non-cooperating
P system is such that all its rules are non-cooperating, otherwise it is a cooperating P
system.

A particular form of cooperating systems is that of catalytic systems, which are meant
to capture the biological notion of catalysts, namely biological elements which are needed
for a reaction to happen and directly participate in it, but they are neither consumed nor
modified by the reaction. Formally, in catalytic P systems, a subset of objects K ⊆ V
denotes the set of catalysts, whose use in the rules is constrained. Namely, there can be
two kinds of rules, either non-cooperating rules of the form a→ v, or rules with catalysts
of the form ca→ cv; where c ∈ K, a ∈ V \K, and v ∈ (V \K)∗tar.

Definition 4.1.1. A P system is a tuple Π = (V, µ, w1, . . . , wn, R1, . . . , Rn) where:
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Figure 4.1: An example of P system model.

• V is a finite alphabet whose elements are called objects;

• µ ⊂ N× N describes the tree-structure of membranes, where (i, j) ∈ µ denotes that
the membrane labelled by j is contained in the membrane labelled by i;

• wi, with 1 ≤ i ≤ n, are strings from V ∗ representing multisets over V associated
with membranes 1, 2, . . . , n of µ;

• Ri, with 1 ≤ i ≤ n, are finite sets of evolution rules associated with membranes
1, 2, . . . , n of µ.

A sequence of transitions between configurations of a given P system Π is called a
computation. A computation is successful if and only if it reaches a configuration in
which no rule is applicable. The result of a successful computation can be defined in
different ways. There are two common approaches, which correspond either to consider
the multiset of objects sent out of the skin membrane during the computation, or the
multiset of objects present in a particular membrane, denoted as the output membrane.
Unsuccessful computations are those computations which never halt, thus yielding no
result.

Given a P system Π whose set of objects is V , let U ⊆ V be the set of objects that
can be sent out of the skin membrane, namely objects that appear in the right-end side
of a rule in R1 with target out. The result x ∈ U∗ of a computation of Π can be mapped
into a vector of natural numbers by the Parikh mapping ΨU (x). The set of all vectors of
natural numbers computed by Π is denoted Ps(Π).

Following [70], let us denote by Pn(α) the class of P Systems with at most n ≥ 1
membranes and using rules of type α, where α = coo indicates that cooperating rules are
allowed, α = cat that only catalytic and non-cooperating rules are allowed, and α = ncoo
that only non-cooperating rules are used. When the number of membranes is not bounded
we replace n with ∗. Finally, PsPn(α) denotes the family of sets of vectors of natural
numbers computed by P systems of class Pn(α).

Example 4.1.1. Figure 4.1 depicts a P system with two membranes 1 and 2. The rules
r1 and r2 are associated with membrane 1, while membrane 2 has no rules associated with
it. An application of rule r1 = a→ a bin2 c

2
in2

causes a copy of object b, and two copies of
object c, to be sent into the inner membrane 2. Note that we have used an exponential
notation for denoting multiple copies of the same tuple cin2 in a compact way. The object
a is still present after the application, since it appears in the right-hand part of the rule.
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Rule r2 = a2 → c3
in2

, instead, can be applied to a pair of objects a, and results in sending
three copies of the object c into membrane 2. The initial state, as depicted, contains two
copies of object a in membrane 1, and no objects in membrane 2.

At the first step, either rule r1 or r2 is applied. In fact, both the rules are enabled, since
their reactants are present in the membrane. Actually, if r1 is applied to an object a, then
the maximality requires it to be applied also to the other copy of s, since in that case rule
r2 could no be applied anymore. This application sends the objects bcc into membrane
2. The objects contained in membrane 1 remain aa after the application, therefore the
double application of rule r1 can be repeated in the subsequent step. Whenever rule r2

is applied, it causes the two copies of a in membrane 1 to disappear, thus terminating
the computation. In such a case, the objects ccc are sent into membrane 2. Therefore,
any computation of this P system is composed of a sequences of steps in which only r1 is
applied (twice per step), followed by a last step in which rule r2 is applied once. Therefore,
whenever the P system terminates, membrane 2 contains a multiset of objects bk c2k+3,
for some k ≥ 0.

4.1.2 Computational power

We recall some fundamental results on the computational power of the basic class of
P systems, by comparing it with languages in the Chomsky hierarchy. We denote by
CF , CS, and RE, the families of languages generated by context free, context sensitive,
and arbitrary grammars, respectively. Recall that CF ⊂ CS ⊂ RE, which is a part of
the Chomsky hierarchy. Note that RE exactly corresponds to the family of recursively
enumerable languages, namely the family of languages recognized by Turing machines,
hence the name.

Technically, the output of a P system, namely a multiset of symbols, is not directly
comparable with a language, namely a set of strings, generated by a Chomsky grammar.
One approach to compare them is consider, on the one hand, the cardinalities of the
multisets of symbols generated by a class of P systems and, on the other hand, the length
sets of languages of a given a family of languages. Given a family of languages X, the
family of length sets of languages in X is denoted as NX. In this case, it holds that
NCF ⊂ NCS ⊂ NRE [70]. Another approach is to consider Parikh vectors, which means
considering the strings of a language as representing multisets. Clearly, PsCF ⊂ PsCS ⊂
PsRE.

The first two results that we report, without the proofs, concern the power of coopera-
tion (for the proofs, see [70]). The first result shows that P systems with non-cooperating
rules are not universal, namely they are equivalent to context free grammars. Moreover,
they are also equivalent to P systems with only one membrane, namely the membrane
hierarchy collapses to only one membrane.

Theorem 4.1.1 ([70]). PsP∗(ncoo) = PsP1(ncoo) = PsCF

In case of cooperating rules, the following theorem shows that when rules of such a
form are allowed, then computational universality is achieved.

Theorem 4.1.2 ([70]). PsP∗(coo) = PsPm(coo) = PsRE, for all m ≥ 1

Actually, allowing only the use of catalysts in rules is sufficient to obtain computational
universality, as shown by the following theorem.
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Theorem 4.1.3 ([83]). PsPm(cat) = PsRE, for all m ≥ 1

4.1.3 P systems with priorities among evolution rules

P systems can be equipped with a priority relation among evolution rules. The priority
among rules is described by the partial order relations ρi ⊆ Ri×Ri, for each i ∈ {1, . . . , n}.
Given the partial order ρ, for some membrane, a pair (r1, r2) ∈ ρ, with r1 6= r2, means that
the rule r2 has higher priority than r1, and is usually written as r1 < r2. The applicability
of rules is constrained as follows. A rule r1 can be applied only if no other higher priority
rule r2 > r1 is enabled in the same step, that is if the reactants for r2 are not available
at the beginning of the step. Note that, even if the reactants of rule r2 are present, it
can happen that such a rule is not applied, for example because there is another non-
comparable rule r3 (i.e. neither r2 < r3 nor r3 < r2) competing with r2 for the same
reactants. Even in such a case, any lower priority rule r1 < r2 still cannot be applied.

Example 4.1.2. Consider the rules r1 = ab → c, r2 = a → d, r3 = b → e, with relative
priorities r1 > r3, namely ρ = {(r1, r1), (r2, r2), (r3, r3), (r3, r1)}. Given a multiset of
objects bb, the only possible state that can be obtained after one step is ee, resulting
from the application of rule r3 twice. Note that r3 could be used since rule r1 could not,
as the reactants ab are not present in the given state. Instead, given the objects aab,
the following states can be obtained: cd, by applying both r1 and r2 once; and ddb, by
applying r2 twice. Note that rule r3 cannot be applied, even if the object b is not used by
any rule, since the higher priority rule r1 could be applied in the given initial state aab.

Computational power

For completeness, we report the following result on the computational power of P systems
with priorities, proved in [81]. In this case, PsET0L denotes the Parikh images of ET0L
languages, a kind of Lindenmayer systems (see [70]), which is known not to be univer-
sal [70]. Precisely, PsET0L ⊂ PsCS ⊂ PsRE, where PsCS denote the Parikh images of
context sensitive languages.

Theorem 4.1.4 ([81]). PsPm(ncoo, pri) = PsET0L, for all m ≥ 1

4.1.4 P systems with promoters and inhibitors

P systems with promoters and inhibitors can be formalized in different ways. We consider
P systems with promoters and inhibitors at the level of sets of rules, as defined in [20, 70].
In such a model, evolution rules are extended to specify, for each rule, two multisets of
objects denoted as promoters and inhibitors. They are used to constrain the applicability
of a rule on the basis of the objects which are present in the membrane. Precisely, a rule can
be applied only if all the promoters, with their multiplicities, are present in the membrane,
and not all of the inhibitors are present in the membrane [20]. A rule with promoters and
inhibitors is usually denoted as u→ v|x1,...,xk,¬y1,...,¬yh , where u ∈ V ∗ and v ∈ V ∗tar denote
the reactants and products, respectively, while each xi ∈ V denote a promoter, and each
yj denote an inhibitor. Formally, given a multiset of objects w contained in a membrane,
the rule u → v|x1,...,xk,¬y1,...,¬yh can be applied only if ∀i = 1, . . . , k. xi ∈ w \\u and
∀j = 1, . . . , h. yj /∈ w \\u. Note that objects corresponding to promoters and inhibitors
can evolve independently, as they can be consumed by the application of other rules.
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For example, a rule a → b|c means that an object a can be transformed to b only if
there is at least one object c present in the membrane. Conversely, the rule aa → b|¬b
means that two copies of a can be transformed to b only if no b is present.

Computational power

As regards the computational power of P systems with promoters and inhibitors at the
level of sets of rules, we report the following results from [20]. In particular, each of both
inhibitors and promoters are sufficient by themselves to obtain universality even with only
non-cooperating rules. In the theorems, proS and inhS denote the use of promoters and
inhibitors, at the level of sets of rules, respectively. Moreover, in denotes the use of a
non-deterministic form of the in target. Namely target inj is not allowed, while there can
be a target in, whose meaning is that the associated object is to be sent into an child
membrane chosen non-deterministically. Finer results are presented in [20].

Theorem 4.1.5. ([20]) PsP3(ncoo, in, inhS) = PsRE

Theorem 4.1.6. ([20]) PsP1(ncoo, proS) = PsRE

4.1.5 Matrix grammars with appearance checking

We recall from [70] the definition of matrix grammars with appearance checking, a popular
tool which has been used to prove the computational universality of many types of P
systems. We use matrix grammars with appearance checking to prove the computational
universality of Spatial P systems without cooperating rules.

A (context-free) matrix grammar with appearance checking is defined as a tuple G =
(N,T, S,M,F ), where N and T are disjoint alphabets of non–terminals and terminals,
respectively, S ∈ N is the axiom, M is a finite set of matrices, namely sequences of the
form (A1 → x1, . . . , An → xn) of context–free rules over N ∪ T with n ≥ 1, and F is a set
of occurrences of rules in the matrices of M . For a string w, a matrix m : (r1, . . . , rn) can
be executed by applying its rules to w sequentially in the order in which they appear in
m. Rules of a matrix occurring in F can be skipped during the execution of the matrix if
they cannot be applied, namely if the symbol in their left–hand side is not present in the
string.

Formally, given w, z ∈ (N ∪ T )∗, we write w =⇒ z if there is a matrix (A1 →
x1, . . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗ with 1 ≤ i ≤ n + 1 such that
w = w1, z = wn+1 and, for all 1 ≤ i ≤ n, either (1) wi = w′iAiw

′′
i and wi+1 = w′ixiw

′′
i ,

for some w′i, w
′′
i ∈ (N ∪ T )∗, or (2) wi = wi+1, Ai does not appear in wi and the rule

Ai → xi appears in F . Thus, in case (2) a matrix can be applied even if some of its rules
are not applicable, provided that these rules are listed in F . We remark that F consists of
occurrences of rules in M , that is, if the same rule appears several times in the matrices,
it is possible that only some of these occurrences are contained in F .

The language generated by a matrix grammar G is L(G) = {w ∈ T ∗ | S =⇒∗ w},
where =⇒∗ w is the reflexive and transitive closure of =⇒. As regards the computational
power, matrix grammars with appearance checking are universal [70].

Let |x| denote the length of the string x. A matrix grammar with appearance checking
G = (N,T, S,M,F ) is said to be in binary normal form if N = N1 ∪ N2 ∪ {S,#}, with
these sets mutually disjoint, and the matrices in M are of the forms:
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1. (S → XA), with X ∈ N1, A ∈ N2;

2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;

3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2;

4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules A →
# appearing in matrices of type 3. We remark that # is a trap symbol, namely once
introduced it cannot be removed, and a matrix of type 4 is used only once, in the last step
of a derivation.

For each matrix grammar (with or without appearance checking) there exists an equiva-
lent matrix grammar in binary normal form. A matrix grammar with appearance checking
in binary normal form is always given as G = (N,T, S,M,F ), with N = N1 ∪N2 ∪{S,#}
and with n + 1 matrices in M , injectively labelled with m0,m1, . . . ,mn. The matrix
m0 : (S → XinitAinit) is the initial one, with Xinit a given symbol from N1 and Ainit

a given symbol from N2; the next k matrices are without appearance checking rules,
mi : (X → α,A → x), with 1 ≤ i ≤ k, where X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, x ∈
(N2 ∪T )∗, |x| ≤ 2 (if α = λ, then x ∈ T ∗); the last n− k matrices have rules to be applied
in the appearance checking mode, mi : (X → Y,A→ #), with k + 1 ≤ i ≤ n,X, Y ∈ N1,
and A ∈ N2.

We remark that in matrix grammars in binary normal form we can assume that all
symbols X ∈ N1 and A ∈ N2 appear as the left-hand side of a rule from a matrix:
otherwise, the derivation is blocked after introducing such symbols, hence we can remove
these symbols and the matrices involving them.

4.2 Spatial P systems

Spatial P systems extend standard P systems by embedding membranes and objects in the
two-dimensional discrete space with natural coordinates N2. Each object in a Spatial P
system model is associated with a position inside a membrane. Membranes can have any
shape, as long as they are defined as simple closed curves composed only of horizontal and
vertical edges, and need to be properly nested. Sibling membranes still must not overlap,
and membranes cannot exceed the bounds of their parent membrane. A membrane is
described by the circular list of positions through which it passes, where each position
has to be adjacent to both the previous and the next position in the list. Positions
forming membrane edges are considered to be inside the membrane. There is always a
distinguished skin membrane, which contains all other membranes and objects. We assume
the skin membrane to be labelled with 1.

Figure 4.2 shows the spatial structure of membranes and objects of Spatial P sys-
tem, composed of only rectangular membranes. The square cells of the grid correspond
to positions, and evolution rules associated with membranes are not shown. Membrane
1, having width 8 and height 5, contains two membranes labelled 2 and 3. Assuming
that the bottom-left position of membrane 1 corresponds to position (0, 0), then mem-
brane 1 is described by the sequence of positions 〈(0, 0), (0, 1), . . . , (0, 4), (1, 4), . . . , (7, 4),
(7, 3), . . . , (7, 0), (6, 0), . . . , (1, 0)〉. Membranes 2 and 3 are similarly described. As regards
the objects, there are three objects a contained in membrane 2, at positions (2, 2),(3, 2)
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Figure 4.2: The spatial structure of membranes and objects of a Spatial P system.

and (3, 1). Membrane 3 contains an object a and an object c in position (5, 3). All other
positions, in all membranes, are empty.

In order to increase the usefulness of the formalism, we include into Spatial P systems
two features: promoters and priorities. Promoters are useful for describing rules in which
the presence of some object enables the rule to be applied. A notion of priority among
the rules, instead, allows a proper description of the movement.

Priority among evolution rules has a different meaning with respect to the usual se-
mantics of P systems. Recall that, in standard P systems, a rule can be applied in a
membrane only if there is no higher priority rule which is enabled, that is the reactants of
each higher priority rule are not present in the membrane region at the beginning of the
step. Instead, in Spatial P systems we permit lower priority rules to be applied even if
there are higher priority rules whose reactants are present. This difference is motivated by
the fact that, in Spatial P systems, because of the presence of mutually-exclusive objects,
it can happen that a rule for which the reactants are present cannot be actually applied,
since that would create a conflict among mutually-exclusive objects. Precisely, the seman-
tics of Spatial P systems requires that there does not exist a set of positions in which it
is possible to replace the multisets of rules selected in each of them with “greater” multi-
sets, and still obtain a selection of rules which is applicable with respect to the reactants,
and which does not create conflicts among mutually-exclusive objects. In this context, a
greater multiset means increasing the multiplicity of application of any rule r, given the
possibility to cancel the application of any lower priority rule r′ < r.

The formal description of membranes in a Spatial P system model is composed of the
following elements, where we assume that membranes are labelled by {1, . . . , n}:

• a tree structure describing the containment hierarchy among membranes, represented
by the set µ ⊂ {1, . . . , n} × {1, . . . , n}, where (i, j) ∈ µ denotes that the membrane
labelled by j is contained in the membrane labelled by i;

• a function σ : {1, . . . , n} → 〈N2〉, which describes membrane bounds by associating
to each membrane i ∈ {1, . . . , n} a sequence of distinct positions σ(i) = 〈p1, . . . , ps〉
through which the membrane edges passes.

In order to ensure that the membrane is composed only of horizontal and vertical edges,
each position pi must be adjacent to the next one pi+1, and also the last one ps and
the first one p1 must be so. The condition that all positions must be distinct ensures
that the membrane defines a simple closed curve. We also require each membrane to
be properly contained in their parent membrane (except for the outer membrane), and
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that positions forming membrane bounds of different membranes are distinct: ∀i1, i2. i1 6=
i2 =⇒ σ(i1) ∩ σ(i2) = ∅. This last constraints ensures that different membranes do not
overlap.

The structure of membranes can be seen as a partition of the space bounded by the
skin membrane, where a position belongs to the region of a membrane if and only if it is
contained within its bounds and not contained in any other child membrane. The set of
all positions belonging to a membrane is called a region.

Let Extents(i) denote the set of positions inside the closed curve denoted by σ(i), with
σ(i) ⊆ Extents(i) for all i ∈ {1, . . . , n}. For simplicity, we also define the Extents for the
special value 0, representing all the position outside the skin membrane, as Extents(0) =
N2 \Extents(1). The set of positions forming the region of a membrane is defined by the
function Region : {1, . . . , n} → P(N2) as Region(i) = Extents(i) \

⋃
(i,j)∈µExtents(j).

Note that ∀i. σ(i) ⊆ Region(i). The constraint that each membrane is properly contained
in its parent membrane formally corresponds to require that ∀(i, j) ∈ µ. Extents(j) ⊂
Extents(i).

Each object in a Spatial P system model is associated with a position in the region
of a membrane. The two kinds of objects, ordinary objects and mutually exclusive (ME )
objects, are represented by two disjoint sets V and E, respectively.

A set of evolution rules is associated with each membrane, where each rule is of the
following form:

(u1)p1 . . . (uk)pk [(π1)q1 . . . (πγ)qγ ]→ (v1)t1 . . . (vh)th

where:

• (u1)p1 . . . (uk)pk denote the reactants as strings of objects ui, each of them having a
relative position pi ∈ Z2; the reactants are consumed by the application of the rule;
(we assume p1, . . . , pk to be distinct);

• (π1)q1 . . . (πγ)qγ denote the promoters of the rule, whose presence is necessary in order
for the rule to be applicable, but are not consumed by the application; similarly to
the previous case, each πi is a string of objects with relative position qi ∈ Z2; (we
assume q1, . . . , qγ to be distinct);

• (v1)t1 . . . (vh)th represent the products of the rule, where each vi is a string of objects,
and each ti is either a relative position in Z2, or a special symbol from the set
{outd} ∪ {inj,d|1 ≤ j ≤ n}.
The symbol outd means that the object is to be sent outside of the current membrane,
along a direction d ∈ D = {(0, 1), (0,−1), (1, 0), (−1, 0)}. The objects sent out of
the skin membrane disappear from the system. Symbol inj,d means that the object
is to be sent into the inner membrane labelled j, along the direction d ∈ D. Position
(0, 0) can be denoted by here. (We assume t1, . . . , th to be distinct.)

A generic list of reactants (u1)p1 . . . (uk)pk , promoters (π1)q1 . . . (πγ)qγ , and products
(v1)t1 . . . (vh)th may be denoted by a symbol u, π, or v, respectively. The radius of a

rule is defined as the number of reactants, namely
∑k

i=1|ui|. An evolution rule without
promoters is said to be cooperating if its radius is greater than 1, otherwise the rule is
called non-cooperating.
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Each rule describes relative positions for the involved objects and, in order to be
applied, the relative positions appearing in the rule have to be instantiated to concrete
positions inside membrane region. For example, consider the objects V = {a, b, c}. A rule
r = a→ (b)(−1,0) (c)out(0,1) can be applied to an object a in a position p, and would result
in an object b being put in position p + (−1, 0), and an object c being sent out of the
membrane, along the direction (0, 1). With respect to the Spatial P system configuration
depicted in Figure 4.2, assume that r belongs to membrane 2. Then rule r can be applied
only to the a objects in position (3, 1) and (3, 2), causing the two a objects to disappear,
an object b being put into both (2, 1) and (2, 2), and an object c being sent out of the
membrane, to both the positions (3, 2) and (3, 3). Rule r cannot be applied to the a
object in (2, 2), since it is not possible to send out of the membrane the c object from
that position. In fact, such an application would put a c object in position (2, 3), which
is inside the region of membrane 2.

Definition 4.2.1. A Spatial P system is described by a tuple

(V,E, µ, σ,W0, (R1,≤1), . . . , (Rn,≤n))

where:

• V and E are disjoint alphabets, denoting ordinary objects and mutually exclusive
objects respectively;

• µ ⊂ {1, . . . , n} × {1, . . . , n} describes the tree-structure of membranes, as explained
before;

• σ : {1, . . . , n} → 〈N2〉 describes the shape and position of each membrane i ∈
{1, . . . , n};

• W0 = {w(0)
x,y}(x,y), is a set of strings w

(0)
x,y ∈ (V ∪ E)∗, with (x, y) ∈ Extents(1)

being a position in the extents of the skin membrane, where each wx,y represents
the multiset of objects associated with position (x, y) in the initial configuration
of the system; a set W of this kind is called configuration, and must be such
that each position contains at most one mutually exclusive object, namely ∀p ∈
Extents(1).

∑
x∈E m(wp, x) ≤ 1.

• (Ri,≤i), for i ∈ {1, . . . , n}, describe the finite sets of evolution rules Ri associated
with the membranes, together with a partial order relation ≤i on Ri describing the
priorities among the rules; in case the priorities are not used, namely if, for every
membrane i, the partial order relation is the identity relation IRi , then its indication
can be omitted.

4.2.1 Semantics

In order to define the semantics, some auxiliary definitions are needed. We define the
notion of p-enabled rule, which allows us to determine if a given rule can be considered for
application in a given position p. In particular, it takes into account the resulting positions
of the objects, and ensures that they would be put in the correct membrane regions with
respect to their target positions.
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Definition 4.2.2. Given a membrane m, and a position p = (x, y) ∈ Region(m), an
evolution rule r = (u1)p1 . . . (uk)pk [(π1)q1 . . . (πγ)qγ ] → (v1)t1 . . . (vh)th ∈ Rm is p-enabled
iff ∀i = 1, . . . , h:

• for any position pi ∈ Z2 for reactants, and any position qj ∈ Z2 for promoters, the
relative position with respect to the current position p is contained in membrane
region:

∀i ∈ {1, . . . , k}. p+ pi ∈ Region(m)

∀j ∈ {1, . . . , γ}. p+ qj ∈ Region(m)

• for any target position ti ∈ Z2 appearing in the rule, the resulting position p′ = p+ti
with respect to the current position p is contained in membrane region, i.e. p′ is inside
membrane bounds and does not overlap with any inner membrane:

ti ∈ Z2 =⇒ p+ ti ∈ Region(m)

• if the rule specifies an outd target, then p is on the edge of the membrane, and the
resulting position p+ d is in the region of the parent membrane:

ti = outd =⇒ p ∈ σ(m) ∧ p+ d ∈ Region(father(m))

where father(j) = i, if ∃(i, j) ∈ µ; and father(1) = 0.

• if the rule specifies a target inm′,d, with m′ a child membrane of m, then p is adjacent
to it:

ti = inm′,d =⇒ p+ d ∈ σ(m′)

The set of all p-enabled rules of a set of rules R is denoted by Enabled(R, p).

In each step of the evolution of a Spatial P system, some evolution rules are chosen and
applied to the system state, by removing all reactant objects and adding all the products.
In particular, in each step, for every membrane m and for every position p in membrane
region, a multiset of p-enabled evolution rules is chosen non-deterministically, with some
constraints needed to ensure that the mutual exclusivity between objects, the priority, and
the maximality are handled correctly.

The multisets of rules selected for application, for each position of a Spatial P system
model, are described by a selection, defined in the following.

Definition 4.2.3. A selection of rules is described by a function S from positions to
multisets of rules, such that for each position p ∈ Extents(1), S(p) = R is a multiset of
p-enabled rules from Rm, for the membrane m such that p ∈ Region(m). We assume that
∀p ∈ Extents(1). ∃R. S(p) = R. Finally, an empty selection S is a selection such that
∀(p,R) ∈ S. R = ∅.

We introduce some auxiliary functions, which deal with the reactants, promoters and
products, of the rules described by a selection. Given a rule r and a position p, let
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η(r, p), Π(r, p), and T (r, p) represent the multisets of reactants, promoters, and products,
respectively, appearing in the rule in the relative position p. Formally:

η((u1)p1 . . . (uk)pk [π]→ v, p) =

{
ui if ∃i. p = pi

∅ otherwise

Π(u[(π1)p1 . . . (πγ)pγ ]→ v, p) =

{
πi if ∃i. p = pi

∅ otherwise

T (u[π]→ (v1)t1 . . . (vh)th , p) =

{
vi if ∃i. ti = p ∨ ti = outp ∨ ti = inj,p

∅ otherwise

Moreover, these functions are extended to multisets of rules, as follows: η(R, p) =⊎
r∈R η(r, p), Π(R, p) =

⊎
r∈RΠ(r, p), and T (R, p) =

⊎
r∈R T (r, p).

Given a selection S, we define the following functions to determine, for any position
q ∈ Extents(1), which multisets of objects are: (i) required as reactants in q; (ii) required
as promoters in q; and (iii) produced in q by the application of the rules. These functions
are respectively denoted by η(S, q), Π(S, q), and T (S, q), and are defined as follows:

η(S, q) =
⊎

(p,R)∈S

η(R, q − p)

Π(S, q) =
⊎

(p,R)∈S

Π(R, q − p)

T (S, q) =
⊎

(p,R)∈S

T (R, q − p)

Definition 4.2.4 (Valid selection). Let W be a configuration, consider the following
properties:

a. applicability : the reactants and promoters required by each rule are present in the
system:

∀p ∈ Extents(1). η(S, p) F wp ∧Π(S, p) F wp

b. mutual exclusivity of objects: two mutually exclusive objects cannot occupy the same
position p′ in the configuration resulting from the application of the selection; note
that, that during the step a ME object can disappear from a position and another
one can take its place;

∀p ∈ Extents(1).
∑
x∈E

m(wp, x)−m(η(S, p), x) + m(T (S, p), x) ≤ 1

Let us denote by S(ε)
W the set of all selections, satisfying a set of properties ε ⊆ {a, b}, for

a given configuration W . A selection S ∈ S(a,b) is valid for W iff the following property
hold:
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c. priority and maximality : let us define the following priority relation on multisets of
rules, and its extension to selections:

R � R′ ⇐⇒ ∀r ∈ R′.
m(R′, r) < m(R, r) =⇒ ∃r′ > r. m(R′, r′) > m(R, r′);

(4.1)

S � S′ ⇐⇒ ∀(p,R) ∈ S. ∃(p,R′) ∈ S′. R � R′ (4.2)

A selection S ∈ S(a,b) is valid iff ∀S′ � S. S /∈ S(a,b).

The set of all valid selections is denoted by Svalid
W . In the notations S(ε)

W and Svalid
W , the

indication of the configuration W can be omitted if there is no risk of ambiguity.

Consider the priority relation on multisets of rules, defined by Equation 4.1. Given the
multisets R,R′, R � R′ means that, for each rule r ∈ R, the multiplicity of application of
r can be decreased in R′ with respect to R only if there is some other rule r′, with priority
greater than r, whose multiplicity is increased in R′. The priority relation is extended to
selections in Equation 4.2, by considering the multisets of rules selected for each position.
Finally, a valid selection S is such that there does not exist a greater selection S′ � S
which satisfies the properties (a) of applicability and (b) of mutual exclusivity.

Definition 4.2.5. Let P = (V,E, µ, σ,W1, (R1, ρ1), . . . , (Rn, ρn)) be a Spatial P system
model. Let apply(W,S) = W ′ be such that ∀p ∈ Extents(1). w′p = wp \\ η(S, p) ] T (S, p).

Then the semantics of P is defined as the least relation W
S−→W ′, with W,W ′ sets indexed

by positions in Extents(1), S ∈ Svalid
W , and where W ′ = apply(W,S).

A computation of a Spatial P system, from the initial configuration W1, is a sequence

of transitions W1
S1−→ W2

S2−→ · · ·
Sk−1−−−→ Wk, for some valid selections Si ∈ Svalid

Wi
, i =

1, . . . , k−1. A successful computation is a computation such that no transition are possible
in the last configuration.

Note that, since we assume that the initial configuration W1 does not contain conflicts
among mutually exclusive rule, also any reachable W ′ does not contain conflicts, namely

any W ′ such that W1
S1−→W2

S2−→ · · ·
Sk−1−−−→Wk = W ′ for some valid selections Si ∈ Svalid

Wi
,

i = 1, . . . , k − 1, is such that ∀p ∈ Extents(1).
∑

x∈E m(w′p, x) ≤ 1.

The result of a successful computation is represented by the multiset of objects sent
out of the skin membrane during the evolution, which are described by a Parikh vector.
The set of all vectors computed by a Spatial P system Π is denoted Ps(Π). Let us denote
by SPn(α) the class of Spatial P Systems with at most n ≥ 1 membranes and using rules
described by the set of labels α. Label coo indicates that cooperating rule are allowed,
while ncoo that they are not. Similarly, we indicate with me that ME objects can be used,
and with nme that their use is not allowed. As regards promoters, we use label pro to
indicate that promoters can be used, while for priorities we use label pri if they can be
used (that is, if the partial order relation is not the identity relation). For the sake of
readability, we assume that the absence of label pro or pri denotes that the corresponding
feature is not allowed. Analogously to what done for P systems, when the number of
membranes is not bounded we replace n with ∗. Let PsSPn(α) be the family of sets of
vectors of natural numbers computed by the Spatial P systems of class SPn(α).
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4.3 Universality of Spatial P systems

In this section we study the universality of Spatial P systems without promoters and
priorities among evolution rules. We first prove that Spatial P systems are not universal
when only non-cooperating rules are used and ME objects are not allowed. Then we prove
that universality can be reached if ME objects are allowed.

Theorem 4.3.1. PsSP∗(ncoo, nme) ⊆ PsP1(ncoo).

Proof. We show how to translate a Spatial P system with only non-cooperating rules
and no ME objects (V, ∅, µ, σ,W0, R1, . . . , Rn) into an equivalent classical P system
(V̂ , µ, ŵ1, R̂1) with one membrane and only non-cooperating rules.

The idea is to use the spatial information to translate each evolution rule into a set of
rules which take into account the position of objects and the spatial membrane structure.
We discard the spatial description of membranes σ, but maintain the membrane structure
µ. As regards the objects, the position of each object becomes part of the object name as
a superscript. In particular, the set of objects of the translated P system is the following:

V̂ = V ∪ { xp | x ∈ V ∧ p ∈ Extents(1)}.

An object x ∈ V contained in a position p is mapped into the object xp ∈ V̂ . Therefore
the initial configuration ŵ1 of the translated P system is defined as follows:

ŵ1 =
⊎

p∈Extents(1)

{
(xp, n)

(x, n) ∈ w(0)
p

}
For any membrane i, each rule r ∈ Ri of the Spatial P system is translated into at most

|Region(i)| rules, by instantiating the rule r for each position q ∈ Region(i). Formally,
the set of rules R̂1 of the translated P system is defined as the smallest set satisfying the
following inference rule:

i ∈ {1, . . . , n} q ∈ Region(i)

(x)p → (y1)t1 , . . . , (yh)th ∈ Enabled(Ri, q) s = p+ q ∀j. zj = enc(q, i, (yj)tj )

xs → z1 . . . zh

where

enc(p, i, (y)t) =


yq if t ∈ Z2, q = p+ t;

yq if (t = outd ∧ i 6= 1) ∨ t = ink,d, q = p+ d;

y if t = outd ∧ i = 1.

By definition, a rule r is translated for a position q ∈ Extents(1) if and only if the
rule is q-enabled. Finally, the rules sending objects out of the skin membrane drop their
superscript, making the output exactly equal to that of the original Spatial P system.

Since P systems with only non-cooperating rules are not universal [70], Theorem 4.3.1
implies that also Spatial P systems with only non-cooperating rules and, in particular, no
ME objects are not universal. In the following we show that we can reach universality
by allowing ME objects. In the proof of this result we show that any matrix grammar
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Figure 4.3: Initial step of the simulation.

with appearance checking (see Section 4.1.5) can be simulated by a Spatial P system with
non-cooperating rules. Precisely, the following theorem shows that Spatial P systems with
ME objects and using only non–cooperating rules are universal. In particular, note that
neither promoters nor priorities are allowed.

Theorem 4.3.2. PsSP1(ncoo,me) = PsRE.

Proof. It is enough to show that for a grammar G in binary normal form there is a Spatial
P system ΠG = (V,E, µ, σ,W0, R1) with one membrane, which uses ME objects and only
non-cooperating evolution rules, such that Ps(ΠG) = ΨT (L(G)). We build ΠG as a system
with only a root membrane, whose geometry is depicted in Figure 4.3.

The set of ordinary objects of ΠG contains the symbols of G plus some control objects:
V = N ∪ T ∪ {c1, c

′
1, c2, c

′
2, c#, c

′
#,#}. All objects corresponding to grammar symbols will

reside in position phome, as shown in Figure 4.3. The other positions can be seen as control
positions to simulate the application of the matrices of the grammar. The ME objects
E = {e0, e1, e2, e3} do not move, and they expire after the given time, i.e. ei is cancelled
after i time steps. Formally, the rules for ei objects and trap symbol # are the following:

e3 → e2 e2 → e1 e1 → e0 e0 → λ

As regards the trap symbol #, once it is produced it is never removed, and there is a rule
# → # which ensures that the P system never halts. The other rules for the membrane
are defined in the following.

The execution consists of a repetition of cycles of four time steps. Each cycle selects
non-deterministically and then applies one of the matrices m1, . . . ,mn. If during the cycle
something goes wrong, i.e. either the application of the selected matrix is not possible or
a matrix (X → Y,A→ #) of type 3 is selected when a symbol A is present, then the trap
symbol # is introduced yielding a non-terminating system, which corresponds to aborting
the computation.

Let us define how matrices are mapped into rules. A matrix mi : (X → Y,A → x),
1 ≤ i ≤ k, i.e. without appearance checking, is mapped into the following two rules:

(1) (X)(0,0) → (Y )(0,0) (e3)p1 · · · (e3)pi−1 (e3)pi+1 · · · (e3)pn (c1)pc (e2)pc1

(2) (A)(0,0) → (x)(0,0) (e3)pA (e2)pi (c2)pc (e1)pc2

Note that, for readability, we denote by pj the vector from position phome to the position
pj itself, and similarly for the other positions. Rule (1) is used to select the matrix to be
applied: since it puts a ME object in all positions pj , with j 6= i, only one can be applied
among the n which are available. Note that the occupied positions will be free exactly
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after 3 time steps (the object e3 is used) respecting the duration of the cycle. A control
object c1 is placed in position pc and position pc1 is occupied for two time steps (object
e2). Moreover, there is a rule c1 → c′1 to let object c1 pass from step 1 to step 2. Rule (2)
cannot be applied at step 1 of the cycle because position pA is not initially free (it contains
e1) and the rule is trying to put an ME object there. Thus, the rule can be applied only
at the second step of the cycle. It transforms the non-terminal A and puts an ME object
e2 in position pi, the only one still free after the first step. Note that other rules without
appearance checking cannot be applied at the second step because the positions in which
they try to put the ME object is occupied. Note also that object e3 is put in pA, thus
freeing the position only at the second step of the next cycle. A control object c2 is put
in position pc and position pc2 is occupied for one time step.

A matrix mi : (X → Y,A → #), k + 1 ≤ i ≤ n, i.e. with appearance checking, is also
mapped into two rules:

(1′) (X)(0,0) → (Y )(0,0) (e3)p1 · · · (e3)pi−1 (e3)pi+1 · · · (e3)pn (c#)p#

(2′) (A)(0,0) → (#)(0,0) (e3)pA (e2)pi

The differences in rule (1′) w.r.t. rule (1) are that control object c1 is not needed and that
an object c# is put in the control position p#. For this object we add rules c# → c′# and
c′# → (e2)pA , i.e., we ensure the correct continuation of the cycle if the trap symbol is not
generated at the second step of the cycle. By rule (2′), if a symbol A is present in phome
at the second step of the cycle, after matrix i was selected, the trap symbol is generated
and the computation aborted, as it would happen for the grammar. Otherwise, if there
are no A symbols the cycle goes towards its end doing nothing and the computation will
continue in the next cycle.

In the third step of the cycle we perform a double check, using both control objects c′1
and c2, that all positions pi, 1 ≤ i ≤ n, are occupied. Otherwise, either one matrix was
selected, but the second part was not applied due to a missing object A, or no symbol
of N1 was left (i.e. the state symbol was cancelled), but some non-terminal symbol in N2

remains. In both cases the computation has to be aborted. This is performed by the
following rules: c′1 → # (e0)p1 , . . . , c′1 → # (e0)pn and c2 → # (e0)p1 , . . . , c2 → # (e0)pn .

In the fourth step of the cycle we simply cancel control objects in order to make the
next cycle start in a consistent state, by means of rules c′1 → (e0)pc1 and c2 → (e0)pc2 . Note
that, since positions pc1 and pc2 are occupied in step 3, these rules can not be applied, i.e.
the control objects are not cancelled in step 3.

Finally, for each terminal in T there is a rule sending it out of the membrane. Since all
terminals are produced in position phome, which is adjacent to the edge of the membrane,
such a rule can be always applied.

4.4 An example of application

In this section we show a simple application of our model to a classical example: the
evolution of “ring species” based on small changes between geographically contiguous
populations [45]. A ring species is a species which expanded along two pathways around
a geographic barrier, with the forms which gradually diverge along the pathways. The
intermediate contiguous forms can interbreed but, when the terminal forms meet on the
other side of the barrier, they have accumulated so many changes that they behave like
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Figure 4.5: Another possible evolution of the system, starting from the initial state de-
picted in Figure 4.4a.

different species. This process results in a complete ring of populations with a single
species boundary. An example of a ring species is the Greenish warbler, Phylloscopus
trochiloides. The Greenish warbler is a small insectivorous bird that breeds in forests over
a range spanning much of the Palaearctic. The species consists of six subspecies, five of
which form a ring around the Tibetan Plateau. Two of the subspecies coexisted without
interbreeding in the Yenisey River valley of central Siberia, with gradual variation through
the chain of populations to the south.

In the following we show a simple model of a species which expands around a barrier.
The colonization of a new space can be associated with a small change in the genotype
of the moving population. Such small changes do not prevent the possibility for two
contiguous populations to interbreed.

Each population is represented by its genotype: a string of three loci each of them
having, as possible values (alleles), either 0 or 1. Two populations can interbreed if their
genotypes differ in one position at most.

Figure 4.4a shows the initial situation. The environment is represented by a membrane
of size 3×3, and the barrier is represented by an inner membrane of size 1×1. The initial
population is located in position (1, 2), and it is composed of three individuals with 010
genotype (0103). The ME object e states that a position is already colonized and it cannot
be reached by a different population.

In order to present a compact model, we use the extended notation u1 − u2 → v1 − v2

for specifying a group of rules. Let us introduce the following abbreviations for denoting
adjacent positions: N = (0, 1), S = (0,−1), E = (1, 0), W = (−1, 0). A rule u1 − u2 →
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v1 − v2 can be applied to adjacent positions, in any direction, and formally corresponds
to a set of rules defined as follows:

u1 − u2 → v1 − v2 ≡


(u1)(0,0)(u2)N → (v1)(0,0)(v2)N
(u1)(0,0)(u2)S → (v1)(0,0)(v2)S
(u1)(0,0)(u2)E → (v1)(0,0)(v2)E
(u1)(0,0)(u2)W → (v1)(0,0)(v2)W

The evolution rules for the model are presented in the following, where x, y, z ∈ {0, 1},
an overlined symbol x represents the negation of x (as if 0, 1 represent the logical values
false and true), and d denotes a direction d ∈ {N,S,E,W}. For the sake of readability,
we omit the indication of position (0, 0).

xyz → xyz (1)

xyz → λ (2)

xyz2 → xyz3 (3)

xyz − xyz → xyz2 − xyz (4)

xyz − xyz → xyz2 − xyz (5)

xyz − xyz → xyz2 − xyz (6)

xyz − xyz → xyz2 − xyz (7)

xyz → xyzd ed (8)

xyz → xyzd ed (9)

xyz → xyzd ed (10)

xyz → xyzd ed (11)

Rules of type 1 simply state that individuals can survive, while rules of type 2 say
that individuals can die. Type 3 rules describe the reproduction of two individuals in
the same position, while rules of type 4–7 describe the reproduction of individuals of two
contiguous populations. The contiguous populations, in order to have offspring can have
either the same genotype or two genotypes differing in only one locus. Because we assume
that all individuals in a population have the same genotype, an offspring is placed in the
population of the parent from which it inherits its genotype.

Rules of type 8 describe the expansion of a population (actually of an individual) in
a contiguous position which is not already colonized (the expansion is possible only if the
ME object e can be placed in the target position). Rules of type 9–11 describe expansions
associated with small changes in the genotype.

The system can evolve in many directions. Figure 4.4 shows a possible evolution of
the system, starting from the initial state depicted in Figure 4.4a. Suppose that, in the
first step, rule 11 is applied to an object in position (1, 2), producing object 011 in (0, 2),
while rule 1 is applied to the remaining two objects 010. The resulting state is depicted in
Figure 4.4b. The system can evolve to a state in which all the positions are colonized, such
at the one shown in Figure 4.4c. In this case, it is easy to see that the expansion followed
two pathways around the barrier. Each population can interbreed with the contiguous
ones apart from the populations in positions (0, 0) and (1, 0). The two populations have
accumulated so many changes that their genotypes are incompatible.
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Figure 4.5 shows another possible evolution of the system, for the same starting state
as before (Figure 4.4a). Figure 4.5a shows a different possible state reached after the first
step, corresponding to the application of rule 9 producing 110 in (0, 2), rule 10 producing
000 in (2, 2), and rule 1 deleting one object 010 from position (1, 2). After another step,
the system reaches the state shown in Figure 4.5b. In this case, by rule 8, species 000
colonizes position (2, 1); by rule 5, another object 110 is created in (0, 2); while the other
010 in (1, 2) is kept unmodified by the application of rule 1. Figure 4.5c shows a reachable
state in which, as the previous example, all position are colonized, and populations 110 in
(0, 2), and 101 in (0, 1), cannot interbreed since their genotypes are too different.



Chapter 5

Spatial P systems simulation

The simulation of Spatial P systems models is a fundamental problem which we need to
address in order to increase the usefulness of the calculus. Actually, simulating generic
Spatial P system models can be quite complex. For this reason, we initially present an
algorithm which works only for a restricted kind of models, namely models with only
mutually-exclusive objects and where evolution rules have exactly one object as reactant
and one as the product. We will later discuss possible extensions of the simulation pro-
cedure for more general models. Finally, we show how Spatial P systems can be used to
simulate a model describing the behaviour of herring schools.

5.1 Simulation algorithm for restricted models

We present a simulation algorithm which efficiently simulates Spatial P system models
constrained as follows:

• there are n mutually-exclusive objects: E = {a1, . . . , an}, and no ordinary objects
(V = ∅);

• all rules have exactly one object as reactant and one as product, that is each rule is
of the form (ax)(0,0)[π] → (ay)p for some promoters π, position p, and ax, ay ∈ E.

Moreover, let us denote by R(ax) the subset of rules in which ax appears as the
reactant of the rule. We denote by K the maximum cardinality of the set R(ax), for
all ax ∈ E. We assume that the priority relation on rules in R(ax) defines a total
ordering;

Moreover, for simplicity in the presentation of the algorithms, we assume that the skin
membrane is square, with size N ×N for some N ∈ N.

Let target be a function that gives the resulting (relative) position associated with a
rule, that is: target(a(0,0)[π]→ a′p′) = p′. We introduce the definition of a filling selection,
which will be used in the definition of the simulation algorithm.

Definition 5.1.1. Given a configuration W , a selection S ∈ S(a,b)
W is said to be filling for
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W iff the following property holds:

∀(p,R) ∈ S. ∀r′ ∈ Enabled(R(a), p).

(R = {} =⇒ wp \\ η(S, p+ target(r′)) ] T (S, p+ target(r′)) 6= ∅) ∧
(R = {r} =⇒ r′ ≤ r ∨ wp \\ η(S, p+ target(r′)) ] T (S, p+ target(r′)) 6= ∅)

We denote the set of all filling selections, for a configuration W , as Sfilling
W .

A filling selection is such that the resulting position of each rules r′ having higher
priority than the currently selected rule r, if any, is already occupied. If no rule is selected
for the position p, then the resulting position of each p-enabled rule is occupied. This
implies that, given a rule r applied to an object a in a position p, it is not possible to
replace the application of r with any other p-enabled rule r′ ∈ R(a) such that r′ > r and
target(r′) 6= target(r), since the resulting position is already occupied. Note that the
definition of filling selection considers, for possible replacements, each position singularly.

The simulation algorithm for the restricted case performs a sequence of steps, where
each step corresponds to a transition of the Spatial P system and is simulated by the
algorithm SimulateStep. Given a configuration W , SimulateStep(W ) generates another
configuration W ′ simulating a possible transition of the Spatial P system.

A step is composed of the following three phases:

1. The first phase determines a filling selection S ∈ S(a,b), that is satisfying the proper-
ties of applicability (a) and mutual exclusivity (b), from Definition 4.2.4, but possibly
violating the property on priority and maximality (c).

2. If the selection obtained from the first phase is not valid (that is the property on
priority and maximality is violated) then the second phase finds a selection S> � S
which is valid (S> ∈ Svalid), by computing a sequence of selections S = S1 ≺ S2 ≺
· · · ≺ Sn = S>, in which each Si satisfies properties (a) and (b) from Definition 4.2.4.

By the definition of filling selection, by considering any singular position p, it is
not possible to replace the currently selected multiset R = S(p) (which is such that
either R = ∅ or R = {r}, for some r) with a greater multisets R′ � R such that
R′ = {r′} for some r′ > r, unless the resulting position of r′ is the same as that of
the currently occupied position. Therefore, in order to find a selection Si greater
than the preceding one Si−1, it is necessary to perform various replacements all at
once, in different positions. This corresponds to finding a set of positions C where
it is possible to replace the multiset of rules R(p), applied in each position p ∈ C,
with another multiset of rules of higher priority R′(p) � R(p). By performing such a
replacement, we obtain a selection Si+1 � Si, which is also filling. This procedure is
repeated until there are no more replacements to be performed, reaching selection
S>.

3. Finally, the valid selection S> found is applied to the current configuration W giving
W ′.

5.1.1 Implementation

Algorithm 1 contains the implementation of SimulateStep algorithm. SimulateStep takes
as input a matrix of natural numbers, of size N ×N , describing the content of each cell,
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Algorithm 1 SimulateStep(grid : N[, ])

1: collisions grid = GenerateSelection(grid)
2: V alidateSelection(collisions grid)
3: return CloseStep(collisions grid)

and returns the updated grid resulting from the application of a valid selection of rules to
the model. The positions inside such a matrix correspond to the positions of the extents
of the skin membrane, that is to Extents(1) (see Section 4.2). Formally, each cell (i, j)
contains a value x = grid[i, j] with 0 ≤ x ≤ n, where value x = 0 denotes an empty cell,
while a value 1 ≤ x ≤ n means that the object ax is contained in the cell.

The main data structure of the algorithm is the collisions grid, which is a matrix
of size N × N representing a selection of rules. The collisions grid is constructed by
GenerateSelection, which implements Phase 1 of the algorithm. Then collisions grid
is used by V alidateSelection, which implements Phase 2. Finally, CloseStep uses the
information contained in collisions grid to compute the updated configuration, which is
subsequently returned as the result of the algorithm. We propose in the following two
different algorithms for implementing Phase 1 of the algorithm.

We assume the algorithm FindMoves(p), which computes the list of possible moves for
the object contained in position p, according to the evolution rules defined for the Spatial
P system model. Let ay be the object in position p, then FindMoves(p) gives a list of
pairs 〈(q1, x1), . . . , (qk, xk), (p, ay)〉, where each pair (qi, xi) corresponds to the application
of a rule to the object in p. Precisely, each (qi, xi) describes the result of the application
of a rule (ay)(0,0)[π] → (axi)qi ∈ Enabled(R(ay), p), which puts the object axi in position
qi = p+ qi. We assume the pairs to be in descending order of priority with respect to the
rules they correspond. The last element returned by the function FindMoves is (p, ay),
which describes the lack of application of any rule to the object. Therefore, FindMoves
never returns an empty list.

Each cell of collisions grid contains a list of pairs of the form (moves, n), where moves
is a list describing all the possible moves of an object as obtained from FindMoves, and n
is the index of a move in moves, i.e. 1 ≤ n ≤ length(moves). A pair (moves, n) describes
the current move which is considered by the algorithm for the object contained in some
position p, where moves = FindMoves(p). During the processing, the algorithm ensures
that for all positions p, all the current moves associated with collisions grid[p] refer to
the position p. That is, ∀p. ∀(moves, n) ∈ collisions grid[p]. moves[n] = (p, x) for some
x. Therefore, the contents of collisions grid describes a selection of rules, to which it is
directly related.

We propose two different algorithms for implementing Phase 1 of the algorithm. Let
us consider the partially ordered set S(a,b), with respect to the priority ordering � defined
by Equation 4.2, of selections satisfying the property (a) of applicability and (b) of mutual
exclusivity from Definition 4.2.4. Algorithm GenerateSelection1 implements an iterative
procedure which starts from the least selection ⊥ of the set S(a,b), then iteratively con-
structs selections greater than the previous ones, until a filling selection (Definition 5.1.1)
is obtained. Differently, algorithm GenerateSelection2 deals with the partially ordered
set S(a), w.r.t. relation �, of selections satisfying the property (a) of applicability. It starts
from the greatest selection > of the set S(a), then iteratively constructs lesser selections,
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until it reaches a filling selection which also satisfies the property (b) of mutual exclusivity
from Definition 4.2.4.

The SetupStep algorithm, presented in the following, is used by both the algorithms
GenerateSelection1 and GenerateSelection2 to generate their initial selection, either ⊥ ∈
S(a,b), for the former, or > ∈ S(a), for the latter.

SetupStep SetupStep uses FindMoves to initialize collisions grid, by considering for
each object either its highest or lowest priority move. The flag which ∈ {b, t} of the
algorithm specifies which selection should be generated. Values b, t indicate elements
⊥ ∈ S(a,b) and > ∈ S(a), respectively. If ⊥ is requested, then the current index of each
list of moves moves is set to length(moves) (line 11), thus referring to the lowest priority
move. Otherwise, if > is requested, the current index of each list of moves moves is set
to 1, corresponding to the highest priority move.

GenerateSelection1 Algorithm GenerateSelection1 starts from selection ⊥ ∈ S(a,b),
in which no rule is applied to any object, i.e. such that ∀(p,R) ∈ S. R = {}. The set Q
represents, at any iteration, a superset of the positions occupied by some object. At each
iteration, a position p ∈ Q is randomly selected and removed from Q, then the algorithm
looks if there is a higher priority rule which can replace the currently selected move without
causing a conflict, that is without violating the constraint on mutually exclusive objects.
Assuming that n denotes the currently selected move for the object (line 8), the algorithm
searches for another rule to apply, corresponding to an index index < n. If such a rule is
found (index 6= −1) then it is applied, by freeing position p (line 18) and putting the pair
(moves, index) into position q (line 19). In case there is more than one higher priority
rule applicable, the algorithm selects the one with the lowest priority.

The algorithm uses a set of positions visited, which represents the set of positions
which, since the last replacement, have been visited and in which no rule replacement
could be done. During a step, if a replacement is performed, then all the previously visited
positions are added to Q (line 20), since replacing a rule application can cause position
p to be freed, thus enabling the application of some other rules which were previously
blocked. Note that also the newly occupied position q is added to Q, in order to allow
further replacements in it. Finally, visited is reset to the empty set. On the other hand, if
no replacement is performed in a step, then position p is added to the set visited (line 23),
as no replacement is possible in p until some other replacement is performed somewhere
else.

GenerateSelection2 Algorithm GenerateSelection2 starts from element > ∈ S(a), and
implements an iterative procedure in which, at each iteration, it resolves a conflict in some
position among some mutually exclusive objects. The set Q represents a superset of all
the non-empty positions violating the property (b) of mutual exclusivity from Defini-
tion 4.2.4. At each iteration, a position p ∈ Q is randomly selected, and then the conflict
in p is resolved by randomly selecting one application to be confirmed among those in
collisions grid[p] = 〈(moves1, n1), . . . , (movesk, nk)〉 and by cancelling the other appli-
cations. That is, exactly one pair (movesi, ni) is kept in collisions grid[p], while each
other pair (movesj , nj), j 6= i, is removed from collisions grid[p] and added, as a pair
(movesj , nj+1) to the position corresponding with the lower-priority move movesj [nj+1].
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Intuitively, this behaviour corresponds to randomly confirming a move, and then “pushing
back” all other objects towards their starting positions. At the same time, all the positions
to which some object are moved to are added to set Q (line 23), as pushing back an object
can cause new conflicts in those positions.

Given collisions grid[p] = 〈(moves1, n1), . . . , (movesk, nk)〉, the application to confirm
is randomly selected only if there is no object to which no rule can be applied anymore
(either because they have been cancelled in previous iterations or, possibly, because there
were no rule applicable from the beginning). In this case, that particular object which
cannot be pushed back has to be confirmed for the position. This behaviour is implemented
at lines 8–13.

The procedure implemented by GenerateSelection terminates as soon as a conflict-free
selection has been reached, which satisfies the properties of applicability (a) and mutual
exclusivity (b). Since it is not possible to push back the objects indefinitely, this procedure
eventually terminates. In the worst case, all objects are brought back to their starting
positions, meaning that no rule is applied to any object.

Note that, once a position has been occupied, it is not freed anymore. That is, let
Occi = {p | length(collisions grid(i)[p]) > 1} be the set of positions in which, at the
beginning of the ith iteration, there is at least one application considered for each position.
Then, for all iterations i, Occi ⊆ Occi+1. However, the object present in a position may
change at different iterations, as new conflict may arise for positions which have been
already confirmed in previous iterations. Finally, this implies that the additional property
on the selection, required by Phase 1, is satisfied. That is, for any rule applied in a position
p, the positions resulting from the application of any other higher-priority p-enabled rule
are occupied.

ValidateSelection Algorithm V alidateSelection implements Phase 2 of the algorithm
which, given the restricted form of rules in this case, means computing a sequence of
selections S = S1 ≺ S2 ≺ · · · ≺ Sn = S⊥ where each selection Si is determined by finding
a set of occupied positions in the preceding selection Si−1 where it is possible to replace
the rule applied in each position with another rule of higher priority. Therefore, at each
iteration, the V alidateSelection algorithm searches a set of applications of rules in which
each application can be replaced by some higher-priority rule, while still satisfying the
properties of applicability (a) and mutual exclusivity (b) from Definition 4.2.4.

The implementation uses a directed graph Gdep = (V,E) of dependencies between
applications of rules, which is such that each directed cycle in the graph describes a
possible replacement of rules as required by Phase 2 of the algorithm. The nodes V =
{p | length(collisions grid[p]) > 0} of the graph correspond to non-empty positions, and
the set of edges E is such that, for each position p ∈ V , there is an edge from p to
each position q resulting from the application of any other higher-priority p-enabled rule.
Formally, ∀p, q ∈ V such that collisions grid[p] = 〈(moves, n)〉:

(p, q) ∈ E. ⇐⇒ ∃i ∈ {1, . . . , n− 1}. (q, x) = moves(i) for some x

V alidateSelection algorithm initially constructs the graph Gdep, then iteratively searches
for a cycle C = 〈p1, . . . , pk〉, performs the replacement of rules described by C by updating
collisions grid (line 6), and updates the graph. The graph is updated by removing, for
each selected rule of the cycle C, all the edges corresponding to the rule itself and the
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Algorithm 2 SetupStep(grid : N[, ], which : {t, b})
1: collisions grid = new array[N,N ]
2: for i = 1 to N do
3: for j = 1 to N do
4: collisions grid[i, j] = 〈〉
5: end for
6: end for
7: for i = 1 to N do
8: for j = 1 to N do
9: if grid[i, j] 6= 0 then

10: moves = FindMoves(grid, i, j)
11: if which = t then n = 1 else n = length(moves) end if
12: ((i′, j′), x) = moves[n]
13: collisions grid[i′, j′] = collisions grid[i′, j′] @ 〈(moves, n)〉
14: end if
15: end for
16: end for
17: return collisions grid

other lower priority rules, and by replacing each edge (pi, q), corresponding to some higher
priority rule, by (pi+1, q) (line 7). The replacing of edges (pi, q) with (pi+1, q) means that
higher priority rules can still be used for the object in pi+1, which would cause it to move
to some other position q. This last modification of the graph is actually the same as
reconstructing the graph from the updated collisions grid. In order to ensure that all
possible selections of rules can be obtained from the algorithm, it is necessary that the
search for a cycle randomly finds any cycle of the graph. This procedure is iterated until
there are no more cycles, terminating with a collisions grid which corresponds to a valid
selection.

Actually, there can be different replacements which correspond to the same cycle C.
This happens if there are different rule applications which would put an object in a same
position, among the p-enabled rules of priority higher than the current rule. Since the
algorithm does not take into account the actual object present in a position, all those
rules can be considered equivalent for the purpose of the replacement. In fact, selecting
any of those rules would produce a replacement which can be applied. Moreover, not
selecting the rule with the highest priority would also be correct, as the highest priority
rule could be found and applied in some subsequent iteration. However, the algorithm
actually applies the highest priority rule among those equivalent (line 5), since the removal
of edges corresponding to lower priority rules (line 7) is correct only in that case.

Finally, CloseStep applies the valid selection, obtained from previous steps, to the
current state grid, returning the updated state new grid.

Example 5.1.1. This example illustrates how the algorithm works, in which both im-
plementations GenerateSelection1 and GenerateSelection2 of Phase 1 of the algorithm
directly find a valid selection. Consider a Spatial P system with objects V = ∅, E = {a, b},
and the following rewrite rules with their relative priorities (where r1 > r2 indicates that
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Algorithm 3 GenerateSelection1(grid : N[, ])

1: collisions grid = SetupStep(grid, b)
2: let Q = {(i, j) | length(collisions grid[i, j]) > 0}
3: visited = {}
4: while Q 6= {} do
5: select randomly a position p = (i, j) ∈ Q
6: Q = Q \ {p}
7: index = −1
8: let 〈(moves, n)〉 = collisions grid[i, j]
9: for k = n− 1 to 1 do

10: let (q, x) = moves[k]
11: if collisions grid[q] = 〈〉 then
12: index = k
13: break
14: end if
15: end for
16: if index 6= −1 then
17: let (q, x) = moves[index]
18: collisions grid[p] = 〈〉
19: collisions grid[q] = 〈(moves, index)〉
20: Q = Q ∪ visited ∪ {q}
21: visited = {}
22: else
23: visited = visited ∪ {p}
24: end if
25: end while
26: return collisions grid
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Algorithm 4 GenerateSelection2(grid : N[, ])

1: collisions grid = SetupStep(grid, t)
2: let Q = {(i, j) | length(collisions grid[i, j]) > 1}
3: while Q 6= {} do
4: select randomly a position p = (i, j) ∈ Q
5: Q = Q \ {p}
6: index = −1
7: collisions = collisions grid[i, j]
8: for i = 1 to length(collisions) do
9: let (moves, n) = collisions[i]

10: if length(moves) = n then
11: index = i
12: end if
13: end for
14: if index = −1 then
15: index = random({1, . . . , length(collisions)})
16: end if
17: collisions grid[i, j] = 〈collisions[index]〉
18: for i = 1 to length(collisions) do
19: if i 6= index then
20: let (moves, n) = collisions[i]
21: ((i′, j′), x) = moves[n+ 1]
22: collisions grid[i′, j′] = collisions grid[i′, j′] @ 〈(moves, n+ 1)〉
23: Q = Q ∪ {(i′, j′)}
24: end if
25: end for
26: end while
27: return collisions grid

Algorithm 5 ValidateSelection(collisions grid : N[, ])

1: let Gdep = (V,E) be the directed graph such that:

V = {p | length(collisions grid[p]) > 0}
E = {(p, q) | collisions grid[p] = 〈(moves, n)〉 ∧

∃x. ∃i. 1 ≤ i ≤ n− 1 ∧ (q, x) = moves[i]

2: while there exists a cycle 〈p1, p2, . . . , pk〉 in graph (V,E) do
3: for i = 1 to k do
4: let 〈(moves, n)〉 = collisions grid[pi]
5: let m = max{j | moves[j] = p(i+1 mod k)}
6: collisions grid[pi] = 〈(moves,m)〉
7: E = E \{(pi, q) | ∃q}∪{(moves[m], q) | ∃x. ∃j. 1 ≤ j ≤ m−1∧(q, x) = moves[j]}

8: end for
9: end while
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Algorithm 6 CloseStep(collisions grid : N[, ])

1: new grid = new N[N,N ]
2: for i = 1 to N do
3: for j = 1 to N do
4: if collisions grid[i, j] = 〈〉 then
5: new grid[i, j] = 0
6: else
7: let 〈(moves, n)〉 = collisions grid[i, j]
8: let ((i′, j′), x) = moves[n]
9: new grid[i, j] = x

10: end if
11: end for
12: end for
13: return new grid

rule r1 has higher priority than r2):

a(0,0) → a(2,0) > a(0,0) → a(1,0)

b(0,0) → b(0,1)

Consider the following initial state:

W0 =
a

b b

There are three possible transitions of the Spatial P system from configuration W0, which
result in one of the following possible configurations:

W1 =
b a

b
W2 =

a b b
W3 =

a b

b

We exemplify the execution of SimulateStep(W0), using GenerateSelection1.

Setup SetupStep(W0, b) produces the following initial state:

collisions grid(0) =
〈(l1, 3)〉 〈〉 〈〉
〈〉 〈(l2, 2)〉 〈(l3, 2)〉

Q(0) = {(1, 2), (2, 1), (3, 1)}
visited(0) = {}

where

l1 = FindMoves(W0, 1, 2) = 〈(3, 2) : a, (2, 2) : a, (1, 2) : a〉
l2 = FindMoves(W0, 2, 1) = 〈(2, 2) : b, (2, 1) : b〉
l3 = FindMoves(W0, 3, 1) = 〈(3, 2) : b, (3, 1) : b〉

Note that collisions grid(0) corresponds to the initial state W0. The GenerateSelection1
algorithm performs the following steps.
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Step 1 Suppose p = (1, 2); then index = 2 and the following state is reached at the end
of the step, where U (1) represents the configuration described by collisions grid(1):

collisions grid(1) =
〈〉 〈(l1, 2)〉 〈〉
〈〉 〈(l2, 2)〉 〈(l3, 2)〉 U (1) =

a

b b

Q(1) = {(2, 1), (2, 2)(3, 1)} visited(1) = {}

Step 2 p = (2, 2); index = 1:

collisions grid(2) =
〈〉 〈〉 〈(l1, 1)〉
〈〉 〈(l2, 2)〉 〈(l3, 2)〉 U (2) =

a

b b

Q(2) = {(2, 1), (3, 1), (3, 2)} visited(2) = {}

Step 3 p = (3, 2); index = −1:

collisions grid(3) = collisions grid(2) U (3) = U (2)

Q(3) = {(2, 1), (3, 1)} visited(3) = {(3, 2)}

Step 4 p = (3, 1); index = −1:

collisions grid(4) = collisions grid(3) U (4) = U (3)

Q(4) = {(2, 1)} visited(4) = {(3, 1), (3, 2)}

Step 5 p = (2, 1); index = 1:

collisions grid(5) =
〈〉 〈(l2, 1)〉 〈(l1, 1)〉
〈〉 〈〉 〈(l3, 2)〉 U (5) =

b a

b

Q(5) = {(3, 1), (3, 2), (2, 2)} visited(5) = {}

Step 6 p = (3, 2); index = −1:

collisions grid(6) = collisions grid(5) U (6) = U (5)

Q(6) = {(3, 1), (2, 2)} visited(6) = {(3, 2)}

Step 7 p = (3, 1); index = −1:

collisions grid(7) = collisions grid(6) U (7) = U (6)

Q(7) = {(2, 2)} visited(7) = {(3, 1), (3, 2)}

Step 8 p = (2, 2); index = −1:

collisions grid(8) = collisions grid(7) U (8) = U (7)

Q(8) = {} visited(8) = {(3, 1), (3, 2), (2, 2)}
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Step 6 The dependency graph Gdep constructed by algorithm V alidateSelection for
Phase 2 is the following:

(2,2) (3,2)

(3,1)

Since there are no cycles in the graph, the selection obtained from Phase 1 is valid.
Finally CloseStep produces the following configuration:

new grid =
b a

b
= W1

It is easy to see that, by randomly selecting different positions, algorithm GenerateSelec-
tion1 can generate all the possible resulting states W1, W2, W3.

Example 5.1.2. Consider the Spatial P system model defined in the previous ex-
ample. In the following we show a possible execution of SimulateStep(W0), using
GenerateSelection2 algorithm.

Setup SetupStep(W0, t) produces the following initial state:

collisions grid(0) =
〈〉 〈(l2, 1)〉 〈(l1, 1), (l3, 1)〉
〈〉 〈〉 〈〉 Q(0) = {(3, 2)}

where l1, l2, l3 are as before. In this case, collisions grid(0) corresponds to the following
tentative configuration:

U (0) =
b ab

The simulation algorithm performs the following steps:

Step 1.a p = (3, 2)

collisions = 〈(l1, 1), (l3, 1)〉
index = 1 (randomly selected)

collisions grid[3, 2] = 〈(l1, 1)〉
collisions grid[3, 1] = 〈(l3, 2)〉

Then, at the end of the step:

Q(1a) = {(3, 1)}

collisions grid(1a) =
〈〉 〈(l2, 1)〉 〈(l1, 1)〉
〈〉 〈〉 〈(l3, 2)〉 U (1a) =

b a

b
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Step 2.a p = (3, 1)

collisions = 〈(l3, 2)〉
index = 1

collisions grid[3, 1] = 〈(l3, 2)〉

Q(2a) = {}

collisions grid(2a) =
〈〉 〈(l2, 1)〉 〈(l1, 1)〉
〈〉 〈〉 〈(l3, 2)〉 U (2a) =

b a

b

The selection obtained in this case is the same as in the execution of algorithmGenerateSe-
lection1 shown previously. In fact, collisions grid(2a) is the same as collisions grid(5)

previously shown. Therefore, the dependency graph Gdep constructed by algorithm
V alidateSelection for Phase 2 is the same as before. Since there are no cycles in the
graph, the selection obtained from Phase 1 is valid, and CloseStep produces configuration
W1.

Another possible execution is the following, which continues after Setup step:

Step 1.b p = (3, 2)

collisions = 〈(l1, 1), (l3, 1)〉
index = 2 (different value selected w.r.t. step 1.a)

collisions grid[3, 2] = 〈(l3, 1)〉
collisions grid[2, 2] = 〈(l2, 1), (l1, 2)〉

Q(1b) = {(2, 2)}

collisions grid(1b) =
〈〉 〈(l2, 1), (l1, 2)〉 〈(l3, 1)〉
〈〉 〈〉 〈〉 U (1b) =

ba b

Step 2.b p = (2, 2)

collisions = 〈(l2, 1), (l1, 2)〉
index = 1 (randomly selected)

collisions grid[2, 2] = 〈(l2, 1)〉
collisions grid[1, 2] = 〈(l1, 3)〉

Q(2b) = {(1, 2)}

collisions grid(2b) =
〈(l1, 3)〉 〈(l2, 1)〉 〈(l3, 1)〉
〈〉 〈〉 〈〉 U (2b) =

a b b
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Step 3.b p = (1, 2)

collisions = 〈(l1, 3)〉
index = 1

collisions grid[1, 2] = 〈(l1, 3)〉

Q(3b) = {}

collisions grid(3b) =
〈(l1, 3)〉 〈(l2, 1)〉 〈(l3, 1)〉
〈〉 〈〉 〈〉 U (3b) =

a b b

Step 4.b The dependency graph Gdep constructed by V alidateSelection is:

(1,2) (3,2)(2,2)

As for the previous case, there are no cycles in the graph. The final configuration
constructed by CloseStep is the following:

new grid =
a b b

= W2

Finally, it is easy to see that W3 is the only other possible configuration that can be
obtained, by selecting index = 2 at step 2.b.

Example 5.1.3. This example shows a case in which Phase 1, by using algorithm
GenerateSelection2, produces a selection which is not valid, as it violates the property
of priority and maximality (c) from Definition 4.2.4. Consider a Spatial P system with
objects V = ∅, E = {a, b, c}, and the following initial configuration:

W0 =
a b c

Let denote by p1 = (1, 2), p2 = (2, 2), p3 = (3, 2), the positions above objects a, b, and c,
respectively. The evolution rules for this model are the following, that are expressed, for
the sake of simplicity, using absolute positions instead of relative positions:

r(2)
a = a(1,1) → ap2 > r(1)

a = a(1,1) → ap3

r
(2)
b = b(2,1) → bp2 > r

(1)
b = b(2,1) → bp1

r(2)
c = c(3,1) → cp1 > r(1)

c = c(3,1) → cp2

SetupStep tries to apply the highest priority rule r
(2)
a , r

(2)
b , and r

(2)
c , obtaining the

following tentative configuration:

U (0) =
c ab
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Suppose that the conflict in position (2, 2) is resolved by confirming object a, and cancelling

the application of rule r
(2)
b . Thus, the algorithm considers the application of r

(1)
b to b,

giving:

U (1) =
bc a

Supposing that the conflict in (1, 2) is now resolved by confirming the application of r
(1)
b

and cancelling r
(2)
c , the subsequent tentative configuration is:

U (2) =
b ac

This last operation has produced a new conflict in position (2, 2), that we suppose is

resolved by confirming the application of r
(1)
c and cancelling r

(2)
a , giving:

U (3) =
b c a

This last configuration obtained from Phase 1 corresponds to selecting the rules r
(1)
a ,

r
(1)
b , and r

(1)
c . However, this selection of rules is not valid, since we can replace the

application r
(1)
b with r

(2)
b and r

(1)
c with r

(2)
c , obtaining a greater selection (according to the

priority relation defined by Equation 4.2) that satisfies the properties of applicability (a)
and mutual exclusivity (b) from Definition 4.2.4. Such a replacement is actually found
by V alidateSelection algorithm, which corresponds to the only cycle in the dependency
graph:

p1 p2 p3

Finally, the valid selection of rules r
(1)
a , r

(2)
b , r

(2)
c produces the following configuration:

W1 =
c b a

5.1.2 Correctness of the restricted algorithm

Theorem 5.1.1. The restricted simulation algorithm, using either algorithm Generate-
Selection1 or algorithm GenerateSelection2 as implementation of Phase 1, behaves cor-
rectly with respect to the semantics of Spatial P systems, that is:

∀S. W
S−→W ′ ⇐⇒ W ′ can be generated by SimulateStep(W )).

Proof. Case ⇐=) Phase 1 of the algorithm may produce a selection S which is not valid
because it violates property (c) on priority and maximality. By definition of the priority
relation on selections � (Equation 4.2), this means that there exists a valid selection
S> � S (i.e. S> satisfies all properties of Definition 4.2.4). In Phase 2, such a valid
selection S> is determined.
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Let Si be a selection satisfying properties (a) and (b), but violating (c). In order to find
a selection Si+1 � Si satisfying both (a) and (b), it is necessary to find a set of positions
in which some rule is applied in each position, and such that either (i) the multiplicity of
a rule is increased (m(R, r) < m(R′, r)), or (ii) there is a rule with higher priority whose
multiplicity is increased (∃r′ > r. m(R′, r′) > m(R, r)). Since in each position there is
at most one object, case (i) cannot occur. For the same reason, in case (ii), increasing
the multiplicity of a rule r′ > r, with respect to the rule r currently applied in a position,
actually means replacing the application of r with an application of r′.

Recall that Phase 1 produces a selection such that, for any position p in which a rule
r is applied to an object a, all the positions which would be occupied by the application
of any other p-enabled rule r′ ∈ R(a), with r′ > r, are already occupied. This implies
that, for each replacement of a rule that results in a position x being freed and a position
y being occupied (which can be the same as x), there are both (i) a replacement which
occupies x and (ii) a replacement which frees position y. Formally, for any position p in
which a rule r(p) = a(0,0)[π] → a′p1 is replaced by a rule r′(p) = a(0,0)[π

′] → a′′p2 , there

exists a position p′ in which a rule r(p′) = b(0,0)[π
′′] → b′q1 is replaced by some rule r′(p

′)

such that p + p2 = p′ + q1. This corresponds to finding a cycle in the dependency graph
Gdep constructed in algorithm V alidateSelection. By applying such a replacement, we
obtain a selection Si+1 � Si. Note that there exists a selection Si+1 � Si iff there is such
a replacement of rules. Since there are no infinite chains of selections S1 ≺ S2 ≺ · · · ≺
Si ≺ · · · in which all the selections satisfy properties (a) and (b) but not (c), by iterating
this procedure we eventually reach a valid selection S>.

Case =⇒) This part of the proof is presented by considering the two proposed implemen-
tations of Phase 1, namely algorithms GenerateSelection1 and GenerateSelection2.

In the following, we denote by −−→(1)
1 and −−→(2)

1 the relations describing an iteration of
the two algorithms implementing Phase 1, GenerateSelection1 and GenerateSelection2,

respectively. That is S1 −−→(1)
1 S2 iff, starting from selection S1, S2 is reachable after one

iteration of algorithm GenerateSelection1, and similarly for relation −−→(2)
1 and algorithm

GenerateSelection2. Moreover, let =⇒(1)
1 and =⇒(2)

1 be transitive closures of −−→(1)
1 and

−−→(2)
1 , respectively. As regards Phase 2, we denote by −−→2 the relation describing an

iteration of the V alidateSelection algorithm, and by =⇒2 the transitive closure of −−→2.
Finally, let target be the function that gives the resulting (relative) position associated
with a rule, that is: target(a(0,0)[π]→ a′p′) = p′.

GenerateSelection1 Let min(Sfilling) be the set of minimal elements of Sfilling. That
is, min(Sfilling) ⊆ Sfilling is such that: (i) ∀S ∈ min(Sfilling). @S′ ∈ Sfilling. S′ ≺ S; and (ii)
∀S′ ∈ Sfilling. ∃S ∈ min(Sfilling). S � S′.

In order to prove the thesis, it is sufficient to prove that:

1. ∀S ∈ min(Sfilling). ⊥ =⇒1 S, that is any minimal filling selection can be obtained
from GenerateSelection1;

2. ∀S ∈ Svalid. ∃S′ ∈ min(Sfilling). S′ =⇒2 S, that is for any valid selection S there is
a minimal filling selection S′ such that algorithm V alidateSelection can obtain S
starting from S′.
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As regards part 1, we prove that, given a minimal filling selection S, for all selections
S′ ≺ S, GenerateSelection1 algorithm can perform an iteration from S′ to some other S′′

which is still less than or equal to selection S. That is, given a minimal filling selection
S ∈ min(Sfilling):

∀S′ ∈ S(a,b). S′ ≺ S =⇒ ∃S′′ ∈ S(a,b). S′ −−→(1)
1 S′′ ∧ S′ ≺ S′′ � S

This implies that GenerateSelection1 can generate any minimal filling selection S.

Given a configuration W , and a selection S ∈ S(a,b)
W , we denote by occ(S) the set of

occupied positions in the configuration resulting from the application of S to W , that is,
given W ′ = apply(W,S), then occ(S) = {p | w′p 6= ∅}.

Consider a selection S ∈ min(Sfilling), and a selection S′ ∈ S(a,b) such that S′ ≺ S.
Let us consider the sets of occupied position for selections S and S′, namely occ(S) and
occ(S′), respectively. There are two possible cases: either occ(S) = occ(S′), or not.

On one hand, assume that occ(S) = occ(S′). Then there must exist a position p in
which the currently applied rule r, i.e. S′(p) = {r}, can be replaced by the algorithm
with a rule r′ � r such that target(r′) /∈ occ(S), and which is smaller than the rule r′′

selected for p in S, i.e. S(p) = {r′′} =⇒ r′′ � r′. In fact, suppose that such a position
does not exist. Since S ∈ Sfilling, also S′ ∈ Sfilling and, therefore, S would not be minimal,
contradicting the hypothesis.

On the other hand, assume that occ(S) 6= occ(S′). Note that the number of occupied
positions in S and S′ is the same, that is |occ(S)| = |occ(S′)|. Therefore, there exists a
position q ∈ occ(S) \ occ(S′). Consider the selection S, and let p be the position in which
there is a rule r′′ applied in p that puts an object in q, that is S(p) = {r′′}∧target(r′′) = q.
It is sufficient that the algorithm selects position p to search for a greater rule r′ to replace
the currently applied rule r, with S′(p) = {r}. In fact, the algorithm selects the lowest
applicable rule r′ such that r′′ � r′ � r and target(r′) 6= target(r). In the worst case,
if no rules r̂ such that r ≺ r̂ ≺ r′′ can replace the currently applied rule r, then the
algorithm selects rule r′′. In such a case, the replacement could be forbidden only if
target(r′′) = target(r′). However, this is absurd, since it would imply that S is not
minimal, contradicting the hypothesis.

As regards part 2, consider a valid selection S ∈ Svalid. In order to obtain a minimal
filling selection, it is sufficient to construct a sequence of filling selections S = S1 �
S2 � · · · � Sk = S′, where each Si+1 is obtained from Si by replacing the rules selected
for some positions with lower priority rules, ensuring that the set of positions occupied
remains the same, i.e. occ(Si+1) = occ(S). This construction corresponds to the converse
of algorithm V alidateSelection, and terminates as soon as a minimal filling selection
S′ = Sk ∈ min(Sfilling) is obtained. Therefore S′ =⇒2 S.

GenerateSelection2 Consider the set S(a) of selections that satisfy the property of
applicability (a) from Definition 4.2.4, given the configuration W . The algorithm starts
with a selection > (constructed by SetupStep) corresponding to the maximum element of
S(a), according to the priority ordering � defined by Equation 4.2.

In order to prove the thesis, it is sufficient to prove that any valid selection S can be

obtained from Phase 1, that is for all valid selection S, > =⇒(2)
1 S. We actually prove

that, given a valid selection S, for all selections S′ � S, GenerateSelection2 algorithm can
perform an iteration from S′ to some other S′′ which is still greater than or equal to the
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valid selection S. Formally, given a valid selection S, ∀S′ � S. ∃S′′. S′ −−→(2)
1 S′′ ∧ S′ �

S′′ � S. This implies that the algorithm can reach any valid selection S.
It is sufficient that the algorithm confirms a rule application (p, {r}) ∈ S′ such that

no other rule application (p′, {r′}) ∈ S′ conflicting with (p, {r}) is also in S. Formally,
∀(p′, {r′}) ∈ S ∩ S′. (p′, {r′}) 6= (p, {r}) =⇒ p′ + target(r′) 6= p + target(r). Since there
are no conflicts in S it is always possible to select such a rule application.

5.1.3 Algorithm complexity

In this section we discuss the time complexity of the algorithm for simulating a step.
Let denote by m the number of objects of the Spatial P system, i.e. m = |E|. Recall
that K denotes the maximum number of different rules having the same reactant object,
i.e. K = maxa∈E |R(a)|. Moreover, let H denote the maximum number, among all rules,
of different positions in which the promoters of a rule are contained, i.e. H = max{ γ |
∃(ax)(0,0)[(π1)q1 . . . (πγ)qγ ]→ (ay)p ∈ R}. Finally, recall that we assume that the algorithm
works with a square grid of size N ×N , corresponding to a square skin membrane. The
time complexity of the algorithm composing the SimulateStep algorithm are discussed in
the following.

SetupStep The predominant computational cost is given by the iteration over all
positions p ∈ {1, . . . , N} × {1, . . . , N} at lines 7–16 of the algorithm, where function
FindMoves is called for each non-empty position. FindMoves has to retrieve the set
of rules in which the reactant of each rule corresponds to the object contained in the
considered position, which can be done in O(1). Then, it has to verify the applicability of
each rule (i.e. if all the promoters are present in their relative positions), and generating
the list of moves to be returned, which costs O(KH). Since there are m objects, the total
computational cost is O(N2 +mKH)

GenerateSelection1 The algorithm iterates through positions in Q until it finds a
position in which there is a rule of higher priority that can replace the currently selected
rule for the position. The size of Q is bounded by the number of objects m, i.e. |Q| ≤ m.
In the worst case, the algorithm examines all positions in Q, and finds such a replacement
only for the last position chosen. This causes all other occupied positions, which were put
in the set visited, to be put back into Q in order to be considered again subsequently.
Moreover, assume that, once a replacement is found, it involves replacing a rule with the
rule of immediately higher priority.

The number of rules not yet considered is initially not grater than mK, since each
object has at most K possible moves. The worst case corresponds to visiting all those rules,
and finding the replacement only for the last rule considered. Since, once a rule is applied,
it is never considered again, the algorithm performs at most mK steps, where each step
means visiting all the rules not yet considered. Since the number of rules not yet considered
decreases by one every step, the total cost of the outer loop of GenerateSelection1 is∑mK

i=0 O(i) = O(m2K2). Finally, since constructing the initial set of occupied positions Q
at line 2 costs O(N2), the total cost of the algorithm is O(N2 +mKH +m2K2).

GenerateSelection2 In order to determine the cost of GenerateSelection algorithm
(Algorithm 4), it is useful to introduce a lemma which allows to determine the maximum
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number of iterations performed by the algorithm.

Let Q(s) denote the queue at the beginning of iteration s of the while loop on line 3.
Let L(s) denote the sum of the number of moves not yet considered for every position of
collisions grid, at the beginning of iteration s, namely:

L(s) =
∑
(i,j)

sum(collisions grid(s)[i, j])

sum(〈(moves1, l1), . . . , (movesk, lk)〉) =
k∑
γ=1

length(movesγ)− nγ + 1

Between an iteration and the subsequent one of the loop on line 3, the size of the set Q
and the total number of moves not yet considered are related as stated in the following
lemma.

Lemma 5.1.2. After each iteration of GenerateSelection2 (Algorithm 4), the sum of the
size of the set Q and the total number of all moves not yet considered decreases by at least
one:

|Q(s+1)|+ L(s+1) ≤ |Q(s)|+ L(s) − 1.

Proof. Let p = (i, j) ∈ Q(s) be the position selected at iteration s. There are two possible
cases:

1. collisions grid(s)[i, j] = 〈(moves1, n1)〉
In this case the selected application is with index = 1, therefore collisions grid is
such that collisions grid(s+1)[i, j] = collisions grid(s)[i, j] = 〈(moves1, n1)〉, and no
other position in collisions grid is changed, therefore L(s+1) = L(s). Finally, since
Q(s+1) = Q(s) \ {p}, we have that |Q(s+1)| = |Q(s)| − 1, proving the thesis.

2. collisions grid(s)[i, j] = 〈(moves1, n1), . . . , (movesk, nk)〉, with k ≥ 2.
Let index be the selected application. At the end of the iteration it holds that
collisions grid(s+1)[i, j] = 〈(movesindex, nindex)〉 and for each other γ 6= index the
pair (movesγ , nγ + 1) is appended to collisions grid[i′, j′], for a different position
(i′, j′) 6= p. Therefore L(s+1) = L(s) − (k − 1). As regards the set Q, at most k − 1
new position are added to it, hence |Q(s+1)| ≤ |Q(s)| − 1 + (k − 1).

A direct consequence of Lemma 5.1.2 is that the algorithm performs at most |Q(0)|+
L(0) iterations. At the beginning, there cannot be more than bm/2c colliding positions,
therefore the size of Q(0) is bounded by bm/2c: |Q(0)| ≤ bm/2c. As regards the value L(0),
since each object has at most K + 1 possible moves, it holds that L(0) ≤ m(K + 1). Thus
the algorithm performs O(mK) iterations.

Each iteration involves iterating through the list collisions grid[p], for some position
p. At any iteration s and any position p, the number of objects colliding in p, namely
length(collisions grid(s)[p]), is such that length(collisions grid(s)[p]) ≤ m. Each iteration
therefore costs O(m) and, consequently, the cost of the loop, on the whole, is O(m2K).

Finally, since constructing the initial set of occupied positions Q at line 2 costs O(N2),
the total complexity of the GenerateSelection algorithm is O(N2 +mKH +m2K).
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ValidateSelection The dependency graph, constructed at the beginning of the algo-
rithm, has at most σ = mK edges, since the are m objects and at most K possible rule
applications for each object. Thus, constructing the graph has complexity O(mK). The
complexity of searching a cycle in the graph is equal to the number of edges in the graph.
After each iteration, some edges are removed, thus the complexity of finding other cycles
decreases. In the worst case, a cycle composed of only two nodes is found in each iteration,
therefore the algorithm performs at most dσ/2e iterations. In that case, the cost of the
ith iteration is O(i), since the prevalent cost comes from updating the graph at line 7. In
fact, the removal of an edge costs O(1), and each edge is removed at most once. More-
over, the cost of replacing edges is inversely proportional to the step, as the maximum
number of edges exiting from a node decreases after each iteration. As regards finding
the index of the application to be confirmed, corresponding to the rule with maximum
priority (line 5), note that this information can be associated with the edges, by labelling
them with the maximum index during the construction of the graph. Thus that operation
does not need to be performed at each step, and its cost is already included in that of
constructing the graph O(mK). Therefore, the total cost of V alidateSelection algorithm

is
∑dσ/2e

i=0 O(i) = O(σ2) = O(m2K2).

CloseStep The cost of CloseStep is just O(N2), since it iterates through all positions
performing only constant time O(1) operations.

Given the cost of each algorithm composing the SimulateStep algorithm (Algo-
rithm 1), as detailed in the previous paragraphs, the total time complexity of the
SimulateStep algorithm is O(N2 + mKH + m2K2). The main complexity of the al-
gorithm comes from the V alidateSelection algorithm, whose worst-case complexity is
O(m2K2). However, real-life models rarely exhibit the worst case behaviour. Therefore,
in a complete simulation, most of the time is spent in Phase 1, implemented by one of
the two algorithms GenerateSelection1 and GenerateSelection2. This motivates the use
of the more-efficient algorithm GenerateSelection2 in place of GenerateSelection1, since
Phase 1 takes up the most of the simulation time in real models.

5.1.4 Priority relation on rules as a partial order

The simulation algorithm we have presented requires the Spatial P system model to be
constrained as specified in Section 5.1. We discuss in the following how the algorithm
can be extended to deal with a priority relation on rules which is a partial order, thus
removing the constraint to be a total order. In order to make the algorithm work in this
case, it is sufficient to modify the behaviour of the FindMoves function. In particular,
FindMoves has to determine a linear ordering of rules, which is defined as follows.

Definition 5.1.2. Given a set of rules R, a linear ordering of the rules in R is an ordered
sequence of rules 〈r1, r2, . . . , rk〉 such that:

a. k = |R| ∧ ∀r ∈ R. ∃i. r = ri ;

b. ∀i, j. ri > rj =⇒ i < j .

The first constraint ensures that the sequence 〈r1, . . . , rk〉 is a permutation of the
elements from R, while the second constraint ensures that it respects the relative priority
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ordering between the rules. Note that a sequence 〈r1, . . . , rk〉 represents the inverse of a
linear extension of the partially ordered set of rules R.

Each time the algorithm FindMoves is executed, it has to randomly generate, for a
each non-empty position p, a linear ordering l = 〈r1, . . . , rk〉 of the rules which are enabled
in p, that is Enabled(R, p) = {r1, . . . , rk}. Then it uses that sequence of rules l as the
ordering for generating a list of pairs 〈(q1, x1), . . . , (qk, xk), (p, ay)〉, where each pair (qi, xi),
with 1 ≤ i ≤ k, corresponds to the application of rule ri to the object in p. Recall that
the last pair (p, ay) of the list returned by FindMoves describes the lack of application of
any rule to the object ay in p.

For example, let {r1, r2, r3, r4} be the set of rules enabled in a position p, with the
following relative priorities: r1 > r2, r2 > r4, r3 > r4. There are three possible linear or-
derings of rules: l1 = 〈r1, r2, r3, r4〉, l2 = 〈r1, r3, r2, r4〉, and l3 = 〈r3, r1, r2, r4〉. Algorithm
FindMoves then randomly generates a list of moves corresponding to one of such linear
orderings of rules.

Theorem 5.1.3. The SimulateStep algorithm, in which FindMoves has been modified
to randomly generate a linear ordering of the rules enabled in a position as the ordering
of the rules, behaves correctly with respect to the semantics of Spatial P systems.

Proof. Any selection generated by the linear algorithm is valid with respect to the original
partial order of the rules. In fact, given a selection of rules S generated by the algorithm
and a position p, the property (b) of Definition 5.1.2 implies that any higher priority rule
than the rule applied in p has been considered by the algorithm. In particular, the selection
produced in Phase 1 of the algorithm is also filling for the original partial order of the
rules. As regards Phase 2, if there are no replacements which can be performed, then this
implies that there are no possible replacements also considering the original partial order
of the rules. However, note that a replacement performed either in Phase 1 or Phase 2
may not correspond to obtaining a greater selection of rules with respect to the original
partial order of rules. For example, consider the rules r1, r2, r3, such that r1 > r3, r2 > r3,
and the linear ordering 〈r1, r2, r3〉, for some position. Suppose the currently selected rule
is r2, and that the algorithm replaces r2 with r3. Then, in this case, r3 is greater than r2

w.r.t. the linear ordering, but not w.r.t. the original partial order.

On the other hand, assuming that FindMoves can randomly generate every possible
linear ordering of the rules ensures that every possible valid selection can be generated
by the algorithm. In fact, in the case of using algorithm GenerateSelection2 as the
implementation of Phase 1 of the algorithm, in order for the algorithm to be able to
generate a given valid selection S, it is sufficient that for all positions p, the list returned by
FindMoves(p) corresponds to a linear ordering of rules r1, . . . , rx−1, rx, rx+1, . . . , rk such
that rx ∈ S(p) and ∀i < x. ri > rx. That is, for the selected rule rx, the rules r1, . . . , rx−1

which precede it in the linear ordering are the all and only rules having priority higher
than rx. In this way, the selection S is also valid with respect to the linear ordering,
thus it can be generated by the algorithm, according to Theorem 5.1.1. In case of using
algorithm GenerateSelection1, instead, it is sufficient to consider a linear ordering of rules
r1, . . . , rx−1, rx, rx+1, . . . , rk, with rx ∈ S(p), such that the rules rx+1, . . . , rk which follow
rx in the linear ordering are the all and only rules having lower priority than rx, i.e.
∀i > x. ri < rx.
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5.2 Including ordinary objects

In this section we discuss how the restricted algorithm presented in the previous section
can be extended to deal with ordinary objects. We consider rules in which all the reactants
are contained in position (0, 0), that is they are of the following form:

(u)(0,0)[π]→ (v1)t1 . . . (vh)th (5.1)

where u, vi ∈ (V ∪ E)∗, and such that each rule contains either (i) exactly one mutually
exclusive object among the reactants, and exactly one mutually exclusive object among
the products, or (ii) no mutually exclusive objects at all among reactants and products.
There are no restrictions on promoters. Given a rule r, let us denote by nη(r) the number
of mutually exclusive objects among reactants, and by nT (r) the number of mutually
exclusive objects among products, as follows:

nη((u)(0,0)[π]→ (v1)t1 . . . (vh)th) =
∑
x∈E

m (u, x)

nT ((u)(0,0)[π]→ (v1)t1 . . . (vh)th) =
∑
x∈E

m

(
h⊎
i=1

vi, x

)
Let us denote by Rord the set of all rules, having the form specified by Equation 5.1, in
which no mutually exclusive objects appear as reactant nor as product. Moreover, let
us denote by Rme the set of all rules, having the form specified by Equation 5.1, having
exactly one mutually exclusive object among the reactants and one among the products.
Formally:

Rord = {r | nη(r) = 1 ∧ nT (r) = 1}; (5.2)

Rme = {r | nη(r) = 0 ∧ nT (r) = 0}. (5.3)

The set of all rules allowed is thus Rord ∪Rme.
As regards the priority relation on rules, we require it to correspond to an extended

rule ordering, which is represented by a sequence of sets of rules R1, . . . , Rk, according to
the following definition.

Definition 5.2.1. Given a set of rules R, an extended rule ordering of R is a sequence of
sets of rules R1, . . . , Rk such that:

a. R1, . . . , Rk are a partition of the set R

b. ∀i. Ri ⊂ Rme ∨Ri ⊂ Rord

c. ∀i. Ri ⊂ Rme =⇒ |Ri| = 1

Each set Ri of the partition represents a set of rules which can be applied together. A
sequence R1, . . . , Rk is in descending order of priority with respect to the relative priorities
among rules. Constraint (b) requires that each set Ri contains either only mutually
exclusive rules from Rme, or only ordinary rules from Rord. Constraint (c) requires that
each rule with mutually exclusive objects from Rme appears as a singleton set. The partial
order on rules ≤ entailed by an extended rule ordering ext(R) = R1, . . . , Rk is defined as
follows: r > r′ ⇐⇒ ∃i, j. i < j ∧ r ∈ Ri ∧ r′ ∈ Rj .

Finally, for simplicity in the presentation, we still assume that the skin membrane
membrane is square, having size N ×N .
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5.2.1 Simulation algorithm

We present an extension of SimulateStep algorithm (Algorithm 1). In the following we
discuss an extension based on algorithm GenerateSelection1 (Algorithm 3). Algorithm
GenerateSelection2 (Algorithm 4) can also be extended to deal with ordinary objects.

Note that any selection S ∈ S(a,b)
W , for some configuration W , satisfying the constraints

of applicability (a) and mutual exclusivity (b) from Definition 4.2.4, is such that, consid-
ering each position p, there is at most one mutually exclusive rule r ∈ Rme selected in p,
while there can be any number of ordinary rules from Rord selected. This implies that,
in any position, there is always at most one set of rules Ri ⊂ Rme, from the extended
ordering ext(R), which is selected.

The simulation of a step by the extended algorithm works analogously to the restricted
algorithm defined in Algorithm 1. Before introducing the details of the algorithm, we need
some auxiliary definitions.

We restrict the priority relation � defined as Equation 4.1 to the following priority re-
lation, which compares two multisets of rules, such that each multiset contains at most one
mutually exclusive rule from Rme. The following ordinary-rules limited ordering relation
takes into account only ordinary rules having higher priority than the mutually exclusive
rule selected, if any.

Definition 5.2.2. Let ext(R) = R1, . . . , Rk be an extended ordering. Let R,R′ be such
that

∑
r∈Rme m(R, r) ≤ 1 and

∑
r∈Rme m(R′, r) ≤ 1. The ordinary-rules limited ordering

relation ≺up is defined as follows:

R ≺up R′ ⇐⇒ ∀Ri ⊂ Rord.

(∃j. Rj = {r′} ⊂ Rme ∧m(R, r′) = 1 =⇒ i < j) =⇒
(∀r ∈ Ri. m(R′, r) < m(R, r) =⇒

∃r′ ∈ Rj ⊂ Rord. j < i ∧m(R′, r′) > m(R, r′))

Note that ∀R,R′. R �up R′ =⇒ R � R′. Intuitively, two multisets of rules R,R′ are
such that R ≺up R′ only if, considering each ordinary rule r ∈ Rord having higher priority
than some mutually exclusive rule selected r′ ∈ Rme, its multiplicity can be decreased
only if there is some other higher priority (ordinary) rule whose multiplicity is increased.
This actually corresponds to restrict the priority relation �, defined as Equation 4.1, to
the only ordinary rules of higher priority than r′.

The definition of ordinary-rules limited ordering relation is used to define ordinary-
rules maximal selections, as follows.

Definition 5.2.3. Given a configuration W , a selection S ∈ S(a,b)
W is said to be ordinary-

rules maximal (ord-max ) for W iff the following property holds:

∀(p,R) ∈ S.
(∀i. Ri = {r} ∈ Rme ∧m(R, r) = 1 =⇒ ∀j > i. ∀r′ ∈ Rj . m(R, r′) = 0) ∧

(∀R′. R ≺up R′ =⇒ S \ {(p,R)} ∪ {(p,R′)} /∈ S(a)
W )

We denote the set of all ordinary-rules maximal selections, for a configuration W , as
Sordmax
W .
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Intuitively, an ordinary-rules maximal selection S ∈ S(a,b) is such that, in every position
p, given a mutually exclusive rule applied in p, if any, then all higher priority ordinary rules
are applied in a maximal way, an no lower priority rule is applied. In case no mutually
exclusive rule are applied, then all the ordinary rules must be applied in a maximal way.

Given a mutually exclusive rule r ∈ Rme, let target(r) denote the relative target
position of the only mutually exclusive object among the products, that is target(r) = p
such that ∃x ∈ E. x ∈ T (r, p). Moreover, given a multiset of rules R, let target(R)
denote the position occupied by the object corresponding to the only mutually exclusive
rule r ∈ R ∩ Rme, if any. That is target(R) = target(r), if ∃r ∈ R ∩ Rme; otherwise
target(R) = (0, 0).

Definition 5.2.4. Given a selection S ∈ S(a), and the extended ordering ext(R), the set
of improved multisets of rules improved(S, p) for the position p is defined as follows:

R′ ∈ improved(S, p) ⇐⇒ R = S(p) ∧ ∃i. Ri = {r} ⊂ Rme ∧
(∀j. Rj = {r′} ⊂ Rme ∧m(R, r′) = 1 =⇒ i < j) ∧
m(R, r) = 0 ∧ m(R′, r) = 1 ∧
∀j < i. ∀r′ ∈ Rj . m(R′, r′) = m(R, r′) ∧
∀j > i. ∀r′ ∈ Rj . m(R′, r′) = 0 ∧
S \ {(p,R)} ∪ {(p,R′)} ∈ S(a)

First of all, note that S ∈ S(a) satisfies the constraint (a) of applicability, therefore
at most one mutually exclusive rule is selected in each position. Let R = S(p) be the
currently selected multiset of rules for the position p. The set of improved multisets of
rules improved(S, p) corresponds to all the possible multiset of rules R′ such that:

• there exists a mutually exclusive rule r ∈ Rme, which is selected in R′ but not in R,
and such that the priority of r is higher than the mutually exclusive rule r′ ∈ Rme

selected in R, if any, namely ∃r′ ∈ Rme ∧m(R, r′) = 1 =⇒ r > r′;

• the multiplicity of all higher priority rules r′ > r is the same in R′ as in R, namely
∀r′ > r. m(R′, r′) = m(R, r′);

• the multiplicity of all lower priority rules r′ < r in R′ is 0, namely ∀r′ <
r. m(R′, r′) = 0;

• the selection resulting from the replacement of R with R′ in position p still satisfies
the constraint of applicability (a), thus R′ contains exactly one mutually exclusive
rule.

The definition of improved multisets is the basis for the definition of a filling selection,
which extends the definition given previously for the restricted case (see Definition 5.1.1).

Definition 5.2.5. Given a configuration W , an ordinary-rules maximal selection S ∈
Sordmax
W is said to be filling for W iff the following property holds:

∀p. ∀R′ ∈ improved(S, p).

target(S(p)) 6= target(R′) =⇒ S \ {(p, S(p))} ∪ {(p,R′)} /∈ S(b)
W

We denote the set of all filling selections, for a configuration W , as Sfilling
W .
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Algorithm 7 SimulateStepExt(W )

1: let S be such that ∀p. S(p) = ∅
2: S1 = MaximiseApplications(W,S)
3: S2 = GenerateSelectionExt(S1)
4: S3 = V alidateSelectionExt(S2)
5: S4 = MaximiseApplications(W,S3)
6: return apply(W,S4)

In this case, a filling selection is such that, given a multiset of rules R selected for
application in a position p, it is not possible to replace R with any greater multiset
R′ ∈ improved(S, p), whose target position is different from that of R, since that would
create a conflict between mutually exclusive objects, by violating constraint (b). By the
definition of improved, this means that it is not possible, in any position, to select a
previously unselected mutually exclusive rule r ∈ Ri ⊂ Rme once the applications of all
lower priority rules r′ ∈ Rh, with h > i, are cancelled, but in which the multiplicity of
all rules of higher priority is not changed. Moreover, such a replacement must cause a
mutually exclusive object to be removed from a position and another one to be put in a
different position.

The simulation algorithm for the extended case, defined as Algorithm 7, works as
follows:

• (phase 1) generate a filling selection with respect to the extended ordering of rules
ext(R)

• (phase 2) search for groups of positions in which it is possible to replace together, for
all such positions, the current rule applications with application of higher priority
rules;

• (phase 3) complete the obtained selection by maximising the application of ordinary
rules from Rord, in every position.

5.2.2 Implementation

Algorithm GenerateSelectionExt implements phases 1 and 2; algorithm V alidate-
SelectionExt implements phase 2; and algorithm MaximiseApplications implements
Phase 3. Both algorithm GenerateSelection1 and GenerateSelection2 can be extended
to implement Phase 1 of the extended algorithm. In the following, we discuss the extension
of simulation algorithm using GenerateSelection1.

The algorithm starts by constructing the minimal selection ⊥ ∈ S(a,b). Such a se-
lection ⊥ is used by algorithm MaximiseApplications, defined in Algorithm 8, which
constructs a ordinary-rule maximal selection S1 ∈ Sordmax, in which no mutually exclu-
sive rule is applied in any position. MaximiseApplications iterates through the extended
rule ordering R1, . . . , Rk, from the highest priority to the lowest, by applying only ordi-
nary rules in a maximal way. Recall that, differently from the restricted algorithm, more
than one rule can be selected for application in a same position. Whenever a set of or-
dinary rules Ri ⊂ Rord is encountered, the algorithm finds a maximal multiset of rules
R′ from Ri which is applicable to the objects currently available in position p, namely to
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Algorithm 8 MaximiseApplications(W,S)

1: for all non-empty positions p do
2: let R1, . . . , Rk = ext(R)
3: for i = 1 to k do
4: if Ri ⊂ Rord then
5: select randomly a maximal multiset of rules R′ from Ri which is applicable to

the objects wp \\ η(S, p)
6: let R = S(p)
7: S = S \ {(p,R)} ∪ {(p,R∪R′)}
8: end if
9: end for

10: end for
11: return S

Algorithm 9 GenerateSelectionExt1(S)

1: while ∃p. ∃R′ ∈ improved(S, p).
target(S(p)) 6= target(R′) ∧ S \ {(p, S(p))} ∪ {(p,R′)} ∈ S(a,b) do

2: S = S \ {(p, S(p))} ∪ {(p,R′)}
3: end while
4: return S

Algorithm 10 ValidateSelectionExt(S)

1: repeat
2: let Gdep = (V,E) be the dependenty graph defined by Equations 5.4 and 5.5
3: if there exists a cycle C = 〈p1, p2, . . . , pk〉 in graph (V,E) then
4: update selection S, by performing the replacements described by C
5: end if
6: until there are no more cycles
7: return S
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the objects wp \\ η(S, p). This means that, in case there are different rules in Ri which
compete for the same objects, then those objects has to be randomly assigned to the dif-
ferent rules. Moreover, maximality requires that the selected multiset of rules R′ is such
that no rule can be applied to the remaining objects wp \\ η(S(p) ∪ R′, (0, 0)). Therefore,
MaximiseApplications initially generates an ord-max selection S1 ∈ Sordmax in which,
for all positions, ordinary rules are applied in a maximal way, and no mutually exclusive
rule is applied in any position.

Algorithm GenerateSelectionExt1, defined in Algorithm 9, behaves similarly to
GenerateSelection1. It starts with the initial selection S1 ∈ Sordmax obtained from
MaximiseApplications(⊥), and then iteratively constructs greater selections S1 = S(1) ≺
S(2) ≺ . . . ≺ S(n) = S2, by performing, in each iteration, a replacement of rules in a
position. Precisely, in each iteration, the current multiset S(p) selected in a position p
is replaced with an improved multiset R′ ∈ improved(S, p) which causes a change in the
set of positions occupied by the mutually exclusive objects, and such that the updated
selection S′ = S \ {(p, S(p))} ∪ {(p,R′)} ∈ S(a,b). That is, selection S′ has to satisfy the
constraints on applicability (a) and mutual exclusivity (b) from Definition 4.2.4. The
algorithm stops generating a filling selection S2 ∈ Sfilling.

As regards Phase 2 of the algorithm, algorithm V alidateSelectionExt, defined in Al-
gorithm 10, behaves similarly to V alidateSelection. Given the selection S2 ∈ Sfilling

obtained from Phase 1, the algorithm constructs a graph of dependencies Gdep = (V,E),
in which nodes represent positions containing mutually exclusive objects, and each edge
describes a possible replacement of rules. Then the algorithm searches a cycle in the graph,
which corresponds to replacing the multisets of rules selected for a group of positions with
greater multisets of rules, and then performs the replacement.

Precisely, given a selection S′ obtained at a certain iteration of V alidateSelectionExt,
each replacement corresponds to finding a set of positions Q in which it is possible to
replace, in each position q ∈ Q, the multiset of rules selected R = S′(q) with a greater
multisetR′ � S′(q), and such that the replacements produce a selection S′′ ∈ S(a,b), i.e. S′′

is applicable and does not create conflicts among mutually exclusive objects. Actually, by
performing the replacement, the algorithm obtains a greater filling selection S′′ ∈ Sfilling,
i.e. S′′ � S′. Algorithm V alidateSelectionExt terminates when no more replacements
can be performed, thus obtaining a maximal filling selection S3 ∈ max(Sfilling).

The dependency graph Gdep = (V,E) used by algorithm V alidateSelectionExt is
formally defined in the following. Let S2 ∈ Sfilling be the selection obtained from Phase 1.
Given a configuration W , the set of nodes V of the graph is defined as:

V = {p |W ′ = apply(W,S2) ∧
∑
x∈E

m(w′p, x) = 1} (5.4)

where function apply is as defined in Definition 4.2.5. As regards the edges, consider each
non-empty position z in the configuration W ′ = apply(W,S2), and let ext(R) = R1, . . . , Rk
be the extended ordering of the rules R. Then the set of edges E of the dependency graph
is the minimal set such that:

R′ ∈ improved(S2, z) ∧ S \ {(p, S2(z))} ∪ {(p,R′)} ∈ S(a)
W

=⇒ (z + target(S2(z)), z + target(R′)) ∈ E. (5.5)

In this way, there is an edge in the graph iff the current multiset S2(z), selected in some
position z, can be replaced by a multiset R′ ∈ improved(S2, z), in which either (a) an
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application of a mutually exclusive rule r is replaced by the application of another mutually
exclusive rule r′ with higher priority; or (b) no mutually exclusive rule is currently selected
in S2(z) and a mutually exclusive rule becomes applied. In both cases, the replacement
results in the position p = z + target(S2(z)) being freed and q = z + target(R′) being
occupied, thus the edge (p, q) is present in the graph. Note that p and q may actually be
the same position.

Once Phase 2 is completed, the algorithm has obtained a maximal filling selection
S3 ∈ max(Sfilling), in fact mutually exclusive rules are applied in such a way that the
constraints on applicability (a), mutual exclusivity (b), and priority and maximality (c)
from Definition 4.2.4 are all satisfied. That is, it is not possible to apply, in any position,
any other higher priority mutually exclusive rule without violating either the constraint
(a) on applicability or the constraint (b) on mutual exclusivity.

Recall the definition of the priority relation on multiset of rules � (see Equation 4.1 of
Definition 4.2.4). The maximal filling selection S3 ∈ max(Sfilling) obtained from Phase 2
is not necessarily a valid selection, since there can be applicable ordinary rules, in some
positions, which are not selected. In particular, by the functioning of the algorithm, if
a mutually exclusive rule r ∈ Rme is selected in a position, then no rule having lower
priority than the selected rule r is applied. For this reason, Phase 3 of the algorithm is
used to construct a valid selection S4, by applying algorithm MaximiseApplications to
S3. Since S3 is ordinary-rule maximal, the application of MaximiseApplications results
in applying, in a maximal way, all the possible ordinary rules having lower priority than
the selected mutually exclusive rule, if any.

5.2.3 Correctness of the extended algorithm

The following theorem proves the correctness of the extended algorithm.

Theorem 5.2.1. The extended simulation algorithm SimulateStepExt, defined in Algo-
rithm 7, for Spatial P system models with only ordinary rules from Rord and mutually-
exclusive rules from Rme, behaves correctly with respect to the semantics of Spatial P
systems, that is:

∀S. W
S−→W ′ ⇐⇒ W ′ can be generated by SimulateStepExt(W )).

Proof. Case⇐=) As regards completeness, we have to prove that every selection generated
by the algorithm is valid. We have already discussed that algorithm MaximiseApplica-
tions(⊥) generates an ord-max selection S1 ∈ Sordmax in which no mutually exclusive rule
is applied in any position. By the definition of ord-max selection, any greater selection
S′ � S1 is such that there exists a position p and a mutually exclusive rule r, from a set
Ri = {r}, which is applied in S′(p) but not in S1(p), given that the multiplicity of all higher
priority rules r′ > r is not changed. In fact, if the multiplicity of some higher priority
rule r′ > r is changed, then we would obtain a multiset R which is not comparable with
S1(p), that is neither R � S1(p) nor R ≺ S1(p). This motivates the search, performed
by algorithm GenerateSelectionExt1, of a position p in which the current multiset of
rules S(p) selected can be replaced by a greater multiset R ∈ improved(S, p), which
causes a change in the set of positions containing mutually exclusive objects (constraint
target(S(p)) 6= target(R)), and such that the updated selection does not violate either
the property of applicability (a) or that of mutual exclusivity (b). Therefore, algorithm
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GenerateSelectionExt1 generates a sequence S1 ≺ S(1) ≺ · · · ≺ S(n) = S2 of increasingly
greater selections, until it stops with a filling selection S2 ∈ Sfilling.

Since S2 is filling, it is not possible to replace, in any position p, the currently selected
rules S2(p) with an improved multiset R′ ∈ improved(S2, p) involving a different position
for the mutually exclusive object, without violating either constraint (a) or (b). Therefore,
the only way to find a greater selection S′ � S2 such that S′ ∈ S(a,b) is to perform a
replacement corresponding to a cycle in the dependency graph. Moreover, since S2 ∈
Sfilling, also S′ ∈ Sfilling. The algorithm iterates this procedure until no more cycles are
present, therefore it stops as soon as a maximal filling selection S3 ∈ max(Sfilling) is
obtained.

Let us consider a maximal filling selection S3 ∈ max(Sfilling), and a position p. Suppose
that there is a mutually exclusive rule r ∈ Rme selected for the position, that is r ∈ S(p).
Any lower priority mutually exclusive rule r′ < r does not need to be considered, since at
most one of such kind of rules can be selected for application in a position. Therefore, it
is sufficient to consider only the ordinary rules having lower priority. By the definition of
the priority relation on multisets of rules �, in order to obtain a greater multiset of rules
R′ � S(p) for the position p, it is sufficient to apply lower priority ordinary rules to the
objects still available in the position, in a maximal way.

This is performed by algorithm MaximiseApplications(S3), which tries to apply in a
position also the other rules having higher priority than the currently selected mutually
exclusive rule. However, since those rules are already applied in a maximal way, none of
them can be applied again. Thus the algorithm applies, for each position p, only lower
priority rules in a maximal way with respect to the extended ordering ≤. By the definition
of filling selection, the selection S4 = MaximiseApplications(S3) is a valid selection, i.e.
S4 ∈ Svalid.

Case =⇒) In the following, we denote by −−→1e the relation describing an iteration
of algorithm GenerateSelectionExt1, and by =⇒1e its transitive closure. That is
S1 −−→1e S2 iff, starting from selection S1, S2 is reachable after one iteration of al-
gorithm GenerateSelectionExt1. Moreover, we denote by −−→2e the relation describ-
ing an iteration of the V alidateSelectionExt algorithm, and by =⇒2e the transitive
closure of −−→2e. Finally, we denote by −−→m the relation describing the procedure
implemented by MaximiseApplications algorithm, that is S1 −−→m S2 ⇐⇒ S2 ∈
MaximiseApplications(S1).

In order to prove the thesis, it is sufficient to prove that, given the extended ordering
<, any valid selection can be generated by the SimulateStepExt algorithm.

We prove the following statements:

1. ∀S ∈ min(Sordmax). ⊥ −−→m S, that is any minimal ord-max selection can be gener-
ated by MaximiseApplications(⊥);

2. ∀S ∈ min(Sfilling). ∃Ŝ ∈ min(Sordmax). Ŝ =⇒1e S, that is any minimal filling selection
can be obtained from GenerateSelectionExt1;

3. ∀S ∈ Svalid. ∃S′ ∈ min(Sfilling). ∃S′′ ∈ Sfilling. S′ =⇒2e S′′ −−→m S, that is for
any valid selection S there is a minimal filling selection S′, and a filling selection
S′′, such that algorithm V alidateSelection can obtain S′′ starting from S′, and
MaximiseApplications can obtain S from S′′.
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As regards part 1, note that every minimal selection S ∈ min(Sordmax) is such that no
mutually exclusive rule is selected in any position. In fact, suppose S ∈ min(Sordmax) and
that a mutually exclusive rule r ∈ Rme is selected for a position p, i.e. r ∈ S(p). Then,
a smaller multiset R ≺ S(p) can be obtained by cancelling the application of rule r, and
applying all the lower priority rules r′ < r in a maximal way. Since it is possible to select
multiset R in such a way that S′ = S \ {(p, S(p))} ∪ {(p,R)} ∈ S(a,b), this contradicts
the assumption that S would be minimal. Therefore it is sufficient that the algorithm is
able to generate any ord-max selection such that no mutually exclusive rule is selected in
any position. Supposing that the algorithm, while iterating through ext(R) = R1, . . . , Rk,
can generate any maximal multiset of applicable rules R′ from the current Ri, then this
implies that any S ∈ min(Sordmax) can be generated.

As regards part 2, it is sufficient to prove that, given a minimal filling selection S ∈
min(Sfilling), for all selections S′ ≺ S, GenerateSelectionExt1 algorithm can perform an
iteration from S′ to some other S′′ which is still less than or equal to selection S. That
is, given a minimal filling selection S ∈ min(Sfilling):

∀S′ ∈ Sordmax. S′ ≺ S =⇒ ∃S′′ ∈ Sordmax. S′ −−→1e S
′′ ∧ S′ ≺ S′′ � S

Given a configuration W , and a selection S ∈ Sordmax
W , we denote by occ(S) the set of

positions containing a mutually exclusive object, with respect to the configuration resulting
from the application of S to W . That is, given W ′ = apply(W,S), then occ(S) = {p |∑

x∈E m(w′p, x) > 0}. Moreover, given the selections S ∈ min(Sfilling), and S′ ∈ Sordmax

such that S′ � S, note that, for each position p, the multiplicity of each rule with higher
priority than the mutually exclusive one selected in S(p), if any, is the same in S′(p) and
in S(p), otherwise S′(p) = S(p).

Consider a selection S ∈ min(Sfilling), and a selection S′ ∈ Sordmax such that S′ ≺ S.
On one hand, assume that occ(S) = occ(S′). Then there must exist a position p in which
the currently selected multiset S′(p), can be replaced by the algorithm with a greater
multiset R′ ∈ improved(S′, p), R′ � S′(p), such that target(R′) /∈ occ(S) and R′ ≺ S(p).
In fact, if such a position would not exist, then, since S ∈ Sfilling also S′ ∈ Sfilling and
therefore S would not be minimal.

On the other hand, assume that occ(S) 6= occ(S′). Since |occ(S)| = |occ(S′)|, there
exists a position q ∈ occ(S) \ occ(S′). Let p be the position such that target(S(p)) = q.
Then it is sufficient that the algorithm: (i) selects position p to search for a greater multiset
R to replace the currently selected multiset S′(p), and that (ii) chooses the least multiset
R among the improved ones for which target(S′(p)) 6= target(R), that is R ∈ min({R′ ∈
improved(S′, p) | target(S′(p)) 6= target(R′) ∧ S \ {(p, S′(p))} ∪ {(p,R′)} ∈ S(a,b)}). If
no multiset R such that S′(p) ≺ R ≺ S(p) can replace the currently selected multiset
S′(p), then the algorithm selects S(p). Note that, in such a case, it cannot happen that
target(S(p)) = target(S′(p)), since that would imply that S is not minimal, contradicting
the hypothesis.

As regards part 3, consider a valid selection S ∈ Svalid. Let S′′ be the selection obtained
from S by cancelling, in each position, the application of any lower priority rule than the
selected mutually exclusive rule, if any. Since S is valid, then S′′ ∈ Sfilling(⊆ Sordmax).
Therefore, algorithm MaximiseApplications can generate S from S′′, i.e. S′′ −−→m S.

Given S′′ ∈ Sfilling, we can apply a procedure corresponding to the converse of algo-
rithm V alidateSelectionExt, which constructs a sequence of filling selections S′′ = S1 �
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S2 � · · · � Sk = S′, where each Si+1 is obtained from Si by replacing the multisets of
rules selected for some positions with lesser multisets, ensuring that occ(Si+1) = occ(S′′).
Therefore, since S′′ ∈ Sfilling, also ∀i. Si ∈ Sfilling. This procedure terminates as soon as
a minimal filling selection S′ = Sk ∈ min(Sfilling) is obtained, which is consequently such
that S′ =⇒2e S

′′.

5.3 A model of the schooling behaviour of fish

In this section we present a small example model, which uses Spatial P systems to describe
the schooling behaviour of fish. Some kinds of fish, such as herring, swim together forming
schools. This behaviour has different advantages, for example is used against predators.
One interesting problem with this kind of systems, is that the single fish are able to
organize themselves into schools, following local attraction rules. That is, this behaviour
is not driven by some external entity which controls the behaviour of the single fish, but
the common behaviour emerges as the result of local interactions between fish. Besides
fish, similar behaviours also occur for other species, such as the flocking behaviour of birds,
or the motion of herds of animals.

A well-known algorithm for simulating this kind of aggregate motion is the Boids
model, proposed by Reynolds in 1987 [76]. In this model, the movement of a fish is driven
by the sum of different forces, calculated with respect to the distance and direction of
movement of nearby fish. Individuals can “see” only a small space around themselves, in
order to determine the relative distance and behaviour of nearby individuals.

(a) Separation (b) Cohesion (c) Alignment

Figure 5.1: The different forces, in the Boids model, determining the resulting direction
of an individual.

Figure 5.1 shows the forces affecting the behaviour of an individual. On one hand,
there is a repulsive separation force that causes the fish to move away from nearby fish,
whose magnitude is inversely proportional to their relative distances. On the other hand,
there is an attractive cohesion force which instead tends to keep the school together, by
driving the fish towards the direction in which there are most of them. Finally, there is
an alignment force, which tends to align the direction of the herring to the most common
direction among nearby individuals. The sum of these three forces is used to determine
the resulting direction of each fish. Using these rules, a group of randomly positioned
fish in a space is able to organize themselves into schools, in which individuals move in a
coordinated manner.

We present in the following a Spatial P system model of the schooling behaviour of
fish, which resembles the Boids model.
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Spatial P systems model

In our model, a direction is associated with each herring, describing the direction where the
herring is headed. There are 8 possible directions, corresponding to the directions shown
in Figure 5.2. In the Spatial P system model, we use a different mutually exclusive symbol
to denote each possible direction of a herring. In particular, the set of mutually exclusive
objects is E = {1, 2, 3, 4, 5, 6, 7, 8, e}, where each symbol among 1, . . . , 8 corresponds to a
direction as shown in Figure 5.2. There is also a special mutually exclusive object e used
to delimit the simulation space. There are no ordinary objects: V = ∅.

1

2
3

4

5

6 7

8

Figure 5.2: The possible directions
of a herring.

α

l

Figure 5.3: The visibility parameters: α, the vis-
ibility angle; l the visibility distance.

The model depends on a number of parameters, as detailed in the following:

• Speed: a real value describing the speed of the herring;

• VisibilityDistance: the distance at which the herring can see, as depicted in Fig-
ure 5.3;

• VisibilityAngle: describes the Field of View (FOV) of the herring, that is the
angular extent that the herring can see ahead of itself (Figure 5.3);

• SeparationCoefficient: a real value greater than 1, used to scale down the re-
pulsive effect of nearby individuals with respect to their relative distance; a greater
value means that the repulsive effect decreases faster according to their distance;

• CohesionCoefficient: how much the cohesion force influences the resulting direc-
tion;

• AlignmentCoefficient: how much the alignment force influences the resulting di-
rection.

In our implementation, given a herring in a position p, the separation force is computed
as the sum of the vectors h − p from the each nearby herring to the current herring,
multiplied by a value ‖h−p‖−k, where k is the SeparationCoefficient. Therefore the effect
of the separation force decreases with the increasing of the distance between the herrings.
The cohesion force corresponds to the vector from p to the “mean position” among the
positions of nearby herrings, multiplied by the CohesionCoefficient. The mean position is
actually obtained by summing up all the vectors corresponding to the position of nearby
herrings, and dividing by the number of nearby herrings. Finally, the alignment force is
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obtained as the sum of each unit vector corresponding to the direction of a nearby herring,
multiplied by the AlignmentCoefficient.

The model is described by using restricted rules of the form:

(d)(0,0)[(π1)q1 . . . (πγ)qγ ]→ (d′)q

where d, d′ ∈ {1, . . . , 8}, and q ∈ Z2 is the resulting position of the herring. Promoters
are used to see the space nearby the herring. The resulting direction d′, depends on
the current direction d and on the position and direction of nearby herrings, represented
by promoters. Given the promoters π = (π1)q1 . . . (πγ)qγ , there are different rules, with
decreasing priority and the same left hand side, that describe the possible movements of
the herring. Priority is used to model the movement faithfully in case there are conflicts.

Figure 5.4 shows a herring, its resulting direction, and the possible resulting positions
q1, q2, . . . , q6, in decreasing order of priority. In particular, the highest priority rule tries to
put an object in the most distant position along the chosen direction, i.e. q1 in Figure 5.4.
That is, the preferred position is the one corresponding to a movement along the chosen
direction, with the specified speed. If, as the result of the movement of other herrings,
position q1 happens to be occupied, then there is a rule with less priority which tries to
put an object in the immediately preceding position q2, and so on until the least priority
rule which tries to put the herring position q6, adjacent to the current position. Therefore,
given some promoters π and an object d, there are a number of rules r1 > r2 > · · · > r6,
which try to put the object d′ in one of the resulting positions q1, q2, . . . , q6, respectively.

q1

q3 q2

q4

q5q6

Figure 5.4: An example of possible moves of a herring.

The simulation space is delimited by mutually exclusive objects e, which are not mod-
ified by the rules. Nevertheless, objects e can appear among the promoters of the rules,
in order to define the behaviour of herrings near the simulation bounds. In this way, it is
possible to model a behaviour which assumes that herrings bounce back when trying to
move in a position which is beyond the bounds.

Recall that promoters are checked for their presence, and not their absence. Therefore,
consider the case in which there are two rules r1, r2 with the same symbol d as reactant,
but with different products d′, d′′, and two collections of promoters π1, π2 respectively,
such that all symbols in π2 also appear in π1, in the same relative positions. In such a case,
if the former rule r1 is applicable, then the latter rule r2 is also applicable. In order to
deal correctly with this case, it is necessary to ensure that rule r1 has higher priority than
r2, in such a way that rule r2 is applied only if some promoters among π1 are not present.
That is, whenever there are two rules in which one has “at least” all the promoters of
another rule, then it is necessary that the rule with the greater collection of promoters
has higher priority than the other rule.
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The Spatial P systems model closely resembles the Boids model, where the evolution
rules are determined from the different forces driving each fish, and the actual parameters
used. In case there are no nearby fish, that is the visibility space for a fish is empty, we
have implemented in the model a random change of direction for the fish. In such a case,
the fish changes direction, by rotating of 45◦ either clockwise or counter-clockwise. Since
the current definition of Spatial P systems does not provide probabilities among rules, it
is sufficient to provide different rules with the alternative outcome. That is, there are a
set of rules r1 > r2 > · · · > rn, which move the object along a direction, and another
set of rules r′1 > r′2 > · · · > r′n, which move the object along the other direction. In
order to simulate a behaviour in which the fish first chooses a direction, and then tries
to move along that direction, discarding the other direction, it is necessary to include a
special “no-move” rule for each sequence of rules. Such a special rule describes the lack of
movement for the object, and just capture the change of direction of the fish. Let denote
by r̂ and r̂′ such special rules for the two sequences of rules, and whose priorities are such
that r1 > r2 > · · · > rn > r̂ and r′1 > r′2 > · · · > r̂′, respectively.

We have implemented a simulator for the Boids model described previously following
the semantics of Spatial P systems. In particular, since the model is composed only
of mutually-exclusive objects, we have implemented the algorithm for restricted models
presented in Section 5.1. The model consists of a square grid of size 500× 500 cells, which
is initially randomly filled with 10000 fish in a square of 350 × 350. Figures 5.5 and 5.6
depict the simulation state at different simulation steps, where each non-empty position
in represented by a black cell. The directions of fish are not shown.

The simulation has been performed using the following parameter values: Speed = 4,
VisibilityDistance = 16, VisibilityAngle = 1.05π, SeparationCoefficient = 1.3, Cohesion-
Coefficient = 1, AlignmentCoefficient = 1.
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Figure 5.5: Simulation steps 0, 20, 51, 63, 84, 100.
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Figure 5.6: Simulation steps 190, 209, 235, 251, 261, 275.
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Chapter 6

Spatial Calculus of Looping
Sequences

In this chapter we present the Spatial Calculus of Looping Sequences (Spatial CLS), which
extends CLS by allowing spatial information to be associated with CLS structures when
this information is relevant for determining the system behaviour. In Spatial CLS, all
structures are embedded in an Euclidean space, which may be either 2D or 3D according
to the needs of the modeller. Structures are associated with a precise position in space,
and their movement can be precisely described. Moreover, Spatial CLS inherits from
CLS the ability to explicitly model membranes (i.e. compartments), by means of the
looping sequence structure provided by CLS. The interaction among objects of the system,
namely the applicability of rewrite rules, can be constrained to the position of the elements
involved. For instance, it is possible to constrain a protein to enter cell membrane only if
it is within a certain distance from the membrane itself. Both deterministic and stochastic
motions of elements can be described.

An important feature of the Spatial CLS is the description of the space occupied by the
elements, with the constraint that there cannot be any conflict between the space occupied
by different elements. In particular, an “exclusion space” can be associated with elements,
which is either circular or spherical, according to the dimension of the considered space
(2D/3D). The semantics ensures that no space conflicts between elements arise during the
evolution of the system. The calculus allows the use of different strategies to rearrange the
elements, in case of a space conflict. The semantics prescribes that, if no valid arrangement
can be found, then the event that would cause the conflict cannot occur. Finally, rewrite
rules are endowed with kinetic parameters describing their stochastic application rate.

The aim of Spatial CLS is to enable a more accurate description of those biological
processes whose behaviour depends on the exact position of the elements. This high level
of accuracy is especially useful for cell biology, where there can be a high degree of spatial
organization and molecular species may be distributed not uniformly in the space [2].
Such descriptions can then be used to simulate the systems, so as to obtain a faithful
representation of their evolution. Handling spatial information in a simulator may have a
high computational cost. However, Spatial CLS allows specifying spatial information only
for those elements for which such information is relevant, thus enabling the modeller to
mix descriptions at different levels of abstraction. As example applications of the calculus
we present a model of cell proliferation, as happens during the development of a biological
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tissue, and a model of the quorum sensing process in Pseudomonas aeruginosa. In the
case of cell proliferation, we formalize an algorithm for the rearrangement of the objects in
the system, which tries to resolve space conflicts by simulating the movement of elements
as if they push each other when their exclusion spaces overlap. We show the results of
simulation of the two models.

We start by recalling the definition of the variant of the Calculus of Looping Sequences
used as the basis for the extension into the Spatial CLS. Then, we present the formal
syntax and semantics of Spatial CLS. We provide a definition of the Arrange algorithm,
used by the semantics to perform a rearrangement of elements in case of space conflicts,
and prove the termination of the algorithm. Finally, we show some examples of applying
the features of the calculus to biological modelling, and present the complete models of cell
proliferation and the quorum sensing process, along with the results of their simulations.

6.1 The Calculus of Looping Sequences

We recall the variant of the Calculus of Looping Sequences (CLS) called CLS+ [57], which
forms the basis of our spatial extension into Spatial CLS. In the definition of CLS+,
we assume an infinite alphabet of symbols E (ranged over by a, b, c, . . .) for constructing
sequences. A CLS term provides a static view of the system, by describing objects and their
containment relations. Formally, each object is modelled as a sequence of symbols, and two
kinds of sequences are provided: simple sequences and looping sequences. Simple sequences
are meant to model simple biological entities, such as proteins and DNA strands, while
looping sequences allow modelling membranes, thus providing a containment relation.

A CLS model is composed of a term, which describes the initial state of the biological
system, and a collection of rewrite rules, describing the possible interactions among the
elements and how they evolve. The semantics is given as a transition system describing
the possible evolutions of the system, where states are CLS terms, and each transition
corresponds to the application of a rewrite rule to the term.

Formally, the syntax of CLS+ terms is defined as follows.

Definition 6.1.1 (Terms). Terms T , branes B and sequences S of CLS+ are given by
the following grammar:

T ::= S
∣∣ (

B
)L cT ∣∣ T | T

B ::= S
∣∣ B | B

S ::= ε
∣∣ a

∣∣ S · S

The sets of all terms, branes and sequences are denoted by T ,B and S, respectively. Note
that B ⊂ T .

The sequencing operator · can be used to build sequences of symbols in E and ε de-
notes the empty sequence, that is a concatenation of zero symbols. For constructing terms,

we have a looping operator
( )L

, a containment operator c and a parallel composition

operator | . A term may contain simple sequences S and looping sequences
(
B
)L cT .

The containment operator c allows the representation of compartments; in fact, a looping

sequence
(
B
)L cT usually models a membrane with a surface modelled by B (a parallel

composition of sequences) and a content modelled by T . We distinguish between branes
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B and terms T in order to prevent the possibility of having looping sequences appearing
on the surface of another membrane. However, according to syntax definition, note that
each brane is also a valid term, thus B ⊂ T .

Since, in CLS+, looping
( )L

and containment c are always applied together, we
consider them as a single binary operator which applies to a brane and to a term. Brackets

can be used to indicate the order of application of the operators, and
( )L c is assumed

to have precedence over | .

Note that a looping term abstracts a real membrane, and the elements appearing on
the surface of the membrane itself are only the ones which are crucial to describe the
system. For this reason, elements which are not involved in the modelled process, are not
usually represented.

The structural congruence relation on terms identifies syntactically different terms that
conceptually represent the same structure.

Definition 6.1.2 (Structural congruence). The structural congruence relations on se-
quences ≡S and terms ≡T are the least congruences satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3

S · ε ≡S ε · S ≡S S
S1 ≡S S2 ⇒ S1 ≡T S2

T | ε ≡T T
T1 | (T2 | T3) ≡T (T1 | T2) | T3

T1 | T2 ≡T T2 | T1

The structural congruence states the associativity of both the sequencing and the parallel
operator, the commutativity of the latter, and the neutral role of ε.

The evolution of a system is described by a set of rewrite rules, modelling reactions
among system elements. A rule is composed of a pair of patterns (terms with variables)
with the intuitive meaning that, if the first pattern occurs in a portion of the system, then
that portion can be modified according to the second pattern.

We assume the following infinite and pairwise disjoint sets of variables: X for element
variables x, y, . . .; SV for sequence variables x̃, ỹ, . . .; BV for brane variables X,Y , . . .; and
TV for term variables X,Y, . . .. We denote the set of all variables by V. We distinguish
among different kinds of pattern, as in the following definitions.

Definition 6.1.3 (Brane and sequence patterns). Brane patterns BP and sequence pat-
terns SP are given by the following grammar:

BP ::= SP
∣∣ BP | BP

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

We denote the sets of all brane and sequence patterns with BP and SP, respectively.

Definition 6.1.4 (Term patterns). Left patterns PL and right patterns PR are given by
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the following grammar:

PL ::= SP
∣∣ (

BPLX
)L cPLX ∣∣ PL | PL

BPLX ::= BP
∣∣ BP | X

PLX ::= PL
∣∣ PL | X

PR ::= SP
∣∣ (

BPRX
)L cPR ∣∣ PR | PR

∣∣ X
∣∣ X

BPRX ::= BP
∣∣ BPRX | X

We denote the sets of all left and right patterns with PL and PR, respectively. We assume
brane patterns to be a subset of left and right patterns, i.e. BP ⊂ PL(⊂ PR).

The set of all variables appearing in a pattern P is denoted by Var(P ). We also assume
the structural congruence relation to be extended to patterns.

A CLS+ term evolves by applying rewrite rules to it. A rewrite rule is a pair of patterns
(PL, PR), usually written as PL 7→ PR, such that PL 6≡ ε and Var(PR) ⊆ Var(PL). If PL
and PR are indeed brane patterns, then the rule is called brane (rewrite) rule.

Given a pattern, we may obtain a term by applying an instantiation function σ : V →
T , describing the bindings between variables and their values. This application, denoted
by Pσ, replaces each occurrence of v ∈ Var(P ) in P with σ(v). For example, we can

instantiate the pattern P =
(
a·x̃ | X

)L c (c | Y ) with instantiation σ = {(x̃, b·b), (X, a·b·b |
d · b · b), (Y, c | d)} obtaining the term Pσ =

(
a · b · b | a · b · b | d · b · b

)L c (c | c | d). An
instantiation function σ must respect the type of variables, namely for all x ∈ X , x̃ ∈ SV ,
X ∈ BV , and X ∈ TV we have σ(x) ∈ E , σ(x̃) ∈ S, σ(X) ∈ B, and σ(X) ∈ T ,
respectively. The set of all instantiations is denoted by Σ.

A rewrite rule PL 7→ PR states that a term PLσ, obtained by instantiating variables
in PL by some instantiation function σ, can be transformed into the term PRσ. Thus, a
term T may evolve to another term T ′ by applying a rewrite rule to a subterm of T .

The use of different kinds of pattern allows us to constrain the occurrences of variables
inside a term, which allows a simpler definition of the semantics. First of all, brane and
term variables may occur only on branes and inside looping sequences, respectively. Then,
as regards left patterns, term variables are not allowed at top–level, and at most one brane
or term variable is allowed in each compartment. We do not allow term variables on branes:
this ensures that the application of a rewrite rule never yields an invalid term, i.e. a term
with looping sequences on branes. For the same reason, we identify brane rewrite rules
BP1 7→ BP2 as the only kind of rules that can be applied to branes.

As explained in [4], the constraints introduced do not restrict the expressive power of
the calculus for modelling biological systems. In fact, they rule out cases which are not
biologically reasonable, such as reactions involving an uncertain number of reactants, or
reactions between two arbitrary portions of the content of a membrane.

The semantics of the calculus is given as a transition system, in which states correspond
to terms, and each transition→ represents the application of a rewrite rule. The definition
uses the auxiliary transition relation →B, that describes the evolution of branes (ensuring
that only brane rewrite rules can be applied to their elements).

Definition 6.1.5 (Semantics). Given a set of rewrite rules R, let RB denote its subset of
all and only brane rules (RB ⊆ R). The semantics of CLS+ is the least transition relation



6.2. THE SPATIAL CLS 99

→ on terms closed under ≡T and satisfying the following inference rules:

P1 7→ P2 ∈ R P1σ 6≡ ε σ ∈ Σ

P1σ → P2σ

T1 → T ′1
T1 | T2 → T ′1 | T2

BP1 7→ BP2 ∈ RB BP1σ 6≡ ε σ ∈ Σ

BP1σ →B BP2σ

B1 →B B′1
B1 | B2 →B B′1 | B2

T1 → T2(
B
)L cT1 →

(
B
)L cT2

B →B B′(
B
)L cT → (

B′
)L cT

As an example, let T =
(
a · b · b | d · b

)L c (c | d) and let
(
a · x̃ | X

)L c (c | Y ) 7→
(
d · x̃ |

X
)L cY be a rewrite rule modelling the formation of a complex on a membrane by the

interaction of an element a · x̃ on the membrane with an element c inside the membrane.
By applying the rule to T , we obtain

(
d · b · b | d · b

)L c d, where d · b · b is the resulting
complex.

6.2 The Spatial CLS

The Spatial CLS extends the Calculus of Looping Sequences by enriching sequences and
membranes with spatial information. In particular, elements are embedded in a two-
dimensional or three-dimensional space, which is chosen by the modeller depending on the
characteristics of the system to be modelled. Each simple sequence and looping sequence
(collectively called objects in the following), which are used to model entities of the bio-
logical system, can have a precise position associated with it. Besides having a position,
the movement of each object, as time passes, can be precisely described by associating a
movement function with objects. This movement function can be used to model different
kinds of motion, such as Brownian motion (see Section 6.5).

Rewrite rules modelling reactions are extended to allow taking into account the position
of the interacting elements. Constraints on the positions of elements involved in a reaction
can be precisely described. Borrowing from Stochastic CLS [4], rewrite rules are endowed
with a stochastic reaction rate parameter, describing the propensity of application of the
rule.

For maximum flexibility, it is possible to avoid keeping track of the position of some
elements. Objects of the calculus are distinguished between positional elements and non-
positional elements. Positional elements are as already described, while non-positional
elements have neither an associated position nor a movement function. Non-positional
elements are assumed to be homogeneously distributed in the compartment, and their
behaviour is analogous to that of Stochastic CLS elements. In this way, the modeller
can choose the most appropriate level of abstraction for describing (different parts of) a
biological system.

Finally, Spatial CLS allows describing the space occupied by the elements. For the
sake of simplicity, the space occupied by an element is described by a real-valued radius
parameter, modelling an “exclusion space” around the position of the element. According
to the dimensions (2D or 3D) used in the model, this exclusion space is represented either
as a circle or as a sphere, centered in the position of the element. We provide a notion of
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well-formedness of terms, which captures the constraint that different objects are not too
close one another, ensuring that their exclusion spaces are always kept disjoint.

The semantics also allows for a rearrangement of the elements in case of a space con-
flict. The modeller can define the most appropriate algorithm for arranging the objects,
according to his/her needs. In Section 6.4 we provide an example of definition of the
arrange algorithm which tries to find a conflict-free configuration by simulating the move-
ment of objects as if they push each other when they are too close. This algorithm is used
in the model of cell proliferation.

In the following, we present the syntax of the calculus for terms and rewrite rules, in
their full detail. The formal semantics of Spatial CLS is then presented in the subsequent
Section 6.3.

6.2.1 Formal definition

The definition of Spatial CLS is based on CLS+, recalled in Section 6.1. The syntax of
terms is an extension of that of CLS+, where objects (simple and looping sequences) are
enriched with spatial information. We assume an alphabet of symbols E (as in CLS+), a
set of names for movement functionsM, and a set Υ used to capture the internal state of
a movement function.

Definition 6.2.1. Terms T , branes B and sequences S of Spatial CLS are defined as:

T ::= λ
∣∣ (

S
)
d

∣∣ (
B
)L
d
cT

∣∣ T | T
B ::=

(
S
)
d

∣∣ B | B
S ::= ε

∣∣ a
∣∣ S · S

where d ∈ D = ((Rn × (M×Υ) ∪ {·}) × R+, with n ∈ {2, 3}. The set of all sequences,
branes and terms are denoted by S, B and T , respectively. Similarly to CLS+ (Defini-
tion 6.1.1), note that B ⊂ T .

The term λ denotes the empty term, while ε denotes the empty sequence. The param-
eter d associated with the elements describes their spatial information. In Spatial CLS

each term encoding a simple sequence
(
S
)
d

or looping sequence
(
B
)L
d

has an associated
spatial representation, modelling the space occupied by the element.

The distinction between positional and non-positional elements depends on the form
of the parameter d, associated with elements. In the case of positional elements, the pa-
rameter d is of the form d = 〈[p,m], r〉, where: p represents the position of the elements,
m denotes the movement function, and r is the radius of the exclusion space of the el-
ement. Because we assume that models are always given in either two-dimensional or
three-dimensional space, the position p is expressed as a vector of either R2 or R3. For
non-positional elements, their positional information is of the form d = 〈·, r〉, where the
position and movement function are replaced by a special symbol ‘·’ (dot). Note that the
information on the radius is kept, as it expresses the space occupied by the element.

In the case of looping sequences
( )L

d
c the radius r also describes the space available

inside the membrane for the contained elements. The position of positional elements
contained inside a looping sequence, or appearing on its brane, is relative to the center of
the looping sequence itself. In this way, if the position of a looping sequence is updated, all
its internal elements are moved together with it, without having to update their positions.
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Parameter m denotes a pair composed of the name of a movement function n ∈ M,
and a υ ∈ Υ capturing the internal state of the movement function. Each n ∈M denotes
a function nfun describing the movement of an element over time. In particular, nfun

computes a tuple (P,Π, υ), where P ⊆ Rn are the possible resulting positions for the
element, Π : P → [0, 1] is a probability distribution function describing the probability of
reaching each one of the possible positions p′ ∈ P , and υ is the new updated state of the
movement function. We assume the set P of resulting positions to be finite.

A movement function (P,Π, υ′) = nfun(p, r, x, l, t, δt, υ) describes the possible resulting
positions of the element after a time interval δt from the current time t, by also taking
into account the following parameters: (i) its current position p ∈ Rn; (ii) its radius
r ∈ R+; (iii) a parameter x ∈ {in, on} specifying if the element appears on the surface or
inside a membrane; (iv) a parameter l ∈ R+ ∪ {∞}, specifying the radius of the parent
membrane; (v) the previous internal state υ of the movement function. In particular,
value on of parameter x denotes that the element appears on the surface of a membrane,
whereas value in denotes that the element is either inside a membrane with radius l, or at
top–level (in such case x = in, l = ∞). The parameter υ and return value υ′ allows the
function to maintain an internal state between each evaluation.

This formalization of Spatial CLS allows direct description of stochastic motions. This
feature is particularly important for modelling biological systems, as it allows representing
common non-deterministic movements, such as Brownian motion. See Section 6.5 for
examples of definitions of movement function.

The calculus also provides the following structural congruence relations.

Definition 6.2.2. The structural congruence relations on sequences ≡S and on terms ≡T
are the least congruences satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3

S · ε ≡S ε · S ≡S S
S1 ≡S S2 ⇒

(
S1

)
d
≡T

(
S2

)
d

T | λ ≡T T
T1 | (T2 | T3) ≡T (T1 | T2) | T3

T1 | T2 ≡T T2 | T1

6.2.2 Well-formed terms

Spatial CLS allows representing the space occupied by an element by defining an exclusion
space around it. As we have anticipated, the exclusion space is modelled as a circle (in
2D) or a sphere (in 3D), described by the radius parameter. Formally, we define the
set of well-formed terms, which captures the constraint that different elements cannot
have overlapping exclusion spaces. Actually, we define a rather strict notion of well-
formed terms, which also takes into account the space available inside looping sequences,
by requiring that there is enough room to accommodate all the internal elements (both
positional and non-positional). Note, however, that different definitions of well-formedness
of terms can be used if necessary.

As regards positional elements, we introduce the following constraints:

• elements inside a membrane (or at top–level) must not occupy the same space;
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• elements of a brane must not occupy the same space;

• elements of a brane must not occupy the space of any other element either inside or
outside the membrane;

• elements inside a membrane must not exceed the limits of the exclusion space rep-
resenting the membrane;

• the center of the elements of a brane must be located exactly at a distance r from
brane center, where r is the radius of the exclusion space.

Moreover, we want to ensure that the space occupied by all the elements in a membrane
does not exceed the volume of the membrane. To take into account the space occupied
by non–positional elements, we assume a function SpaceCheck that determines whether
there is enough space in a membrane for all the elements inside it and for all those on its
surface.

The described constraints are captured by the following definition of well-formedness,
where we assume the function dist : Rn × Rn → R+ that gives the Euclidean distance
between two points.

Definition 6.2.3 (Well-formed terms). The set of well-formed terms is defined as1

Twf = {T ∈ T | ∃I ∈ I. I |= T}

where I = P(J ×P(J )), J = (Rn ∪ {·})×R+, and relation |= ⊆ I ×T is defined by
the following inference rules (where 0 denotes the null vector):

∅ |= λ {(·, r, ∅)} |=
(
S
)
·,r {(p, r, ∅)} |=

(
S
)

[p,m],r

I1 |=B I2 |= T SpaceCheck(r, I1, I2) = true

∀ (p1, r1) ∈ All(I1). dist(0, p1) = r ∀ (p2, r2) ∈ All(I2). dist(0, p2) + r2 ≤ r
∀ (p1, r1) ∈ All(I1), (p2, r2) ∈ All(I2). dist(p1, p2) ≥ r1 + r2

{(·, r,All(I1))} |=
(
B
)L
·,r cT

{(·, r, J)} |=
(
B
)L
·,r cT

{(p, r, J)} |=
(
B
)L

[p,m],r
cT

I1 |= T1 I2 |= T2

∀ (p1, r1) ∈ All(I1), (p2, r2) ∈ All(I2). dist(p1, p2) ≥ r1 + r2

I1 ∪ I2 |= T1 | T2

where SpaceCheck : R+ × I × I → {true, false} is assumed, and All : I → (Rn × R+) is
defined as All(I) =

⋃
(p,r,J)∈I|·6=p{(p, r)} ∪ {(p+ p′, r′) | (p′, r′) ∈ J ∧ p′ 6= ·}.

1Symbol P denotes the powerset operator.
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Figure 6.1: An example of non well-formed Spatial CLS term.

The above inference rules allow deriving pairs of the form I |= T , where I describes all
the elements appearing at top-level in T and, for each top-level looping sequence, all
the elements appearing on its brane. In particular, each tuple (p, r, J) in a set I ∈ I
contains the spatial information of an element with position p and radius r. If the element
is a simple sequence, J is empty. Otherwise, in the case of looping sequences, J =
{(p1, r1), . . . , (pn, rn)} describes the spatial information of the elements appearing on its
brane. A term T is well-formed iff there exists an I such that I |= T .

Since the position of elements in J is relative to p, the function All is defined such that
it translates the position p′ of all elements in J to p + p′. In particular, the function All
gives, when applied to a tuple (p, r, J), a set containing: (1) the position and radius of the
element itself (p, r); (2) the translated position and radius of each element on the brane.

The function SpaceCheck takes as parameters the radius r of the looping sequence,
and the spatial descriptions of the elements inside it (I2) and of those on the brane (I1). It
uses that information to determine if there is enough space for all the elements, i.e. if there
exists an arrangement of the (non-positional) elements for which all the elements included
in a membrane fit within the bounds. We expect this function to compute approximate
solutions, in order to be efficiently computable.

Note that, given a term T , if a set I such that I |=T exists, then it is unique. Therefore,
the set I really describes the spatial information of (some) elements of term T , and such a
set can be derived from the inference rules iff the term is well-formed. Moreover, note that
for each possible term there is at most one applicable inference rule. Hence, if a set I exists
for a given term T then there is a unique proof tree that allows I |=T to be inferred. This
means also that in order to prove whether well-formedness holds or not for a given term
T , it is sufficient to try to construct the corresponding proof tree by applying the rules
in the only possible way. Finally, it is also easy to see that well-formedness is preserved
by structural congruence namely, given a set I and terms T1, T2 such that T1 ≡ T2, then
I |= T1 iff I |= T2.

Function SpaceCheck is used to determine if there is sufficient space inside a looping
sequence to accommodate all the elements, both positional and non-positional, contained
in it. A simple definition of SpaceCheck function is the one which computes the available
space by subtracting the volume of the positional elements to the volume of the considered
looping sequence and give true if the result is greater than the sum of the volumes of the
non-positional elements. More precise versions could be used if necessary.
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Example As an example of application of the well-formedness rules (in which we assume
SpaceCheck to be defined as in the example given above) let us consider the following
Spatial CLS term:

T ::=
((
a
)
〈[p4,m],1〉

)L
〈[p1,m],5〉 c (

(
b · c

)
〈[p2,m],2〉 |

(
b · d

)
〈[p3,m],1〉)

where p1 = (5, 5), p2 = (−1, 2.5), p3 = (1,−2) and p4 = (0, 5). A visual representation of
term T is given in Figure 6.1. By the following proof tree we have that the content of the
looping sequence of T is well-formed:

{(p2, 2, ∅)} |=
(
b · c

)
〈[p2,m],2〉 {(p3, 1, ∅)} |=

(
b · d

)
〈[p3,m],1〉

dist(p2, p3) =
√

22 + 4.52 = 4.92 ≥ 2 + 1 = 3

{(p2, 2, ∅), (p3, 1, ∅)} |=
(
b · c

)
〈[p2,m],2〉 |

(
b · d

)
〈[p3,m],1〉

However, the whole term T is not well-formed because sequence a overlaps with sequence
b · c. In fact, in the derivation of a proof tree for the whole term we have

{(p4, 1, ∅)} |=
(
a
)
〈[p4,m],1〉

{(p2, 2, ∅), (p3, 1, ∅)} |=
(
b · c

)
〈[p2,m],2〉 |

(
b · d

)
〈[p3,m],1〉

SpaceCheck(5, {(p4, 1, ∅)}, {(p2, 2, ∅), (p3, 1, ∅)}) = true

dist(0, p4) = 5

dist(0, p2) + 2 =
√

12 + 2.52 + 2 = 4.69 ≤ 5

dist(0, p3) + 1 =
√

12 + 22 + 1 = 2.24 ≤ 5

but also

dist(p4, p2) =
√

12 + 2.52 = 2.69 < 1 + 2 = 3

that is a violation of a requirement in the premise of the inference rule for looping se-
quences.

6.2.3 Patterns and rewrite rules

As for CLS+, in Spatial CLS we have different kinds of pattern. In Spatial CLS, however,
we also distinguish between brane patterns appearing on the left and on the right part
of a rewrite rule. The sets of variables X , SV , BV and TV are assumed as in CLS+,
with V = X ∪ SV ∪ BV ∪ TV . Moreover, we assume a set of position variables PV
ranged over by u, v, . . .. We distinguish between the instantiation of variables V and that
of position variables PV . An instantiation function for variables in V is a partial function
σ : V → Twf ∪ B ∪ S ∪ E that respects the type of variables, while the one for position
variables is a partial function τ : PV → D. We denote by Σ and T the sets of all
instantiation functions of the two kinds, respectively.

The distinction between left and right patterns is required to handle the spatial infor-
mation associated with elements. Position variables u ∈ PV are associated with elements
of the left pattern to capture the spatial information of the elements to which the pattern
is instantiated, while elements on right patterns can use the information associated with
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position variables to compute their new spatial information. Technically, each element on
a right pattern is associated with function g : T → D, which uses the current instanti-
ation τ ∈ T of position variables from the left pattern to compute the updated spatial
information d ∈ D of the element.

Definition 6.2.4 (Sequence and brane patterns). Left brane patterns BPL, right brane
patterns BPR, and sequence patterns SP are defined by the following grammar:

BPL ::=
(
SP
)
u

∣∣ BPL | BPL
BPR ::=

(
SP
)
g

∣∣ BPR | BPR
SP ::= ε

∣∣ a
∣∣ SP · SP

∣∣ x̃
∣∣ x

where u ∈ PV , g : T → D. We denote the sets of all left and right brane patterns, and
sequence patterns, by BPL, BPR and S, respectively.

Definition 6.2.5 (Term patterns). Left patterns PL and right patterns PR are given by
the following grammar:

PL ::=
(
SP
)
u

∣∣ (
BPLX

)L
u
cPLX

∣∣ PL | PL
BPLX ::= BPL

∣∣ BPL | X
∣∣ X

PLX ::= PL
∣∣ PL | X

PR ::= λ
∣∣ (

SP
)
g

∣∣ (
BPRX

)L
g
cPR

∣∣ PR | PR
∣∣ X

∣∣ X

BPRX ::= BPR
∣∣ BPRX | X

∣∣ X

where u ∈ PV , g : T → D. We denote the sets of all left patterns by PL, the set of all
right patterns by PR, and we assume them to be supersets of BPL and BPR, respectively.
We denote by Var(P ) the set of all variables appearing in a pattern P , including position
variables from PV .

Patterns form rewrite rules, which are used to model the reactions that can occur
in the system. Conceptually, a reaction occurs among the elements of the system that
match the sequences (simple and looping) appearing in the left pattern. Term and brane
variables appearing in the left pattern are used as placeholders for the other elements of
a compartment which are not involved in the reaction. Formally, rewrite rules are defined
as follows.

Definition 6.2.6. A rewrite rule is a 4-tuple (fc, PL, PR, k), usually written as

[ fc ] PL
k7→ PR

where fc : T→ {true, false}, k ∈ R+, Var(PR) ⊆ Var(PL), and each function g appearing
in PR refers only to position variables in Var(PL). A rewrite rule where PL and PR are
brane patterns BPL and BPR, respectively, is called brane (rewrite) rule.

A term can be obtained from a pattern by applying a pair of instantiation functions
τ and σ to it. This entails the instantiation of the variables of the pattern and, for
right patterns PR, the replacement of each function g : T→ D with the value obtained by
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applying each of them to τ . A rewrite rule states that, if there exists a pair of instantiation
functions τ and σ such that PLτσ matches a subterm of the current system, then that
subterm may be rewritten to PRτσ. The function τ conceptually carries the bindings
between position variables of the left pattern of the rule and the actual spatial information
(radius and, possibly, position and movement function) of the matched elements. In this
way, the g functions are used to compute the spatial information for the elements on the
right patterns, by using the spatial information of the elements that match with the left
pattern.

The rewrite rule, besides left and right patterns, is formed by a function fc that
specifies its application constraints, that is whether or not the rule can be applied to
specific matching elements. The applicability of the rule is determined by evaluating
function fc over the τ used for the matching. For instance, this function may be used to
check the positions of the involved elements, and to allow the reaction only if they are
close enough.

Similarly to the variant of CLS called Stochastic CLS [4], rewrite rules are endowed
with a kinetic constant k ∈ R+, describing their propensity of application. Formally, k
represents the parameter of a negative exponential distribution modelling the expected
duration of a reaction involving a specific combination of reactants.

Example An example of Spatial CLS rewrite rule is the following, where dist denotes
the function that gives the Euclidean distance between two points:

[ dist(p1, p2) ≤ 10 ]
(
b · c

)
[p1,m],r1

|
(
b · d

)
[p2,m],r2

57→
(
b · c · d

)
[
p1+p2

2
,m],r1+r2

.

This rule can be applied to a sequence b · c and a sequence b · d if the distance between
them is less than 10. The result of the application of the rule is a single sequence b · c · d
with a position that is in the middle of the positions of b · c and b · d and with a radius
that is the sum of the radii of the two sequences. The kinetic constant associated with
the rule is 5, meaning that each occurrence of the reaction modelled by the rule lasts 0.2
time units on the average.

6.3 Spatial CLS Semantics

A biological system, described by a term and a set of rewrite rules, evolves by performing
a sequence of steps. A step represents the evolution of the system in a finite time-span,
and is conceptually composed of two phases:

1. at most one reaction occurs;

2. the objects are moved according to their movement functions.

During the evolution, the time length of the step varies to accommodate for the different
number of possible reactions that can occur in each state. In particular, since the processes
we describe are continuous-time stochastic processes, the assumption that at most one
reaction occurs at each step is justified by choosing a step which is short enough.

In the first phase, the application of a rewrite rule could yield to a non well-formed
term (according to Definition 6.2.3), i.e. space conflicts arise. For this reason, if the
application of a rewrite rule would yield to a space conflict, the semantics tries to perform a
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rearrangement of the objects in order to find a conflict-free spatial arrangement. Formally,
this rearrangement is performed by the Arrange algorithm, which has to be provided by
the modeller. However, if a conflict-free arrangement cannot be found (as denoted by a
special value returned by Arrange), we forbid the particular application which causes the
problem. In a state, we define the enabled applications of rewrite rules, as all those possible
applications for which a conflict-free arrangement can be found. Note that the application
of Arrange algorithm is orthogonal to the evolution of the system, as it consumes no time
during the evolution of the system.

In order to derive the semantics of a Spatial CLS term, the modeller has to define a
parameter N ∈ N, which determines the maximum allowed step length as 1/N . However,
during the evolution, the actual step length can be much smaller, as at most one reaction
per step may occur. Formally, if there is at least one enabled rule application, the actual
length of the step is a fraction of the maximum step length, namely 1/(N mT ), where
mT denotes the total number of enabled rules in the current state T . As discussed in
Section 6.3.2, the choice of N is not completely free, but it has to satisfy some constraints
in order to assume that at most one reaction occurs in a step.

In the second phase, the positions of all the (positional) elements of the system are
updated according to their movement functions. The positions of elements are atomically
updated to the positions reached after a time-span corresponding to the length of the step.
As for the first phase, the movement can yield to a non-well-formed term, therefore the
semantics performs a rearrangement also after moving the objects. However, differently
from the first phase, if a conflict-free arrangement is not found the objects are kept in their
current positions (which actually means skipping the movement phase). As before, the
application of Arrange algorithm consumes no time during the evolution of the system.

The maximum length of the step affects the precision in describing the movement, as
the semantics takes into account only the position of objects at the beginning and at the
end of a step, excluding all intermediate positions. For example, in the case of a fast-
moving object and a big step length, it may happen that some interactions, which would
occur by considering intermediate positions, go unnoticed. A similar problem may occur
if the rearrangement after a movement fails and the objects are not moved. It is up to the
modeller to choose a value of parameter N which determines a smaller length of the step,
thus mitigating these problems by allowing the semantics to see intermediate states.

Non-positional elements correspond to Stochastic CLS terms, thus their behaviour
is in accordance with the law of Mass Action: they are assumed to be homogeneously
distributed in the space available inside the compartment, and the reaction rate of the
rules involving those elements is proportional to the product of the concentrations of the
reactants.

We remark that distinguishing between positional and non-positional elements allows
using two different levels of abstraction in the same biological model. Details about spatial
information can be included only for those elements for which spatiality has a significant
role. Such details can be omitted for elements that can be safely assumed to be homoge-
neously distributed in the space. This can improve the efficiency of simulators and analysis
techniques based on Spatial CLS.

We now introduce some auxiliary definitions that will be used in the semantics.
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(
R : [ fc ] PL

k7→ PR

)
∈ R fc(τ) = true τ ∈ T σ ∈ Σ

PLτσ
R,PLτσ,comb(PL,τ,σ)−−−−−−−−−−−−−→appl PRτσ

B
R,T,c−−−→appl B

′ R ∈ RB(
B
)L
d
cT1

R,(B)Ld cT1,c−−−−−−−−→appl

(
B′
)L
d
cT1

T1
R,T,c−−−→appl T

′
1(

B
)L
d
cT1

R,(B)Ld cT1,c−−−−−−−−→appl

(
B
)L
d
cT ′1

T1
R,T,c−−−→appl T

′
1

T1 | T2
R,T,c·binom(T,T1,T2)−−−−−−−−−−−−−→appl T

′
1 | T2

Figure 6.2: The inference rules defining transition relation →appl, used for computing the
rate of a rule application.

6.3.1 Auxiliary definitions

The first definition is used to find all possible rule applications in a term, and it will be used
by the semantics to compute the rate of a rule application. In particular, the transition
relation defined in Figure 6.2 allows determining each group of elements to which a rewrite
rule can be applied. These definitions follow closely those of Stochastic CLS given in [4],
to which we refer the reader for more details.

Each transition T1
R,Tr,c−−−−→appl T2 describes the application of rewrite rule R inside term

T1 yielding to T2. Label Tr is a term denoting the position inside T1 where the rewrite
rule have been applied. We consider two reactions to be different if they involve different
reactants Tr or different resulting terms T2.

The value c ∈ N corresponds to the number of different reactant combinations among
which the reaction described by R may, conceptually, occur. For example, if we consider

a rewrite rule involving non-positional elements, such as
(
a
)
·,0 |

(
b
)
·,0

k7→
(
a · b
)
·,0, then the

reaction can conceptually occur between each pair of elements
(
a
)
·,0 and

(
b
)
·,0 contained

in a compartment. Nevertheless, all of them yield to the same term, obtained by replacing
one

(
a
)
·,0 and one

(
b
)
·,0 with

(
a · b

)
·,0. Thus, in this case, the value c is the number of

pairs of elements that can react, which is equal to
(

#a
1

)(
#b
1

)
, where #a, #b denote the

number of elements
(
a
)
·,0 and

(
b
)
·,0 in the compartment, respectively.

Formally, given a finite set of rewrite rules R, with RB ⊆ R denoting the set of all

brane rules in R, the transition relation
R,Tr,c−−−−→appl, with R ∈ R, Tr ∈ T and c ∈ N,

is defined as the least labeled transition relation on terms defined by the inference rules
shown in Figure 6.2, and closed with respect to ≡T . The definition in Figure 6.2 makes
use of the functions comb, comb′ and binom, which allow to compute, in a compositional
way, the number of possible reactant combinations associated with a precise application
of a rewrite rule.

Let P denote the multiset of top-level elements appearing in a pattern (or term) P ,
and assume the function n : T ×T → N that, applied to a term T1, representing a (simple
or looping) sequence, and another term T2, gives the number of times T1 appears at top-
level in T2. Functions comb, comb′ : PL × T × Σ → N and binom : T × T × T → Q are
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recursively defined as follows:

comb(PL1 | PL2, τ, σ) = comb(PL1, τ, σ) · comb(PL2, τ, σ)

comb(
(
BPLX

)L
u
cPLX , τ, σ) = comb′(BPLX , τ, σ) · comb′(PLX , τ, σ)

comb(
(
SP
)
u
, τ, σ) = 1

comb′(PL | U, τ, σ) =
∏

T∈PLτσ

(
n((PL|U)τσ, T )

n(PLτσ, T )

)
· comb(PL, τ, σ) U ∈ BV ∪ TV

comb′(PL, τ, σ) = comb(PL, τ, σ)

binom(T1, T2, T3) =
∏
T∈T1

n(T3,T )∏
i=1

n(T2, T ) + i

n(T2, T )− n(T1, T ) + i

Using the definition of transition relation −→appl, we define the ApplTargets(T ) function
that gives the set of terms reachable after applying a rewrite rule to the term T , by also
considering the subsequent rearrangement. Formally, it is defined as follows:

ApplTargets(T ) =
{
T ′′
∣∣∣ T R,Tr,c−−−−→appl T

′ ∧ T ′′ = Arrange(T ′) 6=⊥
}

The second auxiliary definition that we introduce is used to perform the movement

phase inside a step. We define the transition relation 〈T, t, δt〉 x,l,π,ps−−−−→mov T ′, where
x ∈ {in, on}, l ∈ R+ ∪ {∞}, π ∈ [0, 1], and ps is a list of positions, as the least transition
relation defined by the rules shown in Figure 6.3. Given the initial term T , describing
the current state at time t, the transition relation allows deriving all reachable terms T ′,
describing the state after a time interval δt from the current time t, where the positions of
all positional elements appearing in T have been updated using the movement functions of
the elements. Label π is the probability of performing the transition, and is obtained by
combining the probability of reaching the different positions of each movement function.
Label x denotes where term T appears. The value x = in means that T is either inside
a looping sequence or at top-level (i.e. it is neither inside nor in the brane of any looping
sequence), while the value x = on means that T is on the brane of a looping sequence. In
both cases, l represents the radius of the looping sequence where T appears, or, if T is at
top-level, l =∞. Hence, if T is at top-level we have x = in and l =∞.

Finally, the transition keeps track of the positions chosen by each movement function
in the label ps, which contains the list of chosen positions. This is just a technical trick
that allows us to keep distinct those transitions that would produce the same resulting
term T ′ with the same probability π, even if the positions chosen by movement function
are different. This works because structural congruence is not considered in the definition.

Using the transition relation −→mov, we define the function MovTargets(T, t, δt) that
gives the set of terms reachable after the movement phase, by also taking into account the
rearrangement:

MovTargets(T, t, δt) =
{
T ′′
∣∣∣ 〈T, t, δt〉 in,∞,π,ps−−−−−−→mov T

′ ∧ T ′′ = Arrange(T ′) 6=⊥
}
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x ∈ {in, on} l ∈ R+

〈λ, t, δt〉 x,l,1,[]−−−−→mov λ

x ∈ {in, on} l ∈ R+

〈
(
S
)
·,r, t, δt〉

x,l,1,[]−−−−→mov

(
S
)
·,r

(P,Π, σ′) = nfun(p, r, x l, t, δt, σ)

p′ ∈ P m = (n, σ) x ∈ {in, on} l ∈ R+

〈
(
S
)

[p,m],r
, t, δt〉 x,l,Π(p′),[p′]−−−−−−−→mov

(
S
)

[p′,(n,σ′)],r

〈B1, t, δt〉
on,r,α,psB−−−−−−→mov B2 〈T1, t, δt〉

in,r,β,psT−−−−−−→mov T2

(P,Π, σ′) = nfun(p, r, x l, t, δt, σ)

p′ ∈ P m = (n, σ) π = αβΠ(p′) x ∈ {in, on} l ∈ R+

〈
(
B1

)L
[p,m],r

cT1, t, δt〉
x,l,π,[p′]@psB@psT−−−−−−−−−−−−→mov

(
B2

)L
[p′,(n,σ′)],r

cT2

〈B1, t, δt〉
on,r,α,psB−−−−−−→mov B2 〈T1, t, δt〉

in,r,β,psT−−−−−−→mov T2

x ∈ {in, on} l ∈ R+

〈
(
B1

)L
·,r cT1, t, δt〉

x,l,αβ,psB@psT−−−−−−−−−−→mov

(
B2

)L
·,r cT2

〈T1, t, δt〉
x,l,α,psB−−−−−→mov T

′
1 〈T2, t, δt〉

x,l,β,psT−−−−−→mov T
′
2

〈T1 | T2, t, δt〉
x,l,αβ,psB@psT−−−−−−−−−−→mov T ′1 | T ′2

Figure 6.3: Rules of the transition relation −→mov.

6.3.2 Definition of the semantics

We assume a function Arrange : T → (T ∪{⊥}) which tries to rearrange the elements of a
system in case of a space conflict. Thus, given a term T , Arrange(T ) either produces a well-
formed term T ′, or returns the special value ⊥ denoting that no conflict-free arrangement
could be found. We assume that, if the given T is well-formed, then Arrange(T ) = T .

Given a term T , let us denote by m
(R)
T the number of different reactant combinations

enabled in state T for a reaction R, and by mT the total number of reactions considering
a set of rules R. Formally:

m
(R)
T =

∑{
c
∣∣∣ T R,Tr,c−−−−→appl T

′ ∧Arrange(T ′) 6=⊥
}

mT =
∑
R∈R

m
(R)
T .

Note that we explicitly exclude all rule applications that would not yield to a well-formed
term after the rearrangement.

Let T describe the state of the system at a certain step, and kR denote the rate
associated with a rewrite rule R. At each step of the evolution of the system, in order
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to assume that at most one reaction can occur, we have to choose a time interval δt such

that
(∑

R∈R kR m
(R)
T

)
δt ≤ 1. Given a set of rewrite rules R, we let the modeller choose

an arbitrary value N such that for each rule R ∈ R, 0 < kR/N ≤ 1. In this way, by using
a time interval δt = 1/(N mT ) for a step, we satisfy the above condition. If there are no
enabled reactions, then the length of the step is 1/N time units, which corresponds to the
maximum step length.

The following definitions are used to compute the probability associated with transi-
tions in the semantics.

Pappl(T → T ′′) =
∑{

kR c

NmT

∣∣∣∣ T R,Tr,c−−−−→appl T
′ ∧ T ′′ = Arrange(T ′)

}
(6.1)

Pnoappl(T ) = 1−
∑{

Pappl(T → T ′)
∣∣ T ′ ∈ ApplTargets(T )

}
(6.2)

Pmov(〈T, t, δt〉 → T ′′) =
∑{

π
∣∣∣ 〈T, t, δt〉 in,∞,π,ps−−−−−−→mov T

′ ∧ T ′′ = Arrange(T ′)
}

(6.3)

Pnomov(T, t, δt) = 1−
∑{

Pmov(〈T, t, δt〉 → T ′)
∣∣ T ′ ∈ MovTargets(T )

}
(6.4)

Function Pappl(T → T ′′) gives the probability of performing a transition from T to T ′′

in the time interval 1/(N mT ), by summing up the probabilities of all the different rule
applications which, after the rearrangement, end up in the term T ′′. The probability of a
single rule application is kR c

NmT
, where kR c is the kinetic rate (expected number of reactions

per time unit). Function Pnoappl(T ) gives the probability that no reaction occurs in term
T . Similarly, function Pmov(〈T, t, δt〉 → T ′′) gives the probability of passing from state T
at time t, to state T ′′ after a time interval δt, by performing the movement phase and the
rearrangement. Finally, function Pnomov(T, t, δt) gives the probability that no movement
is performed, by considering the cases in which no conflict-free arrangement is found.

The following definition presents the semantics of Spatial CLS, given as a probabilistic
transition system. Two kinds of states are present. States of the form 〈T, t〉 describe
the system at time t. These states represent the beginning of a step, in which the first
phase has to take place. All transitions from a state of this kind are of the form 〈T, t〉 p−→
〈T ′, t, δt〉, where each transition represents the application of at most one rewrite rule,
with probability p. In particular, a state of the form 〈T ′, t, δt〉 is reached, denoting that
the second phase has to take place, and where δt is the length of the time interval for the
step. Transitions 〈T ′, t, δt〉 p−→ 〈T ′′, t′〉, with t′ = t+ δt, describe the possible effects of the
movement of the objects. Each possible resulting term T ′′ of the objects has a probability
p of being reached.

Definition 6.3.1 (Semantics). Given a finite set of rewrite rules R, the semantics of
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Spatial CLS is the least relation satisfying the following inference rules:

p = Pappl(T1 → T2) T1 6≡ T2 T2 ∈ ApplTargets(T1) δt = 1/(N mT1)

〈T1, t〉
p−→ 〈T2, t, δt〉

(6.5)

p = Pappl(T → T ) + Pnoappl(T ) δt = 1/(N max{1,mT })
〈T, t〉 p−→ 〈T, t, δt〉

(6.6)

p = Pmov(〈T1, t, δt〉 → T2) T1 6≡ T2 T2 ∈ MovTargets(T1)

〈T1, t, δt〉
p−→ 〈T2, t+ δt〉

(6.7)

p = Pmov(〈T, t, δt〉 → T ) + Pnomov(T, t, δt)

〈T, t, δt〉 p−→ 〈T, t+ δt〉
(6.8)

Inference rules 6.5 and 6.6 describe the first phase of a step, while rules 6.7 and 6.8
describe the second phase of a step. In particular, rule 6.5 is used to derive transitions in
which a reaction occurs (i.e. a rewrite rule is applied) and ending up in a different term
T2 from T1. Rule 6.6 allows deriving the transition in which the resulting state is not
modified. The probability of this transition includes both (i) the probability Pnoappl(T )
that no reaction occurs in the step, and (ii) the probability Pappl(T → T ) of all the
reactions which happen to produce the same state T .

Rules 6.7 and 6.8 describe the second phase of a step, and are analogous to rules 6.5
and 6.6. In fact, rule 6.7 allows deriving transitions in which the resulting state T2 is
different from the initial state T1, while rule 6.8 is for transitions in which the term
T describing system state is not modified. Rule 6.8 takes into account both the cases in
which a movement is performed, and the cases in which such a movement is not performed
because the rearrangement fails.

6.4 Handling space conflicts

In Spatial CLS, during the evolution of the system, space conflicts may arise which are
resolved by the algorithm Arrange, which has to be provided by the modeller. The reason
space conflict may occur is that, in Spatial CLS, both rule application and movement of
elements are discrete events. This is different from the reality in which, for example, the
size of a growing cell increases incrementally. Hence, the growth of a cell is a continu-
ous event which causes the other adjacent cells to be pushed away. Movement is also a
continuous event in the reality. The idea of the Arrange algorithm is to approximate the
reality by simulating the movement which would occur in the case of a conflict. The main
difference from real systems is the time in which the arrangement is performed.

In this section we show a possible definition of the Arrange algorithm in which spatial
conflicts are resolved by pushing objects in opposite directions when they overlap, and
precisely tracking the movement that would arise. Note that the precision required depends
on the kind of system one wants to model. Therefore the modeller could use simpler
or more approximated (and, hopefully, faster) algorithms if such a high precision is not
required for a model. Finally, recall that the arrangement is orthogonal with respect to the
evolution of the system, since the arrangement is assumed to be instantaneous. Therefore
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the movement simulated by this implementation of the Arrange algorithm is not exposed
to the semantics, apart from the final arrangement possibly found.

The following definition of the Arrange algorithm is able to find a well-formed term
according to Definition 6.2.3, by also taking into account the space available inside looping
sequences for the inner elements. The behaviour of the Arrange algorithm is defined by
assuming an instant velocity associated with each element, whose direction and speed
depend on the instant position of every element. Given an element, the velocity it is
subjected to is calculated as the sum of other velocities:

• for each other element it overlaps with, we assume a velocity, in the opposite direction
to the other element (the elements are trying to increase their distance), and whose
magnitude is proportional to the length of the overlap;

• if the element is not completely within the bounds of the containing membrane, then
we assume a velocity directed towards the center of the membrane, whose magnitude
is inversely proportional to the distance from the center;

• if the element is on the surface of a membrane, but its center is not located on
the surface of the sphere modelling the exclusion space, then we assume a velocity
directed towards the nearest point of the sphere with a magnitude proportional to
the distance from the sphere.

If any of those velocities is not well-defined (for instance, if the centers of two elements
coincide), then we assume an arbitrary fixed direction along which the elements move. We
also assume that the radius of each element is not greater than the radius of the membrane
in which it is contained; otherwise the conflict could not be resolved.

This behaviour is modelled by a system of differential equations. Given a term T ,
let ~x1, . . . , ~xm be the variables for the centers of the positional elements appearing in
T , and IL and IS the set of indices denoting looping and simple sequences, respectively
(IL ∪ IS = {1, . . . ,m}). Moreover, let In(i), with i ∈ IL, be the set of indices denoting
elements inside the looping sequence i, or, if i = 0, the indices of the top–level elements;
let On(i), with i ∈ IL, denote the elements appearing on the surface of i (we assume
On(0) = ∅) and Inner(i) = In(i) ∪

⋃
j∈In(i) On(j).

The system of differential equations on which the Arrange algorithm is based is the
following, where hi is such that i ∈ Inner(hi):



d~xi
dt

=

 ∑
j∈Inner(hi)\{i,k}∪In(k)

~vij

− ~ui + ~wi ∀i. ∃k. i ∈ On(k)

d~xi
dt

=

 ∑
j∈Inner(hi)\({i}∪On(i))

~vij

− ~ui ∀i ∈ In(hi)

Vectors ~vij denote velocities due to the overlap between two elements. Each vector ~ui
denote the velocity that models, for the elements that are not completely contained in a
membrane, the movement towards the center of the membrane. Vectors ~wi are relative
to elements appearing on the surface of membranes, and that are not correctly positioned
on the membrane surface itself. The formal definitions of these vectors are the following,
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where ~a, ~b denote non-null vectors specifying the directions used when velocities are not
well defined:

~yi =

{
~xi + ~yj if ∃j 6= 0. i ∈ On(j) ∨ i ∈ In(j)

~xi otherwise

vij = max{0, ri + rj − dist(~yi, ~yj)}

~vij =


vij ̂(~yi − ~yj) if ~yi 6= ~yj

+vij ~a if ~yi = ~yj and i < j

−vij ~a if ~yi = ~yj and i ≥ j

ui =

{
max{0,dist(0, ~xi) + ri − rh} if ∃h 6= 0. i ∈ Inner(h)

0 otherwise

~ui =

{
0 if i ∈ Inner(0)

ui ̂( ~yh − ~yi) if ∃h 6= 0. i ∈ Inner(h)

~wi =

{
wi ~̂xi if ~xi 6= 0

wi~b if ~xi = 0
wi = rk − dist(0, ~xi) ∃k. i ∈ On(k)

where ~̂x denotes the normalized vector ~x, i.e. ~̂x = ~x/dist(0, ~x) if ~x 6= 0.
The Arrange algorithm stops when a stable setting is reached. If the term representing

this setting is not well-formed, the algorithm returns the special value ⊥, otherwise it
returns a term where the positions of all the elements are updated. Note that, even
if all space conflicts are resolved, still the term may not be well-formed according to
Definition 6.2.3 because there is not enough space for the non-positional elements, as
determined by the function SpaceCheck.

The use of this mechanism is not the only solution for dealing with space conflicts
among the elements of a system. The modeller can provide its own definition of Arrange
algorithm, tailored to specific needs. For example, a more physically sound modelling of
the behaviour of the system in case of space conflicts, could be obtained by associating
a “weight” and consequently a “pushing strength” with elements. The Arrange algo-
rithm could take such weights into account, so that an element could push other elements
according to its strength.

Implementation of Arrange algorithm

Algorithm 11 contains a specification of the Arrange algorithm, written in pseudo-code.
The algorithm takes a term as input, and returns a well-formed term obtained from the
input by simulating the system of differential equations shown above, if it is able to
determine it. Otherwise, it returns a special value ⊥. The behaviour of the algorithm
is determined by the parameter ∆t, representing the time step length. The algorithm
performs a sequence of steps, using the algorithm DoStep() to compute the movement of
each element in the current step, until the amount of movement for each element decreases
below the threshold ε∆t.

Algorithm 12 describes the DoStep() algorithm, which computes the vectors describing
the movement according to the system of differential equations. Formally, given a vector
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Algorithm 11 Arrange(T ), with T ∈ T
1: let [~xi]i=1,...,m and [~ri]i=1,...,m denote the position and radii of positional elements in T

2: repeat
3: ∆x = DoStep(x, r)
4: x = x+ ∆x
5: until ∀i ∈ {1, . . . ,m}. dist(0,∆xi) ≤ ε∆t
6: T ′ = T updated with positions x
7: if T ′ ∈ Twf then return T ′ else return ⊥ end if

x of positions of all positional elements, with radii described by vector r, the DoStep()
algorithm computes a vector ∆x representing the movement of each positional element in
the current step. A parameter ∆t denotes the time interval used for approximating the
movement described by the system of differential equations. We assume ∆t < 1. Note
that a smaller value of ∆t increases the precision, as the time interval is smaller.

The algorithm uses a set Q of indices of looping sequences, also including the special
value 0, each of them representing a looping sequence whose content has still to be con-
sidered. Each iteration of the outermost “while” loop deals with the content of a different
looping sequence, except at the first iteration, in which it deals with top-level elements.
Therefore, the algorithm starts by computing the movement vectors for all top level el-
ements, and elements appearing on the brane of top-level looping sequences. Then, the
algorithm descends recursively into looping sequences, and so on, until all compartments
have been considered. The “for” loop at lines 6–13 checks for conflicts between each pair
of elements inside the current element i. The second “for” loop at lines 14–20 checks the
elements appearing on the brane, by moving each of them towards a position at distance
ri from the center. Finally, lines 21–28 deal with inner elements, by moving towards the
center the elements that exceed bounds.

Since the Arrange algorithm is used by the semantics of Spatial CLS, it is important
to prove its termination. For the sake of simplicity we consider a restricted version of the
algorithm dealing only with parallel compositions of sequences (Algorithm 13). We shall
briefly discuss at the end of this section how the proof of termination could be extended
to the complete algorithm (Algorithm 11).

Algorithm 13 (as Algorithm 11) performs a sequence of steps, each with a duration
given by the parameter ∆t. At each step, each element is subjected to a velocity which de-
pends on the overlap with other elements, corresponding to vectors ~v of Algorithm 12. The
algorithm terminates when the length of each movement vector goes below the threshold
ε∆t.

In order to prove the termination of the algorithm, we need to introduce some geometry
concepts. A convex polyhedron P can be described as an intersection of a finite number
of half-spaces. In the case of the two-dimensional space R2, this means that there must
exist A ∈ Rm×2 and b ∈ Rm such that

P = { x | Ax ≤ b }

In the following, we deal only with convex polygons, which are finite convex polyhedrons
in R2. Let I be a subset of row indices {1, . . . , n} of a matrix M . We denote by MI
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Algorithm 12 DoStep(x, r), with x ∈ (Rn)m and r ∈ Rm

1: Q = {0}
2: ∆x = 0 ∈ (Rn)m

3: while Q 6= ∅ do
4: let i ∈ Q
5: Q = Q \ {i}
6: for all j1, j2 ∈ Inner(i) such that j1 < j2 do
7: c = rj1 + rj2 − dist( ~yj1 , ~yj2)
8: if c > ε then

9: ~v =

{
̂( ~yj1 − ~yj2) if ~yj1 6= ~yj2

~a otherwise

10: ∆xj1 = ∆xj1 + c~v∆t
11: ∆xj2 = ∆xj2 − c~v∆t
12: end if
13: end for
14: for all j ∈ On(i) do
15: c = ri − dist(0, xj)
16: if |c| > ε then

17: ~v =

{
x̂j if xj 6= 0
~b otherwise

18: ∆xj = ∆xj + c~v∆t
19: end if
20: end for
21: if i 6= 0 then
22: for all j ∈ Inner(i) do
23: c = dist(0, xj) + rj − ri
24: if c > ε then
25: ∆xj = ∆xj + c ̂(~yi − ~yj) ∆t
26: end if
27: end for
28: end if
29: Q = Q ∪ (In(i) ∩ IL)
30: end while
31: return ∆x
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Algorithm 13 Arrange(
(
S1

)
d1
| · · · |

(
Sn
)
dn

), with
(
Si
)
di
∈ T

1: let [~xi]i=1,...,n and [~ri]i=1,...,n denote the position and radii of the positional elements
in input

2: repeat
3: ∆xi = 0 ∈ R2 i ∈ {1, . . . , n}
4: for all (j1, j2) ∈ {1, . . . , n} × {1, . . . , n} such that j1 6= j2 do
5: c = rj1 + rj2 − dist( ~xj1 , ~xj2)
6: if c > ε then
7: ~v = normalize( ~xj1 − ~xj2)
8: ∆xj1 = ∆xj1 + c~v∆t
9: end if

10: end for
11: x = x+ ∆x
12: until ∀i ∈ {1, . . . , n}. dist(0,∆xi) ≤ ε∆t
13: T ′ = T updated with positions x
14: if T ′ ∈ Twf then return T ′ else return ⊥ end if

the sub-matrix of M containing the only rows of M with indices in I. Moreover, let
I = {1, . . . , n} \ I denote the complement of I. A vertex of a convex polygon P = { x |
Ax ≤ b } is a point v ∈ R2 such that

∃I ⊆ {1, . . . , n}. |I| = 2 ∧ rank(AI) = 2 ∧AIv = bI ∧AIv ≤ bI

This means that v is a point of P which corresponds to the intersection of the two lines
A{i1}x = b{i1} and A{i2}x = b{i2} indicated by the indices in I = {i1, i2}. The fact that
rank(AI) = 2 ensures that the intersection point v exists and is unique.

A convex polygon (which is finite) can also be described as the convex hull of its set
of vertices, where the convex hull of a finite set of points X = {x1, . . . , xn} ⊂ R2 is the
minimum convex set containing all the points specified. Formally, it can be defined as:

CH(X) =

{
y =

n∑
i=1

λixi


n∑
i=1

λi = 1, λi ≥ 0 i = 1, . . . , n

}

In Figure 6.4a, the convex hull of the points x1, . . . , x6 is represented by the entire area
contained inside the dashed curve.

Definition 6.4.1. Given a convex polygon P = { x | Ax ≤ b }, the cone of movement of
a vertex v corresponding to the row indices I of A is defined as follows:

CM(v) = { x | AIx ≥ bI }

Figure 6.4b shows the vertices v1, . . . , v4 of the convex hull of figure 6.4a, and their
corresponding cones of movement, depicted by the shaded areas.

Definition 6.4.2. Given a convex polygon P with vertices v1, . . . , vk, its perimeter is
given by the sum of the distances between each pair of adjacent vertices. We denote the
perimeter by `(P ).
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Figure 6.4: A polygon corresponding to a connected set of components, and the cones of
movement of the vertices of the polygon.

Algorithm 13 is applied to the initial set of centers of the elements X = {x1, . . . ,
xn} ⊂ R2, whose radii are {r1, . . . , rn} ⊂ R. Let k denote the step number of the outer

loop of the algorithm (lines 2–12). We denote by X(k) = x
(k)
1 , . . . , x

(k)
n the centers of the

elements at the beginning of step k.

Definition 6.4.3. Let X(k) = x
(k)
1 , . . . , x

(k)
n be the centers of the elements at step k, whose

radii are r1, . . . , rn. The overlap between any pair of elements i, j at iteration k is defined
as:

c
(k)
ij =

{
ri + rj − dist(x

(k)
i , x

(k)
j ) if ri + rj − dist(x

(k)
i , x

(k)
j ) > ε;

0 otherwise.

The following definition formally defines connected sets, which are the smallest sets of
elements in which every element of P overlaps with at least another element in the same
set and without any element external to the set.

Definition 6.4.4. Let G = (N,A) be an undirected graph, whose nodes N = {1, . . . , n}
correspond to element indices, and the set of arcs is such that (i, j) ∈ A iff cij > 0. A set
of elements P ⊆ N is a called connected iff it is a connected component of the graph and
|P | ≥ 2.

We denote by CH(P,X) the convex hull of the elements specified by P ⊆ {1, . . . , n}
whose positions are specified by X = {x1, . . . , xn}, i.e. CH(P,X) = CH({ xi | i ∈ P }).

For any step k of the algorithm, we let P
(k)
1 , . . . , P

(k)
m denote the sets of indices of

connected elements. Note that the sets P
(k)
1 , . . . , P

(k)
m represent a partition of a subset of

indices of elements {1, . . . , n}.

Lemma 6.4.1. Given a connected set of elements P (k) with positions X(k), let C =
CH(P (k), X(k)). Each vertex of C, which is also contained in X(k), is moved inside its

cone of movement. Formally, for each vertex x
(k)
i ∈ X(k) of C:

x
(k+1)
i ∈ CM(x

(k)
i ) and x

(k+1)
i 6= xki

Proof. In order to prove that each vertex x
(k)
i of C is moved inside its cone of movement

CM(x
(k)
i ) we have to show that ∆xi is directed towards such a cone. ∆xi corresponds to
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the sum of the c~v∆t vectors computed at each iteration of the inner loop of the algorithm.
Values c and ∆t are positive, hence they do not affect the direction of the vector. Vector
~v lies on the line that connects xi with another point xj ∈ C and is directed backward
with respect to xj . Since xj is contained in C it follows that ~v is directed towards the
cone of movement CM(xi). Since this holds for all vectors ~v computed in the inner loop of

the algorithm, we have that ∆xi is directed towards CM(xi). The property x
(k+1)
i 6= x

(k)
i

holds because: (i) ∆t > 0, (ii) in all iterations of the inner loop ~v is a unit vector, and
(iii) there is at least an iteration in which c > ε (because the vertex is part of a connected
component).

The following lemma shows that the perimeter of each polygon corresponding to each
connected set of elements increases at each iteration of the outer loop of the algorithm.

Lemma 6.4.2. Let P
(k)
1 , . . . , P

(k)
m represent the connected sets of elements at a generic

iteration k of the outer loop of the algorithm, and X(k) = x
(k)
1 , . . . , x

(k)
n their positions.

∀i = 1, . . . ,m. `(CH(P
(k)
i , X(k))) < `(CH(P

(k)
i , X(k+1)))

Proof. Lemma 6.4.1 implies that CH(P
(k)
i , X(k)) ⊂ CH(P

(k)
i , X(k+1)) for all i = 1, . . . ,m,

therefore their perimeters are increased.

Finally, the following theorem proves that the restricted version of the Arrange algo-
rithm, defined as Algorithm 13, always terminates.

Theorem 6.4.3. Algorithm 13 always terminates.

Proof. Suppose that the algorithm does not terminate. There exists a subset Z of elements,
containing at least two elements, where each element belongs infinitely many times to some
connected component. Moreover, there exists a step k from which, for all subsequent steps,
the only elements moving are those of Z. Let denote by CH(Z) the convex hull of the
elements in Z at some step k′ ≥ k. Each vertex of CH(Z) is either a vertex of a connected
component inside Z, or it will become such in some subsequent step. Therefore, each
vertex will eventually move inside the cone of movement of a connected component, which
is contained in the cone of movement of CH(Z), hence the perimeter of CH(Z) increases.

In particular, the perimeter of CH(Z) tends towards infinity, since the amount of
movement of a vertex is at least ε∆t. Therefore, the distance among vertices continuously
increases, and this suggests that the elements may reach a configuration in which they
are partitioned into subsets that are independent from each other, namely an element of a
subset never forms a connected component with any other element from the other subsets.

Suppose that the set of elements are partitioned in two independent subsets Z ′, Z ′′,
such that the elements from a subset Z ′, from a certain step, do never form a connected
component with any element from the other subset Z ′′. Therefore, we can apply the
same argument using CH(Z ′) and CH(Z ′′). Since the set Z is finite, this procedure will
eventually terminate with all the elements disconnected, that is a situation in which the
algorithm terminates.

On the other hand, suppose that there exists a set of objects Z ′′′ ⊂ Z which cannot be
partitioned in independent subsets, and that the perimeter of CH(Z ′′′) increases towards
infinity. From a certain step the distance among vertices of Z ′′′ will become too big for any
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element to be able to cross it. In order to prove this, let us consider a complete weighted
graph G(Z ′′′) whose nodes are connected components in Z ′′′ and arcs have the distance
between the corresponding connected components as weights. Since the perimeter of
CH(Z ′′′) increases towards infinity, for every w ∈ R+ there exists a step of the algorithm
in which there is a cut in G(Z ′′′) such that all the arcs crossing the cut have a weight
greater than w. This means that Z ′′′ can be partitioned into two subsets Z ′′′1 and Z ′′′2

arbitrarily far from each other.

Both CH(Z ′′′1 ) and CH(Z ′′′2 ) continuously increase in size. Let us consider one of the
two subsets, say Z ′′′1 . We can repeat the procedure and find a value w′ ∈ R+ such that there
exists a step with a cut in G(Z ′′′1 ) such that all the arcs crossing it have a weight greater
than w′. Since Z ′′′ is finite, we can continue with this procedure until we reach a subset
Z ′′′i consisting of a single connected component, and such that its distance from every
other component is greater than some arbitrary value wi ∈ R+. Since we are assuming
that Z ′′′ cannot be partitioned in two independent subsets, eventually a collision has to
occur between an element of Z ′′′i and one of its complement. In other words, either some
elements of Z ′′′i or some elements of its complement (or both) have to cover at least the
distance wi. For sure wi can be chosen big enough such that the elements of Z ′′′i cannot
cover it. In fact, Z ′′′i consists of a single connected component and, since Lemma 6.4.1

implies that CH(Z
′′′(k)
i ) ⊆ CH(Z

′′′(k′)
i ) with k′ > k, we have that its elements cannot

cover an arbitrary long distance without disconnecting.

Once disconnected, the elements of Z ′′′i are still rather close to each other since the
length of the moves that disconnects them has as an upper bound the overlaps at the
previous step. As a consequence, after disconnection we are in a situation in which the
elements of Z ′′′i are still at an arbitrary distance from the elements in its complement and
can only try to cover such a distance by means of further disconnection. However, since
Z ′′′i is finite, we have that the number of disconnections is finite as well.

This proves that the elements Z ′′′i cannot cover the distance wi. In order to prove that
also those in the complement of Z ′′′i cannot, we can iterate the approach by constructing
G(Z ′′′i ), where Z ′′′i is the complement of Z ′′′i , by finding a cut in such a graph similar to
the previous one and by continuing until we reach a situation in which all the connected
components are far enough from each other. This contradicts the assumption that Z ′′′

cannot be partitioned in independent subsets.

Note that there are cases in which the Arrange algorithm terminates without resolving
all the conflicts. This happens, for instance, in a system like the one represented in
Figure 6.5a, in which a number of elements of the same size are conceptually positioned
along a circumference, and in which the distance between each pair of adjacent elements
is constant. Figure 6.5b shows the movement vector ∆x to which an element is subject
to, obtained from the sum of the two vectors z1 and z2 caused by the collisions with
adjacent elements. For every value of the threshold ε, it is possible to construct a system
of that kind, in which the algorithm terminates without resolving all the conflicts. It
can be obtained by choosing the right number of elements and the radii of elements and
circumference, in such a way that the amount of each collision is greater than ε∆t, while
the total movement vector ∆xi for every element is such that ∆xi < ε∆t. Hence the
algorithm terminates even if there are still collisions among the elements.

The proof of termination of the complete algorithm (Algorithm 11) could be given as
an extension of the proof of Theorem 6.4.3. In particular, in the case of a term with looping
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(a)

�x

z₁ z₂

(b)

Figure 6.5: (a) A situation in which the Arrange algorithm might terminate in a non-well
formed arrangement; (b) the movement vector of the element on the top (not in scale).

sequences Theorem 6.4.3 could be exploited to prove that the movement of the top-level
elements of the term eventually terminates. As regards the elements that are contained
in some looping sequence we have that Lemma 6.4.2 may not hold. In fact, it might
happen that some elements contained in a looping sequence are moved by the algorithm
in such a way that they exceed the bounds of the looping sequence. These elements
are then moved back by the algorithm possibly causing the perimeters of the connected
components containing them to be reduced. However, the fact that ∆t < 1 implies that
these backward movements are smaller than the movements causing the bounds to be
exceeded. This should allow to prove that the termination condition of the algorithm
∀i. dist(0,∆xi) ≤ ε∆t is eventually reached, even though it may not correspond to a
well-formed arrangement of the elements.

6.5 Examples of modelling

In this section we show examples of using the Spatial CLS to model biological systems.
First of all, we show the definition of a movement function which realizes Brownian motion.
This movement function is then used in the subsequent Spatial CLS models, one describing
cell proliferation and another one describing the quorum sensing process.

6.5.1 Describing movement

The movement function associated with elements allows the precise description of their
motion as time passes. The first example of movement function, which is often needed
in models, is the one associated with the elements that are not moving. We denote this
function by the name n0 ∈ M, and define it as a movement function always giving the
same position p passed as argument with probability 1, and ignoring the parameter υ
representing the internal state. Formally, this corresponds to the function:

n0fun(p, r, x, l, t, δt, υ) = (p,Π, υ)

where Π is such that Π(p) = 1. This function can be used by assigning spatial information
d = ([p,m0], r) to an object, where m0 = (n0,⊥).
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Algorithm 14 BrownianMotion(p, r, x, l, t, δt, υ) = (P,Π, υ′)

1: if υ =⊥ then
2: // initialization
3: υ0 = (t, p)
4: (P,Π, υ′) = BrownianMotion(p, r, x, l, t, δt, υ0)
5: else
6: let (t0, pprev) = υ

7: k =
⌈
t−t0
ρ

⌉
8: ~v = s

p−pprev
dist(p,pprev)

9: ∆t1 = t0 + kρ− t
10: q = p+ ~v∆t1
11: if t+ δt > t0 + kρ then
12: // a change of direction occurs between time t and t+ δt
13: ∆t2 = t0 + kρ− (t+ δt)
14: P = {q + x |x ∈ Positions(z, s∆t2)}
15: Π is such that ∀x ∈ P. Π(x) = 1/z
16: υ′ = (t0, q)
17: else
18: P = {q}
19: Π is such that Π(q) = 1
20: υ′ = υ
21: end if
22: end if

A more interesting function, which is still deterministic, is the one modelling a linear
motion. Given a vector ~v describing the velocity, this movement function can be defined
as follows:

mfun(p, r, x, l, t, δt, υ) = (p+ ~v δt,Π, υ)

where, as before, Π gives probability 1 to the only possible resulting position.
Another useful function is the one describing Brownian motion. A simple implementa-

tion can be obtained by performing a linear motion, and by repeatedly changing direction
after a fixed time interval. The change of direction is randomly chosen, with uniform prob-
ability, among a finite number of equally-spaced directions. Let ρ ∈ R+ be the length of
the time interval after which there is a change of direction, and z be the number of direc-
tions allowed at each change. By denoting the creation time of the object as t0, we perform
a change of direction at each time instant t0 + k ρ, for each k ∈ N. The change of direc-
tion corresponds to assigning probability 1/z to each angle in the set {2πx/z | 0 ≤ x < z}.
The distance covered between each change of direction depends on the speed of the object,
described by parameter s.

Algorithm 14 shows the definition of movement function modelling Brownian motion
using pseudo code. In the definition, we assume that the time interval ρ (of chang-
ing direction) is always greater than or equal to the actual step length δt. This is
ensured by taking ρ ≥ 1/N . Moreover, by Positions(z, d) we denote the set of z
equally-spaced positions, at distance d from the origin; formally: Positions(z, d) =
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{(d cosα, d sinα) | α = 2πx/z, 0 ≤ x < z}.
A special value ⊥ for the state argument υ of the movement function is used to initialize

the state argument. In particular, state argument υ = (t0, p) is a pair composed of the time
instant t0 when the movement begins, and the position p ∈ Rn in which the last change of
direction has occurred. The value ⊥ should be used as the initial value of state parameter
for movement function. In the following, an object with Brownian motion is described by
a term having spatial information d = ([p,mB], r), where mB = (BrownianMotion,⊥).

Finally, note that the presented implementation of Brownian motion is quite simple,
since its main aim is to show how a probabilistic movement function can be formally
defined. More faithful implementations could be used if needed.

6.5.2 A model of cell proliferation

We show a very simple model of the development of a biological tissue. We represent
the way in which a cell performs the mitosis cycle, and the development of the tissue as
a consequence of it. The structure of a cell is made up of a permeable cell membrane,
which separates it from external environment but still allows messages to pass through,
and contains several organelles scattered in the cytoplasm. We model a simple eukaryotic
cell as a membrane containing the nucleus, which, in turn, contains two DNA molecules
(the chromosomes). Each cell performs the cell cycle [3], that is the sequence of phases
that lead to its division into two daughter cells, structurally alike to the mother cell.
Customarily, cell cycle repeats for every generated cell, but, in particular cases, the cell
may decide to stop the process in a permanent or temporary way (for instance, in case of
unfavorable ambient conditions).

In this example we are interested only in observing the way in which the cells, described
by our model, fill the environment during the mitosis process. Thus the model is not
realistic, for example cell apoptosis (cell death) is not taken into account.

The initial state of the biological system is described by the following term2:

T =
(
b
)L
·,50
c
(
m
)L

[(0,0),mB ],10
c
(
n
)L c (cr · g1 · g2 · g3 | cr · g4 · g5)

The term contains the looping sequence
(
b
)L
·,50

, representing the space available for the

proliferation as a circle with a 50µm radius. It contains a single cell
(
m
)L

, positioned
in (0, 0) and with a radius of 10µm. The cell is subjected to a small Brownian motion,
modelled by mB = (BrownianMotion,⊥), where BrownianMotion denotes an instanti-

ation of Algorithm 14 defined in Section 6.5.1. The nucleus, represented as
(
n
)L

, and the
contained chromosomes, are represented as non-positional elements. The nucleus may be
in two states, depending on the symbol appearing on its looping sequence. Initially, the
nucleus is identified by the symbol n appearing on the surface of its membrane. During
the evolution of the system, the symbol n is replaced by ndup, indicating a state in which
the nucleus has started the duplication process and is about to divide. Chromosomes are
modelled as sequences starting with cr symbol, followed by the genes, represented by the
symbols gi’s. A duplicated chromosome is identified by having 2cr as its first symbol in
the sequence.

2For the sake of clarity, we omit the spatial information for non-positional elements, i.e. those elements( )
〈q,r〉 such that 〈q, r〉 = 〈·, 0〉.
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The Brownian motion of cells represents the small movements the cells are subjected
to in a biological tissue. The use of Spatial CLS to represent the cell cycle allows showing
the spatial arrangement of cells during the tissue development. This is an important point
in many biological tissues, see for example [38] for a spatial mathematical modelling of a
neural tissue.

The evolution of the system is modelled by the following rewrite rules3:

R1 : [ r = 7 ]
(
m
)L

[p,f ],r
cX 0.337→

(
m
)L

[p,f ],10
cX

R2 : [ r = 10 ]
(
m
)L

[p,f ],r
cX 0.257→

(
m
)L

[p,f ],14
cX

R3 : [ r = 14 ]
(
m
)L

[p,f ],r
c
((
n
)L cX) 0.57→

(
m
)L

[p,f ],r
c
((
ndup

)L cX)
R4 :

(
ndup

)L c (cr · x̃ | X)
0.1257→

(
ndup

)L c (2cr · x̃ | X)

R5 :
(
ndup

)L c (2cr · x̃ | 2cr · ỹ)
0.177→

(
n
)L c (cr · x̃ | cr · ỹ) |

(
n
)L c (cr · x̃ | cr · ỹ)

R6 :
(
m
)L

[(x,y),f ],r
c
((
n
)L cX | (n)L cY ) 17→(

m
)L

[(x−5,y),f ],7
c
(
n
)L cX | (m)L

[(x+5,y),f ],7
c
(
n
)L cY

The first three rules describe the growth of the cell. Rule R1 increases the radius from 7
to 10, leading a just-split cell to its normal size. Rule R2 represents the starting of the
division process, where the cell grows to 14 and will eventually divide. A cell may block its
cell cycle if there is not enough space: this happens when neither R1 nor R2 are applicable
to it. The application of rule R3 signals the start of the division process for the nucleus.
Rule R4 models the duplication of a single chromosome. Finally, rule R5 and R6 describe
the division of the nucleus and the subsequent cellular division. In rule R6, the split cells
are arbitrarily positioned one next to the other, near the position of the parent cell. The
rates have been estimated according to the common relative lengths of the phases forming
the cell cycle, and so as to obtain, on the average, a duration of 24 hours for the complete
cycle [3].

Figure 6.6 shows the state of the system at certain times during the simulation, ob-
tained by an ad hoc simulator. At time t = 0 the system contains only one cell, positioned
inside the limiting membrane. The proliferation stops at time t = 141h, when the space
left is not enough for any cell to grow. We can also see that, from time 102h to 108h, a
cell near the center has split into two small cells, and another cell on the bottom right has
grown, thus initiating the division process. By growing, the cell pushed the surrounding
cells and caused the rearrangement.

6.5.3 A model of the quorum sensing process

Many bacteria have the ability of monitoring their population density and modulating
their gene expressions according to this density. This process is called quorum sensing,
and the main entities involved in it are the autoinducers, small molecules that can cross
the cellular membrane and can diffuse freely either out or in bacteria, and the R-proteins,
transcriptional activator proteins located within the cell.

3For the sake of readability, we use a simpler syntax for writing rewrite rules: in the left part of the
rules, we use placeholders for positions, movement functions and radii, and reuse them in the right part in
a shorthand notation for defining instantiation functions for position variables.
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Figure 6.6: The graphical representation of the system at times 0, 102h, 108h and 141h
during simulation.

The production of the autoinducer is regulated by the R-protein. The R-protein by
itself is not active without the corresponding autoinducer. The autoinducer molecule
can bind to the R-protein to form an autoinducer/R-protein complex, which binds to a
target of the DNA sequence enhancing the transcription of specific genes. Usually, these
genes regulate both the production of specific behavioural traits and the production of the
autoinducer and of the R-protein.

At low cell density, the autoinducer is synthesized at basal levels and diffuse in the
environment where it is diluted. With high cell density both the extracellular and intracel-
lular concentrations of the autoinducer increase until they reach thresholds beyond which
the autoinducer is produced autocatalytically. This autocatalytic production results in
a dramatic increase of its concentration. Note that there is not a fixed concentration of
the autoinducer that, when it is reached, causes the autocatalytic production to start.
Instead, having a stochastic model means that there is a low probability of starting the
autocatalytic production at low concentrations, while this probability increases as the
concentration gets higher. Moreover, the autocatalytic production continues as long as
autoinducer concentration remains high enough, which happens only when bacteria den-
sity is sufficient. With low bacteria density, when an autocatalytic production starts, it
usually ends quite soon, as the autoinducers diffuse in the environment and, consequently,
their concentration lowers.

We show a simple model of the quorum sensing process in Pseudomonas aeruginosa (see
[35] for a more detailed description of the phenomenon). Such a bacterium uses quorum
sensing to keep low the expression of virulence factors until the colony has reached a certain
density, when an autoinduced production of virulence factors is started. The initial state
of each bacterium is:

Bacti =
(
m
)L

[pi,m0],rBACT
c (lasO · lasR · lasI)

where the bacterium membrane, denoted
(
m
)L

, contains only a DNA strand. Bacteria
do not move, hence their movement function is m0 = (n0,⊥) as defined in Section 6.5.1,
and their radii are represented by rBACT. The DNA is modelled as a sequence of genes
lasO · lasR · lasI, where lasO represents the target to which a complex autoinducer/R-
protein binds to promote transcription. The following rewrite rules model the system
behaviour.

R1 : lasO · lasR · lasI k17→ lasO · lasR · lasI | LasR

R2 : lasO · lasR · lasI k27→ lasO · lasR · lasI | LasI
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R3 : LasI
k37→ LasI | 3oxo

R4 : 3oxo | LasR k47→ 3R

R5 : 3R
k57→ 3oxo | LasR

R6 : 3R | lasO · lasR · lasI k67→ 3RO · lasR · lasI

R7 : 3RO · lasR · lasI k77→ 3R | lasO · lasR · lasI

R8 : 3RO · lasR · lasI k87→ 3RO · lasR · lasI | LasR

R9 : 3RO · lasR · lasI k97→ 3RO · lasR · lasI | LasI

R10 :
(
m
)L

[p,f ],r
c (3oxo | X)

k10/z7→
(
3oxo

)
[p+(r+dOUT )q,mB ],r3oxo

|
(
m
)L

[p,f ],r
cX

with q ∈ Positions(z, 1)

R11 : [ dist(p1, p2) ≤ r2 + dINT ](
3oxo

)
[p1,mB ],r3oxo

|
(
m
)L

[p2,f ],r2
cX k117→

(
m
)L

[p2,f ],r2
c (3oxo |X)

R12 : LasI
k127→ λ

R13 : LasR
k137→ λ

R14 :
(
3oxo

)
u

k147→ λ

Rules R1 and R2 describe the production from the DNA of proteins LasR and LasI,
respectively. Note that lasR/lasI (with small case initial letter) denote a gene in the DNA
strand, while LasR/LasI (with capital initial letter) denote the corresponding proteins
originated by the gene. Rule R3 describes the production of the autoinducer, modelled
as 3oxo, performed by the LasI enzyme. Rules R4 and R5 describe the complexation and
decomplexation of the autoinducer and the LasR protein, where the complex is denoted
3R. Rules R7, R8, R9 describe the binding of the activated autoinducer (the 3R complex)
to the DNA and its influence in the production of LasR and LasI. Rules R10 and R11

describe the ability of the autoinducer to cross the membrane, in both directions (exiting
and entering the bacterium). Actually, R10 is a rule schemata, in which each concrete
rule puts the autoinducer in a different position outside the bacterium, as a positional
element. The possible outside positions are p+(r+dOUT )q, with respect to the bacterium
position p and radius r, and where q ∈ Positions(z, 1). (Function Positions is defined in
Section 6.5.1.) Therefore, the possible resulting positions are the z equally-spaced position
at distance dOUT from the bacterium. Value z is chosen big enough to provide sufficient
variability. Note that the rate of each concrete rule is 1/z of the expected rate k10.

An autoinducer inside the bacterium is modelled as a non-positional element, while
autoinducers outside have an associated position and movement function mB. Parameter
r3oxo denotes the radius of each external autoinducer. The parameter mB = (nB,⊥)
represents a realization of Brownian motion (defined as in Section 6.5.1), which describes
the diffusion of the autoinducer in the environment. In this case, we use a value ρ =
1/N time units describing the time interval between each random change of direction.
Moreover, we denote by soxo the speed of the autoinducer.

Finally, rules R12, R13, R14 describe the degradation of proteins. In particular, rule
R14 models the degradation of the autoinducer, which can happen both inside and outside
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the bacterium.
This Spatial CLS model of the quorum sensing process is more accurate than other

stochastic models (such as the Stochastic CLS model given in [4]). In fact, other stochastic
models are usually based on the assumption that biological entities are homogeneously
distributed in the environment (well-stirred assumption), and in a quorum sensing process
this is not true for the autoinducer proteins outside the bacteria. Note that taking into
account the spatial diffusion has a particular significance when reactions are comparatively
faster than diffusion rates [84].

To our knowledge, there are no wet or in vitro experiments, presented in the litera-
ture, from which it is possible to derive precise quantities (such as speed of autoinducer
molecules, kinetic constants of the reactions, distance of bacteria) for our model. Inter-
estingly, we can use the results of wet experiments for inferring approximations of such
quantities. Given an experiment with an initial number of bacteria, we adapt the constant
values in our model, in order to have the same final results of the real experiments. The
obtained constants can be used as an approximation either for constructing new model or
to have hints for predicting the behaviour of the real phenomena.

For instantiating our general model we use the experiment, presented in [80], in which
the cellular toxicity of three Pseudomonas aeruginosa strains, PA103, PA01 and 6294,
is investigated. The experiment consists in culturing a human bronchial epithelial cell
line, then mixing 2 × 104 cells with inocula of Pseudomonas aeruginosa at different con-
centrations. After six hours the cytotoxicity of the inocula was stated by measuring the
production of lactate dehydrogenase (LDH). A high level of LDH corresponds to a high
cytotoxicity which reveals that the quorum sensing process occurred.

On the basis of the results in [80], we tried to infer values for our model able to
reproduce the behaviour of Pseudomonas aeruginosa 6294 strain. In the real experiment
the human bronchial epithelial cells are mixed with inocula of the 6294 strain at three
different concentrations: 105, 107 and 109 colony forming units, CFU, per milliliter. A
CFU is a bacterium able to divide and to form a colony, thus CFU is a measure of
“good bacteria”. The results for the 6294 strain are summarized in Figure 1 in [80]: with
concentrations of 105 and 107 CFU/ml no cytotoxicity is expressed, while with a 109

CFU/ml concentration a high cytotoxicity is measured after six hours, revealing that the
quorum sensing process occurred.

In our model we consider three different concentrations in which the number of bacteria
is, respectively, 1, 10 and 100 for space unit. Recall that Spatial CLS deals with plane
surfaces, thus these numbers roughly respect the orders of magnitude in the real volume
concentrations. We assume a space unit of 300µm2 (the dimension of a single bacterium
is nearly 1µm2). Actually, for computational reasons, instead of running simulations with
100 bacteria in a space of 300µm2, we ran simulations with 40 bacteria in a space of
120µm2. We performed various simulations and we found that the real experiment can be
approximated by using the values shown in Figure 6.7.

As regards the implementation of the simulator, we have followed a more abstract
approach than the one used in the semantics of the calculus. In particular, since bacteria
contain only non positional elements, it is possible to simulate the internal evolution of
each bacterium by using the Gillespie algorithm [40]. This allows us to easily compute the
time and kind of the subsequent internal event of a bacterium. The simulator performs a
sequence of steps of length at most 1/N for dealing with the spatial movement of external
autoinducers. This sequence of steps is interleaved with the execution of the internal
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Parameter Value

Bacterium radius (rBACT) 5
Bact. interaction distance (dINT) 0.5

Autoinducer exiting distance (dOUT) 0.5
N 630

Autoinducer speed (soxo) 1575
Autoinducer radius (r3oxo) 0.01

Param. Value

k1 126
k2 31.5
k3 50.4
k4 1.575
k5 2520
k6 1.575
k7 63

Param. Value

k8 7560
k9 1890
k10 189
k11 126
k12 6.3
k13 1.89
k14 1.89

Figure 6.7: Values of parameters used for the simulation of the Quorum Sensing process.

bacteria events, which are ensured to occur at the right time by performing, if needed, a
step shorter than 1/N . If at any time an autoinducer happens to enter a bacterium (as
per rule R11), then the next scheduled internal event for the bacterium is removed and a
new one is computed, according to Gillespie algorithm. This is needed to account for the
change in the internal state of the bacterium.

In Figure 6.8a a single bacterium in a space unit is shown. In this case only few
molecules of the autoinducer can reach other bacteria. Thus the bacterium is not able to
sense the presence of other ones and the quorum sensing does not occur. In this case the
production of the autoinducer remains at the basal level, as shown in Figure 6.8b.

In Figure 6.8c the production of the autoinducer by 10 bacteria is shown. With respect
to the previous case it is possible to observe a bigger number of autoinducer molecules
close to (and consequently inside) each bacterium. In some instant, this concentration
is high enough to start the autocatalytic production of the autoinducer itself. However,
such a autocatalytic production is not supported by the production of the autoinducer by
other bacteria, thus the quorum sensing process is not triggered. Figure 6.8d shows the
autoinducer production inside a single bacterium.

Finally, Figure 6.8e shows the behaviour of a colony of 40 bacteria in a space of 120µm2,
corresponding to 40% of the space unit. In this case the autocatalytic production is
supported by the high density of the autoinducer itself, and the quorum sensing behaviour
occurs. Figure 6.8f shows the autoinducer production inside a single bacterium.
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(a) 1 bacterium at time 5h, in 300µm2

space
(b) Number of autoinducers with 1 bacterium

(c) 10 bacteria at time 5h, in 300µm2

space
(d) Number of autoinducers with 10 bacteria

(e) 40 bacteria at time 5h, in 120µm2

space
(f) Number of autoinducers with 40 bacteria

Figure 6.8: Graphical representation of bacteria and autoinducers, and the results of the
different simulations.
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Chapter 7

Conclusions

The use of formal methods for studying biological systems is an interesting approach
that allows unambiguous descriptions of the processes, which can be used to perform
simulations and other analyses. In this thesis we have extended with spatial features
three modelling formalisms for the description of biological systems, in order to allow
more precise descriptions of the behaviour of systems. Since each formalism is aimed at
the modelling of different kinds of systems, the suitable abstraction of the real space is
different in each case.

We have defined the MIM calculus as a process calculus providing high-level operators
directly inspired by Molecular Interaction Maps (MIM), a graphical notation used in
biology. The version for spatial modelling that we have developed, namely the MIM
calculus with compartments, provides the most abstract form of space modelling among
the extensions that we have developed. Since the formalism has been developed as a
process calculus, it is possible to exploit common features of process calculi, such as the
incremental definition of models, techniques for analysis and verification of properties,
and the development of simulators. Moreover, the correspondence of the operators of the
calculus with biological reactions allows an easy translation of Molecular Interaction Maps
into terms of the MIM calculus.

We have studied conditions under which a term of the MIM calculus is a formal rep-
resentation of a MIM diagram, by providing different consistency definitions for the terms
of the MIM calculus. By means of an example, we have shown how the MIM calculus
with compartments is particularly suited to the description of microbiological processes,
such as the interactions that happen at the level of the cell. In fact, the ability to describe
compartments in an abstract way allows a fine description of the positions of elements,
sufficiently precise for this kind of systems. For example, is it possible to distinguish if a
protein is attached to the internal or external surface of a membrane, or if is embedded
in it. As future work, different properties of calculus, such as the expressiveness, could be
investigated. Moreover, quantitative extensions of the calculus can be developed to allow
for a better description of biological systems, and for the development of simulators.

We have also developed an extension of the computing formalism P systems, the Spatial
P systems, which provides an explicit representation of space inside membranes, in the
form of a two-dimensional discrete space. As in standard P systems, evolution rules are
associated with membranes, while objects are associated with positions inside membranes.
Evolution rules are extended to allow objects to be moved to different positions. Objects
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belonging to the special kind of mutually exclusive objects are subject to the constraint
that a position can contain at most one of such a kind.

On the one hand, we have studied the computational power of mutually-exclusive
objects, and shown that mutually-exclusive objects, even when using only non-cooperating
rules, are sufficient to obtain universality. As an example application of the formalism in
the field of Ecology, we have developed a Spatial P systems model of the evolution of
ring species, by which a species spreads in two different directions around a geographical
barrier, which evolve independently in the two sides causing the generation of separate
species which cannot interbreed. On the other hand, we have started investigating the
problem of simulation of Spatial P system models. We have proposed algorithms for the
efficient simulation of some restricted kinds of models, and shown how they can be used
to model the schooling behaviour of herrings. The complete theoretical characterization
of the problem of simulation of Spatial P systems is planned as a future work. It would
also be interesting to study other simulation algorithms, such as parallel and approximate
versions.

As regards the formalism, in order to improve the usefulness of models, various exten-
sions of the Spatial P systems could be developed. A stochastic version would allow more
faithfully descriptions of the behaviour of systems than the non-deterministic semantics,
and also to pave the way for quantitative simulations (see for example [64, 28]). Another
possible extension of Spatial P systems would be to three-dimensional space.

Finally, we have presented the Spatial Calculus of Looping Sequences (Spatial CLS),
which extends the Calculus of Looping Sequences (CLS) by allowing spatial information to
be associated with the structures of the calculus. The Spatial CLS formalism enables the
accurate description of those biological processes whose behaviour depends on the exact
position of the elements in a continuous 2D or 3D space. Spatial CLS allows defining
models with different levels of abstraction, since it is possible to associate the spatial
information with the only elements whose spatial position affects the behaviour of the
system.

As example applications of the calculus, we have presented a model of cell prolifera-
tion and a model of the quorum sensing process in Pseudomonas aeruginosa. In both the
examples the use of spatial information allows modelling aspects which cannot be appre-
ciated otherwise. In the example of cell proliferation we observe the way in which cells
arrange themselves during the mitosis and how they fill the space until no more growth or
division can occur. In the example of quorum sensing, which is a kind of reaction-diffusion
system, we can appreciate how the autoinducer molecules diffuse from bacteria, and are
used to sense the local concentration of bacteria.

As for the other formalisms, having a formal semantics for describing the models
enables the development of simulators whose behaviour is precisely defined, which is also
particularly important for formal reasoning. In the case of Spatial CLS, however, the
development of simulators can be quite challenging, as it needs to deal efficiently with the
intrinsic complexity of spatial models of biological processes. As a future work, it would
be interesting to develop efficient algorithms for the simulation of Spatial CLS models,
for example by means of approximation techniques. Moreover the formal semantics allows
the use of verification techniques, such as bisimulation [16]. The application of formal
techniques to Spatial CLS could be subject of future works.
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