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IntrodutionFrom the �rst theories of matter as onstituted by elementary partiles [ Dem-oritus (a. 460 BC � a. 370 BC)℄ up to the twentieth entury, the dominatingtrend in physial, and, more generally, in sienti� researh has been redution-ism: the priniple that any omplex system an be deomposed in elementaryparts, whih are then studied singularly, so that the full knowledge of the globalphenomenon is expressed in terms of the elementary interations between itssimple entities.Suh approah has provided, and still provides, marvellous insights, ruialfor the realization of most of the siene and the tehnology we see around us.Nevertheless, it proves not su�ient when it omes to dealing with the study ofthe emergent phenomena.Emergene an be de�ned, in natural and soial siene, as the arising of noveland oherent strutures, patterns and properties in omplex systems. In appar-ent ontradition to the third priniple of thermodynamis, we are surroundedby emergent, highly ordered strutures, life itself being the most astonishing ex-ample of all of them. Unfortunately, a redutionist approah does not prove tobe su�ient, or even apt, for the study of suh phenomena. The new hallengefor siene and researh is to �nd models and rules for emergent phenomena, andapply them to reality. Complex networks are typial models showing the ariseof omplex bahviour and olletive phenomena from an aggregation of relativelysimple onstituents.Complex NetworksAlthough networks an reveal a rih variety of behaviours, and emergent phe-nomena, their de�nition is quite simple: a network is a set of items, usually allednodes, with onnetions between them, referred to as edges [1℄. The topologialstudy of networks started with Euler, and his solution to the Könisberg BridgeProblem, whih laid down the foundations of the mathematial Graph Theory.Sine then, extensive studies on a high variety of networks and on the dynamistaking plae on them have been onduted, and now many sienti� modelsrely on network strutures; just to name a few: food webs, geneti networks,power grids, models for the spreading of omputer viruses or human diseases,et. [2℄. A surprising number of examples on the importane of networks insiene, tehnology, soiety and every-day life an be found in a popular bookwritten by Barabási [3℄. 7



Neural NetworksNeural network onstitute a lass of omplex network inspired by the strutureof the nervous system. The nodes are identi�ed with neurons, the edges rep-resent the links between them (axon and synapses) and the exhanged signalsare the eletrial peaks, or spikes, (ation potentials) triggered when the inter-nal potential of the neuron reahes a ertain threshold. They were introduedmainly to solve arti�ial intelligene problem, suh as automated learning, visualpattern reognition, adaptivity, fault tolerane, et. or as models for networksof real nervous ells [4℄.In the present work, we onsider the latter ategory of neural networks, aim-ing at a better understanding and modelling of real biologial strutures. The�rst example of suh approah dates bak in 1975, when Peskin modelled thepeaemaker ells of the heart as a fully onneted network of idential leakyintegrate-and-�re neurons (LIF), and veri�ed that they spontaneously synhro-nise their signals, as real peaemaker ells do [5℄. The LIF model is the simplestone dimensional model for the eletrial ativity of a neuron. The use of moreomplex and re�ned models would add more biophysial value to the inves-tigation, but the required omputations would inrease dramatially with thenetwork size; moreover phenomena emerging from the olletive dynamis of thesystem should not depend too muh on the preise and realisti reonstrutionof its single omponents.The spei� system we are interested in is not the hearth, but the pyramidalneurons of the neoortex in their stationary state. Many experiments on livingells, both in vitro and in vitro, showed that, although very dense, and denselyonneted (∼ 106 neurons on a mm3, with ∼ 104 onnetions eah), they exhibitvery low average �ring rates (∼ 1Hz), with a spike pattern very variable in time,and very weakly orrelated, even when sampled from neurons lose eah other;at the same time, the response in time seems surprisingly fast when ompared toreation times for isolated, individual neurons. The system is therefore doublye�ient: the low spiking rate redues the energy onsumption, but, at the sametime, it is able to reat even faster than any of its isolated omponents would.Admittedly, brains still detain the reord of most e�ient and omplex parallelalulators in the known universe.Going bak to the the neoortex, the model used to explain the observed a-tivity is the balaned state model. Namely eah neuron, for most of the time,is kept lose to its �ring threshold by a balane between exitatory and in-hibitory inputs from other neurons, so that even very small deviations result ina quik response by the interested neuron. Di�erent experiments and measureson�rmed this theory ( see setion 2.3 ). Our aim is now to onstrut a neu-ral network whih repliates, at least qualitatively, this kind of behaviour, andstudy it.The reation of a neural network in stationary balaned state requires justthe mixing of the right ingredients, namely:a) a proper model for single neuron dynamis, as simple as possible;b) a very large number of neurons, and number of onnetions between themstill very large but small when ompared to the size of the system, so toresemble the onnetivity of real neurons;8



Figure 1: Simpli�ed representation of a sparsely onneted Erd®s-Rény randomgraph. The image shows ∼ 60 neurons with an average of 1.5 onnetions eah. Thesimulated networks range from 200 to 1000 neurons with 20− 50 average onnetions.The orientation of the onnetions is not shown.) both exitation and inhibition ating on neurons.The �rst hoie for point a) would be the LIF neuron, however they havebeen exluded for an intrinsi �aw in their dynamis: when the membranepotential of a real neuron rosses a ertain threshold, a positive-feedbak proessfurtherly inreases it, produing a peaked signal; LIF neurons, on the otherend, are arti�ially reset in the instant they touh their threshold. With thisqualitative di�erene, LIF neural networks have the tendeny to synhronize.In networks made of inhibitory neurons subjeted to positive external urrentsthis phenomenon has been proved analytially [6℄. For that reason the hosenmodel is the simples anonial 1D neuron model: the quadrati integrate and�re desribed in hapter 2.Condition b) is obtained by onneting a large number of neurons with anErd®s-Rény random graph struture, as represented in �gure 1. If N is thetotal number of neurons and K the average onnetions per neuron, our idealonditions would be N ≫ K ≫ 1. In the atual model N ranges from 200 to
1000, while K from 20 to 100. Finally all onnetions are assumed to be one-diretional, as for real neurons. For graphial reasons the �gure does not showonnetion orientations, and the parameters are redued to N ≈ 60, K ≈ 1.5 .As regards the point ), it has been found that a network of only inhibitoryneurons, subjeted to a onstant, exitatory external urrent, su�es to ful�lit. This simpli�es the model and the alulations, so that we an onentrateon more essential parameters.The system de�ned with those requisites shows deterministi haos. For afurther haraterization of the system and its properties, and for a better un-9



Figure 2: Intuitive de�nition of the �rst Lyapunov exponent ad the logarithm of theexpansion rate for to points initially very lose in the phase spae. The diretion ofexpansion is oded by the �rst Lyapunov vetor.derstanding, we rely on the mathematial framework typially used for large,omplex, dynamial systems: the Ergodi Theory.Ergodi theorySine hapter 1 ontains most of the formalism, the orret de�nitions and themathematial rigour neessary to de�ne and desribe the ergodi properties andquantities we are interested in, in this setion we give a more intuitive (and lessformally orret) desription of what ergodiity is about.Given a �nite-dimensional, deterministi dynamial system, its phase spae isde�ned as the n-dimensional manifold in whih every single point fully repre-sents the exat state of the system at a given time. As the system evolves, itdraws a trajetory the phase spae whih annot interset itself, or trajetoriesassoiated to other time evolutions.The basi idea of ergodi theory is that, for su�ient extents of time, aver-aging over time any quantity assoiated to the dynamial system is ompletelyequivalent to performing an average on the whole phase spae, as long as suhmanifold is weighted with an ergodi measure. Intuitively, suh a measure shouldneglet the areas of phase spae never (or almost never) touhed in the evolutionof our system, and give more importane to those in whih the system lingersmuh more in time (the attrating manifold).With this approah we an �nd quantities that are global and invariant for thesystem just following a single time evolution starting at a random point: theinformation gained from suh trajetory would be equivalent to studying thesystem as a whole, or to what we would �nd using any other trajetory startingfrom di�erent points; as long as, of ourse, the system in question is ergodi. Oneof the most ruial quantities for the haraterisation of a dynamial system isthe �rst ovariant Lyapunov exponent, as it is stritly bound with the de�nitionof deterministi haos.The idea of a dynamial system both deterministi and haoti, - i.e. witha time evolution ompletely and uniquely determined by its variables on onehand, but omplex and not preditable in the long term on the other hand -is only an apparent paradox, easily resolved stating that deterministi haosis the property of systems where two points, arbitrarily lose in phase spae10



d(t0) = δ ≪ 1, evolve in time on paths diverging with an exponential rate
d(t) ≃ δeλ1t, λ1 > 0 (see �gure 2) . The result is that, sine we an knowthe state of a system only with �nite preision, any long term foreast wouldeventually be outgrown by the exponentially inreasing error assoiated to ourinitial unertainty. This is basially what Lorentz originally intended as �thebutter�y e�et�.The �rst Lyapunov exponent is, roughly speaking, the δ → 0 limit of theexponent assoiated to that divergene, averaged for time t → ∞. If positive,the system is learly haoti. If negative, we an say that separate trajetorieswould eventually onverge, although for a partiular lass of dynamial systemsthe time needed grows so fast with the system dimensionality that the dynamisappear pratially haoti. Suh property is alled stable haos [7℄.Going bak to �gure 2, we notie that the maximum divergene de�nes, intime, also a diretion. We all the diretion assoiated to the maximum expan-sion the �rst Lyapunov vetor v(1)(t). It is loal, sine it depends on the pointin phase spae we are onsidering.Apart from points, we an onsider n-dimensional phase spae volumes. Thisintrodues the idea of di�erent orders of Lyapunov exponents, as well as di�er-ent assoiated diretions: a k dimensional hyperube would inrease (or shrink)its size as V (t) ≃ V (t0) exp (t (λ1 + . . .+ λk)), and the deformation of its shapewould follow, in time, the diretions of the assoiated Lyapunov vetors. Figure3 represents an example of this: the �rst diretion is expanding, the seond or-responds to a 0 exponent, �nally the third is ontrating. The volume expandsas the sum of the three exponents, and its shape hanges: we expet that thediretion assoiated to the 0 exponent keeps being parallel to the motion, butnothing an be said, in general, about the expanding and ontrating diretions,and the angle between them. The systems we are interested in are dissipative:the sum of all Lyapunov exponents is negative, so that a volume in phase spaeshrinks during the dynamial evolution, progressively falling on a subset of thetotal phase spae manifold alled attrator.The attrator has, in general, a very omplex shape, possibly fratal. Auseful property of the exponents is that they an give an esteem of the attratordimension. If the �rst exponent is positive, but the total sum is negative, fora ertain integer k we have λ1 + . . . + λk ≃ 0 ( if the sum is not exatly zero,we an add a small non-integer orretion to k). Then, for what stated above,a volume of dimension k will neither expand nor ontrat in time, thus givingan upper bound to the attrator dimension.Another esteem derived from the exponents is the entropy prodution rate.Assuming we know the initial state of the system with �nite preision, theexponential spreading of trajetories from points initially indistinguishable addsinformation regarding their initial state, thus haoti dynamial systems an beseen as produers of information, and the prodution rate an be estimated asthe sum of the positive Lyapunov exponents.The alulations of entropy and attrator dimension are atually esteems that,in general, annot be taken as exat equalities. There is, however, a lass ofdynamial systems, alled axiom-A, for with the entropy alulation is proved tobe orret, while the attrator dimension esteem is onjetured to be. Estimatingif a omplex, haoti dynamial system is axiom-A or not is mathematially avery hard task, and a general approah has yet to be found. What we did in11



Figure 3: The series of Lyapunov exponents deodes the expansion/ontration ratefor volumes. In this example a volume grows in one diretion, maintains its size inanother, and shrinks in the third: λ(1) > 0, λ(2) = 0, λ(3) < 0. The diretions aregiven by the Lyapunov vetors assoiated to the exponents.the present work is investigate if the system we are interested in satis�es one ofthe key requisites for axiom-A: hyperboliity.Basially, in hyperbolial systems expanding and ontrating diretions do nomix up (see the end of hapter 1 for further details. In the present work we hekif this requisite is respeted by studying the angles between ontrating andexpanding diretions, given by the Lyapunov vetors assoiated to, respetively,positive or negative global exponents.Thesis StrutureThe aim of the present work is to simulate and, using the ergodi formalism,fully haraterise a large-sale neural network of inhibitory quadrati integrate-and-�re neurons.Chapter 1 introdues and explains the ergodi theory more formally. Quanti-ties suh as attrator dimension, Lyapunov exponents, entropy prodution rateand Lyapunov vetors are de�ned, explaining also how they an be numeriallyomputed.The following hapter deals with the onstrution of the neural network. Firstwe model the one-neuron dynamis, taking the general Hodgkin-Huxley equa-tions as a starting point. Trough di�erent levels of approximation we reah thesimplest anonial 1D desription for a neuron: the quadrati integrate-and-�reor theta neuron. Afterwards, starting from the results of in-vivo measures onlarge populations of pyramidal neurons, we de�ne the balaned state, and builda model for the omputation of a large-sale network with similar qualitativebehaviour.Chapter 3 deals with the omputation and the �ndings. It starts with astep-by-step desription of the omputer simulation we used. Then we assessto whih extent the neuron pulses are omparable to a real balaned state.12



Afterwards, we alulate numerially the Lyapunov exponents, deriving fromthem the entropy prodution rate and the attrator dimension. The �ndings,so far, are substantially a on�rmation of what has already been presented inreent works on the subjet [8, 9℄. We onsequently fous on the Lyapunovvetors: to on�rm their invariane and the robustness of the algorithm usedfor their alulation, di�erent onvergene tests are performed. The minimalangles between vetors, orresponding to expanding and ontrating diretionsare used to estimate the hyperboliity of the dynamial system. The result isthat, as the system beomes larger, the angle distribution is more peaked for anonzero value, showing more transversality between ontrating and expandingdiretions.Finally, for eah vetor, we measure the average partiipation ratio, thatounts the e�etive number of neurons ontributing to the vetor dynamis,and the haos index (de�ned as the time average of the square vetor ompo-nents), that reveals whih neurons have a predominant role for a single vetor.From the interplay between these two parameters (and some others derivedfrom them) we an haraterize the network dynamis both globally and fromthe perspetive of the single neurons. In partiular, we �nd that the ontri-bution to the expanding diretions omes from a group with an average sizethat sales with K, and the single neurons that take part to it hange in time,overing uniformly most of the network; on the other hand, strongly ontratingdiretions tend to be loalized on few neurons, �xed in time.The �nal part summarises the novel results, namely the use of Lyapunovvetors to assess the hiperboliity of the neural network and to haraterisethe role of individual neurons in the olletive dynamis. A list of possibleextensions and future prospets onludes the hapter.
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Chapter 1Mathematial FrameworkWe stated that a set of interonneted neurons an be modeled as a network andstudied as a n-dimensional dynamial system. In this hapter we will desribethe general mathematial framework used to study systems of known dynamis,haraterized by haoti behavior and high-dimensionality.We start with an introdution about the statistial study of di�erentiablehaoti dynamial systems, through the de�nition of a natural or physial prob-abilisti measure on phase-spae and the appliation of Birkho�'s Ergodi the-orem.Afterwards we fous on the haraterization of haos, de�ning both intuitivelyand in a more rigorous way the Lyapunov exponents. We show how the OseledeErgodi theorem implies that suh exponents exist and are �nite, and how thepresene of a Oselede splitting of phase-spae emerges from that.Using the given de�nitions, we illustrate the lassial algorithm used to al-ulate the omplete set of Lyapunov exponents, when the equations regulatingthe dynamis are fully known; then we introdue a very reent method for thealulation of a vetor base orresponding to the expanding diretion of the dy-namis, i.e. the loal Lyapunov vetors. The meaning of suh vetors and theironnetion with the loal Lyapunov exponents is brie�y explained.In the last part we desribe two onjetures of Ergodi theory whih investigatethe onnetion between the Lyapunov spetrum the attrator dimension andentropy.All quantities desribed in this hapter will be expliitly alulated and ana-lyzed in the spei� dynamial model desribed in the next hapter.1.1 Di�erentiable Dynamial Systemsand ErgodiityA di�erentiable dynamial system is a time evolution on a ompat, di�eren-tiable manifold M ⊆ R
m (the phase spae), de�ned by a di�erentiable mappingor �ow [10℄

f t : M →M , with t ∈ R for �ows, t ∈ N for mappings;15



16 1 Mathematial Framework

Figure 1.1: Exponentially diverging trajetories in phase spaewith the properties:
f0 = identity and f sf t = f s+t . (1.1)If the system is dissipative, a given portion of phase spae is usually ontratedby the time evolution on a smaller volume. The portion of phase spae where themotion is �onentrated�, possibly after an initial transient, is alled attrator.We an de�ne the attrator as a set A with the following properties [11, 12℄:1. is invariant in the dynamial evolution: ∀t, f tA = A;2. attrats an open set: ∃ open set U ⊃ A suh that ∀x ∈ U the distanebetween A and f tx redues to zero in the limit t→∞.3. is minimal: there is no subset of A whih satis�es properties 1 and 2.The largest U satisfying property 2 is alled basin of attration of A, if U =Mthe attrator is alled universal.A dynamial system is said to be haoti when it presents high sensitivity toinitial onditions, i.e. when the trajetories of two distint phase spae points,arbitrarily near at t = 0, diverge exponentially during time evolution, as illus-trated in �gure 1.1. In the next setion we elaborate the onept in greaterdetail and quantitatively; for now we an notie that, for a given starting point,trajetories alulated on mahines with slightly di�erent preisions or di�er-ent round-o� methods would ompletely diverge after a relatively short time.Unless we use numbers of in�nite preision, there will always be some intrinsirandom noise that ompromises any long-term foreast of suh systems. Never-theless global statistial properties, suh as the presene or the struture of theattrator, stay unhanged, regardless the starting point and the level of noise(assuming, of ourse, that the latter is reasonably small). In haoti systemsthe attrator is therefore haraterized by the additional property:4. is stable under small random perturbations.Suh a property is essential to guarantee that, in experiments and numerialsimulations, the motion falls asymptotially on the attrator despite the fatthat the trajetory itself has poor preditive value.



1.1 Di�erentiable Dynamial Systems and Ergodiity 17The attrators of haoti dynamial system are alled strange. The nameomes from the fat that they often present a very omplex, fratal struture,i.e. with non-integer Hausdor� dimension. The de�nition of fratals and theirproperties is beyond the sope of the present work (see for example hap 11in [12℄ or hapter 3 in [13℄) here we just mention that similar attrators arequite hard to model and to study diretly. This, along with the impossibilityof alulating the �true� evolution of a point in phase spae, suggests that theonly possible approah to takle those problems is statistial and probabilisti.The tool we use for our analysis is the Ergodi theory. It basially says that av-erages on a single trajetory in time equal averages over the whole phase-spae,where the phase-spae is weighted by an appropriate measure µ, with the funda-mental requisites of being invariant under time evolution and ergodi. Abstratergodi theory deals a lot with the study and de�nition of measures that ansatisfy those requisites. As physiists, hopefully interested in real di�erentiabledynamial system, we an lukily �bypass� this problem by operationally de�nea unique natural or physial measure in the way desribed below.We start by taking into onsideration the probability density funtions (PDF)on M , de�ned so that, for x ∈ M , ρ(x) dx is the probability of �nding thesystem in the small volume of phase spae dx around the point x. Imagineto have, for t = 0 a given ensemble of phase-spae points, orresponding toa density ρ0(x), then evolve eah point in time with f , and study the seriesof pdfs ρ1(x), ρ2(x), . . . ρt(x). In the t → ∞ limit, we may expet that theyonverge to a density whih is invariant under the ation of dynamis: ρinv(x).This is not always true, but in the systems of our onern, i.e. haoti and�nite-dimensional, the appliation of Perron-Frobenius theorem ensures thatsuh a PDF exists, is unique, and is approahed exponentially fast in time [14℄:
ρt(x) = ρinv(x) +O(e−α t)Intuitively, if we begin with a homogeneous distribution of points in phasespae, and evolve them for some time, all points would fall over the attrator andstay on�ned on it. Under a pratial point of view, unstable �xed points andyles do not play any role, sine points on them are driven away by the randomnoise intrinsi to numerial omputation. To be mathematially more rigorous,we ould follow the idea expressed by Ekmann and Ruelle [10℄ (said to havebeen �rst formulated by Kolmogorov), and de�ne our density asymptotially,as the ǫ→ 0 limit of densities ρǫ,inv haraterized by a dynamis perturbed byrandom noise of magnitude ǫ.The physial measure µ an be de�ned as the probability of �nding the motionin a given phase-spae area:

µ(B) =

∫

B

ρinv(x) dx .From the way ρinv(x) has been onstruted, this measure has the ruial prop-erty of being invariant under dynamial evolution:
µ(B) = µ(f−tB) .After �nding a �natural� andidate for the invariant measure, we an de�ne theproperty of ergodiity, studied by Birkho�(1931) and Von Neumann (1932):



18 1 Mathematial FrameworkThe invariant measure µ is said to be ergodi if the phase spae
M is metrially indeomposable with respet to it; i.e. there annotbe two distint and invariant subsets, A and B, both with positive µmeasure. In other terms, if A is invariant (f tA = A), then µ(A) = 1or 0.We an imagine that in systems with distint attrators, the dynami evolu-tion would �selet� one of them, aording to the spei� starting point, andmove eternally over it. As a onsequene, the statistial properties derived fromsuh trajetory would be neither global nor invariant of the starting ondition,invalidating the notion of ergodiity.If suh a simple and intuitive requisite is already enough to state the preseneof ergodiity, in pratie the ergodi hypothesis is impossible to demonstratefor the great majority of systems. However we an make the �reasonable as-sumption� that the system we are onsidering has only one attrator, and go onillustrating Birkho�'s Ergodi theorem:For a integrable funtion φ :M → R, the limit

lim
T→∞

1

T

∫ T

0

dt φ
(

f tx0

)

=: 〈φ(x0)〉exists. If µ is an ergodi measure, then 〈φ(x0)〉 is almost everywhereonstant (does not depend on the initial point x0) and equal to:
〈φ(x0)〉 =

∫

M

φ(x) µ(dx) =: [φ(x0)] .For a proof see, for example, the original artile by Birkho� [15℄.The powerful result obtained is that any observable of our system, orrespond-ing to an integrable funtion φ has a de�nite global average value over phasespae. This value an be omputed by integrating the funtion on a randomtrajetory reasonably long in time, and the result does not depend on the initialpoint x0 of the spei� trajetory. This fundamental priniple gives meaning tobasially all the analysis performed in the present work.1.2 Chaoti Dynamis and Lyapunov ExponentsAs mentioned before, a dynamial system is said to be haoti when its timeevolution is highly sensitive to the initial onditions. Namely, if we take twopoints at distane ǫ arbitrarily small, the divergene of the two trajetories intime will be ∼ ǫ eλt, λ > 0. For λ < 0 the di�erene would quikly deay, makingthe dynamis stable; if λ = 0 nothing an be said. If the motion is on�ned on anattrator, the distane annot grow inde�nitely. What happens is that the twotrajetories, after the initial strong divergene, beome ompletely independentone another.If we apply this onept to a point in phase spae x, with a small error assoi-ated δx, we reah the onlusion that even though a haoti system is regulatedby preise equations, the exponential grow of errors makes any alulated time



1.2 Chaoti Dynamis and Lyapunov Exponents 19evolution self-independent of its long-term past history, i.e. non-deterministiin any pratial sense [11℄.The parameter λ, alled the Lyapunov exponent, is of primary importanein studying quantitatively the haoti behavior and estimating its long-termpreditability in suh systems. For a preise de�nition and alulation, we needa satisfying mathematial desription of the entities in question.Let M be a smooth, ompat manifold and f a mapping or �ow overM withthe properties (1.1); let µ be a measure invariant under time evolution; x is ourstarting point on M . We an identify the small di�erene between x and anarbitrarily lose point as a vetor u belonging to the tangent vetor spae toMin point x, TxM . Pairs expressed as (x,u), with x ∈ M and u ∈ TxM an beinterpreted as elements of the tangent bundle of M , that we all TM .We an de�ne an iteration of a given amount of time t as a map of the form:
T t : TM → TM

(x,u)→
(

f t(x), T t
xu
)

.The linear operator T t
x maps the vetor u ∈ TxM in ũ ∈ Tft(x). This operationan be seen as the push-forward of u by f : this implies that the operator issimply the linearized version of f t(x), i.e. its total derivative, represented bythe Jaobian matrix : T t

x := Df t(x).From the properties on f and the hain derivation rule we have that:
T t+s
x = T s

ft(x) T
t
x (1.2)in other words, a long time iteration is equivalent to a produt of short timeiterations, onsisting of elements de�ned following the trajetory of the startingpoint x.From now on we will onsider f as a disrete map, with t ∈ N. However itis possible to generalize all the following de�nitions and results for �ows, withlittle hange in the notation. If || · ||x is the vetor norm over the spae Tx, wean express the rate of hange of the vetor u for one step (t = 1) as:

r(x,u) =
||T 1

x u||f1(x)

||u||xfor the next timestep, using (1.2), we have:
r(f1(x), T 1

xu) =
||T 1

ft(x) T
1
xu||f2(x)

||T 1
xu||f1(x)

=
||T 2

xu||f2(x)

||T 1
xu||f1(x)

.Wen we ompute the geometri mean of the hange rate for the n elements ofthe time series x, f1(x), f2(x) . . . f (n−1)(x), the result is:
[

r
(

f (n−1)(x), T (n−1)
x u

)

· r
(

f (n−2)(x), T (n−2)
x u

)

· . . . · r(x,u)
]

1
n

=

=

[

||T n
xu|| ||T

(n−1)
x u|| . . . ||T 1

xu||
||T (n−1)

x u|| . . . ||T 1
xu|| ||u||

]
1
n

=

[ ||T n
xu||
||u||

]
1
n

.



20 1 Mathematial FrameworkThe logarithm of this quantity in the large n limit is alled the LyapunovCharateristi Exponent (LCE) of (x,u)
λ(x,u) := lim

n→∞

log

( ||T n
xu||
||u||

)
1
n

=

lim
n→∞

1

n
log ||T n

xu|| − lim
n→∞

1

n
log ||u|| = lim

n→∞

1

n
log ||T n

xu|| (1.3)This de�nition satis�es the properties:
∀k ∈ R\{0} λ(x, ku) = λ(x,u) ;

∀u,v ∈ TxM λ(x,u+ v) ≤ max {λ(x,u), λ(x,v)} . (1.4)The LCE depend only on the diretion of the vetor, and not on its magnitude(a diret onsequene of the linearity of the operator T t
x).The existene of suh limits is granted by Oselede's multipliative er-godi theorem [16℄. It an be expressed as follows:Given a ompat, di�erentiable manifoldM , a mapping f :M →

M and a measure µ invariant over M ; let T 1 be a map from M tothe spae all the m×m real matries, with the notation T 1(x) = T 1
x,suh that

∫

M

µ(dx) log+ ||T 1
x|| <∞ ;where log+(k) = max{0, log(k)} and || · || is a matrix norm; let T n

xbe de�ned as the produt T n
x = T 1

f(n−1)(x)
. . .T 1

f(x) T
1
x. Then thereis a f -invariant subspae N ⊆ M suh that µ(N) = 1 and ∀x ∈ N(indiating with A∗ the adjoint of A) the matrix

Λx := lim
n→∞

((T n
x )

∗T n
x )

1
2n exists.It has s ≤ m distint, real eigenvalues, that an be ordered as

expλ
(1)
x > . . . > expλ

(s)
x , orresponding to the eigenspaes U (r)

x ;
r = 1, . . . , s. The λ(r)x exponents assume real values or an be −∞if the orresponding eigenvalue is 0.If we de�ne L(r)

x = U
(r)
x ⊕U (r+1)

x ⊕ . . . ⊕U (s)
x , and L(s+1)

x = {0},we have that for u ∈ L(r)
x \ ∈ L(r+1)

x

lim
n→∞

1

n
log ||T n

xu|| = λ(r)x ,i.e. the logarithms of the eigenvalues of Λx are the set of all LCEwe an �nd from x. Finally, de�ning d(r)x := dimU
(r)
x , we have thatthe funtions x→ λ

(r)
x and x→ d

(r)
x are f -invariant (λ(r)x = λ

(r)
ft(x),et.) and, if the system is ergodi, are almost everywhere onstant(with the possible exeption of a set of 0 measure).The matrix Λx is alled Oselede Matrix. If we write the vetor norm as asalar produt ||u|| = √〈u, u〉; the expansion rate after a single iteration is:

||T 1
xu||
||u|| =

√

〈T 1
xu, T

1
xu〉

〈u, u〉 =

√

〈(T 1
x)

∗T 1
xu, u〉

〈u, u〉 ;



1.3 Calulating Lyapunov Exponents 21the last equality omes from the de�nition of adjoint matrix. Now, assuming uis an eigenvetor of (T 1
x)

∗T 1
x with eigenvalue k, the result is:

√

〈(T 1
x)

∗T 1
xu, u〉

〈u, u〉 =

√

〈u, u〉 k
〈u, u〉 =

√
k . (1.5)This explanation has the only purpose of desribing the idea behind the on-strution of the Oselede matrix. For a full desription of the theorem and itsrelation with the Lyapunov exponents, see [11, 17, 18℄. An exhaustive mathe-matial demonstration an be found in [19℄. The Oselede multipliative ergoditheorem is not simply an alternative way to express the Lyapunov exponents,but more than that, it states the existene of suh a limit as an invariant prop-erty of the dynamial system, independent from the initial point hosen for timeevolution.The folding vetor spaes L(1)

x ⊇ L
(2)
x . . .⊇ L

(s)
x indue a natural splitting onthe tangent spae, known as Oselede splitting. The importane of suh splittingan be illustrated as follows: if we take a random vetor u belonging to TxM ,its mean grow rate will be expλ(1)x , i.e. the exponential of the highest Lyapunovexponent. This omes from the fat that u ∈ L(1)
x : the subspaes L(2)

x , L
(3)
x . . .have zero measure with respet to the total spae, so the probability of a ran-dom vetor to be limited to them in substantially zero. However, if we onsidera random vetor ũ from whih we systematially remove the omponent in thediretion(s) of highest expansion, i.e. its projetion on U (1)

x , then ũ ∈ L(2)
x andits LCE will be the seond highest exponent, λ(2)x , and so on. The numerialalulation of the omplete spetrum of LCE is essentially based on this meh-anism. We an also notie that the ordering of the spetrum indues di�erentorders of expansion (and stability, for negative LCEs) in di�erent subspaes.Moreover, the basis of eah U (r)

x subspae (i.e. the Λx normalized eigenve-tors), represents the (average) diretion assoiated to the expanding (or on-trating) average rate expλ
(r)
x . Suh diretions are alled Lyapunov vetorsand, as desribed in setion 1.4, an be omputed and studied loally, in orderto gain useful information on the loal dynamis and global dynamis.1.3 Calulating Lyapunov ExponentsThe lassial algorithm for the alulation of the Lyapunov exponents dates bakto 1980 [20℄. It onsiders only dynamial systems whose governing equationsare fully known and omputable. If the dynamis is hidden, it is still possibleto estimate some of the exponents by using an empirial time series of someobservable of the system. In [21℄, for example, both ases are onsidered (seealso [22℄). However, for the sope of the present work, we will stik to thehypothesis of the lassial algorithm.Following the reasoning of the original artile, we start with the proedurefor the �rst, highest exponent, and then we generalize the result to the wholespetrum. First of all we remind that for a starting point in our manifold x ∈Mand a vetor in its tangent spae u ∈ TxM , the linear operator involved in thepush-forward (x,u) → (f t(u), T t

xu) is the Jaobian of f t alulated in point
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x. This value is basially the omplete derivative of f t: in setion 2.6 of nexthapter we will show the alulation in our spei� setting. For now we assumethe T t

x matries as given for every x in M .As said in previous setion, for the �rst exponent is su�ient to follow theevolution of a random vetor u0. To have an intuitive representation of the pro-ess, we an imagine to deompose u0 in the basis of the diretions of expansionassoiated to eah exponent (i.e. the Lyapunov vetors). Being random, ourstarting vetor will have a nonzero omponent for eah diretion. Due to thelinearity of the proess eah omponent will inrease, on average, exponentially,aording to the respetive Lyapunov exponent. The exponential di�erene ofthe growing rates will ause the omponent assoiated to the highest exponentto dominate over all the others after a short amount of iterations, so that it isthe only one seleted in the large n limit.The only di�ulty is that an exponentially growing vetor would soon go outof the boundaries of our omputational apabilities (that's basially the reasonwhy we annon alulate Λx diretly). It is solved as follows. Given an integer
k & 1 suh that T k

x lies safely in our numeri limits, we start with a randomvetor u0 ∈ TxM and alulate iteratively the series:
u1 = T k

x

u0

||u0||
, u2 = T k

fk(x)

u1

||u1||
, u3 = T k

f2k(x)

u2

||u2||
, . . .

ui = T k
f(i−1)k(x)

ui−1

||ui−1||
=
T k
f(i−1)k (x) T

k
f(i−2)k(x) . . . T

k
fk(x)u0

||ui−1|| ||ui−2|| . . . ||u0||
;

||T ik
x u0|| = ||ui|| ||ui−1|| . . . ||u0|| ; �nally, from u0 ∈ L(1)

x and (1.3), we have:
λ(1)x = lim

n→∞

1

n

n
∑

i=1

log ||ui|| . (1.6)Both the fat that T k
x is applied only to normalized vetors and that the loga-rithm is omputed at every single step have the positive e�et of ontaining thesize of the numbers involved, making the omputation possible.To alulate the whole spetrum, we must think in terms of volume variations.We assume the Λx matrix to be m dimensional and, for simpliity, that all itseigenvalues have multipliity one (i.e. we have m distint LCE). Let U ⊂ TxMbe a open set of volume Vol(U); using the de�nition of LCE and the Oseledetheorem, we infer that its average growing rate in time is ∝ exp

∑m
i=1 λ

(i)
x .We start from U0, de�ned for onveniene as the m-dimensional hyperubeenlosed in a random orthonormal basis of TxM : {u(1)

0 , u(2)
0 , . . .u(m)

0 }; Let
A be the linear operator orresponding to a single time iteration of the set.Following the same reasoning as before, we de�ne iteratively the sets Ui as:

Ui =
A(Ui−1)Vol(Ui−1)

;so that, from the linearity of A, it follows:Vol(Ui) · Vol(Ui−1) · . . . ·Vol(U0) = Vol(AA . . . AU0) .



1.3 Calulating Lyapunov Exponents 23The quantity on the right is the volume of our initial hyperube after i timesteps,namely: Vol(AA . . . AU0) = Vol(T ik
x u

(1)
0 , T ik

x u
(2)
0 , . . . T ik

x u
(m)
0 ) ;this expression leads to the sum of all LCE:

lim
n→∞

1

n
log

Vol(AnU0)Vol(U0)
= lim

n→∞

1

n
log (Vol(AnU0)) =

m
∑

j=1

λ(j)x .The quantities on the left assume the form:Vol(Ui) =
Vol(A(Ui−1))Vol(Ui−1)

= (1.7)
=

Vol(T k
f(i−1)k(x)

u
(1)
i−1, T

k
f(i−1)k(x)

u
(2)
i−1, . . . T

k
f(i−1)k(x)

u
(m)
i−1)Vol(Ui−1)

.By iterating the vetors as before (u(j)
i = T k

f(i−1)(x)
u
(j)
i−1/||u

(j)
i−1||) and omputingthe volume for eah step, we an, in priniple, �nd the right result; however thismethod is not feasible, due to the fat that all vetors would soon onvergeon the diretion of maximum expansion, so that the angles between them arebeyond the numerial resolution and the volume annot be alulated.To irumvent this problem, for eah timestep we reompute the vetors de�n-ing the volume Ui performing a Gram-Shmidt orthogonalization proedure: Uidoes not hange, and its volume simply beomes the produt of the orthogonalvetor norms. In short, if we assume 〈·, ·〉 as the salar produt in the spae

Tfik(x)M , we build the series of u(j)
i as:

u
(1)
i = T k

f(i−1)k(x)

u
(1)
i−1

||u(1)
i−1||

; for j > 1 :
u
(j)
i = T k

f(i−1)k(x)

u
(j)
i−1

||u(j)
i−1||

−
j−1
∑

r=1

〈

T k
f(i−1)k(x)

u
(j)
i−1

||u(j)
i−1||

, u
(r)
i

〉

u
(r)
i

||u(r)
i ||2

.

(1.8)
With this de�nition Volp(T k

f(i−1)k(x)
u
(1)
i−1, T

k
f(i−1)k(x)

u
(2)
i−1, . . . T

k
f(i−1)k(x)

u
(m)
i−1)is equivalent to:





m
∏

j=1

||u(j)
i−1||



 · Volp(u(1)
i , u

(2)
i , . . . u

(m)
i ) =





m
∏

j=1

||u(j)
i−1||



 ·





m
∏

j=1

||u(j)
i ||



 .The last equality is due to the orthogonality of the u
(j)
i vetors. From (1.7) weobtain Volp(Ui) =

∏m
j=1 ||u

(j)
i ||, whih leads to the result:

m
∑

j=1

λ(j)x = lim
n→∞

1

n
log





m
∏

j=1

||u(j)
0 || ·

m
∏

j=1

||u(j)
1 || · . . .

m
∏

j=1

||u(j)
n ||



 .



24 1 Mathematial FrameworkRearranging the produt indexes and deomposing the logarithm, we �nallyobtain, for the sth exponent:
λ(j)x = lim

n→∞

1

n

n
∑

i=1

log ||u(j)
i || . (1.9)Equation (1.9) is an extended version of (1.6), with the signi�ant di�erene thatthe u

(j)
i vetors, for j > 1, are alulated aording to the orthonormalizationproedure (1.8). As we will see in setion 1.5 this proess an be simply andstraightforwardly translated in basi operation on matries.Before moving to the alulation of Lyapunov vetors, some onsiderationsabout dimensions should to be done. The result of (1.9) is dimensionless, asit represents the logarithm of average expansion per step. To obtain a moregeneral quantity, independent of the step lengths used for the evolution of thedynamial system (as long as the intervals are small enough to follow properlythe dynamial evolution), we need to resale the exponents using the durationof a timestep ∆t:

λ
(j)
i ←

λ
(j)
i

∆t
(1.10)The oe�ients are thus expressed in seonds−1.The system analyzed the present work has the peuliarity of having steps ofdi�erent time lengths. Sine the LCE is de�ned as an average quantity, wedivide it by the interval length averaged on all performed steps: [∆t]s (see forexample pag. 120 of [14℄).1.4 Calulating the (loal) Lyapunov vetorsAs said, the Lyapunov vetors, de�ned as a base for the eigenspaes of Λx,represent the diretion of the global average expansion assoiated to eah expo-nent. It is then possible to de�ne the loal Lyapunov vetors as the preferredexpanding diretions for the (linearized) dynamis of eah point in time. Theloal Lyapunov exponents are then the puntual expansion rates in eah of thosediretions.The identi�ation at any step s of the maximum loal exponent λ(1)s and itsassoiated diretion v

(1)
s is straightforward: as said, a random vetor, freelyevolving in time, would rapidly align with it. So that, using the u

(1)
s vetors asde�ned above, we obtain, for the vetor and the exponent:

v(1)
s =

u
(1)
s

||u(1)
s ||

; λ(1)s = log





||T k
fik(x)u

(1)
s ||

||u(1)
s ||



 = log ||u(1)
(s+1)|| , (1.11)for values of s reasonably distant from 0, so that u(1) has su�ient time toalign, and assuming that the mapping is smooth enough, so the vetor properlyfollows the dominating diretion at every point in time.Moving to v

(2)
s and λ(2)s , the idea in the series (1.8) is that, after we apply thelinear operator, we projet the resulting vetor on the spae orthogonal to v

(1)
s ,
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t

t

v1

v2Figure 1.2: In a haoti dynamial system any perturbation will onverge on thediretion of the �rst Lyapunov vetor. On the other hand, a time inversion in thedynamis results in the marked domination of the least forward expanding diretion,i.e. the seond vetor.thus the growth in that diretion diretion (expeted to be dominating) is om-pletely suppressed, while the next highest growing diretion, regulated by λ(2)s ,beomes visible. As a result, u(2)
s /||u(2)

s || has the same diretion as the proje-tion of v(2)
s on the spae perpendiular to v

(1)
s . In general u(2)

s /||u(2)
s || 6= v

(2)
s :no reason fores the Lyapunov vetors, either global or loal, to be perpendiu-lar eah other. Laking the knowledge of the orret diretion and of the loalexponent de�ned as above (it annot be found it the orresponding diretion isnot known), we annot alulate the true v

(2)
s .A solution to irumvent this problem has been proposed only in 2007 [23℄. Itis based on the quite intuitive and well know priniple that a time-inversion inthe dynamis of our system inverts the Lyapunov spetrum. A volume normallyexpanding in some diretions, in a bakward motion would ontrat in thosesame diretions with inverted ratios, while a random vetor traveling bakwardsin time would soon follow the diretion of less expansion in forward time. See�gure 1.2 to have a graphial idea of the proess.For the arguments above, we know that Span(v(1)

s , v
(2)
s ) = Span(u(1)

s , u
(2)
s ).If we take a random ombination of u(1)

s and u
(2)
s and evolve it bakwards, aftersome iteration (let's say h) it will be aligned with the less forward expandingdiretion of our subspae, namely v

(2)
s−h. For vetor v(s)

s−h we simply start with alinear ombination of vetors v(1)
s , u

(2)
s , . . .u(s)

s , keeping in mind that h shouldbe big enough to let the vetors align properly.1.5 Matrix CalulationAs said, there is a simple and elegant way to translate the algorithms desribedabove in a sequene of matrix operations. If m is the dimension of our system,



26 1 Mathematial Frameworkwe start de�ning a random, orthonormal,m×mmatrix whose olumns representa basis for TxM : Q0 = (q
(1)
0 | . . . |q

(m)
0 ). Due to their struture, the q(j) vetors,i.e. the olumns of the Q matrix, are alled the Gram-Shmidt basis.

T k
x is the Jaobian matrix assoiated to a k-steps evolution, with k hosen sothat the exponential growths are kept in the numerial limits of our alulator.We now perform the multipliation:
T 1
fk−1x

. . . T 1
f1x
·Q0 = (T k

xq
(1)
0 | . . . |T k

xq
(m)
0 ) = (q̃

(1)
1 | . . . |q̃

(m)
1 ) = Q̃1 ; (1.12)where T 1

x . . .T 1
fk−1x are the Jaobian matries for a single timestep, omputedfor the spei� dynamial system we are analyzing.The vetors q̃(j)
1 are not orthogonal. To obtain the orret iterated Q1 matrix,we apply a QR deomposition on Q̃1. The QR deomposition on a generisquare matrix Q̃ onsists in writing it as the produt Q̃ = Q · R, suh that Qis orthonormal and R is upper triangular. Calling q̃(j) and q(j) the olumns of,respetively, Q̃ and Q, the new matries are de�ned by:

q(1) =
q̃(1)

||q̃(1)||
; q(j) =

q̃(j) −
j−1
∑

r=1

〈

q̃(j), q(r)
〉

q(r)

∣

∣

∣

∣

∣

∣

∣

∣

q̃(j) −
j−1
∑

r=1

〈

q̃(j), q(r)
〉

q(r)

∣

∣

∣

∣

∣

∣

∣

∣

{R}ij =
〈

q(i), q̃(j)
〉

, for i ≤ j . (1.13)It is straightforward to see that these values an be expressed in terms of the
u(j) vetors (1.8) as q(1)

1 = u
(1)
1 /||u(1)

1 || . . . q(m)
1 = u

(m)
1 /||u(m)

1 || Moreover, fromthe de�nition of the QR algorithm desends that the diagonal of the R matrixorresponds to the u
(j)
1 norms: {R1}jj = ||u(j)

1 ||.The orthonormalized Q1 is now ready for another iteration:
T 1
f2k−1x

. . . T 1
fkx
·Q1 = Q̃2 = Q2 · R2 . . . and so on.The u

(j)
i vetor modules, given by the diagonal of Ri, are stored in eahiteration for the alulation of the Lyapunov spetrum.This same setting, along with the results already omputed, an be also usedto �nd the Lyapunov vetors. The ending point of our omputation T ≫ 1 willbe assumed as the starting point of our bakward iteration. The starting ran-dom vetors v(1)

T ∈ Span{u(1)
T }, v(2)

T ∈ Span{u(1)
T ,u

(2)
T } . . . , v(m)

T ∈ Span{u(1)
T ,. . .u(m)

T } an be de�ned as the produt of QT with a random triangular matrix
CT . Considering the time iteration, we obtain:

QT · CT = T k
f(1−T )k(x) ·QT−1 · CT−1 = Q̃T · CT−1 = QT · RT · CT−1 ;so that CT−1 = (RT )

−1 · CT . (1.14)The previously alulated triangular Rs matries must thus be fully stored,inverted and used to iterate bakward in time the Ci matrix:
Ci = (Ri−1)

−1 · (Ri−2)
−1 · . . . · (RT )

−1 · CT .Sine we are interested only in the vetor diretions, we an freely normalizethe olumns of the Ci matries. If we do that at every step, we an identify thenormalization fators at point i with the loal Lyapunov exponents λ(j)s , whilethe Lyapunov loal vetors are simply the (normalized) olumns of Qs · Cs .



1.6 Information and Entropy 271.6 Information and EntropyConsider two points very lose one another in the phase-spae of a haoti sys-tem: for any observer whose instruments have a preision oarser than theirdistane, they will appear ompletely indistinguishable. Eventually, as the sys-tem evolves in time, the trajetory separation due to haoti dynamis makes thedistane signi�ant, so that the points are pereived as separate. Thus, systemsvery sensitive to initial onditions an be seen as produers of information.Let {A1, A2, . . . ,Aα} be a �nite, µ-measurable partition of the phase spae.We an assume it orresponds to the resolution of our instruments, so that twopoints in the same set of the partition A annot be seen as distint. We an thende�ne f−k(Ai) as the set of points x suh that fk(x) ∈ Ai, and all f−k(A )the partition {f−k(A1), . . . f−k(Aα)}. We �nally onsider the partition givenby the least ommon re�nement:
A(n) = A∨ f−1(A ) ∨ f−2(A ) ∨ . . . ∨ f1−n(A ) ;it is de�ned so that a generi set in it has the form:

Ai1 ∩ f−1(Ai2 ) ∩ . . . ∩ f1−n(Ain) for ij ∈ {1, 2, . . . , α}It is lear that the latter, dynamis-related, partition has a resolution muh�ner than the starting one, sine any element in it is disriminated by its pasthistory, up to n− 1 steps.Now, we an de�ne the information ontent of the partition A(n) with respetto measure µ as:
H(A(n)) =

∑

i1, ...,in

µ(Ai1 ∩ . . . ∩ f1−nAin) logµ(Ai1 ∩ . . . ∩ f1−nAin) ;where we sum over every element of A(n). The rate of information reation,with respet to the initial partition A is then given by the limit:
h(µ,A) = lim

n→∞

(

H(A(n+1))−H(A(n))
)

= lim
n→∞

(

1

n
H(A(n))

)

.The Shannon-MaMillan theorem guarantees the existene of this limit.The Kolgomorov-Sinai entropy h(µ) is then de�ned as the further limit of
h(µ,A) for �ner and �ner starting partitions A.As stated at the beginning of this setion, the information reation rate isoriginated by the expanding motion of the system in the phase spae, onnetedwith its haoti behavior. In 1978 Ruelle demonstrated that its value annot begreater than the total positive expansion rate of the system, given by the sumover all positive Lyapunov global exponents:

h(µ) ≤
∑

λ(i)>0

λ(i) . (1.15)Pesin extended this theorem, proving that (1.15) is an identity if (and onlyif) the measure µ is a SRB measure. We shall brie�y de�ne and disuss SRBmeasures at the end of the next setion, sine they result ruial also in thevaluation of the attrator dimension.



28 1 Mathematial Framework1.7 Information Dimension of the AttratorAs mentioned at the beginning of this hapter, (see pag 17) the attrator inthe phase spae A ⊆ M has, in general, a fratal struture. We assume thenotion of Hausdor� dimension as given, with the notation dimH , and de�ne theinformation dimension of the measure µ as:dimH(µ) = inf{dimH(S)|µ(S) = 1} .Young's theorem (1982) shows that, if µ is an ergodi measure, this value isequivalent to: dimH(µ) = lim
r→0

logµ(Bx(r))

log r
.Here Bx(r) represents the ball entered in x of diameter r. The expression isvalid and onstant for every x ∈ A exept, possibly, for a set of 0 µ-measure.Now, if λ(1), . . . , λ(m) are the global Lyapunov exponents assoiated to µ,and k = max{ i | λ(1) + . . .+ λ(i) ≥ 0}, we an de�ne the Lyapunov dimensionas: dimΛ(µ) = k +

λ(1) + . . .+ λ(k)

|λ(k+1)| ; (1.16)the seond term is a small, noninteger orretion for the ase: ∑k
i=1 λ

(i) > 0 and
∑K+1

i=1 λ(i) < 0. In our system, due to great dimensionality, it results negligible.The onnetion between the two quantities de�ned here is given by the fol-lowing onjeture by Kaplan and Yorke: if µ is an ergodi, SRB measure, thendimH(µ) = dimΛ(µ) . (1.17)It is analytially proved that this equality holds in some spei� ases, butexeptions are found.SRB measures and hyperboliityIn the previous two setions we stated that a ruial property of the measure weuse, both for the exat alulation of entropy prodution and a reasonable esteemof the attrator dimension, is being a SRB measure (from Sinai, Ruelle, Bowen);namely a measure whih is absolutely ontinuous along unstable manifolds. Arigorous de�nition an be found in [10, 11℄.It is proved that for a lass of dynamial systems, namely the Axiom-A sys-tems, exists a unique SRB measure, whih an be expressed �physially� as theergodi average:
ρ = lim

n→∞

1

n

n−1
∑

k=0

δfkx .The problem is then transferred on demonstrating that the dynamial systemis Axiom-A: in that ase the SRB measure naturally orresponds to an averageover long dynamial trajetories, as the ergodi priniple states; onsequentlyPesin identity holds and Kaplan-Yorke onjeture is on solid ground.The ruial property of Axiom-A system is hyperboliity. A set A is hyperbolifor a di�eomorphism f (mapping of �ow), if ∀x ∈ A there exists a diret sum



1.7 Information Dimension of the Attrator 29deomposition of the tangent spae between stable (expanding over time) andunstable diretions (expanding on inverted time). If A is a hyperboli attratingset and the periodi points of f are dense in A, the onditions for an Axiom-Adi�eomorphism are satis�ed. In ase the whole manifold M is hyperboli, wehave the stronger onditions of Anisov di�eomorphism and strutural stability.Proving that a system is Axiom-A is, in general, a very hard task. However,the present work represents an example of how Lyapunov Vetors an be usedto identify the expanding and ontrating diretions of the tangent spae. Themeasure of their transversality represents then a quantitative esteem of theglobal degree of hyperboliity of the system.
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Chapter 2ModelIn this hapter a basi model for a stati, large sale network of ortial neuronsis built. Starting form the Hodgkin-Huxley lassi equations, simpler modelsare inferred. It is then explained why the anonial quadrati integrate and �remodel (QIF) is a suitable to desribe the dynamis of very large sale networks.In the next setion a more general model for pulse-oupled neuronal networksis presented. Expliit equations are obtained from the QIF model and used toalulate analytially di�erent global parameters of the network; then a formulafor the Jaobian at any given spiketime is presented. Suh analytial expressionswill be the basis of the atual network simulation and of all the subsequentresults presented in next hapters.2.1 Single Neuron DynamisHodgkin and Huxley modelThe best known and most widely aepted equations used to desribe the poten-tial of a neural ell soma as a funtion of external urrent and internal ondu-tane parameters, dates bak to the pionieristi work of Hodgkin and Huxley[24℄. The equations in their standard form are:
C
dV

dt
= I − gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) ;

dm

dt
=

1

τm(V )
(m∞(V )−m) ;

dh

dt
=

1

τh(V )
(h∞(V )− h) ;

dn

dt
=

1

τn(V )
(n∞(V )− n) ;

(2.1)
with m∞(V ) = αm(V )/(αm(V ) + βm(V )) , τm(V ) = 1/(αm(V ) + βm(V )) ,

h∞(V ) = αh(V )/(αh(V ) + βh(V )) , τh(V ) = 1/(αh(V ) + βh(V )) ,

n∞(V ) = αn(V )/(αn(V ) + βn(V )) , τn(V ) = 1/(αn(V ) + βn(V )) .31



32 2 ModelThe variable I represents the urrent, C is the membrae apaitane, the E• arethe Nerst equilibrium potentials, while the g parameters are the maximal on-dutane for Na+ ions, K+ ions and other ions (leakage urrents). The m, h, nfuntions are biologially interpreted as the open fration of independent gateswhih ompose eah single ion hannel. One Na+ hannel is open only if itsthree m-type gates and one h-type gate are open, while a K+ hannel is om-posed of four n gates. Suh funtions depend on the steady state ativationparameters m∞, h∞, n∞ and on the ativation time onstants τm, τh, τn.A proper hoie of parameters, often �tted on in vitro and in vivo voltage-lamp measures on living ells, makes the observation of a wide variety of be-haviors, orresponding to di�erent kinds of neural ells, possible. We an divideneurons in two main lasses of exitability. Neurons of lass 1, also alled Type1 neurons, are able to produe ation potential trains with frequenies varyingsmoothly on a wide range ∼ 1 − 100 Hz. Neurons of lass 2 have an �all ornone� kind of response, with a �xed spike frequeny ∼ 150 − 200 Hz, arisingwhen the inoming urrent inreases over a ertain threshold. For the sope ofthe present work we onsider only lass 1 neurons.A omplete derivation of the Hodgkin and Huxley equations and a detailedexplanation for their dynamis an be found in the original artile [24℄ or in[25, 26, 27℄).Redution to Two DimensionsOne of the �rst and most well-known redution of the (2.1) omes from thework by C. Morris and H. Lear on the musle �bers of the barnale [28℄. Sinewe are direted to the study neoortex rather than musular �bers, we willuse a model dynamially equivalent, the persistent sodium slow potassium or
INa,p + IK model, introdued in 1993 by X. J. Wang to simulate the behaviorof pyramidal neurons of the at sensorimotor ortex [29℄. The equations are:

C
dV

dt
= I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK) ;

dn

dt
=
n∞(V )− n

τ(V )
;

(2.2)
m∞(V ) =

1

1 + exp
Vm,1/2−V

Km

n∞(V ) =
1

1 + exp
Vn,1/2−V

Kn

(2.3)Unlike the Hodgkin-Huxley model, here eah hannel is omposed by a singlegate, and the sodium hannels reat istantaneously to voltage hange (i.e. ona timesale muh lower than the potassium hannels). It should be pointedout that this model is less biologially meaningful, and laks, even qualitatively,some dynamis intrinsi in the HH equations (see [30℄). On the other hand it iseasier to study with the standard proedure used for two dimensional dynamialsystems, as and overs the spei� regime we are interested in.Equations (2.2) an be qualitatively investigated with the approah and for-malism used for generi 2-dimensional dynamial systems, suh as the Van der
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Figure 2.1: Nulllines, vetor �eld and an example of trajetory for the INa,p + IKmodel. It is lear that for almost all staring points the dynamis will fall on theperiodi attrator. The parameters used are in table 2.1Table 2.1: Parameters used for the INa,p + IK model, taken from in-vivo measureson a rat as reported in [25℄
C = 1 mF , I = 0.01 mA/m2 , gL = 8 mS/m2 , EL = −80 mV ,

Kn = 5 mV , Vn,1/2 = −25 mV , gNa = 20 mS/m2 , EK = −90 mV ,

Km = 15 mV , Vm,1/2 = −20 mV , gK = 10 mS/m2 , ENa = −60 mV ,

τ (V ) ≡ 1 .Pol osillator [12, 31℄. We draw the nulllines, i.e. the urves dV/dt = 0 and
dn/dt = 0, in the V − n diagram. Solving the (2.2) we have:

nnull n = n∞(V ) ;

nnull V =
I − gL(V − EL)− gNam∞(V )(V − ENa)

gK(V − EK) .
(2.4)In �gure 2.1 the nulllines and the vetor �eld of the veloities (dV/dt, dn/dt)are plotted. The parameters used are modeled on �ts of path-lamp measureson pyramidal neurons of the rat's visual ortex, as reported on [25℄, and areshown in table 2.1.With this hoie, the result a is periodi movement on an invariant yle, asshown in �gure 2.1. Changing the parameters, a wide variety of dynamis anbe reprodued, all desribed in detail in the referene ited above. For the sopeof the present dissertation, however, it is enough to onsider slow hanges in the
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Figure 2.2: Spiking ativity for quadratially inreasing injeted urrent I0 for the
INa,p + IK model, regulated by equation (2.2) and parameters in table 2.1input urrent: a hange in the I parameter has the e�et of moving vertiallythe V -nullline. The narrowing in the spae between the two urves around theloal minimum V ∗ auses an inrease in the yle period. When the nulllinesinterset in one point, the time for a yle beomes in�nite. Finally a negative
I generates two intersetions, thus breaking the periodi dynamis. From thisbehavior whe an state that our system in near a saddle-node bifuration on aninvariant yle, regulated by the �ne-tuning of the I parameter.In �gure 2.2 we an see the plot of V (t) for a system near the saddle-nodeondition with a urrent slowly inreased in time (quadratially). The result is asmooth inrease in the frequeny of spiking, while the spiking signals themselvesdon't hange in shape or intensity: the invariane of the ation potential ispreserved.The equations desribed here have the same qualitative behavior as the typialtype 1 neuron, thus we an say they represent a anonial model for this kindof dynamial system.Quadrati Integrate and Fire ModelWe have shown that the most ruial part for the smooth regulation of thespiking frequeny lies in the near-bifuration area. To proeed to further sim-



2.1 Single Neuron Dynamis 35pli�ations we thus perform a series expansion of dV (t)/dt around V ∗. In thisarea n lies near its nullline, too, so we an make the assumption n → n∞(V )and redue the dynamial system to one dimension (equivalent to say that allion hannels reat instantaneously). Then, for the properties stated on V ∗, the�rst derivative is zero. We stop at the seond order, obtaining:
C
dV (t)

dt
≈ gQ

γ
(V (t)− V ∗)2 + I(t) . (2.5)Here g is a ondutane and γ has the dimension of a voltage. Suh values anbe inferred from �ts on type 1 neurons near saddle-node bifuration.If the urrent is onstant in time, i.e. I(t) ≡ I0, we have an analytial solution:

V (t) =

√

γI0
gQ tan

( √
gQ√
γ C

√

I0t+ α

)

; (2.6)where the onstant α depends on the starting point V (0):
α = arctan

(

(

V (0)− V ∗
)

√

gQ
γ I0

)

. (2.7)If we assume that V (0) < V ∗ and √gQ/√γ I0 ≫ 1, we have α ≈ −π/2. Writing
gQ as the inverse of a membran resistane rm, the latter hypotesis beomes
γ I0 rm ≪ 1, justi�ed by the fat that membranes have resistane of the orderof mΩ m2, the urrents are usually expressed in µA/m2 and the voltages inmV.The equation (2.6) goes to a +∞ voltage in �nite time, re�eting the fatthat if we get too far from V ∗ the series expansion loses its meaning. Thus, toobtain a periodi dynamis, an arti�ial reset is neessary: if V (t) > Vthreshold,then V (t)← Vreset. With the same hypothesys on Vreset as the ones mentionedabove, we an assume V starts at −∞, peaks at +∞ and then is resetted bakat −∞.The most onvenient way to desribe this model is though a phase desription[32℄, with a resaling and hanging of variables in the form

I0 ← I0
γ

gQ , t← t
gQ
γ C

, V =
√

I0 tan
θ

2
, (2.8)equation (2.6), in the α ≈ π/2 limit , is simpli�ed to:

θ(t) = 2
√

I0t− π; . (2.9)With this phase desription, the QIF model is often re�ered to as theta model.With the saling we used, the range in whih the theta neurons evolve their phaseis [−π, π) . In the literature the interval interval [0, 1) is also frequenntly used.As an example, in �gure 2.3, we plotted dV/dt versus V for INa,p+ IK model,using the same parameters as above, and we performed a quadrati �t of thepoints around V ∗ ≈ −60mV (in red).The behavior of a QIF neuron under a onstant positive urrent and under aquadratially inreasing urrent is shown in �gure 2.4 It learly follows a type 1exitation, thus being the simpler anonial spiking model for a type 1 neuron,and, for its analytiity, the most suitable for large sale network simulations[30℄.
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Figure 2.3: dV/dt versus V in the INa,p + IK model. The urve (2.5), orrespondingto a seond order expansion in the point V = V ∗, is �tted and plotted.
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Figure 2.4: An example of spiking ativity for a QIF neuron with dynamis regulatedby (2.6) and parameters obtained onfronting (2.5) with the quadrati �t represented�gure 2.3



2.2 Network Dynamis 372.2 Network DynamisThe system of our onern is a large, stati, sparsely onneted pulse-oupled neuronal network.We all the N elementary omponents of our system neurons. Eah of themhas a single degree of freedom: its trans-membrane potential V (t), whih variesdynamially depending on the eletri urrent I(t) the neuron is subjeted to.The dynamis of neuron i is then given by a di�erential equation of the form:
dVi(t)

dt
= F (Vi(t), Ii(t)) . (2.10)If we use the QIF model, the F (V, I) is given by (2.5), but is important to notiethat what stated in this setion is valid in general for any one-parameter type 1neuron model, suh as leaky integrate-and-�re neurons and possible variationson the theta model.A neuron is said to emit a spike when its internal variable reahes somepartiular ondition (usually when it reahes a given Vthreshold potential). Inmost models, after the event, the potential dereases again to a Vreset value. Thetimes when a spike is reeived by neuron i are indiated as {ti1, ti2, . . . , tiNspi

i

},
N spi

i being the total number of suh events.At this point we need to de�ne the synapti onnetion matrix J ij : it es-tablishes whether the neuron j is onneted to i, the nature of its onnetion(exitatory or inhibitory), and its strength. The presynapti and postsynaptineurons sets are de�ned so that: pre(i) := {neurons j | j is onneted to i }and post(i) := {neurons j | i is onneted to j }.In our model, when some neuron j∗ emits a spike, it injets to all neurons of thepost(j∗) set a urrent waveform, with intensity proportional to the onnetionstrength and shape given by a stereotypi funtion ζ(t), assumed to be the samefor all neurons.Thus we an write the urrent reeived by a single neuron as the sum of anexternal omponent Iexti (t) plus the ontribution of the internal dynamis fromits presynapti set, in the form:
Ii(t) = Iexti (t) +

∑

j∈pre(i)Nspi
i
∑

p=1

J ij ζ(t− tpj ) . (2.11)We assume that ζ(t) has the properties:
ζ(t) = 0 for t < 0 , ζ(t) ≥ 0 for t ≥ 0 ,

∫ +∞

−∞

dt ζ(t) = 1 . (2.12)The onnetions given by J ij are not symmetri, so that the pre and post-synapti sets of a given neuron are, in general, di�erent, but they are ostantin time, making the network stati. The strengths may vary, depending on thepopulation of the onneted neurons - exitatory or inhibitory. Further onsid-erations about the synapti matrix, its values, and the impliations on networkdynamis will be done in the next part.



38 2 ModelBasially The network evolves ontinuously in time, free of internal inter-ations, with every neuron subjeted only to external urrents, until some jneuron reahes the Vthreshold and �res. Then all the neurons in the post(j) setwill hange their dynamis due to the f -shaped injetion of urrent from j, withsign and strength stated by the J matrix.We should mention that, to keep the system biologially meaningful, we needthe deay of ζ(t) to be on a timesale muh lower than the average intervalbetween two spikes of the same neuron: in the desribed model the urrentsinjeted by a single neuron, if too near in time, would just sum up, in on-trast with the well-know invariane of the neuron's ation potential and to thepresene of a refratory time.For this reason, and taking into aount the properties (2.12), we will laterapproximate ζ(t) with a Dira delta funtion.2.3 The Balaned StateAs mentioned in the introdution, the physial system we are onsidering forour network model are the pyramidal neurons of the neoortex.Between the �fties and the early sixties, eletrophisiologial and data anal-ysis tehologies permitted measures on the potential of single living neuronalells. In partiular it was widely aepted that the spiking ativity of pyrami-dal neurons, in the regime we are interested in, an be seen as a stohasti,stationary point-proess [33℄. From many in vivo observations on the ativityof ortial neurons, and measures of the time between two onseutive spikes,the inter-spike interval or ISI, performed on di�erent animals, resulted that thespiking events are, with good approximation, nearly independent one another,thus following approximately the Poisson point-proess statistis. This resultsin an exponential distribution of the ISI.The balaned state model [34℄ has the purpose of explaining and reprodiingthis behavior. The fundamental idea of the model is that the net potential ofeah neuron, due to the signals oming from its presynapti set, is onstantlybalaned in a near-threshold ondition by the intrinsi net dynamis. When theinput, due to weak orrelations, is not averaged out, it auses the neuron to�re. With this mehanism the sensitivity and the rapidness are muh greaterthen they would be for a neuron laying in its resting potential. The weakorrelation guarantees that spikes very near in time ome mostly from neuronsvery sarely dependent between eah other, so that the total spike train hasthe desired struture of a Poisson point proess.After this model was introduted, numerous experiments on�rmed it with in-vivo measures on di�erent animals. Just to ite a few: in-vivo measures on theintat neoortex of ferrets [35℄, on the rat's sensorimotor ortex (in the area thatontrols the whiskers) [36℄, and in the spinal ord of audult turtles[37℄, provedthat the spontaneous balaning between exitation and inhibition is fundamen-tal in regulating the dynamis of the neurons.To mimi this model, we use for our pulse-oupled network the topologialstruture of random graph, in whih every node has, on average, K onnetions



2.3 The Balaned State 39to other nodes randomly hosen. The fundamental ondition impliit in all ourstatistial studies is:
N ≫ K ≫ 1. (2.13)Suh struture is obtained by de�ning the synapti matrix in the form.

J ij :=

{Jαβ , with probabilityK/N
0, with probability (1−K/N)

(2.14)The value and sign of Jαβ depends on whih population the neurons i and
j belong to. If we onsider both exitatory E and inhibitory I neurons wehave four possible values: JEE , JEI , JIE , JII . The external urrent will beassumed onstant in time and equal for all members of the same population:
Iexti (t) ≡ Iextγ , γ = {E, I}.To preserve the salability of the system we impose the requirements:Jαβ ∝ 1√

K
and Iextγ (t) ∝

√
K . (2.15)This is physially equivalent to resaling the Vthreshold of a √K fator, as to saythat, in our weakly orrelated model, the minimum number of inputs a neuronrequires for a sensitive hange in its dynamis is proportional to the square rootof the total onnetions, and not to all of them.We will now show that, with this hoie, the time averaged �ring rate of aneuron is K-independent. For time average and population average we use thenotations:

< •(t) >t :=
1

T

∫

dt •(t) and [•i]i :=
1

N

N
∑

i

•i . (2.16)The average �ring rate for neuron i is then: ν̄i = 1/ 〈ISIi〉t.For now we restrit ourselves to a system omposed only by inhibitory neuronsand subjeted to a positive external urrent:
Iextγ (t) = IextI =

√
KIe ;

J ij = JII = − J0√
K

when di�erent from 0 . (2.17)We start alulating the urrent as given by equation (2.11), averaged overtime and neuron ensemble. The external term, being onstant, is not hanged.Looking at the onditions (2.12), we an say that for long times the seond termwill depend on the total onnetions, their strength and how often, on average,the pulse is reeived. This leads to the result:
[〈Ii(t)〉t]i ≈ I

ext
I −K J0√

K
ν̄ =
√
K(Ie − J0ν̄) . (2.18)A more rigorous alulation is performed in appendix A.We now take into onsideration the term (Ie−J0ν̄) in the K →∞ limit, withthe assumption that N ≫ K is still valid, so that the statistial struture ispreserved.



40 2 ModelIf (Ie − J0ν̄) < 0, the average urrent given by (2.18) will go to −∞ forinreasing K. But a high negative urrent means high negative polarization:the neurons would stop �ring and ν̄ → 0. Sine both Ie and J0 are positiveonstants, this would lead to (Ie−J0ν̄) > 0, ontrary to the starting hypothesis.If we start with (Ie − J0ν̄) > 0, for the same onsiderations as above, theneurons would be injeted with a strong positive urrent, �ring with higher andhigher frequeny. For very large ν̄ we then have, (Ie − J0ν̄) < 0, ontraditingthe hypothesysTherefore the limit must be 0, leading to the result:
ν̄ =

Ie
J0

for K →∞; (2.19)while, to keep the average urrent �nite, (Ie − J0ν̄) = O(1/√K) in the large Klimit.In a ase of di�erent populations, the mean urrent (2.18) would inlude theaverage of the di�erent strengths, weighted on the respetive populations, in-stead of −J0. If suh value is negative, the proof doesn't hange; if positive,we would have a positive external urrent with overall positive interations,whih would lead to the loss of large-K salability and to an unnatural networkdynamis.The result is that, with the resaling of urrents and onnetion strengthsgiven by (2.17), and the requirement of an average negative net urrent ontri-bution from the network, we an build a neural network with sale-free statistialproperties, whih we an study in the limits N →∞, K →∞, N ≫ K.2.4 Model ArhitetureTo to simplify our problem we use a phase desription of the neurons, hoosinga phase map of the form
U : [Vreset, Vthreshold]→ [θmin, θmax] , smooth and monotonially inreasing.The phase of neuron i at time t is then:

θi(t) = U(Vi(t)) .The interval [θmin, θmax] an be arbitrarly hosen. In our partiular hoie forthe QIF model will be [+π, −π].We now de�ne a funtion for the omplete time evolution followed by thephase of a neuron whih gets no signals from the network: the unperturbed timeevolution funtion.
ψ : [0, tmax]→ [θmin, θmax]; (2.20)it is assumed to be monotoni, smooth and invertible, as well, and is derivedfrom the dynamis of the spei� neuron model, taking the time evolution ofa neuron whih starts at Vreset and doesn't interat with the network until itreahes its threshold. If we redue to 0 the internal interations, we impose that

V (0) = Vreset and we de�ne tmax so that V (tmax) = Vthreshold, then:
ψ(t) := U(V (t)) , t ∈ [0, tmax] (2.21)
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Figure 2.5: Times onsidered for the mappingIf we have a phase at a spei� time θi(t0 +∆t) the value it has after the timeinterval ∆t, on the ondition it gets no perturbations, is then:

θi(t0 +∆t) = f(θi(t0),∆t) := ψ
(

ψ−1(θi(t0)) + ∆t
)

. (2.22)For the reasons stated on page 38, we assume that the urrent injetion fun-tion ζ(t) an be reasonably approximated by a Dira delta funtion. The net-work urrents, given by the seond therm of (2.11) are then pulses, whih ausestep-like hanges in the potential proportional to the onnetion strengths J ij ,given by (2.14).The funtion whih gives the resulting phase a moment after suh injetion isalled phase transition urve and has the form:
θi(t

+
s ) = g(θi(t

−

s )) ;where t−s and t+s are the times right before and right after the reeption of thespike by i neuron. We an express the phase transition urve in terms of thephase map as:
g(θi(t

−

s )) = U (U−1 (θi(t
−

s )) + J ij) ; (2.23)where the presynapti spiking neuron has index j.Finally we need to know how long it is until a neuron of given phase θi(t)reahes the threshold value +π in the unperturbed evolution. The spiking timefuntion is de�ned as:
∆tspi = h(θi(t)) , so that: θ(t+∆tspi) = θmax . (2.24)It an be derived in terms of ψ(t) starting from (2.22):

f(θi(t0),∆tspi) = ψ
(

ψ−1(θi(t)) + ∆tspi) = θmax;
ψ−1(θi(t)) + ∆tspi = ψ−1(θmax) ;

h(θi(t)) := ψ−1(θmax)− ψ−1(θi(t0)) .

(2.25)The onvention that we use to index the neurons in a given time interval ∆tis the following:
{i} = {neurons} ; j∗ = the neuron whih spikes in ∆t ;

i = i∗ ⇒ j∗ ∈ pre (i) ; i 6= i∗ ⇒ j∗ /∈ pre (i) .



42 2 ModelNamely the i = i∗ neurons reeive the signal form the spiking j∗ neuron, whilethe i 6= i∗ neurons are unperturbed. Using our formalism we an �nally writethe phase map, de�ned as the funtion whih maps the phase of a given neuronfrom the moment immediately after a spike ts to the time immediately after thenext spiking event (by neuron j∗) ts+1, as represented in �gure 2.5 .
θi(ts+1) =















θmin , if i = j∗ ;

f(θi(ts), ts+1 − ts) = f
(

θi(ts), h(θj∗(ts))
)

, if i 6= i∗ ;

g
(

f
(

θi(ts), h(θj∗(ts))
)

)

, if i = i∗ .

(2.26)The equations an be written expliitly in terms of the phase map and the un-perturbed time evolution funtions. The j∗ ∈ pre(i) ase, for example, beomes:
θi∗(ts+1) = U

(

U−1
(

ψ
(

ψ−1(θi∗(ts)) + ψ−1(θmax)− ψ−1(θj∗(ts))
)

)

+ J i∗j∗

)

.(2.27)Computationally, starting from timestep ts, we selet the neuron losest tospiking, i.e. the one with the highest phase, and we ompute eah phase tothe moment after the new spike, using equations (2.26). Then we selet thehighest phase and we iterate the proess. In suh a model the time dependenyis impliit: the interspike intervals are not �xed steps, but vary aording tothe spiking times of single neurons, alulated with mahine preision. Thisquali�es our network simulation as event based.2.5 Equations for a QIF NetworkNow we restrit ourself on a QIF model, expressing expliitly and analytially allthe equations de�ned above. the result is the bakbone of all the omputationallarge sale simulations performed in our work.In the QIF model the dynamis is given by equation (2.5), with the approxi-mated value for α. The urrent is assumed to have the form of equation (2.11),with external urrents onstant in time and delta-shaped network pulses. Forsake of simpliity we assume V ∗ = 0, and we resale the I0 and t variables asin (2.8) In absene of pulses, the solution is:
Vi(t) =

√

Iexti tan

(

√

Iexti t− π

2

)

. (2.28)The phase desription we are using, as alredy mentioned in setion 2.1 is:
UQIF(Vi(t)) = θi(t) = 2 arctan

Vi(t)
√

Iexti

. (2.29)It has θmin = −π and θmax = π. The unperturbed time evolution funtion, asdesribed by (2.21), is then:
ψQIF(t) = 2

√

Iexti t− π . (2.30)The evolution of a neuron with a phase desription an now be derived from(2.22):
fQIF (θi(t0),∆t) = θ(t0) + 2

√

Iexti ∆t . (2.31)
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Figure 2.6: Times onsidered for the mapping in the alulation of the JaobianThe spiking time funtion omes from (2.25):

hQIF(θi(t)) = π − θi(t)
2
√

Iexti

(2.32)Finally, the phase transition urve is inferred from (2.29) and (2.23).
gQIF(θi(t−s )) = 2 arctan

(

tan

(

θi(t
−

s )

2

)

+
J ij∗
√

Iexti

)

. (2.33)2.6 Calulating the JaobianIf the system is omposed by N neurons, we an desribe the phases at a giventime de�ning the N dimensional vetor
θ(t) = (θ1(t), θ2(t), . . . , θN(t))The phase map is suh as F(θ(ts)) = θ(ts+1). The Jaobian matrix D(t)represents the linearized version of F , and gives the �rst order orretion inase of small phase perturbation:

F(θ(t) + ǫ δθ) ≈ F(θ(t)) + ǫD(t) δθ .It is important to notie that a perturbation in phases will result in a shift inspike times, therefore we need to de�ne a slightly di�erent phase map to takethis shift into aount. Our strategy onsists in shifting the times onsidered forthe mapping of an interval δ, assumed to be bigger than the shift in spiking timesaused by the perturbation. As the perturbation tends to 0 we will eventuallygo in the δ → 0 limit. The interval we are onsidering is shown in �gure 2.6,the steps will be:
• start with phases at time ts + δ;
• alulate new phases at next (perturbed) spiking time;
• evolve the system furtherly, till time ts+1 + δ.In this ase the time ts, ts+1 are onsidered as independent from phases. Theywill turn into the atual spiking times in the small perturbation limit.



44 2 ModelThe phase map is thus a little more strutured than (2.26), with the form:
θi(ts+1 + δ)=



























f
(

θmin, ts+1 − ts − h(θj∗(ts + δ)
)

, if i = j∗ ;

f(θi(ts + δ), ts+1 − ts) , if i 6= i∗ ;

f
(

g
(

f
(

θi(ts + δ), h(θj∗(ts + δ))
)

)

, ts+1 − ts − h(θj∗(ts + δ))
)

,if i = i∗ .(2.34)Using this perturbed map, we an de�ne the Jaobian matrix elements as:
Dij(ts) = lim

δ→0

∂θi(ts+1 + δ)

∂θj(ts + δ)
(2.35)Looking at the map dependenies, we an infer that the nonzero elements arethe diagonal ones, i.e. j = i, and the derivations with respet to the phase of apresynapti spiking neuron, espressed by the onditions: j = j∗ AND i = i∗.As an example, we show the expliit alulation of a diagonal element suh that

i = i∗ .For simpliity of notation the δ → 0 limit is omitted and θi∗:= θi∗(ts+δ),
θj∗:= θj∗(ts + δ) .

∂

∂θi∗
f
(

g
(

f(θi∗ , h(θj∗))
)

, ts+1 − ts − h(θj∗)
)

=

∂θf(θ, ts+1−ts−h(θj∗))
∣

∣

∣

θ=g(f(θi∗ ,h(θj∗)))
∂θg(θ)

∣

∣

∣

θ=f(θi∗ ,h(θj∗ ))
∂θf(θ, h(θj∗))

∣

∣

∣

θ=θi∗The f , h, g funtions an be derived from the phase map and the unperturbedtime evolution funtion, aording to, respetively, (2.22), (2.25),(2.23). Sinewe are in a QIF model we an write them expliitly, using the (2.31), (2.32),(2.33), and �nd an analytial solution.We have ∂θf
QIF(θ,∆t) = 1, the only ontribution omes then from the

∂θg
QIF(θ) derivative, alulated in point θ = fQIF(θi∗ , h(θj∗)) = π + θi∗ − θj∗ :

∂θg
QIF(θ)∣∣∣

θ=π+θi∗−θj∗
= 2

1 + tan2
π+θi∗−θj∗

2

1 + (tan
π+θi∗−θj∗

2 +
Ji∗j∗√

Iext
i∗

)2
.From (2.17) we have J i∗j∗/

√

Iexti∗ ∝ K−3/4. For large K we an therefore writea �rst order approximation, with the result:
Di∗i∗(ts) = 2

(

1 +
J i∗j∗
√

Iexti∗

sin
(

π + θi∗(ts)− θj∗(ts)
)

)

=

= 2

(

1 +
J i∗j∗
√

Iexti∗

sin
(

θi∗(ts)
)

)

+O
(

(

π − θj∗(ts)
)

cos
(

θi∗(ts)
)

)

.(2.36)The last passage is justi�ed by the fat that we expet θj∗(ts) to be lose to π,being the phase of the neuron losest to spiking.For i 6= i∗ the resulting diagonal element is simply:
Dii(ts) = ∂θf

QIF(θ, ts+1 − ts)
∣

∣

∣

θ=θi
= 1; (2.37)
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0Figure 2.7: Jaobian matrixIn the i = j∗ ase we obtain:

Dj∗j∗(ts) = ∂∆tf(θmin,∆t)∣∣∣
∆t=ts+1−ts−h(θj∗ )

(−1) ∂θh(θ)
∣

∣

∣

θ=θj∗
= 1 . (2.38)Finally, when deriving a postsynapti neuron by θj∗(ts) phase, we get the out-of-diagonal elements:

Di∗j∗ =

√

Iexti∗

Iextj∗
(1 +Di∗i∗(ts)) . (2.39)The Jaobian matrix has therefore a nonzero diagonal with Di∗i∗ elementsorresponding to the postsynapti neurons, a series of ones in the remaining

(i, i) and (j∗, j∗) loations, �nally, out of diagonal, on�ned in the j∗th olum,we have aDij∗ nonzero element for eah i ∈ post(j). A sheme of suh strutureis shown in �gure 2.7.While in a general Jaobian N2 elements should be omputed, in our systemthe nontrivial values are of the order of K, whih, together with the simplemodel we used, makes the simulation of large sale networks possible.
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Chapter 3Computation and ResultsIn this hapter the simulation proedure is desribed in detail, and the ahievedresults are reported and analyzed.The �rst part summarizes the struture of the simulating program in use,desribes the input parameters and the elaboration performed on the output.Afterwards we analyze the forward evolution of the neural network, i.e. thesuession of spikes and phases of every single neuron in time. We probe to whihextent the statisti resembles a Poisson point proess, and we try to quantifythe synhroniity of our model. After that, from the Lyapunov spetrum, weestimate the entropy and attrator dimension.In the next setion the system is evolved bakwards and the Lyapunov ve-tors are alulated. A hek on the onvergene of the vetors is performed;after some onsiderations on the evolution and the general appearane of thevetors, we examine the angles between them, drawing some onlusions on thehyperboliity of the dynamial system.The vetors are subsequently used to haraterize the partiipation of sin-gle neurons to the global dynamis of the system. This is aomplished byonfronting the average partiipation ratios of vetors and the haos index om-ponents with the spiking frequenies assoiated to single neurons.The last setion takes into onsideration possible optimizations to the simu-lation and further analyses on the system.3.1 Network ComputationThe neural network simulation program, written in C++, is the slight adapta-tion of the ode used by M. Monteforte for his works [8, 9℄. The inputs andtheir ranges are desribed in table 3.1The onnetion strengths J0 are all �xed on 1, while the external urrent Ie isapproximately alulated from (2.19) and then �ne tuned with several iterations,until the average neuron frequeny is lose enough to the input parameter f .The parameter ssk an be identi�ed with the k introdued at page 22: it is thenumber of single steps we group together in a single GS (and vetor) iteration.The time length of the simulation is given by:
T =

S ssk
f N

. (3.1)47



48 3 Computation and ResultsTable 3.1: Arguments for the simulating program.Parameter Desription range
N Number of neurons 200− 1000

K Average onnetions per neuron 20− 100

S Timesteps to ompute 3000 − 10000

f Average neuron frequeny 1 Hz
SAl Timesteps for the alignment of the vetors 8000 − 15000

ssk Iteration of system and GS basis with noQR deomposition 1− 5

nI Total iterations with di�erent network ini-tializations 1− 300The funtioning of the simulation an be divided into three modules: onefor the network evolution, the seond for the omputation of the Lyapunovspetrum, and the third devoted to the vetors. Their shemati desriptionan be found in the appendix �gures B.1 and B.2.The �rst module initializes and iterates the network. A onnetion matrixwith a random graph struture is reated, then a random phase between −πand π is assigned to eah neuron. The neuron losest to spiking is the one withthe highest phase. Its spiking time is alulated using (2.32), then the phases ofthe postsynapti neurons (given by the onnetion matrix) are updated to theafter-signal state, aording to (2.33). Finally all phases are omputed to nextspiking time with equation (2.31), and the proess is iterated.The seond module has the purpose of alulating the Lyapunov spetrumand store the information neessary for omputing the Lyapunov vetors. Theproedure, already explained in setions 1.4 and 1.5, is shortly and operativelysummarized here.We initialize the Gram-Shmidt basis with a set of N , N -dimensional randomorthonormal vetors, grouped in a matrix: Qs−1 = (q
(1)
s−1| . . . |q

(m)
s−1). The Jao-bian Ds−1 at the urrent state of the network is alulated aording to (2.36 -2.39), and the push-forward of the GS vetors is obtained via the multipliation

Ds−1 ·Qs−1 = Q̃s1 at this point the neurons and the Jaobian are updated, andthis is repeated ssk times, as in (1.12). Then the resulting matrix undergoes aQR deomposition, aording to equations (1.13): Q̃s = Qs ·Rs. Both matriesare stored for the alulation of vetors, and the iteration an enter in the sskyle again.At the end of the evolution, the Lyapunov exponents an be omputed usingthe stored data. From {Rs}jj = ||u(j)
s || and equations (1.9) and (1.10), we have:

λ(j) =
1

[∆t]s

1

S

S
∑

s=1

log{Rs}jj =
1

T

S
∑

s=1

log{Rs}jj ; (3.2)The last module omputes the time evolution of all Lyapunov vetors. It mustbe neessarily alled after the end of module 2, so that its initial time, s + 1,
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backward iteration

Figure 3.1: Calulation of Lyapunov vetorsorresponds to the �nal step reahed by the system, and it proeeds bakwards.Firstly, the matrix of vetor oe�ients in the GS basis, Cs+1, is initializedas a triangular random array with normalized olumns. The previously stored
Rs+1 matrix is inverted, and the next Cs is alulated as the normalized form of
C̃s = R−1

s+1Cs+1. The norms are stored as loal Lyapunov exponents : proessedwith an equation equivalent to (3.2), they give a bakward version of globalLyapunov exponents. Finally the vetors are alulated for every timestep usingthe GS basis saved at the orresponding instant:
v(j)
s =

j
∑

i=1

{Cs}ij q(i)
s . (3.3)The parameter SAl adds a 2SAl fator to the number of iterations performedby the seond module: for the initial SAl steps the GS vetors are evolved butnot saved, while for the �nal SAl the C matries are iterated but no Lyapunovvetors are alulated. This proess is represented in �gure 3.1.Finally some onsiderations on memory usage should be done: of the totalrandom-aess memory alloated by the program, the largest amount is used tostore the triangular R matrix and the GS basis for every timestep. The savingof the R matrix is required also for the �nal SAl steps. The free memory neededthus amounts (in bytes) to:free_mem =

(

N(N − 1)

2
(S + SAl) +N2S

)

· 8 =
3N2S +N(N − 1)SAl

2
· 8 .(3.4)Combining the latter equation with (3.1), we infer that if we want to keep thetime length onstant, the memory usage grows as M ∝ N3. For N above 500,this rapidly auses a RAM shortage. In the �nal setion of the hapter futurepossible optimizations to overome this di�ulty are onsidered.3.2 Output DataDepending on the data we are interested in, di�erent versions of the simulationare run. The simplest one is omposed only by module 1 and 2, and is usedonly to obtain the forward evolution of the system and the Lyapunov spetrum.After a warm-up of SAl steps, for every further step, the time ts, the index of thespiking neuron j∗, and the phases of all neurons {θi(ts)} are saved on a binary



50 3 Computation and ResultsTable 3.2: Possible outputs of the program. s is the time index, j the order of thevetor and i indexes the neurons.Name Value Desription
ts ts spiketimes
λ(j)(ts)

norms of Cs olumns loal bakward Lyap. expo-nents
〈cosαij(t)〉t

〈

v
(i)(t) · v(j)(t)

〉

t
time-averaged angles betweenvetors

αmin(ts) minij{αij(ts)|λ
(i) > 0 ∧ λ(j) < 0} min. angle between exp. andontrating diretionsPR(j)(ts)





√

√

√

√

N
∑

i=1

(v
(j)
i (ts))

4





−1 Partiipation Ratio
c
(j)
i

1

S

S
∑

s=1

(v
(j)
i (ts))

2 haos index (avg. of squareomponents)�le. The logarithms of the Rs matrix are umulatively added in aN -length arraywhih, divided by the last tS , gives the Lyapunov spetrum. Not having theneessity of storing the time series of big matries, the simulation requires muhless RAM, and runs relatively faster. In this way performing many iterations(nI = 100− 200) for longer times and larger networks is possible.To hek the presene of errors and to perform the onvergene tests de-sribed in the next setion, we use another version of the program, whih savesand stores the omplete time evolution of eah Lyapunov vetor, derived fromequation (3.2); this requires the full amount of memory alulated in (3.4). Theoutput onsists in the N ×N × S double preision array ontaining all vetorsfor every timestep. Due to the big size of the output, the value of repetitions
nI is limited to 1.The last version of the program alulates the vetors, using the full amountof estimated memory, but, rather than saving the vetor themselves, proessesthem in di�erent ways, thus requiring less spae on the hard drive and makingmultiple iterations (30− 50) feasible. The output parameter list is in table 3.2.All values in the left olumn are sampled for eah of their indexes.3.3 Spike TrainWe start our analysis observing the time sequene of the pulses emitted by theneurons, i.e. the spike train of the network. Figure 3.2 depits the spikes forthe �rst 50 neurons of a N = 200, K = 50 system. We know that the averagefrequeny of the system is approximately 1 Hz per neuron, however it is learthat individual neurons may �re at very di�erent rates. Figure 3.3 shows thephase of two neurons taken from the same set. In aordane to what we expet,
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Figure 3.2: Sequene of spikes for the �rst 50 neurons of a N = 200, K = 20 network.the phase evolves with a onstant linear veloity given by the positive externalurrent, as in (2.9), it reeives inhibitory pulses of varying intensity from thepresynapti neurons, �nally when π is reahed, a signal is emitted, and the phaseis instantly reset to −π. An example of frequeny distribution for a N = 500,
K = 20 is represented in �gure 3.5 (b) .The �rst quantity we examine is the oe�ient of variation (Cv) of the inter-spike intervals, it is de�ned, in general, as

Cv =
σ

|µ| ; (3.5)where µ is the average of our data-set and σ its standard deviation. For aperfetly Poissonian network we would have Cv = 1 [27℄.The values we have found for system of di�erent sizes and di�erent number ofonnetions are plotted in �gure 3.4 (a). They are omputed averaging over 380repetitions for N = 200 networks, 300 repetitions for N = 300 networks, 100repetitions for N = 400 and N = 500, 70 for N = 700 and 20 for N = 1000. Itis lear that larger and more sparsely onneted networks tend asymptotiallyto the ideal value of 1.Instead of onsidering the spike train of the network as a whole, we maywonder whether the ativity of a single neuron in the network follows nearlyPoissonian statistis or not. In �gure 3.4 (b) we have represented the distributionof the variation oe�ients of single neurons, taken from several repetitions(nI = 100) on a N = 500, K = 20 network. The distribution tends toward one,with a mean of [Cv i]i = 0.73. This value is far from the one obtained from thenetwork as a whole, namely Cv = 0.94As a further proof of the fat that the proess is nearly Poissonian, we showin �gure 3.5 (a) the distribution orresponding to P{ISI < t} for a N = 500,
K = 20 network (ISI is the inter-spike interval, i.e. the time between twopulses in the network). It is �tted with the urve (in red): y = 0.9979(5) +
0.9819(5) exp(−501(1) x). For a purely Poissonian proess: P{ISI < t} =
1 − exp (−ν t). The frequeny found with this �t is in very good agreement towhat we would expet in a network of 500 neurons with an average �ring rateof 1 Hz.
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Figure 3.3: Time evolution of the phase of neuron 4, with average spiking frequeny
≃ 0.5 Hz (a) and neuron 24, with frequeny ≃ 2.4 Hz (b) seleted from the set showedin �gure 3.2. Red triangles are drawn when spikes our (and the value is reset to pi).Neurons evolve linearly as in (2.9), are instantly inhibited by other neurons, and arereset to −π after spiking.
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Figure 3.5: (a): the probability P{ISI < t} follows very lose the urve expetedfor a Poissonian proess: 1 + exp (−ν t) with a frequeny orresponding to the overallfrequeny of the system. (b): distribution of �ring frequenies for single neurons inthe same system.Finally �gure 3.5 (b) depits the distribution of the frequenies for single neu-rons with the same network parameters as before. Although they average to 1Hz, their distribution shows a ertain spreading, almost touhing the frequenywe expet for a neuron with no inhibitory synapses, orresponding to ∼ 4.6Hzin the network onsidered.The broad inhomogeneity is another distintive har-ateristi of the balaned state [34℄.To sum up, our model, although ompletely deterministi in its evolution, fol-lows losely the statisti of a Poisson point proess. The disrepany appears toderease as we approah our ideal limit of N ≫ K ≫ 1: many neurons, but veryweakly orrelated. As already mentioned in the introdution, typial numbersfor 1 mm3 of neoortial tissue are N ∼ 106 and K ∼ 104; therefore it is reason-able to assume that if our system reahed those parameters, its global statistiswould be pratially indistinguishable from an ideal Poissonian proess. On theother hand, when we look at single neurons, we see that their spiking is not,in general, a renewal proess: a lear sign, along with the nontrivial distribu-tion of frequenies, of the underlying omplexity of onnetions and dynamialinterplay between neurons.3.4 Colletive DynamisAnother interesting investigation on the network is represented by the olletivedynamis of its neurons. As said before, neurons in balaned state should ideallybe ompletely asynhronous. From a simple observation of the spike train,in �gure 3.2, we would say the requirement is ful�lled. However, we saw inprevious setion that singular neurons are not Poissonian in general, while thedistribution of their frequenies is far from smooth. Therefore is not possible toexlude the presene of some small degree of synhronization. Several methodsand measures have been developed to quantify this value.Following the example of other papers on pulse-oupled network synhroniza-tions [38℄, we an use the order parameter, �rst introdued by Y. Kuramoto, in



54 3 Computation and Resultsthe form:
r(t) :=

∣

∣

∣

∣

[

exp(iθj(t))
]

j

∣

∣

∣

∣

. (3.6)It an be shown [39℄ thatN →∞ independent osillators would bring r(t) ≡ 0,while synhronized osillators result in r(t) ≡ 1. Intermediate values 0 < r(t) <
1 represent a partial synhronization: some osillators have a similar phase,while some others are independent.Another way to assess the synhroniity of a system is the measure of neuronoherene [40℄.

χ2 :=
VAR ([θi(t)]i)

[VARi (θi(t))]i
=
〈([θi(t)]i−〈 [θi(t)]i〉t

)

2
〉

t
[〈

(θi(t)− 〈θi(t)〉t)
2
〉

t

]

i

; (3.7)where VAR(θi(t)) represents the variane for the time evolution of the phase ofthe ith neuron.This measure is the ratio between the variation of the average phase and theaverage variation of single phases. In a inoherent state, in the ideal N → ∞,
T → ∞ limit, averaging on all phases would give [θi(t)]i ≈ 0 with very smallosillations, thus χ2 ≈ 0. A perfet synhronization, with all equal phases,would learly result in χ2 = 1. The great advantage of the network ohereneis that it depends only on variations of the phases, and not on possible netaverage value, moreover is muh less omputationally ostly than r(t).In �gure 3.6 (a) the measure of oherene is represented for di�erent net-work sizes. From a qualitative point of view, we see that the improvement indesynhronization follows the same trend a the oe�ient of variation: largernetworks with neurons less onneted (thus less orrelated) show smaller levelsof synhronization.The ontinuous lines are �ts in the form α + βN−γ . It has been reported [9℄that χ2 ∝ 1/N . Although the data points fall well on the urve, the results are
γ = 0.75 for K = 20, γ = 0.71 for K = 50 and γ = 0.33 for K = 100. Thevalue γ = 1 an be a limit ase, when onditions are lose to ideal (i.e. muhlarger networks weakly onneted). However the power law derease suggeststhat synhroniities are due to �nite-size e�et on the network, and the dereaseof synhronization is more e�etive when neurons have fewer onnetions.In �gure 3.6 (b) a sample of r(t) for a N = 500, K = 20 network is shown. Itso�set seems muh loser to 1 than we would expet, namely < r(t) >t= 0.486.This is due to the fat that, in a system like ours, the r(t) parameter is notwell suited to apture the global synhronization, as it is sensitive to the overallnet angle distribution. Due to the nonlinear instant inhibitions, phases tendto linger more on ertain ranges, so that they hardly average to zero. As ahek, we performed a omplete randomization on the ordering of the phases(bot for neurons and times), and reomputed the order parameter, obtaining
< rrand(t) >t= 0.4660, far from the value r(t) ≃ 0 we would expet in ompletelydeoupled systems.The bene�t found in the omputation of the Kuramoto order parameter isthat, as learly visible in �gure 3.6 (b), it reveals the atual frequeny of theweak synhronization of the network. The period appears to depend only on K,while the di�erene in the amplitude reveals disordered exursions from more
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N = 300. Qualitatively, this behaviour follows the same trend of the networkoe�ient of variation: inreasing the onnetions ompromises the viinity tooptimal ondition, but the disrepany is slowly regained as the network sizeinreases. In the end is reasonable to expet, as reported in [8, 9℄, that on verylarge network sales, suh as N = 103 − 104, the spetra would always show agood superimposition.As reported in setion 1.6 the rate of entropy prodution for a SRB measureis given by Pesin identity:

h(µ) =
∑

λ(i)>0

λ(i) .For general measures the = sign beomes an upper bond ≤.The information dimension omes from the Kaplan-Yorke onjeture, men-tioned in setion (1.7) dimΛ(µ) = k +
λ(1) + . . .+ λ(k)

|λ(k+1)| ;
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Figure 3.7: Di�erent examples of Lyapunov spetrum. The spetra for all the om-puted network sizes and K = 20 are shown in (a); in (b) the parameter is K = 100;in �gure () we �xed N = 500, and plotted the spetra for all values of K.From �gures 3.8 (a) and (b) we see that both h(µ) and dimΛ(µ) grow linearlywith N , as typial for extensive properties. The attrator dimension shows avery small growth for dereasingK, re�eting the fat that the system is slightlyless synhronized. For the entropy this trend in muh marked: weakly onnetednetwork produe less entropy as their Lyapunov spetrum results a little more�attened. The data substantially on�rms what has already been found for abroader range of network dimensions in [8℄.Whether our ergodi measure is SRB or not, remains an open question. Insetion 3.7 we takle the problem by giving an esteem of the hyperboliity ofthe dynamial systems we are onsidering. As explained in the last part ofhapter 1 (see page 28) if a dynamial system is hyperboli and satis�es thefurther requirement of having its periodi points dense on the attrator, we an�naturally� de�ne a unique SRB measure over it.3.6 Lyapunov Vetors ConvergeneBefore expressing any result or measure onerning the Lyapunov vetors, it isfundamental to test their reliability from every possible perspetive. Firstly wehek the oinidene between the Lyapunov spetra omputed in the bakwardand in the forward iterations, respetively from the normalization oe�ientsof the the Gram-Shmidt basis and of the Lyapunov vetors. Although loallydi�erent, when used to ompute the Lyapunov spetrum they superimpose,as shown in �gure 3.9 (a). Figure 3.9 (b) shows how the quadrati deviation
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∆λ2 = 1/N

∑N
j=1(λ

(j)FW − λ(j)BW)2 dereases when the spetra are averaged overseveral repetitions with di�erent starting phases.Afterwards, we onsider the vetor invariane under di�erent initializationsof the starting random C matrix. Using the parameters SAll = 15000 and
ssk = 3, we ompute the full set of vetors in time v(j)(ts) for 6 di�erentrandom initial onditions on C . All vetors are normalized, thus we measuretheir variation using the angles. Taking the �rst simulation as a referene,and alling ṽ(j)(ts) the vetor alulated with hanged initial onditions, wemeasure: α(j)(ts) = arccos (v(j)(ts) · ṽ(j)(ts)).In �gure 3.10 the time averages of α(j)(ts) are plotted for every vetor, insystems of size N = 300 and N = 500 and with the 5 di�erent C initializationsoded by olors. Vetors are represented in absissa by their orrespondingglobal exponent. The �rst thing we notie is that vetors mostly do align in thesame diretion, but might have an opposite orientation: from the linearity of ouralulations is lear that if we initialize the system with C̃s+1 = −Cs+1 we willget exatly the same evolution in time, exept all vetors will be inverted. Suh
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Figure 3.10: Time average of the angles between referene Lyapunov vetors, andvetors alulated starting with 5 di�erent random initializations (olor oded). (a)
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Figure 3.11: Angle evolution in time for some vetors not onverging properly, se-leted as the outliers in �gure 3.10. Upper part N = 300, K = 50, lower part N = 500,
K = 50.

Figure 3.12: Convergene test performed with a redution on the total omputedtime.
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Figure 3.15: (a) - lower right: time averaged osine of the angles between all vetors;upper left: irular variane (3.9) of the angles. (b) Average over nI = 60 iterations.() and (d) are magni�ations of (a) and (b) around the 0 exponent.seem to span a preise interval of global exponents. A possible explanationfor the major stability of the �rst group is that the subspae onsidered has asmaller dimension, moreover no alignment is required for the �rst vetor, sineit is taken diretly from the Gram-Shmidt basis. Instead exponents greaterthan −35 s−1 appear a little more spaed, this, together with the strong bak-ward expansion ratio, should aount for their faster onvergene. Chekinghow the time required for an optimal onvergene varies for di�erent networkparameters would be an interesting diretion for further analyses, but the sopeof the present setion is only to assess the invariane and the robustness of theLyapunov vetors alulated with the bakward iteration algorithm.3.7 Angles and HyperboliityWe start the analysis of the vetors with an examination of the angles betweenthem. For a N = 500, K = 20 system, �gure 3.15 (a) shows, in the lower rightpart, the time average of the osine of the angles between all vetors:
〈cosαij(t)〉t :=

〈

v(i)(t) · v(j)(t)
〉

t
. (3.8)
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Figure 3.16: The absissa represents the average angles between a single vetor andall the others, the ordinate is the di�erene between Lyapunov exponents assoiatedto the network. (a) vetor 15, Lyap. exp 4.3 and (b) vetor 300 exp -24.5 . Figures() and (d) are magni�ations of, respetively (a) and (b). The network parametersare N = 500 and K = 20.The upper left part is the irular variane: a measure on how angles deviatein time from their mean values.
σ2(αij) := 1−

√

(

〈sinαij(t)〉t
)2

+
(

〈cosαij(t)〉t
)2
. (3.9)The vetors are referred to their orresponding global Lyapunov exponent,rather than to their index. Figure 3.15 () shows an enlargement of the same�gure, limited to the vetors around the zero exponent. Figures 3.15 (b) and(d) represent averages over 60 repetitions of the same system.Our results is that the angles of neighboring vetors have a higher variabilityin time and are, on average, more tangent to their lose neighbours. For a morequantitative evaluation, �gures 3.16 (a) and (b) depit two examples of theaverage angle between a single vetor and all the others, versus their �distane�,i.e. the di�erene in the Lyapunov exponents. The hosen vetors are the 15thand the 300th. Distant vetors are orthogonal, but the separation is good also fornear ones, (the sale starts from 45◦); moreover, the losest neighbours (i.e. thepoints around 0 ) have higher angles than the 2nd order neighbours: it appearsthat vetors assoiated to similar exponents are nevertheless quite autonomousin diretion. The e�et is more marked for negative exponents, as shown in�gure 3.16 (), �nally in �gure 3.16 (d) the small peak on the right orrespondsto vetors 46 and 47 : the vetors with nearly zero exponent tend to be moreorthogonal to the rest, as also visible from the slightly lighter lines in �gures3.15.The same graphs, plotted for networks of di�erent size N and average onne-tions K, look very similar, although the Lyapunov spetrum undergoes slighthanges in shape and in density. The reiproal angles between the vetors, atleast when averaged on large times, appear an invariant property of the dynam-ial system.As already stated at the end of hapter 1 (see page 28), the ondition for adynamial system to be hyperboli is that the tangent spae an be deomposedas the diret sum of expanding and ontrating modes. The Lyapunov vetors,
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Figure 3.17: (a): minimum angle between ontrating and expanding diretions intime (3.10), for a N = 500 K = 20 network; (b): assoiated distribution
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αmin(t) = min

ij
{αij(t)|λ(i) > 0 ∧ λ(j) < 0} . (3.10)This quantity is measured for eah timestep of the system evolution. Figure3.17 (a) shows an example of αmin(t) for a N = 500, K = 20 network; (b)represents its statistial distribution. Figure 3.18 represents the minimum angledistributions averaged over several iterations for di�erent network parameters.In the upper part we have N = 500 and K = 20, 50, 100. In the lower part
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√

√

√

√

N
∑

i=1

(v
(j)
i (ts))4





−1

. (3.11)It is a measure of the e�etive number of basis omponents that have a rolein the vetor evolution. As a matter of fat, if a normalized vetor has onlyone omponent (0 0 . . .0 1 0 . . .0), its PR is 1; for a vetor equally involvingall dimensions (1/√N 1/
√
N . . . 1/

√
N), instead, PR = N . In our setting, the
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Figure 3.20: Partiipation ratio of eah Lyapunov vetor (a) for a N = 400 networkwith di�erent average onnetions and (b) for K = 20 networks of di�erent sizes.base elements orrespond to neurons, while vetors orrespond to expandingand ontrating diretions. The partiipation ratio informs us of how manyneurons are e�etively taking part to an expanding or ontrating mode, withthe degree of expansion/ontration given by the Lyapunov exponent assoiatedto the spei� vetor.Figure 3.20 (a) shows the time-averaged partiipation ratio for networks with
N = 400 and di�erent K. The peak orresponds to the 0 exponent, parallel tothe diretion of motion: it nearly reahes 400, whih means that the trajetory istangent to all neurons. This is a lear outome of the spei� network dynamis:between two pulses all neuron phases evolve uniformly in time with the sameveloity, so that the phase spae trajetory is a line tangent to all diretions.When the average onnetions between neurons are inreased, more of them takepart in the expanding diretions and the systems is less stable. For ontratingdiretions, instead, every network seems to reah the same minimum, with aSR ≃ 1.6 .In �gure 3.20 (b) we see omparisons between di�erent network sizes with K�xed on 20. The average is performed both on time and on several networkiterations. When the size inreases, the di�erene in the urves shrinks, asif they are onverging to a limit value. Moreover larger networks seem morepreise in the loalization of the zero vetor, as they are more peaked aroundthe 0 exponent.Overall, we see that the number of neurons involved in expanding diretionshas the order of ∼ K/3, and is not greatly onditioned by the network size,the tangent diretion involves all neurons, �nally ontrating modes involve lessthan 2 e�etive neurons under any ondition.The partiipation ratio expresses how many neurons partiipate in the dy-namis of a given vetor. To �nd whih are the interested neurons we de�ne thehaos index, in the form:

c
(j)
i :=

1

S

S
∑

s=1

(v
(j)
i (ts))

2 . (3.12)For a given neuron i, c(j)i represents its ontribution to the time evolution ofvetor v(j), or, equivalently, to the diretion expanding with rate exp(λ(j)).
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Figure 3.21: Chaos index as de�ned in (3.12) (z axis) for every neuron and everyLyapunov vetor (on y and x axis). The �rst half of the vetors, ut from the graph,show a substantially �at C(j)
i
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Figure 3.22: Detail of the same dataset of �gure 3.21. The c
(j)
i for neurons of index

i = 149 and i = 204 is shown on logarithmi sale.Figure 3.21 represent the haos indexes in a N = 500 K = 20 network. The
x axis reports the Lyapunov exponents λ(j), the y axis ontains the networkindexes i, with no privileged ordering, due to the randomness of the onnetions.The value of c(j)i is substantially very small for all the positive exponents and forsome of the negative. When we go to lower values, however, we start seeing peaksorresponding to neurons greatly ontributing to a ertain range of ontratingdiretions.Figure 3.22 represents two neurons hosen from the previous plot so that the�rst (neuron 149) has a peak in the ontrating modes, the seond (204) appears�at. With a logarithmi sale it is lear that they are overing di�erent areas ofthe Lyapunov spetrum. The �rst half of the spetrum, from∼10 to∼ -20 (s−1),does not show any peak, as most of the neurons are ontributing uniformly to it,their ontribution drops to very small levels after the −20 threshold. Howevera minority of neurons, suh as the 149, ontributes less to the expanding and



3.8 Partiipation Ratio and Chaos Index 67weakly-ontrating diretions, but shows high c
(j)
i values in spei� ranges orstrong ontrating diretions.Confronting those �ndings with the partiipation ratios of the exponents, andthe information on the network struture, we an sketh a model of the networkdynamis. All neurons evolve linearly in time, taking part in the tangent dire-tion with 0 Lyapunov exponent. A smaller group of order ≃ K are also reeivinginhibitory signals, an average of ∼ 1/3 of them results ruial in the puntualnetwork evolution, as revealed in the partiipation ratio of positive vetors. The

≃ K inhibited neurons hange with time, overing the whole network, so thatnone of them is privileged in ontributing to expanding diretions. A few neu-rons are partiularly unin�uential: they orrespond to ontrating diretions,thus to negative Lyapunov exponents. This property omes from the interplaybetween the network struture and the global dynamial model, so it is loalizedon spei� neurons, as revealed by the peaks in their haos indexes.To quantify the overall partiipation of a single neuron to expanding andontrating diretions, we de�ne two parameters in the form:Pλ+
i =

√

[

c
(j)
i

]

λ(j)>0
Pλ−
i =

√

[

c
(j)
i

]

λ(j)<0
(3.13)we all them, respetively, partiipation to expansion and partiipation to on-tration of neuron i. The value is squared beause the haos index is de�ned asa quadrati average.Figure 3.23 (a) shows the distribution of Pλ−

i , (b) is for Pλ+
i . As we expet, thepartiipation to expansion is muh more peaked: most of the neurons ontributewith an average value. For the ontrating diretion, we see a muh broaderdistribution: the great ontributors are assoiated to the peaks of �gure 3.21.From the distribution of Pλ+

i we an draw an hypothesis on the shape of thepartiipation ratio ( �gure 3.23). Most of the neurons do not partiipate toexpansion with their maximum value, soTo assess the validity of the de�ned parameters, we an try to relate themwith other quantities of the system. Figure 3.23 () shows, for eah of the
500 neurons, the partiipation to ontration versus the average frequeny ν̄i.The red line is a �t in the form C1 + C2 exp(−ν̄i), with C1 = 0.03 ± 0.01 and
C2 = 0.85 ± 0.02. The neurons with low frequenies ontribute to ontratingdiretions muh more than those with high frequenies, with a very simpleexponential equation.The expanding and ontrating in phase spae represent, dynamially, thepropagation or deays of perturbations in the network. A neuron with a veryhigh spiking frequeny, when perturbed by some disretionally small noise, willrapidly ommuniate the variation to its ≃ K postsynapti neurons, onse-quently hanging the evolution of the whole network, with an initial diretiongiven by those ≃ K neurons, weighted on their future in�uene, so that theatual partiipation ratio results smaller than K. A neuron with a very lowfrequeny, on the other hand, is ontinuously inhibited by others, and sendsvery few signals: it would hardly lead a global hange, or, equivalently, have arole in a vetor assoiated to a positive exponent.Our result is that the Pλ−

i angive a very preise haraterization of the frequenies, as is a good disriminantbetween the neurons.



68 3 Computation and ResultsIn �gure 3.23 (d) we try the same with the Pλ+
i , expeting a monotoniallyinreasing funtion due to the reasons stated above. However, for frequenieshigher than 1Hz, there is a drop: although some neurons have higher frequenies,they do not appear to stand over others in the haraterization of the expandingdiretions. A possible explanation for this phenomenon lies in the inhibitorynature of the network: a frequently-pulsing neuron would frequently inhibit theneurons of its postsynapti set, making them �dull� and less responsive to smallvariations of its own signal, thus its average ontribution to positive exponentsis dereased. Apparently the system self-adapts, so that the optimal frequenyfor transmissions is around the average frequeny of the neurons, 1 Hz.We may inquire if we ould gain some information on the frequenies by study-ing the graph struture of the network. Neurons with low spiking frequeniesreeive a higher number of inhibitory signals. We expet that the quantity ofreeived signals depend on the number of inoming onnetions. Figure 3.24(a) shows, for every neuron, the number of presynapti neurons versus its av-erage frequeny. An inverse proportionality is evident, however we see that, byusing simply the stati struture of the graph, a proper haraterization of theneurons is not reahable.Finally �gure 3.24 (b) represents Pλ−

i versus Pλ+
i . For great values theyroughly show inverse proportionality, as we expet, but the initial points havea less trivial behaviour. As a diretion for further studies, we ould try torelate this �gure with the level of hyperboliity of the system. The oneptof well separated diretions for expanding and ontrating modes orrespondsto neurons on whih dominates either Pλ+

i or Pλ−
i ; the unexpeted rise at thebeginning of �gure 3.24 (b) ould thus be related to the inomplete hyperboliityshowed by the network.To sum up, in the present setion the Lyapunov vetors, so far expressedas abstrat entities of the phase spae, have been reonneted to the e�e-tive dynamial behaviour of the neural network. The informations gained fromparameters suh as the partiipation ratio, the haos index or the Pλ−

i help usharaterize both qualitatively and quantitatively the emergent behaviour of thenetwork. Although the qualitative results are supported by our information onthe network and our intuitive idea of its funtioning, a quantitative explanationrequires the reation of an approximated theoretial model.3.9 Optimizations and Further AnalysesIn this hapter many results on the behaviour of the network have been shown,however, espeially for the Lyapunov vetor analysis, the hosen network sizeslie in the relatively small range of 200 − 500 neurons. To draw more generalonlusions, �nd rules on how quantities sale with network parameters, andharaterize the properties of the N ≫ K ≫ 1 regime, we should study systemsin a broader range of N and with a higher resolution in the K.An inrease in the network size N would result in a slowing down of all om-putational proesses involving N×N matries, and in a bigger request of RAM.The omputation speed an be �easily� boosted with a omplete parallelizationof all matrix operations. For the evolution and omputation of Lyapunov ve-tors, the bottlenek remains in the memory usage, sine both the Gram-Shmidt
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70 3 Computation and Resultsbasis and the R matries need to be saved loally in time. A solution of almostimmediate implementation onsists in storing the matries on the loal harddrive, and reload them when needed, with the downside of the time ost relatedto the use of physial memory. Alternatively, the simulation an be dividedinto smaller time intervals, saving GS basis and the state of the neurons onlyat the beginning of eah of them; when needed by the bakward vetor itera-tion, the forward evolution is reomputed and saved on one interval at a time,and leared afterwards. With the latter method, we an still rely on the muhhigher speed of virtual memory, but a parallelization of the proesses would bestrongly reommended.Finally, as already mentioned, a more areful esteem of the minimum timeneeded for the Lyapunov vetor onvergene should be performed, so that thehoie of the time length an be optimized on the network size.With a broader data set, and the experiene gained from the results alreadyobtained, many other analyses beome possible. A better sampling in the av-erage onnetion parameter K, for example, ould lead to preise saling lawsregarding the oe�ient of variation, the network olletive frequeny, the en-tropy prodution rate, the maximum partiipation ratio, et. , providing newinsights on the funtioning of the network. We ould then investigate on rela-tions between attrator dimension and partiipation ratio, or between entropyprodution and the Pλ+ parameter. Finally, to ahieve a solid result on thepresene of hyperboliity, a systematial study on networks of muh larger sizesshould be performed.Most of the numerial parameters shown here here have been qualitativelyonneted to our information on the network struture and dynamis. Manyof the urves, however, are quite regular in their shapes and, in some ases,as in the Pλ+
i versus ν̄i graph (�gure 3.23 ()), very simple �ts an be found.Suh �ndings surpass our qualitative idea of the network evolution, and expresswith preise numerial quantities its ergodi (and emergent) properties. For thisreason, they ould be taken as diretions for the onstrution of a quantitativetheoretial model of the network, whih, in turn, would be used to verify our�ndings and give new ideas for other omparisons.



Chapter 4DisussionIn the present work we extensively studied the dynamis of pulse-oupled in-hibitory neural networks of QIF neurons, with the aim of reating a model qual-itatively similar, in its behaviour, to networks of real pyramidal neural ells, andthen fully haraterize it.Our �ndings are summarized in the following setion.4.1 ConlusionsThe �rst result, well doumented in sienti� literature [32, 34, 8℄, is that a largenumber of simple osillators with a phase linearly inreasing, when sparselyonneted with nonlinear inhibitory pulses, shows a disordered and haoti be-haviour similar to the so-alled balaned state of real pyramidal neurons. Usingthe Kuramoto order parameter, the oe�ient of variation and the measure ofneuron oherene (3.5 - 3.7), we quanti�ed how muh the system as a whole isinoherent and near a Poisson point proess. A loser look to single neurons,however, reveals an intrinsi oder: as a matter of fat the global behaviour is anexample of emergent deterministi haos, and is not due to any random variable.In a redutionist point of view, our N ≫ 1 - dimensional dynamial haotisystem results already fully haraterized; our knowledge, however, is far fromomplete. A mean �eld approah, as shown in appendix A, an give averagenetwork properties with all the neessary approximations. To move furtherly inthe haraterization of the system, we rely on the ergoti theory.The omputation of the Lyapunov spetrum leads to an esteem of the attratordimension and of entropy prodution, in substantial agreement to results alreadypublished [8, 9℄. Then, using an algorithm proposed in a reent artile [23℄, wemoved to the aulation and the systemati study of the Lyapunov vetors.Sine no other examples of their use for similar systems have been foundin the sienti� literature, we performed a series of onvergene heks, whihon�rmed both their invariane and the robustness of the algorithm.Afterward, the vetors have been used as a quantitative esteem of the degreeof hyperboliity of the dynamial system. In a fully hyperbolial system, themeasures of entropy prodution and attrator dimension would be more solid71



72 4 Disussionand not approximate esteems. Our result is that suh a property shows partially,but we might reah a full strutural stability in networks of bigger size.Finally we expressed other ergodi properties given by the systemati studyof the Lyapunov vetors, and showed how they are onneted with the e�etivedynamis of the neurons within the network. We have found that the systemauto-organizes so that the majority of neurons equally ontributes in the deter-mination of the global dynamis, distributing their role in time, moreover theoptimal frequeny for the signal propagation in the network orresponds to theglobal average frequeny: neurons pulsing with higher frequenies do not standover others in determining the dynamis. On the other hand, a small groupof seleted neurons, stable in time, shows very little sensitivity to perturba-tions. They tend to have lower frequenies, and a very simple relation betweenfrequeny and ontribution to dynamially deaying modes an be found.Overall, the Lyapunov vetor approah o�ered fruitful insights in the ol-letive behaviour of the network, di�erentiating the role and ontribution ofneuron groups, always seen in the ontext of their global, dynamial struture.Approahes based on redution to lesser dimensions, or to the study of the statigraph of onnetions, would hardly provide as muh information.In the end, the results are enouraging but not ompletely satisfatory fortwo main reason: �rst of all, with our omputational apabilities we have onlyapproahed the ideal ondition of very large, and very sparsely onneted net-works ( i.e. N ≫ K ≫ 1), further measures and optimizations are requested toexpress more solid results; seondly, there is no quantitative theoretial modelwhih ould be ompared with the numerial �ndings and with the urves re-sulting from our measures.4.2 ExtensionsIn setion 3.9 we already mentioned possible improvements and optimizationsfor the urrent system. Here we desribe a few of the many possible extensionswhih an be added.First of all, we ould use our a priori knowledge of the system to detet andisolate the tangent Lyapunov vetor, i.e. the one orresponding to the 0 expo-nent. Sine its diretion is neither expanding nor ontrating, no vetors wouldonverge on it, either in forward or bakward expansion. Our only hope is toath it �by exlusion�, relying on the randomness of the initializations. Insert-ing the tangent vetor in the GS system would give us muh more preision inthe alulations of the nearly 0 Lyapunov exponents and in their orrespondingdiretions: a more solid measure of hiperboliity would then result.A rather obvious diretion of investigation would be heking the robustnessof olletive network dynamis for hanges in the single neuron model; then wemay inquire how the addition of more realisti traits, suh as a delay in thesignal transmission or the presene of exitatory pulses, modi�es the results.In all runs we used the �xed topology of a sparse random graph, haraterizedby relatively small variations in the number of inoming and outgoing onne-tions. We may inquire whether a more diversi�ed onnetivity would give rise toa predominant role for some neurons, or if the system would somehow re-balane



4.2 Extensions 73those di�erenes, as it already does when it limits the impat of high-frequenyneurons.Finally we ould onsider whether our Lyapunov-based approah answers tothe general problem of determining a entrality measure in omplex networks.Centrality measures are esteems of the �importane� of a given node in thenetwork: they are ruial, for example, in models of power grids, spreading ofdiseases, et. Traditionally, entrality measures rely on the underlying strutureof the onnetion graph, not taking the network dynamis into aount. A reentattempt to de�ne a entrality measure based on dynamis an be found in [42℄.Our ontribution to expansion and ontration parameters, de�ned in (3.13),ould possibly fall in this ategory. The only requirement for our omputationis the (numerial) knowledge of the Jaobian matrix in every point of the systemevolution. As long as a dynamial system, regardless of its struture, dynamisor dimension, satis�es this requisite, we an, in priniple, perform on it theomplete analysis of Lyapunov exponents, vetors and, along with them, of allthe parameters de�ned in this work.
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Appendix A
Temporal Flutuations in Balaned StateRealling the formula (2.11), we an distinguish an external omponent, whihis assumed to be onstant in time and equal for all neurons, and an internalurrent, depending on the network dynamis, whih is therefore the only soureof �utuations. For simpliity we restrit ourselves to a population of inhibitoryneurons. The urrent from the network is then:

Inetw(t) = − J0√
K

∑

t̂(p)∈CTS ζ(t + t̂(p)) (A.1)CTS stands for ompound spike train, and represents the ordered uninion of thespiking times sets of eah neuron. If our system is weakly orrelated and verylarge, it is reasonable to assume that spikes near in time are unorrelated withvery few exeptions. Thus the spike-time distribution an be approximated witha Poisson point proess (see setion 1.4 of the book [27℄).We de�ne the event rate as:
Ω(t) := lim

∆t→0

mean number of events in ∆t bins
∆t

. (A.2)For a given Ω(t) funtion, the onditional probability of having Nspi totalevents at times {t̂(1), . . . , t̂(Nspi)} is given, in Poisson statistis, by the formula:
P (Nspi, {t̂(1), . . . , t̂(Nspi)}|Ω(t)) = 1
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∏
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Ω(t̂(p)) (A.3)The urrent averaged over this distribution is then:
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∞
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K
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ζ(t− t̂(p′)) ; (A.4)75



76 A Temporal Flutuations in Balaned Stateexpliitly:
− J0√

K
e−
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0

dsΩ(s)
∞
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0

· · ·
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Ω(t̂(p))
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∑

p′=1

ζ(t− t̂(p′)) . (A.5)Sine the shape of ζ(t− t̂(p′)) is invariant of the onsidered spike, the sum over
p′ orresponds to a single sample times the total number of spikes:
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Nspi! .(A.6)The t̂(p) are just dummy variables, so that every term of the produt over p isequal. This leads to:
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.(A.7)Finally the sum over Nspi an be seen as the expansion series of an exponential,and onsequently simpli�ed with the exponential term. The result is:
[〈Ii(t)〉t]i = −

J0√
K

∫ T

0

ds ζ(t− s) Ω(s) . (A.8)With the further assumption that the event rate is stationary in time, and isa O(K), we an write it as:
Ω(t) ≡ K ν̄ (A.9)whih, onsidering the properties (2.12), ζ(t) will integrate to one. This leadsto the result given in equation (2.18).



Appendix B

Figure B.1: Shemati representation of the algorithms used to iterate the networkand alulate the Lyapunov exponents. In the �rst box ts is omputed with (2.32),postsynapti neurons are update with (2.33), linear evolution is given by (2.31), �nally
Ds omes from (2.36 - 2.39). 77



78 B Simulation Algorithm

Figure B.2: Upper part: shemati representation of the algorithm used to alulatethe time evolution of Lyapunov vetors, as reported in [23℄. Below: how the simulationtimes are strutured, so that the interval SAl is devoted to onvergene, for both GSbasis and vetors.
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