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Introdu
tionFrom the �rst theories of matter as 
onstituted by elementary parti
les [ Dem-o
ritus (
a. 460 BC � 
a. 370 BC)℄ up to the twentieth 
entury, the dominatingtrend in physi
al, and, more generally, in s
ienti�
 resear
h has been redu
tion-ism: the prin
iple that any 
omplex system 
an be de
omposed in elementaryparts, whi
h are then studied singularly, so that the full knowledge of the globalphenomenon is expressed in terms of the elementary intera
tions between itssimple entities.Su
h approa
h has provided, and still provides, marvellous insights, 
ru
ialfor the realization of most of the s
ien
e and the te
hnology we see around us.Nevertheless, it proves not su�
ient when it 
omes to dealing with the study ofthe emergent phenomena.Emergen
e 
an be de�ned, in natural and so
ial s
ien
e, as the arising of noveland 
oherent stru
tures, patterns and properties in 
omplex systems. In appar-ent 
ontradi
tion to the third prin
iple of thermodynami
s, we are surroundedby emergent, highly ordered stru
tures, life itself being the most astonishing ex-ample of all of them. Unfortunately, a redu
tionist approa
h does not prove tobe su�
ient, or even apt, for the study of su
h phenomena. The new 
hallengefor s
ien
e and resear
h is to �nd models and rules for emergent phenomena, andapply them to reality. Complex networks are typi
al models showing the ariseof 
omplex bahviour and 
olle
tive phenomena from an aggregation of relativelysimple 
onstituents.Complex NetworksAlthough networks 
an reveal a ri
h variety of behaviours, and emergent phe-nomena, their de�nition is quite simple: a network is a set of items, usually 
allednodes, with 
onne
tions between them, referred to as edges [1℄. The topologi
alstudy of networks started with Euler, and his solution to the Könisberg BridgeProblem, whi
h laid down the foundations of the mathemati
al Graph Theory.Sin
e then, extensive studies on a high variety of networks and on the dynami
staking pla
e on them have been 
ondu
ted, and now many s
ienti�
 modelsrely on network stru
tures; just to name a few: food webs, geneti
 networks,power grids, models for the spreading of 
omputer viruses or human diseases,et
. [2℄. A surprising number of examples on the importan
e of networks ins
ien
e, te
hnology, so
iety and every-day life 
an be found in a popular bookwritten by Barabási [3℄. 7



Neural NetworksNeural network 
onstitute a 
lass of 
omplex network inspired by the stru
tureof the nervous system. The nodes are identi�ed with neurons, the edges rep-resent the links between them (axon and synapses) and the ex
hanged signalsare the ele
tri
al peaks, or spikes, (a
tion potentials) triggered when the inter-nal potential of the neuron rea
hes a 
ertain threshold. They were introdu
edmainly to solve arti�
ial intelligen
e problem, su
h as automated learning, visualpattern re
ognition, adaptivity, fault toleran
e, et
. or as models for networksof real nervous 
ells [4℄.In the present work, we 
onsider the latter 
ategory of neural networks, aim-ing at a better understanding and modelling of real biologi
al stru
tures. The�rst example of su
h approa
h dates ba
k in 1975, when Peskin modelled thepea
emaker 
ells of the heart as a fully 
onne
ted network of identi
al leakyintegrate-and-�re neurons (LIF), and veri�ed that they spontaneously syn
hro-nise their signals, as real pea
emaker 
ells do [5℄. The LIF model is the simplestone dimensional model for the ele
tri
al a
tivity of a neuron. The use of more
omplex and re�ned models would add more biophysi
al value to the inves-tigation, but the required 
omputations would in
rease dramati
ally with thenetwork size; moreover phenomena emerging from the 
olle
tive dynami
s of thesystem should not depend too mu
h on the pre
ise and realisti
 re
onstru
tionof its single 
omponents.The spe
i�
 system we are interested in is not the hearth, but the pyramidalneurons of the neo
ortex in their stationary state. Many experiments on living
ells, both in vitro and in vitro, showed that, although very dense, and densely
onne
ted (∼ 106 neurons on a mm3, with ∼ 104 
onne
tions ea
h), they exhibitvery low average �ring rates (∼ 1Hz), with a spike pattern very variable in time,and very weakly 
orrelated, even when sampled from neurons 
lose ea
h other;at the same time, the response in time seems surprisingly fast when 
ompared torea
tion times for isolated, individual neurons. The system is therefore doublye�
ient: the low spiking rate redu
es the energy 
onsumption, but, at the sametime, it is able to rea
t even faster than any of its isolated 
omponents would.Admittedly, brains still detain the re
ord of most e�
ient and 
omplex parallel
al
ulators in the known universe.Going ba
k to the the neo
ortex, the model used to explain the observed a
-tivity is the balan
ed state model. Namely ea
h neuron, for most of the time,is kept 
lose to its �ring threshold by a balan
e between ex
itatory and in-hibitory inputs from other neurons, so that even very small deviations result ina qui
k response by the interested neuron. Di�erent experiments and measures
on�rmed this theory ( see se
tion 2.3 ). Our aim is now to 
onstru
t a neu-ral network whi
h repli
ates, at least qualitatively, this kind of behaviour, andstudy it.The 
reation of a neural network in stationary balan
ed state requires justthe mixing of the right ingredients, namely:a) a proper model for single neuron dynami
s, as simple as possible;b) a very large number of neurons, and number of 
onne
tions between themstill very large but small when 
ompared to the size of the system, so toresemble the 
onne
tivity of real neurons;8



Figure 1: Simpli�ed representation of a sparsely 
onne
ted Erd®s-Rény randomgraph. The image shows ∼ 60 neurons with an average of 1.5 
onne
tions ea
h. Thesimulated networks range from 200 to 1000 neurons with 20− 50 average 
onne
tions.The orientation of the 
onne
tions is not shown.
) both ex
itation and inhibition a
ting on neurons.The �rst 
hoi
e for point a) would be the LIF neuron, however they havebeen ex
luded for an intrinsi
 �aw in their dynami
s: when the membranepotential of a real neuron 
rosses a 
ertain threshold, a positive-feedba
k pro
essfurtherly in
reases it, produ
ing a peaked signal; LIF neurons, on the otherend, are arti�
ially reset in the instant they tou
h their threshold. With thisqualitative di�eren
e, LIF neural networks have the tenden
y to syn
hronize.In networks made of inhibitory neurons subje
ted to positive external 
urrentsthis phenomenon has been proved analyti
ally [6℄. For that reason the 
hosenmodel is the simples 
anoni
al 1D neuron model: the quadrati
 integrate and�re des
ribed in 
hapter 2.Condition b) is obtained by 
onne
ting a large number of neurons with anErd®s-Rény random graph stru
ture, as represented in �gure 1. If N is thetotal number of neurons and K the average 
onne
tions per neuron, our ideal
onditions would be N ≫ K ≫ 1. In the a
tual model N ranges from 200 to
1000, while K from 20 to 100. Finally all 
onne
tions are assumed to be one-dire
tional, as for real neurons. For graphi
al reasons the �gure does not show
onne
tion orientations, and the parameters are redu
ed to N ≈ 60, K ≈ 1.5 .As regards the point 
), it has been found that a network of only inhibitoryneurons, subje
ted to a 
onstant, ex
itatory external 
urrent, su�
es to ful�lit. This simpli�es the model and the 
al
ulations, so that we 
an 
on
entrateon more essential parameters.The system de�ned with those requisites shows deterministi
 
haos. For afurther 
hara
terization of the system and its properties, and for a better un-9



Figure 2: Intuitive de�nition of the �rst Lyapunov exponent ad the logarithm of theexpansion rate for to points initially very 
lose in the phase spa
e. The dire
tion ofexpansion is 
oded by the �rst Lyapunov ve
tor.derstanding, we rely on the mathemati
al framework typi
ally used for large,
omplex, dynami
al systems: the Ergodi
 Theory.Ergodi
 theorySin
e 
hapter 1 
ontains most of the formalism, the 
orre
t de�nitions and themathemati
al rigour ne
essary to de�ne and des
ribe the ergodi
 properties andquantities we are interested in, in this se
tion we give a more intuitive (and lessformally 
orre
t) des
ription of what ergodi
ity is about.Given a �nite-dimensional, deterministi
 dynami
al system, its phase spa
e isde�ned as the n-dimensional manifold in whi
h every single point fully repre-sents the exa
t state of the system at a given time. As the system evolves, itdraws a traje
tory the phase spa
e whi
h 
annot interse
t itself, or traje
toriesasso
iated to other time evolutions.The basi
 idea of ergodi
 theory is that, for su�
ient extents of time, aver-aging over time any quantity asso
iated to the dynami
al system is 
ompletelyequivalent to performing an average on the whole phase spa
e, as long as su
hmanifold is weighted with an ergodi
 measure. Intuitively, su
h a measure shouldnegle
t the areas of phase spa
e never (or almost never) tou
hed in the evolutionof our system, and give more importan
e to those in whi
h the system lingersmu
h more in time (the attra
ting manifold).With this approa
h we 
an �nd quantities that are global and invariant for thesystem just following a single time evolution starting at a random point: theinformation gained from su
h traje
tory would be equivalent to studying thesystem as a whole, or to what we would �nd using any other traje
tory startingfrom di�erent points; as long as, of 
ourse, the system in question is ergodi
. Oneof the most 
ru
ial quantities for the 
hara
terisation of a dynami
al system isthe �rst 
ovariant Lyapunov exponent, as it is stri
tly bound with the de�nitionof deterministi
 
haos.The idea of a dynami
al system both deterministi
 and 
haoti
, - i.e. witha time evolution 
ompletely and uniquely determined by its variables on onehand, but 
omplex and not predi
table in the long term on the other hand -is only an apparent paradox, easily resolved stating that deterministi
 
haosis the property of systems where two points, arbitrarily 
lose in phase spa
e10



d(t0) = δ ≪ 1, evolve in time on paths diverging with an exponential rate
d(t) ≃ δeλ1t, λ1 > 0 (see �gure 2) . The result is that, sin
e we 
an knowthe state of a system only with �nite pre
ision, any long term fore
ast wouldeventually be outgrown by the exponentially in
reasing error asso
iated to ourinitial un
ertainty. This is basi
ally what Lorentz originally intended as �thebutter�y e�e
t�.The �rst Lyapunov exponent is, roughly speaking, the δ → 0 limit of theexponent asso
iated to that divergen
e, averaged for time t → ∞. If positive,the system is 
learly 
haoti
. If negative, we 
an say that separate traje
torieswould eventually 
onverge, although for a parti
ular 
lass of dynami
al systemsthe time needed grows so fast with the system dimensionality that the dynami
sappear pra
ti
ally 
haoti
. Su
h property is 
alled stable 
haos [7℄.Going ba
k to �gure 2, we noti
e that the maximum divergen
e de�nes, intime, also a dire
tion. We 
all the dire
tion asso
iated to the maximum expan-sion the �rst Lyapunov ve
tor v(1)(t). It is lo
al, sin
e it depends on the pointin phase spa
e we are 
onsidering.Apart from points, we 
an 
onsider n-dimensional phase spa
e volumes. Thisintrodu
es the idea of di�erent orders of Lyapunov exponents, as well as di�er-ent asso
iated dire
tions: a k dimensional hyper
ube would in
rease (or shrink)its size as V (t) ≃ V (t0) exp (t (λ1 + . . .+ λk)), and the deformation of its shapewould follow, in time, the dire
tions of the asso
iated Lyapunov ve
tors. Figure3 represents an example of this: the �rst dire
tion is expanding, the se
ond 
or-responds to a 0 exponent, �nally the third is 
ontra
ting. The volume expandsas the sum of the three exponents, and its shape 
hanges: we expe
t that thedire
tion asso
iated to the 0 exponent keeps being parallel to the motion, butnothing 
an be said, in general, about the expanding and 
ontra
ting dire
tions,and the angle between them. The systems we are interested in are dissipative:the sum of all Lyapunov exponents is negative, so that a volume in phase spa
eshrinks during the dynami
al evolution, progressively falling on a subset of thetotal phase spa
e manifold 
alled attra
tor.The attra
tor has, in general, a very 
omplex shape, possibly fra
tal. Auseful property of the exponents is that they 
an give an esteem of the attra
tordimension. If the �rst exponent is positive, but the total sum is negative, fora 
ertain integer k we have λ1 + . . . + λk ≃ 0 ( if the sum is not exa
tly zero,we 
an add a small non-integer 
orre
tion to k). Then, for what stated above,a volume of dimension k will neither expand nor 
ontra
t in time, thus givingan upper bound to the attra
tor dimension.Another esteem derived from the exponents is the entropy produ
tion rate.Assuming we know the initial state of the system with �nite pre
ision, theexponential spreading of traje
tories from points initially indistinguishable addsinformation regarding their initial state, thus 
haoti
 dynami
al systems 
an beseen as produ
ers of information, and the produ
tion rate 
an be estimated asthe sum of the positive Lyapunov exponents.The 
al
ulations of entropy and attra
tor dimension are a
tually esteems that,in general, 
annot be taken as exa
t equalities. There is, however, a 
lass ofdynami
al systems, 
alled axiom-A, for with the entropy 
al
ulation is proved tobe 
orre
t, while the attra
tor dimension esteem is 
onje
tured to be. Estimatingif a 
omplex, 
haoti
 dynami
al system is axiom-A or not is mathemati
ally avery hard task, and a general approa
h has yet to be found. What we did in11



Figure 3: The series of Lyapunov exponents de
odes the expansion/
ontra
tion ratefor volumes. In this example a volume grows in one dire
tion, maintains its size inanother, and shrinks in the third: λ(1) > 0, λ(2) = 0, λ(3) < 0. The dire
tions aregiven by the Lyapunov ve
tors asso
iated to the exponents.the present work is investigate if the system we are interested in satis�es one ofthe key requisites for axiom-A: hyperboli
ity.Basi
ally, in hyperboli
al systems expanding and 
ontra
ting dire
tions do nomix up (see the end of 
hapter 1 for further details. In the present work we 
he
kif this requisite is respe
ted by studying the angles between 
ontra
ting andexpanding dire
tions, given by the Lyapunov ve
tors asso
iated to, respe
tively,positive or negative global exponents.Thesis Stru
tureThe aim of the present work is to simulate and, using the ergodi
 formalism,fully 
hara
terise a large-s
ale neural network of inhibitory quadrati
 integrate-and-�re neurons.Chapter 1 introdu
es and explains the ergodi
 theory more formally. Quanti-ties su
h as attra
tor dimension, Lyapunov exponents, entropy produ
tion rateand Lyapunov ve
tors are de�ned, explaining also how they 
an be numeri
ally
omputed.The following 
hapter deals with the 
onstru
tion of the neural network. Firstwe model the one-neuron dynami
s, taking the general Hodgkin-Huxley equa-tions as a starting point. Trough di�erent levels of approximation we rea
h thesimplest 
anoni
al 1D des
ription for a neuron: the quadrati
 integrate-and-�reor theta neuron. Afterwards, starting from the results of in-vivo measures onlarge populations of pyramidal neurons, we de�ne the balan
ed state, and builda model for the 
omputation of a large-s
ale network with similar qualitativebehaviour.Chapter 3 deals with the 
omputation and the �ndings. It starts with astep-by-step des
ription of the 
omputer simulation we used. Then we assessto whi
h extent the neuron pulses are 
omparable to a real balan
ed state.12



Afterwards, we 
al
ulate numeri
ally the Lyapunov exponents, deriving fromthem the entropy produ
tion rate and the attra
tor dimension. The �ndings,so far, are substantially a 
on�rmation of what has already been presented inre
ent works on the subje
t [8, 9℄. We 
onsequently fo
us on the Lyapunovve
tors: to 
on�rm their invarian
e and the robustness of the algorithm usedfor their 
al
ulation, di�erent 
onvergen
e tests are performed. The minimalangles between ve
tors, 
orresponding to expanding and 
ontra
ting dire
tionsare used to estimate the hyperboli
ity of the dynami
al system. The result isthat, as the system be
omes larger, the angle distribution is more peaked for anonzero value, showing more transversality between 
ontra
ting and expandingdire
tions.Finally, for ea
h ve
tor, we measure the average parti
ipation ratio, that
ounts the e�e
tive number of neurons 
ontributing to the ve
tor dynami
s,and the 
haos index (de�ned as the time average of the square ve
tor 
ompo-nents), that reveals whi
h neurons have a predominant role for a single ve
tor.From the interplay between these two parameters (and some others derivedfrom them) we 
an 
hara
terize the network dynami
s both globally and fromthe perspe
tive of the single neurons. In parti
ular, we �nd that the 
ontri-bution to the expanding dire
tions 
omes from a group with an average sizethat s
ales with K, and the single neurons that take part to it 
hange in time,
overing uniformly most of the network; on the other hand, strongly 
ontra
tingdire
tions tend to be lo
alized on few neurons, �xed in time.The �nal part summarises the novel results, namely the use of Lyapunovve
tors to assess the hiperboli
ity of the neural network and to 
hara
terisethe role of individual neurons in the 
olle
tive dynami
s. A list of possibleextensions and future prospe
ts 
on
ludes the 
hapter.

13
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Chapter 1Mathemati
al FrameworkWe stated that a set of inter
onne
ted neurons 
an be modeled as a network andstudied as a n-dimensional dynami
al system. In this 
hapter we will des
ribethe general mathemati
al framework used to study systems of known dynami
s,
hara
terized by 
haoti
 behavior and high-dimensionality.We start with an introdu
tion about the statisti
al study of di�erentiable
haoti
 dynami
al systems, through the de�nition of a natural or physi
al prob-abilisti
 measure on phase-spa
e and the appli
ation of Birkho�'s Ergodi
 the-orem.Afterwards we fo
us on the 
hara
terization of 
haos, de�ning both intuitivelyand in a more rigorous way the Lyapunov exponents. We show how the Oselede
Ergodi
 theorem implies that su
h exponents exist and are �nite, and how thepresen
e of a Oselede
 splitting of phase-spa
e emerges from that.Using the given de�nitions, we illustrate the 
lassi
al algorithm used to 
al-
ulate the 
omplete set of Lyapunov exponents, when the equations regulatingthe dynami
s are fully known; then we introdu
e a very re
ent method for the
al
ulation of a ve
tor base 
orresponding to the expanding dire
tion of the dy-nami
s, i.e. the lo
al Lyapunov ve
tors. The meaning of su
h ve
tors and their
onne
tion with the lo
al Lyapunov exponents is brie�y explained.In the last part we des
ribe two 
onje
tures of Ergodi
 theory whi
h investigatethe 
onne
tion between the Lyapunov spe
trum the attra
tor dimension andentropy.All quantities des
ribed in this 
hapter will be expli
itly 
al
ulated and ana-lyzed in the spe
i�
 dynami
al model des
ribed in the next 
hapter.1.1 Di�erentiable Dynami
al Systemsand Ergodi
ityA di�erentiable dynami
al system is a time evolution on a 
ompa
t, di�eren-tiable manifold M ⊆ R
m (the phase spa
e), de�ned by a di�erentiable mappingor �ow [10℄

f t : M →M , with t ∈ R for �ows, t ∈ N for mappings;15



16 1 Mathemati
al Framework

Figure 1.1: Exponentially diverging traje
tories in phase spa
ewith the properties:
f0 = identity and f sf t = f s+t . (1.1)If the system is dissipative, a given portion of phase spa
e is usually 
ontra
tedby the time evolution on a smaller volume. The portion of phase spa
e where themotion is �
on
entrated�, possibly after an initial transient, is 
alled attra
tor.We 
an de�ne the attra
tor as a set A with the following properties [11, 12℄:1. is invariant in the dynami
al evolution: ∀t, f tA = A;2. attra
ts an open set: ∃ open set U ⊃ A su
h that ∀x ∈ U the distan
ebetween A and f tx redu
es to zero in the limit t→∞.3. is minimal: there is no subset of A whi
h satis�es properties 1 and 2.The largest U satisfying property 2 is 
alled basin of attra
tion of A, if U =Mthe attra
tor is 
alled universal.A dynami
al system is said to be 
haoti
 when it presents high sensitivity toinitial 
onditions, i.e. when the traje
tories of two distin
t phase spa
e points,arbitrarily near at t = 0, diverge exponentially during time evolution, as illus-trated in �gure 1.1. In the next se
tion we elaborate the 
on
ept in greaterdetail and quantitatively; for now we 
an noti
e that, for a given starting point,traje
tories 
al
ulated on ma
hines with slightly di�erent pre
isions or di�er-ent round-o� methods would 
ompletely diverge after a relatively short time.Unless we use numbers of in�nite pre
ision, there will always be some intrinsi
random noise that 
ompromises any long-term fore
ast of su
h systems. Never-theless global statisti
al properties, su
h as the presen
e or the stru
ture of theattra
tor, stay un
hanged, regardless the starting point and the level of noise(assuming, of 
ourse, that the latter is reasonably small). In 
haoti
 systemsthe attra
tor is therefore 
hara
terized by the additional property:4. is stable under small random perturbations.Su
h a property is essential to guarantee that, in experiments and numeri
alsimulations, the motion falls asymptoti
ally on the attra
tor despite the fa
tthat the traje
tory itself has poor predi
tive value.



1.1 Di�erentiable Dynami
al Systems and Ergodi
ity 17The attra
tors of 
haoti
 dynami
al system are 
alled strange. The name
omes from the fa
t that they often present a very 
omplex, fra
tal stru
ture,i.e. with non-integer Hausdor� dimension. The de�nition of fra
tals and theirproperties is beyond the s
ope of the present work (see for example 
hap 11in [12℄ or 
hapter 3 in [13℄) here we just mention that similar attra
tors arequite hard to model and to study dire
tly. This, along with the impossibilityof 
al
ulating the �true� evolution of a point in phase spa
e, suggests that theonly possible approa
h to ta
kle those problems is statisti
al and probabilisti
.The tool we use for our analysis is the Ergodi
 theory. It basi
ally says that av-erages on a single traje
tory in time equal averages over the whole phase-spa
e,where the phase-spa
e is weighted by an appropriate measure µ, with the funda-mental requisites of being invariant under time evolution and ergodi
. Abstra
tergodi
 theory deals a lot with the study and de�nition of measures that 
ansatisfy those requisites. As physi
ists, hopefully interested in real di�erentiabledynami
al system, we 
an lu
kily �bypass� this problem by operationally de�nea unique natural or physi
al measure in the way des
ribed below.We start by taking into 
onsideration the probability density fun
tions (PDF)on M , de�ned so that, for x ∈ M , ρ(x) dx is the probability of �nding thesystem in the small volume of phase spa
e dx around the point x. Imagineto have, for t = 0 a given ensemble of phase-spa
e points, 
orresponding toa density ρ0(x), then evolve ea
h point in time with f , and study the seriesof pdfs ρ1(x), ρ2(x), . . . ρt(x). In the t → ∞ limit, we may expe
t that they
onverge to a density whi
h is invariant under the a
tion of dynami
s: ρinv(x).This is not always true, but in the systems of our 
on
ern, i.e. 
haoti
 and�nite-dimensional, the appli
ation of Perron-Frobenius theorem ensures thatsu
h a PDF exists, is unique, and is approa
hed exponentially fast in time [14℄:
ρt(x) = ρinv(x) +O(e−α t)Intuitively, if we begin with a homogeneous distribution of points in phasespa
e, and evolve them for some time, all points would fall over the attra
tor andstay 
on�ned on it. Under a pra
ti
al point of view, unstable �xed points and
y
les do not play any role, sin
e points on them are driven away by the randomnoise intrinsi
 to numeri
al 
omputation. To be mathemati
ally more rigorous,we 
ould follow the idea expressed by E
kmann and Ruelle [10℄ (said to havebeen �rst formulated by Kolmogorov), and de�ne our density asymptoti
ally,as the ǫ→ 0 limit of densities ρǫ,inv 
hara
terized by a dynami
s perturbed byrandom noise of magnitude ǫ.The physi
al measure µ 
an be de�ned as the probability of �nding the motionin a given phase-spa
e area:

µ(B) =

∫

B

ρinv(x) dx .From the way ρinv(x) has been 
onstru
ted, this measure has the 
ru
ial prop-erty of being invariant under dynami
al evolution:
µ(B) = µ(f−tB) .After �nding a �natural� 
andidate for the invariant measure, we 
an de�ne theproperty of ergodi
ity, studied by Birkho�(1931) and Von Neumann (1932):
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al FrameworkThe invariant measure µ is said to be ergodi
 if the phase spa
e
M is metri
ally inde
omposable with respe
t to it; i.e. there 
annotbe two distin
t and invariant subsets, A and B, both with positive µmeasure. In other terms, if A is invariant (f tA = A), then µ(A) = 1or 0.We 
an imagine that in systems with distin
t attra
tors, the dynami
 evolu-tion would �sele
t� one of them, a

ording to the spe
i�
 starting point, andmove eternally over it. As a 
onsequen
e, the statisti
al properties derived fromsu
h traje
tory would be neither global nor invariant of the starting 
ondition,invalidating the notion of ergodi
ity.If su
h a simple and intuitive requisite is already enough to state the presen
eof ergodi
ity, in pra
ti
e the ergodi
 hypothesis is impossible to demonstratefor the great majority of systems. However we 
an make the �reasonable as-sumption� that the system we are 
onsidering has only one attra
tor, and go onillustrating Birkho�'s Ergodi
 theorem:For a integrable fun
tion φ :M → R, the limit

lim
T→∞

1

T

∫ T

0

dt φ
(

f tx0

)

=: 〈φ(x0)〉exists. If µ is an ergodi
 measure, then 〈φ(x0)〉 is almost everywhere
onstant (does not depend on the initial point x0) and equal to:
〈φ(x0)〉 =

∫

M

φ(x) µ(dx) =: [φ(x0)] .For a proof see, for example, the original arti
le by Birkho� [15℄.The powerful result obtained is that any observable of our system, 
orrespond-ing to an integrable fun
tion φ has a de�nite global average value over phasespa
e. This value 
an be 
omputed by integrating the fun
tion on a randomtraje
tory reasonably long in time, and the result does not depend on the initialpoint x0 of the spe
i�
 traje
tory. This fundamental prin
iple gives meaning tobasi
ally all the analysis performed in the present work.1.2 Chaoti
 Dynami
s and Lyapunov ExponentsAs mentioned before, a dynami
al system is said to be 
haoti
 when its timeevolution is highly sensitive to the initial 
onditions. Namely, if we take twopoints at distan
e ǫ arbitrarily small, the divergen
e of the two traje
tories intime will be ∼ ǫ eλt, λ > 0. For λ < 0 the di�eren
e would qui
kly de
ay, makingthe dynami
s stable; if λ = 0 nothing 
an be said. If the motion is 
on�ned on anattra
tor, the distan
e 
annot grow inde�nitely. What happens is that the twotraje
tories, after the initial strong divergen
e, be
ome 
ompletely independentone another.If we apply this 
on
ept to a point in phase spa
e x, with a small error asso
i-ated δx, we rea
h the 
on
lusion that even though a 
haoti
 system is regulatedby pre
ise equations, the exponential grow of errors makes any 
al
ulated time



1.2 Chaoti
 Dynami
s and Lyapunov Exponents 19evolution self-independent of its long-term past history, i.e. non-deterministi
in any pra
ti
al sense [11℄.The parameter λ, 
alled the Lyapunov exponent, is of primary importan
ein studying quantitatively the 
haoti
 behavior and estimating its long-termpredi
tability in su
h systems. For a pre
ise de�nition and 
al
ulation, we needa satisfying mathemati
al des
ription of the entities in question.Let M be a smooth, 
ompa
t manifold and f a mapping or �ow overM withthe properties (1.1); let µ be a measure invariant under time evolution; x is ourstarting point on M . We 
an identify the small di�eren
e between x and anarbitrarily 
lose point as a ve
tor u belonging to the tangent ve
tor spa
e toMin point x, TxM . Pairs expressed as (x,u), with x ∈ M and u ∈ TxM 
an beinterpreted as elements of the tangent bundle of M , that we 
all TM .We 
an de�ne an iteration of a given amount of time t as a map of the form:
T t : TM → TM

(x,u)→
(

f t(x), T t
xu
)

.The linear operator T t
x maps the ve
tor u ∈ TxM in ũ ∈ Tft(x). This operation
an be seen as the push-forward of u by f : this implies that the operator issimply the linearized version of f t(x), i.e. its total derivative, represented bythe Ja
obian matrix : T t

x := Df t(x).From the properties on f and the 
hain derivation rule we have that:
T t+s
x = T s

ft(x) T
t
x (1.2)in other words, a long time iteration is equivalent to a produ
t of short timeiterations, 
onsisting of elements de�ned following the traje
tory of the startingpoint x.From now on we will 
onsider f as a dis
rete map, with t ∈ N. However itis possible to generalize all the following de�nitions and results for �ows, withlittle 
hange in the notation. If || · ||x is the ve
tor norm over the spa
e Tx, we
an express the rate of 
hange of the ve
tor u for one step (t = 1) as:

r(x,u) =
||T 1

x u||f1(x)

||u||xfor the next timestep, using (1.2), we have:
r(f1(x), T 1

xu) =
||T 1

ft(x) T
1
xu||f2(x)

||T 1
xu||f1(x)

=
||T 2

xu||f2(x)

||T 1
xu||f1(x)

.Wen we 
ompute the geometri
 mean of the 
hange rate for the n elements ofthe time series x, f1(x), f2(x) . . . f (n−1)(x), the result is:
[

r
(

f (n−1)(x), T (n−1)
x u

)

· r
(

f (n−2)(x), T (n−2)
x u

)

· . . . · r(x,u)
]

1
n

=

=

[

||T n
xu|| ||T

(n−1)
x u|| . . . ||T 1

xu||
||T (n−1)

x u|| . . . ||T 1
xu|| ||u||

]
1
n

=

[ ||T n
xu||
||u||

]
1
n

.



20 1 Mathemati
al FrameworkThe logarithm of this quantity in the large n limit is 
alled the LyapunovChara
teristi
 Exponent (LCE) of (x,u)
λ(x,u) := lim

n→∞

log

( ||T n
xu||
||u||

)
1
n

=

lim
n→∞

1

n
log ||T n

xu|| − lim
n→∞

1

n
log ||u|| = lim

n→∞

1

n
log ||T n

xu|| (1.3)This de�nition satis�es the properties:
∀k ∈ R\{0} λ(x, ku) = λ(x,u) ;

∀u,v ∈ TxM λ(x,u+ v) ≤ max {λ(x,u), λ(x,v)} . (1.4)The LCE depend only on the dire
tion of the ve
tor, and not on its magnitude(a dire
t 
onsequen
e of the linearity of the operator T t
x).The existen
e of su
h limits is granted by Oselede
's multipli
ative er-godi
 theorem [16℄. It 
an be expressed as follows:Given a 
ompa
t, di�erentiable manifoldM , a mapping f :M →

M and a measure µ invariant over M ; let T 1 be a map from M tothe spa
e all the m×m real matri
es, with the notation T 1(x) = T 1
x,su
h that

∫

M

µ(dx) log+ ||T 1
x|| <∞ ;where log+(k) = max{0, log(k)} and || · || is a matrix norm; let T n

xbe de�ned as the produ
t T n
x = T 1

f(n−1)(x)
. . .T 1

f(x) T
1
x. Then thereis a f -invariant subspa
e N ⊆ M su
h that µ(N) = 1 and ∀x ∈ N(indi
ating with A∗ the adjoint of A) the matrix

Λx := lim
n→∞

((T n
x )

∗T n
x )

1
2n exists.It has s ≤ m distin
t, real eigenvalues, that 
an be ordered as

expλ
(1)
x > . . . > expλ

(s)
x , 
orresponding to the eigenspa
es U (r)

x ;
r = 1, . . . , s. The λ(r)x exponents assume real values or 
an be −∞if the 
orresponding eigenvalue is 0.If we de�ne L(r)

x = U
(r)
x ⊕U (r+1)

x ⊕ . . . ⊕U (s)
x , and L(s+1)

x = {0},we have that for u ∈ L(r)
x \ ∈ L(r+1)

x

lim
n→∞

1

n
log ||T n

xu|| = λ(r)x ,i.e. the logarithms of the eigenvalues of Λx are the set of all LCEwe 
an �nd from x. Finally, de�ning d(r)x := dimU
(r)
x , we have thatthe fun
tions x→ λ

(r)
x and x→ d

(r)
x are f -invariant (λ(r)x = λ

(r)
ft(x),et
.) and, if the system is ergodi
, are almost everywhere 
onstant(with the possible ex
eption of a set of 0 measure).The matrix Λx is 
alled Oselede
 Matrix. If we write the ve
tor norm as as
alar produ
t ||u|| = √〈u, u〉; the expansion rate after a single iteration is:

||T 1
xu||
||u|| =

√

〈T 1
xu, T

1
xu〉

〈u, u〉 =

√

〈(T 1
x)

∗T 1
xu, u〉

〈u, u〉 ;



1.3 Cal
ulating Lyapunov Exponents 21the last equality 
omes from the de�nition of adjoint matrix. Now, assuming uis an eigenve
tor of (T 1
x)

∗T 1
x with eigenvalue k, the result is:

√

〈(T 1
x)

∗T 1
xu, u〉

〈u, u〉 =

√

〈u, u〉 k
〈u, u〉 =

√
k . (1.5)This explanation has the only purpose of des
ribing the idea behind the 
on-stru
tion of the Oselede
 matrix. For a full des
ription of the theorem and itsrelation with the Lyapunov exponents, see [11, 17, 18℄. An exhaustive mathe-mati
al demonstration 
an be found in [19℄. The Oselede
 multipli
ative ergodi
theorem is not simply an alternative way to express the Lyapunov exponents,but more than that, it states the existen
e of su
h a limit as an invariant prop-erty of the dynami
al system, independent from the initial point 
hosen for timeevolution.The folding ve
tor spa
es L(1)

x ⊇ L
(2)
x . . .⊇ L

(s)
x indu
e a natural splitting onthe tangent spa
e, known as Oselede
 splitting. The importan
e of su
h splitting
an be illustrated as follows: if we take a random ve
tor u belonging to TxM ,its mean grow rate will be expλ(1)x , i.e. the exponential of the highest Lyapunovexponent. This 
omes from the fa
t that u ∈ L(1)
x : the subspa
es L(2)

x , L
(3)
x . . .have zero measure with respe
t to the total spa
e, so the probability of a ran-dom ve
tor to be limited to them in substantially zero. However, if we 
onsidera random ve
tor ũ from whi
h we systemati
ally remove the 
omponent in thedire
tion(s) of highest expansion, i.e. its proje
tion on U (1)

x , then ũ ∈ L(2)
x andits LCE will be the se
ond highest exponent, λ(2)x , and so on. The numeri
al
al
ulation of the 
omplete spe
trum of LCE is essentially based on this me
h-anism. We 
an also noti
e that the ordering of the spe
trum indu
es di�erentorders of expansion (and stability, for negative LCEs) in di�erent subspa
es.Moreover, the basis of ea
h U (r)

x subspa
e (i.e. the Λx normalized eigenve
-tors), represents the (average) dire
tion asso
iated to the expanding (or 
on-tra
ting) average rate expλ
(r)
x . Su
h dire
tions are 
alled Lyapunov ve
torsand, as des
ribed in se
tion 1.4, 
an be 
omputed and studied lo
ally, in orderto gain useful information on the lo
al dynami
s and global dynami
s.1.3 Cal
ulating Lyapunov ExponentsThe 
lassi
al algorithm for the 
al
ulation of the Lyapunov exponents dates ba
kto 1980 [20℄. It 
onsiders only dynami
al systems whose governing equationsare fully known and 
omputable. If the dynami
s is hidden, it is still possibleto estimate some of the exponents by using an empiri
al time series of someobservable of the system. In [21℄, for example, both 
ases are 
onsidered (seealso [22℄). However, for the s
ope of the present work, we will sti
k to thehypothesis of the 
lassi
al algorithm.Following the reasoning of the original arti
le, we start with the pro
edurefor the �rst, highest exponent, and then we generalize the result to the wholespe
trum. First of all we remind that for a starting point in our manifold x ∈Mand a ve
tor in its tangent spa
e u ∈ TxM , the linear operator involved in thepush-forward (x,u) → (f t(u), T t

xu) is the Ja
obian of f t 
al
ulated in point
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x. This value is basi
ally the 
omplete derivative of f t: in se
tion 2.6 of next
hapter we will show the 
al
ulation in our spe
i�
 setting. For now we assumethe T t

x matri
es as given for every x in M .As said in previous se
tion, for the �rst exponent is su�
ient to follow theevolution of a random ve
tor u0. To have an intuitive representation of the pro-
ess, we 
an imagine to de
ompose u0 in the basis of the dire
tions of expansionasso
iated to ea
h exponent (i.e. the Lyapunov ve
tors). Being random, ourstarting ve
tor will have a nonzero 
omponent for ea
h dire
tion. Due to thelinearity of the pro
ess ea
h 
omponent will in
rease, on average, exponentially,a

ording to the respe
tive Lyapunov exponent. The exponential di�eren
e ofthe growing rates will 
ause the 
omponent asso
iated to the highest exponentto dominate over all the others after a short amount of iterations, so that it isthe only one sele
ted in the large n limit.The only di�
ulty is that an exponentially growing ve
tor would soon go outof the boundaries of our 
omputational 
apabilities (that's basi
ally the reasonwhy we 
annon 
al
ulate Λx dire
tly). It is solved as follows. Given an integer
k & 1 su
h that T k

x lies safely in our numeri
 limits, we start with a randomve
tor u0 ∈ TxM and 
al
ulate iteratively the series:
u1 = T k

x

u0

||u0||
, u2 = T k

fk(x)

u1

||u1||
, u3 = T k

f2k(x)

u2

||u2||
, . . .

ui = T k
f(i−1)k(x)

ui−1

||ui−1||
=
T k
f(i−1)k (x) T

k
f(i−2)k(x) . . . T

k
fk(x)u0

||ui−1|| ||ui−2|| . . . ||u0||
;

||T ik
x u0|| = ||ui|| ||ui−1|| . . . ||u0|| ; �nally, from u0 ∈ L(1)

x and (1.3), we have:
λ(1)x = lim

n→∞

1

n

n
∑

i=1

log ||ui|| . (1.6)Both the fa
t that T k
x is applied only to normalized ve
tors and that the loga-rithm is 
omputed at every single step have the positive e�e
t of 
ontaining thesize of the numbers involved, making the 
omputation possible.To 
al
ulate the whole spe
trum, we must think in terms of volume variations.We assume the Λx matrix to be m dimensional and, for simpli
ity, that all itseigenvalues have multipli
ity one (i.e. we have m distin
t LCE). Let U ⊂ TxMbe a open set of volume Vol(U); using the de�nition of LCE and the Oselede
theorem, we infer that its average growing rate in time is ∝ exp

∑m
i=1 λ

(i)
x .We start from U0, de�ned for 
onvenien
e as the m-dimensional hyper
ubeen
losed in a random orthonormal basis of TxM : {u(1)

0 , u(2)
0 , . . .u(m)

0 }; Let
A be the linear operator 
orresponding to a single time iteration of the set.Following the same reasoning as before, we de�ne iteratively the sets Ui as:

Ui =
A(Ui−1)Vol(Ui−1)

;so that, from the linearity of A, it follows:Vol(Ui) · Vol(Ui−1) · . . . ·Vol(U0) = Vol(AA . . . AU0) .



1.3 Cal
ulating Lyapunov Exponents 23The quantity on the right is the volume of our initial hyper
ube after i timesteps,namely: Vol(AA . . . AU0) = Vol(T ik
x u

(1)
0 , T ik

x u
(2)
0 , . . . T ik

x u
(m)
0 ) ;this expression leads to the sum of all LCE:

lim
n→∞

1

n
log

Vol(AnU0)Vol(U0)
= lim

n→∞

1

n
log (Vol(AnU0)) =

m
∑

j=1

λ(j)x .The quantities on the left assume the form:Vol(Ui) =
Vol(A(Ui−1))Vol(Ui−1)

= (1.7)
=

Vol(T k
f(i−1)k(x)

u
(1)
i−1, T

k
f(i−1)k(x)

u
(2)
i−1, . . . T

k
f(i−1)k(x)

u
(m)
i−1)Vol(Ui−1)

.By iterating the ve
tors as before (u(j)
i = T k

f(i−1)(x)
u
(j)
i−1/||u

(j)
i−1||) and 
omputingthe volume for ea
h step, we 
an, in prin
iple, �nd the right result; however thismethod is not feasible, due to the fa
t that all ve
tors would soon 
onvergeon the dire
tion of maximum expansion, so that the angles between them arebeyond the numeri
al resolution and the volume 
annot be 
al
ulated.To 
ir
umvent this problem, for ea
h timestep we re
ompute the ve
tors de�n-ing the volume Ui performing a Gram-S
hmidt orthogonalization pro
edure: Uidoes not 
hange, and its volume simply be
omes the produ
t of the orthogonalve
tor norms. In short, if we assume 〈·, ·〉 as the s
alar produ
t in the spa
e

Tfik(x)M , we build the series of u(j)
i as:

u
(1)
i = T k

f(i−1)k(x)

u
(1)
i−1

||u(1)
i−1||

; for j > 1 :
u
(j)
i = T k

f(i−1)k(x)

u
(j)
i−1

||u(j)
i−1||

−
j−1
∑

r=1

〈

T k
f(i−1)k(x)

u
(j)
i−1

||u(j)
i−1||

, u
(r)
i

〉

u
(r)
i

||u(r)
i ||2

.

(1.8)
With this de�nition Volp(T k

f(i−1)k(x)
u
(1)
i−1, T

k
f(i−1)k(x)

u
(2)
i−1, . . . T

k
f(i−1)k(x)

u
(m)
i−1)is equivalent to:





m
∏

j=1

||u(j)
i−1||



 · Volp(u(1)
i , u

(2)
i , . . . u

(m)
i ) =





m
∏

j=1

||u(j)
i−1||



 ·





m
∏

j=1

||u(j)
i ||



 .The last equality is due to the orthogonality of the u
(j)
i ve
tors. From (1.7) weobtain Volp(Ui) =

∏m
j=1 ||u

(j)
i ||, whi
h leads to the result:

m
∑

j=1

λ(j)x = lim
n→∞

1

n
log





m
∏

j=1

||u(j)
0 || ·

m
∏

j=1

||u(j)
1 || · . . .

m
∏

j=1

||u(j)
n ||



 .
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al FrameworkRearranging the produ
t indexes and de
omposing the logarithm, we �nallyobtain, for the sth exponent:
λ(j)x = lim

n→∞

1

n

n
∑

i=1

log ||u(j)
i || . (1.9)Equation (1.9) is an extended version of (1.6), with the signi�
ant di�eren
e thatthe u

(j)
i ve
tors, for j > 1, are 
al
ulated a

ording to the orthonormalizationpro
edure (1.8). As we will see in se
tion 1.5 this pro
ess 
an be simply andstraightforwardly translated in basi
 operation on matri
es.Before moving to the 
al
ulation of Lyapunov ve
tors, some 
onsiderationsabout dimensions should to be done. The result of (1.9) is dimensionless, asit represents the logarithm of average expansion per step. To obtain a moregeneral quantity, independent of the step lengths used for the evolution of thedynami
al system (as long as the intervals are small enough to follow properlythe dynami
al evolution), we need to res
ale the exponents using the durationof a timestep ∆t:

λ
(j)
i ←

λ
(j)
i

∆t
(1.10)The 
oe�
ients are thus expressed in se
onds−1.The system analyzed the present work has the pe
uliarity of having steps ofdi�erent time lengths. Sin
e the LCE is de�ned as an average quantity, wedivide it by the interval length averaged on all performed steps: [∆t]s (see forexample pag. 120 of [14℄).1.4 Cal
ulating the (lo
al) Lyapunov ve
torsAs said, the Lyapunov ve
tors, de�ned as a base for the eigenspa
es of Λx,represent the dire
tion of the global average expansion asso
iated to ea
h expo-nent. It is then possible to de�ne the lo
al Lyapunov ve
tors as the preferredexpanding dire
tions for the (linearized) dynami
s of ea
h point in time. Thelo
al Lyapunov exponents are then the pun
tual expansion rates in ea
h of thosedire
tions.The identi�
ation at any step s of the maximum lo
al exponent λ(1)s and itsasso
iated dire
tion v

(1)
s is straightforward: as said, a random ve
tor, freelyevolving in time, would rapidly align with it. So that, using the u

(1)
s ve
tors asde�ned above, we obtain, for the ve
tor and the exponent:

v(1)
s =

u
(1)
s

||u(1)
s ||

; λ(1)s = log





||T k
fik(x)u

(1)
s ||

||u(1)
s ||



 = log ||u(1)
(s+1)|| , (1.11)for values of s reasonably distant from 0, so that u(1) has su�
ient time toalign, and assuming that the mapping is smooth enough, so the ve
tor properlyfollows the dominating dire
tion at every point in time.Moving to v

(2)
s and λ(2)s , the idea in the series (1.8) is that, after we apply thelinear operator, we proje
t the resulting ve
tor on the spa
e orthogonal to v

(1)
s ,
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t

t

v1

v2Figure 1.2: In a 
haoti
 dynami
al system any perturbation will 
onverge on thedire
tion of the �rst Lyapunov ve
tor. On the other hand, a time inversion in thedynami
s results in the marked domination of the least forward expanding dire
tion,i.e. the se
ond ve
tor.thus the growth in that dire
tion dire
tion (expe
ted to be dominating) is 
om-pletely suppressed, while the next highest growing dire
tion, regulated by λ(2)s ,be
omes visible. As a result, u(2)
s /||u(2)

s || has the same dire
tion as the proje
-tion of v(2)
s on the spa
e perpendi
ular to v

(1)
s . In general u(2)

s /||u(2)
s || 6= v

(2)
s :no reason for
es the Lyapunov ve
tors, either global or lo
al, to be perpendi
u-lar ea
h other. La
king the knowledge of the 
orre
t dire
tion and of the lo
alexponent de�ned as above (it 
annot be found it the 
orresponding dire
tion isnot known), we 
annot 
al
ulate the true v

(2)
s .A solution to 
ir
umvent this problem has been proposed only in 2007 [23℄. Itis based on the quite intuitive and well know prin
iple that a time-inversion inthe dynami
s of our system inverts the Lyapunov spe
trum. A volume normallyexpanding in some dire
tions, in a ba
kward motion would 
ontra
t in thosesame dire
tions with inverted ratios, while a random ve
tor traveling ba
kwardsin time would soon follow the dire
tion of less expansion in forward time. See�gure 1.2 to have a graphi
al idea of the pro
ess.For the arguments above, we know that Span(v(1)

s , v
(2)
s ) = Span(u(1)

s , u
(2)
s ).If we take a random 
ombination of u(1)

s and u
(2)
s and evolve it ba
kwards, aftersome iteration (let's say h) it will be aligned with the less forward expandingdire
tion of our subspa
e, namely v

(2)
s−h. For ve
tor v(s)

s−h we simply start with alinear 
ombination of ve
tors v(1)
s , u

(2)
s , . . .u(s)

s , keeping in mind that h shouldbe big enough to let the ve
tors align properly.1.5 Matrix Cal
ulationAs said, there is a simple and elegant way to translate the algorithms des
ribedabove in a sequen
e of matrix operations. If m is the dimension of our system,



26 1 Mathemati
al Frameworkwe start de�ning a random, orthonormal,m×mmatrix whose 
olumns representa basis for TxM : Q0 = (q
(1)
0 | . . . |q

(m)
0 ). Due to their stru
ture, the q(j) ve
tors,i.e. the 
olumns of the Q matrix, are 
alled the Gram-S
hmidt basis.

T k
x is the Ja
obian matrix asso
iated to a k-steps evolution, with k 
hosen sothat the exponential growths are kept in the numeri
al limits of our 
al
ulator.We now perform the multipli
ation:
T 1
fk−1x

. . . T 1
f1x
·Q0 = (T k

xq
(1)
0 | . . . |T k

xq
(m)
0 ) = (q̃

(1)
1 | . . . |q̃

(m)
1 ) = Q̃1 ; (1.12)where T 1

x . . .T 1
fk−1x are the Ja
obian matri
es for a single timestep, 
omputedfor the spe
i�
 dynami
al system we are analyzing.The ve
tors q̃(j)
1 are not orthogonal. To obtain the 
orre
t iterated Q1 matrix,we apply a QR de
omposition on Q̃1. The QR de
omposition on a generi
square matrix Q̃ 
onsists in writing it as the produ
t Q̃ = Q · R, su
h that Qis orthonormal and R is upper triangular. Calling q̃(j) and q(j) the 
olumns of,respe
tively, Q̃ and Q, the new matri
es are de�ned by:

q(1) =
q̃(1)

||q̃(1)||
; q(j) =

q̃(j) −
j−1
∑

r=1

〈

q̃(j), q(r)
〉

q(r)

∣

∣

∣

∣

∣

∣

∣

∣

q̃(j) −
j−1
∑

r=1

〈

q̃(j), q(r)
〉

q(r)

∣

∣

∣

∣

∣

∣

∣

∣

{R}ij =
〈

q(i), q̃(j)
〉

, for i ≤ j . (1.13)It is straightforward to see that these values 
an be expressed in terms of the
u(j) ve
tors (1.8) as q(1)

1 = u
(1)
1 /||u(1)

1 || . . . q(m)
1 = u

(m)
1 /||u(m)

1 || Moreover, fromthe de�nition of the QR algorithm des
ends that the diagonal of the R matrix
orresponds to the u
(j)
1 norms: {R1}jj = ||u(j)

1 ||.The orthonormalized Q1 is now ready for another iteration:
T 1
f2k−1x

. . . T 1
fkx
·Q1 = Q̃2 = Q2 · R2 . . . and so on.The u

(j)
i ve
tor modules, given by the diagonal of Ri, are stored in ea
hiteration for the 
al
ulation of the Lyapunov spe
trum.This same setting, along with the results already 
omputed, 
an be also usedto �nd the Lyapunov ve
tors. The ending point of our 
omputation T ≫ 1 willbe assumed as the starting point of our ba
kward iteration. The starting ran-dom ve
tors v(1)

T ∈ Span{u(1)
T }, v(2)

T ∈ Span{u(1)
T ,u

(2)
T } . . . , v(m)

T ∈ Span{u(1)
T ,. . .u(m)

T } 
an be de�ned as the produ
t of QT with a random triangular matrix
CT . Considering the time iteration, we obtain:

QT · CT = T k
f(1−T )k(x) ·QT−1 · CT−1 = Q̃T · CT−1 = QT · RT · CT−1 ;so that CT−1 = (RT )

−1 · CT . (1.14)The previously 
al
ulated triangular Rs matri
es must thus be fully stored,inverted and used to iterate ba
kward in time the Ci matrix:
Ci = (Ri−1)

−1 · (Ri−2)
−1 · . . . · (RT )

−1 · CT .Sin
e we are interested only in the ve
tor dire
tions, we 
an freely normalizethe 
olumns of the Ci matri
es. If we do that at every step, we 
an identify thenormalization fa
tors at point i with the lo
al Lyapunov exponents λ(j)s , whilethe Lyapunov lo
al ve
tors are simply the (normalized) 
olumns of Qs · Cs .



1.6 Information and Entropy 271.6 Information and EntropyConsider two points very 
lose one another in the phase-spa
e of a 
haoti
 sys-tem: for any observer whose instruments have a pre
ision 
oarser than theirdistan
e, they will appear 
ompletely indistinguishable. Eventually, as the sys-tem evolves in time, the traje
tory separation due to 
haoti
 dynami
s makes thedistan
e signi�
ant, so that the points are per
eived as separate. Thus, systemsvery sensitive to initial 
onditions 
an be seen as produ
ers of information.Let {A1, A2, . . . ,Aα} be a �nite, µ-measurable partition of the phase spa
e.We 
an assume it 
orresponds to the resolution of our instruments, so that twopoints in the same set of the partition A 
annot be seen as distin
t. We 
an thende�ne f−k(Ai) as the set of points x su
h that fk(x) ∈ Ai, and 
all f−k(A )the partition {f−k(A1), . . . f−k(Aα)}. We �nally 
onsider the partition givenby the least 
ommon re�nement:
A(n) = A∨ f−1(A ) ∨ f−2(A ) ∨ . . . ∨ f1−n(A ) ;it is de�ned so that a generi
 set in it has the form:

Ai1 ∩ f−1(Ai2 ) ∩ . . . ∩ f1−n(Ain) for ij ∈ {1, 2, . . . , α}It is 
lear that the latter, dynami
s-related, partition has a resolution mu
h�ner than the starting one, sin
e any element in it is dis
riminated by its pasthistory, up to n− 1 steps.Now, we 
an de�ne the information 
ontent of the partition A(n) with respe
tto measure µ as:
H(A(n)) =

∑

i1, ...,in

µ(Ai1 ∩ . . . ∩ f1−nAin) logµ(Ai1 ∩ . . . ∩ f1−nAin) ;where we sum over every element of A(n). The rate of information 
reation,with respe
t to the initial partition A is then given by the limit:
h(µ,A) = lim

n→∞

(

H(A(n+1))−H(A(n))
)

= lim
n→∞

(

1

n
H(A(n))

)

.The Shannon-Ma
Millan theorem guarantees the existen
e of this limit.The Kolgomorov-Sinai entropy h(µ) is then de�ned as the further limit of
h(µ,A) for �ner and �ner starting partitions A.As stated at the beginning of this se
tion, the information 
reation rate isoriginated by the expanding motion of the system in the phase spa
e, 
onne
tedwith its 
haoti
 behavior. In 1978 Ruelle demonstrated that its value 
annot begreater than the total positive expansion rate of the system, given by the sumover all positive Lyapunov global exponents:

h(µ) ≤
∑

λ(i)>0

λ(i) . (1.15)Pesin extended this theorem, proving that (1.15) is an identity if (and onlyif) the measure µ is a SRB measure. We shall brie�y de�ne and dis
uss SRBmeasures at the end of the next se
tion, sin
e they result 
ru
ial also in thevaluation of the attra
tor dimension.
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al Framework1.7 Information Dimension of the Attra
torAs mentioned at the beginning of this 
hapter, (see pag 17) the attra
tor inthe phase spa
e A ⊆ M has, in general, a fra
tal stru
ture. We assume thenotion of Hausdor� dimension as given, with the notation dimH , and de�ne theinformation dimension of the measure µ as:dimH(µ) = inf{dimH(S)|µ(S) = 1} .Young's theorem (1982) shows that, if µ is an ergodi
 measure, this value isequivalent to: dimH(µ) = lim
r→0

logµ(Bx(r))

log r
.Here Bx(r) represents the ball 
entered in x of diameter r. The expression isvalid and 
onstant for every x ∈ A ex
ept, possibly, for a set of 0 µ-measure.Now, if λ(1), . . . , λ(m) are the global Lyapunov exponents asso
iated to µ,and k = max{ i | λ(1) + . . .+ λ(i) ≥ 0}, we 
an de�ne the Lyapunov dimensionas: dimΛ(µ) = k +

λ(1) + . . .+ λ(k)

|λ(k+1)| ; (1.16)the se
ond term is a small, noninteger 
orre
tion for the 
ase: ∑k
i=1 λ

(i) > 0 and
∑K+1

i=1 λ(i) < 0. In our system, due to great dimensionality, it results negligible.The 
onne
tion between the two quantities de�ned here is given by the fol-lowing 
onje
ture by Kaplan and Yorke: if µ is an ergodi
, SRB measure, thendimH(µ) = dimΛ(µ) . (1.17)It is analyti
ally proved that this equality holds in some spe
i�
 
ases, butex
eptions are found.SRB measures and hyperboli
ityIn the previous two se
tions we stated that a 
ru
ial property of the measure weuse, both for the exa
t 
al
ulation of entropy produ
tion and a reasonable esteemof the attra
tor dimension, is being a SRB measure (from Sinai, Ruelle, Bowen);namely a measure whi
h is absolutely 
ontinuous along unstable manifolds. Arigorous de�nition 
an be found in [10, 11℄.It is proved that for a 
lass of dynami
al systems, namely the Axiom-A sys-tems, exists a unique SRB measure, whi
h 
an be expressed �physi
ally� as theergodi
 average:
ρ = lim

n→∞

1

n

n−1
∑

k=0

δfkx .The problem is then transferred on demonstrating that the dynami
al systemis Axiom-A: in that 
ase the SRB measure naturally 
orresponds to an averageover long dynami
al traje
tories, as the ergodi
 prin
iple states; 
onsequentlyPesin identity holds and Kaplan-Yorke 
onje
ture is on solid ground.The 
ru
ial property of Axiom-A system is hyperboli
ity. A set A is hyperboli
for a di�eomorphism f (mapping of �ow), if ∀x ∈ A there exists a dire
t sum
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tor 29de
omposition of the tangent spa
e between stable (expanding over time) andunstable dire
tions (expanding on inverted time). If A is a hyperboli
 attra
tingset and the periodi
 points of f are dense in A, the 
onditions for an Axiom-Adi�eomorphism are satis�ed. In 
ase the whole manifold M is hyperboli
, wehave the stronger 
onditions of Anisov di�eomorphism and stru
tural stability.Proving that a system is Axiom-A is, in general, a very hard task. However,the present work represents an example of how Lyapunov Ve
tors 
an be usedto identify the expanding and 
ontra
ting dire
tions of the tangent spa
e. Themeasure of their transversality represents then a quantitative esteem of theglobal degree of hyperboli
ity of the system.
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Chapter 2ModelIn this 
hapter a basi
 model for a stati
, large s
ale network of 
orti
al neuronsis built. Starting form the Hodgkin-Huxley 
lassi
 equations, simpler modelsare inferred. It is then explained why the 
anoni
al quadrati
 integrate and �remodel (QIF) is a suitable to des
ribe the dynami
s of very large s
ale networks.In the next se
tion a more general model for pulse-
oupled neuronal networksis presented. Expli
it equations are obtained from the QIF model and used to
al
ulate analyti
ally di�erent global parameters of the network; then a formulafor the Ja
obian at any given spiketime is presented. Su
h analyti
al expressionswill be the basis of the a
tual network simulation and of all the subsequentresults presented in next 
hapters.2.1 Single Neuron Dynami
sHodgkin and Huxley modelThe best known and most widely a

epted equations used to des
ribe the poten-tial of a neural 
ell soma as a fun
tion of external 
urrent and internal 
ondu
-tan
e parameters, dates ba
k to the pionieristi
 work of Hodgkin and Huxley[24℄. The equations in their standard form are:
C
dV

dt
= I − gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) ;

dm

dt
=

1

τm(V )
(m∞(V )−m) ;

dh

dt
=

1

τh(V )
(h∞(V )− h) ;

dn

dt
=

1

τn(V )
(n∞(V )− n) ;

(2.1)
with m∞(V ) = αm(V )/(αm(V ) + βm(V )) , τm(V ) = 1/(αm(V ) + βm(V )) ,

h∞(V ) = αh(V )/(αh(V ) + βh(V )) , τh(V ) = 1/(αh(V ) + βh(V )) ,

n∞(V ) = αn(V )/(αn(V ) + βn(V )) , τn(V ) = 1/(αn(V ) + βn(V )) .31



32 2 ModelThe variable I represents the 
urrent, C is the membra
e 
apa
itan
e, the E• arethe Nerst equilibrium potentials, while the g parameters are the maximal 
on-du
tan
e for Na+ ions, K+ ions and other ions (leakage 
urrents). The m, h, nfun
tions are biologi
ally interpreted as the open fra
tion of independent gateswhi
h 
ompose ea
h single ion 
hannel. One Na+ 
hannel is open only if itsthree m-type gates and one h-type gate are open, while a K+ 
hannel is 
om-posed of four n gates. Su
h fun
tions depend on the steady state a
tivationparameters m∞, h∞, n∞ and on the a
tivation time 
onstants τm, τh, τn.A proper 
hoi
e of parameters, often �tted on in vitro and in vivo voltage-
lamp measures on living 
ells, makes the observation of a wide variety of be-haviors, 
orresponding to di�erent kinds of neural 
ells, possible. We 
an divideneurons in two main 
lasses of ex
itability. Neurons of 
lass 1, also 
alled Type1 neurons, are able to produ
e a
tion potential trains with frequen
ies varyingsmoothly on a wide range ∼ 1 − 100 Hz. Neurons of 
lass 2 have an �all ornone� kind of response, with a �xed spike frequen
y ∼ 150 − 200 Hz, arisingwhen the in
oming 
urrent in
reases over a 
ertain threshold. For the s
ope ofthe present work we 
onsider only 
lass 1 neurons.A 
omplete derivation of the Hodgkin and Huxley equations and a detailedexplanation for their dynami
s 
an be found in the original arti
le [24℄ or in[25, 26, 27℄).Redu
tion to Two DimensionsOne of the �rst and most well-known redu
tion of the (2.1) 
omes from thework by C. Morris and H. Le
ar on the mus
le �bers of the barna
le [28℄. Sin
ewe are dire
ted to the study neo
ortex rather than mus
ular �bers, we willuse a model dynami
ally equivalent, the persistent sodium slow potassium or
INa,p + IK model, introdu
ed in 1993 by X. J. Wang to simulate the behaviorof pyramidal neurons of the 
at sensorimotor 
ortex [29℄. The equations are:

C
dV

dt
= I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK) ;

dn

dt
=
n∞(V )− n

τ(V )
;

(2.2)
m∞(V ) =

1

1 + exp
Vm,1/2−V

Km

n∞(V ) =
1

1 + exp
Vn,1/2−V

Kn

(2.3)Unlike the Hodgkin-Huxley model, here ea
h 
hannel is 
omposed by a singlegate, and the sodium 
hannels rea
t istantaneously to voltage 
hange (i.e. ona times
ale mu
h lower than the potassium 
hannels). It should be pointedout that this model is less biologi
ally meaningful, and la
ks, even qualitatively,some dynami
s intrinsi
 in the HH equations (see [30℄). On the other hand it iseasier to study with the standard pro
edure used for two dimensional dynami
alsystems, as and 
overs the spe
i�
 regime we are interested in.Equations (2.2) 
an be qualitatively investigated with the approa
h and for-malism used for generi
 2-dimensional dynami
al systems, su
h as the Van der
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Figure 2.1: Null
lines, ve
tor �eld and an example of traje
tory for the INa,p + IKmodel. It is 
lear that for almost all staring points the dynami
s will fall on theperiodi
 attra
tor. The parameters used are in table 2.1Table 2.1: Parameters used for the INa,p + IK model, taken from in-vivo measureson a rat as reported in [25℄
C = 1 mF , I = 0.01 mA/
m2 , gL = 8 mS/
m2 , EL = −80 mV ,

Kn = 5 mV , Vn,1/2 = −25 mV , gNa = 20 mS/
m2 , EK = −90 mV ,

Km = 15 mV , Vm,1/2 = −20 mV , gK = 10 mS/
m2 , ENa = −60 mV ,

τ (V ) ≡ 1 .Pol os
illator [12, 31℄. We draw the null
lines, i.e. the 
urves dV/dt = 0 and
dn/dt = 0, in the V − n diagram. Solving the (2.2) we have:

nnull n = n∞(V ) ;

nnull V =
I − gL(V − EL)− gNam∞(V )(V − ENa)

gK(V − EK) .
(2.4)In �gure 2.1 the null
lines and the ve
tor �eld of the velo
ities (dV/dt, dn/dt)are plotted. The parameters used are modeled on �ts of pat
h-
lamp measureson pyramidal neurons of the rat's visual 
ortex, as reported on [25℄, and areshown in table 2.1.With this 
hoi
e, the result a is periodi
 movement on an invariant 
y
le, asshown in �gure 2.1. Changing the parameters, a wide variety of dynami
s 
anbe reprodu
ed, all des
ribed in detail in the referen
e 
ited above. For the s
opeof the present dissertation, however, it is enough to 
onsider slow 
hanges in the
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Figure 2.2: Spiking a
tivity for quadrati
ally in
reasing inje
ted 
urrent I0 for the
INa,p + IK model, regulated by equation (2.2) and parameters in table 2.1input 
urrent: a 
hange in the I parameter has the e�e
t of moving verti
allythe V -null
line. The narrowing in the spa
e between the two 
urves around thelo
al minimum V ∗ 
auses an in
rease in the 
y
le period. When the null
linesinterse
t in one point, the time for a 
y
le be
omes in�nite. Finally a negative
I generates two interse
tions, thus breaking the periodi
 dynami
s. From thisbehavior whe 
an state that our system in near a saddle-node bifur
ation on aninvariant 
y
le, regulated by the �ne-tuning of the I parameter.In �gure 2.2 we 
an see the plot of V (t) for a system near the saddle-node
ondition with a 
urrent slowly in
reased in time (quadrati
ally). The result is asmooth in
rease in the frequen
y of spiking, while the spiking signals themselvesdon't 
hange in shape or intensity: the invarian
e of the a
tion potential ispreserved.The equations des
ribed here have the same qualitative behavior as the typi
altype 1 neuron, thus we 
an say they represent a 
anoni
al model for this kindof dynami
al system.Quadrati
 Integrate and Fire ModelWe have shown that the most 
ru
ial part for the smooth regulation of thespiking frequen
y lies in the near-bifur
ation area. To pro
eed to further sim-



2.1 Single Neuron Dynami
s 35pli�
ations we thus perform a series expansion of dV (t)/dt around V ∗. In thisarea n lies near its null
line, too, so we 
an make the assumption n → n∞(V )and redu
e the dynami
al system to one dimension (equivalent to say that allion 
hannels rea
t instantaneously). Then, for the properties stated on V ∗, the�rst derivative is zero. We stop at the se
ond order, obtaining:
C
dV (t)

dt
≈ gQ

γ
(V (t)− V ∗)2 + I(t) . (2.5)Here g is a 
ondu
tan
e and γ has the dimension of a voltage. Su
h values 
anbe inferred from �ts on type 1 neurons near saddle-node bifur
ation.If the 
urrent is 
onstant in time, i.e. I(t) ≡ I0, we have an analyti
al solution:

V (t) =

√

γI0
gQ tan

( √
gQ√
γ C

√

I0t+ α

)

; (2.6)where the 
onstant α depends on the starting point V (0):
α = arctan

(

(

V (0)− V ∗
)

√

gQ
γ I0

)

. (2.7)If we assume that V (0) < V ∗ and √gQ/√γ I0 ≫ 1, we have α ≈ −π/2. Writing
gQ as the inverse of a membran resistan
e rm, the latter hypotesis be
omes
γ I0 rm ≪ 1, justi�ed by the fa
t that membranes have resistan
e of the orderof mΩ 
m2, the 
urrents are usually expressed in µA/
m2 and the voltages inmV.The equation (2.6) goes to a +∞ voltage in �nite time, re�e
ting the fa
tthat if we get too far from V ∗ the series expansion loses its meaning. Thus, toobtain a periodi
 dynami
s, an arti�
ial reset is ne
essary: if V (t) > Vthreshold,then V (t)← Vreset. With the same hypothesys on Vreset as the ones mentionedabove, we 
an assume V starts at −∞, peaks at +∞ and then is resetted ba
kat −∞.The most 
onvenient way to des
ribe this model is though a phase des
ription[32℄, with a res
aling and 
hanging of variables in the form

I0 ← I0
γ

gQ , t← t
gQ
γ C

, V =
√

I0 tan
θ

2
, (2.8)equation (2.6), in the α ≈ π/2 limit , is simpli�ed to:

θ(t) = 2
√

I0t− π; . (2.9)With this phase des
ription, the QIF model is often re�ered to as theta model.With the s
aling we used, the range in whi
h the theta neurons evolve their phaseis [−π, π) . In the literature the interval interval [0, 1) is also frequenntly used.As an example, in �gure 2.3, we plotted dV/dt versus V for INa,p+ IK model,using the same parameters as above, and we performed a quadrati
 �t of thepoints around V ∗ ≈ −60mV (in red).The behavior of a QIF neuron under a 
onstant positive 
urrent and under aquadrati
ally in
reasing 
urrent is shown in �gure 2.4 It 
learly follows a type 1ex
itation, thus being the simpler 
anoni
al spiking model for a type 1 neuron,and, for its analyti
ity, the most suitable for large s
ale network simulations[30℄.
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Figure 2.3: dV/dt versus V in the INa,p + IK model. The 
urve (2.5), 
orrespondingto a se
ond order expansion in the point V = V ∗, is �tted and plotted.

time (s)

c
u
rr

e
n
t 

(A
)

V
o
lt

a
g
e
 (

V
)

20 40 60 80

0.015

0.010

0.005

0.005

0.010

0.015

0 20 40 60 80

0.001

0.002

0.003

0.004

QIF model

Figure 2.4: An example of spiking a
tivity for a QIF neuron with dynami
s regulatedby (2.6) and parameters obtained 
onfronting (2.5) with the quadrati
 �t represented�gure 2.3



2.2 Network Dynami
s 372.2 Network Dynami
sThe system of our 
on
ern is a large, stati
, sparsely 
onne
ted pulse-
oupled neuronal network.We 
all the N elementary 
omponents of our system neurons. Ea
h of themhas a single degree of freedom: its trans-membrane potential V (t), whi
h variesdynami
ally depending on the ele
tri
 
urrent I(t) the neuron is subje
ted to.The dynami
s of neuron i is then given by a di�erential equation of the form:
dVi(t)

dt
= F (Vi(t), Ii(t)) . (2.10)If we use the QIF model, the F (V, I) is given by (2.5), but is important to noti
ethat what stated in this se
tion is valid in general for any one-parameter type 1neuron model, su
h as lea
ky integrate-and-�re neurons and possible variationson the theta model.A neuron is said to emit a spike when its internal variable rea
hes someparti
ular 
ondition (usually when it rea
hes a given Vthreshold potential). Inmost models, after the event, the potential de
reases again to a Vreset value. Thetimes when a spike is re
eived by neuron i are indi
ated as {ti1, ti2, . . . , tiNspi

i

},
N spi

i being the total number of su
h events.At this point we need to de�ne the synapti
 
onne
tion matrix J ij : it es-tablishes whether the neuron j is 
onne
ted to i, the nature of its 
onne
tion(ex
itatory or inhibitory), and its strength. The presynapti
 and postsynapti
neurons sets are de�ned so that: pre(i) := {neurons j | j is 
onne
ted to i }and post(i) := {neurons j | i is 
onne
ted to j }.In our model, when some neuron j∗ emits a spike, it inje
ts to all neurons of thepost(j∗) set a 
urrent waveform, with intensity proportional to the 
onne
tionstrength and shape given by a stereotypi
 fun
tion ζ(t), assumed to be the samefor all neurons.Thus we 
an write the 
urrent re
eived by a single neuron as the sum of anexternal 
omponent Iexti (t) plus the 
ontribution of the internal dynami
s fromits presynapti
 set, in the form:
Ii(t) = Iexti (t) +

∑

j∈pre(i)Nspi
i
∑

p=1

J ij ζ(t− tpj ) . (2.11)We assume that ζ(t) has the properties:
ζ(t) = 0 for t < 0 , ζ(t) ≥ 0 for t ≥ 0 ,

∫ +∞

−∞

dt ζ(t) = 1 . (2.12)The 
onne
tions given by J ij are not symmetri
, so that the pre and post-synapti
 sets of a given neuron are, in general, di�erent, but they are 
ostantin time, making the network stati
. The strengths may vary, depending on thepopulation of the 
onne
ted neurons - ex
itatory or inhibitory. Further 
onsid-erations about the synapti
 matrix, its values, and the impli
ations on networkdynami
s will be done in the next part.



38 2 ModelBasi
ally The network evolves 
ontinuously in time, free of internal inter-a
tions, with every neuron subje
ted only to external 
urrents, until some jneuron rea
hes the Vthreshold and �res. Then all the neurons in the post(j) setwill 
hange their dynami
s due to the f -shaped inje
tion of 
urrent from j, withsign and strength stated by the J matrix.We should mention that, to keep the system biologi
ally meaningful, we needthe de
ay of ζ(t) to be on a times
ale mu
h lower than the average intervalbetween two spikes of the same neuron: in the des
ribed model the 
urrentsinje
ted by a single neuron, if too near in time, would just sum up, in 
on-trast with the well-know invarian
e of the neuron's a
tion potential and to thepresen
e of a refra
tory time.For this reason, and taking into a

ount the properties (2.12), we will laterapproximate ζ(t) with a Dira
 delta fun
tion.2.3 The Balan
ed StateAs mentioned in the introdu
tion, the physi
al system we are 
onsidering forour network model are the pyramidal neurons of the neo
ortex.Between the �fties and the early sixties, ele
trophisiologi
al and data anal-ysis te
hologies permitted measures on the potential of single living neuronal
ells. In parti
ular it was widely a

epted that the spiking a
tivity of pyrami-dal neurons, in the regime we are interested in, 
an be seen as a sto
hasti
,stationary point-pro
ess [33℄. From many in vivo observations on the a
tivityof 
orti
al neurons, and measures of the time between two 
onse
utive spikes,the inter-spike interval or ISI, performed on di�erent animals, resulted that thespiking events are, with good approximation, nearly independent one another,thus following approximately the Poisson point-pro
ess statisti
s. This resultsin an exponential distribution of the ISI.The balan
ed state model [34℄ has the purpose of explaining and reprodi
ingthis behavior. The fundamental idea of the model is that the net potential ofea
h neuron, due to the signals 
oming from its presynapti
 set, is 
onstantlybalan
ed in a near-threshold 
ondition by the intrinsi
 net dynami
s. When theinput, due to weak 
orrelations, is not averaged out, it 
auses the neuron to�re. With this me
hanism the sensitivity and the rapidness are mu
h greaterthen they would be for a neuron laying in its resting potential. The weak
orrelation guarantees that spikes very near in time 
ome mostly from neuronsvery s
ar
ely dependent between ea
h other, so that the total spike train hasthe desired stru
ture of a Poisson point pro
ess.After this model was introdu
ted, numerous experiments 
on�rmed it with in-vivo measures on di�erent animals. Just to 
ite a few: in-vivo measures on theinta
t neo
ortex of ferrets [35℄, on the rat's sensorimotor 
ortex (in the area that
ontrols the whiskers) [36℄, and in the spinal 
ord of audult turtles[37℄, provedthat the spontaneous balan
ing between ex
itation and inhibition is fundamen-tal in regulating the dynami
s of the neurons.To mimi
 this model, we use for our pulse-
oupled network the topologi
alstru
ture of random graph, in whi
h every node has, on average, K 
onne
tions



2.3 The Balan
ed State 39to other nodes randomly 
hosen. The fundamental 
ondition impli
it in all ourstatisti
al studies is:
N ≫ K ≫ 1. (2.13)Su
h stru
ture is obtained by de�ning the synapti
 matrix in the form.

J ij :=

{Jαβ , with probabilityK/N
0, with probability (1−K/N)

(2.14)The value and sign of Jαβ depends on whi
h population the neurons i and
j belong to. If we 
onsider both ex
itatory E and inhibitory I neurons wehave four possible values: JEE , JEI , JIE , JII . The external 
urrent will beassumed 
onstant in time and equal for all members of the same population:
Iexti (t) ≡ Iextγ , γ = {E, I}.To preserve the s
alability of the system we impose the requirements:Jαβ ∝ 1√

K
and Iextγ (t) ∝

√
K . (2.15)This is physi
ally equivalent to res
aling the Vthreshold of a √K fa
tor, as to saythat, in our weakly 
orrelated model, the minimum number of inputs a neuronrequires for a sensitive 
hange in its dynami
s is proportional to the square rootof the total 
onne
tions, and not to all of them.We will now show that, with this 
hoi
e, the time averaged �ring rate of aneuron is K-independent. For time average and population average we use thenotations:

< •(t) >t :=
1

T

∫

dt •(t) and [•i]i :=
1

N

N
∑

i

•i . (2.16)The average �ring rate for neuron i is then: ν̄i = 1/ 〈ISIi〉t.For now we restri
t ourselves to a system 
omposed only by inhibitory neuronsand subje
ted to a positive external 
urrent:
Iextγ (t) = IextI =

√
KIe ;

J ij = JII = − J0√
K

when di�erent from 0 . (2.17)We start 
al
ulating the 
urrent as given by equation (2.11), averaged overtime and neuron ensemble. The external term, being 
onstant, is not 
hanged.Looking at the 
onditions (2.12), we 
an say that for long times the se
ond termwill depend on the total 
onne
tions, their strength and how often, on average,the pulse is re
eived. This leads to the result:
[〈Ii(t)〉t]i ≈ I

ext
I −K J0√

K
ν̄ =
√
K(Ie − J0ν̄) . (2.18)A more rigorous 
al
ulation is performed in appendix A.We now take into 
onsideration the term (Ie−J0ν̄) in the K →∞ limit, withthe assumption that N ≫ K is still valid, so that the statisti
al stru
ture ispreserved.



40 2 ModelIf (Ie − J0ν̄) < 0, the average 
urrent given by (2.18) will go to −∞ forin
reasing K. But a high negative 
urrent means high negative polarization:the neurons would stop �ring and ν̄ → 0. Sin
e both Ie and J0 are positive
onstants, this would lead to (Ie−J0ν̄) > 0, 
ontrary to the starting hypothesis.If we start with (Ie − J0ν̄) > 0, for the same 
onsiderations as above, theneurons would be inje
ted with a strong positive 
urrent, �ring with higher andhigher frequen
y. For very large ν̄ we then have, (Ie − J0ν̄) < 0, 
ontradi
tingthe hypothesysTherefore the limit must be 0, leading to the result:
ν̄ =

Ie
J0

for K →∞; (2.19)while, to keep the average 
urrent �nite, (Ie − J0ν̄) = O(1/√K) in the large Klimit.In a 
ase of di�erent populations, the mean 
urrent (2.18) would in
lude theaverage of the di�erent strengths, weighted on the respe
tive populations, in-stead of −J0. If su
h value is negative, the proof doesn't 
hange; if positive,we would have a positive external 
urrent with overall positive intera
tions,whi
h would lead to the loss of large-K s
alability and to an unnatural networkdynami
s.The result is that, with the res
aling of 
urrents and 
onne
tion strengthsgiven by (2.17), and the requirement of an average negative net 
urrent 
ontri-bution from the network, we 
an build a neural network with s
ale-free statisti
alproperties, whi
h we 
an study in the limits N →∞, K →∞, N ≫ K.2.4 Model Ar
hite
tureTo to simplify our problem we use a phase des
ription of the neurons, 
hoosinga phase map of the form
U : [Vreset, Vthreshold]→ [θmin, θmax] , smooth and monotoni
ally in
reasing.The phase of neuron i at time t is then:

θi(t) = U(Vi(t)) .The interval [θmin, θmax] 
an be arbitrarly 
hosen. In our parti
ular 
hoi
e forthe QIF model will be [+π, −π].We now de�ne a fun
tion for the 
omplete time evolution followed by thephase of a neuron whi
h gets no signals from the network: the unperturbed timeevolution fun
tion.
ψ : [0, tmax]→ [θmin, θmax]; (2.20)it is assumed to be monotoni
, smooth and invertible, as well, and is derivedfrom the dynami
s of the spe
i�
 neuron model, taking the time evolution ofa neuron whi
h starts at Vreset and doesn't intera
t with the network until itrea
hes its threshold. If we redu
e to 0 the internal intera
tions, we impose that

V (0) = Vreset and we de�ne tmax so that V (tmax) = Vthreshold, then:
ψ(t) := U(V (t)) , t ∈ [0, tmax] (2.21)



2.4 Model Ar
hite
ture 41
Figure 2.5: Times 
onsidered for the mappingIf we have a phase at a spe
i�
 time θi(t0 +∆t) the value it has after the timeinterval ∆t, on the 
ondition it gets no perturbations, is then:

θi(t0 +∆t) = f(θi(t0),∆t) := ψ
(

ψ−1(θi(t0)) + ∆t
)

. (2.22)For the reasons stated on page 38, we assume that the 
urrent inje
tion fun
-tion ζ(t) 
an be reasonably approximated by a Dira
 delta fun
tion. The net-work 
urrents, given by the se
ond therm of (2.11) are then pulses, whi
h 
ausestep-like 
hanges in the potential proportional to the 
onne
tion strengths J ij ,given by (2.14).The fun
tion whi
h gives the resulting phase a moment after su
h inje
tion is
alled phase transition 
urve and has the form:
θi(t

+
s ) = g(θi(t

−

s )) ;where t−s and t+s are the times right before and right after the re
eption of thespike by i neuron. We 
an express the phase transition 
urve in terms of thephase map as:
g(θi(t

−

s )) = U (U−1 (θi(t
−

s )) + J ij) ; (2.23)where the presynapti
 spiking neuron has index j.Finally we need to know how long it is until a neuron of given phase θi(t)rea
hes the threshold value +π in the unperturbed evolution. The spiking timefun
tion is de�ned as:
∆tspi = h(θi(t)) , so that: θ(t+∆tspi) = θmax . (2.24)It 
an be derived in terms of ψ(t) starting from (2.22):

f(θi(t0),∆tspi) = ψ
(

ψ−1(θi(t)) + ∆tspi) = θmax;
ψ−1(θi(t)) + ∆tspi = ψ−1(θmax) ;

h(θi(t)) := ψ−1(θmax)− ψ−1(θi(t0)) .

(2.25)The 
onvention that we use to index the neurons in a given time interval ∆tis the following:
{i} = {neurons} ; j∗ = the neuron whi
h spikes in ∆t ;

i = i∗ ⇒ j∗ ∈ pre (i) ; i 6= i∗ ⇒ j∗ /∈ pre (i) .



42 2 ModelNamely the i = i∗ neurons re
eive the signal form the spiking j∗ neuron, whilethe i 6= i∗ neurons are unperturbed. Using our formalism we 
an �nally writethe phase map, de�ned as the fun
tion whi
h maps the phase of a given neuronfrom the moment immediately after a spike ts to the time immediately after thenext spiking event (by neuron j∗) ts+1, as represented in �gure 2.5 .
θi(ts+1) =















θmin , if i = j∗ ;

f(θi(ts), ts+1 − ts) = f
(

θi(ts), h(θj∗(ts))
)

, if i 6= i∗ ;

g
(

f
(

θi(ts), h(θj∗(ts))
)

)

, if i = i∗ .

(2.26)The equations 
an be written expli
itly in terms of the phase map and the un-perturbed time evolution fun
tions. The j∗ ∈ pre(i) 
ase, for example, be
omes:
θi∗(ts+1) = U

(

U−1
(

ψ
(

ψ−1(θi∗(ts)) + ψ−1(θmax)− ψ−1(θj∗(ts))
)

)

+ J i∗j∗

)

.(2.27)Computationally, starting from timestep ts, we sele
t the neuron 
losest tospiking, i.e. the one with the highest phase, and we 
ompute ea
h phase tothe moment after the new spike, using equations (2.26). Then we sele
t thehighest phase and we iterate the pro
ess. In su
h a model the time dependen
yis impli
it: the interspike intervals are not �xed steps, but vary a

ording tothe spiking times of single neurons, 
al
ulated with ma
hine pre
ision. Thisquali�es our network simulation as event based.2.5 Equations for a QIF NetworkNow we restri
t ourself on a QIF model, expressing expli
itly and analyti
ally allthe equations de�ned above. the result is the ba
kbone of all the 
omputationallarge s
ale simulations performed in our work.In the QIF model the dynami
s is given by equation (2.5), with the approxi-mated value for α. The 
urrent is assumed to have the form of equation (2.11),with external 
urrents 
onstant in time and delta-shaped network pulses. Forsake of simpli
ity we assume V ∗ = 0, and we res
ale the I0 and t variables asin (2.8) In absen
e of pulses, the solution is:
Vi(t) =

√

Iexti tan

(

√

Iexti t− π

2

)

. (2.28)The phase des
ription we are using, as alredy mentioned in se
tion 2.1 is:
UQIF(Vi(t)) = θi(t) = 2 arctan

Vi(t)
√

Iexti

. (2.29)It has θmin = −π and θmax = π. The unperturbed time evolution fun
tion, asdes
ribed by (2.21), is then:
ψQIF(t) = 2

√

Iexti t− π . (2.30)The evolution of a neuron with a phase des
ription 
an now be derived from(2.22):
fQIF (θi(t0),∆t) = θ(t0) + 2

√

Iexti ∆t . (2.31)
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Figure 2.6: Times 
onsidered for the mapping in the 
alulation of the Ja
obianThe spiking time fun
tion 
omes from (2.25):

hQIF(θi(t)) = π − θi(t)
2
√

Iexti

(2.32)Finally, the phase transition 
urve is inferred from (2.29) and (2.23).
gQIF(θi(t−s )) = 2 arctan

(

tan

(

θi(t
−

s )

2

)

+
J ij∗
√

Iexti

)

. (2.33)2.6 Cal
ulating the Ja
obianIf the system is 
omposed by N neurons, we 
an des
ribe the phases at a giventime de�ning the N dimensional ve
tor
θ(t) = (θ1(t), θ2(t), . . . , θN(t))The phase map is su
h as F(θ(ts)) = θ(ts+1). The Ja
obian matrix D(t)represents the linearized version of F , and gives the �rst order 
orre
tion in
ase of small phase perturbation:

F(θ(t) + ǫ δθ) ≈ F(θ(t)) + ǫD(t) δθ .It is important to noti
e that a perturbation in phases will result in a shift inspike times, therefore we need to de�ne a slightly di�erent phase map to takethis shift into a

ount. Our strategy 
onsists in shifting the times 
onsidered forthe mapping of an interval δ, assumed to be bigger than the shift in spiking times
aused by the perturbation. As the perturbation tends to 0 we will eventuallygo in the δ → 0 limit. The interval we are 
onsidering is shown in �gure 2.6,the steps will be:
• start with phases at time ts + δ;
• 
al
ulate new phases at next (perturbed) spiking time;
• evolve the system furtherly, till time ts+1 + δ.In this 
ase the time ts, ts+1 are 
onsidered as independent from phases. Theywill turn into the a
tual spiking times in the small perturbation limit.



44 2 ModelThe phase map is thus a little more stru
tured than (2.26), with the form:
θi(ts+1 + δ)=



























f
(

θmin, ts+1 − ts − h(θj∗(ts + δ)
)

, if i = j∗ ;

f(θi(ts + δ), ts+1 − ts) , if i 6= i∗ ;

f
(

g
(

f
(

θi(ts + δ), h(θj∗(ts + δ))
)

)

, ts+1 − ts − h(θj∗(ts + δ))
)

,if i = i∗ .(2.34)Using this perturbed map, we 
an de�ne the Ja
obian matrix elements as:
Dij(ts) = lim

δ→0

∂θi(ts+1 + δ)

∂θj(ts + δ)
(2.35)Looking at the map dependen
ies, we 
an infer that the nonzero elements arethe diagonal ones, i.e. j = i, and the derivations with respe
t to the phase of apresynapti
 spiking neuron, espressed by the 
onditions: j = j∗ AND i = i∗.As an example, we show the expli
it 
al
ulation of a diagonal element su
h that

i = i∗ .For simpli
ity of notation the δ → 0 limit is omitted and θi∗:= θi∗(ts+δ),
θj∗:= θj∗(ts + δ) .

∂

∂θi∗
f
(

g
(

f(θi∗ , h(θj∗))
)

, ts+1 − ts − h(θj∗)
)

=

∂θf(θ, ts+1−ts−h(θj∗))
∣

∣

∣

θ=g(f(θi∗ ,h(θj∗)))
∂θg(θ)

∣

∣

∣

θ=f(θi∗ ,h(θj∗ ))
∂θf(θ, h(θj∗))

∣

∣

∣

θ=θi∗The f , h, g fun
tions 
an be derived from the phase map and the unperturbedtime evolution fun
tion, a

ording to, respe
tively, (2.22), (2.25),(2.23). Sin
ewe are in a QIF model we 
an write them expli
itly, using the (2.31), (2.32),(2.33), and �nd an analyti
al solution.We have ∂θf
QIF(θ,∆t) = 1, the only 
ontribution 
omes then from the

∂θg
QIF(θ) derivative, 
al
ulated in point θ = fQIF(θi∗ , h(θj∗)) = π + θi∗ − θj∗ :

∂θg
QIF(θ)∣∣∣

θ=π+θi∗−θj∗
= 2

1 + tan2
π+θi∗−θj∗

2

1 + (tan
π+θi∗−θj∗

2 +
Ji∗j∗√

Iext
i∗

)2
.From (2.17) we have J i∗j∗/

√

Iexti∗ ∝ K−3/4. For large K we 
an therefore writea �rst order approximation, with the result:
Di∗i∗(ts) = 2

(

1 +
J i∗j∗
√

Iexti∗

sin
(

π + θi∗(ts)− θj∗(ts)
)

)

=

= 2

(

1 +
J i∗j∗
√

Iexti∗

sin
(

θi∗(ts)
)

)

+O
(

(

π − θj∗(ts)
)

cos
(

θi∗(ts)
)

)

.(2.36)The last passage is justi�ed by the fa
t that we expe
t θj∗(ts) to be 
lose to π,being the phase of the neuron 
losest to spiking.For i 6= i∗ the resulting diagonal element is simply:
Dii(ts) = ∂θf

QIF(θ, ts+1 − ts)
∣

∣

∣

θ=θi
= 1; (2.37)
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( )0

0

0

0
0

0

0
0Figure 2.7: Ja
obian matrixIn the i = j∗ 
ase we obtain:

Dj∗j∗(ts) = ∂∆tf(θmin,∆t)∣∣∣
∆t=ts+1−ts−h(θj∗ )

(−1) ∂θh(θ)
∣

∣

∣

θ=θj∗
= 1 . (2.38)Finally, when deriving a postsynapti
 neuron by θj∗(ts) phase, we get the out-of-diagonal elements:

Di∗j∗ =

√

Iexti∗

Iextj∗
(1 +Di∗i∗(ts)) . (2.39)The Ja
obian matrix has therefore a nonzero diagonal with Di∗i∗ elements
orresponding to the postsynapti
 neurons, a series of ones in the remaining

(i, i) and (j∗, j∗) lo
ations, �nally, out of diagonal, 
on�ned in the j∗th 
olum,we have aDij∗ nonzero element for ea
h i ∈ post(j). A s
heme of su
h stru
tureis shown in �gure 2.7.While in a general Ja
obian N2 elements should be 
omputed, in our systemthe nontrivial values are of the order of K, whi
h, together with the simplemodel we used, makes the simulation of large s
ale networks possible.
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Chapter 3Computation and ResultsIn this 
hapter the simulation pro
edure is des
ribed in detail, and the a
hievedresults are reported and analyzed.The �rst part summarizes the stru
ture of the simulating program in use,des
ribes the input parameters and the elaboration performed on the output.Afterwards we analyze the forward evolution of the neural network, i.e. thesu

ession of spikes and phases of every single neuron in time. We probe to whi
hextent the statisti
 resembles a Poisson point pro
ess, and we try to quantifythe syn
hroni
ity of our model. After that, from the Lyapunov spe
trum, weestimate the entropy and attra
tor dimension.In the next se
tion the system is evolved ba
kwards and the Lyapunov ve
-tors are 
al
ulated. A 
he
k on the 
onvergen
e of the ve
tors is performed;after some 
onsiderations on the evolution and the general appearan
e of theve
tors, we examine the angles between them, drawing some 
on
lusions on thehyperboli
ity of the dynami
al system.The ve
tors are subsequently used to 
hara
terize the parti
ipation of sin-gle neurons to the global dynami
s of the system. This is a

omplished by
onfronting the average parti
ipation ratios of ve
tors and the 
haos index 
om-ponents with the spiking frequen
ies asso
iated to single neurons.The last se
tion takes into 
onsideration possible optimizations to the simu-lation and further analyses on the system.3.1 Network ComputationThe neural network simulation program, written in C++, is the slight adapta-tion of the 
ode used by M. Monteforte for his works [8, 9℄. The inputs andtheir ranges are des
ribed in table 3.1The 
onne
tion strengths J0 are all �xed on 1, while the external 
urrent Ie isapproximately 
al
ulated from (2.19) and then �ne tuned with several iterations,until the average neuron frequen
y is 
lose enough to the input parameter f .The parameter ssk 
an be identi�ed with the k introdu
ed at page 22: it is thenumber of single steps we group together in a single GS (and ve
tor) iteration.The time length of the simulation is given by:
T =

S ssk
f N

. (3.1)47



48 3 Computation and ResultsTable 3.1: Arguments for the simulating program.Parameter Des
ription range
N Number of neurons 200− 1000

K Average 
onne
tions per neuron 20− 100

S Timesteps to 
ompute 3000 − 10000

f Average neuron frequen
y 1 Hz
SAl Timesteps for the alignment of the ve
tors 8000 − 15000

ssk Iteration of system and GS basis with noQR de
omposition 1− 5

nI Total iterations with di�erent network ini-tializations 1− 300The fun
tioning of the simulation 
an be divided into three modules: onefor the network evolution, the se
ond for the 
omputation of the Lyapunovspe
trum, and the third devoted to the ve
tors. Their s
hemati
 des
ription
an be found in the appendix �gures B.1 and B.2.The �rst module initializes and iterates the network. A 
onne
tion matrixwith a random graph stru
ture is 
reated, then a random phase between −πand π is assigned to ea
h neuron. The neuron 
losest to spiking is the one withthe highest phase. Its spiking time is 
al
ulated using (2.32), then the phases ofthe postsynapti
 neurons (given by the 
onne
tion matrix) are updated to theafter-signal state, a

ording to (2.33). Finally all phases are 
omputed to nextspiking time with equation (2.31), and the pro
ess is iterated.The se
ond module has the purpose of 
al
ulating the Lyapunov spe
trumand store the information ne
essary for 
omputing the Lyapunov ve
tors. Thepro
edure, already explained in se
tions 1.4 and 1.5, is shortly and operativelysummarized here.We initialize the Gram-S
hmidt basis with a set of N , N -dimensional randomorthonormal ve
tors, grouped in a matrix: Qs−1 = (q
(1)
s−1| . . . |q

(m)
s−1). The Ja
o-bian Ds−1 at the 
urrent state of the network is 
al
ulated a

ording to (2.36 -2.39), and the push-forward of the GS ve
tors is obtained via the multipli
ation

Ds−1 ·Qs−1 = Q̃s1 at this point the neurons and the Ja
obian are updated, andthis is repeated ssk times, as in (1.12). Then the resulting matrix undergoes aQR de
omposition, a

ording to equations (1.13): Q̃s = Qs ·Rs. Both matri
esare stored for the 
al
ulation of ve
tors, and the iteration 
an enter in the ssk
y
le again.At the end of the evolution, the Lyapunov exponents 
an be 
omputed usingthe stored data. From {Rs}jj = ||u(j)
s || and equations (1.9) and (1.10), we have:

λ(j) =
1

[∆t]s

1

S

S
∑

s=1

log{Rs}jj =
1

T

S
∑

s=1

log{Rs}jj ; (3.2)The last module 
omputes the time evolution of all Lyapunov ve
tors. It mustbe ne
essarily 
alled after the end of module 2, so that its initial time, s + 1,
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backward iteration

Figure 3.1: Cal
ulation of Lyapunov ve
tors
orresponds to the �nal step rea
hed by the system, and it pro
eeds ba
kwards.Firstly, the matrix of ve
tor 
oe�
ients in the GS basis, Cs+1, is initializedas a triangular random array with normalized 
olumns. The previously stored
Rs+1 matrix is inverted, and the next Cs is 
al
ulated as the normalized form of
C̃s = R−1

s+1Cs+1. The norms are stored as lo
al Lyapunov exponents : pro
essedwith an equation equivalent to (3.2), they give a ba
kward version of globalLyapunov exponents. Finally the ve
tors are 
al
ulated for every timestep usingthe GS basis saved at the 
orresponding instant:
v(j)
s =

j
∑

i=1

{Cs}ij q(i)
s . (3.3)The parameter SAl adds a 2SAl fa
tor to the number of iterations performedby the se
ond module: for the initial SAl steps the GS ve
tors are evolved butnot saved, while for the �nal SAl the C matri
es are iterated but no Lyapunovve
tors are 
al
ulated. This pro
ess is represented in �gure 3.1.Finally some 
onsiderations on memory usage should be done: of the totalrandom-a

ess memory allo
ated by the program, the largest amount is used tostore the triangular R matrix and the GS basis for every timestep. The savingof the R matrix is required also for the �nal SAl steps. The free memory neededthus amounts (in bytes) to:free_mem =

(

N(N − 1)

2
(S + SAl) +N2S

)

· 8 =
3N2S +N(N − 1)SAl

2
· 8 .(3.4)Combining the latter equation with (3.1), we infer that if we want to keep thetime length 
onstant, the memory usage grows as M ∝ N3. For N above 500,this rapidly 
auses a RAM shortage. In the �nal se
tion of the 
hapter futurepossible optimizations to over
ome this di�
ulty are 
onsidered.3.2 Output DataDepending on the data we are interested in, di�erent versions of the simulationare run. The simplest one is 
omposed only by module 1 and 2, and is usedonly to obtain the forward evolution of the system and the Lyapunov spe
trum.After a warm-up of SAl steps, for every further step, the time ts, the index of thespiking neuron j∗, and the phases of all neurons {θi(ts)} are saved on a binary



50 3 Computation and ResultsTable 3.2: Possible outputs of the program. s is the time index, j the order of theve
tor and i indexes the neurons.Name Value Des
ription
ts ts spiketimes
λ(j)(ts)

norms of Cs 
olumns lo
al ba
kward Lyap. expo-nents
〈cosαij(t)〉t

〈

v
(i)(t) · v(j)(t)

〉

t
time-averaged angles betweenve
tors

αmin(ts) minij{αij(ts)|λ
(i) > 0 ∧ λ(j) < 0} min. angle between exp. and
ontra
ting dire
tionsPR(j)(ts)





√

√

√

√

N
∑

i=1

(v
(j)
i (ts))

4





−1 Parti
ipation Ratio
c
(j)
i

1

S

S
∑

s=1

(v
(j)
i (ts))

2 
haos index (avg. of square
omponents)�le. The logarithms of the Rs matrix are 
umulatively added in aN -length arraywhi
h, divided by the last tS , gives the Lyapunov spe
trum. Not having thene
essity of storing the time series of big matri
es, the simulation requires mu
hless RAM, and runs relatively faster. In this way performing many iterations(nI = 100− 200) for longer times and larger networks is possible.To 
he
k the presen
e of errors and to perform the 
onvergen
e tests de-s
ribed in the next se
tion, we use another version of the program, whi
h savesand stores the 
omplete time evolution of ea
h Lyapunov ve
tor, derived fromequation (3.2); this requires the full amount of memory 
al
ulated in (3.4). Theoutput 
onsists in the N ×N × S double pre
ision array 
ontaining all ve
torsfor every timestep. Due to the big size of the output, the value of repetitions
nI is limited to 1.The last version of the program 
al
ulates the ve
tors, using the full amountof estimated memory, but, rather than saving the ve
tor themselves, pro
essesthem in di�erent ways, thus requiring less spa
e on the hard drive and makingmultiple iterations (30− 50) feasible. The output parameter list is in table 3.2.All values in the left 
olumn are sampled for ea
h of their indexes.3.3 Spike TrainWe start our analysis observing the time sequen
e of the pulses emitted by theneurons, i.e. the spike train of the network. Figure 3.2 depi
ts the spikes forthe �rst 50 neurons of a N = 200, K = 50 system. We know that the averagefrequen
y of the system is approximately 1 Hz per neuron, however it is 
learthat individual neurons may �re at very di�erent rates. Figure 3.3 shows thephase of two neurons taken from the same set. In a

ordan
e to what we expe
t,
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Figure 3.2: Sequen
e of spikes for the �rst 50 neurons of a N = 200, K = 20 network.the phase evolves with a 
onstant linear velo
ity given by the positive external
urrent, as in (2.9), it re
eives inhibitory pulses of varying intensity from thepresynapti
 neurons, �nally when π is rea
hed, a signal is emitted, and the phaseis instantly reset to −π. An example of frequen
y distribution for a N = 500,
K = 20 is represented in �gure 3.5 (b) .The �rst quantity we examine is the 
oe�
ient of variation (Cv) of the inter-spike intervals, it is de�ned, in general, as

Cv =
σ

|µ| ; (3.5)where µ is the average of our data-set and σ its standard deviation. For aperfe
tly Poissonian network we would have Cv = 1 [27℄.The values we have found for system of di�erent sizes and di�erent number of
onne
tions are plotted in �gure 3.4 (a). They are 
omputed averaging over 380repetitions for N = 200 networks, 300 repetitions for N = 300 networks, 100repetitions for N = 400 and N = 500, 70 for N = 700 and 20 for N = 1000. Itis 
lear that larger and more sparsely 
onne
ted networks tend asymptoti
allyto the ideal value of 1.Instead of 
onsidering the spike train of the network as a whole, we maywonder whether the a
tivity of a single neuron in the network follows nearlyPoissonian statisti
s or not. In �gure 3.4 (b) we have represented the distributionof the variation 
oe�
ients of single neurons, taken from several repetitions(nI = 100) on a N = 500, K = 20 network. The distribution tends toward one,with a mean of [Cv i]i = 0.73. This value is far from the one obtained from thenetwork as a whole, namely Cv = 0.94As a further proof of the fa
t that the pro
ess is nearly Poissonian, we showin �gure 3.5 (a) the distribution 
orresponding to P{ISI < t} for a N = 500,
K = 20 network (ISI is the inter-spike interval, i.e. the time between twopulses in the network). It is �tted with the 
urve (in red): y = 0.9979(5) +
0.9819(5) exp(−501(1) x). For a purely Poissonian pro
ess: P{ISI < t} =
1 − exp (−ν t). The frequen
y found with this �t is in very good agreement towhat we would expe
t in a network of 500 neurons with an average �ring rateof 1 Hz.
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Figure 3.3: Time evolution of the phase of neuron 4, with average spiking frequen
y
≃ 0.5 Hz (a) and neuron 24, with frequen
y ≃ 2.4 Hz (b) sele
ted from the set showedin �gure 3.2. Red triangles are drawn when spikes o

ur (and the value is reset to pi).Neurons evolve linearly as in (2.9), are instantly inhibited by other neurons, and arereset to −π after spiking.
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coeff of variation for single neuronsFigure 3.4: (a): 
oe�
ient of variation (3.5) for network of di�erent sizes N anddi�erent number of average 
onne
tions per neuron K (
olor). (b): distribution of Cv ifor single neurons in a N = 700 K = 20 network, 
al
ulated on nI = 70 repetitions
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Figure 3.5: (a): the probability P{ISI < t} follows very 
lose the 
urve expe
tedfor a Poissonian pro
ess: 1 + exp (−ν t) with a frequen
y 
orresponding to the overallfrequen
y of the system. (b): distribution of �ring frequen
ies for single neurons inthe same system.Finally �gure 3.5 (b) depi
ts the distribution of the frequen
ies for single neu-rons with the same network parameters as before. Although they average to 1Hz, their distribution shows a 
ertain spreading, almost tou
hing the frequen
ywe expe
t for a neuron with no inhibitory synapses, 
orresponding to ∼ 4.6Hzin the network 
onsidered.The broad inhomogeneity is another distin
tive 
har-a
teristi
 of the balan
ed state [34℄.To sum up, our model, although 
ompletely deterministi
 in its evolution, fol-lows 
losely the statisti
 of a Poisson point pro
ess. The dis
repan
y appears tode
rease as we approa
h our ideal limit of N ≫ K ≫ 1: many neurons, but veryweakly 
orrelated. As already mentioned in the introdu
tion, typi
al numbersfor 1 mm3 of neo
orti
al tissue are N ∼ 106 and K ∼ 104; therefore it is reason-able to assume that if our system rea
hed those parameters, its global statisti
swould be pra
ti
ally indistinguishable from an ideal Poissonian pro
ess. On theother hand, when we look at single neurons, we see that their spiking is not,in general, a renewal pro
ess: a 
lear sign, along with the nontrivial distribu-tion of frequen
ies, of the underlying 
omplexity of 
onne
tions and dynami
alinterplay between neurons.3.4 Colle
tive Dynami
sAnother interesting investigation on the network is represented by the 
olle
tivedynami
s of its neurons. As said before, neurons in balan
ed state should ideallybe 
ompletely asyn
hronous. From a simple observation of the spike train,in �gure 3.2, we would say the requirement is ful�lled. However, we saw inprevious se
tion that singular neurons are not Poissonian in general, while thedistribution of their frequen
ies is far from smooth. Therefore is not possible toex
lude the presen
e of some small degree of syn
hronization. Several methodsand measures have been developed to quantify this value.Following the example of other papers on pulse-
oupled network syn
hroniza-tions [38℄, we 
an use the order parameter, �rst introdu
ed by Y. Kuramoto, in
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r(t) :=

∣

∣

∣

∣

[

exp(iθj(t))
]

j

∣

∣

∣

∣

. (3.6)It 
an be shown [39℄ thatN →∞ independent os
illators would bring r(t) ≡ 0,while syn
hronized os
illators result in r(t) ≡ 1. Intermediate values 0 < r(t) <
1 represent a partial syn
hronization: some os
illators have a similar phase,while some others are independent.Another way to assess the syn
hroni
ity of a system is the measure of neuron
oheren
e [40℄.

χ2 :=
VAR ([θi(t)]i)

[VARi (θi(t))]i
=
〈([θi(t)]i−〈 [θi(t)]i〉t

)

2
〉

t
[〈

(θi(t)− 〈θi(t)〉t)
2
〉

t

]

i

; (3.7)where VAR(θi(t)) represents the varian
e for the time evolution of the phase ofthe ith neuron.This measure is the ratio between the variation of the average phase and theaverage variation of single phases. In a in
oherent state, in the ideal N → ∞,
T → ∞ limit, averaging on all phases would give [θi(t)]i ≈ 0 with very smallos
illations, thus χ2 ≈ 0. A perfe
t syn
hronization, with all equal phases,would 
learly result in χ2 = 1. The great advantage of the network 
oheren
eis that it depends only on variations of the phases, and not on possible netaverage value, moreover is mu
h less 
omputationally 
ostly than r(t).In �gure 3.6 (a) the measure of 
oheren
e is represented for di�erent net-work sizes. From a qualitative point of view, we see that the improvement indesyn
hronization follows the same trend a the 
oe�
ient of variation: largernetworks with neurons less 
onne
ted (thus less 
orrelated) show smaller levelsof syn
hronization.The 
ontinuous lines are �ts in the form α + βN−γ . It has been reported [9℄that χ2 ∝ 1/N . Although the data points fall well on the 
urve, the results are
γ = 0.75 for K = 20, γ = 0.71 for K = 50 and γ = 0.33 for K = 100. Thevalue γ = 1 
an be a limit 
ase, when 
onditions are 
lose to ideal (i.e. mu
hlarger networks weakly 
onne
ted). However the power law de
rease suggeststhat syn
hroni
ities are due to �nite-size e�e
t on the network, and the de
reaseof syn
hronization is more e�e
tive when neurons have fewer 
onne
tions.In �gure 3.6 (b) a sample of r(t) for a N = 500, K = 20 network is shown. Itso�set seems mu
h 
loser to 1 than we would expe
t, namely < r(t) >t= 0.486.This is due to the fa
t that, in a system like ours, the r(t) parameter is notwell suited to 
apture the global syn
hronization, as it is sensitive to the overallnet angle distribution. Due to the nonlinear instant inhibitions, phases tendto linger more on 
ertain ranges, so that they hardly average to zero. As a
he
k, we performed a 
omplete randomization on the ordering of the phases(bot for neurons and times), and re
omputed the order parameter, obtaining
< rrand(t) >t= 0.4660, far from the value r(t) ≃ 0 we would expe
t in 
ompletelyde
oupled systems.The bene�t found in the 
omputation of the Kuramoto order parameter isthat, as 
learly visible in �gure 3.6 (b), it reveals the a
tual frequen
y of theweak syn
hronization of the network. The period appears to depend only on K,while the di�eren
e in the amplitude reveals disordered ex
ursions from more
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Figure 3.6: Network 
oheren
e as de�ned in (3.7) and an example of r(t) (3.6)evolution in a N = 500, K = 20 systemsyn
hronized periods to almost 
ompletely desyn
hronized ones. The frequen-
ies found for K = 20, K = 50, K = 100 are, respe
tively: 4.8 ± 1 Hz, 6.7 ± 1Hz and 7.9± 1 Hz.3.5 Attra
tor Dimension and EntropyAt this point we 
an start the analysis of the Lyapunov spe
trum and of theinformation we 
an obtain from its analysis. The typi
al signature of deter-ministi
 extensive 
haos would be a Lyapunov spe
trum invariant of the systemsize: the values are on the same 
urve, but denser as the number of dimensionsin
rease [8℄.This seems to be the 
ase for diluted networks, as 
lear from �gure3.7 (a). Nevertheless �gure 3.7 (b) shows that the spe
trum shapes seem moredependent on the size as the 
oupling be
omes higher ( K = 100 ) . The e�e
ttends to de
rease for larger networks, as we 
an say 
onfronting the distan
ebetween N = 500 and N = 1000, with the separation between N = 200 and
N = 300. Qualitatively, this behaviour follows the same trend of the network
oe�
ient of variation: in
reasing the 
onne
tions 
ompromises the vi
inity tooptimal 
ondition, but the dis
repan
y is slowly regained as the network sizein
reases. In the end is reasonable to expe
t, as reported in [8, 9℄, that on verylarge network s
ales, su
h as N = 103 − 104, the spe
tra would always show agood superimposition.As reported in se
tion 1.6 the rate of entropy produ
tion for a SRB measureis given by Pesin identity:

h(µ) =
∑

λ(i)>0

λ(i) .For general measures the = sign be
omes an upper bond ≤.The information dimension 
omes from the Kaplan-Yorke 
onje
ture, men-tioned in se
tion (1.7) dimΛ(µ) = k +
λ(1) + . . .+ λ(k)

|λ(k+1)| ;
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Figure 3.7: Di�erent examples of Lyapunov spe
trum. The spe
tra for all the 
om-puted network sizes and K = 20 are shown in (a); in (b) the parameter is K = 100;in �gure (
) we �xed N = 500, and plotted the spe
tra for all values of K.From �gures 3.8 (a) and (b) we see that both h(µ) and dimΛ(µ) grow linearlywith N , as typi
al for extensive properties. The attra
tor dimension shows avery small growth for de
reasingK, re�e
ting the fa
t that the system is slightlyless syn
hronized. For the entropy this trend in mu
h marked: weakly 
onne
tednetwork produ
e less entropy as their Lyapunov spe
trum results a little more�attened. The data substantially 
on�rms what has already been found for abroader range of network dimensions in [8℄.Whether our ergodi
 measure is SRB or not, remains an open question. Inse
tion 3.7 we ta
kle the problem by giving an esteem of the hyperboli
ity ofthe dynami
al systems we are 
onsidering. As explained in the last part of
hapter 1 (see page 28) if a dynami
al system is hyperboli
 and satis�es thefurther requirement of having its periodi
 points dense on the attra
tor, we 
an�naturally� de�ne a unique SRB measure over it.3.6 Lyapunov Ve
tors Convergen
eBefore expressing any result or measure 
on
erning the Lyapunov ve
tors, it isfundamental to test their reliability from every possible perspe
tive. Firstly we
he
k the 
oin
iden
e between the Lyapunov spe
tra 
omputed in the ba
kwardand in the forward iterations, respe
tively from the normalization 
oe�
ientsof the the Gram-S
hmidt basis and of the Lyapunov ve
tors. Although lo
allydi�erent, when used to 
ompute the Lyapunov spe
trum they superimpose,as shown in �gure 3.9 (a). Figure 3.9 (b) shows how the quadrati
 deviation
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total repetitionsFigure 3.9: (a): superimposition of Lyapunov spe
tra 
al
ulated evolving the GSve
tors (in red) and the Lyapunov ve
tors (in bla
k). Figure (b) shows the quadrati
deviation for averages on an in
reasing number of iterations
∆λ2 = 1/N

∑N
j=1(λ

(j)FW − λ(j)BW)2 de
reases when the spe
tra are averaged overseveral repetitions with di�erent starting phases.Afterwards, we 
onsider the ve
tor invarian
e under di�erent initializationsof the starting random C matrix. Using the parameters SAll = 15000 and
ssk = 3, we 
ompute the full set of ve
tors in time v(j)(ts) for 6 di�erentrandom initial 
onditions on C . All ve
tors are normalized, thus we measuretheir variation using the angles. Taking the �rst simulation as a referen
e,and 
alling ṽ(j)(ts) the ve
tor 
al
ulated with 
hanged initial 
onditions, wemeasure: α(j)(ts) = arccos (v(j)(ts) · ṽ(j)(ts)).In �gure 3.10 the time averages of α(j)(ts) are plotted for every ve
tor, insystems of size N = 300 and N = 500 and with the 5 di�erent C initializations
oded by 
olors. Ve
tors are represented in abs
issa by their 
orrespondingglobal exponent. The �rst thing we noti
e is that ve
tors mostly do align in thesame dire
tion, but might have an opposite orientation: from the linearity of our
al
ulations is 
lear that if we initialize the system with C̃s+1 = −Cs+1 we willget exa
tly the same evolution in time, ex
ept all ve
tors will be inverted. Su
h
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Figure 3.10: Time average of the angles between referen
e Lyapunov ve
tors, andve
tors 
al
ulated starting with 5 di�erent random initializations (
olor 
oded). (a)
N = 300, K = 50; (b) N = 500, K = 50.symmetry 
omes from the fa
t that Lyapunov ve
tors en
ode only dire
tions,while their orientation depends on the random starting 
onditions. For a perfe
t
onvergen
e, we would see two straight lines in 0 and π; unfortunately for thenetwork of bigger size, it seems that in a 
ertain range, roughly in the se
ondhalf of the spe
trum, some ve
tors do not 
onverge. They represent a smallfra
tion: with a ±5◦toleran
e they are ∼ 9% of the total.Some examples of the time evolution of the α(jbad)(ts) angles are shown in�gure 3.11. Apparently, at least for some of them, there is 
onvergen
e aftersome time. If we take into 
onsideration only the �rst 10 se
onds of our data-set,the �bad ve
tors� for N = 500 de
rease to the ∼ 8% of the total. For a SAl longenough we would expe
t that all ve
tors eventually align, but the 
omputationwould not be feasible in terms of memory and time.Our next step is 
he
king the time 
onvergen
e of the ve
tors. In a N = 500,
K = 50 network we 
onfronted the ve
tor angles between a standard iteration
SAll = 15000 (
orresponding to an evolution of ∼ 90 se
onds), and iterationswhere the last SAl steps are 
ut of varying lengths, ranging from 100 to 14500.A s
heme of the pro
ess is represented in �gure 3.12.In �gure 3.13 (a) the angle averaged in time is represented. The 
olors 
odefor di�erent extension of the 
al
ulation. It is 
lear that when SAl is negligible,there is no 
han
e of proper alignment. In
reasing its value has a quite positivee�e
t, but, of 
ourse, we 
annot expe
t any improvement from the �bad ve
tors�pinpointed in the previous test. Figure 3.13 (b) shows the angle evolution forthe ve
tor 
orresponding to the zero exponent. The fa
t that it loses alignmentfor longer times is indi
ative of its small instability.Figure 3.14 (a) shows the average angles for all the time evolutions we sampled.It is 
lear that ve
tors nearer the �rst and the last exponents 
onverge fasterthan the group in the middle. Figure 3.13 (b) shows some examples taken from(a), while in (
) we see the ratio of ve
tors with a misalignment bigger than 5◦.The time length we 
hose is enough to limit them to ∼ 10% of the total.In 
on
lusion, we have found that most ve
tors, ex
ept a sparse fra
tion in-
reasingly small for larger SAl, 
onverge lo
ally in time. This unstable ve
tors
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Figure 3.11: Angle evolution in time for some ve
tors not 
onverging properly, se-le
ted as the outliers in �gure 3.10. Upper part N = 300, K = 50, lower part N = 500,
K = 50.

Figure 3.12: Convergen
e test performed with a redu
tion on the total 
omputedtime.
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Figure 3.13: Convergen
e test performed 
utting the total 
al
ulated time for a
N = 500, K = 50 system. (a) shows the time average of angles between ve
tors forsome of the durations 
onsidered (
olor 
oded). (b) the angle in time for ve
tor 45,
orresponding to a ≃ 0 global exponent: a 
ertain instability is dete
ted.
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Figure 3.14: Convergen
e test performed 
utting the total 
al
ulated time for a
N = 500, K = 50 system.(a): average angles for all the 
onsidered time evolutions.(b): horizontal se
tions of (a) for some ve
tors. (
): the ratio of ve
tors with amisalignment larger than 5◦.
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Figure 3.15: (a) - lower right: time averaged 
osine of the angles between all ve
tors;upper left: 
ir
ular varian
e (3.9) of the angles. (b) Average over nI = 60 iterations.(
) and (d) are magni�
ations of (a) and (b) around the 0 exponent.seem to span a pre
ise interval of global exponents. A possible explanationfor the major stability of the �rst group is that the subspa
e 
onsidered has asmaller dimension, moreover no alignment is required for the �rst ve
tor, sin
eit is taken dire
tly from the Gram-S
hmidt basis. Instead exponents greaterthan −35 s−1 appear a little more spa
ed, this, together with the strong ba
k-ward expansion ratio, should a

ount for their faster 
onvergen
e. Che
kinghow the time required for an optimal 
onvergen
e varies for di�erent networkparameters would be an interesting dire
tion for further analyses, but the s
opeof the present se
tion is only to assess the invarian
e and the robustness of theLyapunov ve
tors 
al
ulated with the ba
kward iteration algorithm.3.7 Angles and Hyperboli
ityWe start the analysis of the ve
tors with an examination of the angles betweenthem. For a N = 500, K = 20 system, �gure 3.15 (a) shows, in the lower rightpart, the time average of the 
osine of the angles between all ve
tors:
〈cosαij(t)〉t :=

〈

v(i)(t) · v(j)(t)
〉

t
. (3.8)
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Figure 3.16: The abs
issa represents the average angles between a single ve
tor andall the others, the ordinate is the di�eren
e between Lyapunov exponents asso
iatedto the network. (a) ve
tor 15, Lyap. exp 4.3 and (b) ve
tor 300 exp -24.5 . Figures(
) and (d) are magni�
ations of, respe
tively (a) and (b). The network parametersare N = 500 and K = 20.The upper left part is the 
ir
ular varian
e: a measure on how angles deviatein time from their mean values.
σ2(αij) := 1−

√

(

〈sinαij(t)〉t
)2

+
(

〈cosαij(t)〉t
)2
. (3.9)The ve
tors are referred to their 
orresponding global Lyapunov exponent,rather than to their index. Figure 3.15 (
) shows an enlargement of the same�gure, limited to the ve
tors around the zero exponent. Figures 3.15 (b) and(d) represent averages over 60 repetitions of the same system.Our results is that the angles of neighboring ve
tors have a higher variabilityin time and are, on average, more tangent to their 
lose neighbours. For a morequantitative evaluation, �gures 3.16 (a) and (b) depi
t two examples of theaverage angle between a single ve
tor and all the others, versus their �distan
e�,i.e. the di�eren
e in the Lyapunov exponents. The 
hosen ve
tors are the 15thand the 300th. Distant ve
tors are orthogonal, but the separation is good also fornear ones, (the s
ale starts from 45◦); moreover, the 
losest neighbours (i.e. thepoints around 0 ) have higher angles than the 2nd order neighbours: it appearsthat ve
tors asso
iated to similar exponents are nevertheless quite autonomousin dire
tion. The e�e
t is more marked for negative exponents, as shown in�gure 3.16 (
), �nally in �gure 3.16 (d) the small peak on the right 
orrespondsto ve
tors 46 and 47 : the ve
tors with nearly zero exponent tend to be moreorthogonal to the rest, as also visible from the slightly lighter lines in �gures3.15.The same graphs, plotted for networks of di�erent size N and average 
onne
-tions K, look very similar, although the Lyapunov spe
trum undergoes slight
hanges in shape and in density. The re
ipro
al angles between the ve
tors, atleast when averaged on large times, appear an invariant property of the dynam-i
al system.As already stated at the end of 
hapter 1 (see page 28), the 
ondition for adynami
al system to be hyperboli
 is that the tangent spa
e 
an be de
omposedas the dire
t sum of expanding and 
ontra
ting modes. The Lyapunov ve
tors,
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Figure 3.17: (a): minimum angle between 
ontra
ting and expanding dire
tions intime (3.10), for a N = 500 K = 20 network; (b): asso
iated distribution
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min. angle (rad)Figure 3.18: Minimum angle distributions averaged over several repetitions. Upperrow: N = 500, nI = 60, K = 20, 50 and 100; lower row: N = 200, nI = 200, K asabove.
oding the dire
tions of expansion and 
ontra
tions, are very good 
andidatesto a

ess the hyperboli
 properties of the system. For example in [41℄ it isshown that, for generi
 nonlinear dissipative partial di�erent equations, they 
anbe used to dis
riminate between physi
al modes, important for the dynami
alevolution, and nonphysi
al modes, rapidly de
aying in time.We 
onsider all the ve
tors 
orresponding to positive global exponents asexpanding modes, while ve
tors de
oding negative exponents as 
ontra
tingones. A quantitative measure of the de
oupling is then given by the least of theangles between 
ontra
ting and expanding dire
tions.
αmin(t) = min

ij
{αij(t)|λ(i) > 0 ∧ λ(j) < 0} . (3.10)This quantity is measured for ea
h timestep of the system evolution. Figure3.17 (a) shows an example of αmin(t) for a N = 500, K = 20 network; (b)represents its statisti
al distribution. Figure 3.18 represents the minimum angledistributions averaged over several iterations for di�erent network parameters.In the upper part we have N = 500 and K = 20, 50, 100. In the lower part
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N (# neurons)Figure 3.19: Average and standard deviation of minimum angles (3.10) distributionsfor all the 
omputed network parameters.
N = 200 and K as before. We made 60 iterations on the N = 500 network, and200 for N = 200. To perform the overall distribution, a 
orre
tion is introdu
ed:namely we ex
lude all angles involving the ve
tor with the exponent 
losest tozero, assumed to (almost) 
orrespond to a dire
tion parallel to the motion,neither expanding not 
ontra
ting and so not interesting for our esteem. Theratio of those angles in
reases with K and de
reases with N . Without this
orre
tion, the distributions K = 50 and K = 100 would have a maximum at0. The two rows are asso
iated to networks of quite di�erent size, but theirshapes look surprisingly similar. However, with a 
loser look, we 
an see thatthe N = 500 distributions are a little more peaked with respe
t to the N = 200.The time average and the standard deviation for systems of di�erent size areplotted in �gure 3.19. There is, apparently, a general trend, i.e. larger networkshave slightly narrower distributions, with smaller averages; but the variationsremain very small, limited to few degrees. Moreover there are anomalous points,and the role of K is not really 
lear.To sum up, we 
an say that a 
ertain separation between expanding and
ontra
ting dire
tion is present, and it be
omes sharper in larger networks.Nevertheless, to 
on�rm this tenden
y, measures on mu
h broader s
ales ofnetworks are ne
essary. Another 
ru
ial improvement would be to 
al
ulateexa
tly the ve
tor asso
iated to the 0 exponent, the one parallel to the traje
tory,and ex
lude it for the angle measurements.3.8 Parti
ipation Ratio and Chaos IndexThe parti
ipation ratio of a (normalized) ve
tor v(j) at time ts is de�ned as:PR(j)(ts) =





√

√

√

√

N
∑

i=1

(v
(j)
i (ts))4





−1

. (3.11)It is a measure of the e�e
tive number of basis 
omponents that have a rolein the ve
tor evolution. As a matter of fa
t, if a normalized ve
tor has onlyone 
omponent (0 0 . . .0 1 0 . . .0), its PR is 1; for a ve
tor equally involvingall dimensions (1/√N 1/
√
N . . . 1/

√
N), instead, PR = N . In our setting, the
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Figure 3.20: Parti
ipation ratio of ea
h Lyapunov ve
tor (a) for a N = 400 networkwith di�erent average 
onne
tions and (b) for K = 20 networks of di�erent sizes.base elements 
orrespond to neurons, while ve
tors 
orrespond to expandingand 
ontra
ting dire
tions. The parti
ipation ratio informs us of how manyneurons are e�e
tively taking part to an expanding or 
ontra
ting mode, withthe degree of expansion/
ontra
tion given by the Lyapunov exponent asso
iatedto the spe
i�
 ve
tor.Figure 3.20 (a) shows the time-averaged parti
ipation ratio for networks with
N = 400 and di�erent K. The peak 
orresponds to the 0 exponent, parallel tothe dire
tion of motion: it nearly rea
hes 400, whi
h means that the traje
tory istangent to all neurons. This is a 
lear out
ome of the spe
i�
 network dynami
s:between two pulses all neuron phases evolve uniformly in time with the samevelo
ity, so that the phase spa
e traje
tory is a line tangent to all dire
tions.When the average 
onne
tions between neurons are in
reased, more of them takepart in the expanding dire
tions and the systems is less stable. For 
ontra
tingdire
tions, instead, every network seems to rea
h the same minimum, with aSR ≃ 1.6 .In �gure 3.20 (b) we see 
omparisons between di�erent network sizes with K�xed on 20. The average is performed both on time and on several networkiterations. When the size in
reases, the di�eren
e in the 
urves shrinks, asif they are 
onverging to a limit value. Moreover larger networks seem morepre
ise in the lo
alization of the zero ve
tor, as they are more peaked aroundthe 0 exponent.Overall, we see that the number of neurons involved in expanding dire
tionshas the order of ∼ K/3, and is not greatly 
onditioned by the network size,the tangent dire
tion involves all neurons, �nally 
ontra
ting modes involve lessthan 2 e�e
tive neurons under any 
ondition.The parti
ipation ratio expresses how many neurons parti
ipate in the dy-nami
s of a given ve
tor. To �nd whi
h are the interested neurons we de�ne the
haos index, in the form:

c
(j)
i :=

1

S

S
∑

s=1

(v
(j)
i (ts))

2 . (3.12)For a given neuron i, c(j)i represents its 
ontribution to the time evolution ofve
tor v(j), or, equivalently, to the dire
tion expanding with rate exp(λ(j)).
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Figure 3.21: Chaos index as de�ned in (3.12) (z axis) for every neuron and everyLyapunov ve
tor (on y and x axis). The �rst half of the ve
tors, 
ut from the graph,show a substantially �at C(j)
i
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Figure 3.22: Detail of the same dataset of �gure 3.21. The c
(j)
i for neurons of index

i = 149 and i = 204 is shown on logarithmi
 s
ale.Figure 3.21 represent the 
haos indexes in a N = 500 K = 20 network. The
x axis reports the Lyapunov exponents λ(j), the y axis 
ontains the networkindexes i, with no privileged ordering, due to the randomness of the 
onne
tions.The value of c(j)i is substantially very small for all the positive exponents and forsome of the negative. When we go to lower values, however, we start seeing peaks
orresponding to neurons greatly 
ontributing to a 
ertain range of 
ontra
tingdire
tions.Figure 3.22 represents two neurons 
hosen from the previous plot so that the�rst (neuron 149) has a peak in the 
ontra
ting modes, the se
ond (204) appears�at. With a logarithmi
 s
ale it is 
lear that they are 
overing di�erent areas ofthe Lyapunov spe
trum. The �rst half of the spe
trum, from∼10 to∼ -20 (s−1),does not show any peak, as most of the neurons are 
ontributing uniformly to it,their 
ontribution drops to very small levels after the −20 threshold. Howevera minority of neurons, su
h as the 149, 
ontributes less to the expanding and
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ontra
ting dire
tions, but shows high c
(j)
i values in spe
i�
 ranges orstrong 
ontra
ting dire
tions.Confronting those �ndings with the parti
ipation ratios of the exponents, andthe information on the network stru
ture, we 
an sket
h a model of the networkdynami
s. All neurons evolve linearly in time, taking part in the tangent dire
-tion with 0 Lyapunov exponent. A smaller group of order ≃ K are also re
eivinginhibitory signals, an average of ∼ 1/3 of them results 
ru
ial in the pun
tualnetwork evolution, as revealed in the parti
ipation ratio of positive ve
tors. The

≃ K inhibited neurons 
hange with time, 
overing the whole network, so thatnone of them is privileged in 
ontributing to expanding dire
tions. A few neu-rons are parti
ularly unin�uential: they 
orrespond to 
ontra
ting dire
tions,thus to negative Lyapunov exponents. This property 
omes from the interplaybetween the network stru
ture and the global dynami
al model, so it is lo
alizedon spe
i�
 neurons, as revealed by the peaks in their 
haos indexes.To quantify the overall parti
ipation of a single neuron to expanding and
ontra
ting dire
tions, we de�ne two parameters in the form:Pλ+
i =

√

[

c
(j)
i

]

λ(j)>0
Pλ−
i =

√

[

c
(j)
i

]

λ(j)<0
(3.13)we 
all them, respe
tively, parti
ipation to expansion and parti
ipation to 
on-tra
tion of neuron i. The value is squared be
ause the 
haos index is de�ned asa quadrati
 average.Figure 3.23 (a) shows the distribution of Pλ−

i , (b) is for Pλ+
i . As we expe
t, theparti
ipation to expansion is mu
h more peaked: most of the neurons 
ontributewith an average value. For the 
ontra
ting dire
tion, we see a mu
h broaderdistribution: the great 
ontributors are asso
iated to the peaks of �gure 3.21.From the distribution of Pλ+

i we 
an draw an hypothesis on the shape of theparti
ipation ratio ( �gure 3.23). Most of the neurons do not parti
ipate toexpansion with their maximum value, soTo assess the validity of the de�ned parameters, we 
an try to relate themwith other quantities of the system. Figure 3.23 (
) shows, for ea
h of the
500 neurons, the parti
ipation to 
ontra
tion versus the average frequen
y ν̄i.The red line is a �t in the form C1 + C2 exp(−ν̄i), with C1 = 0.03 ± 0.01 and
C2 = 0.85 ± 0.02. The neurons with low frequen
ies 
ontribute to 
ontra
tingdire
tions mu
h more than those with high frequen
ies, with a very simpleexponential equation.The expanding and 
ontra
ting in phase spa
e represent, dynami
ally, thepropagation or de
ays of perturbations in the network. A neuron with a veryhigh spiking frequen
y, when perturbed by some dis
retionally small noise, willrapidly 
ommuni
ate the variation to its ≃ K postsynapti
 neurons, 
onse-quently 
hanging the evolution of the whole network, with an initial dire
tiongiven by those ≃ K neurons, weighted on their future in�uen
e, so that thea
tual parti
ipation ratio results smaller than K. A neuron with a very lowfrequen
y, on the other hand, is 
ontinuously inhibited by others, and sendsvery few signals: it would hardly lead a global 
hange, or, equivalently, have arole in a ve
tor asso
iated to a positive exponent.Our result is that the Pλ−

i 
angive a very pre
ise 
hara
terization of the frequen
ies, as is a good dis
riminantbetween the neurons.



68 3 Computation and ResultsIn �gure 3.23 (d) we try the same with the Pλ+
i , expe
ting a monotoni
allyin
reasing fun
tion due to the reasons stated above. However, for frequen
ieshigher than 1Hz, there is a drop: although some neurons have higher frequen
ies,they do not appear to stand over others in the 
hara
terization of the expandingdire
tions. A possible explanation for this phenomenon lies in the inhibitorynature of the network: a frequently-pulsing neuron would frequently inhibit theneurons of its postsynapti
 set, making them �dull� and less responsive to smallvariations of its own signal, thus its average 
ontribution to positive exponentsis de
reased. Apparently the system self-adapts, so that the optimal frequen
yfor transmissions is around the average frequen
y of the neurons, 1 Hz.We may inquire if we 
ould gain some information on the frequen
ies by study-ing the graph stru
ture of the network. Neurons with low spiking frequen
iesre
eive a higher number of inhibitory signals. We expe
t that the quantity ofre
eived signals depend on the number of in
oming 
onne
tions. Figure 3.24(a) shows, for every neuron, the number of presynapti
 neurons versus its av-erage frequen
y. An inverse proportionality is evident, however we see that, byusing simply the stati
 stru
ture of the graph, a proper 
hara
terization of theneurons is not rea
hable.Finally �gure 3.24 (b) represents Pλ−

i versus Pλ+
i . For great values theyroughly show inverse proportionality, as we expe
t, but the initial points havea less trivial behaviour. As a dire
tion for further studies, we 
ould try torelate this �gure with the level of hyperboli
ity of the system. The 
on
eptof well separated dire
tions for expanding and 
ontra
ting modes 
orrespondsto neurons on whi
h dominates either Pλ+

i or Pλ−
i ; the unexpe
ted rise at thebeginning of �gure 3.24 (b) 
ould thus be related to the in
omplete hyperboli
ityshowed by the network.To sum up, in the present se
tion the Lyapunov ve
tors, so far expressedas abstra
t entities of the phase spa
e, have been re
onne
ted to the e�e
-tive dynami
al behaviour of the neural network. The informations gained fromparameters su
h as the parti
ipation ratio, the 
haos index or the Pλ−

i help us
hara
terize both qualitatively and quantitatively the emergent behaviour of thenetwork. Although the qualitative results are supported by our information onthe network and our intuitive idea of its fun
tioning, a quantitative explanationrequires the 
reation of an approximated theoreti
al model.3.9 Optimizations and Further AnalysesIn this 
hapter many results on the behaviour of the network have been shown,however, espe
ially for the Lyapunov ve
tor analysis, the 
hosen network sizeslie in the relatively small range of 200 − 500 neurons. To draw more general
on
lusions, �nd rules on how quantities s
ale with network parameters, and
hara
terize the properties of the N ≫ K ≫ 1 regime, we should study systemsin a broader range of N and with a higher resolution in the K.An in
rease in the network size N would result in a slowing down of all 
om-putational pro
esses involving N×N matri
es, and in a bigger request of RAM.The 
omputation speed 
an be �easily� boosted with a 
omplete parallelizationof all matrix operations. For the evolution and 
omputation of Lyapunov ve
-tors, the bottlene
k remains in the memory usage, sin
e both the Gram-S
hmidt
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Figure 3.23: (a), (b): distribution of respe
tively Pλ−
i and Pλ+

i , de�ned in (3.13),for all neurons of a N = 500, K = 20 network. (
), (d): Pλ−
i and Pλ+

i as a fun
tion ofthe neuron frequen
y. The red line 
orresponds to the 
urve y = 0.03 + 0.85 exp(−x)
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70 3 Computation and Resultsbasis and the R matri
es need to be saved lo
ally in time. A solution of almostimmediate implementation 
onsists in storing the matri
es on the lo
al harddrive, and reload them when needed, with the downside of the time 
ost relatedto the use of physi
al memory. Alternatively, the simulation 
an be dividedinto smaller time intervals, saving GS basis and the state of the neurons onlyat the beginning of ea
h of them; when needed by the ba
kward ve
tor itera-tion, the forward evolution is re
omputed and saved on one interval at a time,and 
leared afterwards. With the latter method, we 
an still rely on the mu
hhigher speed of virtual memory, but a parallelization of the pro
esses would bestrongly re
ommended.Finally, as already mentioned, a more 
areful esteem of the minimum timeneeded for the Lyapunov ve
tor 
onvergen
e should be performed, so that the
hoi
e of the time length 
an be optimized on the network size.With a broader data set, and the experien
e gained from the results alreadyobtained, many other analyses be
ome possible. A better sampling in the av-erage 
onne
tion parameter K, for example, 
ould lead to pre
ise s
aling lawsregarding the 
oe�
ient of variation, the network 
olle
tive frequen
y, the en-tropy produ
tion rate, the maximum parti
ipation ratio, et
. , providing newinsights on the fun
tioning of the network. We 
ould then investigate on rela-tions between attra
tor dimension and parti
ipation ratio, or between entropyprodu
tion and the Pλ+ parameter. Finally, to a
hieve a solid result on thepresen
e of hyperboli
ity, a systemati
al study on networks of mu
h larger sizesshould be performed.Most of the numeri
al parameters shown here here have been qualitatively
onne
ted to our information on the network stru
ture and dynami
s. Manyof the 
urves, however, are quite regular in their shapes and, in some 
ases,as in the Pλ+
i versus ν̄i graph (�gure 3.23 (
)), very simple �ts 
an be found.Su
h �ndings surpass our qualitative idea of the network evolution, and expresswith pre
ise numeri
al quantities its ergodi
 (and emergent) properties. For thisreason, they 
ould be taken as dire
tions for the 
onstru
tion of a quantitativetheoreti
al model of the network, whi
h, in turn, would be used to verify our�ndings and give new ideas for other 
omparisons.



Chapter 4Dis
ussionIn the present work we extensively studied the dynami
s of pulse-
oupled in-hibitory neural networks of QIF neurons, with the aim of 
reating a model qual-itatively similar, in its behaviour, to networks of real pyramidal neural 
ells, andthen fully 
hara
terize it.Our �ndings are summarized in the following se
tion.4.1 Con
lusionsThe �rst result, well do
umented in s
ienti�
 literature [32, 34, 8℄, is that a largenumber of simple os
illators with a phase linearly in
reasing, when sparsely
onne
ted with nonlinear inhibitory pulses, shows a disordered and 
haoti
 be-haviour similar to the so-
alled balan
ed state of real pyramidal neurons. Usingthe Kuramoto order parameter, the 
oe�
ient of variation and the measure ofneuron 
oheren
e (3.5 - 3.7), we quanti�ed how mu
h the system as a whole isin
oherent and near a Poisson point pro
ess. A 
loser look to single neurons,however, reveals an intrinsi
 oder: as a matter of fa
t the global behaviour is anexample of emergent deterministi
 
haos, and is not due to any random variable.In a redu
tionist point of view, our N ≫ 1 - dimensional dynami
al 
haoti
system results already fully 
hara
terized; our knowledge, however, is far from
omplete. A mean �eld approa
h, as shown in appendix A, 
an give averagenetwork properties with all the ne
essary approximations. To move furtherly inthe 
hara
terization of the system, we rely on the ergoti
 theory.The 
omputation of the Lyapunov spe
trum leads to an esteem of the attra
tordimension and of entropy produ
tion, in substantial agreement to results alreadypublished [8, 9℄. Then, using an algorithm proposed in a re
ent arti
le [23℄, wemoved to the 
a
ulation and the systemati
 study of the Lyapunov ve
tors.Sin
e no other examples of their use for similar systems have been foundin the s
ienti�
 literature, we performed a series of 
onvergen
e 
he
ks, whi
h
on�rmed both their invarian
e and the robustness of the algorithm.Afterward, the ve
tors have been used as a quantitative esteem of the degreeof hyperboli
ity of the dynami
al system. In a fully hyperboli
al system, themeasures of entropy produ
tion and attra
tor dimension would be more solid71



72 4 Dis
ussionand not approximate esteems. Our result is that su
h a property shows partially,but we might rea
h a full stru
tural stability in networks of bigger size.Finally we expressed other ergodi
 properties given by the systemati
 studyof the Lyapunov ve
tors, and showed how they are 
onne
ted with the e�e
tivedynami
s of the neurons within the network. We have found that the systemauto-organizes so that the majority of neurons equally 
ontributes in the deter-mination of the global dynami
s, distributing their role in time, moreover theoptimal frequen
y for the signal propagation in the network 
orresponds to theglobal average frequen
y: neurons pulsing with higher frequen
ies do not standover others in determining the dynami
s. On the other hand, a small groupof sele
ted neurons, stable in time, shows very little sensitivity to perturba-tions. They tend to have lower frequen
ies, and a very simple relation betweenfrequen
y and 
ontribution to dynami
ally de
aying modes 
an be found.Overall, the Lyapunov ve
tor approa
h o�ered fruitful insights in the 
ol-le
tive behaviour of the network, di�erentiating the role and 
ontribution ofneuron groups, always seen in the 
ontext of their global, dynami
al stru
ture.Approa
hes based on redu
tion to lesser dimensions, or to the study of the stati
graph of 
onne
tions, would hardly provide as mu
h information.In the end, the results are en
ouraging but not 
ompletely satisfa
tory fortwo main reason: �rst of all, with our 
omputational 
apabilities we have onlyapproa
hed the ideal 
ondition of very large, and very sparsely 
onne
ted net-works ( i.e. N ≫ K ≫ 1), further measures and optimizations are requested toexpress more solid results; se
ondly, there is no quantitative theoreti
al modelwhi
h 
ould be 
ompared with the numeri
al �ndings and with the 
urves re-sulting from our measures.4.2 ExtensionsIn se
tion 3.9 we already mentioned possible improvements and optimizationsfor the 
urrent system. Here we des
ribe a few of the many possible extensionswhi
h 
an be added.First of all, we 
ould use our a priori knowledge of the system to dete
t andisolate the tangent Lyapunov ve
tor, i.e. the one 
orresponding to the 0 expo-nent. Sin
e its dire
tion is neither expanding nor 
ontra
ting, no ve
tors would
onverge on it, either in forward or ba
kward expansion. Our only hope is to
at
h it �by ex
lusion�, relying on the randomness of the initializations. Insert-ing the tangent ve
tor in the GS system would give us mu
h more pre
ision inthe 
al
ulations of the nearly 0 Lyapunov exponents and in their 
orrespondingdire
tions: a more solid measure of hiperboli
ity would then result.A rather obvious dire
tion of investigation would be 
he
king the robustnessof 
olle
tive network dynami
s for 
hanges in the single neuron model; then wemay inquire how the addition of more realisti
 traits, su
h as a delay in thesignal transmission or the presen
e of ex
itatory pulses, modi�es the results.In all runs we used the �xed topology of a sparse random graph, 
hara
terizedby relatively small variations in the number of in
oming and outgoing 
onne
-tions. We may inquire whether a more diversi�ed 
onne
tivity would give rise toa predominant role for some neurons, or if the system would somehow re-balan
e



4.2 Extensions 73those di�eren
es, as it already does when it limits the impa
t of high-frequen
yneurons.Finally we 
ould 
onsider whether our Lyapunov-based approa
h answers tothe general problem of determining a 
entrality measure in 
omplex networks.Centrality measures are esteems of the �importan
e� of a given node in thenetwork: they are 
ru
ial, for example, in models of power grids, spreading ofdiseases, et
. Traditionally, 
entrality measures rely on the underlying stru
tureof the 
onne
tion graph, not taking the network dynami
s into a

ount. A re
entattempt to de�ne a 
entrality measure based on dynami
s 
an be found in [42℄.Our 
ontribution to expansion and 
ontra
tion parameters, de�ned in (3.13),
ould possibly fall in this 
ategory. The only requirement for our 
omputationis the (numeri
al) knowledge of the Ja
obian matrix in every point of the systemevolution. As long as a dynami
al system, regardless of its stru
ture, dynami
sor dimension, satis�es this requisite, we 
an, in prin
iple, perform on it the
omplete analysis of Lyapunov exponents, ve
tors and, along with them, of allthe parameters de�ned in this work.
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Appendix A
Temporal Flu
tuations in Balan
ed StateRe
alling the formula (2.11), we 
an distinguish an external 
omponent, whi
his assumed to be 
onstant in time and equal for all neurons, and an internal
urrent, depending on the network dynami
s, whi
h is therefore the only sour
eof �u
tuations. For simpli
ity we restri
t ourselves to a population of inhibitoryneurons. The 
urrent from the network is then:

Inetw(t) = − J0√
K

∑

t̂(p)∈CTS ζ(t + t̂(p)) (A.1)CTS stands for 
ompound spike train, and represents the ordered uninion of thespiking times sets of ea
h neuron. If our system is weakly 
orrelated and verylarge, it is reasonable to assume that spikes near in time are un
orrelated withvery few ex
eptions. Thus the spike-time distribution 
an be approximated witha Poisson point pro
ess (see se
tion 1.4 of the book [27℄).We de�ne the event rate as:
Ω(t) := lim

∆t→0

mean number of events in ∆t bins
∆t

. (A.2)For a given Ω(t) fun
tion, the 
onditional probability of having Nspi totalevents at times {t̂(1), . . . , t̂(Nspi)} is given, in Poisson statisti
s, by the formula:
P (Nspi, {t̂(1), . . . , t̂(Nspi)}|Ω(t)) = 1

Nspi! e− ∫ T
0

dsΩ(s)

Nspi
∏

p=1

Ω(t̂(p)) (A.3)The 
urrent averaged over this distribution is then:
[〈Ii(t)〉t]i = −

∞
∑

Nspi=1

∫ T

0

· · ·
∫ T

0

Nspi
∏

p=1

dt̂pP
(

Nspi, {t̂(1), . . . , t̂(Nspi)}|Ω(t)) ·
· J0√

K

Nspi
∑

p′=1

ζ(t− t̂(p′)) ; (A.4)75



76 A Temporal Flu
tuations in Balan
ed Stateexpli
itly:
− J0√

K
e−

∫ T
0

dsΩ(s)
∞
∑

Nspi=1

∫ T

0

· · ·
∫ T

0

Nspi
∏

p=1

dt̂(p)
Ω(t̂(p))

Nspi! Nspi
∑

p′=1

ζ(t− t̂(p′)) . (A.5)Sin
e the shape of ζ(t− t̂(p′)) is invariant of the 
onsidered spike, the sum over
p′ 
orresponds to a single sample times the total number of spikes:
− J0√

K
e−

∫
T
0

dsΩ(s)
∞
∑

Nspi=1

∫ T

0

dt̂(1)Nspiζ(t− t̂(1))Ω(t̂(1))∫ T

0

· · ·
∫ T

0

Nspi
∏

p=2

dt̂(p)
Ω(t̂(p))

Nspi! .(A.6)The t̂(p) are just dummy variables, so that every term of the produ
t over p isequal. This leads to:
− J0√

K
e−

∫ T
0

dsΩ(s)
∞
∑

Nspi=1

1

(Nspi − 1)!

(

∫ T

0

dsΩ(s)

)Nspi−1(
∫ T

0

ds ζ(t− s)Ω(s)
)

.(A.7)Finally the sum over Nspi 
an be seen as the expansion series of an exponential,and 
onsequently simpli�ed with the exponential term. The result is:
[〈Ii(t)〉t]i = −

J0√
K

∫ T

0

ds ζ(t− s) Ω(s) . (A.8)With the further assumption that the event rate is stationary in time, and isa O(K), we 
an write it as:
Ω(t) ≡ K ν̄ (A.9)whi
h, 
onsidering the properties (2.12), ζ(t) will integrate to one. This leadsto the result given in equation (2.18).



Appendix B

Figure B.1: S
hemati
 representation of the algorithms used to iterate the networkand 
al
ulate the Lyapunov exponents. In the �rst box ts is 
omputed with (2.32),postsynapti
 neurons are update with (2.33), linear evolution is given by (2.31), �nally
Ds 
omes from (2.36 - 2.39). 77



78 B Simulation Algorithm

Figure B.2: Upper part: s
hemati
 representation of the algorithm used to 
al
ulatethe time evolution of Lyapunov ve
tors, as reported in [23℄. Below: how the simulationtimes are stru
tured, so that the interval SAl is devoted to 
onvergen
e, for both GSbasis and ve
tors.



Bibliography[1℄ M. E. J. Newman. The stru
ture and fun
tion of 
omplex networks. SIAMReview, 45(2):pp. 167�256, 2003.[2℄ Steven H. Strogatz. Exploring 
omplex networks. Nature, 410(6825):268�276, Mar
h 2001.[3℄ Albert-László Barabási. Linked: How Everything Is Conne
ted to Every-thing Else and What It Means. Plume, reissue edition, April 2003.[4℄ Simon Haykin. Neural Networks: a Comprehensive Foundation. Ma
millanCollege Publishing Company, New York, 1994.[5℄ Charles S Peskin. Mathemati
al aspe
ts of heart physiology. Courant Insti-tute of Mathemati
al S
ien
es, New York University, 1975.[6℄ Sven Jahnke, Raoul-Martin Memmesheimer, and Mar
 Timme. Sta-ble irregular dynami
s in 
omplex neural networks. Phys. Rev. Lett.,100(4):048102, Jan 2008.[7℄ A. Politi, R. Livi, G.-L. Oppo, and R. Kapral. Unpredi
table behaviour instable systems. EPL (Europhysi
s Letters), 22(8):571, 1993.[8℄ Mi
hael Monteforte and Fred Wolf. Dynami
al entropy produ
tion in spik-ing neuron networks in the balan
ed state. Phys. Rev. Lett., 105(26):268104,De
 2010.[9℄ Mi
hael Monteforte. Chaoti
 Dynami
s in Networks of Spiking Neuronsin the Balan
ed State. PhD thesis, Georg-August University, Göttingen,Germany, 2011.[10℄ J. P. E
kmann and D. Ruelle. Ergodi
 theory of 
haos and strange attra
-tors. Rev. Mod. Phys., 57(3):617�656, Jul 1985.[11℄ David Ruelle. Chaoti
 Evolution and Strange Attra
tors. Cambridge Uni-versity Press, 1989.[12℄ Steven H. Strogatz. Nonlinear Dynami
s and Chaos. Westview Press, 1994.[13℄ Edward Ott. Chaos in Dynami
al Systems. Cambridge University Press,2002.[14℄ Massimo Cen
ini, Fabio Ce

oni, and Angelo Vulpiani. Chaos: From Sim-ple Models to Complex Systems. World S
ienti�
 Publishing, 2010.79



80 BIBLIOGRAPHY[15℄ George D. Birkho�. Proof of the ergodi
 theorem. Pro
. Nat. A
ad. S
i.,17:656�660, 1931.[16℄ V.I. Oselede
. A multipli
ative ergodi
 theorem. Lyapunov 
hara
teristi
numbers for dynami
al systems. Trans. Mos
ow Math. So
., 19:197�231,1968.[17℄ Jim Kelliher. Lyapunov exponents and Oselede
's multipli
ative ergodi
theorem.Url: http://math.u
r.edu/~kelliher/Geometry/Ergodi
Le
ture.pdf,2003.[18℄ Gian
arlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strel-
yn. Lyapunov 
hara
teristi
 exponents for smooth dynami
al systems andfor hamiltonian systems; a method for 
omputing all of them. part 1: The-ory. Me

ani
a, 15:9�20, 1980. 10.1007/BF02128236.[19℄ Jim Kelliher. Oselede
's multipli
ative ergodi
 theorem.Url: http://math.u
r.edu/~kelliher/Geometry/Le
tureNotes.pdf,2002.[20℄ Gian
arlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strel-
yn. Lyapunov 
hara
teristi
 exponents for smooth dynami
al systems andfor hamiltonian systems; a method for 
omputing all of them. part 2: Nu-meri
al appli
ation. Me

ani
a, 15:21�30, 1980. 10.1007/BF02128237.[21℄ Alan Wolf, Ja
k B. Swift, Harry L. Swinney, and John A. Vastano. De-termining lyapunov exponents from a time series. Physi
a D: NonlinearPhenomena, 16(3):285 � 317, 1985.[22℄ J. P. E
kmann, S. Oli�son Kamphorst, D. Ruelle, and S. Ciliberto. Li-apunov exponents from time series. Phys. Rev. A, 34(6):4971�4979, De
1986.[23℄ F. Ginelli, P. Poggi, A. Tur
hi, H. Chaté, R. Livi, and A. Politi. Char-a
terizing dynami
s with 
ovariant Lyapunov ve
tors. Phys. Rev. Lett.,99(13):130601, Sep 2007.[24℄ A.L. Hodgkin and A.F. Huxley. A quantitative des
ription of membrane
urrent and its appli
ation to 
ondu
tion and ex
itation in nerve. TheJournal of Physiology, 117:500�544, 1952.[25℄ Eugene M. Izhikevi
h. Dynami
al Systems in Neuros
ien
e. MIT Press,Cambridge, Massa
husetts, 2007.[26℄ Erik De S
hutter. Computational Modeling Methods for Neuros
ientists.MIT Press, Cambridge, Massa
husetts, 2010.[27℄ Peter Dayan and L.F. Abbott. Theoreti
al Neuros
ien
e. MIT Press, Cam-bridge, Massa
husetts, 2001.[28℄ C. Morris and H. Le
ar. Voltage os
illations in the barna
le giant mus
le�ber. Biophysi
al Journal, 35(1):193 � 213, 1981.

http://math.ucr.edu/~kelliher/Geometry/ErgodicLecture.pdf
http://math.ucr.edu/~kelliher/Geometry/LectureNotes.pdf


BIBLIOGRAPHY 81[29℄ Xiao-Jing Wang. Ioni
 basis for intrinsi
 40 hz neuronal os
illations. Neu-roReport, 5(20):6402�6413, De
 1993.[30℄ Eugene M. Izhikevi
h. Whi
h model to use for 
orti
al spiking neurons?IEEE Transa
tions on Neural Networks, 15(5):1063�1070, Sept 2004.[31℄ Massimo Cen
ini, Fabio Ce

oni, and Angelo Vulpiani. Chaos: an Intro-du
tion to Dynami
al Systems. Springer, 1997.[32℄ Boris S. Gutkin and G. Bard Ermentrout. Dynami
s of membrane ex-
itability determine interspike interval variability: A link between spikegeneration me
hanisms and 
orti
al spike train statisti
s. Neural Compu-tation, 10(5):1047�1065, 1998.[33℄ GP Moore, DH Perkel, and JP Segundo. Statisti
al analysis and fun
tionalinterpretation of neuronal spike data. Annual Review of Physiology, 28:493�522, 1966.[34℄ C. van Vreeswijk and H. Sompolinsky. Chaoti
 balan
ed state in a modelof 
orti
al 
ir
uits. Neural Comput., 10:1321�1371, Aug 1998.[35℄ Bilal Haider, Alvaro Duque, Andrea R. Hasenstaub, and David A. M
-Cormi
k. Neo
orti
al network a
tivity in vivo is generated through a dy-nami
 balan
e of ex
itation and inhibition. J. Neuros
i., 26(17):4535�4545,2006.[36℄ Mi
hael J. Higley and Diego Contreras. Balan
ed ex
itation and inhibi-tion determine spike timing during frequen
y adaptation. The Journal ofNeuros
ien
e, 26(2):448�457, 2006.[37℄ Rune W. Berg, Aidas Alaburda, and Jørn Hounsgaard. Balan
ed inhi-bition and ex
itation drive spike a
tivity in spinal half-
enters. S
ien
e,315(5810):390�393, 2007.[38℄ S. Olmi, A. Politi, and A. Tor
ini. Colle
tive 
haos in pulse-
oupled neuralnetworks. EPL (Europhysi
s Letters), 92(6):60007, 2010.[39℄ Juan A. A
ebrón, L. L. Bonilla, Conrad J. Pérez Vi
ente, Félix Ritort, andRenato Spigler. The kuramoto model: A simple paradigm for syn
hroniza-tion phenomena. Rev. Mod. Phys., 77(1):137�185, Apr 2005.[40℄ David Golomb and John Rinzel. Clustering in globally 
oupled inhibitoryneurons. Physi
a D: Nonlinear Phenomena, 72(3):259 � 282, 1994.[41℄ Hong-liu Yang, Kazumasa A. Takeu
hi, Fran
es
o Ginelli, Hugues Chaté,and Günter Radons. Hyperboli
ity and the e�e
tive dimension of spatiallyextended dissipative systems. Phys. Rev. Lett., 102(7):074102, Feb 2009.[42℄ Konstantin Klemm, M. Angeles Serrano, Vi
tor M. Eguiluz, and Maxi SanMiguel. A measure of individual role in 
olle
tive dynami
s: spreading at
riti
ality.Url: http://arxiv.org/abs/1002.4042v2,2010.

http://arxiv.org/abs/1002.4042v2




✌
AknowledgmentI would like to express my gratitude to Prof. Fred Wolf for introdu
ing meto the world of neuros
ien
e and neural networks, adding ni
ely expanding di-re
tions in the phase-spa
e of my dynami
al evolution (a.k.a. personal growth).A big thank to Prof. Leone Fronzoni for his 
omplete support and guidan
e inthe writing of the thesis, and to Do
tor Antonio Politi for his useful suggestionsand vital 
orre
tions to the �rst, rough results I got.The �rm, and already quite high foundations of this thesis are in the pre
edingworks by Mi
hael Monteforte, and his marvelous network simulation program:his great patien
e, as well as the free use of his 
ode, made this resear
h possible.Thank you!Thanks to Denny Fliegner for e�
iently providing me the ne
essary 
ompu-tational resour
es, to Yor
k-Fabian Beensen for keeping my desktop PC alive,
onne
ted and fully fun
tional. Thanks to Katharina Jeremias, Regina Wunder-li
h, Ayse Bolik and Vi
toryia Novak, the administrative sta�, for helping mewhenever I needed signatures, refunding modules, faxes, photo
opies or generalinformation about what was happening around. Overall, I genuinely appre
i-ated the lively, informal and stimulating atmosphere of the MPI for Dynami
sand Self Organization, and my gratitude and admiration goes to all those whokeep sustaining, renovating and enri
hing it every single day.Besides the a
ademi
 sphere, I wish to thank all those who eagerly and friendlysupported me during my �rst days (and months) in Göttigen. For their pun
tualhelp, pre
ious suggestions, and human warmth I've never truly felt alone in aforeign 
ountry. Thanks Mirko and Elena, Tatjana T, Theresa and Alana, DavidH, Markus H and Gabriella.A spe
ial thank to my friends and 
olleagues in Pisa, starting from those whokindly and nobly a

epted to host me during my �short�, thesis-related staying:Anna S, Daniela C, Mar
o L, Luna, Gianlu
a C. A big thank also to Luigi C,Lapo F, Sabrina S, Mamta A, Giulia P ,Antonella S , Sarah D, sin
e they allpositively in�uen
ed me over our long, 
ommon, university years. I owe themsome part of my personal growth and I shared with them many of the happiestmoments of my student life (apparently also a few of the saddest and shabbiest:-P ). Thanks!Many others should be mentioned, su
h as Blan
a Lidia E, for her positivepersisten
e and her fortune-telling attempts, Debora L, for a friendship 
lear andsimple, as mu
h as spontaneous and perfe
t; Angeli
a Z, for her being strongand di�erent, no matter what... then I'm grateful to people like Ja
opo P, Pina& Irene, Emanuela, Else P, Angelo R, Barbara C, Silvia B, Alina & Mi
haela,Giovanni C, Dora S, Chiara Giovanna B, Nishathri D, Nan
y M, AnnaChiaraM, for apparently no other reasons that the fa
t I feel happy at the idea we arewandering around on the same planet, and, hopefully, we shall keep doing thatfor very long.My biggest �thank you�, however, goes to who has read the 
urrent page thisfar, maybe out of simple 
uriosity, maybe looking for his/her name, maybe forno reason whatsoever. Thanks to be here, right now, and to take a look at mywork. Take 
are.


	Introduction
	Complex Networks
	Neural Networks
	Ergodic theory
	Thesis Structure

	Mathematical Framework
	Differentiable Dynamical Systems and Ergodicity
	Chaotic Dynamics and Lyapunov Exponents
	Calculating Lyapunov Exponents
	Calculating the (local) Lyapunov vectors
	Matrix Calculation
	Information and Entropy
	Information Dimension of the Attractor

	Model
	Single Neuron Dynamics
	Network Dynamics
	The Balanced State
	Model Architecture
	Equations for a QIF Network
	Calculating the Jacobian

	Computation and Results
	Network Computation
	Output Data
	Spike Train
	Collective Dynamics
	Attractor Dimension and Entropy
	Lyapunov Vectors Convergence
	Angles and Hyperbolicity
	Participation Ratio and Chaos Index
	Optimizations and Further Analyses

	Discussion
	Conclusions
	 Extensions 

	Temporal Fluctuations in Balanced State
	Simulation Algorithm

