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Introduction

From the first theories of matter as constituted by elementary particles [ Dem-
ocritus (ca. 460 BC — ca. 370 BC)] up to the twentieth century, the dominating
trend in physical, and, more generally, in scientific research has been reduction-
ism: the principle that any complex system can be decomposed in elementary
parts, which are then studied singularly, so that the full knowledge of the global
phenomenon is expressed in terms of the elementary interactions between its
simple entities.

Such approach has provided, and still provides, marvellous insights, crucial
for the realization of most of the science and the technology we see around us.
Nevertheless, it proves not sufficient when it comes to dealing with the study of
the emergent phenomena.

Emergence can be defined, in natural and social science, as the arising of novel
and coherent structures, patterns and properties in complex systems. In appar-
ent contradiction to the third principle of thermodynamics, we are surrounded
by emergent, highly ordered structures, life itself being the most astonishing ex-
ample of all of them. Unfortunately, a reductionist approach does not prove to
be sufficient, or even apt, for the study of such phenomena. The new challenge
for science and research is to find models and rules for emergent phenomena, and
apply them to reality. Complex networks are typical models showing the arise
of complex bahviour and collective phenomena from an aggregation of relatively
simple constituents.

Complex Networks

Although networks can reveal a rich variety of behaviours, and emergent phe-
nomena, their definition is quite simple: a network is a set of items, usually called
nodes, with connections between them, referred to as edges [I]. The topological
study of networks started with FEuler, and his solution to the Kdnisberg Bridge
Problem, which laid down the foundations of the mathematical Graph Theory.
Since then, extensive studies on a high variety of networks and on the dynamics
taking place on them have been conducted, and now many scientific models
rely on network structures; just to name a few: food webs, genetic networks,
power grids, models for the spreading of computer viruses or human diseases,
etc. [2]. A surprising number of examples on the importance of networks in
science, technology, society and every-day life can be found in a popular book
written by Barabasi [3].



Neural Networks

Neural network constitute a class of complex network inspired by the structure
of the nervous system. The nodes are identified with neurons, the edges rep-
resent the links between them (azon and synapses) and the exchanged signals
are the electrical peaks, or spikes, (action potentials) triggered when the inter-
nal potential of the neuron reaches a certain threshold. They were introduced
mainly to solve artificial intelligence problem, such as automated learning, visual
pattern recognition, adaptivity, fault tolerance, etc. or as models for networks
of real nervous cells [4].

In the present work, we consider the latter category of neural networks, aim-
ing at a better understanding and modelling of real biological structures. The
first example of such approach dates back in 1975, when Peskin modelled the
peacemaker cells of the heart as a fully connected network of identical leaky
integrate-and-fire neurons (LIF), and verified that they spontaneously synchro-
nise their signals, as real peacemaker cells do [3]. The LIF model is the simplest
one dimensional model for the electrical activity of a neuron. The use of more
complex and refined models would add more biophysical value to the inves-
tigation, but the required computations would increase dramatically with the
network size; moreover phenomena emerging from the collective dynamics of the
system should not depend too much on the precise and realistic reconstruction
of its single components.

The specific system we are interested in is not the hearth, but the pyramidal
neurons of the neocortex in their stationary state. Many experiments on living
cells, both in vitro and in vitro, showed that, although very dense, and densely
connected (~ 10% neurons on a mm?, with ~ 10* connections each), they exhibit
very low average firing rates (~ 1Hz), with a spike pattern very variable in time,
and very weakly correlated, even when sampled from neurons close each other;
at the same time, the response in time seems surprisingly fast when compared to
reaction times for isolated, individual neurons. The system is therefore doubly
efficient: the low spiking rate reduces the energy consumption, but, at the same
time, it is able to react even faster than any of its isolated components would.
Admittedly, brains still detain the record of most efficient and complex parallel
calculators in the known universe.

Going back to the the neocortex, the model used to explain the observed ac-
tivity is the balanced state model. Namely each neuron, for most of the time,
is kept close to its firing threshold by a balance between excitatory and in-
hibitory inputs from other neurons, so that even very small deviations result in
a quick response by the interested neuron. Different experiments and measures
confirmed this theory ( see section ). Our aim is now to construct a neu-
ral network which replicates, at least qualitatively, this kind of behaviour, and
study it.

The creation of a neural network in stationary balanced state requires just
the mixing of the right ingredients, namely:

a) a proper model for single neuron dynamics, as simple as possible;

b) a very large number of neurons, and number of connections between them
still very large but small when compared to the size of the system, so to
resemble the connectivity of real neurons;
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Figure 1: Simplified representation of a sparsely connected Erdgs-Rény random
graph. The image shows ~ 60 neurons with an average of 1.5 connections each. The
simulated networks range from 200 to 1000 neurons with 20 — 50 average connections.
The orientation of the connections is not shown.

c) both excitation and inhibition acting on neurons.

The first choice for point a) would be the LIF neuron, however they have
been excluded for an intrinsic flaw in their dynamics: when the membrane
potential of a real neuron crosses a certain threshold, a positive-feedback process
furtherly increases it, producing a peaked signal; LIF neurons, on the other
end, are artificially reset in the instant they touch their threshold. With this
qualitative difference, LIF neural networks have the tendency to synchronize.
In networks made of inhibitory neurons subjected to positive external currents
this phenomenon has been proved analytically [6]. For that reason the chosen
model is the simples canonical 1D neuron model: the quadratic integrate and
fire described in chapter 21

Condition b) is obtained by connecting a large number of neurons with an
Erdés-Rény random graph structure, as represented in figure [l If N is the
total number of neurons and K the average connections per neuron, our ideal
conditions would be N > K > 1. In the actual model N ranges from 200 to
1000, while K from 20 to 100. Finally all connections are assumed to be one-
directional, as for real neurons. For graphical reasons the figure does not show
connection orientations, and the parameters are reduced to N = 60, K ~ 1.5 .

As regards the point c), it has been found that a network of only inhibitory
neurons, subjected to a constant, excitatory external current, suffices to fulfil
it. This simplifies the model and the calculations, so that we can concentrate
on more essential parameters.

The system defined with those requisites shows deterministic chaos. For a
further characterization of the system and its properties, and for a better un-



A1t

Figure 2: Intuitive definition of the first Lyapunov exponent ad the logarithm of the
expansion rate for to points initially very close in the phase space. The direction of
expansion is coded by the first Lyapunov vector.

derstanding, we rely on the mathematical framework typically used for large,
complex, dynamical systems: the Ergodic Theory.

Ergodic theory

Since chapter [I] contains most of the formalism, the correct definitions and the
mathematical rigour necessary to define and describe the ergodic properties and
quantities we are interested in, in this section we give a more intuitive (and less
formally correct) description of what ergodicity is about.

Given a finite-dimensional, deterministic dynamical system, its phase space is
defined as the n-dimensional manifold in which every single point fully repre-
sents the exact state of the system at a given time. As the system evolves, it
draws a trajectory the phase space which cannot intersect itself, or trajectories
associated to other time evolutions.

The basic idea of ergodic theory is that, for sufficient extents of time, aver-
aging over time any quantity associated to the dynamical system is completely
equivalent to performing an average on the whole phase space, as long as such
manifold is weighted with an ergodic measure. Intuitively, such a measure should
neglect the areas of phase space never (or almost never) touched in the evolution
of our system, and give more importance to those in which the system lingers
much more in time (the attracting manifold).

With this approach we can find quantities that are global and invariant for the
system just following a single time evolution starting at a random point: the
information gained from such trajectory would be equivalent to studying the
system as a whole, or to what we would find using any other trajectory starting
from different points; as long as, of course, the system in question is ergodic. One
of the most crucial quantities for the characterisation of a dynamical system is
the first covariant Lyapunov exponent, as it is strictly bound with the definition
of deterministic chaos.

The idea of a dynamical system both deterministic and chaotic, - i.e. with
a time evolution completely and uniquely determined by its variables on one
hand, but complex and not predictable in the long term on the other hand -
is only an apparent paradox, easily resolved stating that deterministic chaos
is the property of systems where two points, arbitrarily close in phase space
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d(tg) = & < 1, evolve in time on paths diverging with an ezponential rate
d(t) =~ de*t, A\ > 0 (see figure @) . The result is that, since we can know
the state of a system only with finite precision, any long term forecast would
eventually be outgrown by the exponentially increasing error associated to our
initial uncertainty. This is basically what Lorentz originally intended as “the
butterfly effect”.

The first Lyapunov exponent is, roughly speaking, the 6 — 0 limit of the
exponent associated to that divergence, averaged for time ¢ — oo. If positive,
the system is clearly chaotic. If negative, we can say that separate trajectories
would eventually converge, although for a particular class of dynamical systems
the time needed grows so fast with the system dimensionality that the dynamics
appear practically chaotic. Such property is called stable chaos [7].

Going back to figure 2l we notice that the maximum divergence defines, in
time, also a direction. We call the direction associated to the maximum expan-
sion the first Lyapunov vector vV (t). Tt is local, since it depends on the point
in phase space we are considering.

Apart from points, we can consider n-dimensional phase space volumes. This
introduces the idea of different orders of Lyapunov exponents, as well as differ-
ent associated directions: a k dimensional hypercube would increase (or shrink)
its size as V(¢) ~ V(to) exp (¢t (A1 + ... + M), and the deformation of its shape
would follow, in time, the directions of the associated Lyapunov vectors. Figure
Blrepresents an example of this: the first direction is expanding, the second cor-
responds to a 0 exponent, finally the third is contracting. The volume expands
as the sum of the three exponents, and its shape changes: we expect that the
direction associated to the 0 exponent keeps being parallel to the motion, but
nothing can be said, in general, about the expanding and contracting directions,
and the angle between them. The systems we are interested in are dissipative:
the sum of all Lyapunov exponents is negative, so that a volume in phase space
shrinks during the dynamical evolution, progressively falling on a subset of the
total phase space manifold called attractor.

The attractor has, in general, a very complex shape, possibly fractal. A
useful property of the exponents is that they can give an esteem of the attractor
dimension. If the first exponent is positive, but the total sum is negative, for
a certain integer k we have A1 + ...+ A\p = 0 ( if the sum is not exactly zero,
we can add a small non-integer correction to k). Then, for what stated above,
a volume of dimension k will neither expand nor contract in time, thus giving
an upper bound to the attractor dimension.

Another esteem derived from the exponents is the entropy production rate.
Assuming we know the initial state of the system with finite precision, the
exponential spreading of trajectories from points initially indistinguishable adds
information regarding their initial state, thus chaotic dynamical systems can be
seen as producers of information, and the production rate can be estimated as
the sum of the positive Lyapunov exponents.

The calculations of entropy and attractor dimension are actually esteems that,
in general, cannot be taken as exact equalities. There is, however, a class of
dynamical systems, called aziom-A, for with the entropy calculation is proved to
be correct, while the attractor dimension esteem is conjectured to be. Estimating
if a complex, chaotic dynamical system is axiom-A or not is mathematically a
very hard task, and a general approach has yet to be found. What we did in
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Figure 3: The series of Lyapunov exponents decodes the expansion/contraction rate
for volumes. In this example a volume grows in one direction, maintains its size in
another, and shrinks in the third: A > 0, A® = 0, A®® < 0. The directions are
given by the Lyapunov vectors associated to the exponents.

the present work is investigate if the system we are interested in satisfies one of
the key requisites for axiom-A: hyperbolicity.

Basically, in hyperbolical systems expanding and contracting directions do no
mix up (see the end of chapter[dlfor further details. In the present work we check
if this requisite is respected by studying the angles between contracting and
expanding directions, given by the Lyapunov vectors associated to, respectively,
positive or negative global exponents.

Thesis Structure

The aim of the present work is to simulate and, using the ergodic formalism,
fully characterise a large-scale neural network of inhibitory quadratic integrate-
and-fire neurons.

Chapter [l introduces and explains the ergodic theory more formally. Quanti-
ties such as attractor dimension, Lyapunov exponents, entropy production rate
and Lyapunov vectors are defined, explaining also how they can be numerically
computed.

The following chapter deals with the construction of the neural network. First
we model the one-neuron dynamics, taking the general Hodgkin-Huxley equa-
tions as a starting point. Trough different levels of approximation we reach the
simplest canonical 1D description for a neuron: the quadratic integrate-and-fire
or theta neuron. Afterwards, starting from the results of in-vivo measures on
large populations of pyramidal neurons, we define the balanced state, and build
a model for the computation of a large-scale network with similar qualitative
behaviour.

Chapter Bl deals with the computation and the findings. It starts with a
step-by-step description of the computer simulation we used. Then we assess
to which extent the neuron pulses are comparable to a real balanced state.
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Afterwards, we calculate numerically the Lyapunov exponents, deriving from
them the entropy production rate and the attractor dimension. The findings,
so far, are substantially a confirmation of what has already been presented in
recent works on the subject [8, 9]. We consequently focus on the Lyapunov
vectors: to confirm their invariance and the robustness of the algorithm used
for their calculation, different convergence tests are performed. The minimal
angles between vectors, corresponding to expanding and contracting directions
are used to estimate the hyperbolicity of the dynamical system. The result is
that, as the system becomes larger, the angle distribution is more peaked for a
nonzero value, showing more transversality between contracting and expanding
directions.

Finally, for each vector, we measure the average participation ratio, that
counts the effective number of neurons contributing to the vector dynamics,
and the chaos index (defined as the time average of the square vector compo-
nents), that reveals which neurons have a predominant role for a single vector.
From the interplay between these two parameters (and some others derived
from them) we can characterize the network dynamics both globally and from
the perspective of the single neurons. In particular, we find that the contri-
bution to the expanding directions comes from a group with an average size
that scales with K, and the single neurons that take part to it change in time,
covering uniformly most of the network; on the other hand, strongly contracting
directions tend to be localized on few neurons, fixed in time.

The final part summarises the novel results, namely the use of Lyapunov
vectors to assess the hiperbolicity of the neural network and to characterise
the role of individual neurons in the collective dynamics. A list of possible
extensions and future prospects concludes the chapter.
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Chapter 1

Mathematical Framework

We stated that a set of interconnected neurons can be modeled as a network and
studied as a n-dimensional dynamical system. In this chapter we will describe
the general mathematical framework used to study systems of known dynamics,
characterized by chaotic behavior and high-dimensionality.

We start with an introduction about the statistical study of differentiable
chaotic dynamical systems, through the definition of a natural or physical prob-
abilistic measure on phase-space and the application of Birkhoft’s Ergodic the-
orem.

Afterwards we focus on the characterization of chaos, defining both intuitively
and in a more rigorous way the Lyapunov exponents. We show how the Oseledec
Ergodic theorem implies that such exponents exist and are finite, and how the
presence of a Oseledec splitting of phase-space emerges from that.

Using the given definitions, we illustrate the classical algorithm used to cal-
culate the complete set of Lyapunov exponents, when the equations regulating
the dynamics are fully known; then we introduce a very recent method for the
calculation of a vector base corresponding to the expanding direction of the dy-
namics, i.e. the local Lyapunov vectors. The meaning of such vectors and their
connection with the local Lyapunov exponents is briefly explained.

In the last part we describe two conjectures of Ergodic theory which investigate
the connection between the Lyapunov spectrum the attractor dimension and
entropy.

All quantities described in this chapter will be explicitly calculated and ana-
lyzed in the specific dynamical model described in the next chapter.

1.1 Differentiable Dynamical Systems
and Ergodicity
A differentiable dynamical system is a time evolution on a compact, differen-

tiable manifold M C R™ (the phase space), defined by a differentiable mapping
or flow [10]

ftoM— M, with ¢ € R for flows, ¢ € N for mappings;

15
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1 Mathematical Framework

Figure 1.1: Exponentially diverging trajectories in phase space

with the properties:
1% = identity and fEft = fort (1.1)

If the system is dissipative, a given portion of phase space is usually contracted
by the time evolution on a smaller volume. The portion of phase space where the
motion is “concentrated”, possibly after an initial transient, is called attractor.
We can define the attractor as a set A with the following properties [11}, [12]:

1. is invariant in the dynamical evolution: V¢, ftA = A;

2. attracts an open set: 3 open set U D A such that Vo € U the distance
between A and flx reduces to zero in the limit ¢ — oo.

3. is minimal: there is no subset of A which satisfies properties 1 and 2.

The largest U satisfying property 2 is called basin of attraction of A, if U = M
the attractor is called universal.

A dynamical system is said to be chaotic when it presents high sensitivity to
initial conditions, i.e. when the trajectories of two distinct phase space points,
arbitrarily near at t = 0, diverge exponentially during time evolution, as illus-
trated in figure [[LJ1 In the next section we elaborate the concept in greater
detail and quantitatively; for now we can notice that, for a given starting point,
trajectories calculated on machines with slightly different precisions or differ-
ent round-off methods would completely diverge after a relatively short time.
Unless we use numbers of infinite precision, there will always be some intrinsic
random noise that compromises any long-term forecast of such systems. Never-
theless global statistical properties, such as the presence or the structure of the
attractor, stay unchanged, regardless the starting point and the level of noise
(assuming, of course, that the latter is reasonably small). In chaotic systems
the attractor is therefore characterized by the additional property:

4. is stable under small random perturbations.
Such a property is essential to guarantee that, in experiments and numerical

simulations, the motion falls asymptotically on the attractor despite the fact
that the trajectory itself has poor predictive value.
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The attractors of chaotic dynamical system are called strange. The name
comes from the fact that they often present a very complex, fractal structure,
i.e. with non-integer Hausdorff dimension. The definition of fractals and their
properties is beyond the scope of the present work (see for example chap 11
in [I2] or chapter 3 in [I3]) here we just mention that similar attractors are
quite hard to model and to study directly. This, along with the impossibility
of calculating the “true” evolution of a point in phase space, suggests that the
only possible approach to tackle those problems is statistical and probabilistic.

The tool we use for our analysis is the Ergodic theory. It basically says that av-
erages on a single trajectory in time equal averages over the whole phase-space,
where the phase-space is weighted by an appropriate measure p, with the funda-
mental requisites of being invariant under time evolution and ergodic. Abstract
ergodic theory deals a lot with the study and definition of measures that can
satisfy those requisites. As physicists, hopefully interested in real differentiable
dynamical system, we can luckily “bypass” this problem by operationally define
a unique natural or physical measure in the way described below.

We start by taking into consideration the probability density functions (PDF)
on M, defined so that, for @ € M, p(x)dx is the probability of finding the
system in the small volume of phase space dx around the point . Imagine
to have, for t = 0 a given ensemble of phase-space points, corresponding to
a density po(x), then evolve each point in time with f, and study the series
of pdfs pi(x), p2(x),...p:(x). In the t — oo limit, we may expect that they
converge to a density which is invariant under the action of dynamics: pi,y ().
This is not always true, but in the systems of our concern, i.e. chaotic and
finite-dimensional, the application of Perron-Frobenius theorem ensures that
such a PDF exists, is unique, and is approached exponentially fast in time [14]:
pi(@) = piny (@) + O(e=2")

Intuitively, if we begin with a homogeneous distribution of points in phase
space, and evolve them for some time, all points would fall over the attractor and
stay confined on it. Under a practical point of view, unstable fixed points and
cycles do not play any role, since points on them are driven away by the random
noise intrinsic to numerical computation. To be mathematically more rigorous,
we could follow the idea expressed by Eckmann and Ruelle [I0] (said to have
been first formulated by Kolmogorov), and define our density asymptotically,
as the e — 0 limit of densities p. iny characterized by a dynamics perturbed by
random noise of magnitude e.

The physical measure p can be defined as the probability of finding the motion
in a given phase-space area:

u(B) = [ (@) e

From the way piny(x) has been constructed, this measure has the crucial prop-
erty of being invariant under dynamical evolution:

u(B) = u(f'B).

After finding a “natural” candidate for the invariant measure, we can define the
property of ergodicity, studied by Birkhoff(1931) and Von Neumann (1932):
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The invariant measure p is said to be ergodic if the phase space
M is metrically indecomposable with respect to it; i.e. there cannot
be two distinct and invariant subsets, A and B, both with positive y
measure. In other terms, if A is invariant (ftA = A), then pu(A) =1
or 0.

We can imagine that in systems with distinct attractors, the dynamic evolu-
tion would “select” one of them, according to the specific starting point, and
move eternally over it. As a consequence, the statistical properties derived from
such trajectory would be neither global nor invariant of the starting condition,
invalidating the notion of ergodicity.

If such a simple and intuitive requisite is already enough to state the presence
of ergodicity, in practice the ergodic hypothesis is impossible to demonstrate
for the great majority of systems. However we can make the ‘“reasonable as-
sumption” that the system we are considering has only one attractor, and go on
illustrating Birkhoff’s Ergodic theorem:

For a integrable function ¢ : M — R, the limit

1t :
Jim /O a6 (fiwo) = (6(0))
exists. If p is an ergodic measure, then (¢(xg)) is almost everywhere
constant (does not depend on the initial point @) and equal to:

(Ola) = [ o@) plde) = [o(a0)]

For a proof see, for example, the original article by Birkhoff [15].

The powerful result obtained is that any observable of our system, correspond-
ing to an integrable function ¢ has a definite global average value over phase
space. This value can be computed by integrating the function on a random
trajectory reasonably long in time, and the result does not depend on the initial
point xq of the specific trajectory. This fundamental principle gives meaning to
basically all the analysis performed in the present work.

1.2 Chaotic Dynamics and Lyapunov Exponents

As mentioned before, a dynamical system is said to be chaotic when its time
evolution is highly sensitive to the initial conditions. Namely, if we take two
points at distance e arbitrarily small, the divergence of the two trajectories in
time will be ~ € e*, A > 0. For A < 0 the difference would quickly decay, making
the dynamics stable; if A = 0 nothing can be said. If the motion is confined on an
attractor, the distance cannot grow indefinitely. What happens is that the two
trajectories, after the initial strong divergence, become completely independent
one another.

If we apply this concept to a point in phase space x, with a small error associ-
ated dx, we reach the conclusion that even though a chaotic system is regulated
by precise equations, the exponential grow of errors makes any calculated time
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evolution self-independent of its long-term past history, i.e. non-deterministic
in any practical sense [I1].

The parameter A, called the Lyapunov exponent, is of primary importance
in studying quantitatively the chaotic behavior and estimating its long-term
predictability in such systems. For a precise definition and calculation, we need
a satisfying mathematical description of the entities in question.

Let M be a smooth, compact manifold and f a mapping or flow over M with
the properties (ILI); let u be a measure invariant under time evolution; « is our
starting point on M. We can identify the small difference between x and an
arbitrarily close point as a vector u belonging to the tangent vector space to M
in point @, T, M. Pairs expressed as (z,u), with € € M and u € T, M can be
interpreted as elements of the tangent bundle of M, that we call T M.

We can define an iteration of a given amount of time ¢ as a map of the form:

T . TM — TM
(z,u) — (ft(a:),Ti,u) .

The linear operator T, maps the vector u € T, M in 4 € Tft(z). This operation
can be seen as the push-forward of w by f: this implies that the operator is
simply the linearized version of fi(x), i.e. its total derivative, represented by
the Jacobian matriz: T = D f(x).

From the properties on f and the chain derivation rule we have that:

in other words, a long time iteration is equivalent to a product of short time
iterations, consisting of elements defined following the trajectory of the starting
point x.

From now on we will consider f as a discrete map, with ¢ € N. However it
is possible to generalize all the following definitions and results for flows, with
little change in the notation. If || - ||, is the vector norm over the space Ty, we
can express the rate of change of the vector u for one step (¢t = 1) as:

1T w|| 1 ()
r@ ) =

for the next timestep, using (L2), we have:

1 1
o (@), Thw) = L Tl Tl
e T2l () 1T w1 ()

Wen we compute the geometric mean of the change rate for the n elements of
the time series , f(x), f2(x) ... f*~V(x), the result is:

[r (f("_l)(a:),Tz(”_l)u) - (f(”_Q) (x), Tm("_Q)u) coo (e, u)} =
_ {nTsun]i |

]|

1
n

n n—1

| To| |78 V] || Thal|
n—1

T8 V]| || Tk [
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The logarithm of this quantity in the large n limit is called the Lyapunov
Characteristic Exponent (LCE) of (xz,u)

1
Trul|\ »
Mz, u) = lim log <||||Z|l|t||> =

1 n o1 o 1 n
i~ log |Tul| — lim -~ log|[ul| = lim - log|[T3ul| (1.3)

This definition satisfies the properties:

Vi € R\{0} Xz, ku)= \z,u);

Vu,v € TpxM MNa,u+v) < max{\(z,u), A\(z,v)} . (1.4)

The LCE depend only on the direction of the vector, and not on its magnitude
(a direct consequence of the linearity of the operator T7).

The existence of such limits is granted by Oseledec’s multiplicative er-
godic theorem [16]. It can be expressed as follows:

Given a compact, differentiable manifold M, a mapping f : M —
M and a measure yu invariant over M; let T be a map from M to
the space all the m x m real matrices, with the notation 7" (x) = T,

such that
|t tog* 1T < o0
M
where log™ (k) = max{0,log(k)} and || - || is a matrix norm; let T
be defined as the product T3 = T} 1)1y ---Tj(y) Tz Then there

is a f-invariant subspace N C M such that u(N) =1 and V& € N
(indicating with A* the adjoint of A) the matrix

Ag == lim ((T7)*T")¥  exists.

n—o0

It has s < m distinct, real eigenvalues, that can be ordered as

exp )\(ml) > ... > exp /\(;), corresponding to the eigenspaces Ug);
r=1,...,s. The )\g) exponents assume real values or can be —oo

if the corresponding eigenvalue is 0.
If we define L(mr) = Ug) &) Ué”l) D... @Ués), and L(;H) = {0},

we have that for u € L(J)\ e Lty

1
lim — log||Tgul| = Ay,
n—oo N

i.e. the logarithms of the eigenvalues of A, are the set of all LCE
we can find from z. Finally, defining d == dim US”, we have that
the functions & — A and  — d{ are f-invariant ( ) _ )\(th)(w),
etc.) and, if the system is ergodic, are almost everywhere constant
(with the possible exception of a set of 0 measure).

The matrix A, is called Oseledec Matrix. If we write the vector norm as a
scalar product ||u|| = v/(u, u); the expansion rate after a single iteration is:

[ Thul| _ \/ (Thu, Tiu) \/ (T2) Thu, u)

(u, u) (w,u) 7
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the last equality comes from the definition of adjoint matrix. Now, assuming u
is an eigenvector of (T.1)*T. with eigenvalue k, the result is:

\/<(T;>*T;u, u) _ \/ (w,w) ko (1.5)

(u, u) (u, u)

This explanation has the only purpose of describing the idea behind the con-
struction of the Oseledec matrix. For a full description of the theorem and its
relation with the Lyapunov exponents, see [I1], 17, [I8]. An exhaustive mathe-
matical demonstration can be found in [19]. The Oseledec multiplicative ergodic
theorem is not simply an alternative way to express the Lyapunov exponents,
but more than that, it states the existence of such a limit as an invariant prop-
erty of the dynamical system, independent from the initial point chosen for time
evolution.

The folding vector spaces L(zl) D) L(m2). ) L(ms) induce a natural splitting on

the tangent space, known as Oseledec splitting. The importance of such splitting
can be illustrated as follows: if we take a random vector u belonging to T, M,

its mean grow rate will be exp /\(21), i.e. the exponential of the highest Lyapunov

exponent. This comes from the fact that u € Lg): the subspaces Lg), LS) ..
have zero measure with respect to the total space, so the probability of a ran-
dom vector to be limited to them in substantially zero. However, if we consider
a random vector @ from which we systematically remove the component in the
direction(s) of highest expansion, i.e. its projection on Ug(gl), then @ € L;(f) and
its LCE will be the second highest exponent, ,\5,3), and so on. The numerical
calculation of the complete spectrum of LCE is essentially based on this mech-
anism. We can also notice that the ordering of the spectrum induces different
orders of expansion (and stability, for negative LCEs) in different subspaces.

Moreover, the basis of each Ug) subspace (i.e. the A, normalized eigenvec-

tors), represents the (average) direction associated to the expanding (or con-

tracting) average rate exp )\(mr). Such directions are called Lyapunov vectors

and, as described in section [[.4] can be computed and studied locally, in order
to gain useful information on the local dynamics and global dynamics.

1.3 Calculating Lyapunov Exponents

The classical algorithm for the calculation of the Lyapunov exponents dates back
to 1980 [20]. Tt considers only dynamical systems whose governing equations
are fully known and computable. If the dynamics is hidden, it is still possible
to estimate some of the exponents by using an empirical time series of some
observable of the system. In [21], for example, both cases are considered (see
also [22]). However, for the scope of the present work, we will stick to the
hypothesis of the classical algorithm.

Following the reasoning of the original article, we start with the procedure
for the first, highest exponent, and then we generalize the result to the whole
spectrum. First of all we remind that for a starting point in our manifold x € M
and a vector in its tangent space u € T, M, the linear operator involved in the
push-forward (z,u) — (f'(u), Tiw) is the Jacobian of f* calculated in point
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x. This value is basically the complete derivative of f!: in section of next
chapter we will show the calculation in our specific setting. For now we assume
the T matrices as given for every  in M.

As said in previous section, for the first exponent is sufficient to follow the
evolution of a random vector ug. To have an intuitive representation of the pro-
cess, we can imagine to decompose ug in the basis of the directions of expansion
associated to each exponent (i.e. the Lyapunov vectors). Being random, our
starting vector will have a nonzero component for each direction. Due to the
linearity of the process each component will increase, on average, exponentially,
according to the respective Lyapunov exponent. The exponential difference of
the growing rates will cause the component associated to the highest exponent
to dominate over all the others after a short amount of iterations, so that it is
the only one selected in the large n limit.

The only difficulty is that an exponentially growing vector would soon go out
of the boundaries of our computational capabilities (that’s basically the reason
why we cannon calculate A, directly). It is solved as follows. Given an integer
k > 1 such that TP lies safely in our numeric limits, we start with a random
vector ug € T, M and calculate iteratively the series:

k_Uo k Uy k U2
’LL1=T—, ’U,QZTk TR ’U,3:T2 ITEETR R
“ Juoll T ] @ g |
k k k
w = T, wioy Ty (®) Tiop () - Ty U0 ;
PO gy || i || [luizll. . [|uoll
T *uo|| = [Juil| [Jwi_1]| ... |Juo||; finally, from ug € L) and (T3), we have:
1 n
M — i, = .
A = lim — leog||uz|| . (1.6)
=

Both the fact that 7}* is applied only to normalized vectors and that the loga-
rithm is computed at every single step have the positive effect of containing the
size of the numbers involved, making the computation possible.

To calculate the whole spectrum, we must think in terms of volume variations.
We assume the A, matrix to be m dimensional and, for simplicity, that all its
eigenvalues have multiplicity one (i.e. we have m distinct LCE). Let U C T, M
be a open set of volume Vol(U); using the definition of LCE and the Oseledec

theorem, we infer that its average growing rate in time is ocexp Y ., ,\(; ),

We start from Uy, defined for convenience as the m-dimensional hypercube
enclosed in a random orthonormal basis of T, M: {ugl), u(2), ...ugm)}; Let
A be the linear operator corresponding to a single time iteration of the set.
Following the same reasoning as before, we define iteratively the sets U; as:

o AUi—1)
! VOl(Uifl) ’

so that, from the linearity of A, it follows:
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The quantity on the right is the volume of our initial hypercube after i timesteps,
namely:

Vol(AA... AUy) = V01(T;ku51>, T;’“u( ) . Tiky (m)) :
this expression leads to the sum of all LCE:

. 1. Vol(A"Uy) n -

The quantities on the left assume the form:

VOl(A(Ul_l)) _

Vol(U;) = 1.7
o) = Y= ()
1 2 m
VOI( Fa-1k ()W E)p Tf(z Dk () W 5)17'- T]’f(l Dk () W 5 1))
Vol(U;_1) '
By iterating the vectors as before (u!’) = T]’fU b () ul?, /||u?]||) and computing

the volume for each step, we can, in pr1nc1p1e find the right result; however this
method is not feasible, due to the fact that all vectors would soon converge
on the direction of maximum expansion, so that the angles between them are
beyond the numerical resolution and the volume cannot be calculated.

To circumvent this problem, for each timestep we recompute the vectors defin-
ing the volume U; performing a Gram-Schmidt orthogonalization procedure: U;
does not change, and its volume simply becomes the product of the orthogonal

vector norms. In short, if we assume (-, -} as the scalar product in the space
Tir ()M, we build the series of u(])

L0 u(l)

u, Tf(l Dk (@) D) ! (1) forj>1:
(1.8)
(J) j—1 (9 (r
(]) T U~ Z T uz 1 (7‘) u; )
u; fli— l)k(m) (J) FUE—Dk(g) (]) u; Gt
2y | R— [N lJu; ||
With this definition Vol?(T* im0k () U 51)1, T;f(i,l)k(z)ugl, . T;f(i,l)k(m)ugﬁ))

is equivalent to:

H||u<” Vol (), u®, . ™) Hllu“’ | IT e
j=1

The last equality is due to the orthogonality of the u( ) vectors. From T2 we
obtain Vol”(U;) = [}, ||u || which leads to the result:

> AP = tim —log | [T lfug”Il- [ llut”ll-... TT Il
j=1 j=1 j=1 j=1



24

1 Mathematical Framework

Rearranging the product indexes and decomposing the logarithm, we finally
obtain, for the s** exponent:

‘ R .
Y = lim Z;bgnugﬂ)” : (1.9)

Equation (I9) is an extended version of (L)), with the significant difference that

the uz(-j ) vectors, for j > 1, are calculated according to the orthonormalization
procedure (L8). As we will see in section this process can be simply and
straightforwardly translated in basic operation on matrices.

Before moving to the calculation of Lyapunov vectors, some considerations
about dimensions should to be done. The result of (I9) is dimensionless, as
it represents the logarithm of average expansion per step. To obtain a more
general quantity, independent of the step lengths used for the evolution of the
dynamical system (as long as the intervals are small enough to follow properly
the dynamical evolution), we need to rescale the exponents using the duration
of a timestep At: .

(4 A
A = A7 (1.10)

The coefficients are thus expressed in seconds™!.

The system analyzed the present work has the peculiarity of having steps of
different time lengths. Since the LCE is defined as an average quantity, we
divide it by the interval length averaged on all performed steps: [At]s (see for

example pag. 120 of [14]).

1.4 Calculating the (local) Lyapunov vectors

As said, the Lyapunov vectors, defined as a base for the eigenspaces of A,
represent the direction of the global average expansion associated to each expo-
nent. It is then possible to define the local Lyapunov vectors as the preferred
expanding directions for the (linearized) dynamics of each point in time. The
local Lyapunov exponents are then the punctual expansion rates in each of those
directions.

The identification at any step s of the maximum local exponent )\gl) and its

associated direction vgl) is straightforward: as said, a random vector, freely

evolving in time, would rapidly align with it. So that, using the ugl) vectors as
defined above, we obtain, for the vector and the exponent:

() 1 Th gyl

Us AL = 10g fik(z) _ 1Og||u(1) I, (1.11)

(1 _ _®s .
V., = ; s S
D] sl (4D

for values of s reasonably distant from 0, so that w(!) has sufficient time to
align, and assuming that the mapping is smooth enough, so the vector properly
follows the dominating direction at every point in time.

Moving to v'? and ,\§2>, the idea in the series (L8) is that, after we apply the

linear operator, we project the resulting vector on the space orthogonal to vgl),



1.5 Matrix Calculation

25

V2

Figure 1.2: In a chaotic dynamical system any perturbation will converge on the
direction of the first Lyapunov vector. On the other hand, a time inversion in the
dynamics results in the marked domination of the least forward expanding direction,
i.e. the second vector.

thus the growth in that direction direction (expected to be dominating) is com-

pletely suppressed, while the next highest growing direction, regulated by )\22),

becomes visible. As a result, u22)/||u§2)|| has the same direction as the projec-
tion of v{¥ on the space perpendicular to v$". Tn general u§2)/||ug2)|| # vl
no reason forces the Lyapunov vectors, either global or local, to be perpendicu-
lar each other. Lacking the knowledge of the correct direction and of the local
exponent defined as above (it cannot be found it the corresponding direction is

not known), we cannot calculate the true vf).

A solution to circumvent this problem has been proposed only in 2007 [23]. It
is based on the quite intuitive and well know principle that a time-inversion in
the dynamics of our system inverts the Lyapunov spectrum. A volume normally
expanding in some directions, in a backward motion would contract in those
same directions with inverted ratios, while a random vector traveling backwards
in time would soon follow the direction of less expansion in forward time. See
figure to have a graphical idea of the process.

For the arguments above, we know that Span(vgl), ng)) = Span(ugl), qu)).
If we take a random combination of ugl) and uf) and evolve it backwards, after
some iteration (let’s say h) it will be aligned with the less forward expanding
222 ,- For vector visz , we simply start with a

linear combination of vectors vgl), qu), ces uﬁ”, keeping in mind that h should

be big enough to let the vectors align properly.

direction of our subspace, namely v

1.5 Matrix Calculation

As said, there is a simple and elegant way to translate the algorithms described
above in a sequence of matrix operations. If m is the dimension of our system,
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we start defining a random, orthonormal, m x m matrix whose columns represent
a basis for T, M: Qo = (q(()l)| |q(m)) Due to their structure, the g9) vectors,
i.e. the columns of the Q matrix, are called the Gram-Schmidt basis.

TF is the Jacobian matrix associated to a k-steps evolution, with & chosen so
that the exponential growths are kept in the numerical limits of our calculator.
We now perform the multiplication:

Thes, o Tpy - Qo= (Thay)|...IThag™) = @"]...1a™) = Qus  (112)

where T7!. .. le,lm are the Jacobian matrices for a single timestep, computed
for the specific dynamical system we are analyzing.

The vectors q§ 7 are not orthogonal. To obtain the correct iterated Q; matrix,
we apply a QR decomposition on Q1. The QR decomposition on a generic
square matrix @ consists in writing it as the product Q Q@ - R, such that @
is orthonormal and R is upper triangular. Calling q(J) and gV the columns of,

respectively, Q and @, the new matrices are defined by:

. j—1 .
" g9 -3 <q(a), q<r>>q<r>
m__9° . ) — r=1
q - ~(1) b -
gl

. j—1 .
Hq(a) S <(§(J), q(r)>q(r)

r=1
{R}s; = <q<1 q<ﬂ'>>, fori<j.

It is straightforward to see that these values can be expressed in terms of the

‘ (1.13)

u vectors (LX) as ¢\ = u!V/||[ulM ] ... g™ = u{™/||u{™]|| Moreover, from
the definition of the QR algorithm descends that the diagonal of the R matrix
corresponds to the u{’) norms: {R;};; = [|ul?]].

The orthonormalized @) is now ready for another iteration:

T;%_lz...Tflkw -1 = QQ =(@2- Ry ...and so on.

The uz(-J ) vector modules, given by the diagonal of R;, are stored in each
iteration for the calculation of the Lyapunov spectrum.

This same setting, along with the results already computed, can be also used
to find the Lyapunov vectors. The ending point of our computation 7" > 1 will
be assumed as the starting point of our backward iteration. The starting ran—
) e Span{ul’, u'?} ..., v € Span{ul)

Up )} can be defined as the product of Qr with a random trlangular matrlx
Cr. Considering the time iteration, we obtain:

Qr-Cr = Tfl‘c(l—T)k(w) Qr-1-Cr-1=Qr - Cr_1=Qr - Ry - Cr_1 ;
so that CT—I = (RT)_l . CT . (1.14)

The previously calculated triangular R; matrices must thus be fully stored,
inverted and used to iterate backward in time the C; matrix:

Ci=(Ri) ™" (Ria)™ o (Re) ™ Cr

Since we are interested only in the vector directions, we can freely normalize
the columns of the C; matrices. If we do that at every step, we can identify the
normalization factors at point ¢ with the local Lyapunov exponents )\gj ), while
the Lyapunov local vectors are simply the (normalized) columns of @ - Cs .

dom vectors ’UT) € Span{uT)},
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1.6 Information and Entropy

Consider two points very close one another in the phase-space of a chaotic sys-
tem: for any observer whose instruments have a precision coarser than their
distance, they will appear completely indistinguishable. Eventually, as the sys-
tem evolves in time, the trajectory separation due to chaotic dynamics makes the
distance significant, so that the points are perceived as separate. Thus, systems
very sensitive to initial conditions can be seen as producers of information.

Let {A;, Az, ..., Ay} be a finite, y-measurable partition of the phase space.
We can assume it corresponds to the resolution of our instruments, so that two
points in the same set of the partition A cannot be seen as distinct. We can then
define f~%(A;) as the set of points & such that f*(x) € A;, and call f7%(A )
the partition {f~*(A1), ... f*(A,)}. We finally consider the partition given
by the least common refinement:

A = AV FTH ANV AV VA
it is defined so that a generic set in it has the form:
A, N fﬁl(Aiz) n...N flin(Ain) for 1; € {1,2, ...,a}

It is clear that the latter, dynamics-related, partition has a resolution much
finer than the starting one, since any element in it is discriminated by its past
history, up to n — 1 steps.

Now, we can define the information content of the partition A™ with respect
to measure [ as:

H(AM™) = Z p(Ai, NN A ) og p(Ay N 0 ETRAG)

D1, -eyln

where we sum over every element of A(™. The rate of information creation,
with respect to the initial partition .4 is then given by the limit:

Ai(u, A) = lim (H(A(”“))fH(A("))) = lim <1H(A<n>)> .

n— oo n—oo \ N

The Shannon-MacMillan theorem guarantees the existence of this limit.

The Kolgomorov-Sinai entropy #£(u) is then defined as the further limit of
f(p, A) for finer and finer starting partitions A.

As stated at the beginning of this section, the information creation rate is
originated by the expanding motion of the system in the phase space, connected
with its chaotic behavior. In 1978 Ruelle demonstrated that its value cannot be
greater than the total positive expansion rate of the system, given by the sum
over all positive Lyapunov global exponents:

flp) < >0 A0 (1.15)

A >0

Pesin extended this theorem, proving that (IIH) is an identity if (and only
if) the measure u is a SRB measure. We shall briefly define and discuss SRB
measures at the end of the next section, since they result crucial also in the
valuation of the attractor dimension.
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1.7 Information Dimension of the Attractor

As mentioned at the beginning of this chapter, (see pag [[7) the attractor in
the phase space A C M has, in general, a fractal structure. We assume the
notion of Hausdorff dimension as given, with the notation dimy, and define the
information dimension of the measure p as:

dimy (p) = inf{dimg (S)|u(S) =1} .

Young’s theorem (1982) shows that, if x4 is an ergodic measure, this value is
equivalent to:

: . log u(Bz(r))

d = lim —————= .

g (12) 0 logr
Here B (r) represents the ball centered in @ of diameter r. The expression is
valid and constant for every & € A except, possibly, for a set of 0 u-measure.

Now, if X1 ..., A(™) are the global Lyapunov exponents associated to u,

and k = max{ i | A\ +... 4+ X >0}, we can define the Lyapunov dimension
as:
AD 44 B

dimp () =k + NG| ;

(1.16)

the second term is a small, noninteger correction for the case: Zle A >0 and
Zf{;{l A® < 0. In our system, due to great dimensionality, it results negligible.

The connection between the two quantities defined here is given by the fol-
lowing conjecture by Kaplan and Yorke: if y is an ergodic, SRB measure, then

dimp(p) = dimp () . (1.17)

It is analytically proved that this equality holds in some specific cases, but
exceptions are found.

SRB measures and hyperbolicity

In the previous two sections we stated that a crucial property of the measure we
use, both for the ezact calculation of entropy production and a reasonable esteem
of the attractor dimension, is being a SRB measure (from Sinai, Ruelle, Bowen);
namely a measure which is absolutely continuous along unstable manifolds. A
rigorous definition can be found in [I0, [IT].

It is proved that for a class of dynamical systems, namely the Aziom-A sys-
tems, exists a unique SRB measure, which can be expressed “physically” as the

ergodic average:
n—1

o1
p= nlingo - Z(kal .
k=0
The problem is then transferred on demonstrating that the dynamical system
is Axiom-A: in that case the SRB measure naturally corresponds to an average
over long dynamical trajectories, as the ergodic principle states; consequently
Pesin identity holds and Kaplan-Yorke conjecture is on solid ground.

The crucial property of Axiom-A system is hyperbolicity. A set A is hyperbolic
for a diffefomorphism f (mapping of flow), if Vi € A there exists a direct sum
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decomposition of the tangent space between stable (expanding over time) and
unstable directions (expanding on inverted time). If A is a hyperbolic attracting
set and the periodic points of f are dense in A, the conditions for an Axiom-A
diffeomorphism are satisfied. In case the whole manifold M is hyperbolic, we
have the stronger conditions of Anisov diffeomorphism and structural stability.

Proving that a system is Axiom-A is, in general, a very hard task. However,
the present work represents an example of how Lyapunov Vectors can be used
to identify the expanding and contracting directions of the tangent space. The
measure of their transversality represents then a quantitative esteem of the
global degree of hyperbolicity of the system.
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Chapter 2

Model

In this chapter a basic model for a static, large scale network of cortical neurons
is built. Starting form the Hodgkin-Huxley classic equations, simpler models
are inferred. It is then explained why the canonical quadratic integrate and fire
model (QIF) is a suitable to describe the dynamics of very large scale networks.
In the next section a more general model for pulse-coupled neuronal networks
is presented. Explicit equations are obtained from the QIF model and used to
calculate analytically different global parameters of the network; then a formula
for the Jacobian at any given spiketime is presented. Such analytical expressions
will be the basis of the actual network simulation and of all the subsequent
results presented in next chapters.

2.1 Single Neuron Dynamics

Hodgkin and Huxley model

The best known and most widely accepted equations used to describe the poten-
tial of a neural cell soma as a function of external current and internal conduc-
tance parameters, dates back to the pionieristic work of Hodgkin and Huxley
[24]. The equations in their standard form are:

av
CE =1—g.(V—EL) — gxam®W(V — Exa) — gun*(V — Ex) ;

dm 1
dh 1 )
dn 1

with Mmoo (V) = am (V) /(m(V) + Bm(V)) s (V) = 1/(am (V) + B (V) ,
hoo (V) = an(V)/(an(V) + Bu(V)), (V) =1/(an(V) + Br(V)) ,
Noo(V) = an(V)/(an(V) + Bu(V)) ;. (V) =1/(an(V) + Bn(V))

31
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The variable I represents the current, C'is the membrace capacitance, the FE, are
the Nerst equilibrium potentials, while the g parameters are the maximal con-
ductance for Na™t ions, KT ions and other ions (leakage currents). The m, h, n
functions are biologically interpreted as the open fraction of independent gates
which compose each single ion channel. One Na™t channel is open only if its
three m-type gates and one h-type gate are open, while a K+ channel is com-
posed of four n gates. Such functions depend on the steady state activation
parameters Moo, Moo, Moo and on the activation time constants 7,,, Th, Tn.

A proper choice of parameters, often fitted on in vitro and in vivo voltage-
clamp measures on living cells, makes the observation of a wide variety of be-
haviors, corresponding to different kinds of neural cells, possible. We can divide
neurons in two main classes of excitability. Neurons of class 1, also called Type
1 neurons, are able to produce action potential trains with frequencies varying
smoothly on a wide range ~ 1 — 100 Hz. Neurons of class 2 have an “all or
none” kind of response, with a fixed spike frequency ~ 150 — 200 H z, arising
when the incoming current increases over a certain threshold. For the scope of
the present work we consider only class 1 neurons.

A complete derivation of the Hodgkin and Huxley equations and a detailed
explanation for their dynamics can be found in the original article [24] or in
[25, 26}, 27]).

Reduction to Two Dimensions

One of the first and most well-known reduction of the (ZI) comes from the
work by C. Morris and H. Lecar on the muscle fibers of the barnacle [28]. Since
we are directed to the study neocortex rather than muscular fibers, we will
use a model dynamically equivalent, the persistent sodium slow potassium or
INa,p + Ix model, introduced in 1993 by X. J. Wang to simulate the behavior
of pyramidal neurons of the cat sensorimotor cortex [29]. The equations are:

dV
CE =1I—-g.(V - EL) - gNamOO(V)(V - ENa) - gKn(V - EK) ;

dn nee (V) — 1 (2.2)
a vy 7
) : ) : (2.3)
Moo (V) = — Neo(V)= —— — .
1+ exp 7‘/”“11(/7: v 1+ exp L'}éi v

Unlike the Hodgkin-Huxley model, here each channel is composed by a single
gate, and the sodium channels react istantaneously to voltage change (i.e. on
a timescale much lower than the potassium channels). It should be pointed
out that this model is less biologically meaningful, and lacks, even qualitatively,
some dynamics intrinsic in the HH equations (see [30]). On the other hand it is
easier to study with the standard procedure used for two dimensional dynamical
systems, as and covers the specific regime we are interested in.

Equations (2.2) can be qualitatively investigated with the approach and for-
malism used for generic 2-dimensional dynamical systems, such as the Van der
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Figure 2.1: Nullclines, vector field and an example of trajectory for the Inap + Ik
model. It is clear that for almost all staring points the dynamics will fall on the
periodic attractor. The parameters used are in table 2.1

Table 2.1: Parameters used for the Ina,p + Ik model, taken from in-vivo measures
on a rat as reported in [25]

C=1mF, I=0.01 mA/cm®, g, =8 mS/cm?, Er, = —-80 mV,

K, =5mV, Viije=-25mV, gna=20mS/cm®, Ex=-90mV,

Kn=15mV, V,,15=-20mV, gx=10mS/cm?,  FExa=—60mV,
T(V)=1.

Pol oscillator [12] B1]. We draw the nullclines, i.e. the curves dV/dt = 0 and
dn/dt =0, in the V — n diagram. Solving the (2.2) we have:

Nnull n = noo(V) ;
I —g.(V— Er) = gxamoo(V)(V — Exa) (2.4)
9x(V — Ex) '

In figure[ZIthe nullclines and the vector field of the velocities (dV/dt, dn/dt)
are plotted. The parameters used are modeled on fits of patch-clamp measures
on pyramidal neurons of the rat’s visual cortex, as reported on [25], and are

shown in table 211

With this choice, the result a is periodic movement on an invariant cycle, as
shown in figure 2.0l Changing the parameters, a wide variety of dynamics can
be reproduced, all described in detail in the reference cited above. For the scope
of the present dissertation, however, it is enough to consider slow changes in the

Nnull Vv =
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INa,p + ]K model
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Figure 2.2: Spiking activity for quadratically increasing injected current I for the
Inap + Ik model, regulated by equation (2.2)) and parameters in table [2.1]

input current: a change in the I parameter has the effect of moving vertically
the V-nullcline. The narrowing in the space between the two curves around the
local minimum V* causes an increase in the cycle period. When the nullclines
intersect in one point, the time for a cycle becomes infinite. Finally a negative
I generates two intersections, thus breaking the periodic dynamics. From this
behavior whe can state that our system in near a saddle-node bifurcation on an
invariant cycle, regulated by the fine-tuning of the I parameter.

In figure we can see the plot of V(¢) for a system near the saddle-node
condition with a current slowly increased in time (quadratically). The result is a
smooth increase in the frequency of spiking, while the spiking signals themselves
don’t change in shape or intensity: the invariance of the action potential is
preserved.

The equations described here have the same qualitative behavior as the typical
type 1 neuron, thus we can say they represent a canonical model for this kind
of dynamical system.

Quadratic Integrate and Fire Model

We have shown that the most crucial part for the smooth regulation of the
spiking frequency lies in the near-bifurcation area. To proceed to further sim-
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plifications we thus perform a series expansion of dV'(t)/dt around V*. In this
area n lies near its nullcline, too, so we can make the assumption n — 1y (V)
and reduce the dynamical system to one dimension (equivalent to say that all
ion channels react instantaneously). Then, for the properties stated on V*, the
first derivative is zero. We stop at the second order, obtaining;:
eV e vy~ vy 4 (2.5)
dt vy
Here g is a conductance and « has the dimension of a voltage. Such values can
be inferred from fits on type 1 neurons near saddle-node bifurcation.
If the current is constant in time, i.e. I(t) = Iy, we have an analytical solution:

V(t) =, /Z}—i‘) tan <% Vot + a) ; (2.6)

where the constant « depends on the starting point V(0):

o = arctan ((V(O) - V*)\/%QJ : (2.7)

If we assume that V(0) < V* and /gq/v/7 Io > 1, we have a = —m/2. Writing
gq as the inverse of a membran resistance r,, the latter hypotesis becomes
~v Iy rm < 1, justified by the fact that membranes have resistance of the order
of mQ cm?, the currents are usually expressed in pA/cm? and the voltages in
mV.

The equation (2.6) goes to a 400 voltage in finite time, reflecting the fact
that if we get too far from V* the series expansion loses its meaning. Thus, to
obtain a periodic dynamics, an artificial reset is necessary: if V(¢) > Vihreshold,
then V(t) < Vieset. With the same hypothesys on Vieset as the ones mentioned
above, we can assume V starts at —oo, peaks at +o0o and then is resetted back
at —oo.

The most convenient way to describe this model is though a phase description
[32], with a rescaling and changing of variables in the form

y 0
Iy« Iy — t+—t— V =+/Iytan = 2.8
0 OgQ’ 707 oan2, ( )

equation (2.6)), in the o & 7/2 limit , is simplified to:
0(t) = 2/ Iot — ;. (2.9)

With this phase description, the QIF model is often reffered to as theta model.
With the scaling we used, the range in which the theta neurons evolve their phase
is [-m, 7) . In the literature the interval interval [0, 1) is also frequenntly used.

As an example, in figure 23], we plotted dV/dt versus V for In, p + Ik model,
using the same parameters as above, and we performed a quadratic fit of the
points around V* ~ —60mV (in red).

The behavior of a QIF neuron under a constant positive current and under a
quadratically increasing current is shown in figure 2.4 It clearly follows a type 1
excitation, thus being the simpler canonical spiking model for a type 1 neuron,
and, for its analyticity, the most suitable for large scale network simulations
[30].
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Figure 2.3: dV/dt versus V in the Ina,p + Ik model. The curve (23], corresponding
to a second order expansion in the point V = V™ is fitted and plotted.
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Figure 2.4: An example of spiking activity for a QIF neuron with dynamics regulated
by ([236]) and parameters obtained confronting (28] with the quadratic fit represented
figure 23]
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2.2 Network Dynamics

The system of our concern is a large, static, sparsely connected pulse-
coupled neuronal network.

We call the N elementary components of our system neurons. Each of them
has a single degree of freedom: its trans-membrane potential V'(¢), which varies
dynamically depending on the electric current I(t) the neuron is subjected to.
The dynamics of neuron ¢ is then given by a differential equation of the form:

dVi(t)
dt

— F(Vi(t). I,(1)) . (2.10)

If we use the QIF model, the F(V, I) is given by (2.3]), but is important to notice
that what stated in this section is valid in general for any one-parameter type 1
neuron model, such as leacky integrate-and-fire neurons and possible variations
on the theta model.

A neuron is said to emit a spike when its internal variable reaches some
particular condition (usually when it reaches a given Vihreshold potential). In
most models, after the event, the potential decreases again to a Vieset value. The

times when a spike is received by neuron i are indicated as {t¢, t3,... , Nsp,},

N#P! being the total number of such events.

At this point we need to define the synaptic connection matriz J;;: it es-
tablishes whether the neuron j is connected to i, the nature of its connection
(excitatory or inhibitory), and its strength. The presynaptic and postsynaptic
neurons sets are defined so that: pre(i) == {neurons j | j is connected to i }
and post (i) := {neurons j | ¢ is connected to j }.

In our model, when some neuron j* emits a spike, it injects to all neurons of the
post(7*) set a current waveform, with intensity proportional to the connection
strength and shape given by a stereotypic function {(t), assumed to be the same
for all neurons.

Thus we can write the current received by a single neuron as the sum of an
external component I$¥*(¢) plus the contribution of the internal dynamics from
its presynaptic set, in the form:

Nspi
L =1+ S Y T (2.11)
j€pre(i) p=1

We assume that ((t) has the properties:

C(t)=0 fort <0, ((t)>0 fort>0, /+Oodt§(t):1. (2.12)

— 00

The connections given by J;; are not symmetric, so that the pre and post-
synaptic sets of a given neuron are, in general, different, but they are costant
in time, making the network static. The strengths may vary, depending on the
population of the connected neurons - excitatory or inhibitory. Further consid-
erations about the synaptic matrix, its values, and the implications on network
dynamics will be done in the next part.
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Basically The network evolves continuously in time, free of internal inter-
actions, with every neuron subjected only to external currents, until some j
neuron reaches the Vipreshola and fires. Then all the neurons in the post(j) set
will change their dynamics due to the f-shaped injection of current from j, with
sign and strength stated by the J matrix.

We should mention that, to keep the system biologically meaningful, we need
the decay of ((t) to be on a timescale much lower than the average interval
between two spikes of the same neuron: in the described model the currents
injected by a single neuron, if too near in time, would just sum up, in con-
trast with the well-know invariance of the neuron’s action potential and to the
presence of a refractory time.

For this reason, and taking into account the properties (212), we will later
approximate ((t) with a Dirac delta function.

2.3 The Balanced State

As mentioned in the introduction, the physical system we are considering for
our network model are the pyramidal neurons of the neocortex.

Between the fifties and the early sixties, electrophisiological and data anal-
ysis techologies permitted measures on the potential of single living neuronal
cells. In particular it was widely accepted that the spiking activity of pyrami-
dal neurons, in the regime we are interested in, can be seen as a stochastic,
stationary point-process [33]. From many in vivo observations on the activity
of cortical neurons, and measures of the time between two consecutive spikes,
the inter-spike interval or ISI, performed on different animals, resulted that the
spiking events are, with good approximation, nearly independent one another,
thus following approximately the Poisson point-process statistics. This results
in an exponential distribution of the ISI.

The balanced state model [34] has the purpose of explaining and reprodicing
this behavior. The fundamental idea of the model is that the net potential of
each neuron, due to the signals coming from its presynaptic set, is constantly
balanced in a near-threshold condition by the intrinsic net dynamics. When the
input, due to weak correlations, is not averaged out, it causes the neuron to
fire. With this mechanism the sensitivity and the rapidness are much greater
then they would be for a neuron laying in its resting potential. The weak
correlation guarantees that spikes very near in time come mostly from neurons
very scarcely dependent between each other, so that the total spike train has
the desired structure of a Poisson point process.

After this model was introducted, numerous experiments confirmed it with in-
vivo measures on different animals. Just to cite a few: in-vivo measures on the
intact neocortex of ferrets [35], on the rat’s sensorimotor cortex (in the area that
controls the whiskers) [36], and in the spinal cord of audult turtles[37], proved
that the spontaneous balancing between excitation and inhibition is fundamen-
tal in regulating the dynamics of the neurons.

To mimic this model, we use for our pulse-coupled network the topological
structure of random graph, in which every node has, on average, K connections
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to other nodes randomly chosen. The fundamental condition implicit in all our
statistical studies is:
N>K>1. (2.13)

Such structure is obtained by defining the synaptic matrix in the form.

: s (2.14)
with probability (1 — K/N)

I Jap, with probability K/N

ij - 0,
The value and sign of J,g depends on which population the neurons ¢ and
j belong to. If we consider both excitatory E and inhibitory I neurons we
have four possible values: Jgg, Jgr, Jig, Jrr. The external current will be
assumed constant in time and equal for all members of the same population:
I (t) = Iﬁ"t, ~v={E,I}.

To preserve the scalability of the system we impose the requirements:
1

Jag i and It x VK . (2.15)

This is physically equivalent to rescaling the Vipreshola of a VK factor, as to say
that, in our weakly correlated model, the minimum number of inputs a neuron
requires for a sensitive change in its dynamics is proportional to the square root
of the total connections, and not to all of them.

We will now show that, with this choice, the time averaged firing rate of a
neuron is K-independent. For time average and population average we use the
notations:

N
< oft) > = %/dto(t) and [0:], = %Z" (2.16)

The average firing rate for neuron i is then: 7; = 1/ (ISI;),.

For now we restrict ourselves to a system composed only by inhibitory neurons
and subjected to a positive external current:

I4(t) = I = VK. ;

J 2.17
Jij=Jdn = — % hen different from 0 . ( )

VK

We start calculating the current as given by equation (ZI1)), averaged over
time and neuron ensemble. The external term, being constant, is not changed.
Looking at the conditions (Z.12)), we can say that for long times the second term
will depend on the total connections, their strength and how often, on average,
the pulse is received. This leads to the result:

Jo
L)Y, ~ I - K—p=VK(I. — Job) . 2.18
[< ( )>t]z I \/? ( 0 ) ( )
A more rigorous calculation is performed in appendix [Al

We now take into consideration the term (I, — Jo7) in the K — oo limit, with
the assumption that N > K is still valid, so that the statistical structure is
preserved.
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If (I, — Jov) < 0, the average current given by (ZI8) will go to —oco for
increasing K. But a high negative current means high negative polarization:
the neurons would stop firing and 7 — 0. Since both I, and Jy are positive
constants, this would lead to (I, — Jo) > 0, contrary to the starting hypothesis.

If we start with (I, — Joo) > 0, for the same considerations as above, the
neurons would be injected with a strong positive current, firing with higher and
higher frequency. For very large 7 we then have, (I, — Jo7) < 0, contradicting
the hypothesys

Therefore the limit must be 0, leading to the result:

L for K — oc; (2.19)
Jo

V|

while, to keep the average current finite, (I — Jo?) = (’)(1/\/?) in the large K
limit.

In a case of different populations, the mean current (ZI8) would include the
average of the different strengths, weighted on the respective populations, in-
stead of —Jy. If such value is negative, the proof doesn’t change; if positive,
we would have a positive external current with overall positive interactions,
which would lead to the loss of large- K scalability and to an unnatural network
dynamics.

The result is that, with the rescaling of currents and connection strengths
given by (ZI7), and the requirement of an average negative net current contri-
bution from the network, we can build a neural network with scale-free statistical
properties, which we can study in the limits N — oo, K — oo, N > K.

2.4 Model Architecture

To to simplify our problem we use a phase description of the neurons, choosing
a phase map of the form

U : [Vzesets Vihreshold] = [Omin, Omax] , smooth and monotonically increasing.
The phase of neuron 4 at time ¢ is then:
0:(t) = UVi(1)) -

The interval [fmin, Omax] can be arbitrarly chosen. In our particular choice for
the QIF model will be [+7, —].

We now define a function for the complete time evolution followed by the
phase of a neuron which gets no signals from the network: the unperturbed time
evolution function.

P o [0; tmax] — [emimomax]; (220)

it is assumed to be monotonic, smooth and invertible, as well, and is derived
from the dynamics of the specific neuron model, taking the time evolution of
a neuron which starts at Vieset and doesn’t interact with the network until it
reaches its threshold. If we reduce to 0 the internal interactions, we impose that
V(0) = Vieset and we define tyax 80 that V(tmax) = Vihreshold, then:

() =UWV (), tel0, tmax (2.21)
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ts ts—i—l

Figure 2.5: Times considered for the mapping

If we have a phase at a specific time 0;(to + At) the value it has after the time
interval At, on the condition it gets no perturbations, is then:

0:(to + At) = f(05(to), At) = (v (0i(to)) + At) . (2.22)

For the reasons stated on page B8 we assume that the current injection func-
tion ((t) can be reasonably approximated by a Dirac delta function. The net-
work currents, given by the second therm of (2I1)) are then pulses, which cause
step-like changes in the potential proportional to the connection strengths J;,

given by (2.14).
The function which gives the resulting phase a moment after such injection is
called phase transition curve and has the form:

0:(t5) = g(6:(t5))

where t; and tF are the times right before and right after the reception of the
spike by i neuron. We can express the phase transition curve in terms of the
phase map as:

9(0:(t7)) = U(UTH(0:(t]) + Jij) 5 (2.23)
where the presynaptic spiking neuron has index j.

Finally we need to know how long it is until a neuron of given phase 6;(t)
reaches the threshold value + in the unperturbed evolution. The spiking time
function is defined as:

Atgpi = h(6(1)) , so that: Ot + Atspi) = Omax - (2.24)
It can be derived in terms of ¢ (t) starting from (2.22)):
f(05(to), Atspi) = 1 (v (0:(t)) + Atspi) = Omax;

wil(ei(t)) + Aﬁspi — wil(emax) ; (2.25)
h(8;(t)) = 9™ (Bmax) — ¥ (i(to)) -

The convention that we use to index the neurons in a given time interval At
is the following:

{i} = {neurons} ; j* = the neuron which spikes in At ;
i=14"=j" €pre(i); i #£49"= 5" ¢ pre(i).
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Namely the i = i* neurons receive the signal form the spiking j* neuron, while
the ¢ # ¢* neurons are unperturbed. Using our formalism we can finally write
the phase map, defined as the function which maps the phase of a given neuron
from the moment immediately after a spike ¢ to the time immediately after the
next spiking event (by neuron j*) ts11, as represented in figure 2.5 .

ominy if i= ]* ;
ei(ts+1) = f(oz(ts); ts+1 - ts) = f(ez(ts)a h(oj* (ts))) 9 lf { 7é o ; (226)
9(£(0:(t). 10 (1)) ) i i= i

The equations can be written explicitly in terms of the phase map and the un-
perturbed time evolution functions. The j* € pre(i) case, for example, becomes:

Oi« (tsy1) = U(U_l (lﬂ(w_l(@i* (ts)) + ¥ (Omax) — ¥~ (0;+ (ts)))) + Jm‘*)

(2.27)
Computationally, starting from timestep t;, we select the neuron closest to
spiking, i.e. the one with the highest phase, and we compute each phase to
the moment after the new spike, using equations ([226). Then we select the
highest phase and we iterate the process. In such a model the time dependency
is implicit: the interspike intervals are not fixed steps, but vary according to
the spiking times of single neurons, calculated with machine precision. This
qualifies our network simulation as event based.

2.5 Equations for a QIF Network

Now we restrict ourself on a QIF model, expressing explicitly and analytically all
the equations defined above. the result is the backbone of all the computational
large scale simulations performed in our work.

In the QIF model the dynamics is given by equation (2.3]), with the approxi-
mated value for a. The current is assumed to have the form of equation (ZI1),
with external currents constant in time and delta-shaped network pulses. For
sake of simplicity we assume V* = 0, and we rescale the Iy and ¢ variables as
in ([2.8) In absence of pulses, the solution is:

Vi(t) = /I tan ( 1<t — g) . (2.28)

The phase description we are using, as alredy mentioned in section 2.1 is:
U (Vi(t)) = 0;(t) = 2arctan \‘//Z% . (2.29)
It has O,in = —7 and O,2x = 7. The unperturbed time evolution function, as

described by (221)), is then:
YT () = 2, /1t — 7. (2.30)

The evolution of a neuron with a phase description can now be derived from
@&22):
FOIE (0 (t0), At) = O(to) + 24/ IS At . (2.31)
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Figure 2.6: Times considered for the mapping in the calulation of the Jacobian

The spiking time function comes from (2.23]):

™ — 91' (t)

2,/

Finally, the phase transition curve is inferred from (229) and ([223)).

Sy 0i(t5) Jij
g (0;(t7)) = 2 arctan <tan ( 5 ) + \/ﬁ) . (2.33)

BT (6,(1)) = (2.32)

2.6 Calculating the Jacobian

If the system is composed by N neurons, we can describe the phases at a given
time defining the N dimensional vector

6(t) = (6:1(1), Oa2(1), ..., On(1))

The phase map is such as F(6(ts)) = O(tsy+1). The Jacobian matrix D(t)
represents the linearized version of F, and gives the first order correction in
case of small phase perturbation:

F(O(t) +€80) ~ F(O(t)) + ¢ D(t) 56 .

It is important to notice that a perturbation in phases will result in a shift in
spike times, therefore we need to define a slightly different phase map to take
this shift into account. Our strategy consists in shifting the times considered for
the mapping of an interval 4, assumed to be bigger than the shift in spiking times
caused by the perturbation. As the perturbation tends to 0 we will eventually
go in the § — 0 limit. The interval we are considering is shown in figure 2.6}
the steps will be:

e start with phases at time s + J;
e calculate new phases at next (perturbed) spiking time;

e evolve the system furtherly, till time t541 + 4.

In this case the time t5, ts41 are considered as independent from phases. They
will turn into the actual spiking times in the small perturbation limit.
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The phase map is thus a little more structured than ([2:26]), with the form:

F(Ominstors —ts — h(0j-(ts +0)),  if i=7";

F(Oi(ts +6),tsr1 —ts), if @£

PO TOZN (g (F(O0lta+8). B0y (1 4 00) ) s — b — Wy (1 + 3),
if i=4".

(2.34)

Using this perturbed map, we can define the Jacobian matrix elements as:

D;j(t,) = lim 9i(ts+1 +9)

550 90, (ts +0) (2:35)

Looking at the map dependencies, we can infer that the nonzero elements are
the diagonal ones, i.e. j = i, and the derivations with respect to the phase of a
presynaptic spiking neuron, espressed by the conditions: j = j* AND i = ¢*.

As an example, we show the explicit calculation of a diagonal element such that
© = ¢* .For simplicity of notation the 6 — 0 limit is omitted and 0;-:= ;= (t5+0),
Oj*:: 9]‘* (ts + (5) -

agﬁ F(g(F(Oixs h(02))) topr — ts = h(0;+)) =

00 f(0:tosr—t=h(0;-)) )|

9o f(0,h(05+))

9oy o
0=g(f(8:+,h(6;+))) O=f(0;+,h(0;+)) 0=0;~

The f, h, g functions can be derived from the phase map and the unperturbed
time evolution function, according to, respectively, (2.22)), (225),(223). Since
we are in a QIF model we can write them explicitly, using the (Z31)), (232),
233), and find an analytical solution.

We have 0y fQF (9, At) = 1, the only contribution comes then from the
Dpg¥¥ (0) derivative, calculated in point 6 = fF (0, h(0;+)) = 7 + O — O

o 0« —0;x
P QIF(@) _ 1+ tan® —5—2
09 =140, % —0., 1 7T+9i*_9j* Ji*j* 2 .
=7+0;+—0; + (tan 5 + \/If?)

From (ZI7) we have J ;- /1/I&% oc K~3/4. For large K we can therefore write
a first order approximation, with the result:

Diie(ts) = 2 (1 n Jixj

=2 (1 + J}th sin (6;- (ts))> + O((w — 0;+(ts)) cos (O (ts))) :

'* (2.36)

sin (7 + 0+ (ts) — 0~ (ts))> =

3

The last passage is justified by the fact that we expect 6;- (¢5) to be close to ,
being the phase of the neuron closest to spiking.

For i # i* the resulting diagonal element is simply:

Dyi(ts) = 0 fAT (0, tepq — ts) by = b (2.37)
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Figure 2.7: Jacobian matrix

In the i = j* case we obtain:

Dj*j* (tS) = aAtf(emina At)

—1) Oph(0 =1. (2.38
At:tsﬂfts—h(ej*)( ) % ()0:@-* ( )

Finally, when deriving a postsynaptic neuron by ;- (¢s) phase, we get the out-
of-diagonal elements:

ext

I
Di-je = | fo (14 Divio(£)) - (2.39)

ext

The Jacobian matrix has therefore a nonzero diagonal with D;«;« elements
corresponding to the postsynaptic neurons, a series of ones in the remaining
(i, 1) and (5%, j*) locations, finally, out of diagonal, confined in the j*th colum,
we have a D;;- nonzero element for each ¢ € post(j). A scheme of such structure
is shown in figure 27

While in a general Jacobian N? elements should be computed, in our system
the nontrivial values are of the order of K, which, together with the simple
model we used, makes the simulation of large scale networks possible.
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Chapter 3

Computation and Results

In this chapter the simulation procedure is described in detail, and the achieved
results are reported and analyzed.

The first part summarizes the structure of the simulating program in use,
describes the input parameters and the elaboration performed on the output.
Afterwards we analyze the forward evolution of the neural network, i.e. the
succession of spikes and phases of every single neuron in time. We probe to which
extent the statistic resembles a Poisson point process, and we try to quantify
the synchronicity of our model. After that, from the Lyapunov spectrum, we
estimate the entropy and attractor dimension.

In the next section the system is evolved backwards and the Lyapunov vec-
tors are calculated. A check on the convergence of the vectors is performed;
after some considerations on the evolution and the general appearance of the
vectors, we examine the angles between them, drawing some conclusions on the
hyperbolicity of the dynamical system.

The vectors are subsequently used to characterize the participation of sin-
gle neurons to the global dynamics of the system. This is accomplished by
confronting the average participation ratios of vectors and the chaos index com-
ponents with the spiking frequencies associated to single neurons.

The last section takes into consideration possible optimizations to the simu-
lation and further analyses on the system.

3.1 Network Computation

The neural network simulation program, written in C++, is the slight adapta-
tion of the code used by M. Monteforte for his works [8, [9]. The inputs and
their ranges are described in table 3]

The connection strengths Jy are all fixed on 1, while the external current I is
approximately calculated from (ZI9) and then fine tuned with several iterations,
until the average neuron frequency is close enough to the input parameter f.
The parameter sg can be identified with the &k introduced at page it is the
number of single steps we group together in a single GS (and vector) iteration.
The time length of the simulation is given by:

_Sssk
= N

(3.1)
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Table 3.1: Arguments for the simulating program.

Parameter Description range
N Number of neurons 200 — 1000
K Average connections per neuron 20 — 100
S Timesteps to compute 3000 — 10000
f Average neuron frequency 1 Hz
Sal Timesteps for the alignment of the vectors 8000 — 15000
Ssk Tteration of system and GS basis with no 1-5

QR decomposition

nl Total iterations with different network ini- 1—300
tializations

The functioning of the simulation can be divided into three modules: one
for the network evolution, the second for the computation of the Lyapunov
spectrum, and the third devoted to the vectors. Their schematic description
can be found in the appendix figures [B.1] and

The first module initializes and iterates the network. A connection matrix
with a random graph structure is created, then a random phase between —m
and 7 is assigned to each neuron. The neuron closest to spiking is the one with
the highest phase. Its spiking time is calculated using (2.32)), then the phases of
the postsynaptic neurons (given by the connection matrix) are updated to the
after-signal state, according to (2:33)). Finally all phases are computed to next
spiking time with equation (2.31]), and the process is iterated.

The second module has the purpose of calculating the Lyapunov spectrum
and store the information necessary for computing the Lyapunov vectors. The
procedure, already explained in sections [[L4] and [[.3] is shortly and operatively
summarized here.

We initialize the Gram-Schmidt basis with a set of N, N-dimensional random
orthonormal vectors, grouped in a matrix: Qs_1 = (qglzl e |qg7f%) The Jaco-
bian D,_ at the current state of the network is calculated according to (2.36] -
2:39), and the push-forward of the GS vectors is obtained via the multiplication
D, 1-Qs_1 = Qsl at this point the neurons and the Jacobian are updated, and
this is repeated sgk times, as in (LI2). Then the resulting matrix undergoes a
QR decomposition, according to equations (LI3): Qs = Q, - R,. Both matrices
are stored for the calculation of vectors, and the iteration can enter in the sgy
cycle again.

At the end of the evolution, the Lyapunov exponents can be computed using
the stored data. From {R,};; = ||ugj) || and equations (L9) and (LI0), we have:

S S
, 11 1
A0) = NG > “log{R.};; = T ) “log{R.};j ; (3.2)
s s=1 s=1

The last module computes the time evolution of all Lyapunov vectors. It must
be necessarily called after the end of module 2, so that its initial time, s + 1,
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Figure 3.1: Calculation of Lyapunov vectors

corresponds to the final step reached by the system, and it proceeds backwards.
Firstly, the matrix of vector coefficients in the GS basis, Cs41, is initialized
as a triangular random array with normalized columns. The previously stored
R,41 matrix is inverted, and the next C is calculated as the normalized form of
C, = R;Lll Cs41. The norms are stored as local Lyapunov exponents: processed
with an equation equivalent to ([B.2)), they give a backward version of global
Lyapunov exponents. Finally the vectors are calculated for every timestep using

the GS basis saved at the corresponding instant:

i
o) =3 {C.}i;q (3.3)

i=1

The parameter Sa; adds a 2 S factor to the number of iterations performed
by the second module: for the initial Sa; steps the GS vectors are evolved but
not saved, while for the final Sa; the C' matrices are iterated but no Lyapunov
vectors are calculated. This process is represented in figure 311

Finally some considerations on memory usage should be done: of the total
random-access memory allocated by the program, the largest amount is used to
store the triangular R matrix and the GS basis for every timestep. The saving
of the R matrix is required also for the final Sa; steps. The free memory needed
thus amounts (in bytes) to:

3N2S + N(N —1)Sa
2

N(N -1) g
2 o

(3.4)
Combining the latter equation with (3.1), we infer that if we want to keep the
time length constant, the memory usage grows as M o N3. For N above 500,
this rapidly causes a RAM shortage. In the final section of the chapter future

possible optimizations to overcome this difficulty are considered.

free_ mem = ( (S 4+ Sa1) + NQS) -8 =

3.2 Output Data

Depending on the data we are interested in, different versions of the simulation
are run. The simplest one is composed only by module 1 and 2, and is used
only to obtain the forward evolution of the system and the Lyapunov spectrum.
After a warm-up of Sa; steps, for every further step, the time ¢, the index of the
spiking neuron j*, and the phases of all neurons {6;(¢;)} are saved on a binary
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Table 3.2: Possible outputs of the program. s is the time index, j the order of the
vector and ¢ indexes the neurons.

Name Value Description
ts ts spiketimes
G) norms of Cs columns local backward Lyap. expo-
AT () nents
<”(i)(t) : ”(j)(t)> time-averaged angles between
{cos as; (), ' vectors
i) ming; {ai; (£:)AY > 0AND <0} | min, angle between exp. and
mns contracting directions
—1
PR (t,) Participation Ratio
1< haos index ( £
() 1 2@ (1. ))2 chaos index (avg. of square
K S ;( o () components)

file. The logarithms of the R matrix are cumulatively added in a N-length array
which, divided by the last tg, gives the Lyapunov spectrum. Not having the
necessity of storing the time series of big matrices, the simulation requires much
less RAM, and runs relatively faster. In this way performing many iterations
(nI =100 — 200) for longer times and larger networks is possible.

To check the presence of errors and to perform the convergence tests de-
scribed in the next section, we use another version of the program, which saves
and stores the complete time evolution of each Lyapunov vector, derived from
equation (B2); this requires the full amount of memory calculated in (34). The
output consists in the N x N x S double precision array containing all vectors
for every timestep. Due to the big size of the output, the value of repetitions
nl is limited to 1.

The last version of the program calculates the vectors, using the full amount
of estimated memory, but, rather than saving the vector themselves, processes
them in different ways, thus requiring less space on the hard drive and making
multiple iterations (30 — 50) feasible. The output parameter list is in table
All values in the left column are sampled for each of their indexes.

3.3 Spike Train

We start our analysis observing the time sequence of the pulses emitted by the
neurons, i.e. the spike train of the network. Figure depicts the spikes for
the first 50 neurons of a N = 200, K = 50 system. We know that the average
frequency of the system is approximately 1 Hz per neuron, however it is clear
that individual neurons may fire at very different rates. Figure shows the
phase of two neurons taken from the same set. In accordance to what we expect,
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Figure 3.2: Sequence of spikes for the first 50 neurons of a N = 200, K = 20 network.

the phase evolves with a constant linear velocity given by the positive external
current, as in (Z9), it receives inhibitory pulses of varying intensity from the
presynaptic neurons, finally when 7 is reached, a signal is emitted, and the phase
is instantly reset to —mw. An example of frequency distribution for a N = 500,
K = 20 is represented in figure (b) .

The first quantity we examine is the coefficient of variation (C,) of the inter-
spike intervals, it is defined, in general, as

o‘ .
lul
where p is the average of our data-set and o its standard deviation. For a
perfectly Poissonian network we would have C,, = 1 [27].

C, = (3.5)

The values we have found for system of different sizes and different number of
connections are plotted in figure[3.4] (a). They are computed averaging over 380
repetitions for N = 200 networks, 300 repetitions for N = 300 networks, 100
repetitions for N = 400 and N = 500, 70 for N = 700 and 20 for N = 1000. It
is clear that larger and more sparsely connected networks tend asymptotically
to the ideal value of 1.

Instead of considering the spike train of the network as a whole, we may
wonder whether the activity of a single neuron in the network follows nearly
Poissonian statistics or not. In figure[34] (b) we have represented the distribution
of the variation coefficients of single neurons, taken from several repetitions
(nI =100) on a N = 500, K = 20 network. The distribution tends toward one,
with a mean of [C,;], = 0.73. This value is far from the one obtained from the
network as a whole, namely C, = 0.94

Asg a further proof of the fact that the process is nearly Poissonian, we show
in figure B3 (a) the distribution corresponding to P{ISI < ¢} for a N = 500,
K = 20 network (ISI is the inter-spike interval, i.e. the time between two
pulses in the network). It is fitted with the curve (in red): y = 0.9979(5) +
0.9819(5) exp(—501(1) x). For a purely Poissonian process: P{ISI < t} =
1 —exp (—vt). The frequency found with this fit is in very good agreement to
what we would expect in a network of 500 neurons with an average firing rate
of 1 Hz.
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Figure 3.3: Time evolution of the phase of neuron 4, with average spiking frequency
~ 0.5 Hz (a) and neuron 24, with frequency ~ 2.4 Hz (b) selected from the set showed
in figure 321 Red triangles are drawn when spikes occur (and the value is reset to pi).
Neurons evolve linearly as in ([Z9)), are instantly inhibited by other neurons, and are
reset to —m after spiking.

(@) (b)

0.95

0.9

0.85

0.8

0.75

network coeff. of variation

0.7

0.65

.

0.6 - - - 0
200 400 600 800 1000 0 0.5 1 15 2

N (# neurons) coeff of variation for single neurons

Figure 3.4: (a): coefficient of variation (33 for network of different sizes N and
different number of average connections per neuron K (color). (b): distribution of C,;
for single neurons in a N = 700 K = 20 network, calculated on nI = 70 repetitions
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Figure 3.5: (a): the probability P{ISI < t} follows very close the curve expected
for a Poissonian process: 1+ exp (—vt) with a frequency corresponding to the overall
frequency of the system. (b): distribution of firing frequencies for single neurons in
the same system.

Finally figure 3.3l (b) depicts the distribution of the frequencies for single neu-
rons with the same network parameters as before. Although they average to 1
Hz, their distribution shows a certain spreading, almost touching the frequency
we expect for a neuron with no inhibitory synapses, corresponding to ~ 4.6Hz
in the network considered.The broad inhomogeneity is another distinctive char-
acteristic of the balanced state [34].

To sum up, our model, although completely deterministic in its evolution, fol-
lows closely the statistic of a Poisson point process. The discrepancy appears to
decrease as we approach our ideal limit of N > K > 1: many neurons, but very
weakly correlated. As already mentioned in the introduction, typical numbers
for 1 mm? of neocortical tissue are N ~ 10% and K ~ 10%; therefore it is reason-
able to assume that if our system reached those parameters, its global statistics
would be practically indistinguishable from an ideal Poissonian process. On the
other hand, when we look at single neurons, we see that their spiking is not,
in general, a renewal process: a clear sign, along with the nontrivial distribu-
tion of frequencies, of the underlying complexity of connections and dynamical
interplay between neurons.

3.4 Collective Dynamics

Another interesting investigation on the network is represented by the collective
dynamics of its neurons. As said before, neurons in balanced state should ideally
be completely asynchronous. From a simple observation of the spike train,
in figure B2l we would say the requirement is fulfilled. However, we saw in
previous section that singular neurons are not Poissonian in general, while the
distribution of their frequencies is far from smooth. Therefore is not possible to
exclude the presence of some small degree of synchronization. Several methods
and measures have been developed to quantify this value.

Following the example of other papers on pulse-coupled network synchroniza-
tions [38], we can use the order parameter, first introduced by Y. Kuramoto, in
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the form:

r(t) = (3.6)

[exp(it; ()]

J

It can be shown [39] that N — oo independent oscillators would bring r(t) = 0,
while synchronized oscillators result in 7(t) = 1. Intermediate values 0 < r(¢t) <
1 represent a partial synchronization: some oscillators have a similar phase,
while some others are independent.

Another way to assess the synchronicity of a system is the measure of neuron
coherence [40].

2o VAR(:(0)) _ (160 ~([6:(0)),)), (3.7)
VAR @)L [{(0:0) - (0:00))%), | ’

where VAR/(0;(¢)) represents the variance for the time evolution of the phase of
the " neuron.

This measure is the ratio between the variation of the average phase and the
average variation of single phases. In a incoherent state, in the ideal N — oo,
T — oo limit, averaging on all phases would give [0;(t)], ~ 0 with very small
oscillations, thus x? = 0. A perfect synchronization, with all equal phases,
would clearly result in 2 = 1. The great advantage of the network coherence
is that it depends only on wariations of the phases, and not on possible net
average value, moreover is much less computationally costly than r(¢).

In figure (a) the measure of coherence is represented for different net-
work sizes. From a qualitative point of view, we see that the improvement in
desynchronization follows the same trend a the coefficient of variation: larger
networks with neurons less connected (thus less correlated) show smaller levels
of synchronization.

The continuous lines are fits in the form o + SN 7. It has been reported [9]
that x2 o< 1/N. Although the data points fall well on the curve, the results are
v = 0.75 for K = 20, v = 0.71 for K = 50 and v = 0.33 for K = 100. The
value 7 = 1 can be a limit case, when conditions are close to ideal (i.e. much
larger networks weakly connected). However the power law decrease suggests
that synchronicities are due to finite-size effect on the network, and the decrease
of synchronization is more effective when neurons have fewer connections.

In figure 3.6 (b) a sample of (¢) for a N = 500, K = 20 network is shown. Its
offset seems much closer to 1 than we would expect, namely < r(t) >;= 0.486.
This is due to the fact that, in a system like ours, the r(¢) parameter is not
well suited to capture the global synchronization, as it is sensitive to the overall
net angle distribution. Due to the nonlinear instant inhibitions, phases tend
to linger more on certain ranges, so that they hardly average to zero. As a
check, we performed a complete randomization on the ordering of the phases
(bot for neurons and times), and recomputed the order parameter, obtaining
< Trand(t) >+= 0.4660, far from the value r(¢) ~ 0 we would expect in completely
decoupled systems.

The benefit found in the computation of the Kuramoto order parameter is
that, as clearly visible in figure (b), it reveals the actual frequency of the
weak synchronization of the network. The period appears to depend only on K,
while the difference in the amplitude reveals disordered excursions from more
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Figure 3.6: Network coherence as defined in (7)) and an example of r(¢) (B8]
evolution in a N = 500, K = 20 system

synchronized periods to almost completely desynchronized ones. The frequen-
cies found for K = 20, K = 50, K = 100 are, respectively: 4.8 +1 Hz, 6.7+ 1
Hz and 7.9 + 1 Hz.

3.5 Attractor Dimension and Entropy

At this point we can start the analysis of the Lyapunov spectrum and of the
information we can obtain from its analysis. The typical signature of deter-
ministic extensive chaos would be a Lyapunov spectrum invariant of the system
size: the values are on the same curve, but denser as the number of dimensions
increase [§].This seems to be the case for diluted networks, as clear from figure
37 (a). Nevertheless figure B.7 (b) shows that the spectrum shapes seem more
dependent on the size as the coupling becomes higher ( K = 100 ) . The effect
tends to decrease for larger networks, as we can say confronting the distance
between N = 500 and N = 1000, with the separation between N = 200 and
N = 300. Qualitatively, this behaviour follows the same trend of the network
coefficient of variation: increasing the connections compromises the vicinity to
optimal condition, but the discrepancy is slowly regained as the network size
increases. In the end is reasonable to expect, as reported in [8][9], that on very
large network scales, such as N = 103 — 10%, the spectra would always show a
good superimposition.

As reported in section the rate of entropy production for a SRB measure
is given by Pesin identity:
f(p) = D A0

A >0
For general measures the = sign becomes an upper bond <.

The information dimension comes from the Kaplan-Yorke conjecture, men-
tioned in section (L)

. AD 4
dimp (p) = &k + IAED)| ;
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Figure 3.7: Different examples of Lyapunov spectrum. The spectra for all the com-
puted network sizes and K = 20 are shown in (a); in (b) the parameter is K = 100;
in figure (c) we fixed N = 500, and plotted the spectra for all values of K.

From figures 3.8 (a) and (b) we see that both A(u) and dima (i) grow linearly
with N, as typical for extensive properties. The attractor dimension shows a
very small growth for decreasing K, reflecting the fact that the system is slightly
less synchronized. For the entropy this trend in much marked: weakly connected
network produce less entropy as their Lyapunov spectrum results a little more
flattened. The data substantially confirms what has already been found for a
broader range of network dimensions in [§].

Whether our ergodic measure is SRB or not, remains an open question. In
section [3.7] we tackle the problem by giving an esteem of the hyperbolicity of
the dynamical systems we are considering. As explained in the last part of
chapter [ (see page 28) if a dynamical system is hyperbolic and satisfies the
further requirement of having its periodic points dense on the attractor, we can
“naturally” define a unique SRB measure over it.

3.6 Lyapunov Vectors Convergence

Before expressing any result or measure concerning the Lyapunov vectors, it is
fundamental to test their reliability from every possible perspective. Firstly we
check the coincidence between the Lyapunov spectra computed in the backward
and in the forward iterations, respectively from the normalization coefficients
of the the Gram-Schmidt basis and of the Lyapunov vectors. Although locally
different, when used to compute the Lyapunov spectrum they superimpose,
as shown in figure 39 (a). Figure (b) shows how the quadratic deviation
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Figure 3.8: Attractor dimension (a) and entropy production rate for different values
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Figure 3.9: (a): superimposition of Lyapunov spectra calculated evolving the GS
vectors (in red) and the Lyapunov vectors (in black). Figure (b) shows the quadratic
deviation for averages on an increasing number of iterations

AN =1/N Zjvd(/\(Fj\)zv — )\g\),v)Q decreases when the spectra are averaged over
several repetitions with different starting phases.

Afterwards, we consider the vector invariance under different initializations
of the starting random C matrix. Using the parameters Sa; = 15000 and
ssk = 3, we compute the full set of vectors in time v(j)(ts) for 6 different
random initial conditions on C . All vectors are normalized, thus we measure
their variation using the angles. Taking the first simulation as a reference,
and calling ) (ts) the vector calculated with changed initial conditions, we
measure: o9 (t,) = arccos (v (t,) - 89 (t,)).

In figure the time averages of al/)(t,) are plotted for every vector, in
systems of size N = 300 and N = 500 and with the 5 different C' initializations
coded by colors. Vectors are represented in abscissa by their corresponding
global exponent. The first thing we notice is that vectors mostly do align in the
same direction, but might have an opposite orientation: from the linearity of our
calculations is clear that if we initialize the system with Cyy 1 = —Clyy1 we will
get exactly the same evolution in time, except all vectors will be inverted. Such
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Figure 3.10: Time average of the angles between reference Lyapunov vectors, and
vectors calculated starting with 5 different random initializations (color coded). (a)
N =300, K =50; (b) N =500, K = 50.

symmetry comes from the fact that Lyapunov vectors encode only directions,
while their orientation depends on the random starting conditions. For a perfect
convergence, we would see two straight lines in 0 and 7; unfortunately for the
network of bigger size, it seems that in a certain range, roughly in the second
half of the spectrum, some vectors do not converge. They represent a small
fraction: with a £5°tolerance they are ~ 9% of the total.

Some examples of the time evolution of the a/»=d)(t,) angles are shown in
figure B11l Apparently, at least for some of them, there is convergence after
some time. If we take into consideration only the first 10 seconds of our data-set,
the “bad vectors” for N = 500 decrease to the ~ 8% of the total. For a Sa; long
enough we would expect that all vectors eventually align, but the computation
would not be feasible in terms of memory and time.

Our next step is checking the time convergence of the vectors. In a N = 500,
K = 50 network we confronted the vector angles between a standard iteration
San = 15000 (corresponding to an evolution of ~ 90 seconds), and iterations
where the last Sa; steps are cut of varying lengths, ranging from 100 to 14500.
A scheme of the process is represented in figure

In figure (a) the angle averaged in time is represented. The colors code
for different extension of the calculation. It is clear that when Sy is negligible,
there is no chance of proper alignment. Increasing its value has a quite positive
effect, but, of course, we cannot expect any improvement from the “bad vectors”
pinpointed in the previous test. Figure BI3] (b) shows the angle evolution for
the vector corresponding to the zero exponent. The fact that it loses alignment
for longer times is indicative of its small instability.

Figure[314 (a) shows the average angles for all the time evolutions we sampled.
It is clear that vectors nearer the first and the last exponents converge faster
than the group in the middle. Figure BI3] (b) shows some examples taken from
(a), while in (c) we see the ratio of vectors with a misalignment bigger than 5°.
The time length we chose is enough to limit them to ~ 10% of the total.

In conclusion, we have found that most vectors, except a sparse fraction in-
creasingly small for larger Sa;, converge locally in time. This unstable vectors
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Figure 3.11: Angle evolution in time for some vectors not converging properly, se-
lected as the outliers in figure 3101 Upper part N = 300, K = 50, lower part N = 500,
K = 50.
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Figure 3.12: Convergence test performed with a reduction on the total computed
time.
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N = 500, K = 50 system.(a): average angles for all the considered time evolutions.
(b): horizontal sections of (a) for some vectors. (c): the ratio of vectors with a
misalignment larger than 5°.
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seem to span a precise interval of global exponents. A possible explanation
for the major stability of the first group is that the subspace considered has a
smaller dimension, moreover no alignment is required for the first vector, since
it is taken directly from the Gram-Schmidt basis. Instead exponents greater
than —35 s~! appear a little more spaced, this, together with the strong back-
ward expansion ratio, should account for their faster convergence. Checking
how the time required for an optimal convergence varies for different network
parameters would be an interesting direction for further analyses, but the scope
of the present section is only to assess the invariance and the robustness of the
Lyapunov vectors calculated with the backward iteration algorithm.

3.7 Angles and Hyperbolicity

We start the analysis of the vectors with an examination of the angles between
them. For a N = 500, K = 20 system, figure B.I3] (a) shows, in the lower right
part, the time average of the cosine of the angles between all vectors:

(cos o (1)), = <v<i> (t) - v (t)> . (3.8)

t
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Figure 3.16: The abscissa represents the average angles between a single vector and
all the others, the ordinate is the difference between Lyapunov exponents associated
to the network. (a) vector 15, Lyap. exp 4.3 and (b) vector 300 exp -24.5 . Figures
(c) and (d) are magnifications of, respectively (a) and (b). The network parameters
are N = 500 and K = 20.

The upper left part is the circular variance: a measure on how angles deviate
in time from their mean values.

o2(aij) =1~/ ({sim i (1)) + ({cos @ (1),)” - (3.9)

The vectors are referred to their corresponding global Lyapunov exponent,
rather than to their index. Figure (c) shows an enlargement of the same
figure, limited to the vectors around the zero exponent. Figures (b) and
(d) represent averages over 60 repetitions of the same system.

Our results is that the angles of neighboring vectors have a higher variability
in time and are, on average, more tangent to their close neighbours. For a more
quantitative evaluation, figures (a) and (b) depict two examples of the
average angle between a single vector and all the others, versus their “distance”,
i.e. the difference in the Lyapunov exponents. The chosen vectors are the 15"
and the 300*". Distant vectors are orthogonal, but the separation is good also for
near ones, (the scale starts from 45°); moreover, the closest neighbours (i.e. the
points around 0 ) have higher angles than the 2"d order neighbours: it appears
that vectors associated to similar exponents are nevertheless quite autonomous
in direction. The effect is more marked for negative exponents, as shown in
figure [3.16] (c), finally in figure (d) the small peak on the right corresponds
to vectors 46 and 47 : the vectors with nearly zero exponent tend to be more
orthogonal to the rest, as also visible from the slightly lighter lines in figures
5. 10l

The same graphs, plotted for networks of different size N and average connec-
tions K, look very similar, although the Lyapunov spectrum undergoes slight
changes in shape and in density. The reciprocal angles between the vectors, at
least when averaged on large times, appear an invariant property of the dynam-
ical system.

As already stated at the end of chapter [l (see page 28), the condition for a

dynamical system to be hyperbolic is that the tangent space can be decomposed
as the direct sum of expanding and contracting modes. The Lyapunov vectors,
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Figure 3.18: Minimum angle distributions averaged over several repetitions. Upper
row: N = 500, n] = 60, K = 20, 50 and 100; lower row: N = 200, n/ = 200, K as
above.

coding the directions of expansion and contractions, are very good candidates
to access the hyperbolic properties of the system. For example in [4I] it is
shown that, for generic nonlinear dissipative partial different equations, they can
be used to discriminate between physical modes, important for the dynamical
evolution, and nonphysical modes, rapidly decaying in time.

We consider all the vectors corresponding to positive global exponents as
expanding modes, while vectors decoding negative exponents as contracting
ones. A quantitative measure of the decoupling is then given by the least of the
angles between contracting and expanding directions.

Ormin(t) = min{ay; ()| AD > 0A XD <0} . (3.10)
ij

This quantity is measured for each timestep of the system evolution. Figure
BI7 (a) shows an example of amin(t) for a N = 500, K = 20 network; (b)
represents its statistical distribution. FigureB.I8 represents the minimum angle
distributions averaged over several iterations for different network parameters.
In the upper part we have N = 500 and K = 20, 50, 100. In the lower part
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Figure 3.19: Average and standard deviation of minimum angles (BI0]) distributions
for all the computed network parameters.

N =200 and K as before. We made 60 iterations on the N = 500 network, and
200 for N = 200. To perform the overall distribution, a correction is introduced:
namely we exclude all angles involving the vector with the exponent closest to
zero, assumed to (almost) correspond to a direction parallel to the motion,
neither expanding not contracting and so not interesting for our esteem. The
ratio of those angles increases with K and decreases with N. Without this
correction, the distributions K = 50 and K = 100 would have a maximum at
0. The two rows are associated to networks of quite different size, but their
shapes look surprisingly similar. However, with a closer look, we can see that
the N = 500 distributions are a little more peaked with respect to the N = 200.

The time average and the standard deviation for systems of different size are
plotted in figureB.19 There is, apparently, a general trend, i.e. larger networks
have slightly narrower distributions, with smaller averages; but the variations
remain very small, limited to few degrees. Moreover there are anomalous points,
and the role of K is not really clear.

To sum up, we can say that a certain separation between expanding and
contracting direction is present, and it becomes sharper in larger networks.
Nevertheless, to confirm this tendency, measures on much broader scales of
networks are necessary. Another crucial improvement would be to calculate
exactly the vector associated to the 0 exponent, the one parallel to the trajectory,
and exclude it for the angle measurements.

3.8 Participation Ratio and Chaos Index

The participation ratio of a (normalized) vector v{) at time t, is defined as:

(3.11)

It is a measure of the effective number of basis components that have a role
in the vector evolution. As a matter of fact, if a normalized vector has only
one component (00...010...0), its PR is 1; for a vector equally involving
all dimensions (1/v/N1/v/N...1/v/N), instead, PR = N. In our setting, the



3.8 Participation Ratio and Chaos Index

65

(@)

IS
o
=}

w
a
=)
N
N

——K=20
——«k=s0 || 20

w
=}
=)

—— K=100

N
a
=)

Participation Ratio
N
o
o
Participation Ratio
=
IS

=
13
=)

=
o
=)

o
=)
» O ©

-40 -30 -20 -10 0 10 20 -5 0 5 10
= 1
Global Lvapunov exp (s ™) Global Lyapunov exp (s)

Figure 3.20: Participation ratio of each Lyapunov vector (a) for a N = 400 network
with different average connections and (b) for K = 20 networks of different sizes.

base elements correspond to neurons, while vectors correspond to expanding
and contracting directions. The participation ratio informs us of how many
neurons are effectively taking part to an expanding or contracting mode, with
the degree of expansion /contraction given by the Lyapunov exponent associated
to the specific vector.

Figure (a) shows the time-averaged participation ratio for networks with
N = 400 and different K. The peak corresponds to the 0 exponent, parallel to
the direction of motion: it nearly reaches 400, which means that the trajectory is
tangent to all neurons. This is a clear outcome of the specific network dynamics:
between two pulses all neuron phases evolve uniformly in time with the same
velocity, so that the phase space trajectory is a line tangent to all directions.
When the average connections between neurons are increased, more of them take
part in the expanding directions and the systems is less stable. For contracting
directions, instead, every network seems to reach the same minimum, with a
SR ~16.

In figure (b) we see comparisons between different network sizes with K
fixed on 20. The average is performed both on time and on several network
iterations. When the size increases, the difference in the curves shrinks, as
if they are converging to a limit value. Moreover larger networks seem more
precise in the localization of the zero vector, as they are more peaked around
the 0 exponent.

Overall, we see that the number of neurons involved in expanding directions
has the order of ~ K/3, and is not greatly conditioned by the network size,
the tangent direction involves all neurons, finally contracting modes involve less
than 2 effective neurons under any condition.

The participation ratio expresses how many neurons participate in the dy-
namics of a given vector. To find which are the interested neurons we define the
chaos indezx, in the form:

S
‘ 1 ‘
= 3 S W ()% (3.12)
s=1
For a given neuron i, cz(-j ) represents its contribution to the time evolution of
vector v\9), or, equivalently, to the direction expanding with rate exp(/\(J)).
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Figure 3.22: Detail of the same dataset of figure 3.21] The ng) for neurons of index
i =149 and ¢ = 204 is shown on logarithmic scale.

Figure B2T] represent the chaos indexes in a N = 500 K = 20 network. The
x axis reports the Lyapunov exponents A7), the y axis contains the network
indexes i, with no privileged ordering, due to the randomness of the connections.
The value of cz(-] ) is substantially very small for all the positive exponents and for
some of the negative. When we go to lower values, however, we start seeing peaks
corresponding to neurons greatly contributing to a certain range of contracting

directions.

Figure represents two neurons chosen from the previous plot so that the
first (neuron 149) has a peak in the contracting modes, the second (204) appears
flat. With a logarithmic scale it is clear that they are covering different areas of
the Lyapunov spectrum. The first half of the spectrum, from ~10 to ~ -20 (s~ 1),
does not show any peak, as most of the neurons are contributing uniformly to it,
their contribution drops to very small levels after the —20 threshold. However
a minority of neurons, such as the 149, contributes less to the expanding and
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(4

weakly-contracting directions, but shows high ¢,/ values in specific ranges or

strong contracting directions.

Confronting those findings with the participation ratios of the exponents, and
the information on the network structure, we can sketch a model of the network
dynamics. All neurons evolve linearly in time, taking part in the tangent direc-
tion with 0 Lyapunov exponent. A smaller group of order ~ K are also receiving
inhibitory signals, an average of ~ 1/3 of them results crucial in the punctual
network evolution, as revealed in the participation ratio of positive vectors. The
~ K inhibited neurons change with time, covering the whole network, so that
none of them is privileged in contributing to expanding directions. A few neu-
rons are particularly uninfluential: they correspond to contracting directions,
thus to negative Lyapunov exponents. This property comes from the interplay
between the network structure and the global dynamical model, so it is localized
on specific neurons, as revealed by the peaks in their chaos indexes.

To quantify the overall participation of a single neuron to expanding and
contracting directions, we define two parameters in the form:

P?\-i- _ [C(.j)

3

Pf‘_ = [ng)

(3.13)

:|,\(j)>0 :|>\(j)<0

we call them, respectively, participation to expansion and participation to con-
traction of neuron i. The value is squared because the chaos index is defined as
a quadratic average.

Figure[3:23] (a) shows the distribution of P}, (b) is for P}". As we expect, the
participation to expansion is much more peaked: most of the neurons contribute
with an average value. For the contracting direction, we see a much broader
distribution: the great contributors are associated to the peaks of figure B.211
From the distribution of PZ’-\Jr we can draw an hypothesis on the shape of the
participation ratio ( figure B23). Most of the neurons do not participate to
expansion with their maximum value, so

To assess the validity of the defined parameters, we can try to relate them
with other quantities of the system. Figure 323 (c) shows, for each of the
500 neurons, the participation to contraction versus the average frequency 7;.
The red line is a fit in the form C; + Cs exp(—7;), with C; = 0.03 £+ 0.01 and
Cs = 0.85 + 0.02. The neurons with low frequencies contribute to contracting
directions much more than those with high frequencies, with a very simple
exponential equation.

The expanding and contracting in phase space represent, dynamically, the
propagation or decays of perturbations in the network. A neuron with a very
high spiking frequency, when perturbed by some discretionally small noise, will
rapidly communicate the variation to its ~ K postsynaptic neurons, conse-
quently changing the evolution of the whole network, with an initial direction
given by those ~ K neurons, weighted on their future influence, so that the
actual participation ratio results smaller than K. A neuron with a very low
frequency, on the other hand, is continuously inhibited by others, and sends
very few signals: it would hardly lead a global change, or, equivalently, have a
role in a vector associated to a positive exponent.Qur result is that the P?f can
give a very precise characterization of the frequencies, as is a good discriminant
between the neurons.
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In figure (d) we try the same with the P}, expecting a monotonically
increasing function due to the reasons stated above. However, for frequencies
higher than 1Hz, there is a drop: although some neurons have higher frequencies,
they do not appear to stand over others in the characterization of the expanding
directions. A possible explanation for this phenomenon lies in the inhibitory
nature of the network: a frequently-pulsing neuron would frequently inhibit the
neurons of its postsynaptic set, making them “dull” and less responsive to small
variations of its own signal, thus its average contribution to positive exponents
is decreased. Apparently the system self-adapts, so that the optimal frequency
for transmissions is around the average frequency of the neurons, 1 Hz.

We may inquire if we could gain some information on the frequencies by study-
ing the graph structure of the network. Neurons with low spiking frequencies
receive a higher number of inhibitory signals. We expect that the quantity of
received signals depend on the number of incoming connections. Figure
(a) shows, for every neuron, the number of presynaptic neurons versus its av-
erage frequency. An inverse proportionality is evident, however we see that, by
using simply the static structure of the graph, a proper characterization of the
neurons is not reachable.

Finally figure (b) represents P?f versus PiM. For great values they
roughly show inverse proportionality, as we expect, but the initial points have
a less trivial behaviour. As a direction for further studies, we could try to
relate this figure with the level of hyperbolicity of the system. The concept
of well separated directions for expanding and contracting modes corresponds
to neurons on which dominates either P}" or P}™; the unexpected rise at the
beginning of figure[3.24 (b) could thus be related to the incomplete hyperbolicity
showed by the network.

To sum up, in the present section the Lyapunov vectors, so far expressed
as abstract entities of the phase space, have been reconnected to the effec-
tive dynamical behaviour of the neural network. The informations gained from
parameters such as the participation ratio, the chaos index or the Pf‘7 help us
characterize both qualitatively and quantitatively the emergent behaviour of the
network. Although the qualitative results are supported by our information on
the network and our intuitive idea of its functioning, a quantitative explanation
requires the creation of an approximated theoretical model.

3.9 Optimizations and Further Analyses

In this chapter many results on the behaviour of the network have been shown,
however, especially for the Lyapunov vector analysis, the chosen network sizes
lie in the relatively small range of 200 — 500 neurons. To draw more general
conclusions, find rules on how quantities scale with network parameters, and
characterize the properties of the N > K > 1 regime, we should study systems
in a broader range of N and with a higher resolution in the K.

An increase in the network size N would result in a slowing down of all com-
putational processes involving N x N matrices, and in a bigger request of RAM.
The computation speed can be “easily” boosted with a complete parallelization
of all matrix operations. For the evolution and computation of Lyapunov vec-
tors, the bottleneck remains in the memory usage, since both the Gram-Schmidt



3.9 Optimizations and Further Analyses

69

Gy

30

0 0.05 0.1
part. to contr.
©
01f
£ 0,08\
o * %
o R
2 0.06 ¥
5 0.04
o
0.02
0
0 1 2 3 4

neuron frequency (Hz)

part. to expan.

150

100

50

(b)

0 0.05

0.07

0.06

0.05

0.04},

0.03*

0.02

part. to expan.

(d)

0.1

0 1 2 3

neuron frequency (Hz)

Figure 3.23: (a), (b): distribution of respectively P}~ and P}, defined in ([BI3),
for all neurons of a N = 500, K = 20 network. (c), (d): P}~ and P}* as a function of
the neuron frequency. The red line corresponds to the curve y = 0.03 + 0.85 exp(—zx)

(CY

w
a

w
o
)

N
ol

[N
13

number of presynaptic neurons
N
o

=
o

0 1 2 3
neuron frequency (Hz)

part. to expan.

0.065

0.06

0.055

0.05

0.045

0.04

0.035

0.03

0.025
0

(b)

0.02 0.04 0.06 0.08
part. to contr.

0.1

Figure 3.24: (a): number of presynaptic neurons related to neuron frequency for all
neurons of a N = 500, K = 20 network. (b): plot of P}t versus P}~



70

3 Computation and Results

basis and the R matrices need to be saved locally in time. A solution of almost
immediate implementation consists in storing the matrices on the local hard
drive, and reload them when needed, with the downside of the time cost related
to the use of physical memory. Alternatively, the simulation can be divided
into smaller time intervals, saving GS basis and the state of the neurons only
at the beginning of each of them; when needed by the backward vector itera-
tion, the forward evolution is recomputed and saved on one interval at a time,
and cleared afterwards. With the latter method, we can still rely on the much
higher speed of virtual memory, but a parallelization of the processes would be
strongly recommended.

Finally, as already mentioned, a more careful esteem of the minimum time
needed for the Lyapunov vector convergence should be performed, so that the
choice of the time length can be optimized on the network size.

With a broader data set, and the experience gained from the results already
obtained, many other analyses become possible. A better sampling in the av-
erage connection parameter K, for example, could lead to precise scaling laws
regarding the coefficient of variation, the network collective frequency, the en-
tropy production rate, the maximum participation ratio, etc. , providing new
insights on the functioning of the network. We could then investigate on rela-
tions between attractor dimension and participation ratio, or between entropy
production and the Pt parameter. Finally, to achieve a solid result on the
presence of hyperbolicity, a systematical study on networks of much larger sizes
should be performed.

Most of the numerical parameters shown here here have been qualitatively
connected to our information on the network structure and dynamics. Many
of the curves, however, are quite regular in their shapes and, in some cases,
as in the P*" versus 7; graph (figure (c)), very simple fits can be found.
Such findings surpass our qualitative idea of the network evolution, and express
with precise numerical quantities its ergodic (and emergent) properties. For this
reason, they could be taken as directions for the construction of a quantitative
theoretical model of the network, which, in turn, would be used to verify our
findings and give new ideas for other comparisons.



Chapter 4

Discussion

In the present work we extensively studied the dynamics of pulse-coupled in-
hibitory neural networks of QIF neurons, with the aim of creating a model qual-
itatively similar, in its behaviour, to networks of real pyramidal neural cells, and
then fully characterize it.

Our findings are summarized in the following section.

4.1 Conclusions

The first result, well documented in scientific literature [32] [34} (8], is that a large
number of simple oscillators with a phase linearly increasing, when sparsely
connected with nonlinear inhibitory pulses, shows a disordered and chaotic be-
haviour similar to the so-called balanced state of real pyramidal neurons. Using
the Kuramoto order parameter, the coefficient of variation and the measure of
neuron coherence (3.3l -B1), we quantified how much the system as a whole is
incoherent and near a Poisson point process. A closer look to single neurons,
however, reveals an intrinsic oder: as a matter of fact the global behaviour is an
example of emergent deterministic chaos, and is not due to any random variable.

In a reductionist point of view, our NV > 1 - dimensional dynamical chaotic
system results already fully characterized; our knowledge, however, is far from
complete. A mean field approach, as shown in appendix [Al can give average
network properties with all the necessary approximations. To move furtherly in
the characterization of the system, we rely on the ergotic theory.

The computation of the Lyapunov spectrum leads to an esteem of the attractor
dimension and of entropy production, in substantial agreement to results already
published [8, [@]. Then, using an algorithm proposed in a recent article [23], we
moved to the caculation and the systematic study of the Lyapunov vectors.

Since no other examples of their use for similar systems have been found
in the scientific literature, we performed a series of convergence checks, which
confirmed both their invariance and the robustness of the algorithm.

Afterward, the vectors have been used as a quantitative esteem of the degree
of hyperbolicity of the dynamical system. In a fully hyperbolical system, the
measures of entropy production and attractor dimension would be more solid
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and not approximate esteems. Our result is that such a property shows partially,
but we might reach a full structural stability in networks of bigger size.

Finally we expressed other ergodic properties given by the systematic study
of the Lyapunov vectors, and showed how they are connected with the effective
dynamics of the neurons within the network. We have found that the system
auto-organizes so that the majority of neurons equally contributes in the deter-
mination of the global dynamics, distributing their role in time, moreover the
optimal frequency for the signal propagation in the network corresponds to the
global average frequency: neurons pulsing with higher frequencies do not stand
over others in determining the dynamics. On the other hand, a small group
of selected neurons, stable in time, shows very little sensitivity to perturba-
tions. They tend to have lower frequencies, and a very simple relation between
frequency and contribution to dynamically decaying modes can be found.

Overall, the Lyapunov vector approach offered fruitful insights in the col-
lective behaviour of the network, differentiating the role and contribution of
neuron groups, always seen in the context of their global, dynamical structure.
Approaches based on reduction to lesser dimensions, or to the study of the static
graph of connections, would hardly provide as much information.

In the end, the results are encouraging but not completely satisfactory for
two main reason: first of all, with our computational capabilities we have only
approached the ideal condition of very large, and very sparsely connected net-
works (i.e. N> K > 1), further measures and optimizations are requested to
express more solid results; secondly, there is no quantitative theoretical model
which could be compared with the numerical findings and with the curves re-
sulting from our measures.

4.2 Extensions

In section B.9 we already mentioned possible improvements and optimizations
for the current system. Here we describe a few of the many possible extensions
which can be added.

First of all, we could use our a priori knowledge of the system to detect and
isolate the tangent Lyapunov vector, i.e. the one corresponding to the 0 expo-
nent. Since its direction is neither expanding nor contracting, no vectors would
converge on it, either in forward or backward expansion. Our only hope is to
catch it “by exclusion”, relying on the randomness of the initializations. Insert-
ing the tangent vector in the GS system would give us much more precision in
the calculations of the nearly 0 Lyapunov exponents and in their corresponding
directions: a more solid measure of hiperbolicity would then result.

A rather obvious direction of investigation would be checking the robustness
of collective network dynamics for changes in the single neuron model; then we
may inquire how the addition of more realistic traits, such as a delay in the
signal transmission or the presence of excitatory pulses, modifies the results.

In all runs we used the fixed topology of a sparse random graph, characterized
by relatively small variations in the number of incoming and outgoing connec-
tions. We may inquire whether a more diversified connectivity would give rise to
a predominant role for some neurons, or if the system would somehow re-balance
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those differences, as it already does when it limits the impact of high-frequency
neurons.

Finally we could consider whether our Lyapunov-based approach answers to
the general problem of determining a centrality measure in complex networks.
Centrality measures are esteems of the “importance” of a given node in the
network: they are crucial, for example, in models of power grids, spreading of
diseases, etc. Traditionally, centrality measures rely on the underlying structure
of the connection graph, not taking the network dynamics into account. A recent
attempt to define a centrality measure based on dynamics can be found in [42].
Our contribution to expansion and contraction parameters, defined in (3.13)),
could possibly fall in this category. The only requirement for our computation
is the (numerical) knowledge of the Jacobian matrix in every point of the system
evolution. As long as a dynamical system, regardless of its structure, dynamics
or dimension, satisfies this requisite, we can, in principle, perform on it the
complete analysis of Lyapunov exponents, vectors and, along with them, of all
the parameters defined in this work.
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Appendix A

Temporal Fluctuations in Balanced State

Recalling the formula (2.11]), we can distinguish an external component, which
is assumed to be constant in time and equal for all neurons, and an internal
current, depending on the network dynamics, which is therefore the only source
of fluctuations. For simplicity we restrict ourselves to a population of inhibitory
neurons. The current from the network is then:

Lnetw(t) \/_ > (i (A.1)

P eCTS

CTS stands for compound spike train, and represents the ordered uninion of the
spiking times sets of each neuron. If our system is weakly correlated and very
large, it is reasonable to assume that spikes near in time are uncorrelated with
very few exceptions. Thus the spike-time distribution can be approximated with
a Poisson point process (see section 1.4 of the book [27]).

We define the event rate as:

Q) = lim mean number of events in At bins . (A.2)
At—0 At

For a given Q(¢) function, the conditional probability of having Ngp; total
events at times {t(1), ... (V=1 is given, in Poisson statistics, by the formula:

P(Nypi, {80, .. 00 j(t)) = — e 0 4500 Hm@ (A.3)
spi-

p=1
The current averaged over this distribution is then:
T Nepi
(i z [+ T 77 (. %= 000
) % % Ct— f(ﬂ)) . (Ad)
p'=1
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A Temporal Fluctuations in Balanced State

explicitly:

T Nspl

ditp) 22/ Q t( zp: C(t _ i ) (A.5)

o JT ds(s) Z/ /

Since the shape of {(t — f(p,)) is invariant of the considered spike, the sum over
p’ corresponds to a single sample times the total number of spikes:

00 Nspi
Jo T asas) /T (1) YO /T /T G
— —— e Jo @848 dt'\ Ngpi C(t—t Q(t dt'\P .
" NZ [t N (1~ E () N

o Jo 55
(A.6)
The {®) are just dummy variables, so that every term of the product over p is
equal. This leads to:

T N NN VP Ry AR
T ds Q Z T </od Q( )) (/Od C(t—s)Q )>.

Nspi=1
(A.7)
Finally the sum over Ny,; can be seen as the expansion series of an exponential,
and consequently simplified with the exponential term. The result is:

[(Li(0)),]; = — \/— dSC(t—S) Q(s) - (A-8)

With the further assumption that the event rate is stationary in time, and is
a O(K), we can write it as:
Qt)=Kv (A.9)

which, considering the properties (Z12)), ¢(¢) will integrate to one. This leads
to the result given in equation (218).



Appendix B

( Network Evolution )

* Create connection matrix

random phase

‘ Inizialization: 6;(ts—1) < beteen —r and

spiking time for neuron

Co te ts
* R with highest phase

* Send spike to postsynaptic neurons:
O+ (t;_1) = 0= (t7_1)
* Evolve linearly all phases to time ¢4

&Calculaxe Jacobian matrix Dy
.iterafe

\.

J

( Forward Iteration

L random orthonormal basis
* Inizialization: (q(l) (to—1)|... |q(m) (tse1)) = Qs_1

* Multiply Qs—1 with Jacobian and iterate the networ

Repeat sg times — Qs

A QR decomposition: Qs = QsR,
Store R diagonal for the global exponents
Store Qs and Rs matrices for the vectors

Global Exponents
s
\G@) = %zlog{Rs}jj

=i

-iferafe

Figure B.1: Schematic representation of the algorithms used to iterate the network
and calculate the Lyapunov exponents. In the first box ¢s is computed with (2.32)),
postsynaptic neurons are update with ([2:33]), linear evolution is given by (2.31)), finally

D comes from (2.36] - [2.39).
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B Simulation Algorithm

Backward lteration

random triangular matrix

* Inizialization: .
Cs41, normalized columns

* Invert R, and iterate backward:
(4)

i Normalize C columns, save coefficients cg

~ ‘ Use Cy and stored @, to compute the vectors

.iferate

Alignment Intervals

GS basis and
R matrices saved S
backward iteration

only R
matrices saved

timeline Sal T S Sar
ST > > —i
GS basis aligns @SN AW Lw) Lyap. vect. align

vectors are saved

Figure B.2: Upper part: schematic representation of the algorithm used to calculate
the time evolution of Lyapunov vectors, as reported in [23]. Below: how the simulation
times are structured, so that the interval Sa; is devoted to convergence, for both GS
basis and vectors.
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