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Abstract

The widespread use of positioning technologies ranging from GSM and GPS to WiFi de-
vices tend to produce large-scale datasets of trajectories, which represent the movement
of travelling entities. Several application domains, such as recreational area management,
may benefit from analysing such datasets. However, analysis results only become truly
useful and meaningful for the end user when the intrinsically complex nature of the move-
ment data in terms of context is taken into account during the knowledge discovery process.
For this reason we propose a pattern interpretation framework that consists of three main
steps, namely, pattern discovery, semantic annotation and pattern analysis. The frame-
work supports the understanding of movement patterns that were extracted using some
trajectory mining algorithm.

In order to demonstrate the feasibility and effectiveness of the framework, we have
specifically applied it for understanding moving flock patterns in pedestrian movement.
For the pattern discovery step, we have formally defined the concept of moving flock,
distinguishing it from stationary flock, and developed a detection algorithm for it. A
set of guidelines for setting the parameters of the algorithm is provided and a specific
technique is implemented for the radius parameter.As for the semantic annotation step, we
have proposed a guideline for selecting appropriate attributes for semantic enrichment of
individual entities and of moving flocks. Two levels of annotation, which are at individual
and pattern level, were also described. Finally, for the pattern interpretation step, we have
combined the results obtained using hierarchichal clustering and decision tree classification
in order to analyse the attributes of flock members and of the flocks, and the flocks
themselves.

The entire framework was tested on the Dwingelderveld National Park (DNP) dataset
and the Delft dataset, both of which are pedestrian datasets based in the Netherlands.
The DNP dataset contains records of observations on the movement of visitors in the park
while the Delft dataset describes movement of the pedestrians in the city. As a result, some
forms of interactions, such as certain groups of visitors following the most popular path
in the park, were inferred. Furthermore, some flocks were linked with specific attractions
of the park.
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Chapter 1

Introduction

This chapter introduces the general idea of the thesis, which is to support the task of
interpreting movement patterns for the purpose of understanding movement behaviors.
The discussion starts with the motivation for the thesis before stating the problem state-
ment that it addresses. After which, contributions of the thesis are discussed. Finally, the
chapter closes with an overview of the discussions that can be expected in the subsequent
chapters.

1.1 Motivation

Large collections of data on movement of objects are becoming more and more accessible
due to advances in mobile and location technologies such as GPS, GSM, UMTS, Bluetooth,
Wi-Fi, Wi-Max, and RFID. With the use of proper tools and techniques, a vast wealth
of information can be extracted from these collections. This information is generally
useful in understanding the environment in which the objects move, and the movement
behavior of a specific group of individuals, such as the customers of a supermarket or
the motorists in a city. Understanding these behaviors can lead to better management
of traffic in a city, help in choosing a good location for opening a new business or a new
branch, help in selecting the types of attractions that should be further developed in a
recreational area, and provide support for many other applications. Figure 1.1 provides an
example of how understanding movement behavior can be useful in the business domain.
Specifically, an entrepreneur who has the knowledge that a considerable number of young
adults are fond of visiting a specific group of monuments in the zone (Musée Rodin, Musée
d’Orsay, and Palais de la Légion d’Honneur in Paris) altogether, along with other business
considerations such as feasibility studies, can materialize a business proposal and make
good decisions about the venture.

In order to obtain knowledge about the movement behavior of a target group, move-
ment data (i.e., data describing the movement of entities within a specific area) must be
subjected to the Knowledge Discovery in Databases (KDD) process. This process basically
involves preprocessing the input data, extracting useful information in the form of pat-
terns from the preprocessed data, and postprocessing and analyzing the obtained patterns
before finally obtaining the desired knowledge that is meaningful and interesting for the
end-user.

Though most of the works in KDD literature focus on the extraction of patterns (i.e.,
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Figure 1.1: Knowledge about the movement behavior of prospective customers can aid in
making decisions about business ventures.

Figure 1.2: Analysis of a Flock Pattern.

the data mining phase), the postprocessing and analysis part (i.e., the interpretation
phase) of the extracted patterns is important as well since the patterns by themselves are
simply representations of the desired knowledge and require further processing to facilitate
knowledge delivery to the users. This is illustrated in Figure 1.2. The left part of the figure
is an example of a flock pattern, which basically represents a group of moving entities that
are spatially close together for a certain time interval. Note that this pattern by itself may
provide the user with some basic information such as the start and end time of flocking,
and the IDs of the flocking entities. However, several other information describing the
context (i.e., the set of facts and circumstances surrounding the situation in which the
movement occurred) are still missing. For this reason, analysis is usually performed with
reference to some geographical information, which adds semantics to movement data.
Aside from geographical information, other possible examples are the weather condition
during the time of movement and the characteristics of the moving entity, such as age
or occupation. We refer to semantics as the set of concepts that are used to annotate
the data for the purpose of integrating a description of the context into it. Going back
to Figure 1.2, analysis of the flock pattern through the incorporation of a set of semantic
information allows the user to understand that the flocking occurs among a group of elderly
friends who are heading towards the leaning tower on a sunny morning. Such analysis is
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important for recreational area managers, for instance, since the obtained interpretation
sheds light to the meaning of extracted patterns and in turn, increases the understanding
of the movement behavior of pedestrians and their impact in the managed area.

Aside from the issue of having only a small number of research efforts that focus
on the interpretation phase of the KDD process, most of these works only concentrate
on geographic information to understand the context of the extracted patterns. It is
important to consider other forms of semantics for a fuller coverage of the movement
context.

Taking the movement context into consideration is crucial since it can greatly influence
the interpretation of movement patterns. To further emphasize this point, consider the
flock pattern illustrated in Figure 1.3, which demonstrates different interpretations of the
same pattern illustrated in Figure 1.2. It could be that the pedestrians are moving together
due to interactions such as walking forward at a given speed. In this case, pedestrians
tend to calculate the trajectory of their current target and turn to face the direction of
the target, hence, tending to move towards the shortest path from their local origin to
their destination by simply following certain paths (c) or heading for a similar area of the
landscape (a). On the other hand, the flock patterns may emerge from social interactions
in which the relation among the group of entities may also cause them to flock together as
seen with the example of a group of friends moving around a shopping area (e) or maybe
sharing a common interest in mountain hiking (b). Still another interpretation is that the
flock members consist of elderly folks who tend to choose a certain route for convenience
purposes (f). The interpretation of the pattern varies depending on the movement context.
Thus, it is impossible to obtain a meaningful interpretation without it.

Figure 1.3: A specific instance of flock pattern that can be interpreted in several possible
ways depending on the movement context.

This study addresses the issue of considering the movement context by proposing a
framework that covers both the data mining and interpretation phases of the KDD process.
At the same time, the framework supports pattern interpretation by using explicit thematic
attributes that are available in the dataset to semantically annotate extracted patterns,
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contrary to most of the current practices in data mining wherein such attributes are usually
ignored for efficiency purposes.

We have applied the framework to interpreting a specific type of pattern, called flock,
which was shown in previous examples. Analysis of such patterns is interesting since they
represent the movement behavior of collectives rather than individuals, with the study of
collective behaviors being more scalable and more useful for area managers. In addition, a
flocking behavior also includes the interactions that occurred among the flocking entities
and their environment. Considering these interactions allows a deeper understanding of the
collective’s behavior and their impact in the managed area. This is valuable in application
domains such as recreational area management, traffic management and animal monitoring
domains. In the recreational area management, for instance, understanding the flocking
behavior of pedestrians can help in making decisions about path widening, about adding
more attractions and the type of attractions that should be added, and about relocation
of certain attractions.

1.2 Problem Statement

The main problem addressed in the thesis revolves around the following question:

How can semantics be used to support understanding movement behaviors represented
by movement patterns?

It is well-accepted that semantics plays an important role in the KDD process due to
the fact that such information allows the delivery of meaningful results (i.e., knowledge
that is useful and interesting). This is specially true in the Web domain and this has led to
the birth of Semantic Web, which has been well-studied and quite established as an active
research area. For the processing of movement data in the geographic domain, however,
the integration of semantics into the KDD process is quite new and research interest has
only started to grow in the most recent years. For this reason, we perceive research in
understanding movement behavior through semantic-enrichment of movement data as a
fresh, interesting and worthwhile undertaking.

The main goal of the study is to aid the user in understanding discovered patterns.
We achieve this goal by addressing the following objectives:

1. Provide an approach for the semantic enrichment of movement data and patterns

2. Provide an approach for the analysis of semantically-enriched movement data and
patterns

3. Demonstrate the validity of the framework by applying it to real-world datasets

The succeeding paragraphs provide a discussion of the issues involved in each of the
previously enumerated objectives.

Objective 1: Semantic Enrichment of Movement Data and Patterns Though
semantic annotation for the Web has been a well studied topic as demonstrated in surveys
provided in [86, 78], the set of semantic annotation tools for movement data is quite new
and hence, not as rich. As a consequence several issues are yet to be addressed and
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resolved in relation to the semantic enrichment of movement data and patterns. Two of
these important issues are reflected by the following questions:

1. At which level should the movement data and patterns be annotated?

2. Which of the available semantic attributes should be incorporated into the movement
data and patterns?

The first question addresses the need for specifying the level at which the data and
patterns are annotated. This level is crucial since this can influence the depth of the
interpretation results that can be obtained from the semantically-enriched data. Analysis
of individually annotated entities can give way to meaningful interpretations of individual
behaviors but this is not scalable when there is a large number of individuals to consider
in the dataset. Furthermore, this is probably not very useful for most end-users, especially
area managers, since they are usually concerned with the overall behavior of the individuals
moving in the managed areas. On the other hand, analysis of semantically annotated data
at an aggregate level, can provide meaningful interpretations related to the overall behavior
of the moving entities. However, caution should be taken at this level in order to avoid
producing annotations that are too abstract and hence, becoming meaningless. A balance
between individual and aggregate level annotations is necessary.

Meanwhile, the second question addresses the need for a guideline on the selection
of relevant attributes for semantic annotation. This is helpful in minimizing the size
of the data that would be annotated and processed further for interpretation purposes.
Since semantics of movement depend on the application domain, it is difficult to find a
general and standard model for semantically-enriched movement data that can be used in
any application domain. For example, mode of transportation is an important semantic
attribute of movement in the context of a traffic management system but this is not as
important in the context of monitoring fish behaviors. There are infinitely many possible
semantic attributes if we consider all possible application domains. Thus, there is a need
to analyze which semantic attributes are common and sufficient enough for describing
movement behavior in the considered domain.

Objective 2: Analysis of Semantically-Enriched Data and Patterns Aside from
the need for semantic enrichment of movement data and patterns, there is also a need to
provide an approach for analyzing this enriched data in order to infer meanings from the
patterns. A specific technique for extracting meanings from the enriched patterns should
be provided to help analysts in interpreting patterns generated by data mining algorithms.
This technique should answer the following questions:

1. How can the semantically-enriched movement data and pattern be transformed into
meaningful patterns?

2. What type of interpretations can be inferred using this technique?

The first question addresses the important issue of designing and developing an ap-
proach for inferring meaningful interpretations from semantically-enriched data. On the
other hand, the second question recognizes the capabilities and the limitations of the
proposed approach.
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Objective 3: Application to Real-World Datasets After designing and developing
a proposed solution that achieves the previous objectives, it is also necessary to evaluate the
solution’s feasibility and effectiveness. Since we are dealing with semantics, which depends
on real-world context, the solution must be tested on real-world datasets. Successful
application of the solution to such datasets confirms its feasibility while the meanings
obtained using the proposed solution can validate its effectiveness.

In our experiments, we have instantiated and applied the framework to interpreting
moving flock patterns, which are group of entities that remain spatially close together
while moving from one location to another during a specific time duration, in the context
of pedestrian movement. In relation to this, there are two important issues worth noting:

1. Existing flock algorithms do not perform the additional step of distinguishing be-
tween moving and stationary flocks.

2. Few research efforts were devoted to understanding the flocking behavior of pedes-
trians.

Concerning the first issue, we consider it important to distinguish between moving
flocks (i.e., entities that remain close together while moving from one location to another)
and stationary flocks (i.e., entities that remain close together while staying only in one
location) because these can be considered as 2 different types of patterns, the latter being
similar to meet patterns (i.e., entities that stay together in one area). Thus, they have
different semantics. For instance, stationary flocks can help in understanding the specific
locations wherein the individuals tend to converge. Meanwhile, moving flocks can support
the understanding of how collectives as a whole move from one interesting location to
another. The latter is usually more interesting in the context of tourism management,
for example, since the main concern is to manage the attractions based on the movement
behavior of collectives rather than individuals. Morever, understanding how group of
visitors move in a specific area provides more information compared to understanding the
specific attractions that individuals are interested in.

As for the second issue, research efforts on flocking behavior have been mostly as-
sociated with collective movement of a large group of birds, fish, insects, and certain
mammals as seen in [57] for theoretical ecology. However, only a few studies were focused
on pedestrians, most of which concentrate on the simulation of human behavior in panic
and evacuation situations [80, 26, 42, 96], and in dispersion and epidemic studies[16, 21].
In fact, no research effort has been found in studying flock patterns in tourism management
despite the fact that it could enhance the management of a destination in terms of improv-
ing the access to attractions, the visitor expenditure within regions, as well as improving
marketing strategies in destinations. Through the application of the proposed framework
on interpreting flocking patterns of pedestrians, our work provides a contribution towards
understanding flocking behavior among pedestrians.

1.3 Contribution

The main contribution of this thesis is the formulation of a framework for pattern in-
terpretation, which addresses the three objectives enumerated in the preceding section.
The framework includes three steps, which are pattern discovery, semantic annotation,
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and pattern analysis. The pattern discovery step utilizes existing data mining algorithms
in order to discover and extract patterns from the input movement data. The next step
of semantic annotation, which addresses the first objective (i.e., semantic enrichment of
movement data and patterns), involves exploiting semantic attributes that are explicitly
available in the dataset in order to take the movement context into account. Finally, the
pattern analysis step, which addresses the second objective (i.e., analysis of semantically-
enriched data and patterns), involves the application of data mining techniques on the
enriched data and pattern in order to infer meaning from them. Thus, the framework
covers the KDD process more fully compared to existing approaches since it does not only
include either the data mining or the interpretation phase of the KDD process. Instead,
it encompasses both phases with the pattern discovery step corresponding to the data
mining phase of KDD, and the semantic annnotation and the pattern analysis steps cor-
responding to the interpretation phase. The last objective (i.e., application to real-world
datasets) is achieved by instantiating the framework to the interpretation of moving flocks,
which is an important type of movement pattern due to their capability to represent col-
lective movement behaviors as well as the interactions among their members. A set of
tools that support the three steps of the framework for moving flock patterns were imple-
mented. Moreover, the framework was tested on different pedestrian datasets, which will
be described in a later part of this chapter.

The novelty of our approach with respect to other approaches in analyzing movement
data is that we explicitly consider the thematic attributes of moving individuals, such as
the age and the occupation of park visitors, and mined patterns in order to find correlations
among them. This is important since it is impossible to infer the obtained interpretation
results (refer to Chapter 4) without taking the thematic attributes into account. The
framework initiates a first step towards the explanation of why the mined patterns oc-
curred, how the patterns are related to each other, and which are the semantic aspects
that make the patterns correlated.

During the realization of the proposed framework, we have also achieved different
contributions corresponding to the different steps of the framework. These are summarized
in the next three paragraphs.

Pattern Discovery Step For the pattern discovery step, we have introduced the notion
of moving flocks and have also provided a formal definition that distinguishes them from
stationary flocks. Compared to existing works on flock discovery, which do not make this
distinction, we chose to differentiate between the two since these correspond to different
patterns and thus, have different semantics. In addition to defining moving flocks, we have
also developed and implemented a moving flock discovery algorithm for extracting such
patterns.

Semantic Annotation Step Two important issues related to semantic annotation of
movement data that were mentioned in the previous section are the following: (1) at which
level should the movement data be annotated?, and (2) which of the available semantic
attributes should be incorporated into the movement data and the discovered patterns? We
address the first issue by proposing two levels of semantic annotation, namely individual
and pattern level. Annotating at these two levels allow the interpretation of the different
facets of a pattern. On the other hand, we address the second issue by providing a guideline
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for selecting semantic attributes based on the criteria provided by Wood and Galton in
[92]. While these criteria were used to classify collectives in [92], we used the same criteria
to filter out unnecessary data for annotation.

Pattern Analysis Step Finally, for the pattern analysis step, we propose a combination
of executing hierarchical clustering and decision tree induction classification algorithms
applied to individual and flock properties, and to flock instances themselves in order to
support the discovery of meaningful interpretations from the flock patterns. While existing
data mining techniques were used for the pattern analysis step, the idea of applying them
on attributes (instead of dataset entries) for the purpose of pattern interpretation is novel.

Datasets The framework was tested on two different pedestrian datasets, which are the
Dwingelderveld National Park (DNP) and the Delft dataset, to demonstrate the applica-
bility and effectiveness of the framework on different contexts.

The DNP dataset contains data about visitors’ movement in a Dutch recreational park,
which consists of short and long trails for walking, cycling and horseriding. It is a very
popular area that receives between 1.5 and 2 million visitors per year [87]. It also includes
several attractions such as bird watching lookouts, sheep farms, a teahouse, and heath
lands.

On the other hand, the Delft dataset is situated in a Dutch city named Delft. It
is known for its typically Dutch town center and its canals. Some of the city’s notable
and historical buildings are Oude Kerk (Old Church), Nieuwe Kerk (New Church), the
Prinsenhof (Princes’ Court), its City Hall, the Oostpoort (Eastern gate), the Gemeen-
landshuis Delfland, and Waag (Weighhouse) [23]. It also houses the Delft University of
Technology, which is one of three universities of technology in the Netherlands. Its at-
tractions, in general, include churches, museums, factories, windmills, botanical gardens,
markets, restaurants, and shopping areas. It is worth noting that the two datasets are set
in different contexts based on the given descriptions of the associated area.

Furthermore, the first step of the framework was tested on the Fontainebleau dataset.
While the setting of DNP and Delft are in the Netherlands, Fontainebleau is located
in France. Like DNP, Fontainebleau is also a recreational park. More specifically, it is
a massive wooded area of 25,000 ha, 21,600 ha of which are currently supervised by a
national park management body. Its wild landscape attracts a considerable number of
hikers, rock-climbing or mountain-biking enthusiasts, horse riders, cyclists and Sunday
walkers [30]. In fact, millions of visitors come to the park every year (e.g., 13 million in
2006). The routes are usually used for walking and they can probably be dated back to
the sixteenth century. Its forest consists of wild plants and trees, and a population of
birds, butterflies and mammals.

The DNP dataset contains a total of 141,826 sample points of 372 visitors whose tracks
were recorded using GPS devices given to them at the parking lots where their visits
started. This data collection was carried out once a month during spring and summer of
2006, having in total 7 days (weekend and weekdays) of tracking. After preprocessing, the
dataset consists of 370 trajectories as seen in the first image shown in Figure 1.4.

The Fontainebleau dataset, on the other hand, contains 22,748 sample points of 23
visitors. Their movements were tracked using GPS devices as well. These data were
collected during the months of April, May, and September, having a total of five days in
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Figure 1.4: The trajectories in the DNP, Fontainebleau and Delft datasets.

the year 2004. The dataset contains a total of 207 trajectories, which is illustrated in the
second image included in Figure 1.4, after preprocessing. This implies that some visitors
have more than one trajectories, which represents the different trips that a visitor has
made.

Finally, the Delft dataset consists of 467,454 sample points, which are collected from
285 pedestrians from the 18th to the 21st of November in the year 2009. After prepro-
cessing, the dataset contained 303 trajectories, which are shown in the last image found
in Figure 1.4.

Through the application of the framework to the DNP and Delft datasets, we were able
to infer meaningful interpretations, such as the tendency of visitors to flock together in the
most popular route of DNP or the tendency of the visitors to flock due to sharing common
interests. This demonstrates the feasibility and the effectiveness of the framework. It
can also be applied to other real-world datasets and help end-users, especially recreational
area managers, in understanding movement behaviors of visitors and consequently, making
decisions that can lead to improvements in the managed area.

1.4 Organization of the Thesis

The succeeding chapters are organized as follow:

Chapter 2 includes a discussion of preliminary concepts used in the thesis, and a
discussion of related works. It covers the explanation of fundamental concepts such as
the KDD process, movement data, trajectories, and movement patterns. It also provides
an overview of existing works on general data mining tasks with a special focus on flock
discovery algorithms, and on pattern interpretation systems.

Then, the discussion of the proposed pattern interpretation framework is covered in
Chapter 3. It is basically split into three parts corresponding to the three steps of the
framework. Meanwhile the application of the framework to real-world dataset and the con-
ducted experiments are elaborated in Chapter 4. The discussions found in these chapters
are extensions of those found in the following publications:

M. Wachowicz, R. Ong, C. Renso, and M. Nanni
Discovering Moving Flock Patterns among Pedestrians through Collective Coherence
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CNR-ISTI Technical Report 2010-TR-027
To appear in the International Journal of Geographical Information Science, 2011

R. Ong, M. Wachowicz, M. Nanni, and C. Renso
From Pattern Discovery to Pattern Interpretation in Movement Data
Accepted paper in the Third International Workshop on Semantic Aspects in Data
Mining (SADM 2010)
Workshop Date: 14 December 2010
In conjunction with the 2010 IEEE International Conference on Data Mining
In IEEE ICDM Workshop Proceedings, pp. 527-534

Lastly, the conclusions obtained from the study as well as new directions for future
works are found in Chapter 5.



Chapter 2

Knowledge Discovery in Databases
for Movement Data

This chapter provides a discussion of the state of the art with respect to our proposed
framework for pattern interpretation. It starts with the big picture by providing an
overview of the KDD (Knowledge Discovery in Databases) process and a specialized area
of KDD for geographic data, called GKD (Geographic Knowledge Discovery).

Afterwards, the bits and pieces of the overall KDD process for handling movement
data will be discussed based on the sequence of KDD steps, which is shown in Figure 2.1.
The discussion will start with preliminary concepts relating to the input and output of
the process before dealing with the sequence of steps necessary for transforming the input
movement data into the desired output.

2.1 Knowledge Discovery in Databases and Geographic Knowl-
edge Discovery

This section provides an overall picture of Knowledge Discovery in Databases and its
specialized field known as Geographic Knowledge Discovery.

2.1.1 Knowledge Discovery in Databases

The KDD (Knowledge Discovery in Databases) process deals with a large collection of
data, which contains a hidden wealth of information or knowledge that can be discovered
through the proper application of the process. KDD is described as “the overall process
of converting raw data into useful information” in [29], while a consistent definition in
[83] describes KDD as the “overall process of discovering useful knowledge from data”.
It has several applications in different fields, such as business, science, and engineering.
In the business domain, for instance, point-of-sale data that describe the transactions
performed by customers can now be collected. Proper processing of such data can support
business applications like customer profiling and targeted marketing. Another example is
in the field of ecology in which data about the movement of animals can now be gathered.
Using this data as input to the KDD process, information such as the usual route taken
by a large percentage of the animals during migration periods, or the locations wherein



12 CHAPTER 2. KNOWLEDGE DISCOVERY IN DATABASES FOR MOVEMENT DATA

the animals tend to converge can be obtained. This information, in turn, can support the
understanding of how the observed animals interact with each other and their environment.

KDD consists of a sequence of transformation steps as shown in Figure 2.1. The first
three steps (including selection, preprocessing, and transformation) can be combined into
a larger step called preprocessing. Hence, KDD can be described as comprising of three
main phases, which are preprocessing, data mining and interpretation/evaluation.

Figure 2.1: Overview of the steps constituting the KDD process. (Based on [29])

An overview of these phases is discussed in the succeeding paragraphs but a more in-
depth discussion for application to movement data will be provided later in this chapter.

The Preprocessing Phase

The preprocessing phase is mainly concerned with cleaning the input data and transform-
ing it to a format that allows it to be subjected to the next phase, which is data mining.
As shown in Figure 2.1, it can further be subdivided into three smaller steps and these
include selection, preprocessing, and transformation.

The Selection Step Selection involves choosing a subset of the data from which knowl-
edge will be mined. This is applicable in cases wherein the end-user is only interested in
the data observations that occurred at a certain time period, those that were collected
from a specific area, or other similar types of contraints. Aside from selecting the data
that the user is interested in, the attributes or features of the data are also filtered to
retain those that are relevant for obtaining the desired analysis result.

The Preprocessing Step Preprocessing involves cleaning the data to remove noise
observations, which can include duplicate entries, or entries with dubious values for some
attributes. For example, if the age attribute in the dataset was restricted to range from
18-40, entries with values falling outside of this range should be cleaned either by removing
these entries or by correcting the spurious values.

The Transformation Step Lastly, transformation ensures that the input data is con-
verted in an appropriate format for the subsequent data mining step. For example, some
mining algorithms for movement data require that spatial points must be encoded in the
longitude/latitude format.

After the completion of these three steps, the final output of the preprocessing phase
is referred to as the transformed data.
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The Data Mining Phase

The second main phase of KDD is data mining. It entails the use of a sophisticated
mining algorithm that extracts regularities, anomalies or other interesting relations from
the transformed data and outputs them in the form of patterns. Classification, clustering,
and association mining algorithms are standard types of data mining algorithms. Aside
from these, the set of data mining algorithms has been continually growing in number and
in sophistication due to the heterogeneity of data types to deal with and the variety of
analysis tasks to be performed on them.

The Interpretation/Evaluation Phase

The patterns mined in the previous step are processed further during the interpreta-
tion/evaluation phase for the purpose of extracting meaningful and useful information,
which is referred to as knowledge in Figure 2.1. It involves filtering invalid and useless
patterns. Moreover, analysis steps are performed on the remaining patterns in order to
infer meaningful interpretations. Upon the completion of the process, the desired analysis
result should have been communicated to the end-user.

It is also important to note that in the execution of the KDD process, it is possible
to revert and repeat certain sequence of steps, as indicated by the shaded arrows in the
figure until the desired information is obtained.

2.1.2 Geographic Knowledge Discovery

Since the focus of the thesis is KDD in the movement context, we provide a separate
discussion of GKD (Geographic Knowledge Discovery) in this subsection. GKD, which is
a term first introduced by Miller and Han in [60], is a specialized field of KDD that focuses
on data related to geographic space or location.

The GKD process in the context of movement data can be described as the overall
process of converting movement data into useful knowledge that can support decision
making in geographic-related applications. It can be seen as consisting of three phases,
which are analogous to the main phases of KDD. These include trajectory reconstruction,
knowledge extraction and knowledge delivery as described in [35].

Trajectory reconstruction, which corresponds to the preprocessing phase of KDD, is
concerned with converting raw movement data (i.e., movement data that has not been
preprocessed) to trajectories of individual moving objects, and the storage of these result-
ing trajectories. Once the trajectories are reconstructed and stored, useful patterns are
extracted during the knowledge extraction phase by applying spatio-temporal data min-
ing methods. This phase corresponds to the data mining step of KDD. Finally, the last
phase called knowledge delivery involves reasoning, interpreting and presenting extracted
patterns to users. This corresponds to the interpretation/evaluation phase of KDD.

The details of these phases in the context of movement data are covered in the remain-
ing part of the chapter. The flow of discussion will start with preliminary concepts related
to the input and the output of the GKD process, particularly applied to movement data.
Afterwards, the sequence of steps that transforms the input movement data to meaningful
information will be covered in the subsequent chapters. The discussion will be restricted
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to semantic annotation of trajectories (which can be viewed as part of the preprocessing
phase for GKD), data mining, and pattern interpretation.

2.2 The Input

As seen in Figure 2.1, the KDD process takes in data as input and applies a series of
steps to it before discovering knowledge, which is the main goal of the whole process. This
section describes movement data, which serves as input to a geographic KDD process.
Furthermore, it also provides an overview of trajectories, which is a representation of the
preprocessed movement data.

2.2.1 Movement Data

Movement data, which is also referred to as mobility data in [35], can be simply defined as
a sequence of positions that a moving object goes through over time as shown in Figure 2.2.

Figure 2.2: Movement Data of an Object

As mentioned in Section 1.1, large collections of movement data are now becoming
more accessible due to the latest advancements in telecommunication, wireless and loca-
tion technologies. Analysis of such data can help in understanding movement behaviors
of the observed entities and the surrounding movement phenomena. For instance, [14] in-
vestigates pedestrian movement in the context of mobility in carnivals and street parades
where issues such as congestion or crowding are key features. Understanding crowd be-
haviors in this context can help in predicting and controlling congestion and other safety
issues in future events.

2.2.2 Trajectories

Movement data are usually represented in the form of trajectories, which can be defined
as a sequence of (x, y, t)-tuples describing its position over consecutive time instances in
ascending order. (x, y) refers to the position of the moving entity at a specific time instance
t.

Formally, a trajectory T over two-dimensional space is defined as a continuous mapping
from

I ⊆ < to <2 : t 7→ α(t) = (αx(t), αy(t))

and

T = {(αx(t), αy(t), t) | t ∈ I}. [22]

The given formal definition describes a trajectory as a mapping from time to space.
However, time is continuous. Thus, an individual trajectory consists of an infinite sequence
of time moments, wherein each moment is mapped to a position. Due to the finite amount
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of memory available for storing trajectories, each trajectory should be recorded as a finite
sequence. Thus, the points in a trajectory are often recorded at random time instances
and for this reason, they are also referred to as sample points while the rate at which
the points are recorded is referred to as the sampling rate. For example, the sequence of
(x, y, t)-tuples for a specific entity may have a time gap of 5 seconds from the first recorded
point to the second recorded point, a gap of 30 seconds from the second point to the third
point, and so on. These points are typically measured with uncertainty and refinement is
possible by considering physical constraints, such as the road network.

Interpolation Since trajectories are built only from a set of sample points in the move-
ment data instead of building from the movement data for each time instance, there is a
need to estimate the data in between the set of sample points. This estimation is known
as interpolation.

The simplest and fastest type is called the linear interpolation. In linear interpolation,
the sample points are connected with straight lines, which demonstrate the assumption
that the speed and direction of the object’s movement between every pair of sample
points are constant. Despite of this, it is still a popular interpolation technique due
to its simplicity and speed, both in terms of construction and handling.

Another interpolation technique that creates smoother curves in the trajectories is
through the use of Bezier curves. Construction of trajectories is quite fast but handling
them, such as computing the distance along the trajectory, is not as simple as with linear
interpolation.

2.2.3 Complexity of Movement Data

Movement data is complex due to its multi-faceted characteristics as demonstrated in
[7]. These characteristics, which affects the movement behavior of the moving entities
considered, can be categorized into four main parts:

1. space component - refers to the positions traversed by the entities during the period
of movement. Some examples of space-related characteristics that can influence the
entities’ movement behavior are the presence of obstacles like a wall, the charac-
teristics of the surface like being made of concrete or soil, and the function of the
location like being a residential or commercial area.

2. time component - refers to the time period of the entities’ movement. It is worthwhile
to note that time can also influence the entities’ movement behavior. For example, a
person moving during weekdays is most likely to move from work to home, and vice
versa. This is in contrast to a person moving during weekends. In this case, he/she
is more likely to move between recreational areas or to stay at home, depending on
the person’s preference.

3. moving entities and their activities - refers to the characteristics of the moving enti-
ties and their activities that may influence their movement behavior. Some examples
of moving entity characteristics that affect movement behavior are age, gender, oc-
cupation, and health condition. An example illustrating the effect of activities on
an entity’s movement is by considering the speed of a person heading for work as
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opposed to a person shopping in the mall. It is expected that the person going to
work would move faster compared to the latter.

4. phenomena and related events - refers to the phenomena and events occurring in the
moving entities’ environment. Some examples are the current weather conditions,
ongoing concerts, sports events, traffic accidents, and government-imposed rules.

This list confirms that while movement data is usually associated with the space and
time components only (as seen in the formal definition of trajectories), the characteristics
of the moving entities themselves and the surrounding events during the time of movement
are important aspects of the movement data as well. For this reason, it is vital to consider
this collection of relevant characteristics (i.e., semantics) in processing movement data
for the purpose of obtaining meaningful knowledge, which are represented by movement
patterns.

2.3 Movement Pattern

The extracted knowledge using the KDD process comes in the intermediate form of move-
ment patterns. Dodge et al [25] describes movement patterns as regularities in terms of
space and time, or interesting relations implicit in the movement data. This work has also
initiated the construction of a taxonomy for movement patterns, which is shown in Figure
2.3. They have categorized movement patterns into two groups, namely, generic and be-
havioral patterns. Due to the large number of specific movement patterns, the succeeding
examples focus on those related to flock patterns. The reader is referred to [25] for a more
comprehensive and detailed discussion.

Generic patterns refer to low-level patterns that can be extracted by applying generic
data mining algorithms. It is further classified into primitive and compound patterns.
Primitive patterns refer to the most basic form of patterns while compound patterns
consist of more than one primitive patterns. Primitive patterns are also subcategorized
into spatial, temporal, and spatio-temporal patterns. An example of a spatial primitive
pattern is co-location in space, which refers to a group of objects that have similar positions
in space without considering time. Synchronization is an example of temporal pattern
wherein similar changes of movement variables occur either at the same time or after
a time delay. Meet and moving cluster are examples of spatio-temporal patterns that
are closely related to flocks. A meet refers to a group of objects that stays within a
stationary disk in a certain time interval while a moving cluster is described as a group of
objects that moves close together in a certain time interval. A compound pattern closely
related to these patterns is convergence, which is described as the movement of a set of
objects headed towards the same location and is illustrated in Figure 2.4. Another related
compound pattern is encounter, which is a specific form of convergence pattern wherein
the objects arrive at the same time at the meeting place.

On the other hand, behavioral patterns are more complex patterns that are made up
of generic patterns and are capable of describing the behavior of a specific type of moving
object or a specific group of moving objects. Evasion and pursuit are some examples.
These two patterns occur together since evasion describes the behavior of an animal trying
to escape from a threatening and pursuing animal, while pursuit describes the behavior of
the pursuing animal. The flock pattern, which is described in [25] as a group of animals
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Figure 2.3: Classification of Movement Data [25]

Figure 2.4: Convergence pattern. [70]

moving in the same direction while staying close together, was also classified as a behavioral
pattern. It is a moving cluster set in the context of animals. Being consistent with existing
data mining literature on flock patterns, we refer to flock patterns as moving cluster (i.e.,
flock patterns describe patterns without reference to the type of moving object and other
contextual information). Since flock pattern is a central concept in the thesis, a separate
subsection (refer to Subsection 2.3) is entirely devoted to existing flock definitions in data
mining literatures.

Different data mining algorithms have been developed for discovering generic patterns
with the aim of finding an efficient algorithm for processing large-scale movement datasets.
Nevertheless, the movement patterns extracted by most data mining algorithms do not
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consider the movement context, which is necessary in correctly interpreting and under-
standing the patterns. Clustering and flock discovery algorithms applied to movement
datasets, for example, mainly use the set of sample points (x, y, t) to determine the spatial
closeness of trajectories over time and often ignore context attributes, such as the age
category or the job description of the moving entities, or the type of landscape wherein
the movement occurred.

We chose to analyze of flock patterns since there are several existing works focusing on
such patterns both in the data mining and the application-oriented literatures. Moreover,
this pattern can be interpreted in different ways. Sample interpretations (i.e., behavioral
patterns) that can be derived from them are pursuit, courtship, play, flock (as defined
in [25]), migration, and congestion. This makes flock pattern an interesting focus of
analysis. Furthermore, such analysis is useful in applications such as traffic management,
and recreational management systems wherein the manager can exploit the analysis results
to improve the governed area.

Since the taxonomy in [25] is a first attempt in classifying movement patterns, a joint
refinement and standardization effort by researchers in related fields is still needed. In fact,
the authors have setup a wiki page [62] in order to move towards this effort and this page
also includes a discussion page wherein registered users can give suggestions in improving
the taxonomy. We mention some of the shortcomings of the taxonomy from our point of
view and from the discussion page of the wiki. One difficulty with the classification is the
use of terms that have different meanings in known ongoing works. For example, flock
is classified as a behavioral pattern indicating that context has been considered whereas
existing literatures on flocks in computational geometry and data mining use the term
flock as a generic pattern. Furthermore, the term pattern usually refers to unprocessed
output in data mining. Thus, using the term interpretation instead of behavioral pattern
and removing it under movement patterns may be more appropriate since the definition
given for behavioral patterns includes context. Another issue that should be addressed
by such a taxonomy is its completeness. Due to its data driven approach, the current
taxonomy must be extended further in order to cover new movement patterns that have
not yet been defined. A qualitative approach to classification of movement pattern, such
as the work by Wood and Galton [92], provides this advantage over the approach used in
the taxonomy of Dodge et al. However, it is still interesting to see how existing patterns
can be classified and organized. It would be interesting to have a hierarchical taxonomy
that shows the relations among patterns. For example, meet and moving cluster are two
patterns that are closely related to each other since a meet can be seen as a special case
of a moving cluster with speed equal to 0.

Flock Definitions

The following list provides a summary of flock definitions provided by existing works on
flock discovery algorithms:

• Finding REMO - Detecting Motion Patterns in Geospatial Lifelines [51]

Flock : Concurrence with spatial constraint. Concurrence refers to a set of differ-
ent entities having the same values of motion attributes (i.e., speed, acceleration,
bearing/direction) for a time instance. The spatial constraint requires that entities
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should not just move in the same way but should also be close to each other. Entities
are considered to be close if their absolute location is within a certain radius.

Leadership: A flock with an entity that shows constance over the previous times
steps. Constance refers to an entity maintaining a certain motion (i.e., constant
speed, no acceleration, moving in the same direction) for a time instance.

• Efficient Detection of Motion Patterns in Spatio-Temporal Data Sets [38]
These are formalized definitions of those found in [51] but speed and acceleration
are ignored here.
Flock : Parameters: m > 1 and r > 0. At least m entities are within a circular region
of radius r and they move in the same direction.

Leadership: Parameters: m > 1, r > 0 and s > 0. At least m entities are within a
circular region of radius r, they move in the same direction, and at least one of the
entities was already heading in this direction for at least s time steps.

• Reporting Flock Patterns [15]
This definition emphasizes that a flock should stay together for some duration of
time rather than for a single time instance, unlike in previous works. It is assumed
that each trajectory has the same number of line segments.
(m,k,r)-flockA - Let m,k ∈ N, and let r > 0 be a constant. Consider a set of
trajectories, where each trajectory consists of τ line segments. A flock in a time
interval I = [ti, tj ], where j − i + 1 ≥ k, consists of at least m entities such that
for every point in time within I there is a disk of radius r that contains all the m
entities.
A more relaxed definition was also provided using the assumption that movements
are in straight line and have constant speed between two time points with known
location data. With this definition, it is no longer required to check every time point
in an interval. Instead, only the time points where data has been collected need to
be checked.
(m,k,r)-flockB - Consider a set of trajectories, where each trajectory consists of τ
line segments. Let I be a time interval I = [ti, tj ], where j− i+1 ≥ k and i ≤ j ≤ τ .
A flock in time interval I consists of at least m entities such that for every discrete
time-step tl ∈ I, there is a disk of radius r that contains all the m entities.

• Computing Longest Duration Flocks in Trajectory Data [37]
This definition is almost similar to that of [15], only differing in the fact that the time
interval k for which the flock members stay close together could be a real number
rather than just an integer.
flock(m,k,r) - Given a set of n trajectories of entities in the plane, where each trajec-
tory consists of τ line segments, a flock in a time interval I, where the duration of I
is at least k, consists of at least m entities such that for every point in time within I,
there is a disk of radius r that contains all the m entities (note that m ∈ N, k ∈ R).
They have also considered two types of flocks, namely, fixed and varying flocks. A
fixed flock consists of the same m entities staying close together over the entire time
interval. On the other hand, a varying flock consists of entities that may change dur-
ing the interval so long as the number of entities staying close meet the minimum
number requirement.
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• Reporting Leaders and Followers Among Trajectories of Moving Point Objects [4]
The focus of this work is on identifying leaders in the flock. Hence, they have only
provided a definition for leader and for follows, while referring to the same flock
definition found in [15].
Leader - An entity is a leader at time [tx, ty] iff it does not follow other entities at
time [tx, ty] and there are sufficiently many entities following it at time [tx, ty].

Follows - ei follows ej iff ej is in front of ei (i.e., within the angle α) and ||di−dj || < β
as shown in Figure 2.5.

Figure 2.5: ej is in front of ei. [4]

• On Discovering Moving Clusters in Spatio-Temporal Data [47]
This work defined the concept of moving clusters, which is closely related to the
notion of flocks.

Moving cluster - a group of objects moving close together for a long time interval.
The objects within the group may change (i.e., addition of members, removal or
replacement of some members). It is similar to varying flocks.

• On-line Discovery of Flock Patterns in Spatio-Temporal Data [88]
This definition is consistent with previous definitions but provides a more technical
description that fits their proposed discovery algorithm.
Flock - Given are a set of trajectories T , a minimum number of trajectories µ > 1
(µ ∈ N), a maximum distance ε > 0 defined over the distance function d, and a
minimum time duration δ > 1 (δ ∈ N). A flock pattern Flock(µ,ε,δ) reports all
maximal size collections F of trajectories where: for each fk in F , the number of
trajectories in fk is greater or equal than µ (|fk| ≥ µ) and there exist δ consecutive
time instances such that for every ti ∈ [f t1k ..f

t1+δ
k ], there is a disk with center ctik and

radius ε/2 covering all points in f tik .

It is important to note that these definitions and our definition of flock as well, is
quite different from that of Dodge et al [25]. Recall that the definition by Dodge et al
associates flocks with animals while definitions described in these works are not restricted
to any type of moving entity. Moreover, Dodge et al categorize flocks under behavioral
pattern, which implies that movement behaviors can be inferred from them. In this work
and as with the other works mentioned here, however, flock patterns are considered as
an intermediate output that require further processing in order to transform them into
meaningful patterns from which movement behaviors can be inferred.

2.4 Semantic Annotation of Trajectories

In this section, we now shift the readers’ focus from the input and output of the KDD
process to the process of obtaining meaningful interpretations from movement data. Three
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key phases for this purpose include semantic annotation of trajectories, data mining, and
pattern interpretation. This section covers the discussion on the existing state of the art
for the semantic annotation of trajectories. The state of the art in data mining and in
pattern interpretation will be covered in the next two sections.

Before providing a survey of some tools and algorithms for semantic annotation of
trajectories, it is fundamental to have a clear understanding of semantics, which is vital
in delivering meaningful results to the end-user.

2.4.1 Semantics

Semantic, in the general sense, is defined in Merriam-Webster [59] as “of or relating to
meaning in language.” In other words, it is related to the meaning of a considered notion.

In movement data, semantics are the information that describe the enviroment in which
the movement occurs. Environment does not only refer to the geographical location where
the movement took place. It also includes the on-going phenomena, and the other objects
that the moving object interacts with. Furthermore, semantics also cover the properties
of the moving object itself and the properties of the different environmental aspects.

In our study, we specifically focus on semantic data that can aid in understanding
movement behavior of observed entities depending on the considered application domain.
Geographical data, typical speed (i.e., reasonable range of speed values), purpose, weather
condition, and age of the moving entity are some examples of semantic information. It
is important to emphasize the dependence of semantics on the application context. For
example, weather condition may not be as important in an employee monitoring system
as opposed to a bird monitoring system.

Due to the importance of semantics in understanding movement patterns, there is
a need for integrating them with the movement data and/or the extracted movement
patterns. Thus, a number of semantic annotation tools were developed for this purpose.

2.4.2 Semantic Annotation of Trajectories

As mentioned in the preceding chapter, semantic annotation for the Web has been well
studied as demonstrated in literatures such as [86, 78, 49, 24, 27]. On the other hand, the
set of semantic annotation tools for trajectories is quite new and hence, not as rich. This
section covers a subset of tools and algorithms for semantically annotating trajectories in
movement data, while semantic annotation for the Web is out of the scope of the thesis.

Semantic Annotation of Trajectories with Stops and Moves

In Spaccapietra, et al [81], trajectories are viewed “as movements that correspond to
semantically meaningful travels.” As a consequence, they introduced stops and moves as
important semantic concepts since a travel consist of stopping in an interesting place, and
moving towards and/or away from this place.

The sequence of positions over which the object continuously changes position is called
a move. On the other hand, the position over which an object stays fixed for some minimum
time interval is called a stop. More specifically, a stop is a part of a trajectory that has
been explicitly defined by the user to represent a stop. The moving object should also
stay within the stop for some non-empty time interval. Moreover, all stops are temporally
disjoint (i.e., two stops should occur in different time instants).
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On the other hand, a move is a part of a trajectory that is delimited by two extremities.
These extremities are either two stops, or the starting point and the first stop of the
trajectory, or the last stop and the ending point of the trajectory. As with stops, the time
interval of a move should be non-empty.

The identification of stops and moves within a trajectory depends on the application
domain. For example, stops identified for a company’s tracking application would be dif-
ferent from the stops identified for a bird monitoring application. The following algorithms
were developed for semantically enriching trajectories with stops and moves.

Stop and Moves of Trajectory (SMoT) SMoT [2] is an algorithm that converts each
trajectory to a corresponding list of stops and moves. When using this algorithm, the user
is expected to provide the system with the list of interesting places along with the typical
time duration spent in these places. Staying in an interesting place for the specified time
duration must be satisfied in order to identify the place as a stop.

In the discussion of this algorithm, the list containing the interesting place along with
its associated time duration will be referred to as an application since this pair varies with
the application domain. Then, each pair in the list is referred to as a candidate stop.

The algorithm basically processes one trajectory at a time. For each trajectory, the
following steps are performed. Starting with the first point of the trajectory, the algorithm
checks whether the point intersects the region of any candidate stop of the application.
If it does, the time spent by the object within the region is computed by continuously
moving to the immediately succeeding point until a point outside of the region is found.
The duration of time spent by the object within the region is the difference between the
time that the object exited and the time that it entered the region. If the duration is at
least equal to the associated minimum duration of the region, the place is considered as
a stop. Once a stop is identified, a move is then recorded between the previous stop and
the recently marked stop.

Cluster-Based Stop and Moves of Trajectory (CB-SMoT) CB-SMoT [69] is an
extension of SMoT. A problem with SMoT is the assumption that the user has defined
all the interesting places and the typical time duration spent in each place. However, this
is not always the case as the user may only know about a subset of the interesting places
but not all of them. With CB-SMoT, the user is allowed to identify only a subset of all
the interesting places. The algorithm itself automatically identifies places that may be
relevant to the application domain.

The basic intuition that allows CB-SMoT to automatically identify interesting places
is based on the following: moving objects tend to spend more time in interesting places
and hence, their speed slows down in such areas. The denser part of the trajectory (i.e.,
the set of points that are close together in terms of space and time) corresponds to such
places. An extension of DBSCAN [28] is used to cluster dense points of a trajectory into a
region that is a potential stop. Once the potential stops are automatically identified, the
algorithm checks the intersection of these stops with the candidate stops identified by the
user. Potential stops that do not intersect with any candidate stop may still be interesting
and are labeled as unknown stops. A move is generated for each part of the trajectory
that is not a stop.

The main advantage of CB-SMoT over SMoT is that the former is able to identify
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stops previously unknown to the user. However, in cases where speed is not relevant to
the domain, SMoT may give better results. Another strong point of CB-SMoT is that it
is able to generate clusters even in parts of the trajectory where some points are missing.

Other Algorithms for Stop Identification Aside from SMot and CB-SMoT, [95]
also describes three approaches for identifying stops. These include velocity-based stop
identification, density-based stop identification, and a time series approach called Traj-
ARIMA. These algorithms do not use explicit geographical information unlike previous
algorithms. Instead, they rely on intrinsic properties such as velocity and density in order
to detect stops and moves. Despite of these, we classify them as semantic enrichment
algorithms since they allow the extraction of semantic attributes (i.e., stops and moves),
which are derived from trajectory data.

Velocity-based stop identification flags a point of the trajectory as a stop when the in-
stantaneous speed is lower than the speed threshold. This threshold is defined with respect
to the average speed of the moving object, the average speed that occurred in the nearest
road crossing, and the average speed that occurred in the road segment corresponding to
the point’s position. A limitation of this technique is that it cannot properly handle cases
wherein stops are performed by entities that move at high speed in a small area.

To handle this limitation, density-based stop identification was also introduced. This
algorithm considers the maximum distance covered by an object aside from considering
its instantaneous speed. Its basic idea is to consider consecutive points in a trajectory as
a stop if the fall within the density area of the immediately preceding point. This area is
restricted by a time duration and a corresponding maximum distance.

Finally, Traj-ARIMA is a time series approach for network-constrained trajectory mod-
elling. It extends the Auto-Regression Integrated Moving Average (ARIMA) model with a
spatial dimension and it is described in details in [94]. It is worth noting that the technique
can be used for velocity fitting and prediction, aside from stop prediction.

Semantic Annotation of GPS Trajectories

Realizing the need for semantics for the analysis of movement behavior, Guc, et al [36]
proposed the use GPS trajectories to facilitate manual semantic annotation without having
the need for neither manual interview nor manual mobility records.

They proposed a conceptual annotation model that includes two annotation elements,
which are episodes and trips. Episodes were defined by Mountain and Raper [61] as time
periods in which the user’s spatio-temporal behavior was relatively homogeneous while
trips are sequences of episodes that are concerned with a common aim. The homogeneity
of episodes in Guc, et al [36] depends on the purpose of an action and the mode of
transportation though this may be extended further depending on the application domain.

Using this model, they have implemented an annotation tool developed in the Java
environment. The architecture of the software includes three layers: data handling for
the storage of the trajectory and annotation data, program control for the program flow,
and user interface for the GUI components. The tool includes interface functionality for
visualization of the GPS trajectories, display of temporal trajectory aspects through a
timeline bar, trajectory animation for visualizing slow and fast movements in certain time
periods and the direction of movement as well, and placemarks allowing the user to specify
his/her favorite places.
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Trip and Trip Purpose Extraction from GPS Trajectories

Wolf [90] and Wolf, et al [91] have studied the feasibility of replacing travel diaries, which
require a manual recording and retrieval process, with automatic extraction of trips and
trip purposes from GPS trajectories. Trips are automatically extracted by checking the
part of trajectories wherein there is no movement detected. Once the end of trips and
other relevant information are derived, the next step involves automatic extraction of trip
purposes. This, however, requires a manual process of combining land use information
and other geographic information in the case that the land use information is not enough.
The land use data are linked with a set of purposes, which includes a primary purpose and
may include a secondary or even a tertiary purpose. These combined information are used
to determine the purpose of a moving entity by matching the land use with the identified
purposes based on the starting and the ending positions of the trips, and the temporal
component of the trips made by the entity.

Axhausen [10] proposed a similar approach that uses personal information about the
moving entities’ home and work addresses aside from the land use information.

Generating Semantic Annotations for Frequent Patterns with Context Analy-
sis

The work described in [58] proposes an approach for automatically generating semantic
annotations for frequent patterns. This is realized by building a context model, extracting
representative transactions, and finding semantically similar patterns for each frequent
pattern. The context model is built by selecting a set of informative context indicators,
which is made up of context units that have the strongest weights with respect to the
currently considered frequent pattern. Each context unit carries semantic information
and should co-occur with some pattern. Furthermore, a context unit can be an item in a
transaction, a pattern, or a whole transaction. Redundancy within the set is eliminated
through a microclustering technique wherein redundant units are clustered together. The
representative transactions are extracted by modelling each transaction as a vector that
is similar to the vector representation of the frequent pattern’s context model. Then,
the cosine similarity is used to compute the similarity between each transactions and the
context model. The top-ranking transactions based on this measure are chosen as the
frequent pattern’s representative transactions. Finally, the set of similar patterns are
selected by computing the similarity between the context model of the frequent pattern
with that of the candidate patterns.

2.5 Data Mining

Once movement data has been enriched with semantics, the next step in the KDD process
is data mining in which the main purpose is to discover movement patterns hidden in the
data. The succeeding discussion on data mining is mainly split into two parts, one part
focusing on the classical data mining algorithms and another part focusing on the data
mining algorithms specifically used for movement data.
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2.5.1 Classical Data Mining Algorithms

This section provides an overview of the three main data mining tasks, namely, classifica-
tion, clustering and association mining as discussed in [83].

Classification Algorithms

Classification refers to the “task of learning a target function t that maps each attribute set
x to one of the predefined class labels y.” [83] It is performed for either one of the following
purposes: descriptive modeling (to support the explanation of why objects belong to a
specific class), or predictive modeling (to predict the class membership of objects).

A specific type of classification algorithm called decision tree induction algorithm ex-
tracts a series of conditions based on the attributes in the dataset for classification. It
basically splits the data by using the attribute that minimizes data impurity (i.e., posi-
tive examples of the target class are well separated from the negative examples). This is
recursively applied to the smaller subsets of data resulting from previous splits until all
instances in a subset belong to the same class.

The classification algorithm we used for the pattern interpretation framework is J48
[76, 45], which is a type of decision tree induction algorithm. It is an implementation of
the well-known C4.5 [75] decision algorithm for generating a pruned or unpruned decision
tree. It uses normalized information gain in order to select the attribute for splitting the
data. It can handle both continuous and discrete attributes, data with missing values and
attributes with differing costs. It also provides an option for pruning generated trees.

This type of algorithm has the following advantages: they are non-parametric (i.e.,
makes no assumption about the probability distribution of attributes in the dataset); tree
construction is computationally inexpensive and classification can be quickly performed
once the tree model is built; the generated trees are easy to interpret and their accuracy is
comparable to other techniques; it is robust to the presence of noise; redundant attributes
do not adversely affect the accuracy of the generated decision tree though feature selec-
tion techniques can help if there are too many irrelevant attributes; the choice of impurity
measure has minor effect on its performance. Its weaknesses include the following: de-
cision trees do not generalise well to certain types of Boolean problems; leaf nodes may
correspond to decisions that are not statistically significant but this may be solved by
disallowing further splitting when the number of records is below a threshold; a subtree
may be replicated several times in a decision tree; use of oblique decision tree or construc-
tive induction may improve the expressiveness of the decision tree, which is restricted to
rectilinear decision boundaries when splitting is only based on a single attribute.

There are many other types of classification algorithms. An example of which is the
rule-based classifier, which is as expressive as a decision tree. The Bayesian classifier is
another group of classifiers that are statistically-based and founded on Bayes’ theorem.
More sophisticated classifiers are artificial neural networks (ANNs), and support vector
machines (SVMs). ANNs are inspired by how biological neural systems work while the
foundation of SVMs is based on statistical learning theory. A detailed discussion of these
algorithms is not provided in this work since these are not within the scope of the thesis.
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Clustering Algorithms

Clustering refers to the task of dividing the data into groups (i.e., clusters) wherein objects
belonging to a group are more similar to each other compared to those belonging to other
groups. It is performed for the purpose of understanding the observations in the dataset by
determining the group of objects that share common characteristics when the class labels
are not known beforehand. It is also used for finding the most representative cluster
prototypes which are helpful for specific applications, such as summarization, compression
and efficiently finding nearest neighbors.

Types of Clusterings There are different types of clusterings and they can be generally
categorized as follows: partitional vs. hierarchical, exclusive vs. overlapping vs. fuzzy, and
complete vs. partial. Partitional clustering divides objects into non-overlapping clusters
while hierarchical clustering divides objects at different levels, finding both clusters and
subclusters. Exclusive clustering assigns an object to a single cluster while overlapping
clustering allow an object to belong to more than one cluster. On the other hand, fuzzy
clustering allows each object to belong to every cluster with a membership weight ranging
from 0 to 1. Complete clustering assigns all objects to some cluster while partial clustering
may not assign some objects to any cluster at all.

Types of Clusters Aside from having different types of clusterings, there are also dif-
ferent types of clusters. General category for such types includes the following: well-
separated, prototype-based, graph-based, density-based, and shared property clusters.
Well-separated clusters refer to groups of objects such that the distance between ob-
jects belonging to similar cluster is smaller than those belonging to different clusters.
Prototype-based clusters are sets of objects in which objects belonging to the same cluster
are closer (i.e., more similar in terms of a specific set of criteria) to the prototype defining
the cluster compared to the prototype of any other clusters. If the data is represented
by a graph wherein nodes refer to objects while edges refer to connections among the
objects, a graph-based cluster is a connected component, which is a group of objects that
are connected to each other but not to other objects that are outside of the group. An
example of a graph-based cluster is a contiguity-based cluster wherein two objects are
connected if they are within a specified distance of each other. This implies that in this
type of clusters, each object is closer to some other object within the cluster compared
to any point belonging to another cluster. A density-based cluster is a dense region of
objects that is surrounded by a low-density region. A shared property cluster is a group
of objects that share some property. It encompasses the previous types of clusters and
includes other new types of clusters as well.

Representative Clustering Algorithms There are different varieties of clustering
algorithms but this section only describes three representative algorithms, which employ
different types of clusterings and produces different types of clusters. These are k-means,
agglomerative hierarchical clustering, and DBSCAN (Density-Based Spatial Clustering of
Applications with Noise).

K-means [55] is a prototype-based and partitional clustering algorithm. It finds k
clusters, where k is a user-specified parameter. Each cluster is represented by its centroid,
which is usually computed as the mean of the group of points. It is worthwhile to note
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that this algorithm is very similar to k-medoid algorithms, wherein a medoid referring to
an actual central point is used to represent each cluster. It has the advantage of simplicity
and can be used for a wide range of data types. Moreover, it is also quite efficient, although
several runs are often performed. Variations of the basic algorithm are less susceptible to
initialization problems. However, it is not suitable for non-globular clusters, or clusters
with different sizes and densities. It is restricted to data for which the notion of a centroid
exists. Outliers can also pose a problem in the clustering results.

Agglomerative hierarchical clustering, which is the clustering technique we employed
in the pattern analysis step of the proposed framework, produces the clustering result by
initially considering each point as a singleton cluster before recursively merging the pair
of clusters that are most similar to each other until an all-encompassing cluster remains.
It applies a technique opposite to that of a divisive hierarchical clustering, which uses a
top-down approach instead.

The result obtained from hierarchical clustering distinguishes it from other clustering
algorithms. While other algorithms usually produce only a single level of clustering result,
hierarchical clustering produces a result with different levels of clustering. In particular,
its result is often displayed as a tree-like diagram called a dendogram, which shows the
cluster-subcluster relationships among the points and the order in which the clusters were
merged (for agglomerative) or split (for divisive). The result can also be represented by a
nested cluster diagram, wherein clusters containing the points are represented by circular
regions, which may overlap. Having this type of nested result is advantageous because it
provides the additional information of how individual clusters are related to other clusters.
This information is not provided by a single level of clustering result.

Typically, agglomerative hierarchical clustering is utilized in applications requiring a
hierarchy, such as constructing a taxonomy for different species of birds. Some studies
have suggested that this type of clustering produces better-quality clusters. However, it is
expensive in terms of computational and storage requirements. In addition to this, local
merges performed at each step of the algorithm are final, which can be a problem for noisy
and high-dimensional data. These can be resolved by performing partial clustering using
another algorithm before finalising the results using this algorithm.

DBSCAN [28] is a partitional clustering algorithm wherein the number of clusters is
automatically determined. With this algorithm, points in low density regions are consid-
ered as noise and are therefore, omitted. Hence, it is not a complete clustering algorithm.
The density of a point is estimated based on the number of points that are within a specific
distance Eps from it.

DBSCAN’s strength includes its relative resistance to noise and its ability to handle
clusters of arbitrary shapes and sizes. It has trouble, however, in finding clusters that
have varying densities. It can also be expensive when the nearest neighbor computation
requires all pairwise proximities, which is often the case.

Association Rule Mining Algorithms

To complete the discussion on classical data mining algorithms, a brief overview of asso-
ciation rule mining is provided. Even though we did not use it in the proposed pattern
interpretation framework, future works may exploit such type of algorithms.

Like classification and clustering, association analysis is another data mining task
useful for discovering interesting relationships hidden in large quantities of data. In this
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case, the discovered relationships are represented in the form of association rules. An
association rule is an implication expression having the form X → Y , where X and Y
are disjoint itemsets (i.e., set of items corresponding to a subset of attributes found in
the dataset). Each association rule should satisfy the minimum support and minimum
confidence requirements. Support is the number of occurrences of the rule in the input
dataset and it is often used to eliminate uninteresting rules. Meanwhile, confidence is a
measure of the reliability of the inferred rule. It is important to understand that association
rules do not necessarily imply causality but simply suggest a strong co-occurrence between
the antecedent and the consequent of each rule. Implication of causality requires knowledge
about causal and effect attributes.

2.5.2 Mobility Data Mining

From general data mining algorithms in the KDD process, this section shifts the discussion
to data mining algorithms that focus on pattern extraction from movement data.

The main challenge today is turning movement data into useful information. Although
several data mining techniques already exist, most of these techniques were designed with-
out having the complexity of movement data in mind. To address this problem, a novel
area of research known as mobility data mining is emerging. It aims to analyze movement
data through efficient extraction of appropriate patterns and models; “it also aims at cre-
ating a novel knowledge discovery process explicitly tailored to the analysis of mobility
with reference to geography, at appropriate scales and granularity.” [35] Since mobility
data mining deals with movement data that is set is a specific geographic location and
geographic information is an important semantic concept in this field, it can be seen as a
step corresponding to the knowledge extraction step of the GKD process.

The discussion of mobility data mining algorithms is split into two parts, namely,
spatio-temporal clustering and semantic trajectory data mining. We have decided to put
spatio-temporal clustering under mobility data mining since it deals with data having
spatial and temporal components, which is the case for movement data. On the other
hand, semantic trajectory data mining specifically deals with movement data and their
semantics and for this reason, we have placed them under mobility data mining as well.

Spatio-Temporal Clustering

Spatio-temporal clustering, which is a specific clustering type that groups together objects
based on their spatial and temporal similarity, is becoming popular especially in the field
geographic information science. This is due to the fact that movement data recorded
based on location technologies are becoming more widely available, and these recorded
data contain both spatial (i.e., location of the moving objects at specific time instances)
and temporal (i.e., period of movement) components. Since this thesis focuses on flocks,
which is an instance of spatio-temporal pattern in geographic space, we limit the discussion
to patterns related to a geographical context and ignore patterns in other domains, such
as in biological or chemical. The work in [50] provides a survey of spatio-temporal data
types and clustering methods for trajectory data, and we use this as a main reference for
the discussions in this section.
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Spatio-temporal Data Types Spatio-temporal data types for point-wise objects can
be classified into the following categories as described in [50]: ST events, geo-referenced
variables, geo-referenced time series, moving objects, and trajectories. Each ST event is
associated with its location and its corresponding timestamp, and both the spatial and
the temporal components are static. A geo-referenced variable, on the other hand, refers
to “the time-changing value of some observed property.” In this case, the object remains
in a specific location and a snapshot of some interesting phenomena is updated over time.
Closely related to geo-referenced variables are the geo-referenced time series, wherein the
whole history of the observed property’s evolution over time at a specific location is stored.
Meanwhile, we are dealing with moving objects when the spatial component changes as
well aside from time and only the most recent location of the object is kept. When the
entire history of the object’s location over time is store, this spatio-temporal sequence
forms a trajectory.

Categories of Clustering [50] categorized clustering methods for trajectory data as fol-
lows: descriptive and generative model-based clustering, distance-based clustering meth-
ods, density-based methods and the DBSCAN family, visual-aided approaches, micro-
clustering methods, flocks and convoys, important places, and borderline cases.

Descriptive and generative model-based clustering methods aim to find a model de-
scribing the whole dataset. Some examples of such methods are found in [31], [20], and
[1].

Distance-based clustering methods basically employ a distance or a similarity function
before utilizing general clustering techniques that groups together objects with small com-
puted distances. Some examples of distance functions on the trajectory domain are found
in [64] and [72].

Density-based methods and the DBSCAN family separates high density regions from
low density regions in order to identify clusters and noise points. Some examples of which
are DBSCAN, which was already described earlier and OPTICS (Ordering Points To
Identify the Clustering Structure).

Meanwhile, visual-aided approaches attempt to overcome issues, such as finding pat-
terns that are trivial or incorrect within the considered context, coming with automatic
algorithms.

Micro-clustering methods aim to group together trajectory segments representing ob-
jects that are spatially close over a maximal time interval. [43] use piecewise segments to
represent trajectories and determines the maximal time interval for which all the trajecto-
ries are pair-wise close to each other. [53] represents each cluster as a bounding rectangle
containing close trajectory segments co-occurring at similar time intervals. Meanwhile,
[52] uses a density-based clustering method to group such segments.

Moving clusters, flocks and convoys address the need for discovering group of objects
that move together for a minimum period of time. [47] introduced the notion of moving
clusters, which refer to a sequence of clusters consisting of spatially close objects that may
leave or enter the cluster during a certain time period in which the number of objects in
the cluster satisfies the given threshold. Sample works, such as those found in [37] and [88]
deals with a more specific type of moving clusters wherein the same set of objects stays
together within a circular region of a specified radius and this are known as flock patterns.
Since this is a central concept in the thesis, two succeeding subsections are devoted to
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the discussion of existing flock discovery algorithms and a comparison framework for such
algorithms. Another type of moving cluster called a convoy pattern is described in [46]. In
this case, the same set of objects stay together in a region of arbitrary shape and extent.

Clustering approaches were also used to identify interesting places in input trajectories.
Some of these works are found in [48], [2], [97], and [69]. The approach proposed in [48]
computes the distance between the current location and the previous location. If the
distance is smaller than the threshold, the current location is clustered with the previous
location. Otherwise, the current location is added to a newly created candidate cluster.
This candidate cluster is considered as a cluster if the time difference between the first
point and the last point of the cluster is greater than the time threshold. Similar ideas
were used in [2] and [97], while [69] uses speed characteristics to identify interesting places.

Two borderline cases that deal with trajectory patterns are described in [50]. The first
one, which is found in [34], presents a grid-based clustering algorithm for finding frequent
movement patterns that represent cumulative behavior of moving objects in the dataset.
This type of pattern is called T-pattern and it consists of a sequence of regions with
temporal transitions linking each pair of consecutive regions. Each region is specifically
referred to as a region of interest, since they describe areas that are relevant and interesting
to the application domain. These regions can be statically defined based on domain expert
knowledge or they can be automatically computed by identifying dense regions wherein
several moving entities have occurred. Figure 2.6 presents an example of a T-pattern
with several regions of interest and representing 2 actual T-patterns that only differs in
travel time. The figure represents the aggregate downward movement along the 4 regions
represented by rectangular areas. The 2 lists of numbers on the right-hand side represents
the 2 popular travel time between the regions. The labels 0, 1, and 2 refer to the typical
travel time for each pair of regions of interest. For example, 0 56.4, 60.61 indicates that the
travel time from the first region (i.e., topmost) to the second region is ranges from 56.4 to
60.61. The other work found in [44] proposes an improvement to the previous grid-based
approach by partitioning trajectories into disjoint segments that represent meaningful
spatio-temporal changes in the object’s movement, and applying a clustering algorithm to
group similar segments.

Figure 2.6: An example of a mined T-pattern.



2.5. DATA MINING 31

Survey of Existing Flock Discovery Algorithms

This section provides a survey of existing flock discovery algorithms, which fall under
spatio-temporal clustering algorithm. This discussion is important since flock discovery is
also a central concept in the thesis, particularly for the first step of the proposed pattern
interpretation framework.

A pioneering work in flock detection is the Relative Motion (REMO) framework pro-
posed by Laube et al [51]. In their work, the motion pattern of each entity is described
in terms of speed, change in speed and azimuth vector (i.e., bearing or direction). In
this algorithm, a flock is defined as a set of entities having similar motion attributes and
stays spatially close at some time instance. To find flock patterns, entities having similar
motion pattern at some time instance are grouped together. These groups are further
split into clusters, each one containing objects that are spatially close based on their point
coordinates. The work, however, can be extended further by providing a mechanism for
finding flocks that last for a time interval rather than a single time instance.

The work by Gudmundsson et al [38] provides an efficient algorithm for finding flock
and other related patterns. To measure the spatial closeness of objects, their algorithm
utilizes a compressed quadtree, which is a tree-like data structure that recursively splits
the data into 4 parts and causes spatially close points to belong to the same cell. Each
quadtree stores the point coordinates at a specific time instance. An arrangement is
built based on each quadtree and a disk is rotated around the arrangement. Any disk
containing the minimum number of entities is considered as a flock. But as with the
previous algorithm, further extension is necessary to discover flocks lasting for more than
one time instance.

Benkert et al [15] broadens the flock definition in the previously described works by
emphasizing that the entities should stay together for a period of time, say k, rather than
for a single time instance. To discover flocks, the given 2-D points are first transformed to
2k-D points (i.e., from < (xi, yi), (xi+1, yi+1), , (xj , yj) > to (xi, yi, xi+1, yi+1, , xj , yj). To
determine the 2k-D points that are close to an (x, y) pair, a pipe consisting of 2k-D points
is constructed for each time instance such that each pipe contains the 2k-D points that
are close to the (x, y) pair at a specific time instance. A flock is found if the intersection
of k pipes that corresponds to k adjacent time instances contains the minimum number
entities.

Moreover, Benkert et al [15] have proposed 3 approaches to minimise the number of
reported flocks. The first approach marks members of already discovered flock so that
they can no longer be considered as members of other flocks. This approach, however, is
too restrictive and causes loss of many interesting patterns. Our approach for handling
redundancy is a variation of their second approach, which disregards entire trajectories as
base if they were already included in some flock. This is still quite restrictive therefore
we have modified it such a way that only trajectory segments belonging to some flock are
disregarded as base, and not the whole trajectory. Finally, their last approach extends
discovered flocks by joining them. Nevertheless, this is a more time-consuming approach
compared to the others.

In scenarios wherein the user does not want a fixed time interval k, flocks can be
defined as having an m number of entities staying close together for the longest possible
time period. Gudmundsson and van Kreveld [37] propose finding longest duration flocks
by building a cylindrical volume for each entity. Every volume is built by considering
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every point in the entity’s trajectory and computing the entities that are spatially close
to it for each time instance. Then, the time interval for which other entities are inside
the volume is computed and sorted by their starting point in non-decreasing order. All
intervals starting at the earliest time t1 are collected and sorted based on their ending
point. The (m − 1)th time interval from the last endpoint determines the interval of the
longest duration flock that starts at time t1. The next earliest starting point t2 is then
considered. Time intervals with endpoints between t1 and t2 are removed before repeating
the same process as with t1. Same procedure is repeated for the rest of the starting points.

Kalnis et al [47] presents an algorithm for finding moving clusters, which are closely
related to flock patterns. A moving cluster is a group of entities that move close together
for a long time period. The entities composing the moving cluster may change over time.
To find such clusters, DBSCAN [28] is used to cluster the points for each time slice. Similar
clusters in adjacent time slices are then combined by checking the intersection of objects
in the clusters.

In Andersson et al [4], the leader of the flock pattern is determined by manipulating a
set of arrays that describe whether each entity follows any other entities for the considered
time interval and other related information. They define a leader as an entity moving in
front of a sufficient number of entities for a long time period.

A most recent work by Vieira et al [88] describes a set of algorithms for discovering
flock patterns in an on-line setting (i.e., when data is not archived but streamed part by
part). The basic algorithm computes disks that determine all the possible groupings of
objects for each time instance, and then merge disks in adjacent time slices if they have
the minimum number of objects in common. Additional filtering algorithms are proposed
in order to shorten execution time.

We found the work of Gudmundsson and van Kreveld [37] and Kalnis et al [47] interest-
ing for the purpose of mining moving flock patterns. However, the algorithm proposed by
Gudmundsson and van Kreveld [37] has not been implemented so far. As for the algorithm
proposed by Kalnis et al [47], it was implemented but the algorithm performs an approxi-
mation in checking the common members of moving clusters for adjacent time slices, and
this approximation introduces a disadvantage since members of a moving cluster may en-
tirely change over time. In order to avoid this issue, the corresponding threshold could be
set to 100% but this leads to loss of several interesting patterns since 100% implies that
members of moving clusters in adjacent time slices should have exactly the same members.

A Comparison Framework for Flock Discovery Algorithms

Wood and Galton [92] have proposed a taxonomy for collective phenomena in which a set
of criteria are described as one of the following:

• Membership - refers to the identity and cardinality of the members belonging to a
collective.

• Location - refers to the location of the members, the location of the collective if
applicable, and the relation between these two.

• Coherence - refers to the source of the coherence, which can be defined as the at-
tributes or behavior of the collective as a whole rather than the attributes of each
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member in the collective. For the purpose of discovering flock patterns, we have
introduced two sub-categories of this criterion:

– Spatio-temporal Coherence - refers to the spatial closeness of the flock members
over some time interval

– Moving Coherence - the movement of the members of a flock should not be sta-
tionary. This sub-category indicates that the flock members are indeed moving
together, and not simply stopping together.

• Roles - refers to the fact that members of a collective may or may not be differentiated
by role, which could be some function or position.

• Depth - refers to the possibility of some members to be collectives themselves.

We have used this set of criteria to compare the approaches proposed in the literature
for discovering flock patterns. Table 2.1 summarizes the attributes considered by different
flock discovery algorithms based on these criteria for collective phenomena. Since none of
the approaches utilize the depth criterion, we have disregarded it from the table.

Approaches Membership Location Spatio-Temporal Co-
herence

Moving Coherence Roles

Laube et al
[51]

Based on speed,
change in speed,
azimuth vector, and
spatial closeness

Considers mem-
ber locations

Only for one time
instance

Extracts both mov-
ing and stationary
flocks but do not
distinguish between
them

Distinguishes lead-
ers from followers

Gudmundsson
et al [38]

Based on azimuth
vector and spatial
closeness

Ibid. Ibid. Ibid. Ibid.

Benkert et al
[15]

Based on spatial
closeness

Ibid. Spatial coherence
over some time
interval

Ibid. N/A

Gudmundsson
& van Krev-
eld [37]

Ibid. Ibid. Ibid. Ibid. N/A

Kalnis et al
[47]

Ibid. Ibid. Ibid. Ibid. N/A

Andersson et
al [4]

Based on spa-
tial closeness and
bearing

Ibid. Ibid. Ibid. Distinguishes lead-
ers from followers

Vieira et al
[88]

Based on spatial
closeness

Ibid. Ibid. Ibid. N/A

Our ap-
proach [89]

Ibid. Ibid. Ibid. Prunes out station-
ary flocks; may find
flock patterns whose
members stop for
some time

N/A

Table 2.1: Comparison of flock discovery approaches using the taxonomy provided by
Wood and Galton [92].

All the mentioned approaches use spatial closeness to determine the members of a
flock. Laube et al [51], Gudmundsson et al [38] and Andersson et al [4] check other
motion attributes to determine flock membership. Location is a main factor for finding
flock patterns in all approaches. Coherence over a time duration is considered in all
approaches, except for [51] and [38]. The remaining approaches approximate coherence
over time by considering discrete time steps, except for Gudmundsson & van Kreveld [37],
which describes coherence over a continuous time series. [51], [38] and [4] distinguish
leaders from followers. None of these approaches took depth into consideration.

Although the Table 2.1 shows that most of the proposed approaches are quite similar
in terms of their conceptualization, they considerably differ in terms of their mining steps.
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Among approaches that consider spatial coherence over some time interval, our approach
has a merging step also found in Kalnis et al [47] and Vieira et al [88]. The mining step
proposed by Kalnis et al [47] only approximates the similarity between flock memberships
of adjacent time instances since they are dealing with moving clusters. The mining steps
proposed by Vieira et al [88], on the other hand, use a greedy approach in the merging step
of their ”Basic Flock Evaluation” algorithm. They compare flock members of adjacent
time slices in the following manner: initially compare the first 2 adjacent time slices, then
the intersection of members in these time slices are compared with the members of the
3rd adjacent time slice; the intersection of the members of the first 3 adjacent time slices
are then compared with the members of the 4th time slice and so on. This can lead to
splitting longer duration flock patterns into shorter duration patterns. Instead, we use a
more exhaustive approach for merging in order to avoid the loss of longest duration flocks.

Semantic Trajectory Data Mining

Semantics has been typically exploited in the field of text mining, but more recently,
researchers in other mining sub-areas have acquired an interest in the development of
methods that exploit semantics in the discovery process. Likewise, semantic data mining is
usually associated with the Web application domain although it is a general field applicable
in different domains. It is a relatively new research field, especially in non-Web application
domains such as geography, that is generally concerned with the extraction of meaningful
information from semantically-enriched data. A growing group of researchers is becoming
active in this general field as demonstrated by a semantic data mining workshop called
Semantic Aspects in Data Mining, which is not restricted to Web applications. This
workshop has recently held its third edition and its “key idea is to develop a more general
understanding about how to exploit data semantics and background knowledge, and to
create standardized procedures for designing more intelligent data mining.” as stated in
[79].

Semantic trajectory data mining is a specialized field of semantic data mining that
deals with movement data represented using trajectories. There is only a small number of
research works in this relatively new field and we describe one such work.

Alvares et al [3] presented a framework for semantic trajectory knowledge discovery,
which is shown in Figure 2.7. In order to extract meaningful patterns, both raw data
containing observation points and raw geographic data are preprocessed and the processed
data are integrated in order to obtain semantically enriched trajectory data. Specifically,
the trajectory data are enriched with stops and moves. This data, in turn, goes through
the data mining phase of the knowledge discovery process in order to extract interesting
patterns, which are more meaningful compared to patterns extracted from trajectory data
that are not enriched with geographic information.

In fact, this work describes a specialized field of the GKD process called semantic
trajectory knowledge discovery. At the same time, the data mining part of the framework
presents the existing state of the art in semantic trajectory data mining wherein most works
focus on geographic information as semantics. It is for this reason that we categorized it
under semantic trajectory data mining.
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Figure 2.7: Proposed framework for semantic trajectory knowledge discovery. [3]

2.6 Pattern Interpretation

This section provides a discussion of the state of the art in the area of pattern interpreta-
tion. It is split into two main parts: the use of visual analytics tools and ontology-based
systems.

2.6.1 Visual Analytics Tools

Visual analytics tools, such as those found in [5] and [18], have been developed to ad-
dress this problem by allowing patterns to be superimposed against a geographical map,
which represents the semantics of the locations. For example, the type of the roads (ex:
highway, railroad track, service road) is color-coded in the map. Such tools aid the user
in identifying the interesting places wherein the patterns have occurred, and in filtering
trajectories/patterns based on some geometrical properties (ex: patterns that are spatially
or temporally close to a selected pattern, patterns occurring in certain locations, patterns
occurring at specific time periods).

[18] describes an object-oriented and GIS-based system that facilitates exploration and
spatial analysis of household level activity-travel behavior. It has been tested using data
from Portland Metro’s 1994/1995 Household Activity and Travel behavior survey [82] (in-
cludes comprehensive description of activity/travel behavior of 4,451 households), Metro’s
Regional Land Information System (provides information about regional traffic analysis
zones and political boundaries), and the 1990 U.S. Census (for assigning households to
either urban or rural space). These data were integrated using an OOAD approach, result-
ing in the construction of a database model, consisting of spatial and non-spatial classes,
using the Unified Modeling Language (UML) [65]. The model was implemented using
ESRI’s ArcGIS suite [8] and its Geodatabase [32] data model.

The system provides a set of exploratory tools that allows the analyst to explore the
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activities of household members, represented as spatial point patterns, residing in a se-
lected set of areas during the chosen time period. These tools allow the exploration of the
central tendency (by generating a bivariate, unweighted, mean center), the dispersion (us-
ing a measure of standard deviational distance and by constructing a standard deviational
ellipse), a convex hull (using an ArcObjects hull method to a geometry object containing
locations of the household’s activities) of the household members’ activity patterns, and
the visualization of the activities as an assembly of space-time paths. The central tendency
and the dispersion describe the most important location for the households considered and
the manner in which they leave this central location. Meanwhile, the convex hull allows
the analyst to determine if the households’ locations fall in urban or rural areas. Finally,
the space-time path is useful in examining interactions among the individual household
members.

[6] provides a guideline for the development of visual analysis toolkits that support
visual exploration and analysis of large scale movement data. It emphasizes the importance
of combining visual displays, database technologies, and computational methods for data
processing and analysis since visualization enhances the analyst’s perceptual and cognitive
abilities while database operations and computational methods handle the mechanical
processing aspect of large trajectory data. The authors provided a list of pattern types
that can be extracted from movement data, along with the set of methods and techniques
that can support the analysis of each type. Analysis of an individual entity over time,
a group of entities at a specific time instance, and a group of entities over time were
considered for exploration.

Adapting the multidisciplinary approach described in [6], a movement analysis frame-
work along with a set of implemented tools is introduced in [5]. The framework combines
interactive visual displays that support human cognition and reasoning, with database
operations and computational methods to handle massive movement data. It consists of
the following steps: data processing, extraction of significant places, extraction of trips,
and examination of trips. Once the raw movement data has been preprocessed, signifi-
cant places are extracted by automatically detecting the places, called stops, where the
moving entity has stopped for a minimum time interval. Repeated stops and occasional
stops are differentiated through the application spatial clustering on them. With the use
of a map and through the analysis of temporal distribution of the stops, significant places
are identified. Based on these extracted places, trips (i.e., movement from one significant
place to another) are identified by dividing the movement data by temporal gap, by tem-
poral cycles, by spatial gap, and/or by specified places. Finally, the extracted trips can
be examined at different granularity, namely, individual trips, cluster of similar trips, and
multiple trips.

Such tools have indeed helped the users move a step closer to understanding patterns
but these can be further enhanced by considering other types of semantic data, such as
specific characteristics of the moving entities, aside from considering geographical data.

2.6.2 Ontology-based Systems

Only a few research works have exerted effort in explaining the occurrence and the na-
ture of the extracted patterns based on other available semantic information, aside from
geographical data. An example of which is found in [11], wherein frequent patterns based
on the discovered stops are postprocessed in order to classify patterns according to a pre-
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defined domain ontology. The ontology represents the concepts, rules and assumptions
present in the considered application domain.

[11] provides a model for conceptual representation and deductive reasoning of trajec-
tory patterns obtained from raw movement data as shown in Figure 2.8. This is achieved
by semantically enriching raw trajectories with semantic information, such as stops and
moves. A selected data mining algorithm is then applied on the enriched trajectories. Fi-
nally, an ontology, which includes the specification of semantic trajectory concepts, domain
knowledge concepts (including geographical knowledge, etc.), and behavioral patterns, is
exploited in order to classify the mined patterns based on the movement behaviors, the
related concepts and the axioms defined in the ontology. The specification of concepts
and axioms related to semantic trajectories and movement behaviors allow the definition
of complex movement behaviors, which are used as target attributes for the classification
process. This model was initially introduced in [12], and it was refined further in [11].

Figure 2.8: The trajectory semantic enrichment process. [11]

[11] also demonstrated the feasibility of the model by describing a specific implemen-
tation called Athena whose system architecture is illustrated in Figure 2.9. The raw
trajectories are stored in the Oracle-based moving object database called Hermes [73]. A
set of stops were computed from the trajectories considering a simplified geographical do-
main (contains museums, theatres, universities, hotels, B&B, and monuments) and storing
the stops in a table. A frequent pattern algorithm is then executed with the table of stops
as input and the results stored in the frequent patterns table. The defined ontology is im-
ported from Protégé [74] to Oracle 11g [67], and the tables are translated to RDF triples
before being stored as instances in the ontology. Finally, the reasoned is executed to infer
new triples, which may give interesting interpretations of the mined frequent patterns.

Figure 2.9: Overview of the Athena system architecture. [11]

This system has been integrated to Daedalus [68], which is a data mining query lan-
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guage for spatio-temporal data, providing a system that provides support for the entire
knowledge discovery process. The integrated system is called DAMSEL [84], which al-
lows progressive querying of semantically-enriched data and movement data. Figure 2.10
shows a sample analysis result that can be obtained using the system. It illustrates the
trajectories of a group of commuters that have a common starting point in space and have
varying destinations, as indicated by the small squares. These destinations may group
together using grids. It is worth noting that not all trajectories in the input dataset ex-
hibit commuter behavior but through proper encoding this concept and related concepts
as well in the ontology, it was possible to classify a subset of the trajectories as belonging
to commuters.

Figure 2.10: Analysis of Commuter destinations. [84]

2.7 Summary and Conclusions

This chapter provided an overview of the KDD process in general, and the different as-
pects of the process when applied to movement data, which falls under the specialized
KDD process called GKD. The input to the process is the movement data while the out-
put is the information needed by the end-user. An intermediate form of this output is
the movement pattern, which is a representation of regularities or interesting relations in
the movement data. In order to transform movement data to information, such as move-
ment behavior, it must undergo the sequence of KDD/GKD steps. These steps includes
three phases, which are preprocessing, data mining, and interpretation/evaluation. The
preprocessing phase typically involves cleaning the movement data, selecting the relevant
observations and attributes in the data, and reconstructing the data into trajectories. This
phase also encompasses semantic annotation wherein concepts describing the movement
context are integrated into the movement data. Then, data mining deals with the prepro-
cessed movement data and extracts movement patterns from it. Finally, these patterns are
analyzed and interpreted during the interpretation/evaluation phase in order to provide
the information that is meaningful and worthwhile to the end-user.

The discussion on existing state of the arts in data mining demonstrate that research
in classical data mining is quite mature while those in mobility data mining, which focus
on movement data, is still new. Though some classical data mining algorithms may also
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be applied in mobility data mining, further developements are still necessary in order to
handle the complexity of movement data compared to other forms of data and to deal with
analysis tasks relevant in the movement context compared to the analysis of general forms
of data. Spatio-temporal clustering, which can be categorized under mobility data mining,
is only an intial step since it only considers two important components of movement data,
which are the space and time components. More sophisticated algorithms that consider
moving entities and their activities, and phenomena and related events should be designed
and developed. The other category of mobility data mining, referred to as semantic
trajectory data mining, specializes in movement data represented as trajectories. Since it
is a new field, we were only able to present one work [3] that fits this category. In fact,
this work towards semantic trajectory knowledge discovery describes a specialized GKD
process that takes semantics into account in processing trajectories. At the same time,
its data mining phase is a form of mobility data mining that mainly considers geographic
data as semantics, which is the general case in existing research on mobility data mining.

It is also described in the chapter that most research efforts have been concentrated in
the data mining phase of the KDD process while giving less attention to an equally impor-
tant phase, which is the interpretation/evaluation phase. Joint research efforts in mobility
data mining and pattern interpretation is starting to address this issue. However, these
research efforts mainly focus on geographic data for semantics and pattern interpretation
techniques is currently limited to visualization- and ontology-based approaches.

Futhermore, the use of semantics in data mining has been often associated with the
Semantic Web and few literatures on semantic trajectory data mining exist. More research
effort should be given to this specialized field since results obtained for the application of
techniques in this area are useful in applications such as recreational management, traffic
management or animal monitoring applications.

In order to address a subset of these discussed issues, we propose a framework that
considers other semantic attributes aside from geographic data, and provide an alternative
approach to pattern interpretation. These details are explained in the next chapter.
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Chapter 3

Methodology

This chapter provides a discussion of the proposed framework for understanding move-
ment patterns, which was initially introduced in [66]. The framework consists of three
major phases, namely, pattern discovery, semantic annotation and pattern analysis. Since
these phases correspond to the KDD phases, the figure on the KDD process is reiterated
here as shown in Figure 3.1. It is important to recall that KDD aims to extract useful
knowledge from the input data and this is realized through its three main phases, which
are preprocessing, data mining, and interpretation/evaluation.

Figure 3.1: Overview of the steps constituting the KDD process. (Based on [29])

The phases of the proposed framework correspond to the last two phases of KDD, as
illustrated in Figure 3.2. Specifically, pattern discovery corresponds to the data mining
phase of KDD while semantic annotation and pattern analysis correspond to the interpre-
tation/evaluation phase.

The pattern discovery phase involves extracting patterns inherent in the considered
dataset using a specific mining algorithm selected by the user. Once the patterns are
found along with their properties, there is a need to relate them with the context, which is
essential for extracting meanings from the discovered patterns. To do this, the trajectories
and the patterns are linked to their corresponding semantic attributes, which represent
the context or at least part of the context, during the semantic annotation phase. Finally,
in the pattern analysis phase, the annotated trajectories and patterns are analyzed using
data mining techniques in order to aid the user in interpreting the discovered patterns.

The framework as a whole allows domain experts to interpret patterns by deducing
the possible interactions that might have taken place. This is very important because it
can support the understanding of social behavior among the observed entities.

The framework is also general and applicable to different types of movement patterns.
In order to test its applicability and effectiveness, we have instantiated the framework to
interpreting moving flock patterns, which is a specific type of flock involving members that
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Figure 3.2: Proposed framework for interpretation of movement patterns.

move together from one place to anther. We have found such patterns interesting since
flock patterns, in general, contain implicit information about the members’ interaction
with other entities. Moreover, analysis of moving flocks can support the understanding
of collective movement behavior as opposed to an aggregated convergence behavior with
stationary flocks. Thus, the discussion of the different phases of the proposed framework
includes details that are specific to processing flock patterns.

3.1 Pattern Discovery Phase

The purpose of the pattern discovery phase is to extract movement patterns from the
given dataset. These patterns contain implicit information that can lead to understanding
the movement behavior of the observed entities. The discussion on the remaining part of
this section focuses on moving flock patterns.

Though there are already existing flock discovery algorithms described in literature,
some of them are mainly theoretical and have not been implemented. Those that were
implemented were either not accessible or do not fit our need. For instance, initial works
[51, 38] in this field require an additional mechanism for extracting flocks that last for more
than one time instance. In addition, existing flock algorithms extract both moving and
stationary flocks, without distinguishing between them. This distinction is important since
these are two different types of patterns and consequently, they have different semantics.
For these reasons, we have developed a data mining algorithm that focuses on the discovery
of moving flock patterns.

3.1.1 Moving Flock Definition

Prior to giving the definition of moving flock patterns, we will first define some related
concepts. Recall from Section 2.2.2 that a trajectory can be defined as a sequence of
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(x, y, t)-tuples describing its position over consecutive time instances in ascending order. It
can also be defined as a sequence of line segments that connect every pair of adjacent points
(x, y, t). More formally, trajectory T can be defined as follows: T =< LS1, ..., LSn−1 >
where each LSi is the line segment that connects points (xi, yi, ti) and (xi+1, yi+1, ti+1),
and 1 ≤ i ≤ n − 1. Therefore, if there are n points in a trajectory, this implies that it
contains n − 1 line segments. The number of line segments in an entity’s trajectory may
vary with that of another entity’s trajectory since different entities move in different ways
and thus, the trajectories they produce vary in length as well.

A trajectory, in turn, is also composed of sub-trajectories. As its name implies, a
sub-trajectory is a smaller sequence of (x, y, t)-tuples contained in the original trajectory.
More formally, we define a sub-trajectory of T over a time interval I, denoted by TI , as
TI =< LSs, LSs+1, ..., LSe−1 > where I = [ts, te] (i.e., TI is composed of segments in T
that correspond to the time interval I). This concept is useful in the discussion of moving
flocks since entities may not always flock during the entire duration of their movement.
Consequently, the event of flocking only occurs on a sub-trajectory of the flock members
and not on entire trajectories.

We will now define the spatial extent of a flock, which is a key notion that we use
for distinguishing moving from stationary flocks. It is a measure of the amount of space
covered by a group of entities during their time of flocking as represented by their sub-
trajectories. More formally, given a flock F (as defined by Benkert et al in [15]) in a time
interval I, its spatial extent, ext(F, I), is defined as ext(F, I) = max{l, w} where l and
w are the length and the width of the minimum bounding rectangle (MBR) of the set of
sub-trajectories belonging to the flock. We selected MBR to compute the spatial extent
due to its simplicity and efficiency, but other computational techniques can be selected as
well. The same notion of extent can also be easily applied to a single trajectory and we
call this the trajectory extent.

We are now ready to give a formal definition of a moving flock pattern.
Moving Flock Definition: Given a set of n trajectories consisting of line segments

(i.e., sub-trajectories) that can vary in number for different trajectories, an (m, k, r)-
moving flock FM in a time interval I = [ti, tj ], where j − i + 1 ≥ k, consists of at least
m objects such that for every discrete time step tl ∈ I, there is a disk of radius r that
contains all the m objects and the spatial extent ext(F, I) ≥ r. Simply put, it states that
a moving flock is a group of entities that consists of a minimum number of members, and
these entities move from one location to another in a manner that they remain spatially
close over a minimum time interval.

Compared to existing flock definitions, our definition distinguishes moving flocks from
stationary flocks, which are group of entities that stay closely together in only one location
during the time interval of flocking. It is important to distinguish between the two since
users may only be interested in moving flocks depending on the application context. For
example, in the movements of people in the park, the park manager may be interested in
how a group of visitors move together in certain parts of the park and differentiate this
from a group of visitors who meet in a certain location without moving together to other
interesting locations.

In distinguishing between moving and stationary flock, we chose to compare the flock’s
spatial extent with r. Since r is the measure used to determine spatial closeness among
a group of objects (i.e., the distances among these objects are very small if they are at
most equal to r), it can also be used as a coverage measure of the spatial extent. If a flock
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covers an extent smaller than r, this means that over several time steps in time interval I,
the flock is “moving” at short distances (i.e., “moving” to positions that are very close).
Due to GPS error, movement at short distances can be interpreted as being stationary.
Thus, we chose r to filter out stationary flocks. Instead of using r, a factor of r can be
used as well. In order to avoid an additional parameter, we chose this factor to be always
equal to 1.

It is worth noting that the definition focuses on fixed moving flocks, which consist of
the same members over the considered time interval. As opposed to flocks with varying
members, it emphasizes the importance of each member’s identity, which is interesting
in the context of pedestrian movement, especially for the purpose of further analyzing
discovered flock patterns.

Finally, our algorithm provides users with a certain measure of flexibility through the
following set of parameters since they may be interested in different types of moving flocks
depending on the application domain:

• min points - the minimum number of objects that are members of a moving flock.
It is equivalent to m in the definition.

• min time slices - the minimum number of consecutive time instances for which the
flock members are close together. Discovered patterns with shorter time instances
are not considered as flocks since the members are close for only a short period of
time. It is equivalent to k in the definition.

• radius - defines the closeness of members at some time instance. The flock members
are close at a time instance if they belong to some disk with a specified radius, and
with one of the members located at the center. It is equivalent to r in the definition.

• synchronization rate - the fixed time rate (expressed in seconds) at which observed
points (e.g. GPS recordings) are sampled for each flock member. In other words, it
is the temporal gap between two sampled points. This parameter is needed for the
synchronization step of the flock discovery algorithm and will be described further
in the next section.

These parameters are used to measure the spatio-temporal coherence that should ex-
ist among members of the same flock. By spatio-temporal coherence, we refer to the
consistency of having spatial closeness among members over the period of flocking.

3.1.2 The Moving Flock Discovery Algorithm

We propose a four-step approach for extracting moving flocks from an input dataset. It
includes synchronization, spatial neighbor computation, membership persistence analysis,
and pruning. We shall start with a brief description of the preprocessing task performed
prior to these steps.

Preprocessing Due to the presence of inaccuracies and noises in movement datasets,
preprocessing is normally performed prior to performing mining tasks. We used a separate
tool called M-Atlas [85] (previously known as Daedalus [68]), which provides support for
moving entity data mining query language, for this task. The tool allows the user to
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restrict certain properties among points belonging to the same moving object. Some of
these properties are the number of points, the time gap, the spatial distance, and the speed.
More specifically, the trajectory of each object are cut further into shorter trajectories or
noises are removed from it in the case that any property between two consecutive points
of an original trajectory is larger than its user-defined threshold.

The next paragraphs describe the steps of the moving flock discovery algorithm.

Synchronization Step

Synchronization of the recorded points in the raw tracking dataset is necessary since
(x, y, t) observations are usually recorded at random time instances. In order to compare
the closeness of points for corresponding time intervals, trajectory points belonging to
different entities should be sampled at regular time steps. This synchronization can be
performed by sampling (x, y, t) points at the rate provided by the user, which we refer
to as the synchronization rate parameter. For example, a synchronization rate set to
300 means that points are sampled at the rate of 300 seconds. Linear interpolation is
performed to approximate (x, y, t) data that are not found in the raw dataset. M-Atlas
is utilized to perform sampling of the points in each trajectory at regular time steps.
Figure 3.3 shows how points are sampled at regular time steps. The circles in the figure
are the recorded points in the raw dataset while the squares refer to the sampled points
computed using linear interpolation. The dotted lines refer to the regular time instances
at which the points are sampled. The figure summarizes the synchronization step, which
basically translates raw points into points that are sampled at a regular rate.

Figure 3.3: Sampling of points at regular time interval.

After the completion of this step, the algorithm would have a nice dataset having
trajectories that contain (x, y, t)-tuples sampled at the specified synchronization rate.

Spatial Neighbor Computation Step

After performing synchronization as a preprocessing step, the existence of spatial coherence
at each synchronized time instance is checked during the spatial neighbor computation
step. Every trajectory is considered as the base trajectory in order to determine the
entities that are spatially close to it for its sampled time instances. Considering a specific
base trajectory at a time, its spatial neighbors for each time instance are computed by
drawing a disk with the base trajectory’s position as its center. Moving entities with points
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lying within this disk are considered as the base trajectory’s neighbors for the considered
time instance. Thus, after the completion of this step for a base trajectory, there would
be t computed disks corresponding to the t time instances of the base trajectory. Each of
these disks represents the spatial neighbors of the base trajectory for each time instance.

Figure 3.4 provides an example of the described step. In the example, the spatial
neighbors of the considered base trajectory are computed for each sampled time instances
of the base. The spatial neighbor of the base trajectory at the first time instance consists
of trajectoryB, while it includes trajectoriesA and B from the second to the fifth time
instances. The base trajectory has no spatial neighbors at the last time instance.

Figure 3.4: Computation of the base trajectory’s neighbors at each time step.

The radius parameter, which is the measure of spatial closeness, is fixed to a single
value for each execution run of the algorithm. Furthermore, the computed disks for dif-
ferent time instances may also spatially overlap which means that the moving entities are
stationary or barely moving during such time periods.

Membership Persistence Analysis Step

Each disk generated in the spatial neighbor computation step represents a group of pedes-
trians that are close to the base object. This group, including the base, can be seen as a
‘basic flock’, which refers to a candidate flock that is known to exist for one time instance.

The completion of the spatial neighbor computation step, however, only covers the
check for spatial coherence among the candidate flock members. There is also a need for
executing the membership persistence analysis step, which checks the persistence of the
‘basic flocks’ over time. More specifically, it involves checking whether members of a ‘basic
flock’ are also found in other ‘basic flocks’ of adjacent time instances. Doing so verifies
whether members at a specific time instance continue to be close to each other for other
adjacent time instances.

In this step, each base trajectory with its corresponding disks is considered one at a
time. Disks in adjacent time instances are merged if the number of common members in
both disks is at least equal to the user-defined min points threshold. This merging process
is performed in a recursive manner. From a pair of ‘basic flocks’, a ‘composite flock’ (i.e.,
a candidate flock occurring for more than one time instance) is formed if the members
persist over the two adjacent time instances. Once all ‘basic flocks’ are processed, each
‘composite flock’ is treated as a ‘basic flock’, causing ‘composite flocks’ that last for two
time instances each to be merged with other ‘composite flocks’ in adjacent time instances
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if their members persist. This merging process continues until longest duration flocks are
found.

Figure 3.5 illustrates the order of merging ‘basic flock’ patterns in order to form the
longest duration flock patterns. The order is indicated by the number found in each
bracket. A bracket represents the check performed between a pair of disks belonging to
adjacent time slices. In the best case scenario wherein every disks of the base trajectory
contain the same members satisfying the minimum points requirement (i.e., m threshold
in the moving flock definition), all disks in the base trajectory will eventually be merged
into a single disk that persists from the first time instance to the last time instance of the
base.

Figure 3.5: Order of merging candidate flocks at each time step into flocks that persist
over a certain time duration.

Pruning Step

Once candidate moving flocks are discovered, the final step is to remove short-duration,
stationary and redundant flocks during the pruning step. This corresponds to three levels
of pruning. The first and simplest step is to discard patterns with time instances shorter
than the user-defined threshold min time slice. The second level involves pruning out
redundant patterns generated when using related base trajectories. Finally, stationary
flocks are also filtered out.

Redundant patterns refer to a set of patterns having entities and duration that are
almost the same (i.e., majority of the patterns’ entities are the same and a large inter-
val of their duration is also the same). Such patterns normally results from using base
trajectories whose spatial positions are very similar during the time of flocking. Hence,
generating flock patterns that are very similar as well. The research assumption behind
the pruning technique performed for removing redundant patterns stems from the notion
that a member can only belong to one flock at a time. Thus, if a member already belongs
to a flock for some time instances, it is no longer considered as a base for those time
instances so as not to further produce flocks that include members already belonging to
some other flock. This step improves the running time of the algorithm besides reducing
redundancy in the results.

A problem with this approach, however, is the possibility of losing some moving flock
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patterns since some sub-trajectories are disregarded as bases. Using these disqualified
bases can lead to discovery of flocks that are quite similar to previously discovered flocks
in the sense that their time duration and members are overlapping. If it is important
for the user to retain such patterns, the condition for disregarding can be relaxed (ex:
disregard bases only when the flock that can be discovered from them is quite similar to
previously discovered flocks) or removed altogether, but this leads to higher running time
and more redundancy in the results.

Meanwhile, the stationary flock patterns are pruned when the extent of each discovered
flock has been computed. Candidate patterns with a short extent (i.e. having an extent
smaller than the user-specified radius) are considered as stationary flock patterns and are
thus, disregarded. The research assumption behind this step is that flocks with members
who only cover a short extent are most probably stopping together in a specific location.
For example, flock patterns with members who are spatially close for a long time interval
but only stays in one location are pruned out. On the other hand, the approximation
approach still considers moving flock patterns with members who stop within its flocking
time interval if the whole extent is long enough. For instance, a moving flock may stop
together for some time before moving together.

As mentioned earlier, the flock’s spatial extent is computed by finding the Minimum
Bounding Rectangle (MBR) for each sub-trajectory included in the flock considered. This
is computed by first finding the length and width of each sub-trajectory’s MBR. The
maximum of the length and the width is the sub-trajectory’s extent. The minimum of
these extents is the flock’s spatial extent. Figure 3.6 provides an example. The MBR is
computed for each sub-trajectory of flock members during the flocking duration. From the
MBRs, the length and width can be extracted. Since the longer part of Sub-traj1 segment
is the width, width1 is assigned as its extent. Same is true for Sub-traj2. Finally, the flock
extent is the minimum of all sub-trajectory extents, which is width2 in this case.

Figure 3.6: Example of computing the flock extent for a flock consisting of two members.

Applying the four steps of the moving flock discovery algorithm on a given tracking
dataset produces a set of moving flock patterns that satisfy the constraints specified in our
definition. The discovered patterns exclude stationary flocks and the number of redundant
patterns is reduced. It may also be interesting to retain the stationary flocks and to classify
flocks as either moving and stationary, especially when the discovered flocks are few in
numbers.

It is worth noting that due to the first-come-first-serve nature of this phase, especially
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in the filtering of base trajectories to avoid redundant patterns, entities found in the first
part of the dataset are more likely to be utilized as base trajectories compared to those
found in the latter part. As a consequence, the order of the entities in the input may cause
slight differences in the obtained results. In order to understand the impact of the entities’
ordering on the flock results, we tested the algorithm on the same dataset having varying
versions that only differ in the entities’ ordering, and compared the obtained results. We
have found that the order indeed may vary the flock results. However, the difference in
the results are mostly minor (i.e., members and time duration are still largely overlapping
in most cases). The details of this experiment can be found in Chapter 4.

The worst-case time complexity of the algorithm is O(n2t+ nt2), where n is the total
number of trajectories and t is the maximum trajectory length in terms of time. The first
term n2t comes from the spatial neighborhood computation and pruning steps while the
second term nt2 is due to the membership persistence analysis step. Since the synchro-
nization step is only executed once, its time complexity contribution is dominated by the
other steps.

The next two sections cover issues related to the moving flock discovery algorithm.
The first issue found in Section 3.1.3 is related to its parameters while the second issue
found in Section 3.1.4 is on its validation.

3.1.3 Selection of the Radius Parameter

As mentioned earlier, the algorithm provides the user with flexibility through four user-
defined parameters, whose value depends on several context-dependent factors, such as
the topology of the area and the type of information that the analyst would like to obtain.
This section aims to provide a general guideline for finding an appropriate value for this
set of parameters although finding the best parameters for a specific dataset is still an
open issue. A trial-and-error approach along with statistical computations can help in
finding a suitable set of parameters.

We provide general rules of the thumb for finding an appropriate value for themin points,
min time slices, and synchronization rate parameters. As for the radius parameter, we
extend a technique employed in DBSCAN [28] to suggest a good value for it.

The following are general rules of the thumb. min points depends on whether the user
is interested in flocking behavior of couples, of a small group, or of a big group. On the
other hand, min time slices depends on whether the user is interested in short or long
periods of flocking. A good value for a short period of flocking would be at least 3. While
2 is also a valid value, it may be too small since this means that the entities were close
for only 2 consecutive time instances. Meanwhile, the value of synchronization rate can
be guided by the sampling rate used in the raw dataset and by the types of flocks (ex:
flocking on pedestrian lanes, on paths, etc.) that the user is interested in. If the original
sampling rate is around 5s, then synchronization rate should not vary too much from
this value. A value of around 1 minute can be a good value for the synchronization while
a value of 2 minutes or more may be too large.

Perhaps, the most challenging parameter to define is the radius parameter. The user
can be guided by intuition in deciding the appropriate distance between two objects that
are considered spatially close. For example, if the user is interested in finding flocks that
occur in pedestrian lanes, the radius would depend on the length and width of these lanes.
However, at the same time, the user should also consider the uncertainty introduced by
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the location technology used in collecting the data. Thus, there should be provisions for
this uncertainty in the radius value.

To further guide the user in determining the radius parameter, we adapted the tech-
nique used in DBSCAN in determining its Eps parameter. Eps serves a purpose that is
comparable to that of the radius. It is used to separate core and neighboring points from
noise points. While DBSCAN deals with 2D data represented by (x, y) pairs, the flock
algorithm deals with 3D data represented by (x, y, t) tuples that are connected through
object or trajectory IDs. Thus, necessary adjustments to their technique is necessary to
accommodate the time component.

For each trajectory in the dataset, its distance from its k-th nearest neighbor is com-
puted. We will refer to this distance as the k-th distance, and k is equal to min points−1.
It is important to note that this distance is computed with the consideration of time. That
is, the x and y components of a pair of trajectories are only compared if their occurrence
overlaps in time. The k-th nearest neighbor is obtained by considering an trajectory’s
distance from all other trajectories over all time instances found in the dataset. Once
the k-th distance is computed for each trajectory, these distances are sorted in increasing
order and plotted as a line graph. The point in which there is a sudden increase in the
k-th distance can be a good value for the radius parameter of the flock algorithm. The
research intuition behind this approach is that the point of sudden increase separates flock
members from non-flock members since the radius has to be increased to a very large value
in order to find a few more flocks at this point.

Figure 3.7 gives a good example of such plot since there is a clear point of sudden
increase in the distance, which is approximated at 300 meters. It shows the trajectories’
distance from their 3rd nearest neighbor and suggests that 300 meters can be a good
radius value for finding flocks in the dataset. Depending on the dataset and the choice of
k, this point of sudden increase may not exist.

Figure 3.7: Sample Plot of k-th Distances.

Besides introducing the application of this technique for finding a suitable radius, we
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have also run the flock algorithm several times on the same dataset with the same set
of parameters except for varying radius values. The purpose of this experiment is to
understand how changes in the radius affects the flock results. The experiment and its
results are discussed in more details in Chapter 4.

3.1.4 Validation of the Flock Discovery Algorithm

Aside from developing an algorithm that extracts moving flocks from an input dataset, we
have also proposed the use of two combined methods for validating the algorithm. The first
method mainly relies on the visualization of the extracted flocks while the second method
is founded on the null hypothesis principle [41]. The application of the first method verifies
that the obtained results are indeed flock patterns while the second method provides the
assurance that the algorithm is working properly in the sense that the results extracted by
this algorithm are indeed moving flocks inherent in the dataset and not simply extracted
by chance.

Since flocking is often associated with an image of birds or other types of entities
that are moving closely together on a certain route over a specific time duration, the
most natural way of checking for the occurrence of flocks is through the sense of sight.
For this reason, we have initially validated the algorithm by plotting the trajectories of
flock members over the duration of flocking, which is done for a sample of the obtained
flocks. We chose the top-ranking flocks and the lowest-ranking flocks, in terms of their
flock extent, as the samples. Then, for each flock, the trajectories of its flock members
over the period of flocking can be plotted using existing visualization tools. By looking
at each plot, the independent domain expert can assess that the obtained moving flock is
correct if the trajectories made by its flock members are spatially close, and the length of
the trajectories are long enough to be able to say that they are not simply staying in one
location. Figure 3.8 gives two plots, the left plot being a moving flock example and the right
being a non-example. The plot of the moving flock example shows how the entities moved
closely together over the flocking duration. On the contrary, the non-example shows that
the entities were moving in different directions. It is actually a zoom-in on a stationary
flock, and was classified as a flock in the general sense since these sub-trajectories can be
completely contained in the disk defining the spatial neighbors of the base trajectory.

Figure 3.8: The left plot is a moving flock example while the right plot is a non-example.

After visually inspecting the results and observing that the obtained flocks are indeed
moving flocks, the next step is to assure the user that these flocks are inherent in the
input dataset. This can be achieved by applying the null hypothesis wherein we initially
assume that the extracted flocks are obtained by chance. In order to disprove this hypoth-
esis, a randomization step is performed on the original dataset several times, each time
producing a different randomized dataset (i.e., a distorted version of the original dataset).
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Afterwards, the flock discovery algorithm is executed having each randomized dataset as
input. The results obtained from applying the algorithm to the original dataset and to the
randomized datasets are then compared. Obtaining different flock results from different
input datasets demonstrates that the algorithm produces results that are not obtained by
mere chance but on the contrary, are based on the nature and the characteristics of the
input dataset. Further evaluation of the discovered flocks is still needed in order to assess
the quality of the discovered patterns.

We propose the use of the following techniques for dataset randomization:

Randomization by Markov Chain One technique for randomizing the synchronized
input dataset is to build a Markov chain based on the dataset distribution. This model
assumes that only the current state affects the next state while past states and future
states are irrelevant.

The initial step involves building the model by computing the probabilities of transi-
tions between the x-,y- coordinate values. A transition from (xi, yi) to (xi+1, yi+1) exists
if they belong to the same moving entity, and time instance i + 1 immediately follows
time instance i. Since there is a large number of varying x- and y-values in the datasets,
the x- and y-values are grouped into grids. Then, the probabilities of transitions between
these grids is computed. Analogous to an existing transition between a pair of x- and
y-values, a transition from gridi to gridi+1 exists if there exists a transition from (xi, yi)
to (xi+1, yi+1) such that (xi, yi) belongs to gridi and (xi+1, yi+1) belongs to gridi+1.

This randomization technique modifies the x and y values based on the described
Markov chain while retaining the original entity ID and the original time values found
in the synchronized dataset. The (x, y)-pair for the first time instance of an entity is a
random value biased towards the most probable initial (x, y)-pairs found in the dataset.
The succeeding (x, y)-pairs are determined based on the immediately preceding (x, y)-pair
and the Markov chain. More specifically, the grid in which the current (x, y)-pair belongs
to is determined before computing the next grid using the Markov chain. Once the next
grid is computed, the next (x, y)-pair can be computed as a random value limited by the
bounds of this grid. In the case that there is no next probable grid, a new trajectory is
started by randomly picking a most probable initial (x, y)-pair and continuing in a manner
as described before.

Randomization based on Geographical Coordinate Uncertainties It is known
that the collected observation points contain inaccuracies due to the limitation of current
location technologies. Considering this uncertainty, we propose another randomization
technique that modifies the x-, and y-values of the dataset by using values of radius as a
measure of uncertainty. The research assumption here is that a larger radius of uncertainty
would produce a dataset that is very different from the original while a smaller radius would
produce a dataset that is quite similar to the original. Hence, a dataset randomized with
a large radius value should contain inherently flocks that are very different from that of
the original while a dataset randomized with a small radius value should contain flocks
that are very similar to those of the original.

As with the previous technique, the original IDs and the original time values are
retained and only the (x, y)-pairs were randomized. A user-defined radius, which repre-
sents the uncertainty in the coordinate values, is subtracted and added from an existing
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(x, y)-pair. The obtained difference and sum determines the range used for computing the
corresponding randomized value.

Aside from the presented validation techniques, cluster validation measures can be
instantiated and extended to flocks in order to assess the quality of flock results.

3.2 Semantic Annotation Phase

The previously described phase of the framework, the pattern discovery phase, is mainly
concerned with extracting flock patterns from the considered dataset. These extracted
patterns, however, only explicitly provides information about the positions of flocking,
the members who flocked together, the duration of their flocking and possibly the speed
of flocking depending on the data mining algorithm used. The reason for flocking and
the specific interactions involved during flocking are still hidden from the user. This is
addressed in the last two phases of the framework, which are the semantic annotation and
the pattern analysis phases.

Figure 3.9: A specific instance of flock pattern that can be interpreted in several possible
ways depending on the movement context.

Before flock analysis can be performed, there is a need to semantically annotate the
extracted flock patterns and the flock members in order to set up the concepts that can
describe the context in which the movement behavior occurred. This plays a primordial
role in the interpretation of a flock pattern depending on the context. Recall the example
given in Chapter 1. It is shown again in Figure 3.9 for ease of reading. As mentioned
previously, this example illustrates the importance of considering the movement context
since varying contexts result in varying interpretations. In order to take the context into
account, semantic annotation is necessary for incorporating semantic information that
describe the surrounding context.

During the semantic annotation phase, the trajectories and the discovered flock pat-
terns are augmented with semantic information that contributes to the description of the
context in which the movements occur.
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3.2.1 Semantic Attribute Source

Before semantic annotation can take place, it is necessary to first identify semantic sources
to be used for annotation. This subsection provides an overview of such sources, which
include questionnaires/survey, thematic and topographic maps, information on points of
interest, census data, and others.

Figure 3.10: Users’ responses to their interest in museum planning. [63]

Questionnaires/Surveys Questionnaires and surveys are rich sources of semantic in-
formation. A questionnaire has been defined in Merriam-Webster [59] as “a set of questions
for obtaining statistically useful or personal information from individuals” or “a survey
made by the use of a questionnaire”. For this reason, questionnaires and surveys are used
interchangeably in this thesis.

In our experiments, the main source of the semantic information used to annotate the
discovered flock patterns is the collected responses of pedestrians to conducted surveys.
The DNP dataset, for instance, do not only contain the (x, y, t) observation points but
survey responses of each entity as well. A sample question in the survey is as follows: Are
you in Dwingelderveld for vacation? [Yes/No].

Another example is in the context of museum planning as described in [63]. Sample
questions in the conducted survey are: (a) What type of museum planning are you most
interested in? (b) Please select the description that best describes your profession/position.
The responses to these questions are summarized in Figure 3.10 and 3.11, respectively. An
analysis of the combined results can provide interesting insights to the relation between
people’s profession and their interest in museum planning. This example also demonstrates
how surveys can now be conducted online instead of being solely paper-based.
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Figure 3.11: Users’ responses to their profession/position. [63]

Thematic and Topographic Maps Another source of semantic information are the-
matic and topographic maps. A thematic map is a special type of map that emphasizes
certain theme or special topic such as the average distribution of rainfall or the distribution
of religious sectors in an area [33]. An example of which is a world climate map shown in
Figure 3.12.

Meanwhile, a topographic map is a specific type of thematic map that emphasizes the
terrain features of the area [33]. A topographic map of Georgia is shown in Figure 3.13,
which emphasizes its relief features.

The information contained in both thematic and topographic maps are useful in de-
scribing semantics related to the geographic location, which are not restricted to geograph-
ical properties. For example, the movement of entities in an area in which the weather is
mostly sunny would be different from those moving in a rainy area. The religion or the
form of government in an area may also affect people’s movement.

Information on Points of Interest POIs (Points of Interest) refer to interesting lo-
cations or attractions in a specific area. They are usually used in online maps such as
those provided by Google, Yahoo, and OpenStreetMap. Figure 3.14 illustrates a map
of a Pisa sub-area, which is obtained from OpenStreetMap. It contains different ex-
amples of POIs like churches, a bank, restaurants, pizza shops, and cafés. With the
advancements in location technologies, spatial coordinates of POIs along with their cor-
responding description has now been collected and made available in sites such as http:

//www.gps-data-team.com/ and http://www.downloadpoi.com/. Such collections can
be exploited for semantic annotation in order to link the spatial positions of moving enti-
ties with their description. For instance, knowing that a person visited the leaning tower
of Pisa is more meaningful than stating that the person visited the latitude and longitude
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Figure 3.12: A world climate map. [93]

Figure 3.13: A topographic map of Georgia. [93]

coordinate (43.72313,10.396768).
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Figure 3.14: Some POIs in Pisa.

Census Data A census refers to a systematic procedure of gathering and recording
information about the members of a given population [19]. The recorded data, referred
to as census data, can provide statistical information that can be useful for semantic
annotation. Figure 3.15 provides a fragment of statistical information contained in the
2006 Census Data for Central Northern Sydney. It contains both individual and household
characteristics, which can affect movement behavior of the population. Age, country of
birth, main language spoken at home, religious affiliation, marital status, and occupation
are some examples of individual characteristics included in the census data. On the other
hand, dwelling characteristics, tenure type, household composition, and landlord type are
examples of household characteristics. Basically, the statistical information describes the
distribution of the population, based on the individual and household characteristics, in
Central Northern Sydney. For instance, 48.7% of the population excluding overseas visitors
are male.

Others There are still many other possible sources of semantic information, such as en-
vironmental reports and domain expert knowledge. Note that compared to the previously
discussed sources, these are less structured. In fact, the knowledge of domain expert may
not be structured at all if it is not documented.

Since the number of thematic and geometrical attributes related to a pattern and/or a
moving individual can be large, attribute selection can be a difficult task. A simple random
choice is possible, but this can lead to meaningless results when correlation analysis is
performed. Therefore, a specific contribution of this thesis is the application of a criteria
set for the purpose of selecting meaningful attributes among all the available attributes,
as explained in the next section.
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Figure 3.15: Fragment of 2006 Census Data for Central Northern Sydney. [9]

3.2.2 A Guideline for Semantic Attribute Selection

Aside from identifying the sources of semantic information, it is also important to under-
stand which of these information are relevant to the semantic annotation step. Therefore,
we propose the use of a guideline based on Wood and Galton’s taxonomy for collective
phenomena presented in [92]. Recall that this work was described earlier in Section 2.5.2
and it proposes a taxonomy of collectives based on a set of criteria, which includes mem-
bership, location, coherence, roles, and depth. Although an overview of these criteria was
already given earlier, we provide a more detailed discussion in this section in order to
explain how these criteria can be used for semantic attribute selection. Before this, it is
important to first understand the motivation for adapting this work over other related
works on ontologies.

Motivation To start the discussion on the reasons for choosing Wood and Galton’s
work over others, we must first emphasize the consistency of our perception of collectives
with their insights as described in [92]. We both recognize a collective as a group of
entities that is seen as a whole and thus, it exhibits properties that are distinct from the
individual properties of its members. For example, the age of individual members in a
collective is different from the age characteristic of the entire collective. Meanwhile, other
related works on collective ontology, such as [17], have a different perception on collectives.
Specifically, [17] restricts the definition of collectives to a group of entities that are unified
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by a plan.

A main motivation for considering the set of criteria for classifying collectives is the
strong link between movement patterns and collectives. Since many patterns (specifically
flocks) represent an aspect of the movement behavior of a group of moving entities, we
can view patterns as a representation of collectives. Consider flocks, for instance, which
can be described as a specific type of collective. It is for this reason that an ontology for
collectives was chosen and hence, the set of collective features enumerated in [92] can be
used to identify the semantic attributes that are suitable for interpreting flock patterns.

Out of existing ontologies related to collectives, we chose Wood and Galton’s work [92]
since its central focus is on collectives unlike other ontologies that represent very general
domains, such as DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering)
[56], which describes ontological categories that underlie human common sense. Another
example is BFO (Basic Formal Ontology) [13], which supports ontologies developed for
scientific research. In contrast, other works such as [17] concentrate on restrictive types
of collectives.

Due to the focus of [92] on collectives, it provides a more complete set of criteria for
classification of collectives compared to others. For example, there is no way to model
the role played by different members of a collective, or the reason for deeming a group as
a collective with the other previously mentioned ontologies [17, 56, 13]. Some examples
of collectives that are quite related to flocks and are described in [92] are protest march
without leaders, protest march with leaders, and herd of cattle grazing in a field. Their
description based on the criteria are as follows:

• A protest march without leaders - A collective with variable membership but cardi-
nality > 1. Members are individuals which are not differentiated by role and whose
coherence is due to an internal collective purpose. The motion of the collective and
its members are co-ordinated.

• A protest march with leaders - A collective with variable membership but cardinality
> 1. Members are individuals which follow a hierarchical role model and whose
coherence is due to an internal collective purpose. The motion of the collective and
its members are co-ordinated.

• A herd of cattle grazing in a field - A collective consisting of a constant set of
individuals which are not differentiated by role and whose coherence is due to an
external cause arising from an external purpose. The motion of the collective and
its members are not co-ordinated.

In addition, our definition of a moving flock can be described using the criteria as
follows: A collective with fixed membership but cardinality > 1. Members are individuals
which may be differentiated by role and whose coherence may be due to an internal or
external collective purpose. The motion of the collective and its members are co-ordinated.

The Criteria for Semantic Attribute Selection We now describe the set of criteria
in [92] in more details with respect to how each criterion can be used for semantic attribute
selection. The general idea is to relate the candidate attributes to these criteria and
disregard them if they do not match any of the criteria.
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1. Membership - The identity of individual members and the cardinality of the collec-
tive are important features of the collective. Thus, attributes that uniquely identifies
the members and those that describe the characteristics of the moving entities can
be considered as candidate semantic attributes. Moreover, the size of the collective
is also considered important. Candidate semantic attributes based on this crite-
rion would include the members of the collective, the size of the collective and the
characteristics of each member. Specific examples of individual characteristics in the
context of people are his/her age, gender, occupation, health condition, and hobbies.

2. Location - A collective can be classified based on its location, the location of its mem-
bers, and the relation between these two (i.e., movement of the members with respect
to the collective). The location of the collective and the member can either be fixed
or variable. Meanwhile, the movement of the members is either co-ordinated (i.e.,
moving in the same direction with relatively similar speed) or not. This demonstrates
the importance of information about the collectives’ location. Thus, geographic in-
formation can serve as candidate semantic attributes. Examples of such information
are the interesting attractions visited by a collective, or the identifiable compart-
ments of the attractions visited by the individuals. More specifically, examples of
attractions are museums, hotels, and restaurants in the tourism domain. Meanwhile,
examples of identifiable compartments in a museum are the different floors/levels of
the museum or its individual rooms.

3. Coherence - A collective can be classified based on the source of the collective’s co-
herence (i.e., the reason that unifies the entities as a collective). This source can
come from the intentions of specific members or the collective. It can also orig-
inate from intentions of external agents or forces in the collective’s environment.
As a consequence, attributes that describe intentions or purpose of an individual,
of the collective, or influencing factors in the environment can serve as candidate
semantic attributes. Some examples of such attributes are the purpose of an indi-
vidual in moving from one location to another, its activity during movement, the
geographic characteristics of the collectives’ spatial environment (ex: presence of
obstacles or availability of pathways), and the characteristics of interacting entities
with the collective or the members. The common properties of members, such as
being teenagers or being accompanied by a dog, are also more specific examples of
attributes describing source of coherence.

4. Roles - Members of a collective may be differentiated by roles. A collective can
have hierarchical type of roles wherein some members play special roles that are
structured in a hierarchy. Another possibility is having partitioned type of roles
wherein there is a small number of differentiated roles played by many members.
Lastly, roles can be individualistic wherein each member plays a specific role. Thus,
attributes describing the roles of members in a collective and their relations with
each other can be identified as candidate semantic attributes. Some examples of
which are the occupation of an individual, or being a mother of another entity.

5. Depth - Members of a collective may be collectives by themselves. For example,
individual trajectories in the DNP dataset may represent an individual, a couple, a
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family, or other group types. Attributes that give this type of information can be
selected as candidate semantic attributes.

As indicated by the use of the word candidate in the discussion, further attribute
selection is necessary to identify the semantic attributes relevant to the required analysis
task.

3.2.3 Two Levels of Semantic Annotation

We have also explicitly introduced two levels of semantic annotation, namely, the individ-
ual and the flock level. Due to the fact that a group of moving entities are involved in a
flock pattern instance and the fact that the identity of these individual entities contribute
to the existence of the flock, the individual trajectories involved in the flock instance
should be semantically-enriched with their corresponding moving entity characteristics.
Some examples of such characteristics are the age, the job description, and the intent of
the moving individual.

In this step, we propose two options for annotating individual trajectories. First, all
the trajectories can be annotated, especially in the case of dealing with a small and sparse
dataset, so as to be able to infer statistically significant analysis results. Second, only
the trajectories involved in the discovered patterns can be annotated. This provides the
advantage of considering only a subset of the trajectories, resulting in shorter processing
time during the annotation and analysis steps. Moreover, this allows the user to focus on
relations that exist among the flocking entities.

Aside from annotating individual trajectories, the flock pattern themselves should also
be semantically annotated. In fact, a flock pattern is an example of a collective, which
has properties that only exist at an aggregate level. Examples of such properties are the
spatial extent covered by the flocks as a whole, the start time and the end time of flocking,
and the age range of the trajectories involved in discovered flocks.

An important point to notice here is that some flock level attributes are not directly
available as individual level attributes are. Consider the age attribute at flock level, for
instance. What is the value of the age attribute at the flock level? Can we simply
use the mean in this case? To address this issue in the general case, we categorize the
flock level attributes into three groups: (1) the parameters used by the flock discovery
algorithm, (2) the flock descriptions generated by the flock discovery algorithm, (3) and
the aggregated semantic properties of moving entities involved in the flock pattern. The
first two groups of attributes can be directly obtained from the algorithm but the last
group requires aggregation of individual level attributes before obtaining the semantic
attributes at flock level. The aggregated attribute is obtained by first extracting all the
possible values of an individual level attribute. An aggregated attribute is created for each
possible value of the individual level attribute. For example, if we have an individual level
attribute ‘loves the sun’ having two possible values ‘true’ and ‘false’, then there should
also be two aggregated attributes, namely ‘loves the sun true’ and ‘loves the sun false’.
The value of an aggregated attribute is then computed as the ratio between the number
of moving individuals involved in the flock pattern satisfying the specific value of the
individual attribute considered, and the total number of moving entities associated with
the flock pattern. Continuing with the previous example, if there are 5 flock members
in the currently considered flock with 3 members having the value ‘true’ and 2 members
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having the value ‘false’ for ‘loves the sun’, ‘loves the sun true’ for this flock will have the
value 0.6 (i.e., computed from 3/5) and ‘loves the sun false’ will have the value 0.4 (i.e.,
computed from 2/5).

Upon the completion of this second phase, the discovered flock patterns and the consid-
ered trajectories would be enriched with semantic data necessary for flock interpretation.

3.3 Pattern Analysis Phase

The last phase of the framework, which is the pattern analysis step, is concerned with
understanding the occurrence and nature of the discovered patterns. In this phase, two
data mining techniques are used for the analysis of the discovered patterns and their related
attributes. These techniques are hierarchical clustering and classification with decision
tree. For a concrete explanation of the application of these techniques, the remaining part
of this section elaborates on how these are utilized in the interpretation of moving flock
patterns.

3.3.1 Hierarchical Clustering for Pattern Analysis

For the hierarchical clustering step, correlation scores are first computed among the at-
tributes and among the flock instances. These scores are then used to build the distance
matrix needed to perform clustering. This analysis step produces dendograms that give an
overview of the relations among the considered attributes and flock instances. The clas-
sification step, on the other hand, produces decision trees that focus on certain relations
connecting the membership of entities to a specific flock with related semantic attributes.
Though the decision trees do not cover all considered attributes nor all flock instances,
unlike the dendograms, they provide more details as to how the discovered relations are
connected.

Correlation Computation for Individual and Flock Attributes

For computing the correlation scores among individual and flock level attributes, we pro-
pose to use SUC (Symmetrical Uncertainty Coefficient) [39] and Pearson’s correlation
coefficient [71]. We chose to use Pearson’s correlation coefficient since it is a standard
measure for computing correlation scores. We propose the use of SUC as well since this
allows us to check the consistency of correlation scores computed using different mea-
sures. We selected SUC since it considers the information entropy of attributes in the
computation of their correlation scores. Moreover, it is also applicable when dealing with
non-numeric attributes, unlike Pearson’s correlation coefficient, which is only applicable
to numeric attributes.

Two variations of the Pearson’s correlation coefficient can be used as well. Taking the
computed correlation score as is entails that only high positive correlations are considered
as strong similarities among the attributes while high negative correlations are considered
as strong dissimilarities. This is practical when there is a large number of attributes to
analyze since the user can concentrate on the positive correlations. On the other hand,
when the absolute value of the computed score is taken, both high positive and high
negative correlations are considered as strong similarities. This is useful in scenarios
wherein negative correlations are also considered important.
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Given two attributes A1 and A2, the correlation score between them using SUC is
computed by applying Eq. 3.1.

SUC(A1, A2) = 2 ∗ H(A1)−H(A1|A2)

(H(A1) +H(A2)
(3.1)

where H(X) refers to the entropy of the attribute X. The entropy is defined as the
measure of uncertainty or randomness of the attribute X. If the attributes A1 and A2

are closely related, the conditional probability H(A1|A2) found in the numerator will
have a small value since knowing A1 when A2 is already previously known only gives few
additional information. As a consequence, the numerator and hence the SUC as well will
tend to have large values.

Meanwhile, the correlation score based on Pearson’s correlation coefficient can be com-
puted by applying Eq. 3.2.

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(3.2)

where cov refers to covariance, E to expected value, µ to the mean, and σ to the
standard deviation. X and Y are the distribution of the two attributes being compared.
Pearson’s correlation coefficient can be approximated based on a set of samples with size
n by using Eq. 3.3.

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(3.3)

where X and Y are the distribution of sample values of the attributes being compared,
while X and Y are the mean of the sample distributions.

This type of correlation analysis on individual attributes can reveal relations between
specific flocks and particular features exhibited by their members. For example, individuals
associated with a specific flock may belong to a particular age group while members of
another flock may have the intent of shopping for clothes. In this case, the computed
correlation between the first considered flock and the age group, and the other flock and
the shopping intent should have large values.

Meanwhile, performing correlation analysis on the flock attributes allows the inference
of associations among the flock properties themselves. For instance, flocks in which most
members visit at least one museum may also have several members who are students.

Correlation Computation for Flock Instances

Computation of correlation scores for flock instances requires another type of measure
since a pair of flocks has a different composition compared to a pair of attributes. In other
words, each flock instance consists of a set of values for different attributes while each
attribute is composed of a distribution of values.

The distance between a pair of flocks can be computed using two proposed techniques,
either by basic distance computation or by taxonomy-based distance computation.
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Basic Distance Computation Given a pair of flocks to be compared, we propose to
directly compute their distance score by considering all corresponding attribute values
and computing their difference. Obviously, for corresponding numeric attributes of the
flock pair, the difference of their values can be computed in a straightforward manner and
then normalized by dividing the result by the maximum difference between values of the
considered attribute among every possible flock pairs. Analogously, when the attribute is
nominal, a comparison test is performed in order to check whether the attributes values
are equal or not, which is represented by a pair of fixed numeric values. Thus, each flock
attribute produces a normalized distance score for every pair of flocks. Summing up the
computed distance for each flock attribute makes up the distance between a flock pair.

However, this distance measure has some drawback since some attributes may be
strongly-related with other attributes. As a result, the effect of such group of attributes on
the distance score is amplified. To address this issue, a variation for computing the distance
scores can be obtained by applying weights to each attribute depending on how strongly-
related the attributes are, such that more strongly-related attributes are assigned lower
weights. The motivation for this is to reduce the doubling effect that similar attributes
have on the resulting distance. Instead of simply summing up the normalized distance for
each attribute, the single normalized distances are first multiplied to their corresponding
weight before summing them up.

Application of Weights We applied two types of weights: one is based on hierarchical
clustering result that uses the symmetrical uncertainty coefficient as similarity measure
while the other is based on the clustering result that uses the correlation coefficient mea-
sure. Using a distance matrix based on any similarity measure as parameter to the hierar-
chical clustering function in the R project [77] produces a merge and a height component.
The merge component describes which pair of attributes or attribute sets (in the case that
sub-clusters are combined) is clustered together at a time. These pairs are sorted accord-
ing to the order that they were merged from the most similar to the least similar pairs.
Meanwhile, the height component describes the corresponding distance value between the
pair of attributes that were merged. Exploiting these components, the distance (found
in the height component) between each pair of correlated attributes (found in the merge
component) can be utilized as the weight of the attributes. In other words, the weight of
an attribute is the distance between the attribute and the attribute most similar to it (i.e.,
having the shortest distance from it). Thus, attributes closely related to other attributes
will be assigned lower weights. Moreover, the weight is normalized by using the maximum
distance found in the height component as the denominator. A value of 1 is added to
the numerator and the denominator. Adding 1 to the numerator ensures that the weight
cannot be 0. Thus, totally removing the effect of attributes that are exactly similar with
other attributes is avoided. On the other hand, adding 1 to the denominator ensures that
the maximum weight computed is at most 1.

A Taxonomy-based Distance Computation A more sophisticated approach to com-
puting flock similarity based on their properties is through the use of a taxonomy that
describes the relation (usually is-a relation) among a subset of these properties. A prob-
lem with the approach described for computing correlation (or similarity) between flock
instances is that matching of corresponding attributes and computing their difference is
performed only among exactly corresponding attributes. This means that in the case that
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there are correlated flock attributes, they are not compared despite of the correlation.
This is addressed by building a taxonomy that shows which of the attributes are corre-
lated. Aside from building the taxonomy, the names of the attributes had to be renamed
in order to match those found in the taxonomy. After completing this preprocessing step,
a straight-forward matching of values is performed by comparing exactly corresponding
flock attributes and computing the difference between their values. Then, among the re-
maining attributes, the taxonomy is used to compute the similarity between each pair
of flock attributes by considering their common ancestor that has the lowest position in
the taxonomy compared to other possible ancestors for each pair. This ancestor is called
the least common subsumer. We use Lin’s similarity measure [54], which is the ratio
between the entropy of the least common subsumer and the sum of the entropy of the
considered attribute pair, to compute the similarity score. The values for the pair of at-
tributes having the highest similarity score are compared and the difference between them
is computed. The matched part of the values is multiplied by the distance score (i.e.,
1− similarity score) to account for the difference between the compared attributes. The
same step is performed for other correlated pairs of attributes until the similarity scores
among all remaining pairs fall below a specified threshold. Finally, the average of the
differences computed from values of exactly matching attributes and of similar enough
attributes is obtained. This average is the distance between the flock pair considered.

We provide an example of the application of the described approach. The aim is to
compute the similarity score between Flock 1 and Flock 2, which have five attributes as
shown in Table 3.1. Two of these attributes, Bird watching site and Sheepfold, are very
similar to each other while the rest are not correlated. Flock 1 has 1 member interested
in bird watching sites, 2 members interested in sheepfold areas, and 1 member interested
in nature. Flock 2, on the other hand, has 2 members interested in bird watching sites, 1
in sheepfold areas, and 1 in prayer areas.

Bird watching site Sheepfold Bench Nature Prayer area

Flock 1 1 2 0 1 0

Flock 2 2 1 0 0 1

Table 3.1: The given pair of flocks to be compared.

STEP 1: Straightforward Matching The first step involves performing straightforward
matching among values of corresponding attributes. A member is removed from each flock
for the Bird watching site attribute, and one member as well for the Sheepfold attribute.
Thus, Flock 2 is left only with 1 member for Bird watching site and Flock 2 is left with
1 member for Sheepfold. Moreover, attributes having 0 values for both flocks, such as
Bench in this example, are removed. The result of performing this sub-step is shown in
Table 3.2.

Bird watching site Sheepfold Nature Prayer area

Flock 1 0 1 1 0

Flock 2 1 0 0 1

Table 3.2: Result of performing straightforward matching.

STEP 2: Diagonal Matching The next step is to perform diagonal matching on the
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values of similar attributes. Using the taxonomy, which is no longer shown here, the
similarity scores among every pair of the 4 remaining attributes are computed. Say that the
following assumptions are true for the given example: the user-defined similarity threshold
is set to 0.6, the similarity score between Bird watching site and Sheepfold is 0.9, and
the remaining pairs of attributes have similarity scores lower than the threshold. Hence,
only the values of Bird watching site and Sheepfold are matched. These attributes have
1 matching member in common and this value is multiplied to the distance score between
the pair since the matching in this case is not exact as in the straightforward matching
(i.e., 1 ∗ (0.1) = 0.1, where 1 is the number of matching values and 0.1 is the distance
between the matched attributes). The result obtained after performing diagonal matching
is shown in Table 3.3.

Bird watching site Sheepfold Nature Prayer area

Flock 1 0 0 1 0

Flock 2 0 0 0 1

Table 3.3: The result after performing diagonal matching.

STEP 3: Averaging the Computed Distances In the case that there are other pairs of
attributes having similarity scores higher than the 0.6 threshold, the same step is per-
formed for every such pair. Since there is no longer such pairs of attributes, the diagonal
matching phase is finished and we compute the straightforward difference among the re-
maining attributes with non-0 values for at least one of the flocks. The difference for
the remaining attributes, Nature and Prayer area, is 1 each. We sum this up with the
distances computed during the diagonal matching phase and compute the average based
on the initial number of attributes considered, which is 5 in this example. The resulting
value 0.42, which is obtained from 1+1+0.1

5 , is the distance score. We simply subtract this
value from 1 to obtain a similarity score of 0.58. Obtaining this result is illustrated in
Table 3.4.

Nature Prayer area

Flock 1 1 0

Flock 2 0 1

dist=1 dist=1 dist=0.1 (from diagonal matching)

Table 3.4: Obtaining the final similarity score between the given pair of flocks.

Computing the correlation among different flock patterns allows the analyst to identify
similar flock types and focus on certain types, such as flocks whose members belong to
a specific age group. Combined with the analysis of individual and flock attributes, it is
possible to pinpoint specific attributes that make flocks similar to other flocks.

Hierarchical Clustering The clustering step is aimed at finding groups of attributes
and groups of flock instances that are highly correlated. Hierarchical clustering, in par-
ticular, groups together entities in a progressive way such that the most highly correlated
entities are first grouped together and this is applied recursively until the entire set of enti-
ties is grouped into one cluster. The clustering algorithm requires a distance matrix, which
summarizes the dissimilarity scores among the items, as parameter. The distance matrix
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for individual and flock level attributes can be easily computed from the correlation scores
obtained in the correlation computation step for individual and flock attributes while
the distance matrix for flock instances can be easily extracted from the distance scores
computed in the correlation computation step for flock instances.

Hierarchical clustering is performed for the set of individual attributes, the set of flock
attributes, and the set of discovered flock patterns. The output of the clustering step may
be useful when the analyst needs to focus on certain groups of flock patterns that are of
interest. This is remarkably useful when there are a large number of flocks discovered.
Furthermore, clustering may reveal interesting relationships, which may not be obvious to
a domain expert, and they may support the analyst in uncovering possible reasons for the
occurrence of the mined flock instances.

The correlation computation step combined with the hierarchical clustering step pro-
duces dendograms that give an overview of the relations among the set of individual
attributes and among the set of flock attributes. The obtained results are still quite lim-
ited in terms of aiding the user in understanding the nature and occurrences of the flocks.
Although clustering is able to pinpoint which attributes are correlated, it is not able to
pinpoint how or why these attributes are correlated.

3.3.2 Classification for Pattern

We have extended the flock analysis step further by performing individual attribute clas-
sification based on flock membership attributes and flock attribute classification based on
some interesting flock properties.

We propose the use of a decision tree based classification algorithm in order to study
the relations among each flock membership attribute and the other individual attributes
since decision trees are simple and intuitive.

For the individual attribute classification, we set the class attribute to an individual
flock membership attribute. For example, we set the class attribute to be flock0, which
refers to whether or not an individual belongs to flock0. We have specifically selected a
cost-sensitive version of the J48 classification algorithm, whose implementation is acces-
sible in WEKA [40], to generate the decision tree connecting individual attributes that
contribute to the membership of an individual to a specific flock.

As for the flock attribute classification, we set the class attribute to an interesting
flock property. For instance, the main activity of the flock can be of interest to park
managers and hence, it would be useful to understand how this is related to other flock
attributes. Specifically, the class attribute can be set to main activity 1, which refers to
the percentage of flock members walking.

The use of a cost-sensitive algorithm is appropriate when the dataset considered con-
sists of entries biased to a specific value. Putting more weights to the less occurring value
eases the bias present in the dataset.

J48 is WEKA’s Java implementation of the C4.5 algorithm, which in turn is a known
standard classification algorithm. It was developed by Ross Quinlan as an extension of his
earlier ID3 algorithm. The algorithm builds decision trees by considering the attribute that
most effectively splits the training dataset into subsets having the most homogenous values
for the target attribute. This is determined by computing each attribute’s normalized
information gain and splitting the dataset using the attribute with the highest normalized
information gain. This step is applied recursively to the subsets obtained at each step.
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3.4 Summary of Discussion and Conclusions

We have presented the proposed pattern interpretation framework in this chapter and have
described how it deals with the data mining and pattern interpretation phases of KDD
for handling movement data. The framework is to able to encompass two main phases of
KDD by providing phases that handle both extraction and interpretation of patterns. The
pattern discovery phase deals with pattern extraction while a combination of the semantic
annotation and the pattern analysis phases allow interpretation of patterns.

Aside from providing a conceptual framework, we have also discussed how the frame-
work can be instantiated and implemented for moving flock patterns.

Pattern Discovery Phase In order to realize the pattern discovery phase, a clear
definition of the pattern and a corresponding algorithm as well are necessary. Since moving
flock is a new concept, its formal definition was formulated and we have initially introduced
it in [89]. Moreover, we have also developed and implemented an algorithm, which was also
initially presented in the same work. The algorithm consists of four steps (synchronization,
spatial neighbor computation, membership persistence analysis, and pruning), which deal
with synchronized sampling of points, checking for spatial and temporal coherence, and
filtering of redundant and stationary flocks.

Furthermore, other issues related to the selection of the algorithm’s input parameters
and its validation were also managed. A technique used for DBSCAN was adapted to
handle the selection of the radius parameter while general guidelines were provided for the
rest of the parameters. In validating the algorithm, we have observed visualizations of the
flock trajectories to assess if the plots are reasonable. Moreover, we have introduced a more
sophisticated technique, which is based on the null hypothesis principle. This technique
involves randomization of the input dataset, running the algorithm on the randomized
dataset, and comparing the obtained results with those obtained from the original dataset.
A large difference among the compared results would validate the fact that the patterns
extracted by the algorithm are inherent in the dataset, and not by mere chance.

Semantic Annotation Phase As for the semantic annotation phase of the framework,
issues related to the possible sources of semantic information, the selection of semantic
attributes to be used for annotation, and the appropriate level of annotation were also
dealt with. Possible sources of semantic information are questionnaires/surveys, thematic
and topographic maps, information on POIs, census data, and many others.

Aside from having many possible sources of semantic information, a single source
itself is likely to contain many attributes as well. As a consequence, selecting appropriate
attributes for the annotation phase becomes a challenge. To address this issue, we proposed
a guideline based on Wood and Galton’s criteria for classification of collectives [92]. It is
important to note, however, that further application of other attribute selection techniques
must be applied to finalize the set of selected semantic attributes.

Once the semantic attributes have been selected, the next challenge involves enrichment
of movement data and patterns with these attributes. This enrichment must be performed
at an appropriate level and for this purpose, we propose a combination of two levels of
annotation, namely individual and pattern level. While individual annotation can be easily
performed based on attributes already present in the movement data, pattern annotation
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is not as straight-forward. We proposed the use of an aggregation technique for this level
of annotation.

Pattern Analysis Phase For the final phase of the framework, we propose the use of
both hierarchical clustering and decision tree classification algorithms for deducing the
relations among the individual attributes, among the pattern attributes, and among the
patterns themselves. The result obtained from the application of the two algorithms to
these attributes and patterns can provide support for understanding the relations between
members and the patterns (or flocks) they belong to, the relations among members of the
same pattern, and the relations among the discovered patterns. This, in turn, can lead to
understanding the interactions involved among the moving entities, and their interactions
with their environment.

The next chapter provides a detailed discussion of the application of the framework
to real-world datasets for the purpose of moving flock interpretation in the context of
pedestrian movement.
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Chapter 4

Experiments

This chapter provides a summary of the datasets used to evaluate the feasibility and
effectiveness of the proposed framework. It also contains a discussion of the performed
experiments and the obtained results.

4.1 Datasets

Three datasets, which were briefly described earlier in Chapter 1, were used in order to test
the implemented moving flock discovery algorithm and the effectiveness of the proposed
framework for flock interpretation. These include the DNP, the Fontainebleau, and the
Delft datasets. All three of which are pedestrian datasets. While the entire framework was
tested on the DNP and the Delft datasets, it was not fully tested on Fontainebleau since
we did not have access to its semantic attributes, which are needed for the annotation and
the interpretation phases.

Table 4.1 provides an overview of the datasets. DNP and Fontainebleau describe move-
ment in recreational parks while Delft describes movement in a city settting. The summary
shows how movements in DNP are faster compared to those in Delft and thus, average dis-
tances between spatial points in DNP are also larger. The Fontainebleau dataset, though,
contains strange values for the sampling rate, the average speed, and the average distance
due to the large amount of noise present in the raw dataset.

It is also worth noting that some pedestrians may have more than one trajectory in the
datasets. This is due to the preprocessing step performed on the data using M-Atlas. The
intuition behind this preprocessing step is that a person is most likely starting a new trip,
or some error occurred in collecting the observation points when any of the thresholds (as
described in Section subsec:movingFlock) are exceeded. For example, a point is considered
as a noise when it is too far from its preceding point, implying that such movement is
unfeasible for pedestrians. Furthermore, long time gaps occurring within a trajectory
likely represents stops in a workplace or other interesting area, and can serve as markers
for different types of trips, such as a trip to work or to the supermarket.

DNP Semantic Attribute Source The DNP dataset is an interesting case study
despite of its small size since it contains attributes derived from visitors’ responses to
the conducted survey, which contains 23 questions from which 73 visitor attributes were
derived. Whether the visitor is on holiday, the frequency of visit, the number of accom-
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DNP Fontainebleau Delft
Description a Dutch recreational park con-

taining networks of short and
long trails, dry and wet heath
lands, pine and deciduous forest
and complex of juniper shrubs.
It also includes sheep farms,
some bird-watching lookouts,
staffed and unstaffed informa-
tion centres, a tea house and
cultural spots (ex: a historical
house and a radio telescope)

a French recreational forest
park that has a massive wooded
area. Its wild landscape
attracts a considerable num-
ber of hikers, rock-climbing
or mountain-biking enthusiasts,
horse riders, cyclists and Sun-
day walkers [30]. Its routes are
usually used for walking while
its forest contains wild plants
and trees, and a population of
birds, butterflies and mammals.

a Dutch city known for its town
center and its canals. It con-
tains different types of attrac-
tions such as churches, muse-
ums, factories, windmills, gar-
dens, libraries, markets, restau-
rants, bars, cafes, and shop-
ping areas. Some examples
of its historical buildings are
Oude Kerk, Nieuwe Kerk, Prin-
senhof, its city hall, Oost-
poort, Gemeenlandshuis, and
Waag [23]. It also houses the
Delft University of Technology.

Trajectories 370 trajectories (141,826 sam-
pling points) of 372 visitors
(around 1.29% of actual visi-
tors)

207 trajectories (22,748 sample
points) of 23 visitors (around
0.015% of actual visitors)

303 trajectories (467,454 sam-
ple points) of 285 pedestrians
(around 2.6% of actual visitors)

Days May 18, 25, 28, August 6, 9, 17,
19, 2006 (7 days; semi-synthetic
version was collapsed to 1 day)

April 25, May 11, September
24-26, 2004 (5 days)

November 18-21, 2009 (4 days)

Dataset Sampling
Rate

Random; average = 16.52s Random; average = 143.22s Around 2s; average = 3.7s

Synchronization
Rate

5 mins. 1 min. 1 min.

Trajectories per
day

May 18 2006 - 38 trajs.; May 25
2006 - 56 trajs.; May 28 2006
- 88 trajs.; August 6 2006 - 81
trajs.; August 9 2006 - 37 trajs.;
August 17 2006 - 40 trajs.; Au-
gust 19 2006 - 30 trajs.

Apr 25 2004 - 109 trajs.; May 11
2004 - 1 traj.; Sept 24 2004 - 2
trajs.; Sept 25 2004 - 423 trajs.;
Sept 26 2004 - 1177 trajs.

Nov 18 2009 - 58 trajs.; Nov 19
2009 - 109 trajs.; Nov 20 2009
- 101 trajs.; Nov 21 2009 - 35
trajs.

Average Speed 1.37 m/s 60.2m/s 0.87m/s
Average Distance 14.58m 1083.388m 1.9m
Selected Seman-
tic Attributes

on holiday, freq visit,
since when, adult num,
children num, visitor type,
main activity, attrac-
tion visited, picnic areas,
mound, info centre,
bird watching site,
prayer areas, juniper berries,
fens, sheepfold areas, sight-
seeing areas, radio telescope,
david lakes, orienting, tea-
houses, route, parking access,
sheepfold proximity, attrac-
tion proximity, route start,
coincidence, catering, beau-
tiful, quiet , seat, lunch,
nr information, white route,
whitelheederzand, redspier,
local living, age category

N/A purpose, shopping, first visi,
frequency, postcodeb, originb,
gender, age, group , oc-
cup, household, wth sunny,
wth cloudy, wth rainy,
wth rain, wth windy

Table 4.1: Description of datasets used for the experiments.
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panying children, adults and dogs, and the main attractions visited are some examples
of such attributes. The following is a subset of the survey questions from which these
attributes were derived:

1. Are you in Dwingelderveld for vacation?
Yes No

2. How often you come to DNP? (1 tick)

• daily

• weekly

• monthly

• 2-4 times per year

• 1 time per year

• Today is the first time

• Others (please specify):

3. Who are you with today in the park?
I’m with adults (including yourself) and children
With dog (s)

4. Which of these places /services have you visited today?
(several answers possible)

• Picnic areas

• Mound

• Bird watching site

• Prayer areas

• Others (please specify):

4.2 Moving Flock Discovery

The moving flock algorithm was implemented using Java on a PC with Windows XP OS,
Intel Pentium 4 and 2 GB of main memory. This section is further divided into subsections
that covers a discussion of the moving flock results, the plotted line graphs for the selection
of the radius parameter, the effect of using different radius values, the effect of varying
the order in the input file, and the validation of the algorithm.

4.2.1 Moving Flock Results

This subsection provides a discussion of the obtained moving flocks given the three in-
put dataset: DNP, Fontainebleau, and Delft. We have used the following parameter
values for defining the flocking behavior in the experiments: min points to 3 members,
min time slices to 3 time instances, synchronization rate to either 1-minute or 5-minute
sampling rate, and the radius to different values in meters.
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DNP Flock Results

Table 4.2 shows the moving flocks obtained from the DNP dataset using three radius values
(i.e. radius=100m, 150m, and 200m) and a 5-minute synchronization rate. The results
shows that the larger the radius values, the greater the prospect of discovering a larger
number of moving flocks. However, this is not always true, since our algorithm filters out
stationary flocks based on the radius parameter and as the radius becomes larger, flocks
with short extent are filtered out.

Radius Start Time End Time Flock Extent Flock Members
100 Sun May 28 12:45:00 2006 Sun May 28 13:00:00 2006 203.9375 139; 141; 140
150 Sun May 28 09:40:00 2006 Sun May 28 10:00:00 2006 628.5 52; 100; 46

Sun May 28 12:45:00 2006 Sun May 28 13:00:00 2006 203.9375 139; 141; 140
200 Sun May 28 09:40:00 2006 Sun May 28 10:05:00 2006 796.5 52; 100; 46

Sun May 28 13:40:00 2006 Sun May 28 13:55:00 2006 456 115; 118; 114
Sun May 28 12:45:00 2006 Sun May 28 13:00:00 2006 203.9375 139; 141; 140

Table 4.2: Discovered moving flock patterns in DNP.

Figure 4.1 illustrates one of the discovered moving flocks containing the three members
139, 141 and 140. This flock was found using all the three specified radius values: 100m,
150m, and 200m.

Figure 4.1: (a) The entire trajectories of moving flock members 139, 141 and 140 in the
DNP dataset. (b) The trajectory segments belonging to the moving flock whose members
include 139, 141 and 140 in the DNP dataset.

Due to the sparseness of the original DNP dataset, we have also generated a semi-
synthetic version of the dataset, which is basically the same as the original DNP dataset
but with the dates collapsed to one day. This was done for the purpose of properly testing
the algorithm on a denser dataset.

Running the algorithm on this dataset produced a larger number of moving flocks. 11
moving flocks were found when the radius was set to 150m, and 34 moving flocks were
found when the radius was set to 200m.

The top three moving flock patterns ranked by extent for radius 150m and 200m are
found in Table 4.3. Note that the top two flocks are the same for both radii. Meanwhile,
the 3rd top flock for radius 150 is also found when the radius is set to 200m but with a
minor difference in time and extent. Same is true for the 3rd flock for radius 200.

The bottom three flocks, on the other hand, for the same radii are found in Table 4.4.
Note that the 3rd to the last flock of radius 150 is similar to the last flock of radius 200.
The 2nd to the last flock is also found when the radius is set to 200 but with minor
differences due to the larger radius used. The last flock of radius 150 is similar to some
flocks but having only 3 flock members when the radius is set to 200. The 3rd to the last
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Radius Start Time End Time Flock Extent Flock Members
150 Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15

Thu Dec 30 09:40:00 1999 Thu Dec 30 09:55:00 1999 870.5 228; 287; 104
Thu Dec 30 11:55:00 1999 Thu Dec 30 12:05:00 1999 692.4375 118; 249; 346

200 Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15
Thu Dec 30 09:40:00 1999 Thu Dec 30 09:55:00 1999 870.5 228; 287; 104
Thu Dec 30 09:40:00 1999 Thu Dec 30 10:05:00 1999 796.5 52; 100; 46

Table 4.3: Top three moving flock patterns in the semi-synthetic version of the DNP
Dataset.

flock of radius 200 is also found when the radius is set to 150 but the 2nd to the last flock
is not.

Radius Start Time End Time Flock Extent Flock Members
150 Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 141; 140

Thu Dec 30 12:40:00 1999 Thu Dec 30 12:50:00 1999 178.5 139; 365; 140
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 150.125 140; 139; 142; 129

200 Thu Dec 30 11:20:00 1999 Thu Dec 30 11:30:00 1999 209 158; 203; 78
Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 207.625 127; 365; 187
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 141; 140

Table 4.4: Bottom three moving flock patterns in the semi-synthetic version of the DNP
Dataset.

Figure 4.2 shows the base trajectories for each of the discovered moving flocks with
the radius set to 150m in the semi-synthetic dataset and visualizing them on top of the set
of all trajectories (Figure 4.2a) and on a Google map (Figure 4.2b) as background. The
balloons in the Google map indicate the ending point of the flock trajectories. Based on
the figures, most of the flocking occurred on the west side of the park.

Figure 4.2: The base trajectories of the moving flock patterns found in the semi-synthetic
version of the DNP dataset when the radius is set to 150m using (a) the whole trajectory
dataset and (b) a Google map as background.

Finally, a large number of stationary flock patterns were filtered out by our algorithm
as shown in Figure 4.3 where the number of moving flocks and the number of stationary
flocks increases with respect to the user-specified radius (until around 900m) for this
dataset.
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Figure 4.3: The number of moving flocks versus the number of stationary flocks in the
semi-synthetic version of the DNP dataset.

Fontainebleau Flock Results

This part discusses the results obtained from the Fontainebleau dataset using the moving
flock discovery algorithm. Table 4.5 shows the different time durations and spatial extents
of the moving flocks obtained from the Fontainebleau dataset when the radius was set to
150m and 200m. The 1st flock of radius 150 and the 2nd flock of radius 200 are quite
similar, having 2 members in common and having overlapping flock duration. The 2nd
flock of radius 150 and the 1st flock of radius of 200 are more similar, having similar
members but having a shorter time duration compared to that of radius 200. Plots of the
moving flocks extracted when the radius was set to 150m are depicted in Figure 4.4.

Radius Start Time End Time Flock Extent Flock Members
150 Sun Apr 25 13:38:00 2004 Sun Apr 25 13:48:00 2004 159.34375 9; 11; 8

Sun Sep 26 11:41:00 2004 Sun Sep 26 12:04:00 2004 150.28125 19; 27; 18
200 Sun Sep 26 11:38:00 2004 Sun Sep 26 12:18:00 2004 264.71875 19; 27; 18

Sun Apr 25 13:34:00 2004 Sun Apr 25 13:41:00 2004 264.5 9; 10; 8

Table 4.5: Discovered moving flock patterns in the National Fontainebleau Forest Park.

Figure 4.4: Flock 0 and Flock 1 discovered from the Fontainebleau dataset using a radius
of 150m.

An overall view of the discovered moving flocks when the radius is equal to 150m is
found in Figure 4.5, which shows the base trajectories of the flocks, with the set of all
trajectories (Figure 4.5a) and with Google map (Figure 4.5b) as background.

The number of moving flocks and the number of stationary flocks with respect to the
specified radius is plotted in Figure 4.6. Once again, this demonstrates the large number
of stationary flocks pruned out by our algorithm.
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Figure 4.5: The base trajectories of the moving flock patterns found in the Fontainebleau
dataset when the radius is set to 150m using (a) the whole trajectory dataset and (b) a
Google map as background.

Figure 4.6: The number of moving flocks versus the number of stationary flocks in the
Fontainebleau dataset.

Delft Flock Results

This part provides a description of the patterns obtained from the Delft dataset using the
moving flock algorithm. Table 4.6 shows the different time durations and spatial extents
of the moving flocks obtained from the Delft dataset when the synchronization rate was
set to 1 minute and the radius to 40m and 50m. There were 3 flocks found when the
radius was set to 40m and 10 flocks when the radius was 50m. All 3 flocks for radius 40m
are also found when the radius is 50m as shown in the table. The first 2 flocks discovered
using both 40m and 50m are exactly the same, while their third flock varies by 1 minute
in the flocking duration and by few meters in the extent.

Figure 4.7 provides an overview of where the moving flocks occurred by presenting
the base trajectories of each moving flock against the set of all trajectories (Figure 4.7a)
and Google map (Figure 4.7b). The radius used to find these flocks is 50m. Meanwhile,
Figure 4.8 provides a plot of flock0 and flock9 found in the Delft dataset using a 50m
radius and a 60s synchronization rate.

As with DNP and Fontainebleau, a large number of stationary flock patterns were also
filtered out by the moving flock algorithm in Delft as shown in Figure 4.9.
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Radius Start Time End Time Flock Extent Flock Members
40 Thu Nov 19 11:12:00 2009 Thu Nov 19 11:14:00 2009 67.5 222; 713; 206

Fri Nov 20 12:05:00 2009 Fri Nov 20 12:07:00 2009 65.5 315; 846; 303
Thu Nov 19 10:17:00 2009 Thu Nov 19 10:20:00 2009 55 709; 712; 708

50 Fri Nov 20 10:33:00 2009 Fri Nov 20 10:35:00 2009 83 818; 819; 815
Thu Nov 19 10:45:00 2009 Thu Nov 19 10:50:00 2009 70.5 212; 708; 203
Thu Nov 19 11:12:00 2009 Thu Nov 19 11:14:00 2009 67.5 222; 713; 206
Fri Nov 20 12:05:00 2009 Fri Nov 20 12:07:00 2009 65.5 315; 846; 303
Thu Nov 19 10:16:00 2009 Thu Nov 19 10:20:00 2009 63.5625 709; 712; 708
Thu Nov 19 11:19:00 2009 Thu Nov 19 11:27:00 2009 63.25 223; 721; 206
Sat Nov 21 10:38:00 2009 Sat Nov 21 10:40:00 2009 61 408; 908; 901
Thu Nov 19 10:44:00 2009 Thu Nov 19 10:48:00 2009 60.625 203; 715; 223
Thu Nov 19 10:50:00 2009 Thu Nov 19 11:00:00 2009 55.5 223; 708; 221
Fri Nov 20 13:45:00 2009 Fri Nov 20 13:50:00 2009 50.75 843; 862; 807

Table 4.6: Discovered moving flock patterns in the Delft Dataset when radius is set to
40m and 50m.

Figure 4.7: The base trajectories of the moving flock patterns found in the Delft dataset
when the radius is set to 50m using (a) the whole trajectory dataset and (b) a Google
map as background.

4.2.2 Selection of the Radius Parameter

For the purpose of guiding the user in setting the radius parameter of the moving flock
algorithm, we have plotted the line graph that shows the distance of the objects from their
k-th nearest neighbor for each dataset, where k = 1...10. The input required for building
these graphs is the synchronized version of the datasets, containing (id, x, y, t) sampled
points. The semi-synthetic version of the DNP dataset was synchronized to 5 minutes,
while the Fontainebleau and the Delft datasets were synchronized to 1 minute. The choice
of these synchronization values were based on the visualization of the synchronized points.
While using 5 minutes for the DNP dataset already gave good plots that are quite close
to the original trajectories, using the same value for the other datasets still introduced a
significant amount of noise in the trajectories, causing the plots to vary quite significantly
in certain parts compared to the original. After a few number of trial and error, we found
1 minute to be a suitable value for the Fontainebleau and Delft datasets.

The plots obtained for the DNP dataset using k values ranging from 1 to 10 are found in
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Figure 4.8: The highest-ranking (left) and the lowest-ranking (right) moving flocks dis-
covered in the Delft dataset using 50m as the radius and 60s as the synchronization rate.

Figure 4.9: The number of moving flocks versus the number of stationary flocks in the
Delft dataset.

Figure 4.10. When k = 3, The knee of the curve is at around 300m, suggesting that values
close to 300m are good radius values. For applying the flock interpretation framework on
this dataset, we chose to work with a radius value of 150m being guided by this plot and
by the fact that a spatial closeness of 300m is quite large in the context of pedestrians.

Figure 4.11 provides the plots for the Fontainebleau dataset for varying k’s. For k = 3,
the knee of the curve is approximately at 500m. Again, since 500m is too large to define
spatial closeness among pedestrians, we chose 150m and 200m in testing the moving flock
discovery on this dataset.

Lastly, the plots for the Delft dataset are shown in Figure 4.12. Considering k = 3 and
comparing with the previous plots, the knee of the curve occurs at a low value of around
30m. Being guided by this, it is not reasonable to use 150m or 200m for this dataset since
these values are too large compared to the suggested value. In the experiments, we chose
to work with a 50m radius in order to take into account the GPS uncertainties present in
the data.

This set of experiments shows that plotting the k-th distance is an effective technique
for guiding the user in selecting the radius parameter. The technique does not give the
exact radius value since it depends on other factors such as the nature of the moving
entities, the property of the area in which movement was made, the uncertainties present
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Figure 4.10: Plot of k-th Distances for the Semi-synthetic DNP Dataset.

Figure 4.11: Plot of k-th Distances for the Fontainebleau Dataset.

in the data due to limitations of existing location technologies, and others. However, it is
still useful in deciding if a radius value is too small or too large with respect to the dataset
distribution. It has also been observed that plotting the nearest neighbors for varying
values of k produced line graphs that are quite similar in shape but with larger distance
values for larger k’s.
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Figure 4.12: Plot of k-th Distances for the Delft Dataset.

4.2.3 Effect of Varying the Radius Value

In order to assess the effect of using different radius values on the moving flock algo-
rithm, we ran it several times on a subset of the semi-synthetic DNP dataset focusing on
trajectories occurring during lunchtime from 12:00 to 13:00. We chose to work on this
smaller set of results for the ease of comparing flock results. The same set of parameters
except for the radius were used for the different runs and are as follows: min points=3,
min time slices=3, synchronization rate=300s, and radius=50m, 80m, 100m, 130m,
150m, 180m, 200m. Table 4.7 summarizes the flock results obtained using these param-
eters. It shows how the number of flocks increases as the radius value is increased. At a
certain point though, if the radius becomes too large, the number of flocks should decrease
due to the filtering of stationary flocks by the radius size.

Comparing the flocks obtained from each radius and the next higher radius, the table
shows that the flocks obtained using a smaller radius is also obtained using the larger
radius in most cases. The description of the obtained flocks may vary in time and thus,
in extent as well. The composition of the flock may also vary in some cases, though it
is not exhibited in these results. There is only 1 instance wherein a flock obtained using
a certain radius is not found using the next higher radius in the table. This particular
instance is the last flock of radius 150m with members 139, 140, 129, which is not found
using a radius of 180m. The most probable reason for this is that though these visitors
may flock together, the flock extent is lower compared to the 180m radius. However, this
un-discovered flock (i.e., discovered using 150m but not with 180m) is overlapping with
another discovered flock, which is the last flock (using 180m).

Aside from affecting the structure of discovered flocks, it is also important to note that
the use of varying radius corresponds to finding flocks that varies in semantics as well. For
instance, it is more appropriate to use a smaller radius value when the user is interested in
finding flocks along the streets as opposed to flocks occurring in a block or in a city center.
Thus, the appropriate choice of radius depends on the scale that the user is interested in.
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Radius Start Time End Time Flock Extent Flock Members
50 No Flock
80 Thu Dec 30 12:20:00 1999 Thu Dec 30 12:30:00 1999 655.9375 15; 288; 96
100 Thu Dec 30 12:20:00 1999 Thu Dec 30 12:30:00 1999 655.9375 15; 288; 96

Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 141; 140
130 Thu Dec 30 12:20:00 1999 Thu Dec 30 12:30:00 1999 655.9375 15; 288; 96

Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 203.9375 140; 141; 139
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 150.125 129; 140; 139

150 Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 140; 141
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 150.125 139; 140; 129

180 Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15
Thu Dec 30 12:30:00 1999 Thu Dec 30 12:40:00 1999 306.8125 134; 288; 35
Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 258.6875 140; 141; 365
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 140; 141; 139

200 Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15
Thu Dec 30 12:20:00 1999 Thu Dec 30 12:30:00 1999 429.25 341; 346; 280
Thu Dec 30 12:25:00 1999 Thu Dec 30 12:40:00 1999 410.5625 118; 249; 227
Thu Dec 30 12:40:00 1999 Thu Dec 30 12:55:00 1999 328.625 140; 365; 139
Thu Dec 30 12:30:00 1999 Thu Dec 30 12:40:00 1999 306.8125 134; 288; 35
Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 207.625 127; 365; 187
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 140; 141; 139

Table 4.7: Discovered moving flock patterns in a subset of the semi-synthetic DNP Dataset
when the radius is set to varying values.

4.2.4 Effect of Ordering of Entities

Aside from studying the effect of varying radius on the moving flock algorithm, the effect
of changing the order of entities in the input file was also investigated. For each of the
semi-synthetic DNP, the Fontainebleau and the Delft datasets, 4 versions of the same
datasets were obtained by changing the order of the entities compared to the original.
Then, the moving flock algorithm was run 15 times for each of the original datasets and
the varied versions. The same set of parameter values as shown in Table 4.8 were used for
a dataset and its reordered versions.

Dataset min points min time slices synchronization rate radius
Semi-synthetic DNP 3 3 300s 150m
Fontainebleau 3 3 60s 150m
Delft 3 3 60s 50m

Table 4.8: The set of parameter values used for the datasets.

Table 4.9 summarizes the differences between the obtained flocking results from the
three original datasets and their corresponding reordered versions. Flock Count in Original
refers to the total number of flocks found using the original dataset. The succeeding
columns give a count of the differences between the results obtained from the original
dataset compared to its reordered version. A minor change refers to slight changes in the
time and extent of flocking while a major change either refers to a missed flock (found in
DNP) or a change in the flock membership composition (found in Delft). The DNP dataset
has more or less 1 minor and 1 major differences compared to its reordered versions. As
for the Fontainebleau dataset, there was no variation in the flock results. Finally, the Delft
dataset has 2-3 differences compared to other versions.

Flock Count in
Original

Version 1 Version 2 Version 3 Version 4

Semi-synthetic DNP 11 1 minor 1 minor; 1 major 1 minor; 1 major 1 minor; 1 major
Fontainebleau 2 0 0 0 0
Delft 10 2 minor; 1 major 1 minor; 1 major 2 minor; 1 major 2 minor

Table 4.9: Difference between the original datasets and their corresponding reordered
versions.
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For further understanding of these differences, Table 4.10 provides specific examples of
minor and major differences in the DNP and the Delft datasets. Example 1 is an instance
of a minor difference in the DNP dataset. A shorter flocking duration and thus, a shorter
extent was obtained from Version 1. Example 2 is an instance of a major difference wherein
the flock discovered from DNP was not found from its Version 2. Example 3 shows a minor
difference, wherein the discovered flocks only vary in the end time, for Delft. A major
difference wherein the flock members in the discovered flock varies is given in Example 4.
Object 212 was replaced by object 715 in the flock obtained from Delft’s Version 3. The
start time and flock extent also varied consequently.

Datasets Difference
Type

Start Time End Time Flock
Extent

Flock Members

1 Semi-synthetic DNP
and Version 1

Minor Thu Dec 30 09:40:00 1999 Thu Dec 30 10:00:00 1999 628.5 52; 100; 46

Thu Dec 30 09:45:00 1999 Thu Dec 30 09:55:00 1999 279.125 46; 52; 100
2 Semi-synthetic DNP

and Version 2
Major Thu Dec 30 12:40:00 1999 Thu Dec 30 12:50:00 1999 178.5 139; 365; 140

Not found
3 Delft and Version 2 Minor Thu Nov 19 10:50:00 2009 Thu Nov 19 11:00:00 2009 55.5 223; 708; 221

Thu Nov 19 10:50:00 2009 Thu Nov 19 11:05:00 2009 55.5 221; 223; 708
4 Delft and Version 3 Major Thu Nov 19 10:45:00 2009 Thu Nov 19 10:50:00 2009 70.5 212; 708; 203

Thu Nov 19 10:46:00 2009 Thu Nov 19 10:50:00 2009 52 203; 715; 708

Table 4.10: Difference between the results obtained from the original datasets and their
corresponding reordered versions.

In general, the differences in the discovered flocks are due to the different bases used
for each version. Since sub-trajectories already included in previously extracted moving
flocks are filtered out, they cannot be used as base trajectories in finding other flocks. This
technique greatly helped in filtering out redundant flocks but also caused slight changes
in the obtained flock results when the object entries are reordered.

4.2.5 Validation of the Moving Flock Algorithm

This part provides a discussion of how the moving flock algorithm is validated using the
null hypothesis principle. The aim is to show that the obtained flocks are inherent in
the input and not obtained by mere chance. We used two randomization techniques and
obtained different versions of the input dataset. Afterwards, the flock algorithm was run
on different versions of the input dataset and their results were compared.

We split the discussion of the validation experiment into two parts, one for random-
ization by using Markov chain and the other for randomization based on uncertainties in
collected spatial points.

Validation through Markov Chain Randomized Datasets

We have randomized the semi-synthetic DNP, the Fontainebleau and the Delft dataset by
building a Markov chain for each based on their underlying data distribution of spatial
points. As with the parameters used in observing the effect of ordering on the algorithm,
the same parameter values as shown in Table 4.8 of Section 4.2.4 were used for the datasets
and their randomized versions.

The randomization algorithm was ran several times for each dataset. In the case of
DNP, it was randomized for around 10 times and only 4 of the randomized datasets yielded
some flocks. There was 1 flock obtained from 3 of the randomized datasets, and there were
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6 flocks extracted from the other randomized dataset. Recall that 11 flocks were found in
the original dataset. Aside from varying in the number of flocks discovered, the properties
of the flocks themselves are also very different as shown in Table 4.11.

Start Time End Time Flock Extent Flock Members
Original Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15

Thu Dec 30 09:40:00 1999 Thu Dec 30 09:55:00 1999 870.5 228; 287; 104
Thu Dec 30 11:55:00 1999 Thu Dec 30 12:05:00 1999 692.4375 118; 249; 346
Thu Dec 30 09:40:00 1999 Thu Dec 30 10:00:00 1999 628.5 52; 100; 46
Thu Dec 30 11:40:00 1999 Thu Dec 30 11:50:00 1999 472.1875 38; 349; 223
Thu Dec 30 11:15:00 1999 Thu Dec 30 11:45:00 1999 432.5 113; 215; 112
Thu Dec 30 10:35:00 1999 Thu Dec 30 10:45:00 1999 269.3125 303; 342; 38
Thu Dec 30 11:20:00 1999 Thu Dec 30 11:30:00 1999 209 158; 203; 78
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 141; 140
Thu Dec 30 12:40:00 1999 Thu Dec 30 12:50:00 1999 178.5 139; 365; 140
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 150.125 140; 139; 142; 129

Version 1 Thu Dec 30 11:50:00 1999 Thu Dec 30 12:00:00 1999 179.249846329912 180; 315; 40
Version 2 Thu Dec 30 11:20:00 1999 Thu Dec 30 11:30:00 1999 178.807183507829 253; 337; 42
Version 3 Thu Dec 30 11:10:00 1999 Thu Dec 30 11:20:00 1999 402.023812355706 103; 155; 57

Thu Dec 30 11:00:00 1999 Thu Dec 30 11:10:00 1999 221.557437454815 93; 289; 115
Thu Dec 30 11:55:00 1999 Thu Dec 30 12:05:00 1999 212.980809040018 38; 332; 118
Thu Dec 30 10:30:00 1999 Thu Dec 30 10:40:00 1999 209.968162752571 57; 118; 115
Thu Dec 30 11:40:00 1999 Thu Dec 30 11:50:00 1999 189.306787050329 204; 252; 343
Thu Dec 30 10:15:00 1999 Thu Dec 30 10:25:00 1999 166.101779716089 2; 57; 336

Version 4 Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 336.722883264767 41; 264; 192

Table 4.11: Moving flock results for different randomized versions of the semi-synthetic
DNP dataset.

The randomization algorithm was also run several times on the Fontainebleau dataset
but after several runs, no moving flock was found in any of these randomized versions while
there were 2 flocks found in the original. The problem with this dataset is that there were a
few noises included in it that caused the Markov chain to generate random values restricted
by the minimum and maximum bounds of the trajectories. As a consequence, the dataset
was randomized with minimal constraint, making the points quite random and making it
difficult to form flocks in the randomized dataset.

The Delft dataset was randomized 4 times. While 10 flocks were obtained from the
original dataset, 16, 18, 22, and 27 flocks were extracted from the randomized datasets.
This means that certain grid movements have high probability in the Markov chain and
causes the creation of arbitrary flocks in the randomized datasets. The flock results ob-
tained from the original and the random datasets had some flock members in common
but they are grouped together in different ways. In the few cases that the flocks from the
different versions have 2 members in common, they are still dissimilar based on the vari-
ation in the time of flocking and thus, the extent as well. There was only 1 case wherein
2 flocks with overlapping time duration and with 2 common members were found from
2 randomized versions of the dataset. The properties of these flocks are shown in Table
4.12.

Start Time End Time Flock Extent Flock Members
Thu Nov 19 12:31:00 2009 Thu Nov 19 12:33:00 2009 84.9541098016779 214; 718; 734
Thu Nov 19 12:32:00 2009 Thu Nov 19 12:34:00 2009 57.3686375541146 718; 734; 212

Table 4.12: Two moving flocks obtained from two randomized versions of Delft.

Validation through Uncertainty-based Randomized Datasets

A subset of the semi-synthetic DNP dataset, which is similar to the one used in investi-
gating the radius’ effect on the algorithm’s results, was used in this set of experiments. 6
randomized versions of this dataset were generated by replacing (x, y) pairs in the original
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dataset with a new value bounded by a user-specified uncertainty radius. The generated
dataset is more distorted when the radius value is larger.

Table 4.13 presents the extracted flocks from each of the datasets randomized with
varying radius values. The results are sorted by decreasing radius values, starting with the
more distorted dataset to the less distorted dataset. As the radius value becomes smaller,
it is expected that the flock results also becomes more similar to those extracted from
the original dataset. This is verified by the results found in the table. The moving flock
algorithm was run on all datasets, including the original and randomized versions, with
the same parameters: min points=3, min time slices=3, synchronization rate=300s,
and radius=150m.

Start Time End Time Flock Extent Flock Members
Original Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 991.9375 96; 288; 15

Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 203.9375 139; 140; 141
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 150.125 139; 140; 129

Version 1 (100m) Thu Dec 30 12:05:00 1999 Thu Dec 30 12:20:00 1999 219.589825248345 147; 85; 125
Thu Dec 30 12:05:00 1999 Thu Dec 30 12:15:00 1999 151.693097695591 125; 85; 23

Version 2 (50m) Thu Dec 30 12:15:00 1999 Thu Dec 30 12:25:00 1999 636.779477782431 96; 288; 15
Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 265.550003897515 140; 141; 139
Thu Dec 30 12:35:00 1999 Thu Dec 30 12:50:00 1999 162.296600496396 223; 264; 217

Version 3 (40m) Thu Dec 30 12:20:00 1999 Thu Dec 30 12:30:00 1999 699.585639138706 288; 96; 15
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 225.666424336261 140; 141; 139
Thu Dec 30 12:40:00 1999 Thu Dec 30 12:50:00 1999 197.100121075171 140; 365; 139

Version 4 (30m) Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 1038.6139229855 288; 96; 15
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 202.910822035046 140; 141; 139

Version 5 (20m) Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 1015.33351584302 288; 96; 15
Thu Dec 30 12:40:00 1999 Thu Dec 30 12:50:00 1999 211.040869345073 140; 365; 139
Thu Dec 30 12:45:00 1999 Thu Dec 30 13:00:00 1999 193.683468844508 140; 141; 139

Version 6 (10m) Thu Dec 30 12:15:00 1999 Thu Dec 30 12:30:00 1999 990.175165907945 288; 96; 15
Thu Dec 30 12:45:00 1999 Thu Dec 30 12:55:00 1999 198.080599969602 140; 141; 139
Thu Dec 30 12:50:00 1999 Thu Dec 30 13:00:00 1999 159.25492139568 129; 140; 139

Table 4.13: Moving flock results for different randomized versions of a subset of the semi-
synthetic DNP dataset.

The result of this investigation shows that different flocks are obtained when the dataset
is randomized by a large enough radius, like 100m in this case. Therefore, the obtained
moving flocks depends on the dataset and are not discovered by chance. Moreover, as the
radius threshold of the randomization algorithm is decreased, the extracted flocks become
more similar to those found in the original dataset. This demonstrates the robustness of
the flocking algorithm to uncertainties in the observation points of the input dataset.

4.2.6 Summary of Results

Compared to existing flock detection methods, we introduce the concept of moving flocks
along with a method for computing such patterns. This concept emphasizes that flock
members should be moving, disqualifying patterns with flock members that remain sta-
tionary in a common place during the considered time duration. Moreover, the algorithm
allows the end user to find moving flock patterns in pedestrian movement as demonstrated
in the discussed results. One main research finding is related to the the tendency of visi-
tors to flock when following certain paths provided in the recreational areas, an example
of which is the White route followed by certain flocks in DNP.

We have considered the concept of spatio-temporal coherence, recently introduced
by Wood and Galton in [92] for defining collectives, since it is a behavior exhibited by
members of a moving flock. The flock consisting of several members is a collective of
objects exhibiting spatial closeness over some time duration with a minimum number of
members. Thus, one of the main spatio-temporal coherence criteria is the radius since
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it defines the closeness of visitors of a moving flock over time. Whereas it is intuitive to
discover more moving flocks as the radius is set to a larger value, this is not always the
case. It is possible to find a smaller number of moving flocks with a larger value for the
radius since the spatial extent constraint also becomes more restrictive for large values of
radius. A set of guidelines was described in selecting appropriate values for the algorithm’s
parameters. A specific technique for finding an appropriate radius value was proposed in
subsection 3.1.3.

The moving flock algorithm was tested on different tracking datasets, where the trajec-
tories of pedestrians in different types of recreational landscapes were collected from GPS
devices. The results have shown that the discovered patterns have varying time durations
and spatial extents, as well as that many of them were located at the most popular routes
in both parks.

The experiments also revealed the filtering power of the proposed algorithm. By sorting
the results using the spatial extent of flocks and removing those with very short extent,
we have pruned out a large number of uninteresting patterns. These patterns include
both the stationary flocks and the redundant patterns, which should not be considered
as collectives of objects moving together. However, it is also important to point out that
some redundant patterns have been retained during the analysis in order to avoid losing
moving flock patterns with longest durations.

Since the approximation algorithm does not consider all possible points as center (i.e.,
it only considers the points found in the dataset as center), it may not compute some
interesting flock patterns. In approximating the flocking results, the algorithm assumes
that if a pedestrian is located at the center of the flock during starting time instance, then
the same pedestrian remains at the center of the flock for the rest of the time instances.
These issues can be resolved at the expense of a higher running time. For instance, instead
of only recursively merging ‘basic flocks’ obtained using the same base trajectory, those
that were obtained using different base trajectories can be merged as well.

We have also considered comparing actual performances of existing algorithms com-
pared with our implementation. However, the implementations of most algorithms are
either non-existing or unavailable. The moving cluster algorithm was made available to us
but it is designed for finding flocks with varying members rather than with fixed members
as in our case. Thus, we can only provide a comparison at conceptual level (recall Table
2.1) rather than at performance level among the algorithms.

The algorithm has been validated to extract results inherent in the input dataset. In
addition to this, the experiments demonstrate that the algorithm is quite robust with
respect to uncertainties in the collection of the recorded points and to changes in the
ordering of the entities in the input. The accuracy of the GPS receivers used in both
datasets is around 3m and it has been empirically shown that the flocking results obtained
from the true observation points are very similar to those obtained from observations with
small inaccuracies.

An implementation of the moving flock discovery algorithm is available at the following
URL: http://www-kdd.isti.cnr.it/moving-flock.
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4.3 Semantic Annotation

Two of the datasets we used for testing the moving flock discovery algorithm contain the
pedestrians’ responses to surveys conducted in their respective recreational areas. These
are the DNP and the Delft dataset.

A current challenge is that most datasets do not explicitly contain semantic information
needed for the flock interpretation step. In the case that they do contain these information,
these information usually require cleaning to minimize errors present in the data and there
is currently no formal approach for assessing the accuracy of semantic data. Furthermore,
datasets in general are most likely kept by a private organization who have some hesitation
in releasing them. However, with further advancement in location and privacy-aware
technologies, such datasets can be made more available in the future.

4.3.1 DNP

This section provides a description of the use of Wood and Galton’s taxonomy [92] for
the selection of the semantic attributes, and the semantic annotation step performed at
individual and flock levels. The discussion for both levels also includes how the semantic
attributes for annotation were selected. Recall that these attributes were obtained from
visitors’ responses to conducted surveys in the park as described in Section 4.1.

Semantic Attribute Selection

Using Wood and Galton’s taxonomy [92], we have mapped the candidate semantic at-
tributes to their corresponding classification criteria as shown in Table 4.14. Some at-
tributes ,such as V isitor type, can be mapped to more than 1 criterion. For the purpose
of attribute selection, mapping to all possible criterion is not important. It is enough
to map the attribute to at least one criterion. Attributes that were not mapped to any
criterion are disregarded for semantic annotation and are no longer shown in the table.

The attributes found in the table are further filtered by removing redundant and unary
attributes. For example, Is a dogwalker? can be derived from Dog number and is thus,
disregarded. Another example is Currant forests, which was also disregarded since it
has a unary value of 0 (i.e., false) among flock members.

Semantic Annotation in DNP at Individual Level

As mentioned earlier, we propose two levels of annotation, which are the individual and
the flock level. Both were applied in annotating the DNP dataset.

At the individual level, individual trajectories belonging to discovered flocks were an-
notated with their corresponding visitor characteristics. An example of a visitor charac-
teristic is visitor type, which specifies whether the visitor is an elderly person, an adult,
an elderly couple, an adult couple, a family with children, a group of adults, or a fam-
ily consisting of adults. Aside from the visitor characteristics, each trajectory was also
annotated with a set of flock membership attributes, indicating whether the visitor that
made the trajectory belongs to a specific flock or not. These make up the set of individual
attributes.

Figure 4.13 shows a sample semantic annotation of 3 flock members in the DNP dataset.
r id refers to the entity ID, on holiday is a boolean value describing whether the visitor is
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Criteria Semantic Attributes
Membership Is in the area for holiday? Frequency of visit. Visited since when. Total number

of visited attractions. Number of information sources used. Is a local? Has visited
an attraction? Is a browser? Is a repeater? Is a dogwalker? Is with children? Age
category

Location Has visited the: [Picnic areas, Mound, Currant forests, Information centre, Woods,
Bird watching sites, Prayer areas, Juniper berries, Fens, Sheepfold areas, Snack bar
areas, Sightseeing areas, Radio telescope, David lakes, Orienting, Teahouses]?
Followed a route? Has stopped? Type of stop.
Stopped for: [Catering, Beautiful, Quiet, Seat, Lunch]?
Has followed the: [white route, whiteLheederzand, redSpier, blue route, redL-
heederzand, yellowLheederzand, redLheederzandEast, redDiepveen, yellowLhee-
broekerzand, whiteSpier, blueSpier, whiteVC, redVC, Drenthepad, brochureVC,
brochureSpier, brochureVijfsprong, kompasrouteVC, brochureDiepveen, brochureL-
heederzand, greenSpier]?

Coherence Main activity. Visiting purpose. Visting purpose type. Visiting goal. Is attracted
to the park due to: [Parking accessibility, Sheepfold proximity, Catering proximity,
Quietness, Attraction proximity, Route start, Coincidence]?

Roles
Depth Adult number. Children number. Visitor type. Dog number. Total number of

persons

Table 4.14: Mapping of semantic attributes to Wood and Galton’s criteria.

in the area for a holiday or not, freq visit describes how often the visitor comes to the park,
adult num is the number of adults represented by the current entity, and children num
is the number of children included in the current entity. The attributes adult num and
children num specifically implies that each entity in the dataset may consist of a group
of adults and/or children. Meanwhile, picnic areas, mound, bird watching site, and
prayer areas describe whether the entity visited these attractions or not. Finally, flock0
and flock1 are attributes generated by the flock discovery algorithm and they indicate
whether the entities belong to any specific flock or not.

Figure 4.13: Semantic Annotation of Individual Flock Members in DNP.

Out of the 84 individual semantic attributes, which consists of 73 survey-based at-
tributes and 11 flock membership attributes, 51 attributes were used for the semantic
annotation step. With the help of the domain expert, 19 survey-based attributes were
deemed as unnecessary or redundant. gps true, which indicates whether the gps entry
is valid or not, was considered as an unnecessary attribute since the gps entries in the
dataset were already preprocessed and cleaned. An example of a redundant attribute
is walking with children, which indicates if a visitor is accompanied by children. This
boolean information can be derived from children num, which specifies the number of
accompanying children.

3 unary attributes, which only contains 1 value for all flock members, were automati-
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cally removed using WEKA’s RemoveUseless filter. These attributes include visiting the
currant forest, visiting the woods, and the importance of quietness.

Moreover, 11 attributes whose values are only either 0 (corresponds to false) or 99
(corresponds to null) for all flock members were also manually removed since these values
do not give very interesting information. An example of this is blue route, which means
that some members did not follow the route while it is not known whether others have
followed this route or not.

Semantic Annotation in DNP at Flock Level

In addition to annotating individual trajectories of flock members, flocks themselves are
also semantically annotated. In this case, the set of flock properties is composed of the
parameters used by the flock detection algorithm, the generated flock descriptions and
the aggregated properties of individual flock members. The parameters used to discover
flock patterns include min points, radius, min time slices, and synchronization rate, as
described in Section 3.1.1. Examples of flock descriptions provided by the flock discovery
algorithm are the start and end time of flocking, the ID of the flock members, the spatial
extent covered by the flock, the duration of flocking, the number of flock members, the
average speed of flock members, and others. Some examples of the aggregated properties
on the visitor type are visitor type 1 (i.e., elderly alone), visitor type 2 (i.e., adult alone),
visitor type 3 (i.e., elderly couple), etc. These properties are extracted from the individual
property visitor type. This attribute can have the following values: 1, 2, 3, 4, 5, 6, 7, 99
(i.e., unknown). An aggregated property is created for each of these possible values, thus,
producing eight aggregated properties. The value of each aggregated property depends
on the number of individuals satisfying the considered individual attribute value. For
example, if a given flock pattern has 1 out of 3 members whose visitor type attribute is
equal to 1, then the flock property visitor type 1 of the flock is set to 0.33 (i.e., 1/3).

Figure 4.14 shows a subset of the semantic attributes at flock level upon applying the
framework on the DNP dataset. In this example, there are 10 discovered flocks, each
one having the on holiday and the freq visit aggregated attributes. on holiday at the
individual level contains 3 possible values: 0, 1, null. Thus, at the flock level, there are
3 attributes associated with it. Likewise for the freq visit, it has 6 possible values: neg,
1, 2, 3, 4, 5 and hence, there are 6 corresponding attributes at the flock level. These
attributes describe the percentage of flock members having the specified value for the
considered individual level attribute. For instance, on holiday 0 for flock 0 has a value of
0.666667 indicating that 66.6667% of flock 0’s members have a value of 0 for the on holiday
attribute. On the other, on holiday 1 has a value of 0.333333, which means that 33.3333%
of flock 0’s members have a value of 1 for the on holiday attribute. In layman’s term,
33.3333% of flock 0’s members are in the area for a holiday while the remaining percentage
are not.

A total of 108 attributes, which include survey-based properties and algorithm gener-
ated descriptions such as start time of flocking, were selected for flock level annotation.
The survey-based attributes were based on the selected individual level attributes.

The parameters used to extract the moving flocks were considered as unnecessary since
the flocks considered were obtained using exactly the same parameters. In other words,
the attributes obtained from the parameters have unary values. Therefore, they were
disregarded as flock level attributes.
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Figure 4.14: Semantic Annotation of Discovered Flocks in DNP.

Flock generated attributes that were removed include base id and min speed. base id
uniquely identifies the base trajectory used to find the flock while min speed refers to the
minimum speed of the base trajectory during the time of flocking. Both were automatically
removed using WEKA’s RemoveUseless filter since their values vary too much.

Moreover, pairs of complementary survey-based flock attributes were considered to find
redundant attributes to be removed. For example, the complement of bird watching site 0
is bird watching site 1 and, vice versa since the value of an attribute can be easily
computed from the other. Thus, one of these attributes may be removed. Recall that
bird watching site 0 is the percentage of flock members who did not visit the bird watch-
ing site, while bird watching site 1 is the percentage of those who did.

4.3.2 Delft

The same approach to semantic annotation was also applied to the Delft dataset. In this
case, however, we did not have access to the questionnaire used in conducting the survey
but we were provided with the pedestrian attributes obtained from the survey responses.

This section describes the annotation performed at individual and flock level, which
includes the selection of the semantic attributes used for this phase of the framework.

Semantic Annotation in Delft at Individual Level

Compared to the DNP dataset, Delft has a fewer set of semantic attributes. There are
39 attributes all in all, and this includes the 29 survey-based attributes and the 10 flock
membership attributes. The survey-based attributes include information about the the
pedestrian’s age, gender, interest in shopping, postal codes, the weather condition, and
others.

12 of the survey-based attributes were deemed as unnecessary or redundant. For
example, postcodea and postcodeb both refer to zip codes that come in different formats.
Thus, it is enough to use only one of them. Another example is the GPS device ID, which
was considered unnecessary since we are not interested in associating people with the GPS
device they used.

Considering only the semantic attributes of flock members, destination only had a
unary value of 2 and hence, was disregarded to simplify the analysis task. This means
that all pedestrians involved in flocking were headed for destination 2.



4.4. PATTERN ANALYSIS 91

As with the DNP dataset, only trajectories of flock members were annotated with their
survey-based and flock membership attributes. Figure 4.15 shows a subset of the semantic
annotation step performed on 3 flock members extracted from Delft. Note that this subset
does not include all attributes used for annotation. id uniquely identifies each pedestrian,
purpose describes the pedestrian’s purpose in going downtown, shopping indicates the
type of shopping performed, postcodeb refers the pedestrian’s postal code, occup refers
to his/her occupation, and wth sunny indicates the pedestrian’s preference of sunning
weather when going downtown. gender has 2 possible values equivalent to being male or
female while age refers to the current age of the pedestrian. flock0, flock1, and flock2
are flock membership attributes and they indicate whether the pedestrian belongs to flock
0, flock 1 and/or flock 2, respectively.

Figure 4.15: Semantic Annotation of Individual Flock Members in Delft.

Semantic Annotation in Delft at Flock Level

As with the DNP dataset, the set of flock properties is composed of the parameters used
by the flock detection algorithm, the generated flock descriptions and the aggregated
properties of individual flock members. Again, the parameters are disregarded since we
are dealing with flocks obtained using the same set of parameter values. The remaining
attributes generated by the flock algorithm are base id, num of time slices and ave speed
since they others were either deemed as unnecessary, redundant or unary attributes. As
for the survey-based attributes, they were selected based on the chosen individual survey-
based attributes and one of the pair of complementary attributes were also filtered out. An
example of a complementary pair of attributes is gender 1 and gender 2. The attribute
value for one of them can be derived from the other since a pedestrian of female gender
can be inferred from the male gender attribute by using the negation operator. We chose
to arbitrarily remove gender 2.

Figure 4.16 provides a sample of the semantic annotation of the 10 flocks extracted
from the Delft dataset. The individual attribute purpose has 4 possible values and thus,
there are 4 corresponding flock level attributes for it. Likewise, there are 4 possible values
for the individual attribute shopping, giving rise to 4 corresponding flock level attributes.

4.4 Pattern Analysis

This section describes how the proposed framework can be used to interpret the moving
flock patterns discovered in the DNP and the Delft dataset once the semantic annotation
step has been completed. The last step of the framework, the pattern analysis step,
includes the execution of selected data mining tasks on the individual attributes, the flock
attributes and the discovered flocks. Specifically, it includes correlation computation and
hierarchical clustering, and classification.
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Figure 4.16: Semantic Annotation of Discovered Flocks in Delft.

SUC (Symmetrical Uncertainty Coefficient) [11] and the Pearson’s correlation coeffi-
cient [21] were used to compute the correlations among the individual and the flock at-
tributes, while a flock similarity measure described in Section 3.3.1 is used for computing
the distance scores among the discovered flocks.

An ensemble of Java codes using WEKA [12] classes and R [17] codes were used to
perform the pattern analysis step. Some WEKA classes were used to perform additional
preprocessing steps and to compute the symmetrical uncertainty coefficient. R’s built-in
functions were used to compute Pearson’s correlation coefficient and to perform hierarchi-
cal clustering. Meanwhile, a cost-sensitive implementation of J48 in WEKA was utilized
in obtaining the classification results.

A brief discussion of the flock interpretation results that are specific to each dataset
are found in the succeeding sections.

4.4.1 DNP

We focused on the 11 moving flock patterns that were extracted from the semi-synthetic
version of the dataset using the following parameters: min points = 3, radius = 150m,
min time slices = 3, synchronization rate = 300s. Each flock has 3-4 members each, and
the members remain spatially close for 3-7 time instances (i.e., 10-30 minutes).

It is important to recall that the moving flocks in this experiment were discovered
from the collapsed dataset and thus, these flocks are actually occurring at the same time
of different days. The obtained interpretations from this experiment describe the common
properties/behaviors of people who follow the same route on the same time of possibly
different days.

Correlation Computation and Hierarchical Clustering Results

Analyzing Individual Attributes of Flock Members This section describes the re-
sults obtained from performing the correlation computation and the hierarchical clustering
steps when considering only trajectories belonging to discovered flocks. Doing so allows
the discovery of relations that only exist among flocking individuals. Moreover, time and
effort are saved since analysis is only concentrated on flock members.

The obtained results were encouraging as we have found interesting relations among
individual attributes despite of the fact that there were only 29 trajectories involved in
flocking out of the 370 trajectories available in the dataset. The most interesting rela-
tions are those that are between a flock membership attribute and a visitor characteristic
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attribute since this type of relations allows the user to understand the common character-
istics that possibly cause them to flock together.

We have used SUC, Pearson’s correlation coefficient, and the absolute value of Pear-
son’s correlation coefficient for correlation computation. The computed correlations are
then used to hierarchically cluster the attributes. The dendograms obtained using the dif-
ferent correlation measures are consistent (i.e., the groupings of attributes are quite similar
though their scores and ranking may vary slightly based on visual inspection) and thus,
we only describe a subset of the discovered relations found using the standard correlation
coefficient, which allows the analyst to concentrate on positive correlations. Figure 4.17
shows the obtained tree, focusing on a sample of interesting relations that were found.
The first set of relations labelled a) can be split further into 2 groups: one involving
adult num and visitor type, and the other involving the rest of the attributes. The first
group validates that the relations obtained are inherent in the dataset since visitor type is
defined in terms of the number of adults and the number of childrens. The second group
of relations indicate that belonging to flock5 is linked to the visitor’s interest in sheepfold
attractions. Furthermore, this group also exhibits the validity of the obtained results by
finding a trivial relation between sheepfold proximity (i.e., attracted to the park due to
its proximity to sheepfold areas) and sheepfold areas (i.e., visited the sheepfold areas).
The next set of relations labelled b) indicates that flock8, flock9 and flock10 are closely
related, and they are linked to the White route of the park. Indeed, these 3 flocks have
members in common and the White route was described by the domain expert as the most
popular route in the park. Meanwhile, set c) shows that belonging to flock2 is closely
related to the member’s preference of visiting mounds and bird watching sites. Finally, set
d) describes how visitors belonging to flock0 are linked with coincidence, which means
they are attracted to the park for no specific reasons. In addition to this, they are also
linked to 4 attractions, which includes radio telescope, david lakes, juniper berries and
fens. Sets b), c) and d) can be explained further using classification analysis.

Analyzing Flock Attributes Analysis of the flock attributes is important as well since
it shows how the correlations among the visitor characteristics change when only individual
flock members are considered and when the entire flock as a collective is considered. Some
of the most interesting relations among flock attributes are those related to age category,
visitor type, and main activity.

Since the flock attributes are all numeric, we used both SUC and the two versions
of Pearson’s correlation coefficient to compute the correlation scores as was done for the
individual attributes. The clustering results derived using the three different correlation
measures are consistent. Therefore, we only present some examples of the result found
in Figure 4.18 using Pearson’s correlation measure. The relation labelled a) is a trivial
relation known to the domain expert since visitor type 4 corresponds to the percentage of
adult couples in the flock while children num 0 are the percentage of members without
any children. Finding these types of relations validates the credibility of other less obvious
relations. Relation b) indicates that if more members belong to the 2nd age group, which
corresponds to the age range 30-59, then more members have visited the bird watching site
as well. Meanwhile, relation c) indicates that more members classified as visitor type 3,
which refers to an elderly couple, implies having more members involved in main activity
8, which refers to “others” and can be interpreted as unpopular activities in the park. In
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Figure 4.17: Sample relations among individual attributes of flock members in semi-
synthetic DNP.

other words, the relation leads to the generalization that most elderly couples are involved
in the less popular activities of the park. Relation d) involves a survey-based and a flock
algorithm generated attribute. It states that the number of flock members is related to the
frequency of visitors following the White route. Finally, relation e) involves two attributes
generated by the flock algorithm. This relation is expected, since flocking that occurs at an
earlier starting time tend to end earlier. These sample relations illustrate different types
of relations that can be found: among survey-based attributes, flock algorithm generated
attributes, or a combination of both.

Analyzing Flock Entries The flock entries extracted during the pattern discovery
step are also clustered in order to understand which flocks are more similar to each other.
Combined with the clustering results for the individual attributes, it is possible to pinpoint
specific attributes that make flocks similar to other flocks.

Using the un-weighted and the weighted distance measures described in Section 3.3.1
for hierarchical clustering gave similar results.
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Figure 4.18: Sample relations among flock properties in semi-synthetic DNP.

Figure 4.19 presents the obtained relations among the discovered flock patterns. Recall
that relations situated in the lower part of a dendogram are more similar. As expected,
Flock 8, Flock 9 and Flock 10 are most similar to each other and this is explained by
the fact that they have 2 members in common. The trajectories belonging to Flock 8
and Flock 9 are shown in Figure 4.20, which confirms that the flocks are indeed similar
based on their trajectories. Flock 4 and Flock 6, on the other hand, have 1 member in
common but they were not grouped together. Then, the rest of the flocks do not have
any member in common. They were grouped together on the basis that they have certain
attributes that are quite similar. For example, most of the members in Flock 0 and
Flock 1 consist of adult couples, and were mainly involved in walking. Furthermore, most
of their members have visited the juniper berries, the fens, the radio telescope, and the
David lakes. These were inferred using the dendogram of flock entries and the dendogram
of individual attributes. Figure 4.21 presents the trajectories belonging to Flock 0 and
Flock 1. This example demonstrates that flocks sharing the same semantic attributes
may flock in different locations. In general, the results show that the approach may flag
patterns as similar when they share the same members and hence, the same semantic
attributes as well, or based on similar semantic attributes alone.
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Figure 4.19: Relations among the flock patterns found in the analysis step.

Figure 4.20: The trajectories of FLOCK 8 and FLOCK 9.

Classification Results

Aside from performing hierarchical clustering, further analysis through the use of the J48
classification algorithm is employed in order to gain a deeper understanding of a subset of
the discovered relations in the hierarchical clustering sub-step. While hierarchical cluster-
ing provides an overview of the existing relations found in the dataset, the classification
step focuses on a subset of these relations and provides more details as to why these
relations exist.

Analyzing Individual Attributes of Flock Members The J48 classification algo-
rithm was run 11 times, one for each of the discovered flocks in order to obtain a decision
tree for each flock. We will now describe some of the obtained decision trees, which sup-
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Figure 4.21: The trajectories of FLOCK 0 and FLOCK 1.

port the previously described hierarchical clustering results, and the interpretations that
can be inferred from them.

Figure 4.22 presents 2 decision trees, which were obtained when the target class was
set to Flock0 (left) and to Flock2 (right). The decision tree on the left shows how
Flock0 is related to radio telescope and other attributes. It is worth noting that the
hierarchical clustering result has shown that there is an association between the flock
and the radio telescope attraction. The details of this association is explained further
with the obtained decision tree. It shows that members of Flock0 have visited the radio
telescope attraction and they were not interested in the parking accessibility in DNP.
Additionally, each member consists of a couple who are either adults or elderly. Likewise,
while hierarchical clustering results have shown that Flock2 is associated with mound
and bird watching site, more information can be obtained by performing classification
analysis. The obtained decision tree on the right explains that members of Flock2 have
either visited the mounds or the bird watching sites.

Figure 4.22: Decision tree obtained based on individual attributes of flock members when
the target class is Flock0 and Flock2, respectively.

Another interesting decision tree obtained using J48 is shown in Figure 4.23. The
target class in this case is Flock9. Once again, this decision tree further expounds on the
relations also discovered using hierarchical clustering analysis. It indicates that members
of Flock9 can be classified into 2 groups. Those that do not belong to Flock8 should follow
the White route while members of Flock8 should have visited the park before. Note that
since when = −1 means that there is no data on when the visitor last visited the park.
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Figure 4.23: Decision tree obtained based on individual attributes of flock members when
the target class is Flock9.

Analyzing Flock Attributes The J48 classification algorithm was also executed on
flock attributes, setting the target class to the main activity attributes. When the target
class was set to main activity 1, the decision tree shown in Figure 4.24 was obtained.
since when 5 indicates the percentage of flock members who have visited the park more
than 10 years before. Initially ignoring the branch corresponding to since when 5=0.666667,
one can interpret the decision tree as follows: if there are less members who have visited
the park for more than 10 years ago, then there are likely more members whose main
activity was walking. There are some cases though wherein this is not true as indicated
by the branch that we initially ignored. In other words, the decision tree suggests that
visitors who have visited the park more recently than 10 years ago have the tendency to
have walking as their main park activity. This type of relations between main activities
and other attributes can be derived from the other classification results as well.

Figure 4.24: Decision tree obtained based on flock attributes when the target class is
main activity 1.

Summary of DNP Results

It is worth noticing that some promising results have been inferred despite of the limita-
tions of the DNP dataset. Indeed, the dataset is quite small, and thus, the correlations
found among the individual attributes, flock attributes and flock entries may or may not
be conclusive. Besides being a small dataset, it is also quite sparse, containing mostly
of either blank or 0 values (i.e., attribute is not satisfied) and this makes the distance
measures less meaningful since the computed distance scores would be biased by the null
values. However, the analysis performed on this data still shed light on certain interesting
phenomena, which can be subjected for further verification by the domain experts.

The experiments demonstrate that further application of a classification algorithm
provides a good support for explaining how relations found using the hierarchical clustering
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step are correlated. Applying the described interpretation steps to trajectories of flock
members allow the analyst to focus on relations that are only existent among visitors
involved in flocking.

Combining the hierarchical clustering results for individual and flock attributes, the
hierarchical clustering results for flock entries, and the classification results allow the
analyst to infer interesting interpretation from the dataset.

4.4.2 Delft

For the application of the analysis phase to the Delft dataset, we focused on the 10
moving flocks that were obtained using the following set of parameter values: min points
= 3, min time slices = 3, radius = 50m, synchronization rate = 60s. Each flock has 3
members each, and the members remain spatially close for 3-11 time instances (i.e., 2-10
minutes).

Correlation Computation and Hierarchical Clustering Results

Analyzing Individual Attributes of Flock Members Out of 296 trajectories in
Delft, there are 24 trajectories that are members of some flock. We focused on the semantic
attributes of these members for correlation computation and for hierarchical clustering.

Since 2 of the selected attributes (postcodeb and occup) contain string values, we only
used SUC to compute the correlations among them. We have also replaced these 2 at-
tributes with 2 other numeric attributes that are equivalent so as to be able to use Pearson’s
correlation coefficient aside from SUC. The hierarchical clustering results obtained using
the different correlation measures were quite consistent. For this reason, we will only
present sample relations obtained using the standard correlation coefficient, which allows
the analyst to focus on positive correlations. Some of these interesting relations are pre-
sented in Figure 4.25. Relation a) shows that flock2 is linked with frequency (i.e., refers
to how often the pedestrian goes downtown) and they are closely related to flock5 as well.
This implies that members of both flocks tend to visit downtown more often. Relation b)
shows that flock1 is closely connected to shopping. The plot of the trajectories belonging
to this flock is shown in Figure 4.26 with OpenStreetMap as background. It is important
to point out that the flocking occurred in an area with cafés, restaurants, a church, a
museum, and some shops. Referring back to Figure 4.25, relation c) links flock6 with
wth windy. Finally, an interesting relation that involves 2 survey-based attributes is found
in d). It indicates that purpose is linked to gender. These relations by themselves gives
an idea of the composition of the flocks and the correlation among semantic attributes.
Further details can be inferred by linking them with the other hierarchical clustering and
the classification results.

Analyzing Flock Attributes For performing correlation computation and hierarchical
clustering on flock attributes, the survey-based attributes used were derived from the
selected individual attributes that includes the string attributes, postcodeb and occup.
Since the flock attributes are all numerical, we used SUC and the 2 versions of Pearson’s
correlation coefficient for correlation computation. Once again, the dendograms obtained
using the different measures were consistent and we only present some examples that
were derived using Pearson’s correlation coefficient for the purpose of focusing on positive
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Figure 4.25: Sample relations among individual attributes of flock members in Delft.

Figure 4.26: Trajectories belonging to flock1 with OpenStreetMap as background.

correlations. Figure 4.27 presents some sample relations that were extracted. Sets a) and
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b) show that categories group 1 and group 4 are linked with shopping and being 40 years
old, respectively. Meanwhile, set c) connects gender with being retired. The first 2 sets
can be explained further using classification analysis.

Figure 4.27: Sample relations among flock attributes in Delft.

Analyzing Flock Entries To understand the similarities among flock patterns them-
selves, we used the un-weighted and the weighted distance measures described in Sec-
tion 3.3.1. Using both measures gave hierarchical clustering results that are almost sim-
ilar. Figure 4.28 shows the relations among the discovered flocks using the weighted
distance measures. The portion where this differs from the dendogram obtained using the
un-weighted measure is shown in Figure 4.29.

The flock pairs Flock 2 and Flock 5, Flock 7 and Flock 8, and Flock 1 and Flock 4
have 1 member in common while the rest of the flock groupings did not have any member
in common. The reason why Flock 3 and Flock 9 were grouped together is because
they have several semantic attributes with values that are almost similar, if not exactly
similar. These include purpose, frequency, originb, gender, age, and the weather-related
attributes.

Classification Results

As with the DNP experiment, J48 classification algorithm was also performed on the Delft
dataset in order to gain a deeper understanding of the relations found using a combination
of correlation computation and hierarchical clustering.

Analyzing Individual Attributes of Flock Members Classification analysis of in-
dividual attributes in the Delft dataset provided interesting relations, such as the example
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Figure 4.28: Relations among the flock patterns found in the analysis step.

Figure 4.29: Subset of flock similarities in the un-weighted hierarchical clustering result.

provided in Figure 4.30. It describes an interesting relation between Flock1 and occup.
It is important to recall that using hierarchical clustering, Flock1 was closely related to
shopping. Combining these two results, we can infer that members of Flock1 are mostly
housewives and thus, are more involved in shopping activities. Without the combination
of these 2 results, this interesting set of relations cannot be inferred by looking at each
result alone.

Analyzing Flock Attributes Besides analyzing individual attributes, we have also
performed classification analysis on the flock attributes. In particular, we have set the
target class to the group attributes. This was executed 5 times since group has 5 possi-
ble values at individual level. The decision tree obtained by setting the target class to
group 1 is shown in Figure 4.31 while the tree for target class group 4 is presented in
Figure 4.32. These classification results expounds on the relations linked with group 1
and group 4, which have been described earlier as sample relations obtained from the
hierarchical clustering results. The decision tree for group 1 indicates that this group is
positively correlated with shopping 3 and gender 1. On the other hand, group 4 is as-
sociated with flocks wherein some members are 40 years of age and with some members
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Figure 4.30: Decision tree obtained based on individual attributes of flock members when
the target class is Flock1.

coming from origin 6. For flocks that do not have any members who are 40 years old,
they should not be linked with shopping 2 in order to be categorized under group 4.

Figure 4.31: Decision tree obtained based on flock attributes when the target class is
group 1.

Summary of Delft Results

Interesting relations were found by performing the analysis phase on the Delft dataset,
such as the relation between Flock1 and moving entities who are housewives and thus, are
involved in shopping activities. As with DNP, the combination of hierarchical clustering
results on the individual and flock attributes and on the flock entries with the classification
results allowed the analyst to deduce interpretations that could not have been inferred if
each results were analyzed alone.
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Figure 4.32: Decision tree obtained based on flock attributes when the target class is
group 4.

4.5 Overall Summary

This section summarizes the results obtained using the pattern interpretation framework.

By applying the pattern discovery phase of the framework, we were able to find a
number of moving flocks from the DNP, Fontainebleau and Delft datasets. Our initial
experiments included stationary flocks in the results and we found that the number of such
flocks can be too much for further analysis (recall Figures 4.3, 4.6, and 4.9). Moreover,
many of these flocks are not real flocks in the sense that they may be slightly moving
in different directions and stopping in a certain location. This type of flocks fall under
another class of patterns called meet, which was described earlier in Section 2.3. Compared
with existing flock algorithms, our algorithm provides the advantage of allowing the user
to focus on patterns that can lead to understanding the aggregate movement behavior of
entities over a sequence of locations.

The discovered moving flock patterns by themselves do not provide much information
about the behavior of the flocking entities. The results only provide information about
the geographical coordinates, and the time of flocking. In order to exploit these patterns
for the purpose of understanding movement behavior, the semantic annotation and the
pattern analysis phases of the framework must be applied. By doing so, we were able to
find some interesting interpretations from both the DNP and the Delft datasets.

In the DNP dataset, we were able to identify common properties shared by individuals
who go to the same place at similar times of the day. For example, members of flock0 are
attracted to the park for no specific reasons and yet they have visited several attractions
such as radio telescope, david lakes, juniper berries, and fens. They were in the same
location around lunch time at different days. We were also able to relate properties such
as visitor types, age category, main activities and attraction visited. For instance, flocking
members whose age ranges from 30-59 tend to visit the bird watching site. Furthermore,
the analysis of the flock entries allowed the identification of similar or related flocks. An
example of such flocks are Flock 8, Flock 9 and Flock 10, which are similar due to the
presence of common members. Flock 0 and Flock 1 are also similar but in the semantic
sense, having many members that are adult couples and were mainly involved in walking.

Likewise, interesting interpretations were also obtained from the Delft dataset. For
example, a common property shared by members of flock1 is their interest in shopping
and most members of this flock are housewives. This result is validated by the fact that
the flocking occurred in an area with different types of shops and services such as music
shops, shoe store, supermarket, cafés and restaurants. Another interesting relation we
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found is between the purpose and the gender of the flocking pedestrians, which is sound
since male and female pedestrians tend to have different purposes in moving.

The interpretations found in both datasets were made possible with the integration
of semantic data to the discovered patterns and the analysis of the semantically enriched
patterns. The performed experiments demonstrate that interesting interpretations can be
inferred through the utilization of the proposed pattern interpretation framework.
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Chapter 5

Conclusions

This chapter provides a discussion of the contributions that have been accomplished
through the the proposed framework and through its individual phases. We close with a
discussion of the possible directions for extending the proposed framework.

5.1 Contributions

In this thesis, we emphasize the importance of both the data mining and the interpreta-
tion phases of the KDD process by proposing a framework that covers both phases and
demonstrating the type of interpretations that can be inferred using this framework on
real world datasets.

The succeeding paragraphs emphasize the main contributions of our work.

New Notion of Moving Flocks We focused on a specific type of movement pattern
called moving flock patterns, which is a novel concept we have initially introduced in
[89]. While existing definitions of flock patterns exist, it was only in our definition of
moving flock patterns that the moving constraint was introduced. This constraint restricts
moving flock patterns to refer to a group of objects that move together from one location to
another over a maximal time period, in contrast to simply staying together in one location.
Therefore, we differentiate between moving and stationary flocks since we perceive them
as two different types of patterns. Consequently, we perceive them as having different
semantics.

The Framework Another novelty in this work is the proposal of a pattern interpretation
framework that includes both the discovery of patterns and their analysis. This provides
a more complete picture of the KDD process for flock patterns compared to existing works
by exploiting semantic attributes that are explicitly included in the dataset. As a result,
the use of the framework allows the deduction of meaningful interpretations that are useful
in understanding movement behaviors.

Moreover, the framework initiates a first step towards interpretation of movement
patterns. While there are few existing works that attempt to address this issue as described
in Section 2.6, the state of the art in this field is still at the incubation stage. Recall that
existing works can be categorized into two groups, namely, visual analytics tools and
ontology-based systems. While visual analytics tools have helped in moving a step closer
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to understanding patterns, such tools can be improved further by considering other types
of semantic data, such as specific characteristics of the moving entities, aside from mainly
relying on geographical data for semantics. Meanwhile, most ontology-based systems
that aim to interpret movement patterns mainly classify the extracted patterns based on
the semantics incorporated to the data through ontology. For example, a pattern can
be classified as tourist-related or work-related using such systems but support for deeper
interpretations can further ease the task of the analyst. On the other hand, our framework
supports deeper interpretation by exploiting thematic attributes included in the input data
and by utilizing data mining techniques. This allows the deduction of interactions among
moving entities and possible reasons for the existence of the pattern.

Instantiation-specific Contributions Aside from introducing a conceptual frame-
work for pattern interpretation, we have also demonstrated how the framework can be
instantiated to interpret specific patterns, particularly moving flock patterns. The next
paragraphs describe the specific accomplishments, which are obtained through this instan-
tiation and are discussed according to each phase of the framework.

Pattern Discovery Phase: Aside from formally defining the concept of moving flocks
for the pattern discovery phase, we have also developed and implemented an algorithm that
extracts such patterns from datasets consisting of (x, y, t) observations. The algorithm
considers spatio-temporal coherence among candidate flock members by checking their
spatial closeness as defined by a circular region of predefined radius with respect to a base
object at each time instance. Afterwards, spatially close objects whose spatial coherence
persists over a period of consecutive time instances are merged to complete the check
for spatio-temporal coherence. The distinguishing feature of this algorithm compared to
existing flock algorithms is its pruning step, which involves the elimination of redundant
and stationary patterns.

The algorithm was validated through the visualization of flock trajectories and through
an application of the null hypothesis principle in order to confirm that the obtained flock
results are inherent in the dataset. In applying this principle, two techniques for random-
ization techniques for movement dataset were described. These include randomization
using Markov chain and randomization based on uncertainties in (x,y) data. Moreover,
the algorithm was shown to be robust with respect to entity ordering in the input dataset.
Though the results may vary at times, the variations are few and mostly minor.

Furthermore, we recognize that the selection of the algorithm’s parameters is crucial in
obtaining meaningful flocks. Thus, we have described a set of guidelines for selecting the
parameters and we have extended a technique used in DBSCAN in order to specifically
suggest a good radius value to the end user.

Semantic Annotation Phase: As for the semantic annotation phase, we proposed a
guideline for selecting attributes to be used for semantic annotation by referring to the
work in [92], which do not only cover flocks but collectives in general. Moreover, we
propose two levels of semantic annotation, one at individual level and another at flock
pattern level. For the individual level, it would be ideal to only consider the properties of
flock members and ignore those that do not belong to any flock. This is advantageous since
only a subset of entities have to be annotated and analyzed, which allows the analyst to
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focus on relations that exist among individual attributes when flocking occurs. However,
in the case that the dataset is small, statistically significant results may not be inferred
by focusing only on such a small subset of individuals. Thus, an alternative is to consider
individual properties of all individuals, whether they belong to a flock or not, before
analyzing the relations that occur among them. However, doing this extracts relations
that may not exist for flocking entities.

These specific contributions (i.e., the guideline for semantic attribute selection and the
two levels of semantic annotation) of the semantic annotation phase addresses two issues
that were posed as questions in Section 1.2. Recall that these questions are the following:

1. At which level should the movement data and patterns be annotated?

2. Which of the available semantic attributes should be incorporated into the movement
data and patterns?

Pattern Analysis Phase: Lastly, for the pattern analysis phase, we propose the com-
bination of a hierarchical clustering and a decision tree induction classification algorithm
in order to interpret the patterns found in the pattern discovery phase. While these data
mining tasks are typically applied to the entries found in the dataset, we chose to apply
them to individual properties, to flock properties, and to flock patterns themselves. Doing
so can aid the analyst in understanding extracted flock patterns. Clustering allows the
analyst to have an overview of the different relations that exist among the considered
attributes and among the flocks, while classification allows the analyst to focus on the
more interesting relations and extract more details as to why the correlation exists among
them. We chose to use hierarchical clustering over other types of clustering algorithms
since it allows the analyst to pinpoint stronger over weaker relations and hence, having
the capability to determine which relations are more important. Hierarchical clustering
results also provide information about the relations among different clusters. On the other
hand, we selected a decision tree induction algorithm since this type of algorithm provides
classification results that are intuitive and easy to understand.

Since hierarchical clustering requires a distance matrix of the compared entries, we used
SUC and Pearson’s correlation coefficient to compute the similarity among attributes and
extract the distance matrix from this. The use of a combination of different correlation
measures allow the analyst to determine which relations are more interesting by finding
those that are consistent among all measures. As for computing the similarity among
flocks, we have used a straightforward computation by averaging the difference among
corresponding flock attribute values. We have also described a taxonomy-based approach
that matches semantically corresponding attributes, besides those that exactly correspond,
for computing flock similarity.

Note that the instantiation of the three phases of the framework to moving flock
interpretation addresses the following questions posed as challenges in Section 1.2:

1. How can the semantically-enriched movement data and pattern be transformed into
meaningful patterns?

2. What type of interpretations can be inferred using this technique?



110 CHAPTER 5. CONCLUSIONS

The details provided for each phase of the framework answers the first question. To
address the second question, it was mentioned that application of the instantiated frame-
work allows the deduction of interactions among moving flock members, which can lead
to understanding flocking behaviors. It is important to note, however, that the interpre-
tations deduced do not have full certainty. We have currently addressed the certainty
issue by checking the consistency of the clustering and classification results. That is, if a
relation is obtained from the clustering and the clustering regardless of whether SUC or
Pearson’s coefficient was utilized, then this relation has a higher certainty of being mean-
ingful compared to a relation obtained from either clustering or classification result alone.

Application to Real-World Datasets: To assess the feasibility and the usefulness of the
framework, we have developed a set of tools to support its application and it was tested on
two pedestrian datasets, which are the DNP and the Delft dataset. One of the interesting
type of interaction inferred from the DNP dataset is the tendency of the flocks to follow
the White route, which is the most popular path in the park according to the domain
expert. In the Delft dataset, an interesting relation obtained is the connection between
a pedestrian’s gender and his/her purpose in moving. In addition to these datasets, the
moving flock algorithm was also tested on the Fontainebleau dataset.

Limitations A main limitation of the framework, however, is its scalability. It is good
for targeted analysis wherein the user is interested in a specific and small set of patterns.
However, the semantic annotation and the pattern analysis phases can become cumber-
some if there is a large number of semantic attributes and/or a large number of patterns
to process. More sophisticated techniques that addresses this issue should be designed
and developed.

Another limitation lies in the interpretation results that can be obtained using the
instantiated framework. Though it allows the analyst to infer interactions among moving
entities, there is currently no quantitative measure that assesses the interpretations’ cer-
tainty. Aside from relying on the domain expert or the consistency of the obtained results,
it would be ideal to have a measure that evaluates the interpretation result.

5.2 Future Works

Based on the known limitations of the proposed framework, this section provides a dis-
cussion of possible extensions to improve it.

Though the proposed framework was only completely tested on pedestrian datasets
and on moving flock patterns, it is applicable to other datasets as well and can be applied
in discovering and interpreting other pattern types. Unfortunately, there are currently
only a small number of datasets that explicitly include semantic attributes. Moreover,
semantic data is also prone to human error. Analysis of such data, assessing and im-
proving their accuracy is another aspect of the semantic annotation phase that should be
further investigated. We are currently testing the flock discovery algorithm on a vehicles
dataset. The semantics of the discovered flocks would change in this case. In the pedes-
trian datasets, flocks are interpreted as groups following certain paths/routes together.
This type of behavior is less common among vehicles and flocking among vehicles more
commonly occurs due to traffic jams. The appropriate set of parameters for vehicles is
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also different compared to those for pedestrians.
As mentioned previously, it would also be interesting to apply the framework to con-

sider other pattern types. We have associated stationary flocks with meet, convergence
and encounter patterns since these patterns describe a group of moving entities headed
towards the same location. For this reason, these patterns are closely related to flocks and
can be interpreted using the instantiation of the framework for moving flocks. Aside from
applying to flock-related patterns, it would also be interesting to apply it to other patterns,
such as the T-pattern. Recall that a T-pattern represents the typical collective movement
between regions of interest. Since the identity of individual members involved in this
pattern is perceived as less important and the emphasis is on the regions of interest, the
semantic annotation and the pattern interpretation phases should focus on geographical
information in order to understand the meaning implicit in such types of patterns. This
can lead to interpretations on how the geographical environment affects the movement
behavior implicit in the data.

The dependence of the framework’s success on the explicit availability of semantic
attributes of the dataset can be seen as a limitation. In cases where such semantics are
not explicitly available, it would be ideal to have a tool that automatically integrates
semantic attributes into the dataset based on other sources of context information. Semi-
automatic annotation tools can also be useful in this integration task.

Another limitation of the framework is its scalability in terms of interpreting large
numbers of patterns with large number of semantic properties, as mentioned in the pre-
vious section. The following directions can be pursued to address this issue. First, the
implementation of the flock discovery algorithm can be improved by the using faster search
algorithm and indices in order to make the computation of the spatial neighborhood more
efficient. Second, the semantic annotation phase can be semi-automated through the de-
velopment and use of suitable annotation tools, and through the introduction of ontologies.
More specifically, refinements can be introduced in Wood and Galton’s set of criteria [92]
in order to achieve the right level of distinguishing criteria for particularly classifying mov-
ing flocks. Having such a refined set of criteria can filter a large number of unnecessary
attributes. Third, incorporating a refined taxonomy for moving flocks, or at least flocks in
general, to the pattern interpretation phase may ease the task of inferring meanings from
patterns and also improve the quality of deduced interpretations. In this case, we foresee
this future work to be quite related to ontology-based interpretation systems. Lastly, an
integrated tool that supports the entire framework can ease the process. This tool should
support progressive analysis of the discovered flocks by allowing users to focus on spe-
cific flock types based on an interesting set of criteria such as flocks occurring in certain
attractions, flocks occurring on certain time durations, and others.

The moving flock algorithm can be improved further by considering density-based
algorithms that do not restrict the shape of an entity’s spatial neighbors. Currently, the
algorithm uses a disk to approximate the spatial neighbors of an entity. As a consequence
spatial neighborhoods are retricted to a circular shape, which in turn, may result in the
extraction of flocks that include some members as noise (i.e., these are not really members
of the flock but are included as members due to the shape of the disk). Using a flexible
shape for the spatial neighborhood can help in obtaining flocks that are less susceptible
to noises. However, algorithms for finding neighbors with such shapes are less efficient.
Moreover, a possible problem with using unrestricted shapes is that a single shape may
capture more than one flocking behavior, making the analysis of discovered patterns more
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complex.
In order to address the issue of assessing the obtained interpretation results, there is a

need for a domain expert or some form of stored knowledge in order to perform supervised
validation of the results.
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