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Abstract 

The aim of this thesis is to investigate the potential of computational intelligence techniques 

for some applications in the analysis of remotely sensed multi-spectral images. In 

particular, two problems are addressed. The first one is the classification of oil spills at sea, 

while the second one is the estimation of sea bottom depth. In both cases, the exploitation 

of optical satellite data allows to develop operational tools for easily accessing and 

monitoring large marine areas, in an efficient and cost effective way.  

Regarding the oil spill problem, today public opinion is certainly aware of the huge impact 

that oil tanker accidents and oil rig leaks have on marine and coastal environment. 

However, it is less known that most of the oil released in our seas cannot be ascribed to 

accidental spills, but rather to illegal ballast waters discharge, and to pollutant dumping at 

sea, during routine operations of oil tankers. For this reason, any effort for improving oil 

spill detection systems is of great importance. So far, Synthetic Aperture Radar (SAR) data 

have been preferred to multi-spectral data for oil spill detection applications, because of 

their all-weather and all-day capabilities, while optical images necessitate of clear sky 

conditions and day-light. On the other hand, many features make an optical approach 

desirable, such as lower cost and higher revisit time. Moreover, unlike SAR data, optical 

data are not affected by sea state, and are able to reduce false alarm rate, since they do not 

suffer from the main false alarm source in SAR data, that is represented by the presence of 

calm sea regions. In this thesis the problem of oil spill classification is tackled by applying 

different machine learning techniques to a significant dataset of regions of interest, 

collected in multi-spectral satellite images, acquired by MODIS sensor. These regions are 

then classified in one of two possible classes, that are oil spills and look-alikes, where look-

alikes include any phenomena other than oil spills (e.g. algal blooms...). Results show that 

efficient and reliable oil spill classification systems based on optical data are feasible, and 

could offer a valuable support to the existing satellite-based monitoring systems. 

The estimation of sea bottom depth from high resolution multi-spectral satellite images is 

the second major topic of this thesis. The motivations for dealing with this problem arise 

from the necessity of limiting expensive and time consuming measurement campaigns. 

Since satellite data allow to quickly analyse large areas, a solution for this issue is to 

employ intelligent techniques, which, by exploiting a small set of depth measurements, are 

able to extend bathymetry estimate to a much larger area, covered by a multi-spectral 

satellite image. Such techniques, once that the training phase has been completed, allow to 

achieve very accurate results, and, thanks to their generalization capabilities, provide 

reliable bathymetric maps which cover wide areas. A crucial element is represented by the 

training dataset, which is built by coupling a number of depth measurements, located in a 

limited part of the image, with corresponding radiances, acquired by the satellite sensor. A 

successful estimate essentially depends on how the training dataset resembles the rest of the 

scene. On the other hand, the result is not affected by model uncertainties and systematic 

errors, as results from model-based analytic approaches are. In this thesis a neuro-fuzzy 

technique is applied to two case studies, more precisely, two high resolution multi-spectral 

images related to the same area, but acquired in different years and in different 

meteorological conditions. Different situations of in-situ depths availability are considered 

in the study, and the effect of limited in-situ data availability on performance is evaluated. 

The effect of both meteorological conditions and training set size reduction on the overall 

performance is also taken into account. Results outperform previous studies on bathymetry 
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estimation techniques, and allow to give indications on the optimal paths which can be 

adopted when planning data collection at sea.  
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Preface 

This thesis is organized as follows: Chapter One gives an overview of satellite sensors for 

remote sensing of the marine environment. In particular, attention is focused on optical 

sensors, and on how these sensors are able to collect information regarding some properties 

of sea water and of its constituents. An introduction to some radiometric quantities useful to 

understand radiative transfer in atmosphere and in water is also given (Section 1.3.1). Then, 

a brief description of the apparent and inherent water optical properties follows (Section 

1.3.2 and Section 1.3.3). Thus, this first chapter aims at introducing the reader to the 

context where this work is placed, that is the remote sensing of marine environment based 

on optical satellite data. 

Chapter Two describes most of the methods which have been presented in the literature for 

retrieving information on water optical properties from remotely sensed optical images. 

Most contributions are about retrieving sea water constituent properties and bottom depth 

estimation. Two branches of techniques are described in this chapter, that are model-based 

analytical techniques (Section 2.1) and computational intelligence-based techniques 

(Section 2.2). The latter are usually employed in combination with model-based techniques, 

or use simulated training dataset based on theoretical models. 

Chapter Three describes the approach to the use of computational intelligence techniques 

adopted in this thesis for remote sensing applications. It is a purely experimental approach, 

that abandons any model assumption, and is based solely on data. All techniques described 

in Chapter Three are used for the two applications presented in the following chapters. 

Chapter Four reports the application to oil spill classification. First an introduction to the 

problem of oil pollution at sea is given. Then, some physical and chemical properties of 

different types of hydrocarbon compounds are briefly outlined, followed by the optical 

properties (Section 4.2.1 and Section 4.2.2). Attention is focused on the creation of a 

contrast between oil and water, which is responsible for the possibility of detecting oil spills 

by means of optical sensors (Section 4.2.3). This helps to understand the mechanisms that 

allow to detect oil spills from remote sensors, which are described in Section 4.3. Since, up 

to now, the problem of oil spills has been tackled mainly by exploiting SAR sensors, in 

Section 4.3.1 a review of oil spill detection and classification techniques, developed for 

SAR data, is given. Section 4.4 describes the advantages and using optical data, and reports 

some previous works presented in the literature. The following sections describe the 

proposed approach (Section 4.5), the dataset (Section 4.6), the features used to characterize 

oil spills (Section 4.7), and different classification systems that have been employed, 

starting with a simple batch approach (Section 4.8), improving the batch approach (Section 

4.9) and concluding with an online cost-oriented approach (Section 4.10), showing the 

achieved results. 

Chapter Five reports the application to bathymetry estimation from high resolution multi-

spectral satellite images. In particular, a review of different approaches to bathymetry 

estimation from satellite data is given in Section 5.2, then, in Section 5.3, two case studies 

are presented. Section 5.4.1 describes the results obtained in the first case study, that is 

characterized by optimal sea conditions, and a significant dataset of in-situ depth 

measurements. Different situations of limited in-situ data availability are also analysed. 

Section 5.4.2 reports the results obtained in the second case study, characterized by 

unfavourable sea conditions and limited in-situ data availability.  

Finally, Section 6 draws some conclusions.  
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Chapter One: Remote sensing of the marine environment: basic 

concepts 

1.1 Overview 

Today, a wide variety of sensors, mounted on satellite platforms, is employed for Earth 

Observation (EO) activities, devoted to environmental monitoring. These sensors 

continuously acquire images of our planet, providing an extensive coverage across both 

space and time, and allowing the scientific remote sensing community to analyse a number 

of phenomena which may vary over large spatial and time scales. Since 70.9% of the Earth 

is covered by oceans [1], it is easy to understand that satellite images represent a powerful 

tool to study the marine environment. Among satellite sensors, we can distinguish between 

active sensors, such as radars, and passive sensors, such as spectrometers. The former are 

composed of an electromagnetic radiation source which emits directed energy pulses, and 

of a collector, which measures the backscattered signal. The returns from these radars, 

given by the reflection of active signals from small gravity and capillary waves, can be 

formed into images of the sea surface, that display a large variety of surface phenomena at a 

high resolution, and under nearly all weather conditions. The latter measure solar radiation 

reflected by the Earth surface, and the emitted blackbody radiation. Both day light and a 

cloudless sky are needed for these measurements. As will be explained later on, from the 

intensity and frequency distribution of the radiation collected by passive sensors we can 

study the ocean colour, which is used to retrieve information about sea water constituents, 

sea bottom properties, and the presence of polluting substances or anomalous algae growth. 

For this reason, in the present thesis only passive optical sensor data will be considered. 

The forerunner of ocean colour devoted satellite passive sensors was the Coastal Zone 

Colour Scanner (CZCS), launched by NASA in 1978. Since that date, a significant number 

of satellite sensors has been employed for studying the marine environment.  

The importance given to EO missions can be understood by looking at Table 1 and Table 2, 

which list multi-spectral and hyper-spectral satellite sensors which are currently used for 

EO purposes by space agencies and by commercial satellite imagery providers. 
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Table 1:Current Earth Observation multi-spectral and hyperspectral sensors. 

Sensor Agency Satellite 
Launch 

date 

Swath 

(km) 

Resolution 

(m) 
Bands 

Spectral 

Coverage 

(nm) 

AVHRR NOAA (USA) NOAA-18 
20 May 

2005 
2900 1100 6 

580-

12500 

AVNIR-2 JAXA (Japan) ALOS 
24 Jan. 

2006 
70 10 4 420-890 

CHRIS ESA (Europe) PROBA 
22 Oct. 

2001 
14 

17 19 
400-1050 

34 63 

COCTS CNSA (China) HY-1B 
11 Apr. 

2007 
1400 1100 10 

402-

12500 

CZI CNSA (China) HY-1B 
11 Apr. 

2007 
500 250 4 433-695 

ETM+ NASA (USA) Landsat-7 
15 April 

1999 
183 

30  

(60- thermal 

band) 

7 
450-

12500 

GOCI 
KARI/KORDI 

(South Korea) 
COMS 

26 Jun. 

2010 
2500 500 8 400-865 

HICO 
NASA, ONR, 

DOD (USA) 

JEM-EF Int. 

Space Stn. 

18 Sep. 

2009 
50 100 124 380-1000 

Hyperion NASA (USA) EO-1 
21 Nov. 

2000 
7.75 30 220 356-2577 

MERIS ESA (Europe) ENVISAT  
1 Mar. 

2002 
1150 300/1200 15 412-1050 

MODIS-

Aqua 
NASA (USA) 

Aqua  

(EOS-PM1) 

4 May 

2002 
2330 

250/500/ 

1000 
36 

405-

14.385 

MODIS-

Terra 
NASA (USA) 

Terra 

 (EOS-AM1) 

18 Dec. 

1999 
2330 

250/500/ 

1000 
36 

405-

14.385 

MSC 
KARI 

(South Korea) 
KOMPSAT-2 

28 July 

2006 
15 1 4 450-900 

OCM ISRO (India) IRS-P4  
26 May 

1999 
1420 360/4000 8 402-885 

OCM-2 ISRO (India) Oceansat-2  
23 Sep.  

1999 
1420 360/4000 8 404-885 

POLDER-

3 

CNES 

(France) 
Parasol 

18 Dec. 

2004 
2100 6000 9 443-1020 

RSI 
NSPO  

(Taiwan) 
FORMOSAT-2 

20 May 

2004 
24 2 4 450-900 

SeaWiFs NASA (USA) OrbView-2  
1 Aug 

1997 
2806 1100 8 402-885 

TM NASA (USA) Landsat-5 
1 Mar. 

1984 
183 

30 (120-

thermal band) 
7 

450-

12500 
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Table 2:Current commercial Earth Observation satellites. 

Satellite Company 
Launch 

Date 

Swath 

(km) 

Resolution 

(m) 
Bands 

Spectral 

Coverage 

(nm) 

GeoEye-1 GeoEye 6 Sep. 2008 15.2 1.65 4 450-920 

IKONOS GeoEye 24 Sep. 1999 11.3 3.2 4 445-853 

Orbview-2 GeoEye 1 Aug 1997 2800-1500 1130-4500 8 402-888 

Quickbird DigitalGlobe 18 Oct. 2001 16.5 2.4 4 450-900 

SPOT-4 Spot Image 24 March 1998 60 20 4 500-1750 

Worlview-2 DigitalGlobe 8 Oct. 2009 16.4 1.8 8 400-1040 

1.2 Ocean colour remote sensing from optical sensors 

Optical sensors measure solar radiation backscattered from the sea surface at several 

selected wavelengths. As mentioned before, radiation sources for these sensors are the Sun 

and the Earth. In particular, the spectrum of the solar radiation (Figure 1) is close to that of 

a black body with a temperature of about 5800 K, thus, the Sun mostly emits in the visible 

and near-infrared part of the spectrum (0.4-0.7 μm) while the Earth, being at a mean surface 

temperature of about 280 K, emits mostly in the thermal infrared part of the spectrum (8-14 

μm). Optical sensors for remote sensing of the ocean colour employ wavelengths in the 

visible and near- infrared, thus Earth emitted radiation can be considered as negligible.  

However, the photons from the sun can follow different pathways before they reach the 

sensor. In particular, we can consider the following main contributions to the remotely-

sensed signal (see Figure 2): 

- path radiance: light reaching the sensor after scattering of photons by the 

atmosphere; 

- direct radiance: light reaching the sensor after specular reflection of direct sunlight at 

the sea surface;  

- water leaving radiance: light upwelling from the sea surface after back-scattering in 

water.  

In addition, we can note that light is also attenuated due to atmospheric absorption and 

scattering while going through the optical path from the source to the sensor.  

It is only the upwelling water leaving radiance that carries any useful information on the 

water body, while atmospheric contribution and specular reflection at the sea surface 

represent noise sources, and must be corrected for. In particular, attenuation due to 

atmospheric absorption and scattering cannot be prevented during the remote measurement 

process, thus, the upwelling radiance from the water has to be processed by means of some 

atmospheric correction algorithm, in order to identify what the water leaving radiance 

contribution would have been if there were no atmosphere in between the sensor and the 

water body. Atmospheric correction represents an important issue for analytic approaches 

[2], since these algorithms need some initial estimate of many parameters characterizing 
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those atmospheric components which contribute to absorption and scattering of light. Such 

parameters must be determined using other sources of information, like in-situ 

measurements. However, for many cases these measurements could not be available.  

 

 
Figure 1: Measured extraterrestrial solar spectral irradiance at mean Earth-Sun distance. 

Plotted from data in [3]. 

Looking in more detail at the water leaving radiance contribution, we can identify many 

factors affecting the signal. Direct sun light and diffuse sun light (that is sunlight scattered 

by the atmosphere) penetrating under the sea surface may be absorbed or scattered by water 

molecules, or by the various suspended and dissolved materials present in the water. Part of 

this light may reach the sea bottom (in shallow waters), and be reflected from it. At the end, 

part of the reflected radiation and part of the scattered radiation will reach the remote 

sensor. The remaining part will be scattered towards other directions, or it will be absorbed 

while going up. 

Because of these processes, the signal collected by the remote sensor carries information on 

the type and concentration of substances present in water, together with bottom properties. 

In order to analyse the remotely sensed signal, it is important to understand how solar 

radiation interacts with the sea water body, and how the optical properties of sea water are 

modified by the presence of different types of marine constituents. In this framework, the 

effect of pure sea water, which is sea water in absence of any organic or inorganic matter 

other then water molecules and dissolved salts usually present in oceanic water, is usually 

distinguished from the effect of particulate, which can be classified into three main 

components [4] [5]:  
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- Phytoplankton: the autotrophic component of plankton. They are able to carry out 

the photosynthetic process, thanks to the chlorophyll content within their cells. Other 

microscopic organisms are also included in this contribution. 

- Suspended matter: suspended inorganic sediments. 

- Yellow substance: coloured dissolved organic matter (CDOM). This contribution 

also includes detritus which have absorption characteristics similar to those of yellow 

substances. 

 

In addition, we have to consider bottom contribution, which can influence the remotely 

sensed ocean colour in cases where the water is sufficiently clear and shallow. This 

contribution depends on depth, water transparency, and bottom type. The latter could be, 

for instance, sandy, rocky, coraline or algae covered.  

 

 
Figure 2: Contributions to the remotely sensed signal. (a) Light scattered by atmosphere. 

(b) Specular reflection of direct sunlight at the sea surface. (c) Water leaving radiance. 

 

Moreover, in the literature a distinction is usually made [6] [3] between Case 1 waters , 

which are those where phytoplankton contribution dominates and is the principal 

responsible for variations in water optical properties, and Case 2 waters, which are those 

waters where also suspended matter and yellow substance contribute.  

The ocean colour is thus determined by scattering and absorption of visible light by pure 

water itself, as well as by the inorganic and organic, particulate and dissolved, material 

present in the water. The following paragraph reports a description of how these processes 

affect the remotely sensed signal. 
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1.3 Ocean colour  

The observed ocean colour is a direct consequence of the interaction of incident light flux 

with water molecules and with other organic and inorganic substances present in it. Spatial 

and time variations in water composition are then reflected in colour variations.  

In order to interpret the ocean colour, it is useful to express the remotely detected signal as 

a function of concentrations of the various substances present in the water column. The 

following paragraphs define the link between radiometric quantities, which can be 

measured by remote sensors, and water constituent concentrations. 

1.3.1 Radiometric quantities 

1.3.1.1 Geometry 

Figure 3 shows the geometry of the problem. Polar spherical coordinates are used, so that a 

generic direction of light propagation, identified by a versor ̂ , is expressed in terms of the 

zenith angle θ, between the direction of light propagation and the upward perpendicular to 

the horizontal reference plane, and the azimuth angle  , the angle between the vertical 

plane containing the light beam, and a specified vertical reference plane, usually chosen so 

as to simplify calculations. Here, according to the formulation used in [7] [8], the direction 

of zero azimuth is defined as the position of the sun. 

 
Figure 3: Definition of the polar angles and of the upward (Ξ

u
) and downward (Ξ

d
) 

hemispheres. ̂  represents the versor identifying a direction determined by the angles θ 

and  . 

 

In Figure 3 the concept of solid angle is also represented: considering the area A on the 

surface of the sphere of radius r in figure, the solid angle, Ω, in units of steradians (sr), is 

the set of directions defining this area so that Ω = A/r
2
. 
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1.3.1.2 Radiant flux, radiance, irradiance 

Radiant flux Φ can be defined as the radiant energy per unit time, Q/t, emitted by a point 

source (or by an infinitesimally small element of an extended source). Thus the radiant 

intensity is defined as: 











t

Q
I  (1) 

If we have an extended source it is necessary to consider the size of the area from which 

light is emitted or reflected. Radiance L is defined as the radiant intensity per unit area of a 

plane at right angles to the direction of light flow, L = dI/dA. Surface radiance is the 

radiant flux emitted in a given direction ξ = (θ, ) per unit solid angle, per unit projected 

source area. When the direction is not perpendicular to the source area As, the projected 

source area is Ascosθ (Figure 4). Field radiance at a point in space, in direction ξ, is the 

radiant flux in an element of solid angle dΩ, centred on ξ, passing through the infinitesimal 

area dA at right angles to ξ. The field radiance at a point in a plane surface surrounded by 

an infinitesimal area, dS, is the radiant flux through the projected surface area, dS cosθ. 

Spectral radiance, L(θ, ,λ) is radiance per unit wavelength, either passing a point in space 

(spectral field radiance) or emitted by an extended source (spectral surface radiance). 

 
Figure 4: Surface radiance definition. 

 

An operational definition of spectral radiance is the following:  

 







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Q
L ,,    (W m
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 sr

-1
 nm

-1
) (2) 

that is, the radiant energy Q measured over the integration time t, by a sensor with 

detector area A, angular field of view Ω, and bandwidth λ centred on λ. The measured 

spectral radiance is equivalent to the radiance emitted in the direction of the sensor by an 

extended source of area As, equal to the instantaneous field of view (IFOV), represented in 

grey in Figure 5. In particular, the radiant flux intercepted by the sensor is obtained by 

integrating the contributions of all infinitesimal area elements dAs, contained within the 

r

),(ˆ  

θ



A
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IFOV, each contribution being proportional to the infinitesimal area times the cosine of the 

nadir viewing angle θ, whose variations within the area will be negligible for a sensor with 

a narrow angular field of view. 

 
Figure 5: Measurement of the spectral radiance emitted by an extended horizontal source. 

 

In order to measure L(λ) with a good resolution in all involved parameter domains, without 

encountering effects like diffraction, the intervals Δt, ΔA, ΔΩ and Δλ must be small enough. 

In practice, there is usually a tradeoff between the different parameters.  

 

Using the definition of radiance we can also define the concept of irradiance. Plane 

irradiance is the total radiant flux per unit area incident on an infinitesimal element of a 

plane surface, divided by the area of that element and integrated with respect to solid angle:  

      dLE  cos,,    (W m
-2

 nm
-1

) (3) 

The cosθ term indicates that the contribution by radiance from different directions is 

weighted by the cosine of its zenith angle. When all directions are treated equally, we 

obtain the scalar irradiance, E0, that is the integral of the radiance distribution at a point 

over all directions about this point: 

      dLE  ,,0    (W m
-2

 nm
-1

) (4) 

By integrating E over the upper and lower hemispheres we obtain the downwelling (plane) 

irradiance, Ed, and upwelling (plane) irradiance, Eu, which are the irradiances incident on a 

horizontal surface respectively from the upper hemisphere Ξd (where the light is travelling 

downward), and the lower hemisphere Ξu (where the light is travelling upward): 

θ

As

As cosθ

A

Ω

dAs

Remote sensor
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    
d

dLEd  cos,,    (W m
-2

 nm
-1

) (5a) 

    
u

dLEu  cos,,    (W m
-2

 nm
-1

) (5b) 

Of course we can also define the upwelling and downwelling scalar irradiances:  

    
d

dLE d  ,,0    (W m
-2

 nm
-1

) (6a) 

    
u

dLE u  ,,0    (W m
-2

 nm
-1

) (6b) 

Downwelling and upwelling irradiances may be measured with a cosine collector, (angular 

field of view 180
o
) that measures the light falling on the surface of a flat diffuser, and is 

thus sensitive to light from different directions, in proportion to the cosine of the incidence 

angle. Thus, an operational definition of downward and upward spectral irradiance is the 

light incident on the detector area ΔA of a horizontal cosine collector, with spectral 

bandwidth of Δλ, over the integration time Δt, and pointing, respectively, downward or 

upward: 

 








At

Q
E d

d    (W m
-2

 nm
-1

) (7a) 

 








At

Q
E u

u    (W m
-2

 nm
-1

) (7b) 

Alternatively, downwelling irradiance may be measured using a Lambertian reference 

panel, that is. a panel with a surface which reflects radiance equally in all directions 

regardless of incidence angle. The radiance distribution reflected into the upper hemisphere 

from an ideal Lambertian panel would thus be isotropic. After correction for panel 

reflectivity, the downwelling irradiance may be obtained by multiplying the radiance 

reflected from the panel by π (this arises from the definition of irradiance in equation (5a)). 

 

Regarding total scalar irradiance, measurements can be performed by recording the light 

incident on the surface of a diffusing sphere, which is equally sensitive to light from all 

directions, while upwelling and downwelling scalar irradiances may be recorded by shading 

the sphere from upper and lower hemisphere light, respectively. 

 

1.3.1.3 Average cosines 

A simpler way of specifying the angular structure of the light field is by determining its 

average cosines. The average cosine for the total light field is equal to the net downward 

plane irradiance divided by the scalar irradiance: 
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 
   

 



0E

EE ud 
  (8) 

The downwelling average cosine and the upwelling average cosine, are respectively 

defined as 

 
 
 



0E

Ed
d   (9a) 

 
 
 



0E

Eu
u   (9b) 

1.3.2 Apparent Optical Properties 

Apparent optical properties (AOPs) are those optical properties of the water body which are 

influenced by the angular distribution of the light field, as well as by the types and 

concentrations of substances present in the water [9]. These properties are obtained from 

measurements of radiance or irradiance. In addition to the AOPs, inherent optical properties 

(IOPs) have also been defined [9]. These are independent of the angular distribution of the 

light field, and are determined exclusively by the properties of the water body, that are the 

types and concentrations of water constituents. The main AOPs used in remote sensing of 

the oceans will now be introduced, while IOPs will be discussed in Section 1.3.3. 

1.3.2.1 Reflectance, remote sensing reflectance 

For ocean remote sensing applications, reflectance is defined as the ratio between the 

upwelling and downwelling irradiances at a certain depth z: 

 
 
 



,

,
,

zE

zE
zR

d

u  (10) 

For measurements taken above the sea surface, it is commonly used the spectral remote 

sensing reflectance, Rrs, defined as the ratio between upwelling, directional spectral 

radiance and downwelling plane irradiance: 

 
 
 



,

,
,,,

zE

zL
zR

d
rs     (sr

-1
) (11) 

computed either immediately above the sea surface, z=0
+
 [10] or immediately below the 

surface, z=0
−
 [7] [8]. The remote sensing reflectance is a measure of how much of the 

downwelling light that is incident onto the water surface is eventually returned through the 

surface, in direction (θ, ϕ), so that it can be detected by a radiometer pointed in the opposite 

direction. 



11 

 

1.3.2.2 Diffuse attenuation coefficient 

Diffuse attenuation coefficient for downwelling irradiance (Kd) defines the rate of decrease 

of downwelling irradiance with depth: 

 
 

 dzK
zE

zdE
d

d

d 





,

,
. (12) 

By integrating both sides of equation (12) we obtain the following: 

 

 
  zK

E

zE
di

d

d 





,
ln  (13) 

where     ,0 zEE d
i
d , that is: 

      zKi
dd

deEzE
 

,  (14) 

thus, attenuation of light travelling in the water body from depth 0 to depth z follows an 

exponential law. This is actually true for a generic homogeneous medium, and is the basis 

for radiative transfer theory in atmosphere and in water. 

Besides the diffuse attenuation coefficient for downwelling irradiance, the diffuse 

attenuation coefficient for upwelling irradiance (Ku) and for scalar irradiance (K0) can 

analogously be defined. These coefficients are strongly correlated to the inherent optical 

properties of the water and also to other AOPs, such as reflectance. 

1.3.3 Inherent Optical Properties 

As anticipated in Section 1.3.2, inherent optical properties (IOPs) are determined by the 

types and concentrations of water constituents, and are not influenced by the angular 

distribution of the incident radiation field. The principal responsible for the fate of radiation 

entering the water body, and thus for the ocean colour, are absorption and scattering 

processes, that are described by means of some IOPs. Absorption removes photons from the 

light beam. These photons bring the absorbing molecules to higher energy levels. 

Scattering, on the other hand, make photons change their direction when impinging on 

molecules. In particular, we can distinguish between elastic scattering, which happens when 

the scattered photon has the same wavelength as the incident one, and inelastic scattering, 

which implies a change in the wavelength of the scattered photon. Among inelastic 

processes, we can mention Raman scattering by water molecules and induced fluorescence 

emission from CDOM and phytoplankton. 

Considering natural sunlight in the visible part of the spectrum (roughly between 400 nm 

and 700 nm) as the only radiation incident on the water surface, the colour of the ocean is 

determined by scattering and absorption processes. In this context, the IOPs of relevance 

are the absorption coefficient (a, dimensions of [m
-1

]), which determines the exponential 

rate of decay of flux per unit pathlength of light in the medium, and per unit incident flux, 

due to absorption, and the scattering coefficient (b, dimensions of [m
-1

]), which defines, 
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analogously, the rate of decay of the flux due to scattering. In particular, scattering 

coefficients for elastic and inelastic processes must be defined separately. 

It is important to note that both absorption and scattering coefficients are defined for a 

collimated, monochromatic flux, incident normally on the medium, and passing through an 

infinitesimally thin layer of the medium. They are not determined for natural conditions of 

illumination, as apparent optical properties are. Since AOPs, like reflectance, are usually 

measured using flat plate collectors facing downwards and upwards, with the angular 

distribution of the incident flux on the collectors being determined by environmental 

conditions, the relationships between inherent and apparent optical properties typically 

depend on the angular distribution of the light field under which apparent properties are 

measured. Hence, when linking IOPs and AOPs it is usually necessary to have a description 

of the angular distribution of the light field, which can be given by downwelling average 

cosine and upwelling average cosine, defined in (9a), (9b).  

Because IOPs are not influenced by illumination conditions, they also have the advantage 

of being additive. More precisely, in a complex medium, composed of many different 

constituents, the contributions of individual constituents to an IOP can be summed together. 

This property is not valid for AOPs. Thus, scattering and absorption coefficients due to 

phytoplankton, CDOM, yellow substance and pure water are summed to obtain the 

absorption and scattering coefficients of Case 1 and Case 2 waters. 

In Case 1 waters the dominant contribution is due to phytoplankton, so that other 

contributions co-vary with phytoplankton. Case 2 waters are more complex, and different 

contributions must be considered separately. 

In particular, the contributions of each component to an IOP can be expressed in terms of 

the specific IOP of each component, that is, the IOPs per unit concentration of the 

component. Hence, the total absorption coefficient can be expressed as the product of the 

concentration of each substance and a corresponding specific absorption coefficient:  

***
sypw aSaYaPaa     (m

-1
) (15) 

where aw is pure sea water absorption coefficient, *
pa , *

ya and *
sa are the specific 

absorption coefficients for phytoplankton, yellow substances and suspended matter (in units 

of m
2
/g), and P, Y, S are the corresponding component concentrations (in units of g/m

3
).  

Backscattering coefficient can be treated analogously, assuming that yellow substances, 

being dissolved, do not contribute significantly to scattering: 

**
bsbpbwb bSbPbb     (m

-1
) (16) 

The above relations allow to link the inherent optical properties of natural sea water to the 

concentrations of its constituents. 

1.3.4 Relation between ocean colour and IOPs 

Remote sensing measurements of the sea surface consist in a set of radiance or reflectance 

values which represent the apparent optical properties of the water body, and which also 

include the effect of light passing through the atmosphere. The number of available 

radiances or reflectances depends on the number of spectral bands of the sensor.  
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Ocean colour algorithms transform the set of radiances/reflectances into the values of 

constituent concentrations. In shallow waters the bottom effect must be also considered, 

thus water depth and bottom type represent additional unknowns.  

Modelling the ocean colour means finding the relation between ocean colour and IOPs, and 

this implies that two issues must be faced: 

- developing theoretical models which represent reflectance as a function of the 

specific IOPs; 

- classifying the spectral behaviour of the specific IOPs of water constituents, also 

considering variability in water composition. 

 

These issues make analytic modelling a difficult task. The following chapter describes 

possible approaches to the study of the remotely sensed ocean colour. 
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Chapter Two: Information extraction methods for remotely sensed 

images 

The study of the ocean colour can be used to retrieve concentrations of sea water 

constituents, water depth, bottom properties, or to detect pollutants. Many efforts have been 

made to develop techniques for information extraction from the remotely sensed ocean 

colour signal. However, without regard to the particular application, we can distinguish 

between two big branches of techniques: those relying on a Bayesian modelling approach, 

and those exploiting computational intelligence. The former try to develop a theoretical 

model of the water body under examination, and necessarily need to make some hypothesis 

on water composition, bottom effect, and atmosphere composition. Depending on the target 

quantity to be retrieved, also some measurements are needed. The number of these 

measurements depends on the water type (Case 1 or Case 2) and on the number of available 

bands. The latter do not make any hypothesis, but they use significant datasets of 

measurements of target quantities to be retrieved. When such a dataset is not available, 

simulated data can be used, exploiting some theoretical bio-optical models. In this case, the 

resulting approach will be a mixture of model-based and computational intelligence-based 

approaches. 

2.1 Analytical methods 

The simplest approach for retrieving water optical properties and/or water column depth 

from multi-spectral data is represented by regression methods, which derive the unknown 

properties from a number of measurements taken on site. These are called empirical 

methods, and their results are limited to specific case studies. More precisely, empirically 

derived relationships are valid only for data having statistical properties identical to those of 

the data set used for the determination of coefficients. These algorithms are thus 

particularly sensitive to changes in the composition of water constituents. 

Model-based approaches aim to determine the relationship between the inherent and 

apparent optical properties of the water column. Among model-based approaches, we can 

distinguish between analytical modelling and radiative transfer modelling. Radiative 

transfer numerical models (e.g., Hydrolight [10] [11]) compute radiance distributions and 

related quantities (irradiances, reflectances, diffuse attenuation functions, etc.) in the water 

column as a function of the water absorption and scattering properties, the sky and air-water 

interface conditions, and the bottom boundary conditions. An analytical model is a 

simplification of the full radiative transfer equations, based on a set of given assumptions. 

Analytical models have the advantage that, due to their relative simplicity, they can be 

solved quickly. This is important in remote sensing applications, where a model must be 

evaluated at every pixel of an image. 

If an analytical approach is followed, there are two ways to find the desired optical 

properties. The first one is represented by semi-empirical methods, which give direct or 

explicit estimates of target quantities. The second one is represented by implicit methods 

based on nonlinear optimization, which minimize the difference between calculated and 
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measured reflectance by varying input variables. Calculated radiance can be obtained either 

by means of analytical models (semi-empirical models) or radiative transfer models. 

2.1.1 Semi-empirical methods 

Semi-empirical methods use analytic expressions to relate apparent optical properties and 

water properties. In particular, two steps are followed: first an ocean colour semi-analytical 

model is implemented, then algebraic expressions are derived that relate ocean colour to the 

target quantities to be retrieved. A semi-analytical model is built using empirical data of the 

inherent optical properties, and of the concentrations of individual water components. 

Starting from these data, expressions relating optical properties and water components are 

derived, and a theoretical model is obtained. The model is then simplified, to reduce the 

number of unknowns, making use of approximations, or of the inter-dependencies between 

unknowns. The result is a set of algebraic equations that can be solved sequentially, starting 

from remotely sensed apparent optical properties, to obtain each of the unknown 

components of the model [5]. Examples of this approach can be found in [12] [13] [14]. If 

relationships are nonlinear, solutions may be found either by using look-up tables (in which 

results from multiple runs of the theoretical model are stored) or by means of bisection 

methods for reducing differences between predictions and observations.  

The advantage of this approach is that it makes use of the known optical properties for 

specific components, and couples them with theoretical models of remote sensing 

reflectance. Although there are errors associated with the measurements used in the 

empirical relationships, the results appear quite accurate when applied to specific cases [12] 

[13]. Moreover, as stated before, these methods allow to quickly find the solution. On the 

other hand, one of the disadvantages is caused by the fact that empirical relationships, 

derived from measured data, tune the model to the specific regions where measurements 

have been taken. In other words, this approach gives accurate results when applied to 

specific cases, but has a limited generalization capability when the estimate is extended to 

different regions. Moreover, such methods can be implemented only with a limited number 

of unknown model parameters and variables (e.g. concentrations to be retrieved). 

2.1.2 Implicit methods 

A more refined approach with respect to semi-empirical methods is represented by the 

inversion of remotely sensed radiances, based on nonlinear optimization. In particular, a 

forward model for radiances at water level (which is usually a semi-analytical model) is 

inverted by minimizing the differences between the calculated values and the measured 

radiances. In particular, measured radiances undergo an atmospheric correction procedure, 

in order to be compared to calculated radiance at water level. The minimization can be 

performed using many different methods, but the basic concept which guides all these 

techniques is the search for the minimum difference between two spectral curves: the 

theoretical radiance and the remotely sensed radiance. More precisely, the χ
2
 of difference 

between modelled and measured radiances is minimized by iteratively changing the input 

parameters for the forward model. The χ
2
 is defined as: 
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 
22  

 modelsat LLχ  (17) 

where Lsat represents radiance measured from satellite sensor at water level, Lmodel 

represents theoretical radiance obtained by the model, and the sum is taken over all 

wavelengths λ. In particular, theoretical radiance can also be obtained by means of radiative 

transfer calculations, which, however, require a substantial computation time. A certain 

threshold is usually set to terminate the iterative minimization procedure. The input set of 

variables corresponding to the minimum represents the desired solution. Thus, water and 

bottom properties are simultaneously retrieved.  

Nonlinear optimization techniques, together with model-based approaches have been 

widely used for ocean colour applications. In particular, analytical model inversions have 

been applied to the retrieval of water quality variables from airborne hyperspectral imagery 

[15] [16]. In [17] five water column and bottom properties (chlorophyll, dissolved organic 

matter, and suspended sediments concentrations, bottom depth, and bottom albedo) have 

been estimated by means of a Levenberg-Marquardt optimization method, using a remote 

sensing reflectance airborne hyperspectral dataset. In [18] a matrix inversion method has 

been used to retrieve water component concentrations. 

These implicit methods are capable of reproducing the nonlinear nature of the modelled 

environment, and, once a forward model is adopted, they do not need any in-situ measured 

data. Most of implicit methods are based on a widely accepted model, proposed by 

Sathyendranath, Prieur, and Morel in [19], where sub-surface spectral reflectance is 

expressed in terms of absorption and backscattering coefficients. However, an underlying 

assumption of the optimisation methods is that the forward model is representative of the 

natural environment. This assumption, and thus the forward model choice, brings to a 

systematic error, which cannot be eliminated, nor it can easily be estimated. Generally 

speaking, all methods that are based on bio-optical models are affected by this systematic 

error. Other sources of errors are due to noise in satellite data, which however, unlike 

systematic errors due to model choice, appear in all methods. 

Besides the disadvantage represented by systematic errors, several aspects of this 

techniques require attention during implementation. In particular, the parameterisation of 

the forward model should be carefully chosen, so as to ensure that the unknowns are as 

independent of each other as possible, otherwise ambiguities could arise in the estimation 

of desired quantities. An adequate selection of the initial guess is also of prime importance. 

This can be achieved by means of empirical algorithms, or by using the value from the 

adjacent pixel. Moreover, since multiple minima of the χ
2
 could bring multiple solutions, it 

is appropriate to set upper and lower limits for each quantity to be retrieved. This also 

contributes in reducing computation time, which however remains high. 

Last, but not least, atmospheric correction represents an important issue, since estimates of 

many parameters, characterizing atmosphere composition, are needed in order to account 

for absorption and scattering of light, during the optical path between water level and 

sensor quote. 
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2.1.3 Principal component approach 

All previously described approaches necessitate of an atmospheric correction to obtain 

water-leaving radiances. An alternative solution is represented by an integrated approach, in 

which the optical properties of the atmosphere are taken to be additional variables in an 

inversion problem [5]. Top of the atmosphere (TOA) radiances, measured by a satellite 

sensor, are the starting point for this inversion method. Target quantities are usually water 

component concentrations, bottom properties, as well as atmospheric parameters. Besides 

atmospheric correction, an additional issue to be considered is the high correlation between 

signals from different bands in Case 2 waters ocean colour data. 

To address both issues, algorithms based on inverse modelling of the sea-atmosphere 

system through principal component multilinear regression, have been developed [20], in 

which the nonlinearity is managed by a piecewise-linear approximation. The main 

difference with respect to the previously described implicit methods is that the inverse 

model is not based on physical considerations: these are only used in the forward model, 

which is usually the one in [19]. The basic idea is to find a piecewise-linear map between a 

set of spectral TOA radiances and a set of geophysical quantities. In order to deal with the 

high correlation between signals from different wavebands, principal component analysis 

(PCA) can be exploited [21] [22]. Radiative transfer modelling is used to generate data sets 

of TOA radiances, corresponding to given variations of water constituents and atmospheric 

properties. Then, PCA of the simulated data is used to determine the spectral 

dimensionality of the data, and the weighting of each spectral channel required to retrieve 

the geophysical variables of interest. This approach accounts for the correlation between 

signals in different spectral channels, and improves reconstruction accuracy of retrieved 

constituents, giving better results than using subsets of the available wavebands. Principal 

components offer an orthogonal representation of the data, which allows the multivariate 

inversion, that would be hard to do with original radiances, due to high spectral correlation. 

A linear estimation formula is then derived to compute the geophysical variables from TOA 

measurements: 


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n

j
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where ip̂  is an estimate of the target geophysical variable, j is the measurement channel 

number, from 1 to n, where n is the number of spectral channels in the instrument, kij is the 

weighting coefficient of channel j for variable i, Lj is the measured radiance in channel j, 

and Ai is the offset value for variable i. By applying the method to TOA radiances, the 

atmospheric influence is implicitly taken into account. This approach relies on the fact that 

the application of an explicit atmospheric correction does not increase the information 

content with respect to water constituents and bottom properties. Although atmospheric 

scattering has a major influence on satellite data, these data also contain all signal variations 

caused by water constituents. Thus, signal variations that are not resolved in TOA data, 

cannot be resolved after atmospheric correction either.  

The approach briefly described in this paragraph has the advantage of being a very simple, 

stable algorithm, which can be rapidly implemented even for large scenes, without 
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convergence problems typical of iterative inversion techniques. It also solves the problems 

related to high correlation and atmospheric correction. However, systematic uncertainty due 

to forward model choice still lasts. Moreover, the main limitation is due to the nonlinearity 

of the dependence between the optically significant substances and the radiances. To 

overcome these limitations computational intelligence techniques must be used. 

2.2  Computational intelligence based methods  

Computational intelligence techniques allow building a mapping from a set of input 

variables (e.g. TOA spectral radiance values, measured by a satellite sensor) to some output 

set of quantities (e.g. sea water parameter concentrations, bottom depth etc…). These 

techniques are able to represent nonlinear relationships between input and output quantities, 

and do not rely on any assumption or model choice. Not being affected by systematic 

errors, related to bio-optical models, computational intelligence techniques represent a valid 

alternative to model-based techniques. Moreover, the low computation time allow to easily 

process big remotely sensed images.  

However, these are supervised techniques, therefore, a consistent dataset of input and target 

measured variables is needed to train an algorithm and build the mapping. The training 

dataset must be an exhaustive and representative set of the possible conditions the trained 

algorithm will be called to face in the application. Since in many cases such a dataset 

cannot be collected, simulated data, obtained by means of a forward theoretical model, are 

often used for training. For ocean colour applications the bio-optical model by 

Sathyendranath, Prieur, and Morel [19] is usually adopted.  

Provided that a training dataset has been built in an appropriate way, and that overlearning 

has been avoided during the training phase, these techniques allow to achieve accurate 

results, and, more importantly, they have generalization capabilities. 

The following paragraphs show some examples of computational intelligence techniques 

which have been used in the analysis of remotely sensed optical images, for applications in 

the retrieval of optically active constituents, or in the estimation of bottom properties and 

water depth. 

2.2.1 Neural networks 

An artificial neural network is a parallel computing architecture that can be trained by 

supervised learning to perform nonlinear mappings. It can be regarded as a black-box 

model, which is able to represent the nonlinear relationships between input and output 

variables, any time a new input set is under examination, having learned from the examples 

which have been considered during the training phase. Such a network is made of a set of 

nodes, which are called neurons, eventually organized in layers, and connected together. 

Neurons represent the processing units of the neural network. The processing conducted by 

neurons consists in forming a weighted sum of the inputs, followed by a nonlinear transfer 

function to produce the output. The outputs of one layer become the inputs to the next layer 

in the network. Proper weights are established by supervised learning, using input data 

vectors with known desired outputs. Neural networks will be described in more detail in 

Section 3.1. 
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A neural network approach has often been used in the ocean colour inverse problem, which 

involves inversion of the relationships between reflectances in different spectral bands, and 

the concentrations of multiple types of water constituents. In these cases the neural network 

is used as a multiple nonlinear regression technique. In complex Case 2 waters, containing 

pigments, yellow substances and suspended particulate material, the reflectance in a band 

depends on more than one variable, thus, simple linear regression is not sufficient for 

retrieving the concentrations of water constituents. In particular, for a limited range of 

concentrations multiple linear regression could be used, but, when higher ranges of 

concentrations have to be considered, nonlinear regression techniques must be used. In such 

cases, the neural network approach results to be an efficient and simpler approach. 

Regression by means of a neural network can be performed either starting from a set of 

measurements (i.e. concentrations and reflectances), or from a set of simulated reflectances, 

obtained exploiting a theoretical bio-optical model. In particular, in this case, a forward 

model is used to build a dataset of reflectances (or TOA radiances) for training the network, 

starting from a set of water constituent concentrations. Then, the trained network is adopted 

as an inversion technique to retrieve the desired concentrations from measured reflectances 

(or TOA radiances). If TOA radiances are used, atmospheric correction is implicitly 

considered, otherwise atmospheric parameters must also be known. Performance evaluation 

then requires the presence of an additional dataset, different from the training set, to be used 

for testing the network and for evaluating its generalization capabilities.  

Many examples of a neural network approach combined with a forward model can be found 

in the literature [23], ranging from generalized radial basis function (RBF) neural networks 

for the estimation of concentrations of phytoplankton, non-chlorophyllous particles and 

yellow substances in Case1, Case 2 and mixed Case1 and 2 waters [24], to multi-layer 

perceptron (MLP) neural networks [25], used for the retrieval of spectral absorption 

coefficients of CDOM and non-pigmented particulate matter. In [26] a comparison between 

RBF and MLP neural networks has also been presented for the estimation of water optically 

active constituents in Case 2 waters.  

The performance of a neural-network-based method is determined by the goodness of 

training set, which must be representative of the environment in which the network is asked 

to operate, and must have an adequate size with respect to the number of inputs and 

coefficient involved in the network. If simulated data are used, then performance depends 

on the model used to produce data, which must describe as accurately as possible the 

optical properties of the water constituents, their variability, and the radiative transfer. If 

attention is paid to dataset requirements, results are much more accurate than those 

achieved by multilinear techniques (mean square error is reduced by two order of 

magnitude [24]) and allow to reproduce the strong nonlinearities which characterize Case 2 

waters.  

However, if a dataset of measured values can be collected, in this case results will not be 

affected by model accuracy. An example of a neural network approach for bathymetry 

estimation, using a dataset of remotely sensed spectral radiances measured by the AVIRIS 

airborne sensor, is reported in [27]. In this study the authors implicitly consider atmospheric 

correction by including additional bands as input nodes, in order to provide the network 

with atmospheric information. 
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2.2.2 Fuzzy systems 

The use of fuzzy logic-based systems is appropriate in problems related to real world 

modelling, where ambiguities and uncertainties can be faced by describing the problem 

using linguistic variables, instead of classical variables, so that the description results more 

intuitive and interpretable than a pure mathematic one. Fuzzy logic [28] is an extension of 

classical logic based on the use of fuzzy sets, that are classes of objects with a continuum of 

grades of membership. In practice, in most cases a fuzzy logic system performs a nonlinear 

mapping of inputs into outputs, by means of linguistic expressions. 

Fuzzy systems are composed of a set of rules, each one being a conditional statement, 

expressed in terms of linguistic variables and fuzzy sets, where fuzzy sets characterize the 

involved variables. Each rule produces a consequence, and, finally, all the obtained 

consequences must be aggregated, in order to obtain a unique conclusion, that is the output.  

The fuzzy set partition, which describes the input variable behaviour and variability, and 

the rules, which compose the inference system, can be set basing on some expert’s previous 

knowledge, or they can be determined by means of specific algorithms, which exploit a 

training dataset. The first approach implies a big human effort and a deep pre-existing 

knowledge of the phenomena to be modelled. Thus, usually the set of fuzzy rules is directly 

derived from the dataset.  

Regarding the dataset, the same considerations done for neural networks hold. In particular, 

training dataset can be built using both measured or simulated data. 

As an example of the use of fuzzy systems for ocean colour applications, in [29] the authors 

use a fuzzy inference system to solve the inverse problem of retrieving chlorophyll 

concentration, non-chlorophyllous particle and yellow substance absorption coefficients, 

from subsurface spectral reflectance. In particular, basing on the forward model by 

Sathyendranath, Prieur, and Morel [19], the authors build a simulated training dataset, 

composed of triplets of values of the above mentioned optical properties and the 

corresponding reflectance values. This simulated dataset is then used to determine the 

structure of the system, which is then optimized by means of a genetic algorithm.  

Another example of the application of fuzzy logic-based systems to the ocean colour 

inverse problem is reported in [30], where the authors build a multi-objective evolutionary 

optimization of an Adaptive Network-based Fuzzy Inference Systems (ANFIS), for the 

same inverse problem faced in [29], using the same simulated dataset. As Section 3.2 will 

describe, ANFIS combine the advantages of fuzzy systems with those of neural networks, 

showing both interpretability and adaptability. 

2.2.3 Genetic algorithms 

Genetic algorithms (GAs) for the retrieval of water constituent concentrations and optical 

properties have only been used in a model-based scheme, achieved by matching computed 

results with expected results, obtained through a forward bio-optical model. 

GAs are search methods inspired by evolutionary biology. The parameter set of the 

optimization problem is coded into a string, which plays the role of a chromosome, while 

single parameters represent genes. GAs work with a population of chromosomes (or 

individuals) and, following the rules of evolutionary biology, they are able to evolve the 
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initial population by exploiting the mechanisms of cross-over and mutation. Then, the best 

individual (that is the best set of parameters) is selected according to the Darwinian 

principle of survival, that is expressed in terms of a fitness function, which measures the 

matching between computed and expected results.  

Genetic programming has been used to estimate phytoplankton concentration in Case 1 and 

Case 2 waters on a simulated dataset of reflectances, achieving better results with respect to 

traditional polynomial fits and neural networks [31]. Also simultaneous retrieval of 

chlorophyll concentration, non-chlorophyllous particle and yellow substance absorption 

coefficients from sub-surface reflectance values has been tackled by means of a GA [32]. 

However, attention should be paid to the fact that, while gaining in accuracy, the 

complexity of the algorithm increases.  
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Chapter Three: Computational intelligence techniques 

This chapter describes those computational intelligence techniques that have been used in 

this thesis, for the proposed applications to oil spill detection and bathymetry estimation 

from optical satellite images. In the previous chapter different approaches have been 

described for the study of ocean colour, and for the retrieval of sea water properties. We 

have seen that computational intelligence techniques have mainly been used in combination 

with a forward model in inverse problems, and that the necessary datasets for supervised 

learning and for testing are usually composed of simulated data, thus relying on direct 

models. The approach followed in this thesis consists in using computational intelligence 

techniques for remote sensing applications where it is possible to collect some measured 

data. This allows to study performance and generalization capabilities, in order to develop 

operational tools, whose aim is to exploit the power of optical satellite data for accessing 

and monitoring large marine areas. Thus, while this approach is affected by issues related to 

dataset construction, and attention must be paid when collecting data, it is not affected by 

model uncertainties, hypothesis and systematic errors. Unlike model-based approaches, or 

even hybrid approaches involving computational intelligence and analytic models, the 

approach chosen here is purely experimental, since it allows to derive models from data, 

without making any assumptions. 

3.1 Neural networks 

Artificial neural networks arose from the study of human brain, in the framework of 

neurosciences. They have been introduced in many fields of scientific research, with the 

aim of reproducing some of the typical activities of human brain, such as pattern 

recognition, or language interpretation. Thus, artificial neural networks have been 

developed in a way that resembles the structure of neural networks in the nervous system. 

As a whole, human brain constitutes a complex nonlinear, parallel and massive information 

processing system, composed of a network of simple processing units, the neurons, which, 

acting together and, at the same time, influencing and being affected by other neurons, are 

able to accomplish difficult tasks. 

In order to create an artificial neural network, able to mimic the behaviour of human brain, 

it is necessary to build a parallel and distributed structure, able to learn from previous 

experience, and to generalize (that is, to produce outputs in response to unknown inputs). 

This modelling starts from the basic processing units, artificial neurons. Learning is 

handled by connecting different neurons, and associating a weight to each connection 

(synapsis). These weights represent connection strengths, and their values are established 

during learning process. In the following sections two types of networks, which have been 

used in this thesis for oil spill classification, will be described. 
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3.1.1 Multi Layer Perceptron neural networks 

A MLP neural network is a layered feedforward network model that maps sets of input data 

onto a set of outputs. In a layered feedforward network neurons are organized in layers, and 

signals propagate from the input layer to the output layer, thanks to the connections 

between each layer and the following [33].  

Figure 6 shows a scheme of a MLP neural network architecture. The nodes (or neurons) of 

the input layer just propagate input values to the nodes of the first hidden layer. For each 

neuron belonging to a hidden layer the relationship between inputs and output (y) can be 

written as:  

















 
j

jj bxwfy  (19) 

where f is the activation function, that is usually a nonlinear function, xj is the output from 

the j
th

 node of the previous layer, wj is the weight of the connection between the j
th

 node of 

the previous layer and the current node, b is the bias of the current node, that is a threshold 

on the activation function. 

 
Figure 6:Scheme of a MLP neural network. 

 

Typical activation functions are sigmoid functions, such as logistic function: 
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For the output layer, linear activation functions are often used. So doing, the network’s 

output is a linear combination of nonlinear functions. 

Learning occurs in the network by changing connection weights after each piece of data is 

processed, basing on the amount of error in the output, compared to the expected result. In 

the backpropagation algorithm the overall error of the network is computed starting from 

the output error, and propagating errors back through the network. This solution arises from 

the fact that desired values for the hidden neurons are not known.  
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3.1.2 Radial Basis Function neural networks 

A RBF neural network is a layered network which is structured as in Figure 7. The input 

layer propagates inputs xi, i=1...n, to the only hidden layer in the structure. Then, each node 

in the hidden layer performs a nonlinear transformation on its inputs, by means of the 

activation function, φj (radial basis function). Finally, outputs from each hidden neuron are 

weighted by the coefficients wj, j=1...m (where m is the number of neurons in the hidden 

layer) and added in the single-node output layer to build the output y. Thus, the network’s 

output can be written as a function of the input vector x=[x1, ..., xn]
T
: 
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where w0 is a bias term. In a RBF network activation functions have a radial symmetry, 

whose shape is not decisive, provided that radial symmetry holds. Gaussian functions are 

usually employed: 
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where cj is the centre, rj is the spread (or radius), and represents Euclidean norm.  

 
Figure 7: Scheme of a RBF neural network. 

 

The network is trained by searching optimal values for centres, spreads and weights, 

according to the minimum error. The three sets of optimal parameters can be 

simultaneously retrieved with the gradient descent algorithm. Another approach consists in 

finding centres by means of a clustering algorithm, then, setting spreads by normalization, 

according to a maximum allowed distance between centres, and finally computing weights 

by means of the least mean square algorithm. A third approach consists in choosing 

random centres, setting spreads by normalization, and finding weights by means of the 

pseudo-inverse method. 
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3.2 ANFIS 

This paragraph describes an example of a neuro-fuzzy technique that has been employed in 

this thesis, both for oil spill classification (Section 4.9) and for bathymetry estimation 

(Section 5.4). Neuro-fuzzy techniques are powerful tools, since they combine efficient 

learning algorithms, proper of neural networks, with the interpretability of fuzzy systems, 

resulting in a sort of grey-box modelling, that is a modelling strategy which describes the 

problem starting from the data, but that, unlike black-box models, is comprehensible and 

accessible.  

Among the existing different types of neuro-fuzzy systems, here an Adaptive-Network-

based Fuzzy Inference System (ANFIS) [34], is described. An adaptive network is a feed-

forward neural network, where each node performs a specific function, and no weights are 

associated to the links between different nodes. The parameters involved in the node 

functions are updated in a supervised learning procedure, based on the gradient descent 

method. However, nodes can have parameters (adaptive nodes) or not (fixed nodes). ANFIS 

is an adaptive network which is functionally equivalent to a fuzzy inference system. Such 

networks are always composed of five layers, each having a specific function. For instance, 

in Figure 8 we consider a Takagi-Sugeno fuzzy inference system [35] and the equivalent 

ANFIS. The first layer performs the fuzzification of the inputs and is composed of adaptive 

nodes, whose parameters are the premise parameters: each input variable is connected to a 

number of nodes equal to the number of fuzzy sets used to model the variable, and each 

node corresponds to a membership function. Thus, the outputs of the first layer are the 

membership degrees. The second and the third layers are both composed of fixed nodes, 

each one corresponding to a single rule in the fuzzy inference system. The output of each 

node belonging to the second layer represents the firing strength of a rule, while the output 

of each node belonging to the third layer is the normalized firing strength, that is the firing 

strength divided by the sum of all firing strengths. The fourth layer performs the inference 

step. It is composed of adaptive nodes, whose parameters are the consequent parameters. 

Each node computes the consequent part of a rule, multiplied by its normalized firing 

strength. The last layer, composed of a single fixed node, performs the defuzzification step, 

computing the sum of the outputs of the fourth layer nodes. Thus, the overall output is 

obtained.  

The supervised learning procedure for ANFIS can overcome some typical problems of the 

gradient descent method, such as slowness and tendency to be trapped into local minima. 

This is achieved by using a hybrid learning rule [36] [34], which combines the gradient 

descent backpropagation method for membership function parameters determination, with a 

Least Square Estimate (LSE) of the consequent parameters. This learning procedure divides 

each training epoch in two steps: a forward and a backward step. In the forward step, given 

some initial premise parameters, the network is fed with the input data, which go through 

the nodes until the output of the fourth layer is calculated. Then, consequent parameters are 

determined by means of the LSE and, once these parameters have been identified, the 

signal is passed to the fifth layer, and the overall error is computed. In the backward step, 

the error rates are propagated backward, and the membership function parameters, which 

are the premise parameters, are updated by means of the gradient descent method. 
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(a) 

 
(b) 

Figure 8: (a) Example of Takagi-Sugeno rules. (b) Equivalent ANFIS 

3.3 Support Vector Machines 

Support Vector Machines (SVMs), first introduced by Vapnik in the early eighties [37], 

represent a powerful technique for nonlinear classification and regression problems. We 

consider the problem of classifying a set of input vectors, defined in a F-dimensional space, 

into two classes. The problem can be represented as follows [38]: training data set is 

composed of pairs {xi, yi}, where the input vector is xi 
F
, and the output is yi{1,1}, 

where yi=1 identifies positive elements and yi= 1 identifies negatives. In the simple case of 

separable data, depicted in Figure 9, we suppose that in the F-dimensional space an 

hyperplane exists that separates positives from negatives. The hyperplane is identified by 

points x that satisfy the relation: x · w + b = 0, where w is normal to the hyperplane and 

b/||w|| is the distance from the origin. The margin is defined as the distance between the two 

positive and negative examples that are closest to the separating hyperplane. The support 

vector algorithm looks for the separating hyperplane with the largest margin. In 

mathematical terms, the margin is maximized when ||w||
2
 is minimized, subject, for all 

elements, to constraints: 

xi · w + b ≥ +1    for   yi = +1 (23a) 

xi · w + b  1    for   yi = 1 (23b) 

that can be written as a single inequality: 

yi (xi · w + b)  1 ≥ 0      i (24) 

The problem can be solved using a Lagrangian formulation. 
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Nonlinear problems are solved by using nonlinear kernel functions that map data into a 

Hilbert space where the problem is linear.  

 
Figure 9: Linear separable case. 

3.3.1 Cost-oriented -SVMs formulation 

In case of non-separable data, the objective function of the previously described problem 

will grow arbitrarily large, thus some modifications are needed to the formulation. In order 

to deal with this problem, in 1995 Cortes and Vapnik proposed the cost-oriented (CO) 

formulation of SVMs [39]. The CO-SVM classification problem consists in maximizing the 

margin, though tolerating some errors, that is, allowing some positive class elements to be 

on the negative side, and some negative class elements to be on the positive side (see Figure 

10). This is achieved by relaxing constraints in (23a), (23b), that become: 

xi · w + b ≥ +1  ξi    for   yi = +1,    ξi  ≥ 0,  i  (25a) 

xi · w + b  1 + ξi    for   yi = 1,    ξi  ≥ 0,  i.  (25b) 

Thus, for an error to occur, the corresponding ξi must exceed unity, so Σiξi is an upper 

bound on overall training error. The upper bound on the maximum distance between an 

element and the correct hyperplane determines the cost associated with the misclassification 

of that pattern. Thus, in order to account for the cost of all errors, a new term, which 

depends on Σiξi, is added to the objective function to be minimized. This modification of 

the original (non cost-oriented) SVM classification makes the optimization process search 

for a tradeoff between a large margin and a small misclassification error penalty.  
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Figure 10: Non separable case. Cost-oriented formulation. 

3.3.2 Incremental/Decremental SVMs formulation 

The ID-SVM version that is considered in this thesis is the one presented by Cauwenberghs 

and Poggio in [40]. Their formulation of the incremental learning algorithm builds the 

solution recursively by adding one new point (pattern) at a time. The constraints for the 

SVM problem are retained on the previously considered patterns, while the new point is 

added adiabatically to the solution. At the same time, the decremental unlearning algorithm, 

in an analogous way, allows to remove data from the full trained solution, providing an 

efficient method to exactly evaluate leave-one-out generalization performance.  

Such a classifier is able to update the solution adapting the classification to time varying 

conditions, making this approach more desirable than a batch one for applications where 

target conditions can change over time. Moreover, benefits are also obtained in terms of 

computational complexity. 
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Chapter Four: Application to oil spill detection from optical satellite 

images 

4.1 Motivations 

Today ninety per cent of oil and refined products are transported by the sea. In particular, 

out of the 1.5 to 1.8 billion tonnes of crude oil transported worldwide yearly, Europe is the 

main recipient, with nearly 500 million tonnes of crude oil and 250 to 300 million tonnes of 

refined products per year [41]. Moreover, many oil tankers transport their cargo to other 

destinations through European waters, meaning that the total amount of crude oil passing 

through European waters could be over 1 billion tonnes. Accidents resulting in massive and 

devastating oil spills, spread around by the mass media, affect public opinion and mobilise 

policy-makers. However, such dramatic accidents occur only occasionally and represent a 

small fraction of the pollution events at sea. Oil released into European seas as a result of 

operational discharges greatly exceeds the amount released during accidental spills. As an 

example, yearly, in the Mediterranean, these operations can add up to nearly 20 times the 

amount that was spilled by the "Prestige" off northern Spanish coasts in 2002 [42].  

Due to the lack of adequate waste reception facilities in ports, added to poor surveillance, 

inadequate legislation systems, and the significant presence of companies and individuals 

without scruples, every year, at a lower cost, oil tanker crews release million of tonnes of 

oil from ballast waters and tank washing residues in our seas. More precisely, illegal 

dumping and routine operations of vessels account for between 666000 and over 2.5 

million tonnes of hydrocarbons of marine pollution per year. It is estimated that at least 

3000 major illegal hydrocarbon dumping incidents take place in European waters yearly. 

The Mediterranean is the sea that is most affected by this type of dumping, amounting to 

more than 400000 tonnes of released oil per year [41]. 

In this framework, the importance of developing efficient and cost effective monitoring 

tools can be easily understood. The exploitation of satellite images for oil spill detection 

allows to monitor large areas in an economical and easy way, thus offering many 

advantages in cost and time saving terms. The approach to oil spill detection which has 

been chosen in the present thesis consists in employing optical satellite data and using 

different intelligent classification systems. The motivations for the use of optical data will 

be explained in Section 4.4.  

4.2 Oil spills in the marine environment 

Whether originating from surface spillage or subsurface seepage, oil released at sea consists 

of a floating surface slick and suspended oil droplets within the water column. The 

chemical and physical properties of an oil are those who govern its optical characteristics 

and hence its appearance in remote sensing images. These features are also affected by 

weathering, which begins as soon as any oil is spilt, first through evaporation, then through 

dispersion and emulsification.  

There are many different types of remote sensors which are able to recognize the presence 

of an oil slick on the sea surface, each one relies on some physical properties of oils. 
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Depending on the sensor used, there will be one oil property (or more oil properties) 

playing a major role in producing a different behaviour in the remotely sensed signal, with 

respect to clean water signal. Section 4.2.1 gives an overview of the main physical 

properties of crude and refined oils. In particular, attention is focused on the optical 

properties, which allow to discriminate oil from water in the visible and near infrared (NIR) 

wavelength range. Section 4.2.3 describes the creation of a detectable oil-water contrast in 

the upwelling radiance. Then, Section 4.3 gives an overview of the oil spill detection 

methods from satellite sensors, first introducing oil spill detection by means of SAR 

sensors, which is a mature and extensively used technology, and then focusing on the use of 

optical data, which represents the choice done in the present thesis, explaining the 

advantages and the issues related to this approach.  

4.2.1 Some properties of crude and refined oils 

Crude oils are complex mixtures of various hydrocarbons (aromatic and aliphatic), resins 

and asphaltenes. Refined products contain only a sub-set of these compounds each. The 

relative proportion of the various constituents determines both physical properties and 

optical characteristics of any given oil. 

4.2.1.1 Chemical composition 

Crude oils can be classified according to the relative amount of n-alkanes, branched 

alkanes, cycloalkanes, aromatic hydrocarbons and NSO compounds: 

- Paraffinic oils: mainly composed of acyclic alkanes, these oils have a low sulphur 

content. 

- Paraffinic-naphthenic (or mixed-base) oils: composed of both cyclic and acyclic 

alkanes, these oils have a low sulphur content. The majority of crude oils belongs to 

this group.  

-Aromatic-intermediate oils: these oils contain more than 50% aromatic hydrocarbons 

and usually have a higher content of NSO-compounds, particularly those containing 

sulphur. 

Refined oils are distillation products of crude oils, and are classified according to the 

number of carbon-atoms contained in the molecules making up the mixture. In decreasing 

order of volatility (increasing density and viscosity) these are: 

- Petrol and naphtha with benzene and other volatile oils (C4-C10). 

- Kerosene and lamp oils (C11-C13). 

- Diesel and light gas oils (C14-C18). 

- Heavy gas oils, home heating oils (C19-C25). 

- Lubricating oils, light fuel oils (C26-C40). 

- Residual and heavy fuel oils (>C40). 

4.2.1.2 Density and specific gravity 

Oil density is often measured relative to water, in order to obtain a dimensionless quantity, 

specific gravity (SG). Most oils are lighter than water, and, in particular, crude oils are 
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often divided into light, medium and heavy, on the basis of American Petroleum Institute 

(API) gravity measurements [43]: 
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where SG60 is the specific gravity of the oil at 60°F, (i.e. the ratio between oil density at 

60°F and pure water density at the same temperature). The API scale is thus inversely 

proportional to density. Basing on API definition, the following classes have been 

specified:  

- Light crudes: API gravity ≥ 30°API (SG ≤ 0.87). 

- Medium crudes: API gravity between 22°API and 30°API (0.87 <SG ≤ 0.92). 

- Heavy crudes: API gravity between 10°API and 22°API (0.92 <SG ≤ 1.00). 

- Tars or tar-sands: API gravity < 10°API, (SG ≥ 1.00). 

4.2.1.3 Viscosity 

The viscosity of an oil is a measure of the oil’s resistance to shear, so it is a measure of its 

resistance to flow. When viscosity is determined by directly measuring shear stress and 

shear rate, it is expressed in centipoise (cP) or in Pa s (1 cP =1 mPa s), and is referred to as 

the absolute or dynamic viscosity. For instance, water at 20°C has a dynamic viscosity of 1 

cP. The viscosity of single-compound hydrocarbons increases with the number of carbon 

atoms contained in a molecule. High molecular weight hydrocarbons are generally soluble 

in low-molecular weight alkanes or aromatics, and the viscosity of the mixture depends on 

the relative content of low and high-molecular weight compounds. Viscosity also varies 

with density. Light oils have viscosities less than 30mPa s at 20°C, while heavy asphaltic 

oils have viscosities measured in thousands of mPa s. For natural tars viscosity is usually 

greater than 10
4
 mPa s [44]. 

4.2.2 Oil optical properties 

Inherent optical properties that are relevant for oil detection are: absorption, fluorescence 

and refractive index. Scattering is a small effect at visible wavelengths and it usually has a 

magnitude and spectral behaviour close to that of pure sea water.  

4.2.2.1 Absorption 

Typical crude oil spectra show strong absorption at short wavelengths, that range from 

ultraviolet (UV) or violet for the lightest oils, to red or NIR for the heaviest crudes. 

Absorption coefficients decrease exponentially towards longer wavelengths. Decay widths 

do not vary much within crude oils. Actually, this behaviour is similar to that of CDOM, so 

that it may be difficult to distinguish the spectral signature of dispersed oil from that of 

CDOM. Refined oils have an anomalous behaviour, due to the process of fractionation. In 

particular, the absorption coefficient of light refined oils decreases steeply towards visible 
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wavelengths, while heavy refined oils show lower absorption in the UV, but larger decay 

widths extending to NIR wavelengths.  

4.2.2.2 Fluorescence 

Oil fluorescence is generally excited by light at UV to blue wavelengths. The spectral 

fluorescence properties of oils when excited by laser pulses can be used to distinguish 

between different oil types. Generally speaking, as excitation wavelength increases 

fluorescence is induced in a smaller number of compounds, thus, light oils fluoresce at 

shorter wavelengths, from UV to green, while heavy oils show broader fluorescence spectra 

which peak at longer wavelengths [45]. Solar radiance could also induce oil fluorescence, 

but, since it is less intense than excitation by laser, the fluorescence signal will be weaker. 

However, solar induced fluorescence may contribute to solar reflectance on particularly 

bright days. Fluorescence peaks vary in width and wavelength position according to oil 

type, and decay exponentially toward the red and NIR. 

4.2.2.3 Refraction 

Oil refractive index is greater than that of sea water (≈1.34) at visible and NIR wavelengths. 

There is a significant variability between oil types, but usually heavy oils have a higher 

refractive index. For crude oils the refractive index lies between 1.57 and 1.67 in the UV 

and between 1.48 and 1.52 in the visible [46]. Refractive index of course influence light 

specular reflection at the air-sea interface for clean and oil covered sea surfaces.  

4.2.3 Oil-water contrast 

The presence of an oil film on the sea surface implies some modifications in the upwelling 

radiance, and thus in the remote sensing reflectance (11) measured over the sea surface.  

In particular, the optical properties of crude and refined oils allow to distinguish them from 

water. More precisely, as we have mentioned before: 

- Oil refractive index is greater than that of sea water. 

- Oil absorption coefficients are several orders of magnitude greater than that of water 

in the blue, and decay exponentially with wavelength. 

- Crude and refined oils fluoresce when subjected to bright natural light, with 

fluorescence peaks that vary in width and wavelength position according to oil type, 

and decay exponentially towards the red and NIR. 

These characteristics contribute to the detectable oil water contrast. This can be described 

by analysing the contributions to upwelling radiance measured above an oil film [47], 

which are represented in Figure 11.  

- Atmospheric path radiance (a): this contribution should be removed, but for oil spill 

monitoring applications this is not essential. 

- Specular reflection of sky radiance (b): this contribution is greater from an oil 

covered sea water surface due to oil’s higher refractive index. Contributions due to 

reflection at the oil-water interface are two orders of magnitude lower than at the air-

oil interface, and may thus be neglected. 
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- Water-leaving radiance (c): this contribution arises from a portion of incident light 

that is transmitted through the surface, and scattered back up by the sea water and its 

constituents. The presence of an oil film has a double effect on this contribution: 

reduced transmittance through the air-oil interface and absorption within the oil layer. 

When the oil is sufficiently thick, all light is absorbed and further increases in oil 

thickness are not detectable. This limiting thickness depends on the oil absorption 

coefficient and the wavelength of the light, from 0.02mm for heavy crudes at 440nm 

to about 2mm for light crudes at 750nm [48]. 

- Oil fluorescence and scattering (d): oil fluorescence excited by sun light in the UV 

and scattering from water entrained in the oil also contribute. In particular, in heavier 

oils with high absorption coefficients throughout the optical range, this contribution is 

low. The absorption coefficient of light crudes decays more rapidly, so fluorescence 

and scattering may give a significant contribution at longer wavelengths.  

 

 
Figure 11: Contributions to radiance measured above an oil covered sea water surface. (a) 

Atmospheric path radiance. (b) Specular reflection of sky radiance. (c) Water leaving 

radiance. (d) Fluorescence and scattering contributions. 

Oil-water contrast, C, can be defined as the difference between the remote sensing 

reflectance, defined in (11), in presence of an oil film, and remote sensing reflectance of 

clean water, normalized to remote sensing reflectance of clean water (in the following 

angular and wavelength dependence are omitted for simplicity): 
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Taking into account all the above mentioned contributions, the contrast can be written as 

[47]: 
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where 
)(sky

rsR represents the sky remote sensing reflectance (that is remote sensing 

reflectance, defined in (11), where the numerator is only sky radiance), ro and rw are the 

specular reflection (Fresnel) coefficients for oil and water, Rrs is the remote sensing 

reflectance, to and tw are the Fresnel transmittance coefficients for oil and water, tdo and tdw 

are the diffuse transmittance coefficients for incident light, ao is the oil absorption 

coefficient, z is oil thickness, μd is the average cosine of downwelling irradiance defined in 

(9a) within the oil, F represents oil fluorescence, B represents scattering by water in the oil, 

and P the atmospheric contribution. It is clear from (28) that oil-water contrast depends on 

many factors, that are oil type, oil thickness, water constituents, which affect scattering and 

absorption in the sea water and atmosphere contribution. Thus, contrast can be positive or 

negative depending on water type and on environmental conditions, but it also vary 

according to wavelength, since absorption and fluorescence have a strong spectral 

dependence. Thus, for a given oil on a sea water surface, C can be positive in some spectral 

regions and negative in others. In particular, from (28) we can observe that C is positive 

when: 
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For thin oils this occurs at wavelengths where 
)(sky

rsR  is high, or where Rrs is low, usually 

the violet and blue (between 400nm and 480nm), and NIR (starting at 700nm). As thickness 

increases the exponential term approaches 0, and contrast becomes negative throughout 

most of the visible spectrum. In the NIR Rrs is negligible, due to high water absorption, and 

the contrast is positive, except when there is a high concentration of scattering particles in 

water. However, near the sea water reflectance peak, between 480 and 570nm in coastal 

waters, Rrs may be sufficiently high to give low or negative contrast even for thin oils. 

The change in contrast between oil spills and sea water, depending on both oil type and 

water type, for different sun-observer geometries, as also been investigated in [49] [50]. 

4.3 Overview of oil spill detection methods using satellite sensors 

Many different remote sensing instruments are able to detect oil spills at sea [51], some of 

them are already in use for operational services. Among these, the most widely used are 

radar based systems, such as SAR instruments, because of their all-weather and all-day 

capabilities. Side-Looking Airborne Radar (SLAR) is an alternative to SAR: it is an older 

but less expensive technology than SAR, but SAR has greater range and resolution [52]. 

Moreover, airborne surveillance is limited by the high costs and is less efficient for wide 

area surveillance, due to its low coverage. Radar based instruments are able to detect oil 

spills thanks to the difference between oil and water in wave-dumping capacity. A radar 
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image of the sea surface is formed by reconstructing the reflection of active radar signals 

from small gravity and capillary waves. The presence of an oil slick, due to oil’s viscosity, 

suppresses capillary ripples, so that the return signal from an oil covered surface is smaller. 

Thus, oil slicks appear as dark objects in SAR images. However, calm sea regions appear as 

dark objects too, and represent a source of error for oil spill detection. Sea state is a limiting 

factor for SAR oil spill detection. In particular, for wind speeds below 1.5 m/s the wind-

stress is insufficient to generate ripples, while above 12 m/s the oil film is disrupted and 

washed down by breaking waves [53]. More precisely, the optimal wind velocity range for 

oil spill detection has been estimated to be between 1.5 m/s and 6 m/s [54].  

Microwave (MW) radiometers are passive sensors which measure the microwave radiation 

emitted in the wavelength range from mm to cm, and are all-weather and all-day operability 

instruments. Since oil slicks emit stronger microwave radiation than the water, they appear 

as bright objects on a darker sea in MW radiometer images. As reported in [51], according 

to [55], these instruments could potentially be used for measuring slick thickness, but the 

required resolution is such that aircraft platforms are more appropriate than satellite ones.  

Thermal infrared (IR) imagers are passive sensors operating in the wavelength range 

between 8 μm and 13 μm. In this region oil has a lower emissivity than sea water, thus, oil 

slicks of medium thickness appear as cool objects in IR images, leading to negative contrast 

[48]. There is a threshold thickness at which contrast is sufficient for oil detection: usually 

it is not possible to detect oils having thickness below 50 μm. Regarding thick oil slicks, 

during the day these slicks absorb solar radiation, and become warmer than the surrounding 

sea, giving increasingly positive oil-water contrast in thermal images as thickness increases. 

At a given thickness, which is usually about 250 μm, the increase in emission arising from 

higher oil temperature will balance the negative oil-water contrast arising from the lower 

emissivity of the oil. Above this threshold, oil appears brighter in images acquired at night, 

below it, darker. The threshold thickness depends on environmental conditions and on the 

absorption and emissivity properties of the oil. However, the oil spills may not have a 

significant different temperature signature from the surrounding water at night [51]. 

UV imagers are passive sensors which can be used to detect oil spills, since an oil layer is a 

good reflector of UV radiation. Although the contrast with sea water is low, even layers as 

thin as 0.01µm may reflect the UV component of incident sunlight towards the sensor. 

Solar induced fluorescence also contributes to the signal. UV instruments are not usable at 

night, and wind slicks, sun glints and biogenic material can cause false alarms in the UV 

data.  

As UV imagers, visible (VIS) and NIR spectroradiometers provide images of daylight-

reflected solar radiation, and rely on differences in oil and water optical properties in order 

to detect the presence of an oil slick. These instruments necessitate of day light and are 

affected by the presence of clouds. However, the availability of multiple wavelengths can 

give additional information to distinguish, for instance, slicks produced by algal blooms 

from oil spills. Moreover, the use of this instruments is not limited by sea state conditions 

and could be a useful support to SAR-based systems, since calm sea regions do not bring 

any false alarm in optical images. As Section 4.4 will discuss, optical data show a great 

potential as a tool for improving oil spill detection from satellite instruments, so it is worth 

exploring the possibility of an optical investigation, which is object of the first application 

proposed in this thesis. 
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4.3.1 Oil spill detection using SAR satellite images 

As stated before, since SAR data have been widely exploited for oil spill detection, many 

contributions can be found in the literature regarding the study of oil slicks in SAR images, 

and several efforts have been made in order to develop automatic detection systems. Images 

from remote sensing instruments, in particular SAR images, are usually combined with 

information from trained and experienced human observers. Visual observation relies on 

many of the same physical mechanisms which are used by various remote sensing 

instruments, and which give rise to the perception of colour (wavelength distribution), 

brightness (signal intensity) differences between oil and water, variations in surface 

roughness (wave damping), and finally the interpretation of spatial patterns, and the 

analysis of surrounding elements (e.g. proximity to land, presence of other similar objects 

in the scene etc...). Thus, a fully automated or semi-automated system for oil spill detection 

should actually resemble the expert’s decisions based on similar criteria, knowledge and 

rules, and this has been subject of several studies reported in literature.  

In 2008 Kubat et al. [56] proposed a neural network for the classification of dark regions 

detected in SAR images, to be used as a training set of the system. In their paper the authors 

also analyse in detail the issues related to the application of machine learning techniques to 

oil spill detection. Del Frate et al. [57] also used a neural network architecture for semi-

automatic detection of oil spills in SAR images, building an input vector for the network, 

containing a set of features which characterize oil spill candidates. Later, Topouzelis et al. 

[58] compared the performance obtained using MLP and RBF neural networks. In 

particular, the authors used original reconstructed SAR images as input for the 

classification system, instead of using a vector of features extracted from dark regions in 

the images. Solberg et al. [59] developed a semi-automated classifier for oil spill detection, 

based on statistical modelling combined with a rule-base approach. They identified eleven 

different object characteristics [60] and used them to build a classification procedure based 

on Bayesian inference, where three different categories of real oil spill probability (low, 

medium and high) were recognized. Fiscella et al. [61] developed a stochastic classifier 

based on Mahalanobis statistical tests and classical compound probabilities.  

Fuzzy logic systems, able to better resemble a human expert’s decision, have also been 

used by Keramitsoglu et al. [62] to develop a fully automated system for oil spill 

identification in SAR images. 

4.4 Oil spill detection using optical satellite images 

We have seen that SAR images have been widely used for oil spill detection, as they are not 

affected by local weather conditions and cloudiness. Currently, many government 

institutions already use SAR technology-based services for oil spill detection, but the high 

false alarm rate makes these systems not enough reliable, so that many detected spills are 

followed by no action, due to the risk of expensive in situ missions which could turn out to 

be false alarms. Thus, there is a need for more reliable systems. This suggests the 

possibility of exploiting optical data, which, up to now, have been little used for oil spill 

detection applications. The development of a new approach, based on optical data, could be 

used either on its own or as a support to SAR-based solutions, in order to meet the need of 
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environmental protection authorities for efficient and cost effective monitoring tools, also 

considering that optical satellite images are cheaper (sometimes freely available), and 

provide more frequent (daily) information if compared to SAR images, allowing for large 

areas monitoring and remote zones control. 

The reason why optical satellite images have been little used in the field of operational oil 

spill detection, is that good weather conditions and day light are mandatory conditions to 

perform a correct detection, while this conditions are not required when using SAR data. 

However, the use of SAR data implies many other limiting factors, such as cost, low revisit 

time, and sea state, since the optimal wind velocity range for oil spill detection is between 

1.5 m/s and 6 m/s [54]. 

The use of optical data can improve operational monitoring for many reasons. The key 

point is that oil spill identification by optical sensors and by SAR sensors rely on different 

mechanisms, that are respectively controlled by differences in oil and water optical 

properties, which give rise to oil-water contrast, as explained in Section 4.2.3, and by 

differences in oil and water wave-damping capacity. Thus, oil spill detection systems based 

on optical data are not affected by the same false alarm types (such as very calm sea areas) 

as SAR-based systems. Moreover, while MW, IR and UV radiation are strongly absorbed 

by water, visible radiation can penetrate water to a depth of many meters, especially in the 

blue. Hence, optical sensors operating in the visible range of the spectrum can potentially 

detect oil not only on the surface, but also dispersed in the water column.  

The possibility of detecting oil spills from optical data has also been demonstrated in [63], 

where the authors use optical images, captured by NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS, see Table 1), to access the magnitude, area covered and 

duration of a big oil spill occurred in Lake Maracaibo, Venezuela, caused by several 

accidents happened to the oil industry operating in the lake’s area. More recently, empirical 

relationships based on MODIS higher resolution bands (250 m) have been used to detect oil 

spills in the Arabian Sea [64]. MODIS images have also been used to detect natural crude 

oil slicks and consequently estimate the annual seepage rates in the northwestern Gulf of 

Mexico [65]. These studies prove that oil spill identification from optical images, in 

particular those acquired by MODIS, is possible, and it can be used for operational 

monitoring. Beside this, the interpretation of the remotely sensed multi-spectral signal 

produced by an oil slick on the sea surface appears to be quite problematic, because, as 

explained in Section 4.2.3, many factors contribute to oil-water contrast, such as oil type, 

oil absorption properties, oil thickness, and water constituent concentrations. These factors 

often give conflicting contributions, which vary through the visible and NIR spectral range. 

An additional issue is represented by the difficulty in performing an accurate atmospheric 

correction, in order to reduce path radiance contribution, and by the presence of sunglint. 

These factors make spectral analysis a difficult task.  

The approach to oil spill detection which has been chosen in the present thesis consists in 

employing optical data from MODIS sensor and using different intelligent classification 

systems, which avoid any spectral analysis. The identification of oil spills is then mainly 

based on geometrical features, together with differences in the contrast. The use of 

supervised computational intelligence techniques allows to overcome difficulties related to 

contrast interpretation and atmospheric correction, which are typical of an analytic 

approach.  
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4.5 A software architecture for optical oil spill detection  

In this chapter the attention is focused on different classification techniques, suitable for 

discriminating between true oil spills and other phenomena in multi-spectral satellite 

images of a marine scenario. In order to do this, it is necessary to identify oil spill 

candidates in the image, to extract some features which allow to characterize oil spills, and 

to feed the classifier with these features. However, an automated system for oil spill 

classification will accomplish other pre-processing tasks. Figure 12 shows a software 

architecture for image processing and automatic classification of oil spill candidates in 

multi-spectral images.  

 

Figure 12: Scheme of the proposed oil spill detection system. 

The input of the system is a multi-spectral image. In this thesis MODIS images at level L1B 

have been used, but images from other sensors (provided that they have equivalent bands) 

could be used as well. In the pre-processing phase the image is georeferenced, a land mask 

is applied and atmospheric effects are softened through the atmospheric correction module. 

In this latter phase, ancillary information regarding atmospheric conditions, such as ozone 

and water vapour concentrations, are necessary, and must be retrieved from other sensors or 

data. However, this is an optional step. A local histogram equalization for contrast 

enhancement allows to emphasize the presence of oil spill candidates in the image. Then, 

regions of interest are identified by a clustering algorithm (k-means, FCM, …). For each 
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selected region the feature extraction module computes a set of features which serves as 

input for the supervised classification procedure, in order to discriminate between oil spills 

and other phenomena. The output of the system is the probability of the selected object to 

be an oil spill.  

4.6 The dataset 

The supervised learning procedure necessitates of a dataset of input and target elements 

which serves partly for training the classifier and partly for testing the classification 

performance. As anticipated in Section 2.2, dataset collection represents a relevant issue for 

computational intelligence technique applications. Training set size must be appropriate to 

the number of unknown parameters in the classifier structure. In addition, elements in the 

dataset must compose a representative set of the data the trained classifier will process.  

For the present study a considerable dataset of regions of interest has been built by 

collecting a number of optical images taken during the years 2008 and 2009, over the entire 

area of the Mediterranean Sea. In particular, level L1B data from MODIS sensor have been 

used, having a spatial resolution of 250 m. Level L1B data consist in calibrated radiance or 

reflectance values, which are freely available from NASA [66]. MODIS instrument is 

aboard Terra and Aqua satellites. Terra's orbit around the Earth is timed so that it passes 

from north to south across the equator in the morning, while Aqua passes south to north 

over the equator in the afternoon (see Table 3). Using data from both MODIS-Terra and 

MODIS-Aqua sensors, up to four images per day are available, each one partially covering 

the Mediterranean Sea.  

As Table 4 shows, only bands 1 and 2, respectively centred in the VIS at 0.65 μm and in the 

NIR at 0.85 μm, are available from MODIS at the highest resolution, so that any spectral 

analysis is precluded. On the other hand, it is important to have a spatial resolution as good 

as possible, since most slicks produced by illegal discharge from moving ships could not be 

detected in lower resolution images (e.g. 1km) due to their small area.  

Table 3: MODIS specifications. 

Orbit 

Altitude: 705 km, 10:30 a.m. descending node (Terra) or 1:30 

p.m. ascending node (Aqua), sun-synchronous, near-polar, 

circular 

Scan Rate 20.3 rpm, cross track 

Swath 

Dimensions 
2330 km (cross track) by 10 km (along track at nadir) 

Quantization 12 bits 
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Table 4: MODIS bands and spatial resolution. 

Primary Use Band 
Bandwidth 

(Bands 1-19 are in nm; 

Bands 20-36 are in µm) 

Spatial 

resolution (m) 

Land/Cloud/Aerosols 

Boundaries 

1 620-670 
250 

2 841-876 

Land/Cloud/Aerosols 

Properties 

3 459-479 

500 

4 545-565 

5 1230-1250 

6 1628-1652 

7 2105-2155 

Ocean 

Colour/Phytoplankton/ 

Biogeochemistry 

8 405-420 

1000 

9 438-448 

10 483-493 

11 526-536 

12 546-556 

13 662-672 

14 673-683 

15 743-753 

16 862-877 

Atmospheric Water 

Vapour 

17 890-920 

18 931-941 

19 915-965 

 

Only images acquired in clear sky conditions have been selected when building the dataset. 

After georeferencing, a local contrast enhancement, based on histogram equalization, has 

been applied in order to improve the visualization. Then, possible oil slicks have been 

detected by visual inspection performed by a trained interpreter, basing on his previous 

experience, and corresponding regions of interest have been selected through a fully manual 

procedure. In order to increase the reliability of the regions of interest identified in MODIS 

data, for each selected image the corresponding Envisat-ASAR image, at 150 m spatial 

resolution, has been analysed for comparison. Unfortunately, due to sunglint and weather 

conditions, only approximately 10% of the MODIS images could be used for comparison. 

However, for many of the selected cases ground truth was available. More precisely, many 

cases correspond to oil slicks that have been verified by the Italian Coast Guard during 

specific operations for oil dispersion.  

Selected regions have been divided into two classes: the first class is composed by regions 

identified by photointerpretation as possible oil spills, on the basis of the contrast between 

regions and surrounding areas (which are supposed to be clean waters). The second class is 

composed by regions identified as look-alikes, which could be for instance algal blooms or 

sea currents etc... The analysis has been conducted examining the scene where the 

candidate oil spill or look-alike had been detected, that is, considering the context, the 

location and the possible presence of other elements in the surrounding area. This allows to 

distinguish between linear slicks, which might be caused by a moving ship releasing oil, as 
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shown in Figure 13 (a), and sea currents, usually occurring in particular spatial patterns, 

such as those shown in Figure 13 (b). 

 

  
(a) (b) 

Figure 13: (a) An oil spill case from the dataset. (b) A look-alike case from the dataset. 

 

In the end, the number of detected oil slicks is approximately equal to the number of look-

alikes, for a total of 316 elements. A search for multivariate outliers has also been 

performed basing on the distribution of some features (see Section 4.7) characterizing oil 

spills. After this analysis, 12 elements have been removed, obtaining a dataset composed of 

304 elements, 157 oil spills and 147 look-alikes. The outliers resulted to be represented by 

big nonlinear shaped slicks and dark regions in a particularly complex background, which 

will not be considered in this application. The reason for this choice is motivated by the fact 

that the classification system proposed in this thesis is intended for identification of illegal 

oil discharge by moving ships, or of oil released during tank cleaning in the sea. Thus, since 

training elements should resemble data the classifier will be asked to process in the finished 

application, only these types of slicks have to be well represented in the dataset. Very big 

slicks, produced for instance by oil tanker accidents, which can cause environmental 

disasters to happen, have not been handled, since the appropriate authorities are usually 

informed about these events. In such cases, time series of satellite images can be used to 

estimate the quantity of spilled oil, the area affected by oil pollution and to follow its spatial 

and temporal evolution, while a classification system based on optical data for quick alert is 

unnecessary. On the other hand, the importance of focusing the attention on operational 

discharges and of developing efficient and economic monitoring tools has already been 

explained in Section 4.1. 

4.7 Feature description 

In order to discriminate between oil spills and look-alikes, a number of physical and 

geometrical features characterizing the object to be classified have been exploited. These 

features are computed by the feature extraction module (see scheme in Figure 12) and are 

used as input for the classification system.  

Following the results of SAR oil spill detection [51] [59] [57], a set of gray level features, 

characterizing the differences between the object and the surrounding area, and a set of 

geometrical features, describing shape and extension, have been used: 
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1) Geometrical features 

- Area of the object (A) expressed in km
2
. 

- Perimeter (P) expressed in km. 

- Complexity (C): defined as  

A

P
C

2
 . 

This feature generally assumes small numerical values for regions with simple 

geometry and larger values for regions with complex geometry. 

- Spreading (S): computed performing a principal component analysis on the vector 

whose components are the coordinates of the pixels belonging to the object: 

21

2100






S , 

where λ1 and λ2 are the two eigenvalues associated with the covariance matrix (λ1 > λ2). 

This feature assumes low values for long and thin objects and high values for objects 

closer to a circular shape. 

 

2) Gray level features 

- Object Standard Deviation: standard deviation of the intensity values of pixels 

belonging to the object. 

- Max Contrast: difference between the background mean intensity value and the 

lowest intensity value inside the object. 

- Mean Contrast: difference between the background mean intensity value and the 

object mean intensity value. 

 

Spectral features have not been used, since the two bands available from MODIS full 

resolution images are insufficient for a spectral analysis. Gray level features have been 

calculated on a two-band ratio (band 2/band 1) so as not to consider the atmosphere 

contribution. 

Table 5 and Table 6 report some statistical parameters of the above mentioned set of 

features, computed for the 157 oil spill and 147 look-alike cases in the dataset where 

outliers had been removed. The tables show that oil spills are generally smaller and have a 

thinner shape. This is consistent with the choice of considering slicks produced by moving 

ships. 
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Table 5: Statistical parameters of the features calculated for oil 

spill cases in the dataset. 

Feature Min Max Mean Std. Dev. 

Area (km
2
) 0.688 41.7 6.96 6.58 

Perimeter (km) 2.91 94.6 20.4 15.9 

Complexity 0.229 5.40 2.16 0.770 

Std. Dev. band ratio 0.00610 0.0519 0.0199 0.00940 

Mean Contrast band ratio -0.0588 0.156 0.0505 0.0311 

Max Contrast band ratio -0.0255 0.216 0.0933 0.0449 

Spreading 0.114 26.8 4.25 5.35 

 

Table 6: Statistical parameters of the features calculated for look-

alike cases in the dataset. 

Feature Min Max Mean Std. Dev. 

Area (km
2
) 0.875 73.9 14.4 14.7 

Perimeter (km) 1.00 147 26.4 21.2 

Complexity 0.0912 5.009 2.016 0.893 

Std. Dev. band ratio 0.00521 0.0999 0.0283 0.0179 

Mean Contrast band ratio -0.00535 0.234 0.0733 0.0519 

Max Contrast band ratio 0.0198 0.451 0.134 0.0822 

Spreading 0.548 44.3 11.9 10.0 

4.8 First batch classification approach: statistical classifiers and neural 

networks 

As a first attempt to oil spill classification, a set of statistical classifiers and neural networks 

have been applied to the extracted features, adopting a batch approach, that is, considering 

the overall dataset. The classifiers have been trained using 60% randomly chosen examples 

of the available dataset, while the remaining 40% were used as a test set, in order to 

evaluate the classification performance of the different methods. In particular, normal 

density-based linear and quadratic classifiers have been employed, as well as a logistic 

regression-based linear classifier. A value of 0.5 has been used as a priori probability for 

both oil spill and look-alike classes. Concerning non linear classification, three k-nearest 

neighbour classifiers and two neural networks, namely a RBF and a MLP have been used. 

The MLP neural network has been trained by a backpropagation algorithm and different 

topologies have been used (1 hidden layer and different numbers of hidden neurons), using 

logistic activation functions for the hidden neurons and a linear activation function for the 

output layer. Different architectures have also been tested for the RBF network, where 

Gaussian basis functions have been used. 

Table 7 shows the performance of the different classifiers in terms of mean percentage of 

correct classification, calculated on the training set and on the test set. The relative error is 

estimated by considering deviations from the mean value. Among the examined classifiers, 
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the best performance on the test set is obtained by the MLP neural network with 1 hidden 

layer composed by 6 neurons. 

 

Table 7: Classifier performances: the estimated relative error is 2%. 

Classifier 

Mean training 

set correct 

classification % 

Mean test set 

correct 

classification % 

Normal density based linear 79 74 

Normal density based quadratic 77 75 

Logistic regression 80 74 

1-nearest neighbor 100 71 

2-nearest neighbor 92 75 

3-nearest neighbor 88 76 

RBF (10 neurons) 76 65 

MLP (6 hidden neurons) 92 79 

 

As regards misclassified examples, false negatives (i.e. oil spills erroneously classified as 

look-alikes) are usually characterized by high spreading values or small area values, while 

false positives (i.e. look-alikes erroneously classified as oil spills) are represented by a more 

heterogeneous set.  

Results obtained with the same batch classification approach, applied to a smaller and 

earlier version of the presented dataset are shown in [67]. 

4.9 Second batch classification approach: ANFIS 

Following the idea that an automatic system for oil spill detection should resemble an 

expert’s decision, as a second batch classification approach a more interpretable machine 

learning technique, ANFIS [34] (see Section 3.2), has been investigated. Regarding 

performance evaluation, we have to consider that in a two-class problem the use of 

classification accuracy can be inappropriate, because it assumes equal error costs for 

misclassification of target class elements. However, for many applications, such as oil spill 

classification, this condition is not satisfied. As stated before in the text, one of the main 

issues related to oil spill classification is the necessity of keeping false alarm rate as low as 

possible, because false alarms could bring environmental protection authorities to 

unnecessary (and expensive) actions. As a consequence, misclassification cost for the oil 

spill class results to be higher than misclassification cost for the look-alike class. Thus, it is 

important to adopt a performance measure that works even in presence of different costs 

between the two classes. In order to account for this, Receiver Operating Characteristic 

(ROC) analysis [68] has been exploited.  
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4.9.1 ROC analysis 

ANFIS is a continuous classifier, Γ(x), for a two-class problem, that is a mapping from the 

F-dimensional space (F is the number of features) to the interval [0,1]: 

Γ(x): 
F
→[0,1]. (30) 

To obtain a binary classifier, we must choose a threshold  on the classifier output. More 

precisely, if we call the two classes positives and negatives
1
 the binary classifier can be 

represented as follows:  















)(Y

)(N
:)(

xif

xif
x  (31) 

where 10  , N and Y stand for negative and positive classifications, respectively. This 

resulting binary classifier, Γ(x), can be coupled to a pair (TPR, FPR), where TPR and FPR 

are, respectively, the True Positive Rate (the ratio of positives correctly classified to total 

positives) and the False Positive Rate (the ratio of negatives incorrectly classified to total 

negatives)
2
. The continuous classifier can thus be associated with a set of pairs (

i
TPR ,

i
FPR ), i=1,…, I, where I is the number of thresholds . This allows to evaluate the 

performance of the continuous classifier in the space (TPR, FPR), which is called the ROC 

space. The continuous classifier will be represented by a ROC curve: each point belonging 

to the curve corresponds to a certain threshold, and consequently to a certain binary 

classifier. So doing, the discrimination threshold can be chosen by observing the classifier’s 

ROC curve, basing on a trade-off between TPR and FPR. In particular, the target is to 

obtain the highest number of true positives, keeping the number of false positives as low as 

possible. The ROC curve is a two dimensional measure of the classifier performance. In 

order to have a scalar measure of it, we can consider the area under the ROC curve (AUC). 

4.9.2 Results 

As for the previously described attempt, 60% randomly chosen examples from the dataset 

have been used to build the training set, and the remaining 40% have been used for the test 

set, in order to evaluate the classification performance. For ANFIS training MATLAB 

anfis routine [34] [69] has been used. In particular, the learning phase of anfis 

simultaneously tunes both antecedent and consequent parameters through a hybrid learning 

algorithm based on [70]: first the antecedent parameters, related to the membership 

functions, are determined by the backpropagation gradient descent method, then the 

                                                 

1
 Positives stand for oil spills and negatives stand for look-alikes.  

2
 Please note that TPR is an approximation to the posterior probability of obtaining a 

positive classification when the pattern in input is a positive: )|Y( ppTPR  . Analogously, 

)|Y( npFPR  . 
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consequent parameters are computed by means of a least-squares method based on Kalman 

filter.  

In order to provide anfis with an initial Fuzzy Inference System structure, data have been 

partitioned using a fuzzy c-means clustering algorithm. So doing, the number of clusters 

determines the number of rules and the membership functions for the antecedents and 

consequents in the generated FIS. This number has been chosen by training ANFIS for 

many times starting from different initial FIS structures, each one obtained by fuzzy c-

means with a different number of clusters. In particular, 300 fuzzy c-means iterations and a 

fuzziness exponent of 2.0 for the clustering objective function have been used. For each 

training ANFIS has been run for 300 epochs, then the AUC on the test set has been 

calculated. In order to reduce random initialization effects, this procedure has been iterated. 

The number of clusters corresponding to the maximum mean AUC on the test set has been 

chosen for the final configuration. This number resulted to be 18. Table 8 shows parameters 

used for ANFIS training and architecture. Figure 14 shows a typical ROC curve obtained 

from the trained ANFIS on the test set. The mean AUC achieved on the test set is 0.80. 

 

Table 8: Parameters for ANFIS training and 

architecture. 

Number of training epochs 300 

Input membership functions Gaussian 

Output membership function Linear 

Learning rate Adaptive 

Learning rate initial step size 0.01 

Step size decrease rate 0.9 

Step size increase rate 1.1 

 

 

 
Figure 14: ROC curve for the ANFIS classifier. 
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4.10 Online cost-oriented classification approach 

Once a dataset of oil spills and look-alikes, has been collected, as new satellite images are 

available and new oil spill candidates are detected, the dataset can be updated, and the 

classification system can consequently be re-trained, benefiting from a larger dataset. In 

this framework, an online learning approach allows to easily improve the classification 

capability of the system. Every time a new satellite image is downloaded and analysed, new 

candidates detected in the image are included in the dataset and the proposed classification 

system is able to learn quickly from these new candidates, by means of the online learning 

process. The described situation well represents an operational scenario where a dataset of 

oil spills is available, and it is being continuously updated (say daily) by the detection of 

other oil spills in some new images. These considerations suggested the investigation of an 

online approach to oil spill classification.  

Another important issue is related to desired target conditions. More precisely, since false 

alarms represent a relevant problem for oil spill classification, it is desirable to assign a 

different cost to the misclassification errors for each of the two classes. This allows to 

perform an optimal classification with respect to a chosen cost index for class 

misclassification, that is, a cost-oriented classification.  

According to these considerations, the study of computational intelligence techniques 

suitable for optical oil spill classification proceeded by combining cost-oriented 

classification with an online learning approach, which also allowed to use time varying 

costs and thus to change the desired target conditions (in particular the maximum false 

alarm rate) according to the latest classification results. In an operational scenario, this 

means that, for instance, if the coast guard verifies that too many look-alikes have been 

labelled as real oil spills, then the misclassification cost for the look-alikes, can be 

increased, thus improving the classification of future events. 

The following sections show how to build an online cost-oriented classification system 

based on an ensemble of SVMs. Then, results obtained by applying this classifier to the oil 

spill dataset will be shown. 

However, we have to consider that the proposed approach meets the requirements of on-

line classification, cost oriented classification and of using a suitable performance measure 

for a two class problem (as will be explained in the following sections) in despite of 

interpretability. Up to now it has not been possible to include all these four requirements in 

a single framework, thus the attention will be focused on the first three. 

4.10.1 The model 

A simple way to tackle a time varying cost scenario is to develop a single cost-oriented 

classifier, trained over a sliding window, and to dynamically select the optimal trade-off 

between false positives and negatives, as explained above. So doing, however, one might 

run into classifier instability. 

An empirical method to reduce instability is to employ a meta-classifier, consisting of a set 

of such cost-oriented classifiers, each one characterized by a static cost, statistically chosen 

in the initialization phase. Within this set, the best classifier is dynamically selected as the 

one providing the best trade-off between false positives and negatives, according to the 
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instantaneous classification error index. For the sake of easiness, we assume that the meta-

classifier is made of classifiers of the same type. The choice of the specific classifier type 

(decision trees, neural networks, etc) must consider, first of all, the availability of a cost-

oriented training algorithm, and, possibly, the availability of an incremental and 

decremental training algorithm. In particular, this latter issue significantly improves 

adaptability, since the training algorithm exploits for each subsequent re-training only the 

patterns that enter (incremental part) or leave (decremental part) the sliding window, so the 

system is continuously updated. For this reason, SVMs (Section 3.3) have been chosen, 

because they meet both requirements, and represent one of the most powerful classification 

techniques. 

More precisely, the cost-oriented formulation of SVMs (CO-SVMs) [39] (Section 3.3.1) 

and the incremental/decremental formulation of SVMs (ID-SVMs) [40] (Section 3.3.2) 

have been integrated into a unique framework named COID-SVMs [71]. Then, an ensemble 

of COID-SVMs, each with its static misclassification error costs has been used. The 

following sections describe the proposed approach. 

4.10.2 Cost-oriented classification in ROC space 

This section explains how the ROC space can be used to perform a cost-oriented 

classification.  

As explained in Section 4.9.1, a continuous classifier can be associated with a set of pairs 

(TPR, FPR), each one corresponding to a certain threshold . This allows to evaluate the 

performance of the continuous classifier in the space (TPR, FPR), that is the ROC space.  

Basing on the definition of TPR and FPR, in a two-class cost-oriented classification 

problem (p and n for positive and negative classes, respectively) the following cost index is 

often used: 

J(TPR, FPR)=FPR·C(Y, n)·p(n)+(1TPR)·C(N, p)·p(p) (32) 

where C(Y, n) and C(N, p) are the cost functions associated to the misclassification of, 

respectively, a negative and a positive pattern, p(n) and p(p) are, respectively, the a-priori 

probabilities for negatives and positives. Such probabilities are typically estimated through 

the relative frequencies of positives and negatives in the available dataset. Here it is worth 

noting that the cost functions C(Y, n) and C(N, p) must be provided by the user and that 

they could change over time. 

Once a continuous classifier has been trained, the optimal threshold   can be found by 

minimizing the cost index J: 

).))(),(((minarg ii FPRTPRJ
i




  
(33) 

As observed by Provost and Fawcett in [68], in the ROC space the iso-performance curves
3
 

are straight lines when the cost index is the one defined in (32). Thus, a set of costs and 

                                                 

3
 Iso-performance curves are those curves which connect classifiers having the same 

performance, that is the same cost index. 
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class distributions corresponds to a family of iso-performance lines, characterized by the 

slope: 

C(Y, n)·p(n)C(N, p)·p(p). (34) 

In particular, within a family of iso-performance lines, the line that is tangent to the ROC 

curve identifies the optimal point on the ROC curve (such point is ( )(TPR , )(FPR ). 

This allows to conclude that only points laying on the ROC convex hull (i.e. the convex 

hull of the ROC curve) can be actually optimal. When more continuous classifiers are 

available, as happens in classifier ensembles, just one convex hull can be computed for all 

the ROC curves, each curve being associated with one classifier. Figure 15 shows the ROC 

convex hull of three different ROC curves, and two different optimal points related to 

different cost index values.  

In case of cost-oriented online classification based on an ensemble of continuous classifiers, 

if the training and the classification processes are performed over a sliding window, the 

following strategy can be adopted: 

1) train each classifier over the current window;  

2) draw the ROC curves by evaluating each trained classifier on a test set and by 

varying the threshold. Each classifier will produce a single ROC curve; 

3) compute the overall convex hull, and select the best threshold associated with the 

best classifier. 

Doing this, the optimal classifier and threshold are selected. 

 

 
Figure 15: Convex hull of three ROC curves. Lines α and β are two iso-performance lines, 

both tangent to the convex hull, but with different slopes, thus corresponding to different 

costs and class distributions. 

4.10.3 Repairing concavities in ROC curves 

In order to improve the convex hull, a technique presented by Flach and Wu [72] for 

repairing concavities in ROC curves can be exploited. The basic principle relies on the 

following observation: classifiers below the ascending diagonal in the ROC space (such as 

classifiers A and B in Figure 16) perform worse than the random classifier, thus, by simply 

inverting their predictions, the resulting classifiers will perform better than the random one. 
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Inverting model predictions means obtaining a true positive rate equal to the complement to 

1 of the original true positive rate, and a false positive rate equal to the complement to 1 of 

the original false positive rate. In the ROC space this corresponds to mirroring the original 

ROC point through the midpoint on the ascending diagonal. It is worth noting that this 

operation does not reduce the information content of the classifier. Since the ascending 

diagonal in the ROC space actually connects two classifiers, that are the classifier always 

predicting negative (the point in (0,0)) and the classifier always predicting positive (the 

point in (1,1)), this allows to generalize the prediction inversion procedure to linear 

segments connecting arbitrary classifiers.  

This procedure is known as algorithm SwapOne and is illustrated in Figure 17. Classifier 4, 

built by the algorithm, has: 

3214 TPRTPRTPRTPR    

3214 FPRFPRFPRFPR    

where TPRi and FPRi denote the true positive and the false positive rate of classifier 

i=1,…,4. This can be done if 231 TPRTPRTPR   and 231 FPRFPRFPR  . 

If classifiers 1, 2, 3 are obtained by setting different thresholds 1 > 3 > 2 on the same 

continuous classifier, these conditions are automatically satisfied and the algorithm can be 

applied. 

 
Figure 16: Classifiers A and B perform worse than the random classifier: by inverting 

their predictions we obtain classifiers -A and -B performing better than the random one. 
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Figure 17: Considering the predictions of classifiers 1 and 2, predictions of classifier 3 

are swapped to obtain classifier 4. 

Following this approach, the area under the convex hull can sometimes be increased by 

mirroring points under the convex hull to the other side [72]. This can be achieved because 

concavities give worse classification performance, thus, by swapping such points, the 

resulting mirrored points will be located in a more northwest region of the ROC space. 

Doing so, the ROC curves are modified and the new convex hull is consequently improved.  

Next section describes the classifiers used to build the ensemble. 

4.10.4 COID-SVMs for online classification 

The proposed model [71] is a combination between CO-SVMs and ID-SVMs described in 

Section 3.3.1 and Section 3.3.2, and includes the cost-oriented classification in the ROC 

space, as described in Section 4.10.2, and the convex hull improvement through concavities 

repairing (Section 4.10.3). The method starts from the implementation of the ID-SVM by 

Cauwenberghs and Poggio [40], which has been modified to include cost-oriented 

classification for unbalanced classes and online classification. Regarding online 

classification, it is worth pointing out that in the original algorithm by Cauwenberghs and 

Poggio data acquisition was a batch process, while pattern evaluation was performed 

incrementally, following the same order as the acquisition. On the other hand, with the 

online approach, data acquisition happens incrementally, so the SVM structures can be 

dynamically modified, instead of being fixed by the dimension of the data acquired in batch 

mode. This intrinsic dynamicity improves the adaptability of the system to time varying 

conditions. 

The online approach is handled by introducing a sliding window over which the training is 

performed. The use of this window arises from the study of some typical problems of real 

world applications, such as limited storage capability and continuous incoming data stream, 
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which require the system’s update so as to improve the goodness of classification 

predictions. 

In order to build an online training, the algorithm has been structured in the following three 

steps: 

1) SVM initialization: this is performed by training the SVM over those patterns 

belonging to the window. In this way the SVM structure is initialized basing on a 

small data sample in batch mode. Thus, the resulting SVM trained on the window 

can be used in incremental mode. In this first step the only difference with respect 

to the original ID-SVM [40] is that the considered one is cost-oriented.  

2) SVM incremental learning: a new pattern enters the window and the cost-oriented 

incremental learning starts. 

3) SVM decremental unlearning: the oldest pattern exits the window and the 

decremental unlearning starts. 

Besides the online training process, which is built by introducing the sliding window, 

performance evaluation in ROC space (which implies drawing ROC curves, computing the 

convex hull, choosing the optimum, improving performance by repairing concavities) 

requires the presence of a validation set. In addition, performance should be evaluated using 

a third set, the test set.  

In order to integrate all these features, the adopted sliding window has been structured as in 

Figure 18. The sliding window has a size twice the size of the desired window for learning. 

Each time, two new elements enter the window and two are excluded from the window. 

The SVM is trained over the odd elements within the window, while the even patterns 

compose the validation set, used to evaluate the expected costs, to build the ROC curves 

and the convex hull, and to repair concavities, if necessary. We can note that this procedure 

allows only one pattern at a time to enter the training set. The test set is instead chosen 

outside the window, so that the pattern used for testing are not known by the SVM, thus, 

the settings established during the validation phase can be evaluated in an independent way. 

In particular, the test set is composed of a number of patterns following the moving window 

and equal to the size of the number of elements used for training and for validation. Test set 

size is thus half of the size of the sliding window.  

 

 
Figure 18: Sliding window used for the online COID-SVM implementation. 

The following section explains how the implemented model for online COID-SVM has 

been included in an ensemble of classifiers. 
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4.10.5 The ensemble of COID-SVMs in the ROC space 

Instead of using just one COID-SVM, with dynamically changing C(Y, n) and C(N, p), a 

set of COID-SVMs has been employed, using static misclassification costs. The advantages 

associated with this approach are threefold: 

i) an ensemble tends to provide a performance that can outperform the single best 

classifier;  

ii) an ensemble tends to provide more robust and stable performance;  

iii) static cost functions give better stability to the algorithm used for the SVM online 

training.  

The only drawback is the increase in computational complexity. However, the use of 

incremental and decremental learning mitigates this problem. Moreover, the computational 

complexity of the method is negligible if compared to the time needed to download a new 

satellite image, select, within the image, those regions which could contain possible oil 

spills, and extract the input features for the classifier. In addition, the classifier is not 

designed to work in real time conditions, but rather to adapt the classification considering 

the most recent patterns.  

All the COID-SVMs composing the ensemble undergo the training process described in 

Section 4.10.4, therefore, the validation set is used to draw the ROC curves corresponding 

to each SVM, and to compute the overall convex hull. This means that the information 

derived by each classifier are automatically selected by means of the convex hull, and the 

optimum can be chosen according to the iso-performance line, taking into account all the 

classifier ensemble. In the same manner the overall concavities can be recovered, allowing 

for a fusion of the information provided by each classifier, in place of a dynamic classifier 

selection. Figure 19 shows a flowchart of the proposed classification approach based on the 

described ensemble of online COID-SVMs in the ROC space. 

 
Figure 19: Flowchart of the proposed approach for the classification based on an 

ensemble of online COID-SVMs. 
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4.10.6 A software for online cost-oriented classification 

The proposed algorithm for building an ensemble of online COID-SVMs, described in 

Section 4.10.5, has been integrated in a software tool, which is structured following the 

flowchart in Figure 19. The software is provided with a graphic interface which allows the 

user to set the inputs and to obtain the optimum for the classification, basing on the convex 

hull method (see Section 4.10.2). In particular, the user can select the dataset and can set 

the static misclassification costs for each COID-SVM in the ensemble, the cost functions 

which define the iso-performance lines, and the size of the sliding window. For each data 

subset entering the sliding window, the software produces a plot showing the ROC curve 

for each SVM, the convex hull and the optimum for the classification, all computed over 

the validation set. Moreover, the cost index J(TPR, FPR), defined in (32) is computed for 

the ensemble on the validation set and on the test set. The confusion matrix for each SVM 

can also be computed. Possible concavities in the convex hull can be repaired by enabling 

the corresponding function.  

The software employs an ensemble of five SVMs, namely COID-SVM 1, COID-SVM 2, 

COID-SVM 3, COID-SVM 4 and COID-SVM 5.  

The interface allows to choose the values of the static misclassification costs for the 

negative and positive class (respectively, M(Y, n) and M(N, p)) for each COID-SVM in the 

ensemble. The cost functions C(Y, n) and C(N, p) that define the iso-performance lines in 

the ROC space, used to select the optimum from the convex hull, are also set from the 

interface. In particular, these cost functions can be either constant or time varying. In the 

latter case, the symbols C(Y, n)(t) and C(N, p)(t) will be used. 

The size of the moving window can be selected by means of a sliding bar, while concavities 

repair is enabled by a checkbox.  

In the following the results obtained by applying the online COID-SVM ensemble to the oil 

spill dataset will be presented, and the effect of repairing convex hull concavities will be 

investigated.  

4.10.7 Online cost-oriented classification results 

4.10.7.1 Experiment without concavities repair 

Figure 20 shows a typical result for an online classification step. The figure shows the ROC 

space where the ROC curves for the ensemble of online COID-SVMs are drawn. The violet 

line represents the overall convex hull and the black line is the iso-performance line tangent 

to the convex hull. The black squared mark represents the optimum, resulting from the 

algorithm. In order to find a tradeoff between the size of the dataset (304 elements) and the 

necessity to test the online learning procedure, a sliding window of 100 elements has been 

chosen, 50 used for training and 50 for validation. According to Figure 18, each online 

epoch has been tested on 50 test elements.  

Time varying sigmoid cost functions C(Y, n)(t) and C(N, p)(t) have been used, with values 

in the interval [1, 2]. As shown in Figure 21, where the costs are plotted as a function of the 

online epoch number, C(Y, n)(t) decreases with time while C(N, p)(t) increases. 
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Figure 20: ROC curves for the ensemble of online COID-SVMs. The violet curve 

represents the convex hull, whereas the black line represents the iso-performance line. 

The black squared mark is the optimum. 

 

 
Figure 21: Time varying cost functions C(Y, n)(t) and C(N, p)(t), represented as a function 

of the online epoch number. 

The static misclassification costs associated with each COID-SVM in the ensemble are 

shown in Table 9. Note that these misclassification costs could assume any value. In 

particular, for each SVM, M(Y, n) and M(N, p) are not necessarily equal. Experimental 

tests showed that, in this application, using equal misclassification costs for the positive and 

negative classes, for each COID-SVM, gives better performance. This could be explained 

with the fact that the oil spill dataset is actually balanced, since the number of elements 

belonging to the oil spill class is approximately equal to the number of elements belonging 

to the look-alike class. Indeed, according to the cost oriented formulation of SVMs [39], the 
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static misclassification costs M(Y, n) and M(N, p) represent the upper bound on the 

maximum allowed distance between an element and the separating hyperplane associated, 

respectively, to the negative class and to the positive class. Thus, using equal values for the 

two misclassification static costs does not exactly mean that the cost of misclassifying a 

positive element is being considered equal to the cost of misclassifying a negative one. 

 

Table 9: Misclassification costs associated to each 

COID-SVM in the ensemble. 

 M(Y, n) M(N, p) 

COID-SVM 1 1.0 1.0 

COID-SVM 2 1.5 1.5 

COID-SVM 3 2.0 2.0 

COID-SVM 4 2.5 2.5 

COID-SVM 5 3.0 3.0 

 

A measure of the classification performance of the system can be achieved by considering 

the cost index J(TPR, FPR), defined in (32), computed on the test set
4
 at the optimal 

threshold for the ensemble. However, each online step produces an optimal threshold for 

the classification of the elements belonging to the current sliding window. This intrinsic 

dynamicity of the system must be taken into account. In order to obtain a performance 

index involving the complete dataset, all the cost indexes, each one corresponding to a 

single online epoch, have been summed over all the online steps, so as to obtain an 

integrated global cost index for the ensemble applied to the dataset. On the resulting 77 

online epochs a global cost index of 92.89 has been obtained on the test set, and of 77.39 on 

the validation set. 

Regarding the mean execution time on the considered dataset, in terms of elapsed CPU 

seconds, for a single online step this resulted to be 5.52s, on AMD Athlon X2 2.6GHz 

processor, with 2Gb RAM.  

4.10.7.2 Experiment with concavities repair 

The application of the technique described in Section 4.10.3 results in a modification of the 

convex hull, which brings to an increase in the area below the convex hull. In order to 

estimate the effect of repairing concavities, the corresponding function has been applied at 

each online step, and the area under the convex hull has been computed. On the 77 online 

epochs the obtained mean area under the convex hull was of 0.70, while repairing 

concavities at each online epoch resulted in a mean area under the convex hull of 0.72, thus 

increasing the area of about 3%. Moreover, the increase in the area corresponds to a 

decrease in the global cost index of the 2% on the test set and of the 5% on the validation 

set. Figure 22 shows an example of the effect of repairing concavities in the convex hull. In 

                                                 

4
 Note that the optimum is computed by the algorithm on the validation set. 
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the figure the variation in the area is highlighted in grey, the optimum computed on the 

improved convex hull is represented by a red squared mark, while the old optimum is 

represented by a black squared mark. From the theoretical point of view, such an 

improvement is even more significant, because it demonstrated that combining classifiers 

provides better results, in this case, than performing a classifier dynamic selection. 

 

 
Figure 22: Effect of repairing convex hull concavities. 
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Chapter Five: Application to bathymetry estimation from optical 

satellite images 

5.1 Motivations 

The advent of high resolution satellite sensors (see Table 2) allows to describe the coastal 

zone with high accuracy, although this implies a reduction of the spectral information. In 

Chapter 1 we have described how optical satellite data contain contributions from many 

factors, such as IOPs, bottom depth, bottom spectral properties and atmosphere. The 

inverse problem of retrieving information on these properties, starting from at sensor 

spectral radiance values, usually brings to the use of theoretical forward models, as 

described in Chapter 2. This chapter is focused on the application of a supervised 

computational intelligence technique to the estimate of sea bottom depth from high 

resolution optical satellite images, exploiting a dataset of in-situ measured depths. Analytic 

unsupervised methods rely on many assumptions, but they are able to give indications for 

an estimated bathymetry map of the area covered by a satellite image. Hybrid methods, 

based on the use of computational intelligence, combined with simulated datasets, are still 

affected but many assumptions. On the other hand, if in-situ depth measurements are 

available, a supervised methodology can be applied, thus allowing to extend the bathymetry 

information to a much wider area, with high accuracy. This has been the basic motivation 

for the proposed approach. Moreover, the development of new accurate techniques for 

producing bathymetric maps from satellite data represents a useful and low-cost support to 

Rapid Environmental Access (REA) activities, that consist in getting information on hardly 

accessible zones. 

In this chapter a method based on the use of a neuro-fuzzy system, whose input consists 

only of three spectral bands, is proposed for bathymetry estimation. Situations of limited in-

situ data availability are also considered, showing that accurate results are still obtained. In 

particular, results obtained on two Quickbird images of the same area, acquired in different 

years and in different meteorological conditions are presented. These two cases allow to 

study the performance of the presented technique, taking into account the effect of 

meteorological conditions, and the effect of the reduction of the training set size.  

5.2 Overview of bathymetry estimation methods  

Bathymetry estimation using remotely sensed images has been widely studied since the 

1970’s, when the first empirical models were proposed. One of the difficult aspects of this 

problem is the effect of variability in the bottom type and in the water column constituents, 

which are often undistinguishable from changes in bottom depth. If more than a single band 

is available, some assumptions can be made in order to deal with this aspect. In 1969 

Polcyn and Sattinger [73] proposed a two band algorithm for water depth estimation, that 

assumes that two spectral bands can be found such that the ratio of the reflectance in these 

two bands is the same for all bottom types within a given scene, and the ratio of water 

attenuation in these two bands is also constant. This assumption is the base for many semi-

empirical methods, such as the two band ratio transform introduced by Lyzenga [74], who 
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proposes a change in the coordinate system, which allows to obtain a variable having a 

linear dependence on depth. 

Empirical methods usually derive water column contributions from adjacent deep waters 

[75] [76], and assume light attenuation properties to be known a priori [75], or empirically 

derive these properties from the image by regression, using true depths measured on site 

[77]. Later, semi-empirical methods were developed, like the one proposed in [78], which 

uses analytical formulae to relate sub-surface reflectance with water column reflectance, 

albedo and depth, assuming bottom uniformity. However this approach, although more 

complex than an empirical relationship, does not resolve all the variables of interest.  

Bio-optical models were lately developed in order to overcome the need for the knowledge 

of water properties or in-situ depth measurements. These methods are mostly based on the 

semi-analytical model proposed in 1999 by Lee et al.[17]. This model describes the remote 

sensing reflectance as a function of the absorption coefficient, the scattering coefficient, 

bottom reflectance and bottom depth. Only the spectral shape of bottom albedo is assumed 

to be known. The model produces an estimate of the remote sensing reflectance and 

iteratively minimizes an error function by comparing the measured reflectance, obtained 

from a hyperspectral sensor, with the estimated one, finally retrieving optimized parameters 

representing the water column and bottom contributions. Bio-optical models are able to 

simultaneously derive bottom depths, albedo and the optical properties of the water column, 

but must be applied to hyperspectral imagery. If only a few bands are available, such as in 

the case of the Quickbird sensor, which has 3 bands in the visible and one in the near 

infrared, these methods cannot be applied. 

Adler-Golden et al. [79] proposed an algorithm for bottom brightness and depth retrieval, 

which is similar to the one by Lee et al. [17], but it makes the simplifying assumption of 

constant water optical properties within the scene. This allows to solve some ambiguities in 

separating the effects of different depths, bottom materials, and water types, and to be 

applied also to four-channel data, such as data from Quickbird and IKONOS sensors. The 

algorithm also corrects for spectrally flat reflections from surface glint, foam, and thin 

clouds, by exploiting one or more infrared channels. It combines atmospheric correction, 

water reflectance spectral simulations, and a linear unmixing bathymetry algorithm. 

However, when using Quickbird images no information about water constituents can be 

retrieved, since only three bands in the visible are available, thus, a pure water model is 

used. The error on bathymetry calculations results to be around 1 m.  

Regarding supervised approaches, some contributions can be found in the literature. In [27] 

Sandidge and Holyer use a feed-forward fully connected artificial neural network to 

estimate water depths, ranging from 0 to 6 m, from hyperspectral AVIRIS data. Their 

neural network is applied to two areas characterized by different water types, bottom types, 

atmospheric conditions, and illumination levels. The network trained on a combination of 

the two datasets results in an RMSE of 0.48 m while training on the single datasets gives 

RMSEs of 0.84 m and 0.39 m, respectively. Results are very accurate but, on the other 

hand, a large number of training data are used, together with a high number of spectral 

bands (41). More recently, Grasso et al. [80] applied a multilinear regression and a radial 

basis function artificial neural network to fused data from Quickbird and IKONOS images 

of the area of Castiglione della Pescaia (Grosseto, Italy), the same area considered in this 
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study. Using the neural network they obtain a standard deviation (STD) of 0.45 m on the 

test set. 

5.3 Two case studies 

In this study two multi-spectral high resolution images of the same area, acquired in 

different years and in different meteorological conditions have been used. In particular, the 

first one has been acquired in calm sea conditions, and is supplied with a large dataset of in-

situ measured depths for training and validation of the method. The second image has been 

acquired in slight sea conditions and is supplied with a limited dataset of in-situ measured 

depths, collected along two transects within the scene.  

The two images have been acquired by the multi-spectral sensor on board Quickbird 

commercial satellite. Table 10 reports Quickbird specifications, among which the most 

interesting one is the spatial resolution, that is 2.44 m for multi-spectral data. Four spectral 

bands are available, three in the visible and one in the NIR (see Table 11).  

 

Table 10: Quickbird specifications. 

Orbit Altitude 450 km 

Orbit Inclination 97.2 deg., sun-synchronous 

Speed 7.1 km/s 

Equator Crossing Time 10:30 a.m. (descending node) 

Orbit Time  93.5 min 

Revisit Time 1-3.5 days depending on latitude 

Swath Width 16.5 km at nadir 

Quantization 11 bits 

Spatial Resolution 
Panchromatic: 61 cm (nadir) 

Multi-spectral: 2.44 m (nadir) 

 

Table 11: Quickbird multi-spectral bands 

Band Bandwidth (nm) 

Blue 450-520 

Green 520-600 

Red 630-690 

NIR 760-900 

 

Both images are related to the area of Castiglione della Pescaia (Grosseto, Italy), a touristic 

locality of great interest, but they have been acquired in different dates: the first image 

(Figure 23 (a)) has been acquired on April 27
th

, 2007 at 10:32 UTC, while the second one 

(Figure 23 (b)) has been acquired on July 14
th

, 2008 at 10:32 UTC. We will refer to the 

analysis of these two images as Castiglione 2007 case and Castiglione 2008 case. 

The information about date and acquisition time is necessary in order to estimate tide 

effects and thus refer depth data to mean sea level used as a standard in cartography. In this 
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work all data are referred to the average sea level measured in Genoa (Italy) using the 

ancient Thompson tide gauge. 

In order to train and validate the algorithm, in-situ truth data have been used, that have been 

collected by the Istituto Idrografico della Marina (IIM) during two hydrographic surveys 

conducted, respectively, in June 2007 for the Castiglione 2007 case and in September 2008 

for the Castiglione 2008 case. These data have been acquired by means of a multi-beam 

echo sounder whose accuracy on depth measurement was of 0.01 m, and are referred to the 

average sea level measured in Genoa.  

  
(a) (b) 

Figure 23: (a) Quickbird image (RGB) of the area of Castiglione della Pescaia (Grosseto, 

Italy), acquired on April 27
th

, 2007 at 10:32 UTC. The red square represents the bounding 

box enclosing the area covered by in-situ depth measurements, which are represented as 

yellow dots. The black line represents a test transect. (b) Quickbird image (RGB) of a 

subset of the same area, acquired on July 14
th

, 2008 at 10:32 UTC. In-situ measurements 

have been acquired along two transects, represented as yellow and red dots, respectively. 

As can be observed from Figure 23 (a) and Figure 23 (b) there are some differences 

between the two cases. First, in the Castiglione 2007 case the image has been acquired in 

optimal meteorological conditions, in terms of clear sky, good horizontal visibility and 

scarce sea surface roughness, while in the Castiglione 2008 case, although the visibility is 

still good and the sky is cloudless, the sea surface roughness is much more important, and 

there is presence of foam not only close to the shoreline but also in deeper waters. Second, 

the in-situ depth measurements available for the Castiglione 2008 case are represented by 

two transects in the image (yellow and red dots in Figure 23 (b)), while those available for 

the Castiglione 2007 case cover a much larger area which can be enclosed in a bounding 

box (the red square in Figure 23 (a)). Finally, the scene represented in the 2008 image 

corresponds approximately to the bottom right quarter of the 2007 image. 

In the pre-processing phase of the analysis each image has been first georeferenced, then 

land pixels have been identified and removed by applying a mask based on a threshold on 

the NIR band. Pixels affected by the presence of foam close to the shoreline have also been 

identified and removed by applying a mask based on a threshold on the red band of each 

image. Finally, a median filter has been applied in order to reduce the variation of the 

surface reflectance due to wind waves on the sea surface. The appropriate kernel dimension 
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for the filter has been chosen by evaluating performance as a function of kernel dimension, 

as will be described in detail later on. 

5.4 A neuro-fuzzy approach to bathymetry estimation 

Supervised regression for the estimation of sea bottom depth can be tackled in very 

different ways, ranging from white models, like parametric analytical models, both linear 

and nonlinear, to black-box models (like artificial neural networks). The former can be 

better understood, but it is generally difficult to chose the appropriate parametric model for 

the particular application. On the contrary, black-box models based on artificial neural 

networks have the advantage of being general purpose scalable models, that can be used on 

a large number of applications. However, they tend to lack of interpretability (the 

parameters learned during training, like the weights on the inputs of each neuron, do not 

have a clear meaning). For this application to bathymetry estimation neuro-fuzzy models 

have been chosen, because they combine the powerful learning algorithm of neural 

networks with the interpretability of fuzzy systems. In particular, an ANFIS [34] (see 

Section 3.2) has been adopted. Unlike what has been described in Section 4.9, where a two-

class classifier for oil spill classification was needed, here ANFIS can be regarded as a 

nonlinear regression technique.  

The choice of ANFIS arises from many motivations. First of all, adaptive networks allow to 

design a model without using any predetermined knowledge of the problem. More 

precisely, traditional fuzzy inference systems need a rule structure and membership 

functions which are predetermined by the user, on the basis of his previous knowledge and 

interpretation of the variables involved in the problem. On the other hand, adaptive 

networks use a collection of input-output data pairs in order to determine the model 

structure. In particular, these networks use the supervised learning procedure to adapt the 

membership functions to the input variable characteristics, which are thus derived from the 

dataset. Beside this feature of adaptive networks, another advantage of using ANFIS is 

represented by interpretability, which is indeed preserved. While neural networks are black-

box models, ANFIS can be regarded as a grey-box model, since it allows to describe the 

problem starting from data, without going into details but keeping interpretability into 

account. Some parameters must still be provided, however, these are quite easy to set. 

Another advantage of using ANFIS is that is it already available in the MATLAB Fuzzy 

Logic Toolbox [69]. 

The three radiance bands of the image corresponding to wavelengths centred in the visible 

spectrum have been used as input for the fuzzy inference system. The output of the system 

represents the estimated bottom depth, while in-situ measured depth represents the desired 

output from the system, that is the target. For each image, in order to build a dataset 

composed by the system input and corresponding output, pixels where in-situ 

measurements were available have been selected. Thus, each selected pixel corresponds to 

an element in the data set, composed of a pair {[L1, L2, L3], dm}, where [L1, L2, L3] is the 

radiance vector and dm is in-situ measured depth corresponding to the pixel.  

In the following, the results achieved by applying ANFIS to the two available Quickbird 

images will be separately discussed for Castiglione 2007 case (Section 5.4.1) and for 

Castiglione 2008 case (Section 5.4.2).  
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5.4.1 Experimental results: Castiglione 2007 case 

Figure 24 shows the in-situ depth measurements available for the Castiglione 2007 case: 

each pixel in this figure represents a value of in-situ measured depth dm which has been 

used to build the dataset pairs. 

 
Figure 24: Castiglione 2007 case: in-situ measured depth. 

As mentioned in Section 5.3, during the pre-processing phase the image has been filtered 

by means of a median filter. In order to choose the optimal kernel dimension for the filter, 

performance has been evaluated as a function of kernel dimension, in terms of STD over 

the entire depth range. In particular, as Table 12 shows, performance obtained using a 

kernel dimension of 3 3, 5 5, 7 7, 9 9, 11 11 and 17 17 pixels, have been evaluated. 

One third of the elements randomly chosen from the complete available dataset was used as 

a test set for the STD calculation, while one of the remaining thirds was used for ANFIS 

training and the other one for ANFIS validation. In this preliminary study on the optimal 

dimension for the kernel filter a grid partitioning approach has been used for the 

initialization of ANFIS. This choice is motivated by the fact that when using a uniform grid 

partition for the inputs only the number of fuzzy sets for each input variable must be 

specified, and no further parameter setting is required. In particular, 5 fuzzy sets were used 

for each input variable, so as to obtain 125 fuzzy rules, which is a reasonable number even 

in the case of 17 17 filtering window, that is the case for which there is a lower number of 

elements in the dataset (due to the lower resolution of the map). 

For ANFIS training MATLAB anfis routine [34] [69] has been used, with the same 

hybrid learning algorithm based on [70] and described in Section 4.9.2. Overfitting has 

been prevented by the presence of a validation set. ANFIS has been trained for 300 epochs, 

adopting Gaussian membership functions for the inputs and a linear membership function 

for the output. For the backpropagation algorithm an adaptive learning rate has been 

chosen, with an initial step size of 0.01, a step size decrease rate of 0.9, and a step size 

increase rate of 1.1. 
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Table 12 reports the STD calculated on the test set. These values are mean values obtained 

by running the algorithm many times for each filtering window. Best results are obtained 

using a kernel dimension for the filter of 9  9 pixels. This can be also observed from Figure 

25, which shows a plot of the mean STD obtained on the test sets as a function of the kernel 

dimension for the filter. In the figure the minimum STD, corresponding to a kernel of 9  9 

pixels, is highlighted by a black cross. In the following all the results will refer to the image 

at this resolution. 

Table 12: STD obtained using the supervised method on 

the 2007 image where different median filters were applied 

Kernel dimension for the filter STD (m) 

3 3 0.67 

5 5 0.52 

7 7 0.41 

9 9 0.38 

11 11 0.75 

17 17 1.04 

 

 
Figure 25: Castiglione 2007 case: mean STD obtained on the test sets as a function of the 

kernel dimension for the filter. In the plot the minimum STD, corresponding to the chosen 

kernel of 9 9 pixels, is highlighted by a black cross. 

 

The following sections (5.4.1.1 and 5.4.1.2) describe the results obtained by applying 

ANFIS to the 2007 Quickbird image in two different experiments. 
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5.4.1.1 Experiment S-U 

For the first experiment the data set has been randomly split into three subsets, composed, 

respectively, of 3623, 3602 and 3615 elements. The first one has been used as a training set 

while the second one has been used as a validation set, whose task is to prevent over 

learning and to maintain the network’s generalization ability. The third set has been used as 

a test set in order to evaluate the identification capabilities of the algorithm. In the 

following this experiment will be referred to as Experiment S-U, where S indicates that the 

method is supervised and U indicates a uniform random partition of the data set in three 

sets.  

Borrowing the term from time series prediction nomenclature [81], it is worth pointing out 

that this procedure consists in an in-sample methodology, since the examples used for the 

validation are chosen randomly from the same set as the examples used for the training.  

As introduced in Section 5.4, MATLAB anfis routine has been used for ANFIS training, 

adopting the above mentioned hybrid learning rule. For the gradient descent algorithm an 

adaptive learning rate has been used with an initial step size of 0.01, a step size decrease 

rate of 0.9, and a step size increase rate of 1.1. For the consequent least square estimate 

Kalman filter has been used. 

In order to provide anfis with an initial Fuzzy Inference System structure, data have been 

partitioned using a fuzzy c-means clustering algorithm. Although a grid partitioning 

consists in practice in a non parametric technique, fuzzy c-means clustering has been 

chosen because input data distribution resulted not to be uniform.  

The number of clusters has been chosen by training ANFIS for many times, starting from 

different initial fuzzy inference system structures, each one obtained by fuzzy c-means with 

a different number of clusters. For the fuzzy c-means algorithm 300 iterations and a 

fuzziness exponent of 2.0 for the clustering objective function have been used. For each 

training ANFIS has been run for 300 epochs, and the errors on training, validation and test 

sets have been computed. In order to reduce random initialization effects, this procedure 

has been iterated, and the mean errors on the training, validation and test sets have been 

computed. Then, the number of clusters corresponding to the minimum mean error on the 

validation set, has been chosen. As Figure 26 shows, this number resulted to be 32.  

The number of clusters determines the number of rules and the membership functions for 

the antecedents and consequents in the generated FIS. Regarding other settings for ANFIS 

architecture, Gaussian input membership functions and a linear output membership function 

have been employed.  

After the preliminary setting phase ANFIS has been trained for 300 epochs and 

performance obtained on training, test, and on a transect dividing the considered bounding 

box in two (shown in Figure 23(a)) have been evaluated. Averaging the results of multiple 

runs (in order to consider fluctuations due to ANFIS initialization) mean STDs of 33.8 cm 

on the training set, of 36.7 cm on the test set, and of 28.3 cm on the transect, have been 

obtained, which is a good result. Moreover, this result is also more accurate than those 

achieved with other supervised methods (such as artificial neural network-based). For 

instance, Grasso et a.l. [80] obtained a STD of 45 cm on the test set by applying a radial 

basis function artificial neural network to fused data from Quickbird and IKONOS images 

of the same area considered in this study. 
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Figure 26: Experiment S-U: mean STD on training (blue dotted line) validation (red 

solid line) and test (green dashed line) sets for different number of clusters. The chosen 

number of clusters (32) corresponding to the minimum mean STD on the validation set is 

highlighted in the figure by a red circle. 

 

Figure 27 shows a scatter plot of the depth estimated by ANFIS vs. the in-situ measured 

depth, for the training set and for the validation set. Figure 28 shows the same plot for the 

test set, and an additional plot which represents the estimated and the in-situ measured 

depth (respectively the solid line and the dashed line) along the transect dividing the 

considered bounding box in two. The latter plot allows to see how the bottom profile is 

represented by the network. The model fits well the data, since the value of the coefficient 

of determination R
2
 is 0.995 for training, validation and test sets, and this represents a 

measure of the goodness of fit.  
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Figure 27: Experiment S-U: scatter plot of depth estimated by ANFIS vs. in-situ measured 

depth for the training set (left) and for the validation set (right). 

 

Figure 28: Experiment S-U: scatter plot of depth estimated by ANFIS vs. in-situ measured 

depth for the test set (left). Estimated and in-situ measured depth for the validation set 

(respectively solid line and dashed line) along the transect dividing the considered 

bounding box in two (right). 
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Performance have been then evaluated as a function of depth. In particular, transect 

estimated depth has been ordered by the corresponding in-situ measured depth and the 

cumulative STD has been computed as a function of depth. The cumulative STD for depth 

D can be written as follows:  

  


DN

i
D

i
m

i
eD NddSTD

1

2

. (35) 

where ND is the number of data having in-situ measured depth less than D, while de and dm 

are, respectively, the estimated and the in-situ measured depth.  

Figure 29 shows a plot of the cumulative STD as a function of the in-situ measured depth 

absolute value. As it is evident from the figure, the error tends to be constant around 0.27 m 

for |dm|> 8 m and is always below 0.40 m for |dm|< 8 m. 

 

 
Figure 29: Cumulative STD as a function of the absolute value of in-situ measured depth, 

obtained by ANFIS in the Castiglione 2007 case. 

5.4.1.2 Experiment S-P1, S-P2, S-P3, S-P4 

In practice, a bathymetric survey which covers an area as big as the considered bounding 

box is quite expensive in terms of time and costs. A more realistic situation is represented 

by a bathymetric data collection performed by a drift boat, released by a vessel, going along 

a closed path. Thus, some experimental tests have been carried on by simulating such a 

limited in-situ data availability through four different closed paths, built within the area 

covered by the presence of in-situ data. Figure 30, Figure 31, Figure 32 and Figure 33 show 

the four paths, namely path 1 (P1), path 2 (P2), path 3 (P3) and path 4 (P4), composed, 

respectively, of 616, 722, 753 and 544 elements. In each figure black pixels are those 

belonging to the path. In the following, these experiments will be called as Experiments S-

P1, S-P2, S-P3, S-P4, where S stands for supervised and P1, P2, P3, P4 indicate the 
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different paths. Radiance vectors of the selected pixels, coupled with the corresponding in-

situ measured depths, have been used to build four different datasets for ANFIS training 

and validation. More precisely, each path has been randomly divided into two halves: one 

for the training and one for the validation phase. The purpose of these experiments is to 

evaluate ANFIS performance in a situation of limited training data availability.  

 

 
Figure 30: Path P1, black pixels are those belonging to the path. 

 
Figure 31: Path P2, black pixels are those belonging to the path. 
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Figure 32: Path P3, black pixels are those belonging to the path. 

 

 
Figure 33: Path P4, black pixels are those belonging to the path. 

 

Results obtained from each of these different ANFIS training processes, have been 

evaluated by using as test set the same subset composed of 3615 elements as before. This 

has been done in order to compare the performance obtained by training on different data 

sets; in particular this allows the comparison with Experiment S-U results. 

As the validation carried out for Experiment S-U has been defined an in-sample validation, 

the procedure used for Experiments S-P1, S-P2, S-P3, S-P4 can now be defined an out-of-

sample validation, since in this case test data are chosen among the elements belonging to a 

set which is different from that used for training. 
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Since in the case of out-of-sample validation the network’s generalization capability is the 

main issue, the number of clusters used by the fuzzy c-means clustering algorithm has been 

reduced. In particular, the study performed in Experiment S-U for the optimal number of 

clusters choice, has been repeated. This number resulted to be 5, and it has been used for all 

of the four paths, since the number of elements of the four corresponding training sets is not 

significantly different (if compared to the number of elements of the training set used in 

Experiment S-U). 

It can be observed that the number of clusters obtained in this experiment (5) is 

significantly lower than that found in Experiment S-U (32). This can be due to several 

reasons: first, in this case the network is asked to perform an out-of-sample generalization 

instead of an in-sample one. Second, the training set is much more limited than in the 

previous case, whereas the test set is the same. For these reasons, the procedure produces a 

lower number of clusters, which implies a worse performance on the training set but that 

allows, on the other hand, to generalize quite well on the entire image. Using a greater 

number of clusters (say 32, like in the Experiment S-U case) leads to obtain a better 

performance on the training set but a lower one on the validation and test sets, which means 

a lower generalization capability. 

Table 13 shows the results of Experiments S-P1, S-P2, S-P3, S-P4. The table shows the 

errors obtained on each training set, on the test set and on the vertical test transect. The 

values are obtained by averaging the results of multiple runs with the same configuration of 

ANFIS, in order to consider fluctuations due to ANFIS initialization. Regarding the 

training, the same settings as those adopted in Experiment S-U have been used. The best 

performance is obtained using path P3, which achieves an STD of 0.45 m on the test set 

(see Figure 34 and Figure 35 for scatter plots). The worst performance is obtained using 

path P4, which obtains an STD of about 0.63 m on the test set.  

If it is possible to plan the bathymetric survey, the results shown in this section can give 

some suggestions. According to these results, a bathymetric data collection performed by a 

drift boat, released by a vessel, and going along a closed path, will produce more accurate 

bathymetry estimate if a path shaped such as path P3 is chosen, instead of a path like path 

P4, since this allows to span all depths in the area of interest collecting a limited number of 

measurements. In particular, it can be worth sampling more the region close to the 

shoreline. 

Table 13: Results of Experiments S-P1, S-P2, S-P3, S-P4. The errors obtained on each 

training set, on the test set and on the vertical transect are shown. The values are 

obtained by averaging results of multiple runs with the same configuration of ANFIS 

Experiment 
Mean STD on 

training set (m) 

Mean STD on 

test set (m) 

Mean STD on 

transect (m) 

S-P1 0.294 0.512 0.583 

S-P2 0.331 0.470 0.499 

S-P3 0.378 0.452 0.431 

S-P4 0.289 0.627 0.473 
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Figure 34: Experiment S-P3: scatter plot of depth estimated by ANFIS vs. in-situ 

measured depth for the training set (left) and for the validation set (right). 

 
Figure 35: Experiment S-P3: scatter plot of depth estimated by ANFIS vs. in-situ 

measured depth for the test set (left). Estimated and in-situ measured depth (respectively 

the solid line and the dashed line) along the transect dividing the considered bounding box 

in two and for the validation set (right). 
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5.4.2 Experimental results: Castiglione 2008 case 

The application of the supervised method to Castiglione 2008 case allows to validate the 

method in case of limited in-situ data availability. Only two sets of in-situ measured depths, 

laying along two transects, are available and can be used to build the training, validation 

and test sets for ANFIS. These two transects are represented in Figure 23 (b): Transect 1 is 

represented in yellow and Transect 2 is represented in red.  

Transect 1 has been used as a test set, while Transect 2 has been randomly split in two parts 

to be used one for the training and one for the validation phase. Thus, 267 elements have 

been used for the training set, 241 elements for the validation set, and 143 elements for the 

test set. 

It can be noted that this analysis can be regarded as an out-of-sample validation, like the 

one performed in Experiments S-P1, S-P2, S-P3, S-P4 (Section 5.4.1.2). The only 

difference is in the size of the test set.  

In the pre-processing phase a median filter with 11 11 kernel dimension has been applied. 

Then, analogously to what done for Castiglione 2007 case, the optimal number of clusters 

for the fuzzy c-means algorithm has been selected, and this number resulted to be 5. As 

regards the training, the same settings as those adopted in Experiment S-U and Experiments 

S-P1, S-P2, S-P3, S-P4 have been used. In this case, due to the unfavourable sea conditions 

in terms of sea surface roughness in the scene, signal to noise ratio was significantly 

reduced, thus, depth estimate has been limited to depths above −14 m, since signal to noise 

ratio decreases in deeper waters.  

On the test a mean STD of about 0.64 m has been achieved. This result is consistent with 

those obtained in Experiments S-P1, S-P2, S-P3, S-P4, also considering that in this case the 

size of the training set is significantly smaller, and the sea surface roughness is greater.  

Figure 36 shows the scatter plot of depth estimated by ANFIS vs. in-situ measured depth 

for the test set, and the comparison between estimated and in-situ measured depth along the 

test transect, that is Transect 1. Castiglione 2008 case shows how limited data availability 

together with unfavourable sea conditions limit depth estimate to a smaller range, still 

giving accurate results. 

 



74 

 

 

Figure 36: Castiglione 2008 case: scatter plot of depth estimated by ANFIS vs. in-situ 

measured depth for the test set, that is Transect 1 (left). Estimated and in-situ measured 

depth (respectively the solid line and the dashed line) along Transect 1 (right). 
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Chapter Six: Conclusions  

In this thesis computational intelligence techniques have been applied to remotely sensed 

optical data for applications in the field of marine and coastal environmental monitoring.  

The thesis contains a number of original and new contributions. First of all, the use of a 

significant dataset of oil spills, collected in satellite multi-spectral images for the oil spill 

classification problem, represents a novelty. While SAR-based oil spill detection services 

have already been adopted by environmental protection authorities for operational 

monitoring, only few studies have been presented in the literature regarding oil spill 

classification from optical data. Moreover, these studies mainly use empirical relationships 

obtained on few single cases. Thus, the extensive study that has been carried on about 

different type of classifiers, and the exploitation of a significant dataset of oil spills detected 

in satellite optical images, bring an innovative contribution to the oil spill classification 

problem. In addition, batch and online learning approaches have been experimented in this 

thesis, while in the literature only batch approaches have been employed for similar 

problems. Results show the big potential of optical images for oil spill classification based 

on intelligent classifiers, and the feasibility of such an approach for operational monitoring 

activities. 

The second major innovative contribution in this thesis is the application of ANFIS to 

bathymetry estimation from high resolution multi-spectral images. Beside the choice of the 

classifier, the overall approach, which is purely experimental, is innovative for this field. 

Most studies regarding the estimation of sea bottom depth in fact rely on theoretical models 

of apparent optical properties of the water body, either through semi-empirical methods, 

implicit methods, or through the use of simulated training dataset for supervised 

classification algorithms. On the other hand, in this thesis the algorithm is trained only on 

real data, and no model-based assumptions are used, thus avoiding any related systematic 

uncertainties. In case of optimal sea conditions (low sea surface roughness) and significant 

training set size, results obtained with ANFIS outperform previous works on other 

computational intelligence techniques applied to bathymetry estimation. In case of 

unfavourable sea conditions (slight sea), and limited training dataset, results are still 

accurate, and comparable with the others. Moreover, the indications on optimal paths for 

data collection could represent a useful support for bathymetric survey planning activities, 

showing that regions closer to the shoreline deserve a higher sampling with respect to 

deeper waters. 

In conclusion, this thesis proposes some innovative and feasible approaches for the 

combination of optical data and computational intelligence techniques in the remote sensing 

of the marine and coastal environment.  
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