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Nunquam invenietur,

si contenti fuerimus inventis1.

- L.A. Seneca2 -

1 Nothing would ever be found, if we felt satisfied with our discoveries.
2 Naturales Quaestiones, 6, 5, 2.
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SOMMARIO

I macchinari utilizzati nell’ambito industriale sono soggetti a dete-

rioramento nel tempo e per l’uso, per cui risulta di estrema importanza

l’attuazione di un programma di manutenzione allo scopo di evitare il

verificarsi di guasti che possono portare a conseguenze anche disastrose.

La letteratura si è focalizzata sullo sviluppo di strategie di manutenzione

ottimali come la “condition-based maintenance” (CBM, manutenzione

basata sull’evento) per aumentare l’affidabilità, evitare guasti e ridurre i

costi legati alla manutenzione stessa. La CBM si propone di identificare

in tempo la presenza e la gravità di un guasto, di stimare quanto tempo

manchi prima che un guasto si verifichi all’interno di un macchinario

e di individuare le componenti che si stanno deteriorando. La CBM è

stata largamente ed efficacemente applicata ai macchinari rotanti che,

generalmente, basano il loro funzionamento sui cuscinetti. Il funziona-

mento continuo e affidabile dei cuscinetti è importante poiché il guasto

di uno di essi può compromettere l’intero sistema. Quindi monitoraggio,

prognosi e diagnosi di cuscinetti rappresentano task cruciali all’interno

di programmi di manutenzione di tipo real-time.

In questa ricerca è stato effettuato uno studio completo delle tecniche

di soft computing includendo la classificazione multi- e one-class e le

strategie di combinazione basate su fusione e selezione di classificatori al

fine di progettare e sviluppare metodologie accurate e robuste al rumore

per la diagnosi e prognosi di guasti su cuscinetti a elementi rotanti.

Sono stati utilizzati segnali basati sulle vibrazioni registrati da quat-

tro accelerometri su un dispositivo meccanico che includeva cuscinetti

a elementi rotanti: i segnali sono stati registrati sia quando tutti i cu-

scinetti nel dispositivo erano “sani” sia quando uno di essi era stato

sostituito con un cuscinetto danneggiato artificialmente. Sono stati con-

siderati quattro tipi di guasti e tre livelli di gravità.

Questa ricerca ha portato al progetto e sviluppo di nuovi classificatori

che, grazie agli alti livelli di accuratezza raggiunti, hanno dimostrato di

rappresentare una valida alternativa ai classificatori tradizionali. Inol-

tre gli alti livelli di accuratezza e robustezza al rumore ottenuti dagli

esperimenti provano l’efficacia delle metodologie proposte per effettuare

automaticamente la prognosi e diagnosi delle componenti di macchinari

rotanti all’interno di programmi di CBM.





ABSTRACT

Machines used in the industrial field may deteriorate with usage

and age. Thus it is important to maintain them so as to avoid fail-

ure during actual operation which may be dangerous or even disastrous.

The literature has focused its attention on the development of optimal

maintenance strategies, such as condition-based maintenance (CBM),

in order to improve system reliability, to avoid system failures, and to

decrease maintenance costs. CBM aims to detect the early occurrence

and seriousness of a fault, to estimate the time interval during which

the equipment can still operate before failure, and to identify the com-

ponents which are deteriorating. CBM has been widely and effectively

applied to rotating machines, which usually operate by means of bear-

ings. The reliable and continuous work of bearings is important as the

break of one of them can compromise the work of the system. Thus the

monitoring, prognosis and diagnosis of bearings represent crucial and

important tasks to support real-time maintenance programs.

This research has carried out a complete analysis of advanced soft

computing techniques ranging from the multi-class classification to one-

class classification, and of combination strategies based on classifier fu-

sion and selection. The purpose of this analysis was to design and

develop high accurate and high robust methodologies to perform the de-

tection, diagnosis and prognosis of defects on rolling elements bearings.

We used vibration signals recorded by four accelerometers on a me-

chanical device including rolling element bearings: the signals were col-

lected both with all faultless bearings and after substituting one faultless

bearing with an artificially damaged one. Four defects and three severity

levels were considered.

This research has brought to the design and development of new

classifiers which have proved to be very accurate and thus to represent

a valuable alternative to the traditional classifiers. Besides, the high

accuracy and the high robustness to noise, shown by the obtained re-

sults, prove the effectiveness of the proposed methodologies, which can

be thus profitably used to perform automatic prognosis and diagnosis of

rotating machinery components within real-time condition-based main-

tenance programs.
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Introduction

One of the most important aspects in the domestic and industrial fields

is the reliability of the used equipment such as rotating machines, which

are increasingly employed in these two contexts. Furthermore the as-

sessment of these machines is becoming more and more strict as they

should meet more and more demanding performance criteria [1]. Unfor-

tunately, these systems and machines may deteriorate with usage and

age [135] bringing even to the breakdown of the system [21, 76, 141, 142].

Failures in these systems may result into catastrophic consequences

depending on the field in which they operate. The most critical fields

include, for example, the nuclear one where problems on machine may

bring to serious consequences on people and the environment [21, 22,

142]. In the manufacturing field, breakdown problems can bring to

unscheduled downtime causing reduction in the product quality, loss in

the production and thus loss of money from the customers [150].

It is, therefore, extremely important to maintain and, if necessary,

to repair systems and machines so as to avoid failure during the actual

operation [143]. For this reason the machine maintenance has became

an integral part of industrial systems with the aim of reducing costly

machine downtime and ensuring production quality.

Maintenance is the set of activities aimed at maintaining a system

in operable condition [5]. Although maintenance has been generally

regarded as an unnecessary cost in many industries and organizations

[129], in the last few years it has been considered more and more a

profit-generating activity and, thus, a strategic issue [5, 129, 136]. Ac-

tually, a machine that is not properly maintained may result in speed

losses, lack of precision, and reduction of the operating conditions up

to the system breakdown [1, 4, 5]. Thus, the maintenance quality rep-

resents a key factor of the operating and environmental conditions that

influence machine life [3]. Besides, only an effective maintenance policy
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can improve machine performance and product quality [5].

For these reasons, researchers have increasingly focused their at-

tention on the development of optimal maintenance strategies so as to

improve system reliability, to avoid system failures, and to decrease

maintenance costs themselves [143]. In particular, maintenance pro-

grams should guarantee that physical assets behave as expected at the

minimum expense [129]. Thus, in the last years, the maintenance issue

has been widely investigated in the literature [28, 90, 135, 143, 146, 151].

Maintenance activities can be classified in two main categories,

namely corrective maintenance and preventive maintenance.

Corrective maintenance (CM), also called breakdown maintenance,

refers to repairing faults after their occurrence. This kind of mainte-

nance may imply high costs owing not only to the need of restoring

the equipment operative condition, but also to possible production loss

and/or safety consequences [129, 143]. All this is due to the fact that

CM is not able to prevent any faults.

Preventive maintenance (PM), on the contrary, tries to prevent fault

occurrence by identifying and correcting conditions that would cause

breakdowns. When PM is performed through periodic inspections, it is

called time-directed maintenance (TDM) [21, 129, 143, 154].

Although CM is usually considered more expensive than TDM, the

indiscriminate use of overhaul or preventive replacement procedures in

TDM programs may result in unnecessary waste of time and resources

[129]. Furthermore no guarantee can be given regarding the proper

work of the system between two subsequent checks.

To overcome the drawbacks of the above described maintenance pro-

cesses another form of PM, called condition-based maintenance (CBM)

[125, 129], has been widely adopted in the last years to detect the onset

of a failure [21, 22, 23, 76, 141, 142]. CBM represents the ideal form of

maintenance when a failure cannot be prevented, e.g., failures caused

by random events. CBM is similar to TDM since it is performed at

given intervals, however, since it is based on a continuous monitoring of

the system, it needs to perform appropriate maintenance actions only

when necessary. Thus, unlike TDM, CBM does not usually cause an

intrusion into the equipment, and the actual preventive action is trig-

gered by the detection of an incipient failure [129]. Therefore CBM

aims to detect the early occurrence and seriousness of a fault, to es-
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timate the time interval during which the equipment can still operate

before failure, and to identify the components (e.g., bearings) that are

deteriorating [141]. In particular, CBM exploits condition monitoring

information, which consists of the continuous or periodic measurement

and interpretation of data that help assessing the operating condition

of each system component [141, 146, 147].

In this dissertation we focused on the condition-based maintenance

of rotating machines [21, 141]. Actually, condition monitoring, fault

diagnosis and fault prognosis of rotating machinery have become more

and more important in many industrial fields from the safety-critical

ones to the manufacturing and production ones [58, 61, 77], in order to

guarantee the survival of the machines and the reliability of the involved

processes. Since fault occurrence cannot be avoided in these machines,

early detection and diagnosis of incipient failures can help prevent the

machine breakdown by identifying the presence of symptoms such as

increased vibrations, noise and temperature [146]. Thus CBM has been

widely and effectively applied to rotating machines. Such machines usu-

ally operate by means of bearings, which represent a critical component

whose state can be profitably used to represent the machine state [146].

The reliable and continuous work of all the bearings is very important as

the break of one of them can compromise the proper work of the whole

system [22, 23, 76, 141, 142]. However, bearings, even though well de-

signed, often have to bear stress and heavy load which can deteriorate

their performance [61] up to a point in which they can compromise the

proper work of the machine inside which they are located, bringing to

the system breakdown and possibly have catastrophic consequences de-

pending on the field in which they operate [21, 76, 141, 142]. Besides,

the faults occurring in rotating machines are often linked to bearing

faults [77, 130]. For all these reasons the monitoring and the fault diag-

nosis of bearings have been widely studied in the literature, in order to

make the fault detection as automatic as possible and thus to be able

to implement real time maintenance [22, 23, 61, 114, 115, 141].

In this work some methodologies to perform the robust diagnosis

and the prognosis of rolling element bearing defects are proposed, rang-

ing from the multi-class classification to the one-class classification, pay-

ing attention to every “level” of a classification system. In particular,

since there are four different approaches to build a classifier ensemble
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[30, 73], namely, the data level where different data subsets are used,

the feature level where different feature subsets are used, the classifier

level where different base classifiers are used, and the combination level

where different combiners are used [30, 73], the proposed methodologies

make use of each of these approaches to create more robust and more

accurate classification systems. Besides, some new developed one-class

classifiers are introduced in this dissertation. The proposed classifiers

have proved to be very accurate and to perform pretty better than

the traditional multi-class and one-class classifiers, thus showing to be

valuable alternatives to the traditional classifiers.

In this dissertation a real data set has been used. This data set has

been provided by Avio Propulsione Aerospaziale (Rivalta di Torino,

Italy).

This dissertation is organized as follows. Chapter 1 introduces an

overview on the main elements of Pattern Recognition on which this

thesis is based, Chap. 2 describes in details the issues dealt with in

this dissertation as well as an overview on the state of the art on this

field. Chapter 3 presents the designed and developed methodologies,

algorithms and classifiers, Chap. 4 concerns the description of the used

data set, while Chaps. 5–8 show the proposed methodologies and the

related experimental results. In particular Chap. 5 refers to the classi-

fication and diagnosis of rolling element bearing faults, Chap. 6 deals

with the prognosis issue of rolling element bearing faults, Chap. 7 con-

siders the problem of creating algorithms robust to noise, and, Chap. 8

copes with the diagnosis of bearing faults as a one-class problem. Fi-

nally, Chap. 9 provides concluding remarks as well as a brief overview

of the future work.



Chapter 1

Fundamentals of Pattern Recogni-

tion

We should make things

as simple as possible,

but not simpler.

- A. Einstein -

The problem of searching for patterns in data is fundamental in

the real life [73]. Pattern recognition (PR) is about assigning labels

(classes) to objects (data) [32, 73, 138]. Each object is described by

a set of measurements (attributes) defined in a certain space (a one-

dimensional space or more generally a multidimensional space). These

attributes are called features [73, 138]. The space defined by the set of

features is called feature space [73].

There are two major types of pattern recognition branches: unsu-

pervised and supervised [73].

In the unsupervised category (known also as unsupervised learn-

ing), the goal is to unravel the underlying similarities, and to discover

the structure of the data set if there is any [32, 73, 152]. This usu-

ally means that the aim of the learning process is to discover whether

there are clusters in the data, and what characteristics make similar

the objects inside the same cluster as well as different from the objects

belonging to the other clusters [152]. In the literature, many cluster-

ing algorithms have been and continue to be proposed for unsupervised
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learning [73]. The choice of an algorithm is basically guided by the

designer’s preference, since different algorithms, even though starting

from the same set of data, may lead to different results [10, 73]. The

issue in this branch of PR is that there is no way to evaluate the results

but the indication of the user, which means that the result interpreta-

tion may also be based on subjective estimations [73]. One of the most

used unsupervised learning algorithm is the k-means algorithm [10, 73],

whose steps are described in Fig. 1.1. Fig. 1.3 shows an application of

the k -means algorithm to the data set represented in Fig. 1.2. Besides,

inside the unsupervised PR category the one-class classification, which

will be fully described in Chap. 3, is also included.

Figure 1.1 k-means algorithm steps.

Figure 1.2 Data set.
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(a)k -means with k=2 (b)k -means with k=3

(c)k -means with k=5 (d)k -means with k=10

Figure 1.3 Unsupervised learning. Application of the k-means
algorithm to the data set represented in Fig. 1.2. (a) k = 2, (b)
k = 3, (c) k = 5, and (d) k = 10. Each cluster is identified by
a specific symbol, so that samples belonging to the same cluster
are represented by the same symbol while samples from different
clusters are represented by different symbols.
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The supervised category [13, 73] (known also as supervised learning)

differs from the unsupervised learning since a priori known knowledge

is available. More precisely each object in the data set is associated

to a preassigned label. Each label identifies a class, so that each class

is identified by a different label. Intuitively, a class contains similar

objects (all associated to the same label), whereas objects from different

classes are dissimilar [13, 73]. In most cases the labeling process cannot

be described in an algorithmic form, this is why we generally supply the

classification system with learning skills [73]. More precisely we provide

the classification system with a set of labels in order to allow the system

to learn how to distinguish objects belonging to different classes. This

process is called learning or training process. What is really important

in the learning process is to obtain a classification model with good

generalization capabilities, i.e., a model that accurately predicts the

class labels not only of the objects seen during the learning process but

also of unknown objects [122].

Fig. 1.4 shows an example of supervised learning dealing with a

2-class classification problem. The classification is performed by four

classifiers: a 3-NN, a Linear Discriminant Classifier, a Quadratic Dis-

criminant Classifier, and a Multi-Layer Perceptron Neural Network.

Figure 1.4 Supervised learning. 2-class classification problem.
First class (red stars), second class (blue plus). Classification
performed by four classifiers: 3-NN (green line), Linear Discrim-
inant Classifier (black line), Quadratic Discriminant Classifier
(blue line), Multi-Layer Perceptron Neural Network (red line).
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1.1 Pattern Recognition concepts for supervised

learning

1.1.1 Features

As stated above, objects are described by attributes called features.

According to “The International Dictionary of Artificial Intelligence”

[106] a feature can be defined as a (usually) named quantity that can

take on different values. These values are the feature’s domain and, in

general, can be either quantitative or qualitative [41, 73].

The branch of PR which operates with quantitative features is called

statistical pattern recognition [73]. In this branch the features are rep-

resented by numbers, such as integers or real numbers, for example the

amplitude of a signal measured in dB. In particular numerical features

values are arranged as an n-dimensional vector as represented in the

following:

X = [x1, x2, . . . , xn] x ∈ R
n

where each element of the vector corresponds to a specific feature, while

the whole vector represents an object of the data set. The real space

R
n is called the feature space and each axis corresponds to a specific

feature.

The choice of a good set of features is a basic point to obtain good

performance in the pattern recognition process [23, 76].

In this dissertation we make use of quantitative features and we will

explain how we manage to obtain these features to be later used in the

classification process.

1.1.2 Classes

As stated above, a class should contain similar objects while objects

from different classes should be dissimilar [73]. However, the concept

of similarity and dissimilarity are not always perfectly clear, sometimes

classes are well defined and, in the simplest case, the classes are mu-

tually exclusive [73], such as in the handwriting recognition where the

classification system receives and interprets intelligible handwritten in-

put from a certain source (paper documents, photographs, or other

devices). In fact each hand-written symbol corresponds to one and
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only one symbol stored in the computer, no matter if we are able to

recognize the right matching symbol [73].

Nevertheless, in other classification problems, a distinct separation

among the classes is not always simply identifiable. For example in

the medical research there is an intrinsic variability that makes difficult

to identify the classes, as well as to identify which are the most dis-

criminant features [73]. Furthermore, there can be co-presence of more

than one illness, which makes even more difficult to identify the specific

illness we were interested in [73, 140].

1.1.3 Data sets

A data set is a collection of data (objects, elements, samples), usually

presented in a matrix-like form, where each column represents a par-

ticular feature, while each row (feature vector) corresponds to a given

sample of the data set. Thus a data set can be represented by an N ×n

matrix where N is the number of rows which corresponds to the num-

ber of objects composing the data set, and n is the number of features

describing each object of the data set.

Figure 1.5 Representation of a data set with N objects described
by n features as an N × n matrix.

A data set is described by several parameters which include the

following ones:

• the number and types of the features,

• the number of samples,

• the number of classes,

• the vector of the class labels associated to each object.

Normally the order in which the samples are “listed” does not matter

and thus the list of objects is unordered. Of course there are cases where

the order is important such as in regression problems [19].
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Data sets can be obtained in many ways. Besides there exist some

data sets made available on Internet which can be used as benchmarks

in the PR field. One of these repositories of data sets is the UCI Machine

Learning Repository Database [40] at http://archive.ics.uci.edu/

ml.

In this dissertation a real data set is used. This data set has been

provided by Avio Propulsione Aerospaziale, via I Maggio, 99, Rivalta

di Torino, Italy.

1.1.4 Classifiers

A classifier can be described by any function F:

F : Rn → Ω

which, starting from the n-size vector of features values describing an

object x (x ∈ R
n), identifies the class (ωi ∈ Ω) to which x belongs. A

classifier can be considered as a set of discriminant functions F [117],

each yielding a score (probability) for one specific class (thus one func-

tion fi per each class ωi). Each discriminant function fi returns a value

when applied to an object. More precisely each function fi returns

a value which specifies the confidence of the function in assigning the

specific object x to the class ωi [73]. Then, typically, the object x is

assigned to the class with the highest score. Ties are broken randomly.

Thus the classifier is the result of the application of the maximum rule

to this set of discriminant functions (see Fig. 1.6). Therefore, gener-

ally, a classifier performs a mapping from an n-dimensional space R
n

to a c-dimensional space, Rc, where c is the number of classes [32, 73].

An example of classification performed by a Quadratic Discriminant

Classifier (QDC) is represented in Fig. 1.7 [73].

There exist many types of classifiers such as linear, quadratic, and

neural networks classifiers. Besides, more classifiers can be appropri-

ately combined. We will deal with the combination of classifiers in the

next chapters.

1.2 Classification process

1.2.1 Classification process steps

To perform a classification process, first of all we need data, that means

that we need to make measurements of what we are interested in. This
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Figure 1.6 Classification process. The object is described by the
features’ vector. The classifier has one discriminant function as-
sociated to each class. The maximum rule determines the winner
class, i.e., the class to which the object will be assigned.

Figure 1.7 2-class data set. First class: crosses, second class:
points. Classification performed by a QDC classifier.

can be done using sensors which are a fundamental part of every clas-

sification system.

Then the raw data, represented in a certain way depending on the

type of the used sensors, should be processed in order to represent

them in a more suitable way. For example transforming data from

time to frequency domain by using the Fast Fourier Transform (FFT)

[21, 22, 23, 76, 141, 142].

Once the data are preprocessed, we need to prepare the training

set, i.e., to select/extract the objects to be used as training set. This

process is called prototype selection/extraction depending on the type

of algorithm used to perform this process [73].
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Then another process to eliminate useless information and retain the

most important information as much as possible should be performed.

More precisely, data are represented by a set of features (for example

each element of the FFT), and, since features are not all equally rel-

evant, we need to identify which of these features are really useful at

the aim of the classification. The process which selects/extracts the

best features to represent the data with classification purpose is called

feature selection/extraction. This process should be able to represent

the data in the best way, which means to retain the most information

(the best features) while removing unnecessary noise (useless features)

[21, 22, 23, 73, 76, 141, 142].

Once the data have been “cleaned”, they can be used to train a clas-

sification system, which will be successively used to classify “unknown”

data (test set). The classification system may be composed of only one

classifier or more classifiers appropriately combined. The combination

level represents another crucial step since the choice of the combination

strategy can affect all the classification process. Besides each classifier

should be trained appropriately and the algorithm used to train the

classifier represents another parameter which can further affects the

performance of the final classification system.

Data sampling, prototype selection/extraction (choice of the algo-

rithm to be used and its related parameters), feature selection/extraction

(choice of the algorithm to be used and its related parameters), training

(choice of the classifier to be used, choice of the classifier training algo-

rithm and, if needed, choice of the combination strategy,. . . ) compose

the core of the supervised PR process.

The classification system can then be further tuned working on each

of these steps but not necessarily all of them [73]. When a satisfactory

accuracy on the training set has been reached, the training process

can be stopped and the system can be used to process and classify new

data [73]. Each of these subprocesses is fundamental to create the whole

classification system. In the next chapters we will deal with all these

subprocesses more in detail.

1.2.2 Classification performance indexes

Every time we train a classifier (classification system) we would like

to know how good it is, i.e., to evaluate its performance, since we are

interested in classifiers or better classification systems which are able
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to reach reasonable performance.

The performance of a classifier can be described by many perfor-

mance indexes such as classification accuracy, confusion matrix, and

others. Of course we have to identify which of these indexes are the

most important for the specific problem we are dealing with. Probably

the most important and used performance index is the accuracy.

Classification accuracy

Generally the classification accuracy (shortly accuracy) is defined as

the number of samples correctly classified divided by the total number

of samples under classification as shown in eq. 1.1:

Accuracy =
number of samples correctly classified

total number of classified samples
(1.1)

The classification error (shortly error) is then obtained subtracting

the classification accuracy from 1 as described in eq. 1.2:

Error = 1−Accuracy =
number of samples incorrectly classified

total number of classified samples

(1.2)

True positives, False positives, True negatives, False negatives

There are other indexes related to the accuracy which are specific for

2-class data sets. When a 2-class data set is considered, generally, one

class is called positive class (PC) while the other one negative class

(NC). If we call

• class 1: Negative Class, NC (composed by the so-called negative

samples),

• class 2: Positive Class, PC (composed by the so-called positive

samples),

then, we can define the following four indexes:

• TN : True Negatives, i.e., the number of negative samples correctly

classified,

• FP : False Positives, i.e., the number of negative samples incor-

rectly classified as belonging to the positive class,
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• TP : True Positives, i.e., the number of positive samples correctly

classified,

• FN : False Negatives, i.e., the number of positive samples incor-

rectly classified as belonging to the negative class.

Confusion matrix

The four indexes TP, TN, FP, FN can be represented in a confusion

matrix. A confusion matrix [70] provides an easy, synthetic, and com-

plete way to describe the knowledge about a classification system per-

formance. It gives information about the true labels and the estimated

labels assigned by a classification system to a specific data set. An

example of a confusion matrix for a 2-class problem is represented in

Fig. 1.8. Of course, a confusion matrix can be generalized to an N -class

problem [138].

Figure 1.8 2-class confusion matrix.

In a 2-class problem, starting from the confusion matrix (considering

the two classes having the same priority) the accuracy percentage can

be evaluated as in eq. 1.3

accuracy =
TN + TP

TN + TP + FN + FP
(1.3)

consequently the classification error is expressed by eq. 1.4:

error = 1− accuracy =
FN + FP

TN + TP + FN + FP
(1.4)

Specificity and Sensitivity

Using TP, FP, TN, and FN we can derive other two performance in-

dexes called sensitivity and specificity.
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In particular, sensitivity measures the proportion of actual positives

which are correctly identified and is expressed by eq. 1.5.

sensitivity =
TP

TP + FN
(1.5)

while the specificity index measures the proportion of actual negatives

which are correctly identified and is expressed by eq. 1.6.

specificity =
TN

TN + FP
(1.6)

The theoretical optimal prediction is to achieve 100% sensitivity

and 100% specificity. However, for any test, there is usually a trade-off

between these two measures.

ROC curve

Finally another metric used to measure the performance of a classifier

is the Receiver Operating Characteristic curve (ROC curve) [37].

The ROC curve is a graphical plot of the sensitivity vs “1 - speci-

ficity”, for a binary classifier system as its discrimination threshold is

varied.

The ROC curve is a tool which allows to select possibly optimal

models while discarding suboptimal ones independently from the cost

context or the class distribution.

Fig. 1.9 shows some ROC curves related to different classifiers, each

of which is represented by a different color.

1.2.3 Methods to test the classification system

If we were able to try the classifier on all possible input objects, we

would know exactly how accurate the classifier is [73]. Unfortunately,

this is hardly possible, since only a subset (generally a small subset) of

all the possible inputs is available. Thus only an estimated accuracy can

be evaluated [73]. When a classification process is performed the data

are generally divided into two subsets, one called training set which is

used during the training process to train the classifier and a test set

which is used to evaluate the performance of the classifier on unseen

data. There are a lot of different procedures to evaluate the performance

of a classifier.
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Figure 1.9 ROC curves related to different classifiers, each of
which is represented by a different color.

Resubstitution error method

Denoting with D the whole data set, the simplest procedure to eval-

uate the performance of a classifier is based on the evaluation of the

resubstitution error, i.e., the error on the training set. This procedure

is called resubstitution error method (shortly R-method) and consists

in training the classifier C using the whole data set D and then test the

classifier again on D [73]. Thus the training and the test set coincide

with D (Fig. 1.10).

Figure 1.10 R-method to create training and test sets. The train-
ing set coincides with the test set and both coincide with the whole
original data set.
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Since training an algorithm and evaluating its performance on the

same data may lead to an overoptimistic result [7, 75, 73], other testing

methods were introduced such as the cross-validation (CV) algorithm.

A general description of the CV strategy has been given by Geisser

[43]. The basic idea is that a good estimate of the performance would

be obtained using new data to test the classifier, i.e., data different

from the training data [7, 43, 88]. The main idea behind CV is to

split the data, once or several times, for estimating the performance

of a specific model. Once split, a part of the samples is used to train

the model, while the remaining samples are used to test the model

and thus to estimate its performance. Compared to the R-method,

CV avoids the overoptimistic result problem since the training samples

are independent from the test samples. The major interest of CV lies

in the universality of the data splitting heuristics. It only assumes

that data are identically distributed, and training and test samples are

independent, which can even be relaxed [7, 73]. This makes the CV

algorithm suitable for many applications in many frameworks, such as

regression [43, 118], density estimation [112, 118], and classification

[8, 29] among many others. However, some CV procedures have been

proved to fail for some model selection problems, depending on the goal

of model selection, namely, estimation or identification [7, 73]. The issue

of how to organize the training and test sets has been around for a long

time [73, 131]. Hereafter we summarize some of the most used CV

procedures.

Hold-out method

One of the simplest CV procedures is called Hold-out (shortly H-method)

[29]. This method relies on a single split of the original data. Part of

data (training set) is used for training the algorithm, and the remaining

data (test set) are used to evaluate the performance of the algorithm

[73]. However no study exists to define how to split the data, i.e., which

is the optimal percentage of samples of the original data which should

be used to create the training and the test sets (Fig. 1.11). However,

generally, the training set is bigger than the test set [7, 73].

In most real applications, only a limited amount of data is avail-

able, thus the single split can result in either a training or a test set too

small to be significant [73]. This leads to the idea of splitting the data

more than once. The idea is that a single data split yields a validation
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Figure 1.11 H-method to create training and test sets. The orig-
inal data set is split once. One part forms the training set and
the other one the test set.

estimate of the performance, then averaging over several splits yields a

cross-validation estimate [7]. For example considering the H-method,

we can average the performance results related to several experiments

based on the H-method, where each experiment corresponds to a dif-

ferent data split [7].

K-fold cross-validation

K -fold cross-validation is one of the most used test procedure. The

algorithm consists in choosing an integer K (preferably a factor of N ,

where N is the number of samples in the original data set D) and

randomly divide D into K subsets of size N
K . Of the K subsets, one

is retained as test set, while the others are used as training set. This

procedure is repeated K times choosing, each time, a different subset

as test set. At the end the whole accuracy is evaluated as the average

of the K estimated accuracies.

The question of how to selectK is still open, even though indications

can be given towards an appropriate choice [73]. When the goal of

model selection is estimation, it is often reported that the optimal K is

between 5 and 10 [7, 49, 73]. Fig. 1.12 provides an example of K-fold

CV with K = 3.

Leave-one-out

Leave-one-out [2, 43, 73, 118] is the most classical exhaustive CV pro-

cedure [7].

It consists in a K -fold cross-validation with K = N where N rep-

resents the number of objects in the original data set D [73].
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Figure 1.12 K-cross validation method to create training and
test sets (example with K = 3). The original data set D is ran-
domly divided into 3 subsets of size N

3 , with N the number of
objects of the data set. Of the 3 subsets, one is retained as test
set, while the others are used as training set. The procedure is re-
peated 3 times choosing, each time, a different subset as test set.
The whole accuracy is evaluated as the average of the 3 estimated
accuracies.

Dietterich’s 5x2cross validation

The Dietterich’s 5x2cross validation method [30] consists in 5 repeti-

tions of a 2-fold cross validation. This gives 10 pairs of error (accuracy)

estimates which can be successively averaged to compute the final error

(accuracy) [73].

1.2.4 Validation set

It is now becoming a common practice to divide the original data set

into three sets instead of two [13, 73]:

• training set,

• validation set,

• test set.

As before, the test set remains unseen during the training process,

while the validation data set acts as pseudo-testing.
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Considering for example the training of a neural network classifier,

the use of the validation set means to continue the training process

until the performance improvement on the training set is no longer

matched by a performance improvement on the validation set [13, 73].

At this point the training should be stopped so as to avoid overtraining.

Fig. 1.13 represents the typical “evolution” of the training and validation

errors of a neural network with the increase of the number of epochs in

which the network is trained.

However, not all the data sets are large enough to allow for a vali-

dation set to be cut out [73].

Figure 1.13 The training process aims to reduce the resubsti-
tution error. When a validation set is used, the training can be
stopped when the performance improvement on the training set is
no longer matched by a performance improvement on the valida-
tion set. The line composed by crosses represents the error on
the training set while the line composed by points represents the
error on the validation set. In the figure, at a certain point, while
the error on the training set is still decreasing, the error on the
validation set starts to increase.





Chapter 2

The rolling element bearing diag-

nostic and prognostic issues

In the middle of difficulty

lies opportunity.

- A. Einstein -

One of the most important aspects in the domestic and industrial

fields is the reliability of the used equipment such as rotating machines

which are increasingly used inside these two fields. Furthermore the

assessment of these machines is becoming more and more strict as they

should meet increasingly demanding performance criteria [1].

Unfortunately, these systems and machines may deteriorate with

usage and age [135] bringing even to the breakdown of the system [21,

76, 141, 142]. For these reasons, the maintenance of these systems

represents a crucial process and thus the machine maintenance has

became an integral part of industrial systems with the aim of reducing

costly machine downtime and ensuring production quality.

In the last years, the maintenance issue has been widely investi-

gated in the literature [28, 90, 135, 143, 146, 151] and in particular the

condition-based maintenance (CBM) [125, 129] has been introduced and

widely adopted to detect the onset of a failure [21, 22, 23, 76, 141, 142].

CBM represents the ideal form of maintenance when a failure cannot

be prevented, e.g., failures caused by random events. Besides, CBM

does not usually cause an intrusion into the equipment, and the actual
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preventive action is triggered by the detection of an incipient failure

[129]. CBM aims to detect the early occurrence and seriousness of a

fault, to estimate the time interval during which the equipment can still

operate before failure, and to identify the components (e.g., bearings)

that are deteriorating [141].

In particular, CBM exploits condition monitoring information, which

consists of the continuous or periodic measurement and interpretation

of data that help assess the operating condition of each system compo-

nent [141, 146, 147].

In this dissertation we focus on the CBM process of rotating ma-

chines [21, 141]. Actually, condition monitoring and fault diagnostics

of rotating machinery have become more and more important in many

industrial fields from the safety-critical ones to the manufacturing and

production ones [58, 61, 77], in order to guarantee the survival of these

machines and the reliability of the involved processes. Since fault occur-

rence cannot be avoided in the machine, early detection and diagnosis

of incipient failures can help prevent the machine breakdown by iden-

tifying the presence of symptoms such as increased vibrations, noise

and temperature [146]. Thus CBM has been widely and effectively ap-

plied to rotating machines [22, 61, 114, 141]. Such machines usually

operate by means of bearings, which represent a critical component of

the machines themselves so that their state can be profitably used to

represent the machine state [146]. The reliable and continuous work

of all the bearings is very important as the break of one of them can

compromise the proper work of the whole system [22, 23, 76, 141, 142].

However, bearings, even though well designed, often have to bear

stress and heavy load which can deteriorate their performance [61] up to

a point in which they can compromise the proper work of the machine

inside which they are located, bringing to the system breakdown and

possibly have catastrophic consequences depending on the field in which

they operate [21, 76, 141, 142]. Besides, the faults occurring in rotating

machines are often linked to bearing faults [77, 130]. For all these

reasons the monitoring and the fault diagnosis of bearings have been

widely studied in the literature, in order to make the fault detection

as automatic as possible with the purpose of implementing real time

maintenance programs [22, 23, 61, 114, 115, 141].

While machine diagnosis comprises the automated detection and
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classification of faults, machine prognosis concerns the automated esti-

mation of how soon and likely a failure will occur, including the forecast

of the remaining operational life, future state, or probability of reliable

operation of an equipment based on the collected condition monitoring

data [53, 128]. Prognostics is vital in order to significantly reduce ex-

pensive downtime, maintenance costs and safety hazard conditions [53].

However, prognostics is a very wide and new research area which has

been little studied [53, 116] compared to the diagnosis issue.

2.1 State of the art

Several methods for the detection and diagnosis of faults in bearings

have been developed in the last years [21, 22, 23, 76, 91, 114, 115, 141,

142]. These studies mainly focus on three issues, namely,

1 the choice of the data (i.e., signals) to be collected,

2 the feature selection/extraction algorithm to be adopted to appro-

priately decrease the dimensionality of the signal representation

space,

3 the classification system used to distinguish between signals cor-

responding to faultless bearings and signals associated with faulty

bearings, possibly identifying also the specific types and severity

levels of defects.

The aim of the first issue is to find the signals that convey useful

information regarding early indications of changes in the bearing state

[4, 5]. As far as this issue is concerned, the literature presents stud-

ies such as vibration analysis, which uses vibration signals emitted by

the mechanical system to trace the state of the system itself [120], and

infrared thermography, which measures emissions of infrared energy in

order to determine the operating condition of the system [125]. Vibra-

tion analysis is, however, the most used methodology, probably because

it provides the most information from the collected data [58]. Besides,

bearings are the best point in the machine where we can measure ma-

chine vibrations since they are the place where the basic dynamic loads

and forces are applied [143]. Besides, as stated in [80], states vibration

analysis is widely used in the bearing diagnosis field for the following

reasons [78, 80]:

• vibration analysis can be performed during the normal operating
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condition of the machine giving:

• continuous information on the machine state,

• continuous information on the machine bearings,

• incipient faults are quickly detected,

• it is economically justified,

• the equipment to collect vibration signals, i.e., mainly sensors, is

relatively small and portable and thus not intrusive,

• it is generally accurate and reliable.

The three most commonly applied vibration techniques for bearing

performance analysis [93] include time domain analysis [114, 115, 143],

frequency domain analysis [21, 22, 23, 61, 76, 141, 142], and time-

frequency domain analysis [91, 125].

Time domain analysis is usually based on performance indexes such

as Root Mean Square (RMS), Kurtosis, and Crest Factor [56, 125],

while frequency domain analysis is generally based on the Fast Fourier

Transform (FFT) technique [24]. A mixture of the two is adopted in

the time-frequency domain allowing for the analysis of signals which are

transient or non-stationary. Time-frequency domain methods include

Short Time Fourier Transform [68], the Wigner-Ville Distribution [79]

and the Wavelet Transform [158].

The main advantage of frequency domain analysis over time domain

analysis is its ability to easily identify and isolate certain frequency

components of interest, such as the theoretical characteristic frequencies

of the defects [20, 61]. Besides indexes such as Crest factor and Kurtosis

start to increase as the spikiness of the vibration increases, but, as the

damage increases, the vibration signal becomes more random and the

values for the Crest factor and Kurtosis reduce to levels that are typical

of normal bearings. Thus, the statistical analysis approach based on

Kurtosis and Crest factor fails in detecting bearing defects at later

stages of their development [92].

The second issue on which the literature has focused its attention

is the choice of the most appropriate set of numeric characteristics, or

features, used to represent the signals. For good classification, feature

selection/extraction is a crucial step as the features represent the con-

dition indicators in the classification process. Besides, not all features

are meaningful and provide significant information about the machine
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condition. Some of them may be useless or irrelevant [9, 146]. In

particular feature selection/extraction aims to find the set of features

with the highest discriminant power for classification purposes. Several

methods have been proposed including Forward Feature Selection (FFS)

[21, 22, 23, 76, 141, 142], genetic algorithms [57, 114, 115, 146], decision

trees [120, 146], and Principal Component Analysis (PCA) [56, 121].

As regards the third issue related to the choice of the classifica-

tion system, several methods have been adopted including statistical

classifiers [21, 22, 23, 141], neural networks (e.g., Multi-Layer Percep-

tron neural networks (MLPs) or Radial Basis Function neural networks

(RBFs)) [21, 22, 23, 76, 141], Support Vector Machines (SVMs) [109,

110, 157, 159], one class classifiers (e.g., convex hulls) [142], fuzzy-logic-

based classifiers [72, 119], and decision tree (such as C4.5) [56, 119].

Besides classifiers can be appropriately combined using mainly two

approaches which either select a classifier in a classifier ensemble (clas-

sifiers selection strategies) or appropriately combine all the classifiers

in the ensemble (classifiers fusion strategies) [22].

As far as the prognostic issue is concerned, even though the litera-

ture on this area is continually growing [53], it still presents fewer works

[53] compared to the diagnostic issue. Some works and reviews to help

clarify this issue can be found in [15, 46, 53, 61, 116, 134, 153], where

prognosis has been considered in several different fields and different

types of machines, such as paper making machines [15], aircraft engines

[153], rotating machines [53, 141].

Of course, prognostics can be considered superior to diagnostics in

the sense that prognostics can prevent faults, and if impossible, be

ready for the problems in terms of human resources and spare parts,

and thus save extra unscheduled maintenance cost [61]. However, prog-

nostics cannot completely replace diagnostics since in the reality there

are always some types of fault which are not predictable [61]. In addi-

tion, prognostics, like any other prediction techniques, cannot be 100%

trusted [61]. In the case of unsuccessful prediction, diagnostics rep-

resents a useful complementary tool to provide maintenance decision

support [61]. Besides, diagnostics can be helpful to improve prognos-

tics, i.e., the diagnostic information can be useful for preparing more

accurate event data and hence building better CBM models for prog-

nostics [61].
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In the literature the methods for predicting rotating machinery fail-

ures can be grouped into the following three main categories [53]:

1 traditional reliability approaches,

2 prognostics approaches,

3 integrated approaches.

In particular, the first category, traditional reliability approaches,

includes the event data based prediction approaches, in the second cat-

egory, prognostics approaches, we can find the condition data based

prediction methods, while the third category, integrated approaches, in-

cludes the prediction based on both event and condition data [53].

2.2 Discussion on the state of the art

Most diagnostic methods found in the literature consider the bearing

fault diagnosis as a 2-class problem, since they just distinguish between

faultless and damaged bearings independently of the type and/or the

severity of the defect. However the knowledge of the type and severity

level of the defect can bring valuable information to perform better and

defect-oriented maintenance programs. This is why in this dissertation

we propose classification techniques which are defect-oriented, i.e., able

to recognize both the type and the severity level of the defect.

While the diagnostic problem represents a crucial issue in the main-

tenance process, also the prognostic problem represents a very impor-

tant task. Actually, even though the diagnostic expert engineers have

significant information and experience about machine failure and health

states by continuously monitoring and analyzing the machine condition,

in the literature, little attention has been paid to the study of the evolu-

tion of a defect, that is how a defect evolves over time if a fault compo-

nent (such as a bearing) is not repaired or substituted by a faultless one

[66, 123, 141]. An effective prognostics program gives the maintenance

engineers more time to schedule a maintenance activity to repair and

to acquire replacement components before the system further decreases

its “health” state [66, 141]. This is the reason why we propose the study

of the evolution of a defect as time passes in order to identify how the

vibration signals change. This analysis can be profitably used to define

prognostic program to detect as soon as possible any incipient defects,

as well as to determine the time within which the maintenance, i.e.,

the substitution of the faulty bearing, should be performed before the
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defect gets too serious.

Furthermore, many methodologies proposed in the literature are not

tested on noisy data, so that several diagnostic techniques can perform

well in a noise-free environment but very poorly in the presence of

noise like in a real environment. For this reason, not only we test

our classification techniques on noisy data in order to analyze their

robustness to noise, but we also propose some techniques to increase

the robustness to noise of the classification systems.

Finally, we also present a one-class classification study on the rolling

element bearing diagnosis issue. In fact, in the literature, little atten-

tion has been dedicated to the main challenging problem regarding the

diagnosis of mechanical equipment: the lack of a significant set of dam-

aged data. In general, bearings can develop several types of faults that

can be further divided in classes according to the level of severity. It is

difficult to collect all types of faults and severities and, then, use them

to train a classification system, since it is not possible to identify all

the possible types of faults and severity levels, for example an indenta-

tion on the roll can be positioned in different parts of a roll and thus

it may produce different (vibration) signals. Furthermore, as shown in

[141], (vibration) signals can change as time passes making thinner and

fuzzier the division of faulty bearings into categories. Thus it is impos-

sible to collect and “catalog” an infinite number of faults and severities.

Moreover it is often difficult or even impossible to collect data from

faulty bearings as it requires to put damaged bearings into the rotat-

ing machine causing unwanted consequences. For all these reasons the

creation of a training set for the damaged samples can be either expen-

sive or impractical and thus difficult to achieve. On the other hand,

it is relatively cheap and simple to obtain measurements from faultless

bearings and thus from a normally functioning machine.

However, most of the techniques presented in the literature deal

with the bearing fault diagnosis as a two-class problem involving only

data associated to pre-specified faults and severities regardless of all

the “possible” types of fault and levels of severity they were not able

to collect. Unfortunately, in real and practical cases, it is quite un-

likely that a trained classification system will have to cope with only

the known faults and severities (i.e., faults and severities used to train

the classification system). On the contrary, it is very common that the
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classification system will have to cope with unknown faults and sever-

ities (i.e., faults and severities not used during the training process).

Thus, even though some techniques can achieve very high accuracies

on known faults/severities, they may perform very poorly on unknown

faults/severities as shown in [142]. This is why, in contrast with most

of the approaches proposed in the literature, we decided to develop a

classification system which is able to generalize the problem and thus

correctly classifies also damaged samples belonging to types of fault and

levels of severity not used during the training process. For this reason

we have decided to approach this classification problem as a one-class

classification problem. This way, we achieve independence from the spe-

cific damaged samples we were able to collect to train our classification

system and, thus, we are able to develop a more general classifier that

can reach a good accuracy not only for known but also for unknown

faults/severities.

Finally, as far as the prognostic issue is concerned, since prognosis

involves projecting into the future and that the future cannot be de-

termined with absolute certainty, assumptions and simplifications are

generally inevitable when prognostics models are designed [53]. How-

ever, these assumptions should be carefully checked [53].

While the study of the bearing prognosis has been concentrated in

finding out how to forecast the state of the machine basing the study on

more or fewer assumptions, little attention has been given to analyze

how faults can develop through the time, that is how a defect evolves

over time if the damaged bearing is not substituted by a faultless one.

This issue is extremely important since the presence of a fault does not

necessarily means that the machine is not able to continue to work, at

least for another amount of time, thus is can be useful to start from a

condition in which we already know that the bearing is damaged and

then use this information to forecast within which amount of time the

bearing must be changed in order to avoid the machine downtime.

Thus, in this dissertation we will aim to find out how the vibration

signals coming from a faulty bearing evolve if the bearing itself is not

substituted immediately. This means, e.g., to study if the severity level

of the bearing increases and, possibly, after how much time. Besides, we

wish to analyze if, after a certain amount of time in which a damaged

bearing continues to work, we can consider it equivalent to a bearing
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with the same defect but with a higher level of severity.

Thus in this dissertation we present classification methodologies to

perform, both in not-noisy and noisy environments, the diagnosis and

prognosis of faulty bearings both when a lot of damaged data and when

none or few damaged data have been collected.





Chapter 3

Pattern recognition theory

Find a bug in a program, and fix it,

and the program will work today.

Show the program how to find and fix a bug,

and the program will work forever.

- O.G. Selfridge -

3.1 Feature selection and feature extraction al-

gorithms

Generally, when the data set presents a large number of features we

should check if all these features are really useful at the aim of clas-

sification or if some features are redundant and/or irrelevant. This,

of course, may hold for data sets characterized by a small number of

features [73]. If the data set is characterized by “useless” features it

may be better to perform a transformation to reduce the number of

features describing the data and thus to reduce the feature space di-

mension. Transforming the input features set into another one can be

done mainly into two ways: feature selection and feature extraction.

Feature selection/extraction has been the focus of interest for quite

some time and much work has been done [27].

Feature selection [27, 67, 82] is the technique of selecting a subset

of relevant features from the original set of features for building robust

learning models (see Fig. 3.1), i.e., to find the features that best help
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separate data of different classes (class-based separation) [82]. Thus the

aim is to select the least number of features that maximize the classifi-

cation performance which is generally expressed in terms of accuracy.

Feature extraction [67, 87] is a technique that, from the original set

of features, creates another set of features where some original features

could have been merged or elaborated in “some ways” (see Fig. 3.1).

Figure 3.1 Feature selection: selection of a subset of features
from the original set of features. Feature extraction: creation of
another set of features where some original features could have
been merged or elaborated in “some ways”. In the example a fea-
ture is maintained while the other two are “fused” together.

If the selected/extracted features are carefully selected/extracted it

is expected that the new feature set contains the (most) relevant infor-

mation from the input data. Thus, by removing most irrelevant and

redundant features from the data, feature selection/extraction generally

helps improve the performance of learning models by:

• alleviating the effect of the curse of dimensionality by reducing

the feature space dimensionality,

• enhancing generalization capability by increasing the classifica-

tion accuracy,

• speeding up the learning process,

• reducing the memory needed for data representation,

• improving model interpretability.

3.1.1 Forward Feature Selection algorithm

There are many different algorithms which perform the feature selec-

tion and the Forward Feature Selection (FFS) method is one of the

most used. FFS is a greedy algorithm that, starting with an empty set

of features, adds the features one by one, selecting at each step the fea-
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ture which decreases less the accuracy [21, 22, 23, 138, 141, 142]. The

algorithm stops when a chosen stop-criterion is met. In particular the

stop criterion can be the maximum number of features to be selected,

i.e., the algorithm is stopped when the predefined number of features

has been selected [67, 73, 82, 141].

3.1.2 Individual Feature Selection algorithm

Another commonly used algorithm to perform feature selection is the

Individual Feature Selection (IFS) which computes the accuracy for each

feature separately [138], then it selects as many features as specified by

the user choosing the ones that achieve the highest accuracies. Another

ways to select the features is to select all the features that achieve an

accuracy higher than a chosen threshold. The advantage of this algo-

rithm is its high speed. For this reason it is often used for pre-selection

of a candidate feature subset from a larger set of features. However

since individually poor features may reach high class separability when

used together, this algorithm may discard potentially useful features.

3.1.3 Principal Component Analysis algorithm

The most known feature extraction algorithm is called Principal Com-

ponent Analysis (PCA) [63, 98]. It involves a mathematical procedure

that transforms the original set of possibly correlated features into a

smaller number of uncorrelated features called principal components.

Figs. 3.2 and 3.3 show an example of feature selection and feature

extraction, respectively, applied to the same 4-class 300-feature data

set with a reduction of the feature space to a 2-dimension space.

In this dissertation we mainly use the FFS algorithm since it achieved

the best results also compared to the PCA algorithm.

3.2 Multi-class Classifiers

In this chapter we introduce some classifiers we have used during our

experiments. Some of these classifiers are already well-known while

others were implemented during this work.

3.2.1 Linear discriminant classifier

The linear discriminant analysis (LDA) method dating back to Fisher’s

linear discriminant [39] is a method used in many fields such as pattern

recognition [73]. LDA consists of searching some linear combinations
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Figure 3.2 Application of a feature selection algorithm (Forward
Feature Selection). Reduction of the 4-class data set from a 300-
dimension space to a 2-dimension space.

Figure 3.3 Application of a feature extraction algorithm (Princi-
pal Component Analysis). Reduction of the 4-class data set from
a 300-dimension space to a 2-dimension space.

of the “input” variables (features), which provide the best separation

between the considered classes [73]. The resulting combination may

be used as a linear classifier, or, more commonly, for dimensionality

reduction before later classification [21, 22, 73, 76, 142].

The linear discriminant classifier (LDC) is the linear minimum-

error (Bayes) classifier used for normally distributed classes with equal

covariance matrices [73]. LDC is simple to calculate from data and is

a fast and reasonably robust classifier [32, 73, 81, 145] characterized

by only one parameter r, called regularization parameter (one degree
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of freedom), which we consider fixed to 0 for all the performed experi-

ments.

An example of the use of an LDC to perform a classification of a

data set characterized by two features and three classes (see Fig. 3.4)

is reported in Fig. 3.5.

Figure 3.4 Data set characterized by 2 features and 3 classes.
Each class is represented by a different symbol.

Figure 3.5 Classification of the data set represented in Fig. 3.4
using an LDC classifier. The black line represents the LDC dis-
criminant function.
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3.2.2 Quadratic discriminant classifier

A standard approach to supervised classification problems is the quad-

ratic discriminant analysis (QDA), which, as well as LDA, is named

after the type of discriminant functions it uses [73]. However, unlike

LDA, in QDA there is no assumption that the covariance of each of the

classes is identical.

In particular, the quadratic discriminant classifier (shortly, QDC)

is the quadratic minimum-error (Bayes) classifier used for normally dis-

tributed classes with class-specific covariance matrices [32, 73, 145].

QDC, as LDC, is simple to calculate from data and is a fast and rea-

sonably robust classifier, characterized by only one parameter r, called

regularization parameter (one degree of freedom), which we consider

fixed to 0 for all the performed experiments.

An example of the use of a QDC to perform a classification of the

3-class 2-feature data set of Fig. 3.4 is reported in Fig. 3.6.

Figure 3.6 Classification of the data set represented in Fig. 3.4
using a QDC classifier. The black line represents the QDC dis-
criminant function.

3.2.3 Neural Networks

Artificial neural networks were originally motivated by an interest in

modelling the human brain [34, 52, 73, 85]. Literature on neural net-

works includes many publications including books, papers and so on

[6, 12, 34, 36, 47, 50, 73, 83, 97, 107, 108].

Neural networks are made up of interconnecting artificial neurons
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whose structure is represented in Fig. 3.7. The artificial neuron receives

one or more inputs xi and sums them to produce an output y. Usually

the inputs are weighted using opportune weights wi, and the sum is

passed through a function f known as activation function or transfer

function. There exist many types of transfer functions such as linear,

non-linear, sigmoidal, piecewise, and so on. Finally there can be a

threshold θ which decreases the activation of the neuron. Thus the

output is evaluated as in eq. 3.1.

Figure 3.7 Artificial neuron structure. xi: inputs, y: output,
wi: weights, f : activation function, θ: threshold.

y = f(
n

∑

i=1

wixi − θ) (3.1)

Two of the most popular neural network models are the Multi-Layer

Perceptron (MLP) neural network [34, 73] and the Radial Basis Func-

tion (RBF) neural networks.

Rosenblatt’s Perceptron

The perceptron is a type of artificial neural network. The original per-

ceptron model and its famous training algorithm were developed by

Frank Rosenblatt in 1958 [111]. The perceptron is implemented as in

eq. 3.2 [34, 73, 111]:

φ(ξ) =











1, if ξ ≥ 0,

−1, otherwise,

(3.2)

where ξ represents the activation.
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The perceptron is a one-neuron classifier which is able to separate

two classes in R
n by the linear discriminant function defined by ξ = 0

[34, 73].

Multi-Layer Perceptron neural network

A Multi-Layer Perceptron (MLP) neural network can be obtained con-

necting more perceptrons [34]. This is a feedforward structure because

the outputs of the input layer and all intermediate layers are submitted

only to the following layers. The generic model of a feedforward neural

network classifier is shown in Fig. 3.8, where “layer” means a layer of

perceptrons. There are three types of layers: the input layer, the hid-

den layer (which can be one or more), and the output layer [34]. Each

layer is typically characterized by a specific transfer function.

Figure 3.8 MLP structure. “Layer” means a layer of perceptrons.
There are three types of layers: the input layer, the hidden layer
(which can be one or more), and the output layer.

The number of hidden layers and the number of perceptrons at

each hidden layer is decided by the designer of the MLP. The neurons

in the hidden layers are often referred to as “hidden neurons” (HNs).

However, it was shown that an MLP with a single hidden layer and

threshold nodes can approximate any function with a specified precision

[12, 107].

MLP can be trained using the well-known backpropagation training

algorithm. Usually the input layers are characterized by identity trans-

fer functions. Some works such as [6, 12, 34, 36, 47, 73, 83, 50, 97, 107,

108] and many others could usefully be consulted to gain insight into

the MLP model, the backpropagation algorithm, and its variants.
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An example of a 2-feature 2-class banana data set is represented in

Fig. 3.9, while Fig. 3.10 shows the discriminant functions of some MLPs

with one hidden layer characterized by a logarithmic sigmoidal transfer

function in the hidden layer and trained using the backpropagation

algorithm.

Figure 3.9 2-feature 2-class banana data set.

Figure 3.10 Classification of the data set shown in Fig. 3.9 per-
formed by some MLPs characterized by one hidden layer with a
logarithmic sigmoid transfer function and trained using the back-
propagation algorithm. These MLPs differ for the number of HNs:
1 (black), 2 (red), 3 (blue), 4 (green), 5 (cyan).
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Radial Basis Function neural network

A Radial Basis Function neural network (RBF) is a neural network that

uses radial basis functions as activation functions. A radial basis func-

tion is a real-valued function whose value depends only on the distance

from the origin as represented in eq. 3.3

f(x) = φ(‖x‖) (3.3)

or, alternatively, on the distance from some other point c, called centre,

as in eq. 3.4

f(x, c) = φ(‖x− c‖). (3.4)

RBFs generally present three layers: an input layer, a hidden layer

with a non-linear radial basis function activation function and a linear

output layer. More information about RBF neural networks can be

found in [12, 73, 83].

Fig. 3.11 shows the discriminant functions of some RBFs with one

hidden layer characterized by a Gaussian transfer function and different

numbers of HN classifying the data set in Fig. 3.9.

Figure 3.11 Classification of the data set shown in Fig. 3.9 per-
formed by some RBFs characterized by a Gaussian transfer func-
tion in the hidden layer. These RBFs differ for the number of
HNs: 1 (black), 2 (red), 3 (blue), 4 (green), 5 (cyan).



Advanced vibration analysis for CBM programs 43

3.3 Classifier ensembles

A classifier ensemble is a set of classifiers that are jointly used to increase

the classification accuracy [48, 67, 73].

According to Dietterich [30], a classifier ensemble can be more con-

venient than a single classifier for three main reasons [73]. First, when

several good classifiers are available to solve a problem we might de-

cide to use only one of them based on their training accuracy with the

risk of not choosing the best in terms of generalization performance.

A better choice would be to appropriately combine their outputs, thus

avoiding adopting an inadequate classifier. Second, appropriate com-

bination techniques may produce a better approximation of the ideal

optimal classifier for the given data set. Third, an ensemble of sim-

ple classifiers, combined through a simple rule, may even outperform a

single complex, generally more powerful, classifier.

In the literature different methods have been proposed to combine

the classifier outputs depending on the type of these outputs. Xu et al.

[151] distinguish three types of classifiers outputs:

• abstract level : each classifier output is a class label;

• rank level : each classifier output is the list of all class labels sorted

according to the plausibility of each label to be the correct one

[54, 73, 132];

• measurement level : each classifier output is a vector of as many

elements as there are classes. The i–th component represents the

degree of support to the hypothesis that the input to the classifier

comes from the i–th class.

There are two main approaches to combine classifiers, namely, fu-

sion [73, 74] and selection [26, 73, 104], which differ in the assumption

regarding the knowledge of the feature space by the single classifiers.

In the former case, all classifiers know the whole space, whereas in the

latter case each single classifier is considered as an expert in a specific

portion of such space [73].

3.3.1 Classifiers Fusion

The fusion of classifiers represents one of the most widely used ap-

proaches to combine classifiers.

The degrees of support for a given input x with x ∈ R
n can be

interpreted in different ways, the two most common are confidences in
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the suggested labels and estimates of the posterior probabilities for the

classes [73]. Let

Ω = {ω1, ω2, . . . , ωc} (3.5)

be the set of c class labels and

D = {D1, . . . , DL} (3.6)

the ensemble of L classifiers. Given an input feature vector x, x ∈ R
n,

each classifier Di provides a degree of support di,j(x) to the hypothesis

that x comes from class ωj . The value di,j(x), typically ranging in the

interval [0,1], can be considered as a confidence in the associated label

or an estimate of the posterior probability for the class.

The L classifier outputs for an input x can be represented in a

matrix, called decision profile, DP (x):


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(3.7)

where the i-th row,

[

di,1(x) · · · di,j(x) · · · di,c(x)

]

, (3.8)

represents the output Di(x) of classifier Di, while the j–th column,

[

d1,j(x) · · · di,j(x) · · · dL,j(x)

]T
, (3.9)

where T represents the transpose, is the support for class ωj from clas-

sifiers Di, · · · , DL.

We can useDP (x) to find the overall support for each class and then
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assign the input x to the class with the largest support [73]. One widely

used approach consists in computing the overall support µj for the j-

th class using only the j-th column of the matrix [73]. Combination

strategies adopting this approach are called class-conscious [73, 74].

An example are the so-called nontrainable combiners, which compute

µj(x) by simply applying a combination function (such as simple mean,

minimum, maximum, product, etc.) to the single class supports, with-

out requiring any further training after the base classifiers have been

trained. Then the input x is assigned to the class with the maximum

µj(x). The operators used in the present work as combination functions

are the following [73]:

• Simple mean: µj(x) =
1
L

∑L
i=1 di,j(x),

• Maximum: µj(x) = max
i
{di,j(x)},

• Minimum: µj(x) = min
i
{di,j(x)},

• Product : µj(x) =
1
L

∏L
i=1 di,j(x).

3.3.2 Classifier Selection

In classifier selection, each single classifier is responsible for a specific

portion of the feature space; thus different classifiers are used for differ-

ent inputs [26, 73]. Actually, the key issue is to decide which classifier

should be used to label a particular input. It can be shown that, if

for each input x we choose the classifier that results to be the best in

the region containing x, the selection scheme achieves at least the same

accuracy as the best classifier in the ensemble [73].

In the literature several approaches to select the best classifier have

been proposed, including static and dynamic ones. One approach con-

sists in dynamically selecting the classifier by estimating the local com-

petence of each classifier, like the decision-independent estimates strat-

egy [45, 73], in which the competence is established based on the loca-

tion of the input x without considering the classifiers outputs.

One such method is the Direct K-NN Estimate [73, 149], which sim-

ply and fast estimates the competence based on the accuracy achieved

by the classifiers on the K nearest neighbors of x from either the train-

ing set or the validation set [73, 149]. K is, of course, a parameter of



46 Pattern recognition theory

the algorithm. In our experiment, we fix K = 1 to obtain the fastest

algorithm.

When K = 1, the Direct K-NN Estimate performs the following

steps: when the input x is submitted for classification, it looks for

the nearest neighbor xnn of x in the training set, then it evaluates

the decision profile and selects as the classifier responsible for x, the

classifier that returns the maximum value in the support for the class

to which xnn belongs. Ties are broken randomly. The steps performed,

both in the training and test phases, by the Direct K-NN Estimate

algorithm when K = 1 are detailed in Fig. 3.12.

Figure 3.12 Steps performed by the Direct K-NN Estimate al-
gorithm when K = 1. Train and test phases.

3.4 One-class classification

One class classification [71, 84, 89, 99, 126] is an unsupervised classifi-

cation strategy because it assumes that only information of one class,

the known class (exhaustively sampled class), is available for training.

Unlike two-class classification, one-class classification tries to describe

the known class while learning nothing about the other class (unknown
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class) during the training process [71, 84, 89, 99, 126]. Later, during the

test process, the classifier distinguishes and thus classifies the unknown

samples by means of their dissimilarity to the known samples.

The reasons for the absence of unknown samples, i.e., the samples

belonging to the unknown class, can be several [64, 127]:

• the high measurement costs (e.g., need to put damaged bearings

into a rotating machine causing unwanted consequences) [142],

• the low frequency of an event (e.g., a nuclear power plant failure

or a rare medical disease),

• impossibility to collect and “catalog” all the possible types of un-

known samples (e.g., to collect the infinite number of faults and

severity levels of a faulty bearing in order to distinguish between

a faultless bearing and a damaged one [142] or to identify all the

possible human illnesses in order to distinguish a healthy person

from an ill person).

Furthermore, even when available, unknown samples may not al-

ways be trusted, as they can be badly represented, for example, because

they are affected by high level of noise.

On the other hand, it can be relatively cheap and simple to obtain

measurements from a particular class (known class), e.g., to collect mea-

surements from faultless bearings and thus from a normally functioning

machine [142].

Reducing the classification problem of interest to a one-class prob-

lem brings to several advantages such as [64, 127]:

• increase of the independence from the collected data, i.e., more

generalization ability, since the classification can be performed

regardless of the lack of samples of one of the two classes;

• reduction of the computational time, since fewer data are pro-

cessed (only known samples) during the training process. In the

literature there are rarely references even to the order of magni-

tude of the computational time required by the proposed classifi-

cation system to perform the classification process, however this

is a crucial issue in real-time applications;

• reduction of the time required to collect data since fewer data

(only known samples) should be collected;
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• reduction of the required memory to store all the data since fewer

data (only known samples) should be stored.

Therefore, the area of interest in one-class classification covers all

the problems of detection by distinguishing a specified and exhaustively

sampled known class from all kinds of “anomal” unknown class [64]. The

applications are many such as fault detection [142, 156], rare illnesses

[124], authorship verification [71], and so on.

The principles behind many two-class or multi-class classifiers can

be used for solving one-class classification problems [12, 18, 55, 59, 62,

64, 69, 95, 96, 113].

The characterization of the known class can be performed by means

of different approaches such as the density estimation approach (e.g.,

the Gaussian model), and the boundary approach (e.g., the nearest

neighbor approach) [64, 127].

The first one, the density estimation approach, involves a density

estimation of the known class and thus assumes that the known data

is exhaustively sampled, and that low density areas in the training set

indicate that these areas have a low probability of containing known

objects [64]. If an exhaustive sampling is difficult to perform, other ap-

proaches should be used. More precisely, when only the data boundary

is required we do not need to estimate a complete data density for a

one-class classifier which might also be too demanding. This is why in

the boundary methods only a closed boundary around the known set is

optimized.

Finally, in this section, we introduce the one-class classifiers de-

veloped during this Ph.D work. The proposed classifiers are the con-

vex hull classifier (CHC), the snake operator classifier (SOC), and the

CSC and CSS classifiers which are obtained by the combination of the

CHC and SOC. The first (CSC) alternates the use of more CHCs and

SOCs starting from a CHC, while the second (CSS) consists in a CHC

stretched starting from an SOC applied on a CHC. The two one-class

classifiers, CSC and CSS, will be described in more details in the fol-

lowing.

3.4.1 Density estimation based one-class classifiers

Density estimators are the most popular and straightforward methods

to obtain one-class classifiers [64, 124, 127].

The density methods perform an estimation of the complete prob-
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ability density of the known class using the training set. Then in the

test phase they decide the class to which a sample belongs on the base

of a specific threshold and the estimated probability density [11, 18]:

if the estimated probability is higher than the threshold the sample is

classified as belonging to the known class, otherwise to the unknown

class [64, 127].

This approach considers as hypothesis that the training size (known

size) is “sufficiently” high [64, 127]. Thus, when the training set is

“enough” this approach can reach good performance, generally approxi-

mating the known density by much simpler models and, thus, avoiding,

to try to evaluate a full density probability estimation [64]. Generally,

a flexible density model is used [127].

The drawback of the density estimation approach is that the esti-

mation of the probability density might be a difficult task which is even

harder when very few samples are available [31, 64, 127].

Gaussian density estimation one-class classifier

The simplest statistical model is the normal or Gaussian density [12].

According to the Central Limit Theorem [133], this model is correct

when we assume that samples from one class originate from one proto-

type which is disturbed by a large number of small independent distur-

bances [127].

For this density model the conditional probability pN for the known

class that a new object x belongs to the known class [127] can be de-

scribed as in eq. 3.10:

pN

(

x;µ,
∑

)

=
1

(2π)N‖
∑

‖1/2
exp{−

1

2
(x−µ)T

∑

−1(x−µ)} (3.10)

where µ is the mean and
∑

represents the covariance matrix.

The model is very simple. However it imposes a strict unimodal

and convex density model on the data and suffers from very large co-

variance matrices, that are hard to estimate since the computation of

their inverse becomes easily ill-defined [64, 127].

An example of application of the one-class Gaussian classifier on

the data set in Fig. 3.13 is shown in Fig. 3.14. In these figures three

Gaussian classifiers are represented. They are characterized by differ-

ent thresholds θi (θi ∈ [0, 1]). These thresholds define the fraction
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of known samples which can be rejected. This means that not more

than (100×θi)% of the positive class (known class) can be misclassified

(false negatives). That means that the fraction of false negatives will

be (100× θi)%.

Figure 3.13 2-feature 2-class data set. The known class is rep-
resented by the blue points while the unknown class is represented
by the red stars.

Figure 3.14 Classification of the data set represented in Fig. 3.13
using three one-class Gaussian classifiers characterized by θi =
0.01 (green), θi = 0.05 (cyan), θi = 0.09 (black).
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3.4.2 Boundary based one-class classifiers

When density estimation is not feasible (too few known samples), one

can approximate the known class by a simpler model making use of

the boundary-based approach. As stated in [137], when just a limited

amount of data is available, one should avoid solving a more general

problem as an intermediate step to solve the original problem. To solve

this more general problem more data might be required than for the

original problem. In our case this means that estimating a complete

data density for a one-class classifier might also be too demanding when

only the data boundary is required [64, 127].

Thus the idea at the base of the boundary-based strategy is to create

a model which captures the data structure, i.e., only a closed boundary

around the known set is optimized. Then new objects are projected

onto this model. Although the objective of these algorithms is not to

minimize the boundary around the known class, most methods have a

strong bias towards a minimal volume solution. However how small the

volume is, depends on the fit of the method to the data [64, 127].

Since the boundary methods heavily rely on the distances between

objects, they tend to be sensitive to the scaling of the features. On the

other hand the number of objects that is required is smaller than in

case of the density methods. So, although the required sample size for

the boundary methods is smaller than the density methods, a part of

the burden is now put onto well-defined distances [64, 127].

Nearest Neighbor one-class classifier

The nearest neighbor one-class classifier (NNDD) [64, 127] is one of the

simplest boundary-based one-class classifier. It can be derived from the

nearest neighbor classifier of [31], which is a classifier which bases its

decisions on the distance between the objects and their nearest objects

(nearest neighbors) in the training set. Thus the NNDD classifier avoids

to evaluate explicitly the complete density estimation [127].

The training phase in NNDD consists only of the storage of all the

samples of the training set in memory. In the test phase, NNDD has

to make an exhaustive search considering the set of training samples

to find the nearest neighbor of each test sample. More precisely, a test

object x is assigned to the known class when its local density (inverse of

distance from its nearest neighbor in the training set NN(x)) is larger

or equal to the local density of its (first) nearest neighbor (inverse of
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distance between NN(x) and its nearest neighbor NN(NN(x)) in the

training set). Otherwise x is assigned to the unknown class. This is

summarized in eq. 3.11.

f(x) =











known class, ‖(x,NN(x)‖

‖(NN(x),NN(NN(x))‖
< 1

unknown class, otherwise

(3.11)

where NN(x) is the nearest neighbor of x in the training set, NN(NN(x)

is the nearest neighbor of NN(x) in the training set and “‖·‖” represents

the Euclidean distance between two objects.

The NNDD classifier can of course be extended to a larger num-

ber k ≥ 1 of nearest neighbors. Instead of taking the first nearest

neighbor into account, the k-th neighbor should be considered such as

in the well-know multi-class classifier k-NN. We will call k-NNDD the

generalization to k ≥ 1 of the NNDD classifier.

Two drawbacks of the NNDD classifier as well as the k-NNDD clas-

sifier are their need to store all the training samples that are used

subsequently to classify unseen objects and to evaluate the distances of

each unseen object from all the objects in the training set. This makes

these algorithms scale sensitive in term of memory and computational

time.

An example of application of the NNDD and k-NNDD classifiers

on the data set in Fig. 3.13 are shown, respectively, in Fig. 3.15 and

in Fig. 3.16. Three NNDDs and three k-NNDDs classifiers are repre-

sented. They are characterized by different thresholds θi (θi ∈ [0, 1]).

These thresholds define the fraction (%) of known samples which can

be rejected. This means that not more than (100× θi)% of the positive

class (known class) can be misclassified (false negatives). That means

that the fraction of false negatives will be (100× θi)%.

3.4.3 Convex hull classifier

The convex hull (CH) for a set of points S in a real vector space V is

defined as the minimal convex set containing S [16, 25]. In the litera-

ture, convex hulls are usually adopted in application domains such as

computer visualization, verification methods and computational geom-

etry problems, some of which are described in [38, 44]. The convex hull
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Figure 3.15 Classification of the data set represented in Fig. 3.13
using three NNDD classifiers characterized by θi = 0.01 (green),
θi = 0.05 (cyan), θi = 0.09 (black).

Figure 3.16 Classification of the data set represented in Fig. 3.13
using three k-NNDD classifiers (k optimized using a leave-one-out
density estimation) characterized by θi = 0.01 (green), θi = 0.05
(cyan), θi = 0.09 (black).

classifier (CHC) classifies the samples into two sets: the first (known

class) consisting of the points inside the convex hull border and the

second one (unknown class) consisting of the points outside the convex

hull border (Fig. 3.17).
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Figure 3.17 Classification performed by a convex hull classifier
(CHC): the known class consists of the points (dots) inside the
convex hull border (spline) and the unknown class consists of the
samples (squares) outside the convex hull border.

3.4.4 Snake operator classifier

A snake operator [65] is an active contour model consisting of a spline

that tries to minimize its energy basing itself on internal constraint

forces, external constraint forces and image forces that pull it toward

features such as lines and edges. In [65] these three types of energy are

described in the following way:

• internal constraint forces : forces that impose to the snake to

maintain a piecewise smoothness form,

• images forces : forces that push the snake towards salient image

features like lines, edges, and subjective contours,

• external constraint forces : forces that are responsible for driving

the snake near the desired local minimum.

Thus, if we represent the position of the snake v(s, t), where s and

t are, respectively, the spatial index and the time, defined on given

open intervals Ω and T , then the snake energy Esnake, which should be

minimized, can be written as follows in eq. 3.12:

Esnake =
1

2

∫

Ω
[Eint(v(s)) + Eimage(v(s)) + Eext(v(s))] ds (3.12)

where Eint represents the internal constraint forces, Eimage the image

forces, and Eext the external constraint forces [65].
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The snake operator is a valuable tool commonly used to segment

images with a lot of applications such as in the medical image segmen-

tation [86, 139, 140, 148].

In this dissertation, we use the snake operator as a classifier, inter-

preting the samples of our data set as an image to be segmented. The

snake operator classifier (SOC) classifies the samples into two sets: the

first consisting of the points inside the snake border and the second one

consisting of the points outside the snake border. In our experiments

we use the SOC in a two dimensional (2D) space.

One of the crucial aspects of the use of the snake operator is its

initialization [139, 140], which is usually provided manually by an expert

during the image segmentation [102]. Here we propose to initialize the

snake operator using the curve resulting from the application of a 2D

convex hull to the same data.

3.4.5 CSC classifier

The CSC classifier is a combination of the previously described one-class

classifiers: convex hull and snake classifiers. This classifier operates as

follows:

1 Build the convex hull containing all the training samples of the

faultless class.

2 Consider this convex hull as the mask to initialize a snake oper-

ator. Let the snake evolve for a certain number N of epochs. N

is generally a small number, optimized and chosen by the user.

In our experiment we fix N to 300 (generally, the smaller N the

more accurate the evolution is), however this number is strictly

dependent on the specific context in which the snake operator is

used.

3 Consider the faultless samples of the training set inside the snake,

and build on them a new convex hull. If this convex hull is dif-

ferent from the previous one, then go to step 4, otherwise let the

snake evolve for other N epochs and repeat step 3.

4 If the stop criterion is reached, stop the algorithm, otherwise re-

peat step 2.

The process can be stopped when the minimum acceptable accuracy

for the faultless class is reached. More precisely, as the snake and the

convex hull evolve, the accuracy of the faultless class continues to de-
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crease (or remain unchanged), while the accuracy of the damaged class

continues to increase (or remains unchanged). Thus, if the accuracy

for the faultless class considering the first convex hull classifier is acc,

then the accuracy for the faultless class for the following convex hull

classifiers will be acc − ǫ, with ǫ ≥ 0. Of course the accuracy for the

damaged class will increase (or remains unchanged). The same hap-

pens between subsequent snake operators. Thus, the user can select

the minimum acceptable accuracy T for the faultless class, then stop

the process when this accuracy is reached. In this way we will obtain

the maximum accuracy for the damaged class given the specific faultless

accuracy T .

3.4.6 CSS classifier

The CSS classifier is a combination of the previously described one-

class classifiers: CHC and SOC followed by a stretching process. This

classifier works as follows:

1 Build the convex hull containing all the training samples of the

faultless class.

2 Use this convex hull as a mask to initialize a snake operator. Let

the snake operator evolve for a certain number M of epochs or

until the snake reaches an “equilibrium state” corresponding to

the equilibrium of the involved forces. M is generally a large

number optimized and chosen by the user. In our experiments we

fix M to 10000, however this number is strictly dependent on the

specific context in which the snake operator is used.

3 Consider the faultless samples of the training set inside the snake

and build on them a new convex hull.

4 Stretch this convex hull by enlarging it by a factor γ. γ is related

to the specific classification problem. In particular the stretching

is made so that the result is proportional to the “width of the

specific feature” by a stretching factor called stretchPerc, which

is initialized to 1% in our experiments. By “width of a feature”

we mean the difference between the maximum and the minimum

values of that feature over all the faultless training samples. Let

Dx and Dy be the widths of the faultless class features (only the

samples inside the convex hull are considered), then the stretching

is done proportional to Dx and Dy. Thus the factor of stretching
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γ will be evaluated as in eq. 3.13:

γ = (γx, γy) = (stretchPerc ×Dx, stretchPerc ×Dy). (3.13)

The stretching phase is performed in the following way. Each

sample of the training set (composed only by faultless elements)

is quadrupled. More precisely, let s be a generic training sam-

ple, and let xs and ys be the values of the two discriminant fea-

tures (DFs) describing it. Then add to the training set four more

elements s1(xs1, ys1), s2(xs2, ys2), s3(xs3, ys3), and s4(xs4, ys4),

where:

• xs1 = xs + γx and ys1 = ys + γy;

• xs1 = xs + γx and ys1 = ys − γy;

• xs1 = xs − γx and ys1 = ys + γy;

• xs1 = xs − γx and ys1 = ys − γy.

Build on this new training set a new convex hull that will be larger

than (stretched from) the previous one. Reset the training set to

the original samples, but selecting only the samples inside the

current convex hull. If this set is the same as that used to build

the previous convex hull, then repeat step 4 with an increased

stretchPerc, namely stretchPerc = stretchPerc + γ0 (γ0 is set to

1% in the performed experiments), otherwise go to step 5.

5 If the stop criterion is reached stop the algorithm, otherwise set

stretchPerc to 1% again and repeat step 4.

The process can be stopped when the minimum acceptable accuracy

for the faultless class is reached. More precisely, the more the convex

hull is stretched, the more the accuracy of the faultless class continues

to increase (or remain unchanged), while the damaged accuracy contin-

ues to decrease (or remains unchanged). Thus, if the accuracy for the

faultless class considering the first convex hull classifier is acc, then the

accuracy for the faultless class for the following stretched convex hulls

will be acc + δ, with δ ≥ 0. Of course the accuracy for the damaged

class will decrease (or remains unchanged). Thus the user can select

the minimum acceptable accuracy T ′ for the faultless class, then stop

the process when this accuracy is reached. In this way we will obtain

the maximum accuracy for the damaged class for the given faultless
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accuracy T ′. An iteration of the process is represented in Fig. 3.18.

Figure 3.18 An iteration of the evolution of the CSS classifier.
In the leftmost subfigure the blue points represent the training
samples outside the convex hull while the red points represent the
training samples inside the convex hull. The blue dashed line rep-
resents the initial convex hull that should be stretched. In the
second subfigure four new points are created starting from each
of the training points inside the convex hull. In the third subfig-
ure the new convex hull is created (brown dashed line). In the
last subfigure the original training samples are restored and the
artificially created ones are removed.



Chapter 4

Rolling element bearing data set

Many of life’s failures

are people who did not realize

how close they were to success

when they gave up.

- T. Edison -

In this chapter we describe the data set used in all the performed

experiments. The data set, as already stated, has been provided by Avio

Propulsione Aerospaziale, via I Maggio, 99, Rivalta di Torino, Italy.

The structure of a bearing consists mainly in four main components:

• the inner raceway,

• the outer raceway,

• the balls,

• the cage.

In particular the structure of a bearing is represented in Fig. 4.1.

Two approaches have been adopted by researchers for creating de-

fects on bearings in order to study their vibration response [125]. The

first one consists in letting the bearing running into the machine until

failure while vibration signals are continuously collected and analyzed

to detect vibration changes [103, 105, 125]. The other approach con-

sists in artificially introducing defects in the bearings by the use of

specific techniques such as mechanical indentation [125] and then mea-

suring their vibration response and comparing it with that of faultless
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Figure 4.1 General structure of a rolling element bearing. The
four main components are the inner raceway, the outer raceway,
the balls, and the cage.

bearings [21, 76, 100, 125, 141]. In our case we have used the second

approach.

The data set at our disposal consists of vibration signals coming

from a rotating machine containing a certain number of bearings mon-

itored by four accelerometers.

4.1 Data set description

4.1.1 Types of collected data

The signals were collected both with all faultless bearings and after

substituting one faultless bearing with a damaged one. This bearing

was artificially damaged and the data were collected before and after

each damage. Thus we have data related both to faultless bearings and

damaged bearings. In particular the following four types of defects were

collected:

• indentation on the inner raceway,

• indentation on the roll (see Fig. 4.2),

• sandblasting of the inner raceway,

• unbalanced cage.

4.1.2 Subdivision of the data into classes and subclasses

Since we have data related both to faultless bearings and damaged

bearings, we can divide our data into two main classes, i.e., faultless

class and damaged class.
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Figure 4.2 Example of an indentation on the roll of a rolling
element bearing.

Then, since we have four different types of damage, we can further

subdivide the damaged class into four classes, each of which correspond-

ing to a specific type of fault.

Thus our data can be divided into five classes, namely, C1, C2,

C3, C4, and C5, including one class for faultless bearings, C1, and

one class for each damage: C2 (indentation on the inner raceway), C3

(indentation on the roll), C4 (sandblasting of the inner raceway), and

C5 (unbalanced cage). The class subdivision is summarized in Table 4.1.

Table 4.1 Classes subdivision

Class Type of class

C1 faultless bearing

C2 indentation on the inner raceway

C3 indentation on the roll

C4 sandblasting of the inner raceway

C5 unbalanced cage

In particular, the fault associated with class C2 consists of a 450 µm

indentation on the inner raceway, while class C3, related to the indenta-

tion on the roll, can be further divided into three subclasses depending

on the severity level of the damage, namely, light (C3.1, 450 µm inden-

tation on the roll), medium (C3.2, 1.1 mm indentation on the roll), and

high (C3.3, 1.29 mm indentation on the roll). The subdivision of class

C3 into subclasses is summarized in Table 4.2.
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Table 4.2 Different levels of severity for class C3

Subclass Type of severity Severity level

C3.1 indentation on the roll: 450 µm light

C3.2 indentation on the roll: 1.1 mm medium

C3.3 indentation on the roll: 1.29 mm high

4.1.3 Data distribution

The data were recorded by the four accelerometers for time intervals of

ten minutes. In particular, we considered a data set consisting of one-

second signals with 2890 signals for class C1, 1770 for class C2, 4790

for class C3, 1520 for class C4, and 1770 for class C5. The distribution

pf signals per class is shown in Table 4.3.

Table 4.3 Distribution of signals for the classes C1, C2, C3, C4,
and C5

Class
Amount of signals per class

(seconds)

C1 2890

C2 1770

C3 4790

C4 1520

C5 1770

In particular, the signals in class C3 are distributed in the follow-

ing way: 1770 signals for the subclass C3.1, 1250 for C3.2, and 1770

for C3.3. The distribution of the signals for C3.1, C3.2, and C3.3 is

presented in Table 4.4.

The distribution of the signals for each class and subclass is resumed

in Fig. 4.3.

Actually for class C3.1 we have collected more data. More precisely

the signals belonging to “light indentation on the roll” were collected

for four subsequent days for a total of 7080 signals. However, if not

differently specified, we will always refer to class C3.1 as the set of 1770
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Table 4.4 Distribution of signals for the subclasses C3.1, C3.2,
and C3.3

Subclass
Amount of signals per subclass

(seconds)

C3.1 1770

C3.2 1250

C3.3 1770

Figure 4.3 Classes and subclasses distribution in the order C1,
C2, C3.1, C3.3, C3.2, C4, and C5.

signals belonging to the first day of collection of this type of fault. All

the other data related to the other three days of collection will be used

during a prognosis study described in Chap. 6. In particular for each of

these four days of collection we have 1770 samples. Thus calling these

other subclasses C3.1.1, C3.1.2, C3.1.3, and C3.1.4, their distribution

can be represented as in Table 4.5.

4.2 Environment and software used

In the present work among other types of software and environments,

the Matlab environment (see http://www.mathworks.com/products/

matlab/ for more information) as well as the PRTools package [33]

(see http://www.prtools.org/ for more information) have been widely

used.

This work has also brought to the development of several functions
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Table 4.5 Distribution of the signals for the subclasses C3.1.1,
C3.1.2, C3.1.3, and C3.1.4

Subclass
Amount of signals per subclass

(seconds)

C3.1.1 1770

C3.1.2 1770

C3.1.3 1770

C3.1.4 1770

to implement many pattern recognition functions. A brief description

about the Matlab environment and the PRTools package can also be

found in [138].



Chapter 5

Classification and diagnosis of rolling

element bearings

It is not because things are difficult

that we do not dare,

it is because we do not dare

that they are difficult.

- L.A. Seneca -

In this chapter we present the obtained results as well as the tech-

niques and the methodologies proposed to deal with the bearing classi-

fication and diagnostic issue.

In particular in this chapter we present the performed experiments

aimed at achieving the following objectives: given a mechanical object

containing rolling bearings,

• to detect the presence of a defect,

• to recognize the specific type of defect,

• to recognize the severity level of the defect.

The experiments, performed on the vibration signals represented in

the frequency domain, will show that the proposed classification meth-

ods are highly sensitive to different types and severity levels of the de-

fects. The data set used in these experiments is described in Chap. 4.

To deal with the diagnostic issue, we consider the problem as a

classification problem, adopting two statistical classifiers, namely the
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(a)Time signals for class C1 (b)FFT for class C1

(c)Time signals for class C2 (d)FFT for class C2

Figure 5.1 Examples of time signals and corresponding FFTs.

LDC and the QDC, and MLP neural networks. In particular, we use

LDC and QDC (with the regularization parameter fix to 0) to perform

both feature selection and classification, whereas MLP neural networks

perform classification of signals represented by means of the features

selected by LDC and QDC.

Finally, to solve particularly difficult classification problems, we

adopt classifier fusion.

We work in the frequency domain by transforming the time sig-

nals by using the Fast Fourier Transform (FFT). Unlike the classical

approach, which identifies specific characteristic frequencies associated

with given defects, we try to find out the frequencies able to discrim-

inate among the different defects taken into consideration. Fig. 5.1

shows an example of the time signals and the corresponding FFT for

classes C1 and C2.
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We consider the frequency interval [1,250] Hz, sampled every 1 Hz.

Therefore, each signal is represented by 250 frequency samples. As

there are four accelerometers the total number of frequency samples for

each element to be analyzed is 250 × 4 = 1000. In other words, each

signal is represented in R
1000. The 1000 frequency samples (referred

to as features in the following) are obtained by concatenating the four

groups of 250 frequency samples (i.e., features) relative to the four

accelerometers.

As a final remark, we point out that for each experiment the data

have been balanced using a random technique so that each class in-

volved in the experiment contains the same number of samples as the

least numerous one. Then the training set has been built by randomly

choosing 70% of the total data, while the remaining data have been

used as the test set. For the sake of clarity the set of all the damaged

bearings will be referred to as class C6.

5.1 First series of experiments

5.1.1 Introduction to the first series of experiments

The proposed classification technique considers all the aspects of classi-

fication: feature selection, different base classifiers (two statistical clas-

sifiers, namely LDC and QDC, and MLP neural networks) and classifier

fusion. The experiments, performed on the vibration signals repre-

sented in the frequency domain, have shown that the proposed classi-

fication method is highly sensitive to different types of defects and to

different severity degrees of the defects.

5.1.2 Classification of C1 and C6

The goal of these experiments is to classify the signals into two classes:

faultless bearings (C1) and damaged bearings (C6 = {C2, C3, C4, C5}).

Since each signal is represented in R
1000, we need to decrease the

space dimension. To this aim, we first divide the frequency interval

[1,250] Hz into five sub-intervals consisting, respectively, of the first 50

frequencies, the second 50 frequencies, etc. In each sub-interval, each

signal is represented by 200 features obtained by concatenating the four

groups of 50 features associated with the four accelerometers (Fig. 5.2).

For each sub-interval, we look for the best discriminating frequencies

(DFs), i.e., the frequencies that are able to provide the best accuracy
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Figure 5.2 Organization of the features considering the four ac-
celerometers and the five frequency ranges.

when used to represent the signals to be classified. In this way, besides

decreasing the space dimension, we also identify the most significant

frequency (sub-)interval for classification purposes. This step is per-

formed using the forward feature selection (FFS). We chose to use FFS

because it is a reasonable compromise between exhaustive search and

random search. We adopted LDC and QDC to perform both feature se-

lection and classification of the signals represented through the selected

features. This choice stems from the fact that LDC and QDC are fast

trainable classifiers.

We use 5 LDCs and 5 QDCs: each LDC/QDC works on a particular

range of frequency, namely, the range [1,50] Hz, the range [51,100] Hz,

etc. We experimentally verified that each classifier achieves the max-

imum classification accuracy with less than 200 features. The typical

situation is represented in Fig. 5.3: we can notice that the accuracy

increases with the number of features up to a point in which the accu-

racy remains almost constant and eventually decreases reaching a value

that is equal to 1/n, with n being the number of classes (we recall that

we work with balanced classes). The value 1/n is considered the lowest

accuracy that can be obtained, as, in the case the accuracy goes below

this value, we could simply decide to classify all the elements as belong-

ing to one class to increase again the accuracy up to 1/n. This is the

reason why we consider 1/n the lowest obtainable accuracy.

Considering all the 200 features and repeating the experiment 10

times, LDC and QDC have both selected as the best frequency range for

this classification problem the fourth range, i.e., the range [151,200] Hz
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Figure 5.3 Typical curve representing the classification accu-
racy (y-axis) versus the number of features (x-axis) for a five-class
problem.

as in this range we obtained the highest accuracies. In particular, we

found that in the fourth frequency range LDC and QDC achieved a

maximum accuracy of 99.66% with 33 features and 99.94% with 20

features, respectively.

Observing the curve that represents the classification accuracy ver-

sus the number of selected features, we noticed that just with the first

6 and 10 DFs, respectively, the two classifiers LDC and QDC achieve

a performance close to the maximum in all the frequency ranges. We

therefore decided to adopt only 6 and 10 DFs, respectively, to reduce

the computation complexity. Indeed we can notice that each new added

feature brought a negligible improvement after 6 and 10 features, re-

spectively. In this way, the space dimension is reduced from R
1000 to

R
6 and R

10, respectively. In the following, we will refer to the DFs cho-

sen to reduce the space dimension as reduced discriminating features

(RDFs). The accuracies obtained by LDC and QDC considering only

the RDFs for each frequency range are shown in Table 5.1. Table 5.2

shows the list of the RDFs for the fourth range.

Figure 5.4 shows the signals (both faultless and damaged) around

the feature 181, i.e., the first DF selected by FFS in the fourth frequency

range. Fig. 5.4 shows the good separation of the two classes performed

using this RDF.
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Table 5.1 Classification of C1 and C6. Accuracy for LDC and
QDC in the five frequency ranges (6 and 10 features respectively)

Range
Frequency Accuracy of LDC Accuracy of QDC

Range (mean over 10 trials) (mean over 10 trials)

1 [1,50] Hz 86.82% 85.47%

2 [51,100] Hz 86.82% 85.47%

3 [101,150] Hz 94.35% 93.94%

4 [151,200] Hz 98.45% 99.76%

5 [201,250] Hz 84.98% 89.45%

Table 5.2 Classification of C1 and C6. List of the RDFs using
the LDC and QDC classifiers for the fourth frequency range

Classifier RDFs

LDC 181, 23, 131, 138, 39, 32

QDC 181, 23, 131, 31, 118, 44, 5, 187, 190, 8

Figure 5.4 Faultless (blue) and damaged signals (red) around the
feature 181.

5.1.3 Classification of C1, C3.1, C3.2, and C3.3

The goal of these experiments is to classify the signals into four classes

C1, C3.1, C3.2, and C3.3. These experiments aim to distinguish be-
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tween faultless and damaged bearings, and to recognize the different

levels of severity of the same type of damage.

Repeating the experiment 10 times, once again, both LDC and QDC

classifiers, using the FFS algorithm, select as the best range for this

classification problem the fourth range, i.e., the range [151,200] Hz since

in this range we succeed in obtaining the highest mean accuracies. In

particular, considering all the 200 features, LDC and QDC achieved

the maximum accuracy of 99.76% with 101 features and 99.93% with

89 features, respectively.

In this case, we consider 10 features as RDFs for both LDC and

QDC. Actually, we wish to remark that, in order to adopt a uniform

approach in all experiments, and taking into account the plots of ac-

curacy versus number of DFs, we verify that choosing 10 RDFs is a

good compromise both in this case and in the following cases. Indeed

increasing the number of features brings to negligible improvements of

the accuracy.

Table 5.3 shows, for each frequency range, the results obtained with

the first 10 features (i.e., the RDFs); the accuracy is very close to the

maximum one. Table 5.4 shows the list of the 10 RDFs for the fourth

frequency range.

Table 5.3 Classification of C1, C3.1, C3.2, and C3.3. Accuracy
for LDC and QDC in the five frequency ranges (10 Features)

Range
Frequency Accuracy of LDC Accuracy of QDC

Range (mean over 10 trials) (mean over 10 trials)

1 [1,50] Hz 94.10% 97.43%

2 [51,100] Hz 90.70% 92.40%

3 [101,150] Hz 93.07% 95.50%

4 [151,200] Hz 99.73% 99.87%

5 [201,250] Hz 89.70% 90.96%

5.1.4 Classification of C1, C2, C3, C4, and C5

The goal of these experiments is to classify the signals into five classes

C1, C2, C3, C4, C5. These experiments aim to recognize the different

types of damage regardless of their severity levels.
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Table 5.4 Classification of C1, C3.1, C3.2, and C3.3. List of
the 10 RDFs using LDC and QDC for the fourth frequency range

Classifier RDFs

LDC 131, 182, 181, 31, 23, 73, 130, 32, 123, 13

QDC 131, 181, 123, 182, 73, 31, 120, 138, 48, 132

Repeating the experiment 10 times, the LDC and QDC classifiers

have both selected as the best frequency range for this classification

problem the fourth range. Considering all the 200 features, we find that,

in the fourth frequency range, LDC achieved a maximum accuracy of

94.30% using 86 features, while QDC obtained a maximum accuracy of

95.00% using 102 features. The accuracy obtained by LDC and QDC

considering only the RDFs (10 also in this case) for each frequency

range is shown in Table 5.5.

Table 5.5 Classification of C1, C2, C3, C4, and C5. Accuracy
for LDC and QDC in the five frequency ranges (10 Features)

Range
Frequency Accuracy of LDC Accuracy of QDC

Range (mean over 10 trials) (mean over 10 trials)

1 [1,50] Hz 61.72% 64.74%

2 [51,100] Hz 63.79% 63.90%

3 [101,150] Hz 56.21% 57.41%

4 [151,200] Hz 91.01% 92.41%

5 [201,250] Hz 58.88% 61.73%

The list of the 10 RDFs and an example of the related confusion

matrices are shown, respectively, in Tables 5.6-5.8. From Tables 5.7

and 5.8 we notice that the main part of the error (48.25% for the QDC

classifier, which achieves the best classification accuracy) is due to the

misclassification of class C3, which is often recognized as C2 and vice

versa. The following experiments will allow us to understand where this

error is exactly placed, in other words we will expand the class C3 in

its subclasses and then we will search the subclass(es) which account

for most error (we wonder if C2 is misclassified equally with all the
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elements of class C3 or perhaps only, or mainly, with the elements of a

subclass of class C3, i.e., C3.1, C3.2, and C3.3).

Table 5.6 Classification of C1, C2, C3, C4, and C5. List of the
10 RDFs using LDC and QDC for the fourth frequency range

Classifier RDFs

LDC 181, 182, 123, 137, 77, 131, 81, 82, 131, 105

QDC 181, 182, 123, 137, 77, 81, 131, 82, 132, 26

Table 5.7 Classification of C1, C2, C3, C4, C5. LDC confusion
matrix for the test set (10 features)

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 439 8 3 0 6 456

True
C2 3 375 60 18 0 456

Labels
C3 1 44 385 26 0 456

C4 0 34 27 395 0 456

C5 3 2 1 0 450 456

Total 446 463 476 439 456 2280

5.1.5 Classification of C1, C2, C3.1, C3.2, C3.3, C4,

and C5

The goal of these experiments is to classify the signals into seven classes

C1, C2, C3.1, C3.2, C3.3, C4, C5. These experiments aim to recognize

not only the different types of fault but also the different degrees of

severity.

LDC and QDC, using the FFS algorithm and repeating the ex-

periment 10 trials, achieved the maximum performance again on the

fourth frequency range. When using all the 200 features, LDC and

QDC achieved the maximum accuracy of 95.30% with 110 features and

97.88% with 73 features, respectively. With 10 RDFs, the LDC and

QDC classifiers achieved the accuracy shown in Table 5.9. We chose 10

RDFs to keep the complexity at an acceptable level. The 10 RDFs and
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Table 5.8 Classification of C1, C2, C3, C4, C5. QDC confusion
matrix for the test set (10 features)

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 445 1 2 0 7 456

True
C2 0 408 33 15 0 456

Labels
C3 1 64 347 40 0 456

C4 2 24 10 420 0 456

C5 1 0 1 0 454 456

Total 450 497 393 475 461 2280

the related confusion matrices are shown, respectively, in Tables 5.10-

5.12.

Table 5.9 Classification of C1, C2, C3.1, C3.2, C3.3, C4, and
C5. Accuracy for LDC and QDC in the five frequency ranges

Range
Frequency Accuracy of LDC Accuracy of QDC

Range (mean over 10 trials) (mean over 10 trials)

1 [1,50] Hz 69.84% 74.08%

2 [51,100] Hz 65.64% 69.45%

3 [101,150] Hz 65.68% 68.30%

4 [151,200] Hz 91.10% 94.38%

5 [201,250] Hz 60.93% 63.81%

From Tables 5.11 and 5.12, we can observe that the main part of

the error (48.07% for the QDC classifier) is due to the misclassification

of class C3.1, which is sometimes recognized as C2 (39.10%), and vice

versa (8.97%). This means that the classification system cannot dis-

tinguish correctly between indentation on the inner raceway and light

indentation on the roll.

On the other hand, these experiments aimed to the classification into

7 classes, namely, C1, C2, C3.1, C3.2, C3.3, C4, and C5, resulted in a

better accuracy than the experiments aimed at the classification into 5
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Table 5.10 Classification of C1, C2, C3.1, C3.2, C3.3, C4, and
C5. List of the 10 RDFs using LDC and QDC for the fourth
frequency range

Classifier RDFs

LDC 131, 123, 181, 77, 182, 137, 81, 136, 73, 82

QDC 131, 123, 181, 77, 182, 81, 82, 31, 32, 173

Table 5.11 Classification of C1, C2, C3.1, C3.2, C3.3, C4, and
C5. LDC confusion matrix for the test set (10 features)

Estimated Labels
Total

C1 C2 C3.1 C3.2 C3.3 C4 C5

C1 354 13 2 1 0 0 5 375

C2 2 297 56 0 0 20 0 375

True
C3.1 0 60 287 4 0 24 0 375

Labels
C3.2 1 0 2 367 0 0 5 375

C3.3 0 0 0 0 375 0 0 375

C4 0 20 13 0 0 342 0 375

C5 4 1 2 13 0 0 355 375

Total 361 391 362 385 375 386 365 2625

classes, namely, C1, C2, C3, C4, and C5. This suggests that one could

achieve the objective of the classification into C1, C2, C3, C4, and C5

by appropriately exploiting the current experiment (classification into

C1, C2, C3.1, C3.2, C3.3, C4, and C5). More precisely, we can classify

the data into seven classes and then put together C3.1, C3.2 and C3.3

to obtain C3, thus returning to the five-class problem. In this way,

considering the results obtained by the QDC classifier, the confusion

matrix for the five-class problem becomes the one in Table 5.13 and

the accuracy becomes 94.06%. This accuracy is higher than the one

obtained before for the 5-class problem (92.41%). We remark that we

still use the same number of RDFs.
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Table 5.12 Classification of C1, C2, C3.1, C3.2, C3.3, C4, and
C5. QDC confusion matrix for the test set (10 features)

Estimated Labels
Total

C1 C2 C3.1 C3.2 C3.3 C4 C5

C1 369 2 1 1 0 1 1 375

C2 1 341 14 0 0 18 1 375

True
C3.1 0 61 298 0 0 16 0 375

Labels
C3.2 0 0 0 372 0 1 2 375

C3.3 0 0 0 0 375 0 0 375

C4 1 8 19 0 1 346 0 375

C5 4 1 0 2 0 0 368 375

Total 375 412 332 375 376 382 372 2625

5.1.6 Classification of C2 and C3.1

Once identified where the main part of the error is (misclassification

of C2 with C3.1 and vice versa rather than C2 with C3) we tried to

cope with this problem with a dedicated classifier. The goal of this

series of experiments is thus to classify the signals into two classes C2

and C3.1, so as to solve the main problem met in the previous series

of experiments. Repeating the experiment 10 times, once again, LDC

and QDC achieved the maximum performance in the fourth frequency

range. When used with 10 RDFs, the LDC and QDC classifiers achieved

the accuracy shown in Table 5.14.

To improve the results obtained by the LDC and QDC classifiers,

we resort to classifier fusion. More precisely, we use different classifiers

and then appropriately combine their responses. We use nine classi-

fiers (Table 5.15). The MLPs used are characterized by one hidden

layer and logarithmic sigmoid transfer functions. In particular, we also

introduced another method of feature selection, IFS (Individual Fea-

tures Selection). The nine classifiers were combined by means of the

majority rule achieving the average accuracy of 94.35% over 10 trials

(Table 5.15). Table 5.16 shows an example of the related confusion

matrix.

We wish to point out that the obtained accuracy is higher than that
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Table 5.13 Classification of C1, C2, C3, C4, C5. QDC confu-
sion matrix for the test set (10 features)

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 369 2 2 1 1 375

True
C2 1 341 14 18 1 375

Labels
C3 0 61 1045 17 2 375

C4 1 8 20 346 0 375

C5 4 1 2 0 368 375

Total 375 413 1082 382 383 2625

Table 5.14 Classification of C2 and C3.1. Accuracy for LDC
and QDC in the five frequency ranges

Range
Frequency Accuracy of LDC Accuracy of QDC

Range (mean over 10 trials) (mean over 10 trials)

1 [1,50] Hz 71.84% 73.21%

2 [51,100] Hz 65.81% 68.88%

3 [101,150] Hz 68.36% 67.14%

4 [151,200] Hz 91.85% 91.95%

5 [201,250] Hz 83.00% 83.99%

of the best of the nine classifiers and furthermore, in this way, we can

also significantly increase the robustness of the resulting classification

system.

5.1.7 Conclusions to the first series of experiments

In this first series of experiments we have presented a method, based

on classification techniques and classifier fusion, for the automatic di-

agnosing of defects in rolling element bearings.

The proposed method has been applied to experimental data, regis-

tered by four accelerometers, and related to four different defects with

different severity levels on rolling element bearings. The method has

proved to be highly sensitive both to different defects and to different
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Table 5.15 Classification of C2 and C3.1. Classifier fusion

Classifier
Neurons in the Number of Feature Accuracy

hidden layer features selection (mean)

LDC — 20 — 91.97%

LDC — 10 — 91.85%

QDC — 20 — 92.16%

QDC — 10 — 91.95%

MLP 20 20 FFS (LDC) 89.52%

MLP 20 20 FFS (QDC) 90.86%

MLP 20 15 FFS (QDC) 90.19%

MLP 40 10 IFS (LDC) 89.78%

MLP 40 10 IFS (QDC) 88.88%

9-classifier
— — — 94.35%

combiner

degrees of severity for the considered defects. We achieved an accuracy

on the test set greater than 94% for all the classification cases taken

into consideration, sometimes reaching almost 100% accuracy.

5.2 Second series of experiments

5.2.1 Introduction to the second series of experiments

To futher improve the accuracy obtained with the previous experiments

we decide to try also a different approach regarding which is the best

range of frequency to be used at the aim of the classification.

We decide to enlarge the range of frequency to be analyzed, i.e.,

we decided to work in the frequency range [1,300] Hz instead of the

previously used frequency range [1,250] Hz. Thus, we have a total of

300 features describing each sample for each accelerometer.

The Fourier spectrum related to the faultless class considering the

third accelerometer and the first 300 features is represented in Fig. 5.5.

Figure 5.6 shows the Fourier spectrum related to each type of de-

fects and severity, considering the third accelerometer and the first 300

features.
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Table 5.16 Classification of C2 and C3.1. Classifier fusion.
Confusion matrix for the test set

Estimated Labels
Total

C2 C3.1

True C2 489 42 531

labels C3.1 18 513 531

Total 507 555 1062

Figure 5.5 Fourier spectrum for the signal belonging to the fault-
less class C1 in the frequency range [1,300] Hz for the third ac-
celerometer.

As the classifiers are concerned, whenever possible, simple classifiers,

such as LDC and QDC, are used to perform both feature selection and

classification. On the other hand, to solve particularly difficult classifi-

cation problems we adopt Multi-Layer Perceptron neural networks and

multi-classifier systems. In particular, three different types of meth-

ods of classifier fusion are analyzed: maximum, minimum and average.

The proposed method shows a good sensitivity since it provides accu-

racy higher than 99% in all the experiments related to the recognition

of different defects and different severity levels of the defects.

As there are four accelerometers, up to 300 × 4 = 1200 features

(obtained by concatenating the four groups of 300 features related to
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(a)Signals belonging to class C2 (inden-
tation on the inner raceway)

(b)Signals belonging to class C3.1 (light
indentation on the roll)

(c)Signals belonging to class C3.2
(medium indentation on the roll)

(d)Signals belonging to class C3.3 (high
indentation on the roll)

(e)Signals belonging to class C4 (sand-
blasting of the inner raceway)

(f)Signals belonging to class C5 (unbal-
anced cage)

Figure 5.6 Fourier spectra for the signals belonging to each type
of defects and severity levels in the frequency range [1,300] Hz for
the third accelerometer.
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the four accelerometers) can be used to represent each signal (Fig. 5.7).

In other words, each signal can be represented in R
n with n ≤ 1200.

To reduce the computational time, however, we decided to consider

each accelerometer singularly.

Figure 5.7 Organization of the features considering the four ac-
celerometers.

5.2.2 Classification of C1 and C6

In this experiment we try to classify the signals into two classes: fault-

less bearings C1 and damaged bearings C6 (C2, C3, C4, C5). As previ-

ously stated, the set of all damaged bearings will be referred to as class

C6. We consider the four accelerometers separately from each other.

For each accelerometer, we look for the best DFs. This step is per-

formed again using the FFS algorithm. Also this time we adopt LDC

and QDC (with the regularization parameter set to 0) to perform both

feature selection and classification of the signals represented through

the selected features.

We use one LDC and one QDC for each accelerometer.

Fixing a maximum number of features equal to 10 so as to keep

the computational complexity at a low level, we repeated the two-class

experiment 10 times for each accelerometer.

Then, for each accelerometer and each classifier, we selected the best

m (m ≤ 10) features that are exactly the same (and in the same order)

for all the trials. We will refer to these feature as stable features (SFs).

Then using the SFs we computed the accuracy over 10 more trials. We

then compared the four accelerometers based on the classification accu-

racy, expressed in the form (mean ± standard deviation) (Table 5.17).

Please note that N.A. stands for “Not Applicable”, which means that,

in the specific case, no SFs have been selected.

From Table 5.17, we can notice that the QDC classifier applied to
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Table 5.17 Classification of C1 and C6

Acc.

LDC QDC

Number Accuracy Number Accuracy

of SFs (Mean±Std.Dev.) of SFs (Mean±Std.Dev.)

1 1 (96.04±0.97)% 1 (98.16±0.42)%

2 1 (85.43±0.68)% 0 N.A.

3 1 (94.77±0.43)% 2 (99.69±0.14)%

4 1 (92.21±0.68)% 2 (96.63±0.25)%

the third accelerometer’s features achieves the best accuracy with a very

small standard deviation. Actually, with just two features we obtain a

good trade-off between accuracy and complexity. Table 5.18 shows the

two stable features for the third accelerometer, listed in the order in

which the FFS algorithm found them.

Table 5.18 Classification of C1 and C6. List of the SFs

QDC, Accelerometer 3

277, 296

With the chosen SFs we obtain a very high accuracy (99.69%) with

a very low standard deviation (0.14%). This means that possible ad-

ditional features, changing during the experiments, bring a negligible

improvement. Thus, considering only two features we succeed in reduc-

ing the complexity to an optimal level from R
1200 to R2 . Fig. 5.8 shows

the separation of the two classes performed by QDC using the stable

features 277 and 296 of the third accelerometer.

In all our experiments we decided, based on heuristic reasoning, to

consider “good” an accuracy of at least 99.00% and a standard devia-

tion close to 0.10%. In particular, such a small range of acceptance for

the standard deviation is justified by the fact that we want not only a

good classifier (high accuracy) but also a stable classifier (low standard

deviation). Taking these two thresholds into account, we can affirm

that, for this classification problem, the choice of the two stable fea-

tures is an optimal choice and thus we will not investigate further this
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Figure 5.8 Separation of C1 (gray dots) and C6 (black crosses)
for the test set performed by QDC using the SFs of the third ac-
celerometer.

classification problem.

5.2.3 Classification of C1, C2, C3, C4, and C5

The goal of this experiment is to classify the signals into five classes

C1, C2, C3, C4, and C5 so as to recognize the different types of dam-

age regardless of their severity levels. Adopting the same criterion as

before, i.e., repeating the experiment 10 times for each accelerometer,

using the LDC and QDC classifiers, we identify, as the most promising

accelerometers for this classification problem, the second and the third

accelerometers (Table 5.19).

For both the second and third accelerometers, the best performance

is obtained using the LDC classifier. Table 5.20 shows the list of the

SFs for both the second and third accelerometers. From Table 5.19, we

can see that for both accelerometers, the fixed accuracy thresholds are

not respected. Thus we try to improve performance making use of the

combination-level approach to building classifier ensembles, i.e., we use

the fusion of classifiers.

Considering the obtained results, we decide to fuse an LDC applied

to the features 296, 295 and 277 of the second accelerometer and an

LDC applied to the features 277, 296 and 96 of the third accelerometer.
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Table 5.19 Classification of C1, C2, C3, C4, and C5

Acc.

LDC QDC

Number Accuracy Number Accuracy

of SFs (Mean±Std.Dev.) of SFs (Mean±Std.Dev.)

1 0 N.A. 0 N.A.

2 3 (98.26±0.27)% 2 (96.66±0.28)%

3 3 (96.87±0.36)% 2 (94.92±0.38)%

4 3 (95.85±0.58)% 3 (96.69±0.37)%

Table 5.20 Classification of C1, C2, C3, C4, and C5. List of
the SFs

LDC, Accelerometer 2 LDC, Accelerometer 3

296, 295, 277 277, 296, 96

To combine the output of each classifier we used three different meth-

ods: maximum (max ), minimum (min) and average (mean), and then

we compared the results. Besides we associate different importance

with each classifier. Actually we consider three types of importance:

the first considers all the classifiers with the same importance, the sec-

ond associates a different importance (weight) to each classifier propor-

tional to the training accuracy before applying the combinational oper-

ators (max, min and mean), the third associates a different importance

(weight) to each classifier proportional to the value log(acci/(1−acci))

(as suggested in [73]), where acci is the accuracy on the training set for

the classifier i, before applying the combiners. The best results are ob-

tained with the third choice. The results over 10 more trials are shown

in Table 5.21.

From Table 5.21 we can see that no combiner respects both the fixed

accuracy thresholds. For this reason we resort to the use of MLPs that

are more complex classifiers compared to the statistical ones.

In this case we decided to combine four classifiers, namely, the LDC

applied to the features 296, 295 and 277 of the second accelerometer, the

LDC applied to the features 277, 296 and 96 of the third accelerometer,

and two more classifiers consisting of two MLPs applied, respectively,
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Table 5.21 Classification of C1, C2, C3, C4, and C5. Classifiers
and SFs used in the classifier fusion and related accuracy

Classifier
Accelerometer, Accuracy

(Features) Mean±Std.Dev.

LDC 2, (296,295,277) (98.26±0.27)%

LDC 3, (277,296,96) (96.87±0.36)%

Combiner (max ) — (98.88±0.16)%

Combiner (min) — (99.47±0.21)%

Combiner (mean) — (99.10±0.16)%

to the features 296, 295 and 277 of the second accelerometer and to the

features 277, 296 and 96 of the third accelerometer. The used MLPs

have one hidden layer and all neurons are characterized by a logarithmic

sigmoid transfer function. We try different numbers of hidden neurons

for each MLP, i.e., 10, 15, 20, 25, 30 and different number of epochs,

i.e., 600, 800, 1000, 1200 and 1400. The best results were obtained by

the use of 20 hidden neurons and 1200 epochs for each MLP. Table 5.22

shows the results obtained over 10 trials using 20 hidden neurons and

1200 epochs for each MLP. Besides we associate a different importance

with each classifier inside the fusion of classifiers. Actually we try again

the three types of importance mentioned above. Also in this case the

best results were obtained using the weights log(acci/(1−acci)). From

Table 5.22 we can notice that both the combiners min and mean respect

the fixed accuracy thresholds, so they can be considered optimal choices

for this classification problem.

5.2.4 Classification of C3.1, C3.2, and C3.3

The goal of this experiment is to classify the signals belonging to class

C3 into three sub-classes C3.1, C3.2, and C3.3. This experiment aims

to distinguish among the different levels of severity of the same type of

damage.

Performing the FFS algorithm with LDC and QDC classifiers ap-

plied to the features of each accelerometer, we identify, over 10 trials,

as the optimum classifier, the LDC applied to the features of the second

accelerometer (Table 5.23). Table 5.24 shows the SFs for this accelerom-
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Table 5.22 Classification of C1, C2, C3, C4, and C5. Classifiers
and SFs used in the classifier fusion and related accuracy

Classifier
Hidden Accelerometer, Accuracy

neurons (Features) Mean±Std.Dev.

LDC — 2, (296,295,277) (98.26±0.27)%

LDC — 3, (277,296,96) (96.87±0.36)%

MLP 20 2, (296,295,277) (98.12±0.30)%

MLP 20 3, (277,296,96) (98.09±0.27)%

Combiner (max ) — — (98.93±0.15)%

Combiner (min) — — (99.42±0.08)%

Combiner (mean) — — (99.32±0.09)%

eter. Fig. 5.9 shows the separation of the three classes performed by

LDC using the SFs.

Table 5.23 Classification of C3.1, C3.2, and C3.3

Acc.

LDC QDC

Number Accuracy Number Accuracy

of SFs (Mean±Std.Dev.) of SFs (Mean±Std.Dev.)

1 1 (92.47±1.17)% 1 (95.50±1.02)%

2 2 (100.00±0.00)% 1 (93.49±0.55)%

3 1 (99.97±0.10)% 0 N.A.

4 2 (98.90±0.16)% 1 (96.08±0.42)%

5.2.5 Classification of C1, C2, C3.1, C3.2, C3.3, C4,

and C5

This experiment aims to classify the signals into seven classes C1, C2,

C3.1, C3.2, C3.3, C4, and C5 in order to recognize both the different

types of fault and the different levels of severity.

The previous three experiments can be considered base experiments

as they classify the data in faultless and damaged ones, in different

types of defects, and in different types of severity levels, respectively.
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Table 5.24 Classification of C3.1, C3.2, and C3.3. List of the
SFs

LDC, Accelerometer 2

296, 173

Figure 5.9 Separation of C3.1 (gray dots), C3.2 (black circles),
and C3.3 (gray crosses) for the test set performed by LDC.

This experiment, instead, can be considered a non-base classification

problem since it tries to classify the signals considering both the types

of defects and the levels of severity. For this reason we can see this

experiment like the fusion of the last three experiments.

We also wish to use this experiment to prove the sensitivity and

the reliability of the proposed method adopted in the last three exper-

iments. In practice, we start using statistical classifiers, then, if the

accuracy thresholds are not respected, first we resort to the combina-

tion of these statistical classifiers, then we adopt fusion of the statistical

classifiers with neural networks.

Let us call optimal configurations the three sets of SFs and classifiers

that were chosen in the last three experiments (base experiments) to

solve the correspondent classification problems. Table 5.25 shows the

optimal configurations found in the last three experiments (which use

300 features for each accelerometer), respectively.
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Table 5.25 Optimal configuration for the base experiments

Base experiments

Optimal configuration

Classifier
Accelerometer

(SFs)

1st (C1, C6) QDC 3 (277, 296)

2nd (C1, C2, C3, C4, C5)
LDC 2 (296, 295, 277)

LDC 3 (277, 296, 96)

3rd (C3.1, C3.2, C3.3) LDC 2 (296, 173)

To prove the sensitivity and the reliability of the proposed method

we decide to use only the configurations chosen in the base experiments

and to fuse them to solve the current classification problem. Actually,

regarding the 5-class classification, we decide to use only one LDC clas-

sifier, instead of two, applied to the union of the features, i.e., 296,

295, 277 and 173 shown in Table 5.25. Thus the classifiers used in this

classification problem are the ones listed in Table 5.26.

Table 5.26 Classification of C1, C2, C3, C4, and C5. Classifiers
and SFs used in the classifier fusion and related accuracy

Classifier
Accelerometer, Accuracy

(Features) Mean±Std.Dev.

QDC 3, (277, 296) (98.10±0.10)%

LDC 2, (296, 295, 277, 173) (98.45±0.08)%

LDC 3, (277,296,96) (98.59±0.13)%

Combiner (max ) — (99.30±0.26)%

Combiner (min) — (99.04±0.16)%

Combiner (mean) — (98.85±0.16)%

Besides, also in this case, we associate a different importance with

each classifier inside the fusion of classifiers. Actually we consider the

three types of importance mentioned above. The best results were ob-

tained again using the weights log(acci/(1−acci)). The results obtained

fusing the classifiers with the three combiners max, min and mean are



Advanced vibration analysis for CBM programs 89

shown in Table 5.26. From Table 5.26 we can see that no combiner

respects both the two fixed accuracy thresholds. For this reason we

resort to the use of MLPs.

In this case we decide to combine six classifiers, that are the three

mentioned above, i.e., QDC applied to the features 277 and 296 of the

third accelerometer, LDC applied to the features 296, 295, 277, and

173 of the second accelerometer, and an LDC applied to the features

277, 296, and 96 of the third accelerometer, and other three classifiers

consisting of three MLPs applied, respectively, to the features 277 and

296 of the third accelerometer, to the features 296, 295, 277, and 173

of the second accelerometer, and to the features 277, 296 and 96 of

the third accelerometer. The used MLPs have one hidden layer and the

neurons are characterized by a logarithmic sigmoid transfer (activation)

function. We try different numbers of hidden neurons for each MLP,

i.e., 10, 15, 20, 25, 30, and different number of epochs, i.e., 600, 800,

1000, 1200 and 1400. The best results are obtained by the use of 20

hidden neurons and 1200 epochs for each MLP. Again, we study the

behavior of the combiners changing the importance associated with

each classifier. Actually we consider the three types of importance

mentioned above and the best results were obtained using the weights

log(acci/(1− acci)).

Table 5.27 shows the results obtained over 10 trials using 20 hidden

neurons and 1200 epochs for each MLP. As we can see, the combiners

max and mean respect the fixed accuracy thresholds.

We wish to remark that, in this classification problem, we have not

performed any feature selection but we have based our classification

only on the information collected with the previous base experiments.

This means that the proposed method can be adopted as a method-

ology to develop an automatic system for bearing fault detection and

recognition.

5.2.6 Conclusions to the second series of experiments

In this second series of experiments we have tested a proposed automatic

method, based on soft computing classification techniques and classifier

fusion, for diagnosing defects of rolling element bearings.

The method has been applied to data, collected by four accelerom-

eters, pertinent to four different defects on rolling bearings with three

different levels of severity. The method has proved to be highly sen-
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Table 5.27 Classification of C1, C2, C3.1, C3.2, C3.3, C4, and
C5. Classifiers and SFs used in the classifier fusion and related
accuracy

Classifier
Hidden Accelerometer, Accuracy

neurons (Features) Mean±Std.Dev.

QDC — 3, (277,296) (98.10±0.10)%

LDC — 2, (296,295,277,173) (98.54±0.08)%

LDC — 3, (277,296,96) (98.59±0.13)%

MLP 20 3, (277,296) (89.39±2.70)%

MLP 20 2, (296,295,277,173) (96.16±2.37)%

MLP 20 3, (277,296,96) (98.34±0.16)%

Comb. (max ) — — (99.27±0.13)%

Comb. (min) — — (98.34±1.80)%

Comb. (mean) — — (99.06±0.12)%

sitive both to different defects and to different degrees of severity for

the considered defects. We achieved an accuracy on the test set greater

than 99% and a standard deviation close to 0.1% in all the experiments

(sometimes reaching even 100% accuracy with zero standard deviation).



Chapter 6

Time evolution analysis of rolling

element bearing faults

The only thing in life

achieved without effort

is failure.

- Anonymous -

The process of detection and diagnosis of faults in a mechanical

equipment deals only with the assessment of the health of the system

at the current time, thus it does not provide any information regarding

the remaining useful life of the equipment [123, 141].

The ability to accurately predict the remaining useful life of a ma-

chine system represents a crucial issue in the maintenance process of

a system which can even improve the productivity and increase the

system safety [66, 141].

An effective prognostics program gives to the maintenance engineers

more time to schedule a maintenance activity to repair and to acquire

replacement components before the system further decreases its “health”

state [66, 141].

Nowdays, even though the expert diagnostic engineers have signifi-

cant information and experience about machine failure and health states

by continuously monitoring and analyzing the machine condition, in the

literature, little attention has been paid to the study of the evolution

of a defect, that is how a defect evolves over time if a fault component
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(such as a bearing) is not repaired or substituted by a faultless one

[66, 123, 141].

Actually, in this chapter we describe the performed experiments

whose aim is to find out how the vibration signals coming from a faulty

bearing evolve when the faulty bearing is not substituted immediately.

This means, e.g., to study if the severity level of the bearing increases

and, possibly, after how much time. Besides, we wish to analyze if,

after a certain amount of time in which a damaged bearing continues

to work, we can consider it equivalent to a bearing with the same defect

but with a higher level of severity [141].

In particular in this chapter we present the performed experiments

aimed at achieving the following objectives: given a mechanical object

containing rolling bearings,

• to distinguish between faultless and damaged bearings,

• to recognize the severity level of the defect,

• to analyze the evolution of a particular defect comparing it with

same defects with higher severity levels,

• to continue to recognize a defect as time passes.

To this aim, we have dealt with the problem as a classification prob-

lem, adopting the statistical classifier QDC, MLPs and RBFs. In par-

ticular, we use QDC to perform both feature selection and signal clas-

sification, whereas MLP and RBF neural networks only perform classi-

fication of the signals represented by means of the features selected by

QDC.

To this aim we consider the data subdivided into faultless class C1

and damaged class (call it C6). The data at our disposal consists of 2890

signals for the faultless class C1 and 10100 signals for the damaged class

C6. The distribution of the signals for class C1 and C6 is represented

in Table 6.1. The damaged class C6 is composed by the three classes

C3.1, C3.2, and C3.3.

Table 6.1 Distribution of the signals for classes C1 and C6

Class Number of signals (sec)

C1 2890

C6 10100
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In this series of experiments, as stated in Chap. 4, we consider the

class C3.1 as composed by the signals collected for four subsequent

days during which no changes were made to the system. Each day

of collection refers to a specific class, i.e., C3.1.1, C3.1.2, C3.1.3, and

C3.1.4.

Table 6.2 shows the distribution of the signals for the classes C3.1,

C3.2, and C3.3, while Table 6.3 represents the distribution of the signals

for class C3.1 along the four days of data collection.

For the sake of clarity we will also call C7 the class composed by

the following classes: C3.1.1, C3.2, and C3.2.

Table 6.2 Distribution of the signals for classes C3.1, C3.2, and
C3.3

Class Number of signals (sec)

C3.1 7080

C3.2 1250

C3.3 1770

Table 6.3 Distribution of the signals for classes C3.1.1, C3.1.2,
C3.1.3, and C3.1.4

Class Number of signals (sec)

C3.1.1 1770

C3.1.2 1770

C3.1.3 1770

C3.1.4 1770

6.1 Methodology

We work in the frequency domain by transforming the signals by the

Fast Fourier Transform (FFT). Unlike the classical approach, which

identifies specific characteristic frequencies associated with given de-

fects, we tried to automatically find out the frequencies able to discrim-

inate among the different classes taken into consideration. We would

like to stress that we also tried the feature extraction algorithm Prin-
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cipal Component Analysis (PCA) which, however, was not able to give

results as accurate as the Forward Feature Selection (FFS).

We considered the frequency interval [1,300] Hz, sampled every 1 Hz,

since this was proved to be more useful then the interval [1,250] Hz.

Since from the previous experiments we noticed that the second and

third accelerometers were the one which provide better results we de-

cide to focus our attention only on these accelerometer. For the sake

of clarity, these accelerometers will be referred as the first and the sec-

ond accelerometer in this chapter. Thus since we consider only two

accelerometers, up to 300 × 2 = 600 features, obtained by concatenat-

ing the two groups of 300 features related to the two accelerometers,

can be used to represent each signal (Fig. 6.1). In other words, each

signal can be represented in R
n with n ≤ 600.

Figure 6.1 Organization of the features considering the two ac-
celerometers.

Again, for each experiment we balance the data using a random

technique so that each class involved in the experiments contains the

same number of samples as the least numerous one.

Finally, the training and test sets have been built using the H-

method by randomly choosing 70% of the total data as training set

and the remaining 30% as test set. We chose this algorithm since it

is very fast, very simple, it has empirically been shown to be one of

the most effective resampling methods, and we can decide exactly how

many elements should be removed [72, 141, 142].

In the following we will also indicate the required time for each

experiment with reference to a computer machine Pentium Dual-Core

2.50 GHz, with 4 GB of RAM, for a 32 bit Matlab environment.

First of all we need to choose how to represent the signals. To

this aim, we take two different requirements into account: the memory

necessary for signal representation (number of features) and the time

needed to perform the classification. Both requirements should be kept
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as low as possible.

As our signals are represented with 600 features (300 related to

the first accelerometer and 300 related to the second accelerometer) we

need to decrease the space dimension in order to reduce the complexity

of the classification problem. In fact, any feature set may include not

only useful features but also irrelevant or redundant features. Besides

the use of all the features of a feature set can make the classification

process slower and the classification accuracy lower. Thus to simultane-

ously improve the classification accuracy and reduce the computational

burden of the classifier, few features that are able to characterize the

bearing status need to be selected from the original feature set. For

this reason, the first step to perform is a feature selection. To this aim

we choose to use the FFS algorithm. Thus, with the FFS, we look for

the best discriminating frequencies DFs, i.e., the features that are able

to provide the best accuracy when used to represent the signals to be

classified.

As regards the classifier choice, we adopt QDC to perform both

feature selection and classification of the signals represented through

the selected features.

6.2 Experiments and Results

6.2.1 Classification of C1 and C7

This experiment aims to classify the signals into two classes: faultless

bearings (C1) and damaged bearings (C6), in order to check whether

we are able to identify a defect, whatever its severity is, as soon as it

appears. We therefore decide to consider just C7 (i.e., the union of

C3.1.1, C3.2 and C3.3) and not the whole class C3, which includes also

the samples collected in the days beyond the first. Table 6.4 shows the

classes involved in the experiment. Please note that the acronyms TR

and TS identify the classes used in the training process and in the test

process respectively.

Performing the FFS with the QDC classifier, we obtain the DFs

in the order in which FFS selected them and the classification accu-

racy shown in Table 6.5. The accuracy represents the average over 30

trials using the selected DFs. From Table 6.5, we can notice that we

found the optimum classifier for this classification problem, reducing

the complexity of the problem to an optimal level from R
600 to R

2.
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Table 6.4 Classification of C1 and C7. Training and test sets

C1

C6

C3.1
C3.2 C3.3

C3.1.1 C3.1.2 C3.1.3 C3.1.4

TR-TS TR-TS TR-TS TR-TS

Table 6.5 Classification of C1 and C7. Accuracy and DFs

DFs Accuracy (Mean±Std.Dev)

577, 265 (100.00±0.00)%

The separation of the two classes C1 and C7 performed by QDC is

shown in Fig. 6.2, while Table 6.6 shows the time (msec) required to

perform the feature selection (to select 2 features), to train and test the

QDC classifier.

Figure 6.2 Separation of C1 (red dots) and C7 (blue dots) for
the test set performed by QDC and the two DFs.

6.2.2 Classification of C1 and C6

The goal of the second experiment is to classify the signals into two

classes C1 and C6 so as to recognize faultless and damaged bearings.
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Table 6.6 Classification of C1 and C7. Mean computational time

Feature Selection Training Testing

Computational time 39.46 msec 12.22 msec 16.72 msec

Unlike the previous experiment, in this case we take into account all the

samples of C3.1 pertinent to the first, second, third and fourth days of

collection. Thus we are interested in checking if we can identify a defect

not only on its appearance but also later. In practice, we aim to detect

how the evolution of a defect over time can affect the corresponding

vibration signals. The classes involved in the experiment are shown in

Table 6.7.

Table 6.7 Classification of C1 and C6. Training and test sets

C1

C6

C3.1
C3.2 C3.3

C3.1.1 C3.1.2 C3.1.3 C3.1.4

TR-TS TR-TS TR-TS TR-TS TR-TS TR-TS TR-TS

Table 6.8 shows the DFs in the order in which FFS selected them and

the classification accuracy obtained repeating 30 times the experiment

using only these DFs.

Table 6.8 Classification of C1 and C6. Accuracy and DFs

DFs Accuracy (Mean±Std.Dev)

577, 296, 188 (99.94±0.04)%

From Table 6.8, we can notice that we obtained a very high accuracy,

99.94%, with a very small standard deviation, 0.04%. Thus, with only

three DFs, we can reduce the complexity to an optimal level from R
600 to

R
3. Table 6.9 shows the confusion matrix resulting from the average of

all the confusion matrix over the 30 trials for this classification problem

while Table 6.10 specifies the computational time required to perform

the feature selection, and the time to train and test the QDC classifier.
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Table 6.9 Classification of C1 and C6. Confusion matrix for the
test set using the three DFs and the QDC classifier

Estimated Labels
Total

C1 C7

True C1 867 0 867

labels C6 2 865 867

Total 869 865 1734

Table 6.10 Classification of C1 and C6. Mean computational
time

Feature Selection Training Testing

Computational time 59.59 msec 12.77 msec 17.03 msec

6.2.3 Classification of C3.1.2, C3.1.3, and C3.1.4

From a practical point of view, with reference to a specific defect, it

would be important to be able to train the classifier with the samples

collected during the first day of defect occurrence and successfully rec-

ognize the samples representing the same defect over the following days.

This means that we train the classifier on two classes, namely C1 and

C7, and then we test it on C3.1.2, C3.1.3, and C3.1.4. We wish to

verify if our classifier is able to recognize these classes as belonging to

the damaged class without using these data during the training process.

Table 6.11 shows the classes involved in the experiment.

Table 6.11 Classification of C3.1.2, C3.1.3, and C3.1.4. Train-
ing and test sets

C1

C6

C3.1
C3.2 C3.3

C3.1.1 C3.1.2 C3.1.3 C3.1.4

TR-TS TR-TS TS TS TS TR-TS TR-TS

Considering the DFs selected in the first experiment, i.e., 577 and

265, we achieve the accuracy and the average confusion matrix obtained
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over the 30 trials shown in Table 6.12. In particular, Fig. 6.3 shows the

separation of the two classes C1 and C6 performed by QDC.

Table 6.12 Classification of C3.1.2, C3.1.3, and C3.1.4. Con-
fusion matrix for the test set using the three DFs and the QDC
classifier

Estimated Labels
Total Accuracy

Faultless Damaged

True C3.1.2 0 1770 1770 100.00%

labels C3.1.3 0 1770 1770 100.00%

C3.1.4 227 1543 1770 87.17%

Total 227 5083 5310 95.72%

Figure 6.3 Separation of C1 and C6. C1 (red dots), C3.1.1,
C3.2, C3.3 (blue dots), C3.1.2 (green dots), C3.1.3 (cyan dots),
C3.1.4 (black dots) for the test set performed by QDC and the two
DFs.

From Table 6.12 we can notice that the total accuracy, equal to

95.72%, is not satisfying. In particular, while classes C3.1.2 and C3.1.3

are perfectly classified as damaged, class C3.1.4 is not properly classi-

fied; indeed the 12.83% of the elements of class C3.1.4 is misclassified

as belonging to the faultless class. It seems that as time passes the
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(a) (b)

Figure 6.4 (a) Separation of faultless and damaged for the test
set performed by QDC and MLPs using two DFs. Classes: C1
(red dots), C3.1.1, C3.2, C3.3 (blue dots), C3.1.2 (green dots),
C3.1.3 (cyan dots), C3.1.4 (black dots). Discriminant functions:
QDC (red), MLP with 15 h.n. (green), MLP with 25 h.n. (blue),
MLP with 35 h.n. (yellow), MLP with 45 h.n. (cyan), MLP with
60 h.n. (black). (b) zoom of (a).

defect becomes less easily detectable. This problem may derive from

the fact that we have reduced the set of features too much. Actually

class C3.1.4 may differ from class C1 for other features, which we have

not selected as DFs. This agrees with the fact that in the first and

second experiments we found different DFs, (577, 265) and (577, 296,

188), respectively.

Thus, we try to use more complex but also more powerful classifiers

such as MLP and RBF neural networks. We use MLPs with one hid-

den layer and neurons characterized by a logarithmic sigmoidal transfer

function. We try different numbers of hidden neurons, i.e., 10, 15, 20,

25, 30, 35, 40, 45, 50, 55, and 60. Fig. 6.4 shows the separation into

faultless and damaged samples performed by QDC and some MLPs. In

all the following figures, h.n. stands for hidden neurons.

We use RBFs with one hidden layer and neurons characterized by a

Gaussian transfer function. We try different numbers of hidden neurons

(10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) with a spread value of 1.

The separation into faultless and damaged samples performed by

QDC and some RBFs is shown in Fig. 6.5.

We can notice that neither MLPs nor RBFs achieve higher accuracy
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(a) (b)

Figure 6.5 (a) Separation of faultless and damaged for the test
set performed by QDC and RBNs using two DFs. Classes: C1
(red dots), C3.1.1, C3.2, C3.3 (blue dots), C3.1.2 (green dots),
C3.1.3 (cyan dots), C3.1.4 (black dots). Discriminant functions:
QDC (red), RBN with 15 h.n. (yellow), RBN with 25 h.n. (blue),
RBN with 35 h.n. (green), RBN with 45 h.n. (cyan), RBN with
60 h.n. (black). (b) zoom of (a).

than that of the QDC classifier. However from Figs. 6.4 and 6.5 we can

observe that, even though QDC gives the best performance, sometimes

the neural networks are able to classify correctly some elements that

QDC misclassifies. More precisely, all these types of classifiers do not

make the same errors. This is a key feature that allows us to combine

these classifiers in order to increase the whole performance [73].

The best average performances among the used MLPs and RBFs

are obtained by the MLPs, in particular by the MLPs with 15, 25,

35 and 45 hidden neurons, respectively. Thus we decide to combine

the QDC classifier with these four MLPs adopting the unanimity vote:

one signal is considered as belonging to class C1 only when all these

classifiers classify it as belonging to class C1. So doing, we reduce the

space associated with the faultless bearings.

In this way we succeed in significantly increasing the accuracy while

drastically decreasing the number of misclassifications of the elements

of class C6. Table 6.13 shows the average over 30 trials of the confusion

matrix considering the combination of the five classifiers.
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Table 6.13 Classification of C3.1.2, C3.1.3, and C3.1.4. Con-
fusion matrix for the test set using the two DFs and combine the
QDC classifier with four MLPs

Estimated Labels
Total Accuracy

Faultless Damaged

C1 1770 0 1770 100.00%

True C3.1.1 0 1770 1770 100.00%

labels C3.1.2 1 1769 1770 99.94%

C3.1.3 0 1770 1770 100.00%

C3.1.4 141 1629 1770 92.03%

Total 1912 6938 8850 98.39%

6.2.4 Time evolution of a defect

The aim of this experiment is to analyze how a damaged bearing evolves

over time. In this case we make a three-class classification, training a

QDC classifier with classes C3.1.1, C3.2, and C3.3, and then testing it

on classes C3.1.2, C3.1.3, and C3.1.4. In this way we wish to verify how

the signals belonging to the light indentation on the roll (C3.1) evolve

as time passes. Table 6.14 shows the classes involved in the experiment.

Table 6.14 Time evolution analysis. Training and test sets

C1

C6

C3.1
C3.2 C3.3

C3.1.1 C3.1.2 C3.1.3 C3.1.4

TR TS TS TS TR TR

Using the FFS we select the DFs listed in Table 6.15. Repeating the

experiment 30 times we obtain 100.00% accuracy with 0.00% standard

deviation as shown in Table 6.15 when classifying classes C3.1.1, C3.2

and C3.3.

The separation of the three classes (C3.1.1, C3.2 and C3.3) per-

formed by the QDC using the two DFs (578, 350) is shown in Fig. 6.6.

Considering the DFs 578, 350, we have now to see how the classes

C3.1.2, C3.1.3 and C3.1.4 are classified. The obtained results over 30
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Table 6.15 Classification of C3.1.1, C3.2, C3.3. QDC classifier.
Accuracy and DFs

DFs Accuracy (Mean±Std.Dev)

578, 350 (100.00±0.00)%

Figure 6.6 Separation of C3.1.1 (red dots), C3.2 (blue dots) and
C3.3 (green dots) for the test set performed by QDC and the two
DFs.

trials are given in Table 6.16, while Fig. 6.7 shows the separation of the

three classes performed by QDC with the two DFs.

This experiment suggests that for the selected DFs some elements

of C3.1.2 are misclassified with samples of class C3.2, while all the

elements of classes C3.1.3 and C3.1.4 are misclassified with samples of

class C3.2. This means that after one day the severity of the defect has

already increased considerably.

This result is very important to define which is the time limit (dead-

line) within which it is necessary to substitute the faulty bearing. In

this case the deadline is actually one day as, after one day, the vibra-

tions coming from the faulty bearing (C3.1) become similar to those

with higher severity (C3.2).
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(a)

(b) (c)

Figure 6.7 (a) Separation of C3.1.1 (red dots), C3.1.2 (yellow
dots), C3.1.3 (cyan dots), C3.1.4 (black dots), C3.2 (blue dots)
and C3.3 (green dots). Training set consisting on C3.1.1, C3.2,
C3.3. (b) and (c) zoom of (a).
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Table 6.16 Classification of C3.1.2, C3.1.3, C3.1.4. Confusion
matrix for the test set using the two DFs and the QDC classifier

Estimated Labels
Total

C3.1.1 C3.2 C3.3

True C3.1.2 1628 138 4 1770

labels C3.1.3 0 1770 0 1770

C3.1.4 1 1769 0 1770

Total 1629 3677 4 5310

6.3 Conclusions to the prognosis issue

In this chapter we have proposed the use of classification techniques and

classifier fusion to automatically detect both the presence of a defect on

a rolling element bearing and its severity level. We used experimental

data consisting of vibration signals represented in the frequency domain

by means of the FFT, registered by two accelerometers. We took into

account one defect with three types of severity.

As the data related to the lowest severity level were collected in four

subsequent days, we have also performed an analysis aimed to identify

how the vibration signals of a damaged bearing evolve over time. We

observed that, as time passes the signals representing the least severe

damage get more similar to those related to the same defect but with

a higher severity level. This analysis can be profitably used to define

prognostic program to detect as soon as possible any incipient defects,

as well as to determine the time within which the maintenance, i.e.,

the substitution of the faulty bearing, should be performed before the

defect gets too serious.





Chapter 7

Noise Analysis

A person who never made a mistake

never tried anything new.

- A. Einstein -

As stated in Chap. 2, many methodologies proposed in the literature

are not tested on noisy data, so that several diagnostic techniques can

perform well in a noise-free environment but very poorly in the presence

of noise like in a real environment.

For this reason, we would like to analyze how our methodologies will

perform in presence of noise, and how to improve, as much as possible,

this performance.

7.1 Noise signal creation

There are two main ways to obtain signals affected by noise. The first

one is to affect the machine containing the bearing with noise, then to

collect the signals at all the required levels of noise, the second one is

to collect the signals in a free-noise environment and then to add an

artificial noise.

However, the first one requires that the machine is let working in

a noisy environment (which is not necessary) which can affect the op-

erating condition of the machine itself, while in the second way no

additional collection of signals is required and thus the machine is not

subjected to not necessary noise. Besides, in this way every time a new

level of noise is required it is just required to artificially create a new
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noise signal without requiring to use again the machine to collect new

data, which can require to stop the machine which can be a problem in

normal working environment where the production should be stopped

as few times as possible. For these reasons we decide to artificially add

a noisy signal to the free-noise signals we have already collected.

The used artificial noise signal is a white Gaussian noise (stochastic

process with zero mean and unity variance), which is multiplied by an

increasing positive coefficient, called noise level, to increase its power.

To create a data set affected by noise we add, in the time domain,

the Gaussian noise signals to the signals not affected by noise. Then

we compute the signal-to-noise ratio (SNR) as the ratio between the

average power of the signals of all classes and the noise power. More

formally, the power of the i-th signal si is computed as in eq. 7.1:

Psi =
1

Nsam

Nsam
∑

j=1

s2ij (7.1)

where Nsam represents the total number of samples for each signal, and

sij is the j-th temporal sample of the signal si. The average power of

the signals of all classes is described by eq. 7.2:

P si =
1

Nsig

Nsig
∑

i=1

Psi (7.2)

where Nsig is the total amount of signals in all the classes.

The process of noise is repeated for each sample of the signals, each

time generating a new process of random noise nk, k = 1, ..., Nsam.

We create ten data sets each of which obtained by adding a differ-

ent increasing level of noise to the data set of noise-free signals. To

achieve this we multiply each stochastic noise by an increasing positive

integer NL. In the experiments, we use ten noise levels NLh, with

h = 1, . . . , 10:

NLh = {5, 10, 15, 20, 25, 30, 40, 60, 80, 100}

The k-th extracted Gaussian noise gives origin to ten different noise
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signals as expressed in eq. 7.3:

nkh = NLh · nk h = 1, . . . , 10, (7.3)

consequently, the power of the generic noise signal nk becomes as de-

scribed in eq. 7.4:

Ph =
1

Nsam

Nsam
∑

k=1

n2
kn. (7.4)

Therefore, for each noise level NLh, we compute the SNR as ex-

pressed in eq. 7.5:

SNRh = 10 log10
P s

Ph
. (7.5)

7.2 First assessment of the robustness to the

noise

7.2.1 Introduction to the experiments for the first as-

sessment of the robustness to noise

In this subsection we present a method, based on classification tech-

niques, for the automatic detection and diagnosis of defects of rolling

element bearings. We use the data set described in Chap. 4. We also

assess the degree of robustness of our method to noise by analyzing how

the classification performance varies at the variation of the signal-to-

noise ratio.

This series of experiments aims to achieve the following objectives:

given a mechanical object containing rolling bearings,

• to detect the presence of a defect,

• to recognize the specific kind of defect,

• to recognize different severity levels of the same fault as belonging

to the same class,

• to provide the diagnostic system with high robustness to noise,

or, better, to different levels of noise.
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In this first noise assessment we do not make any change to the

proposed methodology or to the classification technique to improve the

robustness to noise, since this first analysis aims to find the basic robust-

ness to noise of our algorithms. Successively, we will analyze how and

how much we can improve this robustness making appropriate changes.

7.2.2 Methodology

The proposed methodology includes four main steps:

• data preparation,

• feature selection,

• training,

• test.

The data preparation step consists in processing the data and prepar-

ing them to be given in input to the feature selection algorithm. Since

we decided to work in the frequency domain, we transform the time

vibration signals by means of the Fast Fourier Transform (FFT). As

already stated, unlike the classical approach, which identifies specific

characteristic frequencies associated with given defects, we try to au-

tomatically find out the frequencies able to discriminate among the

different defects taken into consideration.

From an operation point of view, we first balance the data using the

random undersampling technique in order to have classes with the same

number of samples. We chose this algorithm since it is very fast, very

simple, it has empirically been shown to be one of the most effective

resampling methods, and we can decide exactly how many elements

should be removed [72, 141, 142].

Based on heuristic considerations, for each of the four accelerom-

eters, we consider the frequency interval [1,300] Hz, sampled every

1Hz. Within this interval, we take into account six frequency ranges:

[1,50] Hz, [51,100] Hz, [101,150] Hz, [151,200] Hz, [201,250] Hz, and

[251,300] Hz. As there are four accelerometers, up to 300 × 4 = 1200

frequency samples (obtained by concatenating the four groups of 300

frequency samples relative to the four accelerometers) could be used to

represent each signal (Fig. 7.1). In other words, each signal could be

represented in R
n with n ≤ 1200. Hereafter, each frequency sample will

be referred to as feature.
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Figure 7.1 Organization of the features considering the four ac-
celerometers.

On the other hand, we also desire to rank the accelerometers ac-

cording to their contribution to classification accuracy so as to identify

the most significant accelerometer(s). We therefore consider the four

accelerometers separately from each other.

As second step we perform a feature selection process in order to

decrease the feature space dimension and to reduce the training and

test time as well as to identify the most significant and useful features

(discriminant frequencies, i.e., the frequencies that are able to provide

the best accuracy when used to represent the signals to be classified.).

This step is performed by means of the Forward Feature Selection (FFS)

algorithm. We continue to use this algorithm since it has proved to be

a very strong and valuable method in this bearing fault classification

problem. We adopt LDC and QDC (with the regularization parame-

ter fix to 0) to perform both feature selection and classification of the

signals represented through the selected features.

We use 4 LDCs and 4 QDCs: each LDC/QDC works on the fre-

quency range [1,300] Hz of a particular accelerometer.

The feature selection and the training and test processes are per-

formed through the following steps:

1 First, fixed a maximum number of features equal to 10 (based

on heuristic considerations) so as to keep the computational com-

plexity at a low level, we perform the FFS to extract the dis-

criminant frequencies. To this aim, in order to guarantee more

stable and reliable results [73], for each accelerometer, we repeat

the FFS for a reasonable number t of times using both the LDC

and QDC classifiers. In each trial we apply the Hold-out method

[73] to generate different training and test sets (70% and 30%,
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respectively, of the total data for training and test sets). In our

case we set t equal to 30; this number is suggested by [73] to be

a typical value used in simulation.

2 We identify the stable features (SFs), i.e., the features that are the

same and selected in the same order, in all the trials, by the FFS.

Indeed, the features selected by the FFS may vary from one trial

to another. In order to guarantee a higher level of generalization,

we are, therefore, interested in identifying the features that are

significant for all the training sets.

3 Once identified the SFs, we use them to compute the classifica-

tion accuracy expressed in the form (mean±standard deviation)

for each accelerometer over the 30 different test sets previously

generated. We then compare the four accelerometers and identify

the best one(s).

4 Based on design specifications, we consider good, and thus ac-

ceptable, an accuracy higher than a threshold θ (θ = 99.00% in

our case). If at least one accelerometer meets this requirement,

we consider the best of them. Otherwise, we try to improve the

performance making use of the feature-level approach to building

classifier ensembles going to step 5.

5 Let us use the term configuration to refer to the following three

elements: a classifier (either LDC or QDC), an accelerometer,

and the related SFs. Considering the two best configurations, we

identify the stable ranges, i.e., the frequency ranges containing

the selected SFs. There are six possible stable ranges, namely,

[1,50] Hz, [51,100] Hz, [101,150] Hz, [151,200] Hz, [201,250] Hz,

and [251,300] Hz. Once identified the stable ranges, we consider

the union of these stable ranges and, on them, we perform again

the FFS using both the LDC and QDC classifiers. We repeat the

feature selection 30 times (on 30 different training sets, as be-

fore), and again we collect the new SFs. Using them we evaluate

the classification accuracy on the 30 new different test sets. If at

least one configuration provides an accuracy higher than θ, then

we consider the best of them. Otherwise, we try to improve the

performance making use of the classifier-level approach to build-

ing classifier ensembles considering more complex classifiers such

as neural networks. Finally, if no classifier achieves the required
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accuracy, we resort to the combination-level approach to build

classifier ensembles.

7.2.3 First series of experiments

The aim of this series of experiments is to classify the signals into two

classes C1 and C7, where C7 identifies the set of classes C2, C3.1, C4,

and C5. With this experiment we aim to detect a faulty bearing as

soon as the damage occurs, that is why we used in the training process

only the lowest severity (C3.1) of the indentation on the roll (C3) and

not the higher levels of severity C3.2 and C3.3.

Performing the steps of the classification methodology described

in the previous section, we evaluate the accuracy (Table 7.1) for each

classifier after identifying the SFs. Please note that in Table 7.1, like

in all the following ones, the standard deviation will be referred to as

“Std.Dev”.

Table 7.1 Classification of C1, C7. Accuracy and number of SFs
for the four accelerometers

Acc.

LDC QDC

Num. Accuracy Num. Accuracy

of SFs (Mean±Std.Dev.) of SFs (Mean±Std.Dev.)

1 2 (89.44±0.08)% 2 (90.14±0.08)%

2 2 (98.29±0.21)% 2 (98.32±0.25)%

3 1 (97.32±0.04)% 2 (99.65±0.08)%

4 2 (95.42±1.27)% 2 (97.11±0.16)%

From Table 7.1 we find out that only the third accelerometer with

two SFs extracted by the QDC classifier (bold text in Table 7.1) achieves

an accuracy (99.65%) higher than the threshold θ (θ = 99.00%), thus

we consider the configuration consisting of the QDC classifier applied

to the SFs of the third accelerometer shown in Table 7.2 as the opti-

mal configuration. With this configuration we also achieve a very low

standard deviation (0.08%). This means that the use of an additional

feature would bring to a negligible improvement. Thus, considering

only two features we reduce the complexity to an optimal level from

R
1200 to R

2. Fig. 7.2 shows the separation of the two classes performed
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by QDC using the SFs 277 and 296 of the third accelerometer, while

Table 7.3 shows a typical confusion matrix for this problem.

Table 7.2 Classification of C1, C7. List of the SFs for the best
configuration

QDC, Accelerometer 3

277, 296

Figure 7.2 Separation of C1 (dots) and C7 (crosses) for the test
set performed by QDC using the SFs of the third accelerometer.

Although this experiment was primarily aimed at detecting a fault

as soon as it appears, we would also be interested in recognizing higher

levels of severity. In other words, we want to classify signals of classes

C3.2 and C3.3 as belonging to the damaged class as well. On the other

hand the choice not to include C3.2 and C3.3 in the training test is

motivated by the fact that we cannot expect to have always all the

different types of severity of a particular defect at our disposal to train

a classifier. Thus we want to check whether the classifier, trained using

only the basic defects (i.e., the defects at their lowest level of severity),

can correctly recognize also the derived defects (i.e., the defects at higher

levels of severity). As already stated, this is crucial to make our method

a practical tool in real applications.

Using the optimal configuration previously found we test our clas-
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Table 7.3 Classification of C1 and C7. Confusion matrix for the
test set

Estimated Labels
Total

C1 C7

True C1 863 4 867

labels C7 1 866 867

Total 864 870 1734

sifier on a test set composed not only by C1, C2, C3.1, C4, and C5

but also by C3.2 and C3.3. Over 30 trials, we obtain an average ac-

curacy of (99.69 ± 0.14)%. Fig. 7.3 shows the separation of the two

classes C1 and C6 (we remind that C6 is the set including C2, C3, C4,

and C5) performed by QDC using the SFs 277 and 296 of the third

accelerometer, while Table 7.4 shows a typical confusion matrix for this

problem. Thus our classifier trained with the basic defects is able to

recognize also the derived defects with a very high accuracy and a very

low standard deviation.

Figure 7.3 Separation of C1 (dots) and C6 (crosses) for the test
set performed by QDC using the SFs of the third accelerometer.
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Table 7.4 Classification of C1 and C6. Confusion matrix for the
test set

Estimated Labels
Total

C1 C6

True C1 866 1 865

labels C6 4 863 867

Total 870 864 1734

7.2.4 Second series of experiments

The aim of this series of experiments is to classify the signals into five

classes C1, C2, C3.1, C4, and C5, i.e., to recognize the different types

of faults, but considering only the lowest level (C3.1) of fault severity

for class C3. From Table 7.5, considering the accuracies, we identify, as

the most promising accelerometers, the second and the third using the

LDC classifier.

Table 7.5 Classification of C1, C2, C3.1, C4, and C5. Accuracy
and number of SFs for the four accelerometers

Acc.

LDC QDC

Num. Accuracy Num. Accuracy

of SFs (Mean±Std.Dev.) of SFs (Mean±Std.Dev.)

1 1 (62.85±0.51)% 2 (62.26±0.49)%

2 3 (98.13±0.22)% 2 (96.54±0.12)%

3 3 (96.88±0.22)% 2 (94.70±0.61)%

4 3 (95.70±0.41)% 2 (96.55±0.16)%

Since no configuration reaches an accuracy higher than θ (θ =

99.00%), thus not meeting the criteria described in the methodology

section, we try to improve the performance making use of the feature-

level approach to building classifier ensembles. To this aim, we consider

the SFs for the two best accelerometers (bold text in Table 7.5), the

second and third in our case, using the LDC classifier (Table 7.6).

Then we identify the stable ranges, i.e., the frequency ranges con-

taining the stable features above. In this case, we obtain the range
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Table 7.6 Classification of C1, C2, C3.1, C4, and C5. List of
the SFs for the two best configurations

LDC, Accelerometer 2 LDC, Accelerometer 3

296, 295, 277 277, 296, 96

[251,300] Hz for the second accelerometer, and the ranges [251,300] Hz

and [51,100] Hz for the third accelerometer. Finally, we consider the

union of these three ranges and perform the FFS on them with LDC

and QDC. We repeat the feature selection 30 times and again we collect

the SFs and the accuracy (Table 7.7).

Table 7.7 Classification of C1, C2, C3.1, C4, and C5. Accuracy
and number of SFs

Acc. LDC QDC

(Freq. Num. Accuracy Num. Accuracy

range) SFs (Mean±Std.Dev.) SFs (Mean±Std.Dev.)

2

4 (99.46±0.07)% 4 (99.82±0.06)%
[251, 300]

3

[251, 300]

Table 7.8 shows the SFs for the optimal configuration with an accu-

racy of (99.82±0.06)% obtained by the QDC classifier. Please note that

in Table 7.8 the features ranges [1,50], [51,100], [101,150] correspond,

respectively, to the range [251,300] Hz of the second accelerometer, and

the ranges [51,100] Hz and [251,300] Hz of the third accelerometer.

Thus the SFs 127 and 146 correspond, respectively, to the features 277

and 296 of the third accelerometer while the SFs 46 and 45 correspond,

respectively, to the features 296 and 295 of the second accelerometer.

From Table 7.7 we can see that the accuracy obtained by the QDC

classifier (the best of the two) meets our design specifications. Ta-

ble 7.9 shows a typical confusion matrix using the QDC classifier and

the selected SFs. In this experiment, we managed to reduce the space

dimension and thus the complexity to an acceptable level (signals are
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Table 7.8 Classification of C1, C2, C3.1, C4, and C5. List of
the SFs for the best configuration

QDC, Accelerometer 2, 3

127, 146, 46, 45

represented only in R
4), drastically decreasing the memory and time

required for training and classification.

Table 7.9 Classification of C1, C2, C3.1, C4, and C5. Confusion
matrix

Estimated Labels
Total

C1 C2 C3.1 C4 C5

C1 456 0 0 0 0 456

True
C2 0 455 0 1 0 456

Labels
C3.1 0 0 456 0 0 456

C4 0 1 0 455 0 456

C5 0 0 0 0 456 456

Total 456 456 456 456 456 2280

In this experiment, like in the previous one, we worked using only

the lowest level of fault severity, i.e., C3.1. Again, as we are inter-

ested not only in identifying the defect as soon as possible, but also in

recognizing higher levels of severity, we decide to check if our classifica-

tion system is able to classify signals of classes C3.2 and C3.3 (derived

defects) as belonging to the same class C3.1 (basic defect), as they

represent the same category of defect, namely, indentation on the roll.

Using the previously found configuration (Table 7.8), we test our

classifier on a test set composed not only by C1, C2, C3.1, C4, and C5

but also by C3.2 and C3.3. Over 30 trials, we obtained an accuracy of

(99.80±0.02)%. A typical confusion matrix for this problem is shown

in Table 7.10. From Table 7.10 we can notice that all the elements of

class C3 were correctly classified.
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Table 7.10 Classification of C1, C2, C3, C4, and C5. Confusion
matrix

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 456 0 0 0 0 456

True
C2 0 455 0 1 0 456

Labels
C3 0 0 456 0 0 456

C4 0 1 0 455 0 456

C5 0 0 0 0 456 456

Total 456 456 456 456 456 2280

7.2.5 Third series of experiments

This series of experiments aims to assess the robustness of the pro-

posed method to noise. To this aim, we repeat the previous experiment

(training on C1, C2, C3.1, C4 and C5, and test on C1, C2, {C3.1, C3.2,

C3.3}, C4 and C5) using the optimal configuration previously found

(Table 7.8). We train the QDC classifier with a training set consisting

of signals not affected by noise, then we test it on signals affected by

different levels of noise. In particular we use ten levels of noise charac-

terized by NLh = {5, 10, 15, 20, 25, 30, 40, 60, 80, 100} as stated in the

Methodology section.

Table 7.11 shows the appreciable level of robustness to noise of our

classification system over 100 trials. We obtained very good results up

to SNR=16.52 db (accuracy higher than 90.00%, red text in Table 7.11)

and acceptable results (accuracy between 80.00% and 90.00%, blue text

in Table 7.11) up to SNR=9.59 db.

In order to increase the robustness to noise, we adopted MLP and

RBF neural networks, and compared them with the QDC classifier.

We use MLPs with one hidden layer and all neurons characterized by

a logarithmic sigmoidal transfer function. We try different numbers of

hidden neurons (10, 15, 20, 25, 30, 35, 40, 45, 50). We adopt RBFs with

one hidden layer and all neurons characterized by a Gaussian transfer

function. We try different numbers of hidden neurons (10, 15, 20, 25,

30, 35, 40, 45, 50) and different spread values (0.3, 0.4, 0.5, 0.6, 0.7,

0.9, 1, 1.1, 1.2, 1.3).
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Table 7.11 QDC classifier. Test set affected by noise

NL
SNR Accuracy

NL
SNR Accuracy

(db) (Mean±Std.Dev.) (db) (Mean±Std.Dev.)

5 40.55 (99.35±0.22)% 30 9.59 (86.20±1.01)%

10 28.62 (97.93±0.15)% 40 44.59 (77.41±1.25)%

15 21.47 (96.24±0.47)% 60 -2.75 (62.44±1.78)%

20 16.52 (92.50±0.77)% 80 -7.61 (51.55±1.49)%

25 12.45 (89.75±0.74)% 100 -11.35 (44.28±0.90)%

The inputs to the MLPs and RBFs are the SFs previously selected

by QDC, i.e., the features 296 and 295 of the second accelerometer, and

the features 277 and 296 of the third accelerometer.

The MLP with 50 hidden neurons provides the best performance

among all the MLPs (Table 7.12), while, among the RBFs, the best

performance is obtained by the RBF with 45 hidden neurons and a

spread value of 1.2 (Table 7.13.

Table 7.12 MLP with 50 hidden neurons. Test set affected by
noise

NL
SNR Accuracy

NL
SNR Accuracy

(db) (Mean±Std.Dev.) (db) (Mean±Std.Dev.)

5 40.55 (99.62±0.01)% 30 9.59 (91.63±0.84)%

10 28.62 (99.32±0.21)% 40 4.59 (84.73±0.65)%

15 21.47 (98.48±0.26)% 60 -2.75 (72.67±0.81)%

20 16.52 (96.51±0.47)% 80 -7.61 (63.75±1.75)%

25 12.45 (93.87±0.76)% 100 -11.35 (56.00±1.24)%

Comparing the results in Tables 7.11, 7.12, and 7.13, we can see

that the MLP and RBF do increase the robustness to noise. In particu-

lar, both of them improve both the good results (accuracy higher than

90.00%) up to 9.59 db, and the acceptable results (accuracy higher than

80.00%) up to 4.59 db.

Considering the results in greater detail, we can affirm that the RBF
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Table 7.13 RBF with 45 hidden neurons. Test set affected by
noise

NL
SNR Accuracy

NL
SNR Accuracy

(db) (Mean±Std.Dev.) (db) (Mean±Std.Dev.)

5 40.55 (99.63±0.07)% 30 9.59 (92.11±0.59)%

10 28.62 (99.43±0.18)% 40 4.59 (84.16±1.05)%

15 21.47 (99.05±0.19)% 60 -2.75 (69.41±1.10)%

20 16.52 (97.13±0.33)% 80 -7.61 (55.92±1.63)%

25 12.45 (94.21±0.76)% 100 -11.35 (47.00±1.19)%

obtains a higher accuracy and a lower standard deviation for the first

levels of noise (5, 10, 15, 20, 25, and 30) compared to both the QDC

and the MLP. However, for the subsequent levels of noise (40, 60, 80,

and 100), the performance of the RBF starts to decrease and becomes

quite similar to the one achieved by the QDC classifier. The MLP

provides better accuracy for all the different levels of noise compared

to the QDC, concerning both the average accuracy and the standard

deviation, showing to be more stable to the noise compared to the QDC

classifier. Furthermore, even though the RBF is better than the MLP

for the first levels of noise, the MLP offers a more graceful performance

degradation for high levels of noise.

Thus, we can affirm that for acceptable levels of noise, the best

results and, consequently, the best robustness are obtained by the RBF,

while, for higher levels of noise, the MLP results to be the best. Figs. 7.4

and 7.5 clarify the comparison among these three classifiers (QDC, MLP

and RBF).

7.2.6 Conclusion to the experiments for the first assess-

ment of the robustness to noise

In this section we have presented an automatic method, based on clas-

sification techniques, for diagnosing faults in rolling element bearings.

The proposed method has been applied to experimental data, reg-

istered by four accelerometers, and related to four different defects on

rolling bearings, namely, indentation on the inner raceway, indentation

on the roll, sandblasting of the inner raceway, and unbalanced cage, and
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Figure 7.4 Evolution of the accuracies of QDC (blue), MLP
(green), RBF (red) at the increase of the noise level. x-axis: level
of noise, y-axis: accuracy.

Figure 7.5 Zoom of Fig. 7.4 for the first levels of noise.

different levels of severity for one of them, namely, light, medium and

high severity for the indentation on the roll. The method has proved to

be highly sensitive to identify both different defects and levels of sever-

ity for the considered defects. We achieved an accuracy on the test set

always higher than 99.00%.

We have also performed a noise analysis to assess the robustness

of our methodology to noise, comparing the behaviors of the different
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classifiers varying the level of noise by which signals were affected. In

particular, we have classified the noisy signals by means of a classifier

trained on signals without noise. We succeeded in increasing robustness

to noise making use of more complex classifiers such as MLP and RBF

neural networks.

The appreciable levels of robustness to noise achieved could be even

increased if, in practical cases, we could filter noise out of the acquired

signals before their classification. Alternatively, or in addition, we could

train the classifier both with signals without noise and with signals with

added noise, choosing the noise level to be added depending on the

specific situation of interest.

7.3 Methods to increase the robustness to noise

7.3.1 Introduction to the developed methods to increase

the robustness to noise

In this section we perform a noise analysis to assess the degree of ro-

bustness to noise of a neural classifier aimed at performing multi-class

diagnosis of rolling element bearings. More precisely this section aims

to achieve the following objectives: given a mechanical equipment con-

taining rolling bearings,

• to detect the presence of a defect,

• to recognize the specific kind of defect,

• to provide the diagnostic system with high robustness to different

levels of noise.

We make an analysis using ten levels of noise, each of which char-

acterized by a different signal-to-noise ratio ranging from 40.55 db to

-11.35 db. We classify the noisy signals by means of a neural classifier

initially trained on signals without noise, then we repeat the training

process with signals affected by increasing levels of noise. We show

that adding noisy signals to the training set we manage to significantly

increase the classification accuracy.

Finally we apply the two most used strategies to combine classifiers:

classifier fusion and classifier selection, and show that, in both cases,

we can significantly increase the performance of the single best classifier

and thus improve the robustness to noise.



124 Noise Analysis

The analysis presented in this section will also show how to identify

both the type of classification system (e.g., single classifier or classifier

ensemble) and how many and which noise levels should be used in the

training phase in order to maximize the classification accuracy and the

robustness to noise in the application domain of interest.

7.3.2 Methodology

We deal with a multi-class classification problem aimed at classifying

the data into five classes: one class for the faultless samples and four

damaged classes, each related to a different fault.

We also perform noise analysis aimed at finding out how we can

increase the robustness of the classification system to noise.

Since the best results in term of classification accuracy and robust-

ness to noise were obtained using the second and third accelerometers,

as shown in the previous section, we have decided to use only these

two accelerometers in the present section. Thus we will refer the orig-

inal second and the third accelerometers, respectively, as the first and

second accelerometers.

We carry out the following steps considering independently the sam-

ples belonging to the two accelerometers. We have to deal with class

imbalance, i.e., the presence of significant differences in class prior

probabilities, which may seriously worsen the performance of many

classification systems that assume relatively balanced data distribu-

tion [42, 51]. Examples are decision trees, backpropagation neural net-

works, Bayesian networks, nearest neighbor, support vector machines

[17, 60, 122]. For this reason the first step we perform is to balance the

data before each experiment in order to obtain classes with the same

cardinality as the least numerous one. We use a random undersam-

pling method to balance class distribution by eliminating elements of

all classes but the least numerous one until all classes have the same

cardinality. We chose this algorithm since it is very fast, very simple,

it has empirically been shown to be one of the most effective resam-

pling methods, and we can decide exactly how many elements should

be removed [72, 141, 142].

The second step of the proposed methodology is to find out which

is the best way to represent the signals. We decided to work in the fre-

quency domain by transforming the signals by the Fast Fourier Trans-

form (FFT). Since the phenomenon originated by the considered faults
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produces an effect mainly in the spectral interval [1,300] Hz, we consider

that frequency interval. Furthermore we select the spectral sampling

equal to 1 Hz so as to describe in sufficient details the most relevant

features related to the faults. Each frequency sample will be referred

to as feature. Thus, we have a total of 300 features from which we will

select the DFs (i.e., the features that are able to provide the best accu-

racy when used to represent the signals to be classified) making use of

the Forward Feature Selection (FFS) algorithm with a QDC classifier.

The FFS is thus performed on the range [1,300] Hz using the QDC clas-

sifier. We consider the regularization parameter fixed to 0 for all the

performed experiments. By means of the FFS, we reduce the feature

space by removing the noisy features and retaining only the features

that provide more information. We only consider as DFs the first M

features, f1, . . . fM , M ≤ 300, that significantly increase the accuracy.

By “significantly” we mean an accuracy improvement of at least 1%. In

other words, fi is considered only if the accuracy obtained by the set

{f1, . . . , fi} is at least 1% higher than the accuracy achieved by the set

{f1, . . . , fi−1}, i = 2, . . . , 300.

Once identified the DFs, we use a more complex, but also more

flexible classifier, namely, an MLP to perform the classification process

using the extracted DFs.

We assess the robustness to noise of the MLP taking ten different

increasing levels of noise into account starting from level 1, which cor-

responds to the lowest noise level, up to level 10, which is the highest

noise level.

We perform eleven experiments, each time adding a higher level of

noise to the training set. More precisely, the i-th experiment, i=1,. . . ,11,

is characterized by a training set that includes signals affected by noise

levels from 0 to i-1 (level 0 refers to noise-free signals). The eleven

experiments are then tested on the same test set consisting of, besides

noise-free signals, signals affected by all levels of noise. Hereafter, we

will refer to the noise free data as NF, and to the data affected by noise

level i, i=1,. . . ,10, as Ni (Table 7.14). In the experiments we compute

the test accuracy separately on each of the levels of noise NF, N1, . . . ,

N10.

After evaluating the performance of each accelerometer indepen-

dently (we recall that the methodology steps previously described are
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Table 7.14 Training set and test set configurations for each ex-
periment

Training set Test set

NF

NF,N1

NF,N1,N2

NF,N1,N2,N3

NF,N1,N2,N3,N4 NF;N1;N2;N3;N4;N5;

NF,N1,N2,N3,N4,N5 N6;N7;N8;N9;N10

NF,N1,N2,N3,N4,N5,N6

NF,N1,N2,N3,N4,N5,N6,N7

NF,N1,N2,N3,N4,N5,N6,N7,N8

NF,N1,N2,N3,N4,N5,N6,N7,N8,N9

NF,N1,N2,N3,N4,N5,N6,N7,N8,N9,N10

performed separately for each accelerometer), we exploit classifier fu-

sion and classifier selection, using the two accelerometers and the re-

lated trained MLPs to try to increase the results obtained by each

accelerometer and the corresponding MLP.

First, we make use of the fusion of classifiers using the combin-

ers simple mean, maximum, minimum, and product. Finally we adopt

the classifier selection, in particular the method Direct K-NN Estimate

(with K = 1) and compare its results with the ones obtained by the sin-

gle classifiers and by the mixture of classifiers resulting from the fusion

methods. The accuracy for each experiment is computed as the aver-

age accuracy on the test set over 100 trials. For each trial we randomly

balance the classes of the original data set and then we randomly select

70% of the samples to create the training set and take the remaining

30% of the samples as test set.

7.3.3 Experiments and results

We aim to classify the signals into five classes C1, C2, C3, C4, and C5.

Considering the NF data as training set, using the FFS and the

QDC classifier, we obtain four DFs, both for the first and the second
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accelerometers independently. More precisely, the selected DFs are 296,

295, 277, and 278 for the first accelerometer, and 277, 296, 96, and 185

for the second accelerometer. Tables 7.15 and 7.16 show, respectively,

for the first and second accelerometer, the four DFs with the accuracy

that is achieved starting from the first selected feature and adding, each

time, a new DF.

Table 7.15 First accelerometer. List of the extracted DFs and
accuracies reached by adding the corresponding feature

DFs
Accuracy reached

using a QDC classifier

296 55.21%

295 85.65%

277 88.15%

278 90.80%

Table 7.16 Second accelerometer. List of the extracted DFs and
accuracies reached by adding the corresponding feature

DFs
Accuracy reached

using a QDC classifier

277 75.43%

296 96.15%

96 97.20%

185 98.25%

From Table 7.15, we can see that using feature 296 we achieve an

accuracy of 55.21%, using features 296 and 295 we obtain an accuracy of

85.65%, etc. Increasing further the number of features results in either

a negligible improvement (< 1%) or even a decrease in the accuracy.

To let the user have an intuitive idea of how things are, Figs. 7.6 and

7.7 show the signals belonging to the five classes around the first and

second extracted DFs for the second accelerometer.

With the four DFs we perform the classification trying different

MLPs characterized by different parameters, such as the number of
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Figure 7.6 Second accelerometer. Signals realted to the five
classes C1 (red), C2 (blue), C3 (green), C4 (magenta), and C5
(black) around feature 277.

Figure 7.7 Second accelerometer. Signals related to the five
classes C1 (red), C2 (blue), C3 (green), C4 (magenta), and C5
(black) around feature 296.

hidden neurons, the neuron transfer function, etc. The best results

are obtained, for both accelerometers, by an MLP characterized by the

parameters reported in Table 7.17.

We achieve an average accuracy of 92.06% and 98.39% over 100 tri-

als, respectively, for the first and second accelerometers. Two typical

confusion matrices for this classification problem are reported in Ta-
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Table 7.17 MLP’s parameters

Parameters Values

Transfer function Logarithmic sigmoid

Training algorithm Back propagation

Type of learning rate Dynamic

Initial learning rate value 0.01

Momentum 0.95

Number of hidden layers 1

Number of hidden neurons 40

Stop criterion Negligible error improvement, 0.1%

bles 7.18 and 7.19 for the first and second accelerometer, respectively.

Table 7.18 Confusion matrix using the best MLP for the first
accelerometer

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 439 3 0 13 0 455

True
C2 1 414 10 27 3 455

Labels
C3 0 32 423 0 0 455

C4 40 11 0 399 5 455

C5 2 0 0 17 436 455

Total 482 460 433 456 444 2275

To assess the robustness of the previous classification system (MLP

with the four DFs), we test the system separately on data affected

by the ten levels of noise. We perform this step considering each ac-

celerometer independently. We recall that the data N1 are affected by

the first level of noise, i.e., NL = 5, the data N2 are affected by the

second level of noise, i.e., NL=10, and so on. Table 7.20 shows the noise

analysis for the MLP classifier over 100 trials for both the accelerome-

ters. Considering the first accelerometer, we never obtain a very high

robustness (accuracy higher than, or equal to, 95.00%), but we achieve
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Table 7.19 Confusion matrix using the best MLP for the second
accelerometer

Estimated Labels
Total

C1 C2 C3 C4 C5

C1 453 2 0 13 0 455

True
C2 2 441 5 5 2 455

Labels
C3 1 5 442 4 3 455

C4 1 2 4 448 0 455

C5 0 0 0 0 455 455

Total 457 450 451 457 460 2275

a high/acceptable robustness (accuracy in the range 90.00%÷95.00%)

up to SNR=21.47 db, and an acceptable/low robustness (accuracy in

the range 85.00%÷90.00%) up to SNR=12.45 db. Regarding the second

accelerometer, we obtain a very high robustness up to SNR=40.55 db,

and a high/acceptable robustness up to SNR=21.47 db. In Table 7.20

we highlighted the different levels of robustness to noise with different

colors, so that a very high robustness is represented with the color red,

a high/acceptable robustness is represented with the color blue and an

acceptable/low robustness is associated to the color green.

The two MLPs associated with the two accelerometers perform quite

differently for different noise levels. More precisely, the second ac-

celerometer outperforms the first one for the noise-free data and the

first levels of noise, but the robustness to the noise decreases pretty

fast with the increase of the level of noise. On the other hand, the

robustness to the noise of the MLP applied to the first accelerometer

decreases more slowly with the increasing of the level of noise, and re-

mains pretty more accurate for higher levels of noise compared to the

MLP applied to the second accelerometer.

As stated in the methodology section, in order to increase the ro-

bustness to noise, we train the MLP both with signals without noise

and with signals affected by different levels of noise. The results (mean

values) are shown in Tables 7.21 and 7.22, respectively, for the first

and second accelerometers. In particular in Tables 7.21 and 7.22 the

symbol ÷ indicated a range, thus, for example, if we consider the data
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Table 7.20 First and second accelerometers. Training set not
affected by noise. Test sets affected by different levels of noise

Noisy test
NL

SNR First Acc. Second Acc.

data set (db) Accuracy (Mean) Accuracy (Mean)

N1 5 40.55 92.44% 97.99%

N2 10 28.62 91.17% 94.29%

N3 15 21.47 90.28% 90.84%

N4 20 16.52 89.03% 82.35%

N5 25 12.45 87.20% 74.97%

N6 30 9.59 84.78% 67.21%

N7 40 4.59 80.69% 54.77%

N8 60 -2.75 70.91% 40.55%

N9 80 -7.61 63.86% 34.16%

N10 100 -11.35 56.36% 30.22%

NF÷N5, then it means that we are considering all the noisy data from

noise level 0 to noise level 5. From Table 7.21 we can notice that, for

the first accelerometer, increasing the number of levels of noise used

in the training process does not make the classification system more

robust to noise. On the contrary, considering the second accelerometer

(Table 7.22), we can see that the robustness to the noise is significantly

increased. In particular, for the first noise levels in the test set, there

is a performance improvement as the noise levels in the training set in-

crease up to a point in which the performance slightly decreases though

remaining noticeably high. For the last noise levels in the test set, on

the contrary, there is a continuous performance improvement with the

increase of the training noise levels, although the achieved accuracy

remains pretty low.

Based on the complementary behavior of the two accelerometers,

we then perform an analysis to see how a combination of classifiers

can modify (possibly increase) the robustness to noise. More precisely

we make use of the two strategies to combine classifiers: fusion and

selection. We remind that the classifier fusion approach all classifiers

know the whole feature space, whereas in the classifier selection one
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each classifier is considered as an expert in a specific portion of the

feature space. Regarding the fusion of classifiers, we try four different

types of nontrainable combiners, i.e., simple mean, maximum, mini-

mum, and product, whose results are shown in Tables 7.23-7.26. As far

as the classifier selection approach is concerned, we apply the decision-

independent estimates method Direct K-NN Estimate by dynamically

and locally estimating the competence of each classifier. The results for

each level of noise applying the classifier selection approach are reported

in Table 7.27.
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To make things clearer, Figs. 7.8-7.18 show an alternative represen-

tation of the information contained in Tables 7.21-7.27. In particular,

there are as many figures as there are test sets (columns) in each of

these tables. Each figure represents the classification accuracy percent-

age of all the classifiers, namely, first accelerometer, second accelerom-

eter, simple mean combiner, maximum combiner, minimum combiner,

product combiner, and Direct K-NN Estimate, as a function of the test

set pertinent to the figure. On the x-axis of each figure we represent the

various training sets (rows in the tables), i.e., NF, NF÷N1, etc. More

precisely, the numbers 1÷11 on the x-axis correspond to NF, NF÷N1,

etc. Therefore Fig. 7.8 shows the classification accuracy of all the seven

classifiers on the test set consisting of noise-free signals as the compo-

sition of the training set varies from NF, NF÷ N1, up to NF÷N10;

Fig. 7.9 shows the classification accuracy of the seven classifiers on the

test set consisting of the data N1 (i.e., signals affected by the first level

of noise) as the composition of the training set varies from NF, NF÷N1,

up to NF÷N10, etc. In all the Figs. 7.8-7.18 we use the following line

styles and colors to represent the seven classifiers:

• (-. red): first accelerometer,

• (- red): second accelerometer,

• (-. blue): mean combiner,

• (- blue): maximum combiner,

• (-. green): minimum combiner,

• (- green): product combiner,

• (-. black): Direct K-NN Estimate.

For the sake of clarity, we also show two more figures (Figs. 7.19

and 7.20) which correspond directly to Tables 7.25 and 7.27. More

precisely, Figs. 7.19 and 7.20 represent the classification accuracy of

the minimum combiner and the Direct K-NN Estimate, respectively.

In the figures, the axes x and y represent, respectively, the test set

and the accuracy percentage achieved by the given classifier on the

appropriate test set. In particular, the numbers from 1 to 11 on the

x-axes correspond, respectively, to the test sets NF, N1, N2, etc. Each

curve represents the behavior of the classifier on the specific test set

using a given training set. In particular, each training set is described

by a different line style and color as follows:

• (-. red): NF,
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Figure 7.8 Classification accuracy percentage of the seven clas-
sifiers on the test set NF as the composition of the training set
varies.

Figure 7.9 Classification accuracy percentage of the seven clas-
sifiers on the test set N1 as the composition of the training set
varies.
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Figure 7.10 Classification accuracy percentage of the seven clas-
sifiers on the test set N2 as the composition of the training set
varies.

Figure 7.11 Classification accuracy percentage of the seven clas-
sifiers on the test set N3 as the composition of the training set
varies.
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Figure 7.12 Classification accuracy percentage of the seven clas-
sifiers on the test set N4 as the composition of the training set
varies.

Figure 7.13 Classification accuracy percentage of the seven clas-
sifiers on the test set N5 as the composition of the training set
varies.
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Figure 7.14 Classification accuracy percentage of the seven clas-
sifiers on the test set N6 as the composition of the training set
varies.

Figure 7.15 Classification accuracy percentage of the seven clas-
sifiers on the test set N7 as the composition of the training set
varies.
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Figure 7.16 Classification accuracy percentage of the seven clas-
sifiers on the test set N8 as the composition of the training set
varies.

Figure 7.17 Classification accuracy percentage of the seven clas-
sifiers on the test set N9 as the composition of the training set
varies.
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Figure 7.18 Classification accuracy percentage of the seven clas-
sifiers on the test set N10 as the composition of the training set
varies.

• (- red): NF÷N1,

• (-. blue): NF÷N2,

• (- blue): NF÷N3,

• (-. green): NF÷N4,

• (- green): NF÷N5,

• (-. black): NF÷N6,

• (- black): NF÷N7,

• (-. cyan): NF÷N8,

• (- cyan): NF÷N9,

• (-. yellow): NF÷N10.

From Tables 7.21-7.27 and Figs. 7.8-7.20 we can notice that using a

combination strategy we are able to significantly increase the classifica-

tion accuracy. The choice of the specific combination strategy depends

on the specific application domain and our knowledge of this domain.

For example, we observe that, among the fusion approaches, the min-

imum combiner is the one that obtains the best results for high levels

of noise, in particular for SNRs ranging from ï¿½2.75 db to ï¿½11.35 db.

Thus, even though, for the lowest levels of noise, the minimum combiner
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Figure 7.19 A graphical representation of the information in
Table 7.25 related to the minimum combiner.

Figure 7.20 A graphical representation of the information in
Table 7.27 related to the Direct K-NN Estimate combiner.

does not show very good results, it is surely the best classification sys-

tem for very high levels of noise since its accuracy decreases gracefully
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as the noise increases.

On the other hand, the best classification system for low and medium

levels of noise is obtained by the classifier selection approach. Indeed, it

generally outperforms the single MLP used for the best accelerometer

(i.e., the second accelerometer) and all the other fusion strategies.

Finally, useful guidelines can be derived from the previous consider-

ations. More precisely, depending on the specific real case, if we know

the range within which the noise may vary in the real environment, we

can perform an analysis aimed at identifying which is the best training

configuration to be used to obtain the desired accuracy on the test set.

Consider, for example, an environment in which the SNR can vary

from 16.52 db (NL=20) to 28.62 db (NL=10). Let us refer to Table 7.28,

whose generic element is the average classification accuracy achieved by,

respectively, the two accelerometers and the five classifier combiners, on

the set consisting of the data N2, N3 and N4, i.e., the signals affected

by the three levels of noise 10, 15 and 20. Analyzing these averages,

we can notice that the highest average (96.40%) is achieved by the

classificationsystem which makes use, as training set, the data affected

by levels of noise up to the third level (NL=15, which corresponds to

an SNR equal to 15.47 db) and, as classification strategy, the classifier

selection, in particular the Direct K-NN Estimate algorithm.
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7.3.4 Conclusions to the developed methods to increase

the robustness to noise

In this section we have performed a noise analysis to assess the ro-

bustness of a neural classification system, namely, an MLP, to different

levels of noise. We have made use of the two main strategies in combin-

ing classifiers, fusion and selection. Considering the classifier fusion, we

have applied four different combiners, namely, simple mean, maximum,

minimum, and product, while for classifier selection we have exploited

the Direct K-NN Estimate in order to dynamically evaluate the local

competence of each classifier.

We have considered ten levels of noise, each of which characterized

by a different signal-to-noise ratio, from 40.55 db to -11.35 db. In partic-

ular we have classified the noisy signals by means of a classifier trained

on signals without noise, then we have used training data affected by

increasing levels of noise.

We have shown that, using a combining strategy, we are able to

significantly increase the classification accuracy and the robustness to

noise. We have also shown how the presented analysis can be exploited

to choose which classifier is the best and how it should be trained to

achieve the best classification accuracy in the case of interest.



Chapter 8

The bearing diagnosis as a one-class

classification problem

The important thing

is not to stop questioning.

- A. Einstein -

In this chapter we deal with diagnosis of rolling elements bearings

within condition-based maintenance programs, considering the diagno-

sis issue as a one-class classification problem and classifying the signals

into two classes, namely faultless and damaged classes.

In particular, we propose the use of the convex hull, usually adopted

in application domains such as computer visualization, verification meth-

ods and computational geometry problems, and the snake operator,

typically employed for image segmentation, as two one-class classifiers.

Then we introduce two novel one-class classifiers, namely CSCCHC and

CSS, resulting from an appropriate integration of the convex hull and

snake operator classifiers.

We compare CSCCHC and CSS with traditional one-class classifiers,

such as Gaussian, 1-NN and K-NN, in six experiments. We prove that

our classifiers represent a valuable alternative to the traditional one-

class classifiers since they achieve better results in all cases but one in

which the difference between the proposed classifiers and the Gaussian

classifier (the best) is practically negligible.
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8.1 One-class classification to perform bearing

diagnosis

As stated in Chap. 2, even though good results have been presented

so far in the literature, little attention has been dedicated to the main

challenging problem regarding the diagnosis of mechanical equipment:

the lack of a significant set of damaged data.

In general, bearings can develop several types of faults (e.g., sand-

blasting, indentation on the inner raceway, unbalanced cage, and in-

dentation on the roll) that can be further divided in classes according

to the level of severity. It is difficult to collect all types of faults and

severities to train a classification system, since it is not possible to iden-

tify all the possible types of faults and severity levels, for example an

indentation on the roll can be positioned in different parts of a roll

and thus it may produce different (vibration) signals. Furthermore, as

shown in [141], (vibration) signals can change as time passes making

thinner and fuzzier the division of faulty bearings into categories. Thus

it is impossible to collect and “catalog” an infinite number of faults and

severities. Moreover it is often difficult or even impossible to collect

data from faulty bearings as it requires to put damaged bearings into

the rotating machine causing unwanted consequences. For all these

reasons the creation of a training set for the damaged samples can be

either expensive or impractical and thus difficult to achieve. On the

other hand, it is relatively cheap and simple to obtain measurements

from faultless bearings and thus from a normally functioning machine.

However, most of the techniques presented in the literature deal

with the bearing fault diagnosis as a two-class problem involving only

data associated to pre-specified faults and severities regardless of all

the “possible” types of fault and levels of severity they were not able

to collect. Unfortunately, in real and practical cases, it is quite un-

likely that a trained classification system will have to cope with only

the known faults and severities (i.e., faults and severities used to train

the classification system). On the contrary, it is very common that the

classification system will have to cope with unknown faults and sever-

ities (i.e., faults and severities not used during the training process).

Thus, even though some techniques can achieve very high accuracies

on known faults and severities, they may perform very poorly on un-

known faults and severities as shown in [142]. Actually, Figs. 8.1 and
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8.2 show the discriminant functions obtained by some traditional clas-

sifiers, such as an LDC, a QDC and an MLP, which classify the samples

into faultless class and damaged class. In Figs. 8.1 and 8.2 the red dots

represent the faultless samples, while the blue and green dots represent

the damaged samples, respectively, shown and not shown to the classifi-

cation system during the training process. The achieved resubstitution

(training) error of all the classifiers is practically 0%. However, when

damaged samples (green dots) belonging to faults and severities differ-

ent from the training ones (blue dots) are given to the classification

system, the accuracy for the damaged class decreases significantly to

an unacceptable level.

Figure 8.1 Classification into faultless and damaged samples per-
formed by an LDC (blue line) and an MLP (magenta line). The
red dots and the blue dots represent, respectively, the faultless and
damaged samples used during the training process. The green dots
represent damaged samples belonging to faults and severity levels
different from the ones (blue dots) used during the training pro-
cess.

In contrast with the approaches proposed in the literature, we would

like to develop a classification system provided with high generalization

capabilities, i.e., able to generalize the problem and thus correctly clas-

sify also damaged samples belonging to types of fault and levels of

severity not used during the training process. For this reason we have

decided to approach this classification problem as a one-class classifi-

cation problem. This way, we achieve independence from the specific
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Figure 8.2 Classification into faultless and damaged samples per-
formed by a QDC (blue line) and an MLP (magenta line). The
red dots and the blue dots represent, respectively, the faultless and
damaged samples used during the training process. The green dots
represent damaged samples belonging to faults and severity levels
different from the ones (blue dots) used during the training pro-
cess.

damaged samples we were able to collect to train our classification sys-

tem and, thus, we are able to develop a more general classifier that can

reach a good accuracy not only for known but also for unknown faults

and severities.

Finally, a further important aspect in the bearing diagnosis is the

analysis of the accuracy of the classification system. Actually, in the lit-

erature, the classification results are typically expressed in terms of the

average between the accuracies of the faultless class and the damaged

class. However, except when a classification system reaches a 100%

accuracy, looking at the average does not give any information about

the single accuracy for the faultless and the damaged classes. However,

we cannot consider a misclassification of a faultless sample for a dam-

aged one with the same seriousness of a misclassification of a damaged

sample for a faultless one. As a matter of fact it is usually preferable

to misclassify a faultless element with a damaged one than vice versa.

Indeed, in the former case we substitute a faultless bearing erroneously

considered damaged, while in the latter case we do not perform any sub-

stitution of the damaged bearing letting the system continue to work in
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a not appropriate way, perhaps reaching the breakdown which will be

more expensive to repair than a simple, although useless, substitution.

For this reason we will report the accuracies of both the faultless and

the damaged classes independently.

8.2 Methodology

We deal with a classification problem aimed at classifying the data into

two classes: faultless class and damaged class.

8.2.1 Signal representation

The first step of the proposed methodology aims to find out which type

of signal it is better to sample. We decide to collect vibration signals.

The reason for that, as explained in Chap. 2, is that vibration analysis

may be advantageous in the bearing diagnostic field as the bearing area

is the locus of the application of the basic dynamic loads and forces

in a machine. Furthermore the vibration analysis provides the most

information from the collected data [58].

8.2.2 Working domain and training and test sets cre-

ation

The second step of our methodologyconcerns the choice of the best do-

main to work with. We decide also in these experiments to work in

the frequency domain by transforming the signals by the Fast Fourier

Transform (FFT). The reason of our choice, as explained in Chap. 2,

is that the frequency domain analysis makes it easier to identify and

isolate certain frequency components of interest, such as the theoretical

characteristic frequencies of the defects, compared to the time-domain

analysis. Based on heuristic considerations and the results obtained in

the experiments described in the previous chapters, we consider the fre-

quency interval [1,300] Hz, sampled every 1 Hz. The frequency samples

will be referred to as features in the following, so that we have a total

of 300 features describing each signal sample.

Training and test sets are then created using the Hold-out method

considering 70% of the original data as training set and the remaining

data as test set. The split into training and test set is performed in a

random manner.

Once the training set has been created, we balance the data in order

to obtain classes with the same cardinality as the least numerous one.
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We perform a random undersampling to balance the data. We chose

this algorithm since it is very fast, very simple, it has empirically been

shown to be one of the most effective resampling methods, and we can

decide exactly how many elements should be removed [72, 141, 142].

8.2.3 Feature space dimensionality reduction

The third step of the methodology deals with the reduction of the fea-

ture space. We do not represent each signal with 300 features as the

complexity of the classifiers would become overwhelming and even un-

desirable as a high number of features generally decreases the accuracy.

Consequently, we perform a feature selection process in order to find

the most significant and useful features, called discriminant frequencies

(DFs). These features are the ones that provide the best accuracy when

used to represent the signals to be classified. Furthermore, the reduc-

tion of the number of features brings to two further advantages that

consist in the reduction of both the memory necessary for signal rep-

resentation, and the computational time needed for classifier training

and test. Both these aspects are crucial since we would like to develop

a methodology that can be used in a real time environment.

However, in the classification process for fault diagnosis, when the

number of objects in the training set is too small for the number of fea-

tures used, most classification procedures cannot find good classification

boundaries. For this reason, we adopt a feature selection algorithm to

find out the DFs. This step is performed using the Forward Feature

Selection (FFS). We chose to use FFS because it is a simple and often

efficient algorithm which represents a reasonable compromise between

exhaustive search and random search.

We adopt the statistical classifiers LDC and QDC to perform the

FFS. Unfortunately we can perform a feature selection only if we know

at least some elements of the damaged class. For this reason we fix

as hypothesis that we always have at least either one type of fault

(even though not exhaustively sampled) or one severity level of one

type of fault (even though not exhaustively sampled) with which we

can perform the feature selection, while, of course, the training of the

one-class classifiers will be done using only one class, i.e., the faultless

class.
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8.3 Experiments’ framework

We propose two main series of experiments, in the first we propose the

comparison among some traditional multi-class classifiers, such as sta-

tistical classifiers, namely LDC and QDC, and neural networks, namely,

MLP, with a one-class classifier, namely, a convex hull (CHC) to show

that multi-class classifiers generally perform quite poorly with respect

to the unknown faults and severities while the one-class CHC per-

forms pretty better. In the second series of experiments we propose

the comparison of several one-class classifiers, some well-known such as

Gaussian, K-NN, 1-NN, and some introduced in this thesis such as the

convex hull classifier (CHC), the snake operator classifier (SOC) and

mixtures of convex and snake classifiers. In particular, we propose two

one-class classifiers obtained by the combination of the CHC and SOC:

the first (CSC) alternates the use of more CHCs and SOCs starting

from a CHC, and the second (CSS) consists in a CHC stretched start-

ing from an SOC applied on a CHC. All these classifiers are described

in details in Chap. 3.

For each series of experiments, we perform six experiments, for each

of which we perform the steps described in the Methodology section.

Each of these experiments is characterized by different numbers of dam-

aged classes used both in the training phase (which includes the fea-

ture selection process and the classifier training process) and in the test

phase. The classification problem to be solved is still a 2-class problem,

however the damaged class is composed each time by a different num-

ber of damaged classes. For the sake of clarity, let the sets of damaged

classes used in the training phase and in the test phase referred to as

classes CTR_D and CTS_D, respectively, independently on the specific

classes involved.

For the first experiment of each series, during the feature selection

process, we use the two classes, faultless class (C1) and damaged class

(CTR_D). Then to train the one-class classifiers we use only the faultless

class (C1) while to train the multi-class classifiers we use both C1 and

CTR_D. On the contrary, in the test process we use the faultless class

as well as the damaged class CTS_D composed by all the damaged

classes except the one used in CTR_D. In this way we repeat the first

experiment six times, since we have six damaged classes. Table 8.1

shows all the six different combinations of the classes used during the
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training and test processes for the first experiment in each of the two

series of experiments.

In the second experiment we use again C1 in the training phase,

but this time to perform the feature selection process we use CTR_D

composed by two damaged classes instead of only one like in the first

experiment. Then we repeat this experiment as many times as the

number of combinations of two damaged classes, i.e., 15 times. Each

time we use, as test set C1 and CTS_D, composed by all the damaged

classes but the two used in CTR_D (Table 8.2).
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The remaining four experiments are similar to the first two, with the

difference that the number of repetitions of the i-th experiment, with

i=3. . . 6, is equal to the number of combinations of i damaged classes.

The number of combination is evaluated as follows:

(

6
i

)

.

This approach, which performs each experiment once for each of all

possible combinations of the damaged classes involved in the training

process of that experiment, was chosen with the purpose of investigating

how independent is the proposed classification methodology from the

data available during the training phase. Actually, each combination

of damaged classes can be considered as a different data set. Of course

some combinations may result to be better and to give more useful

information to the classifier so that the unknown faults and severities

can be better classified.

For the sake of clarity, Figs. 8.4-8.5 show the distribution of the

classes considering the two DFs extracted by an LDC classifier per-

forming the FFS for the first combination of classes for the fourth, fifth

and sixth experiments, respectively. From these figures we can notice

that the damaged samples (represented by the gray stars and the light

gray triangles) corresponding to the classes C2, C3.1, C3.2, C3.3, C4,

and C5 are quite spread throughout the feature space, while the fault-

less class (C1), represented by the black dots, appears quite compact

fitting perfectly a one-class classifier. In particular, going from Fig. 8.4

to Fig. 8.5 more and more damaged classes are used to perform the

process of feature selection.

More precisely, in Fig. 8.4, which corresponds to the fourth experi-

ment, we use four damaged classes (C2, C3.1, C3.2, and C3.3) besides

the faultless class (C1) in the feature selection process and two dam-

aged classes (C4 and C5) as well as the faultless class (C1) in the test

process; in Fig. 8.3, which is related to the fifth experiment, we use five

damaged classes (C2, C3.1, C3.2, C3.3, and C4) and the faultless class

(C1) to perform the feature selection process and only one damaged

class (C5) and the faultless class (C1) to perform the test process.

Finally in Fig. 8.5, which corresponds to the sixth experiment, we

use all the damaged classes as well as the faultless class both in the

feature selection and test processes.
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Figure 8.3 Fourth experiment. Faultless class (C1): black dots;
damaged classes used in the training set (C2, C3.1, C3.2, C3.3):
gray stars; damaged classes used in the test set (C4, C5): light
gray triangles.

Figure 8.4 Fifth experiment. Faultless class (C1): black dots;
damaged classes used in the training set (C2, C3.1, C3.2, C3.3,
C4): gray stars; damaged classes used in the test set (C5): light
gray triangles.

8.4 One-class classifiers vs multi-class classifiers

8.4.1 Introduction to the experiments to compare one-

class with multi-class classifiers

In this section, we compare traditional classifiers, such as LDC, QDC

and neural networks (in particular MLPs) with a one-class classifier,
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Figure 8.5 Sixth experiment. Faultless class (C1): black dots;
damaged classes used in the training set (C2, C3.1, C3.2, C3.3,
C4, C5): gray stars; damaged classes used in the test set (C2,
C3.1, C3.2, C3.3, C4, C5): light gray triangles.

namely, convex hull. With reference to rolling element bearing diagno-

sis, we show that the convex hull classifier outperforms the traditional

multi-class classifiers in the classification of unknown faults and sever-

ities.

8.4.2 Experiments and results

In all the experiments, for each classifier we compute its classification

accuracy, for both faultless and damaged classes (the ones not used in

the feature selection and training processes). We perform a comparison

among the six classifiers, namely, LDC, MLP, CHC trained with the

DFs selected by LDC, and QDC, MLP, CHC trained with the DFs

selected by QDC.

Tables 8.3-8.8 show the average, the worst case and the standard

deviation evaluated over all the different combinations for the experi-

ment under consideration. Each row of these tables is associated with

a different classifier.

From all these tables we can notice that the CHCs, besides present-

ing very high performance for the faultless class, always provide the

best performance for the damaged class in all experiments.

In the following, we briefly comment each table singularly consid-

ering only the results related to the damaged class, comparing the be-
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Table 8.3 First experiment: comparison of the six classifier ac-
curacies for faultless (F) and damaged (D) classes

Classifiers
Average Worst case Std.Dev.

F D F D F D

LDC 99.16% 43.55% 96.43% 0.01% 1.34% 28.96%

QDC 99.73% 42.05% 99.44% 15.63% 0.19% 24.91%

MLP1 99.42% 43.92% 97.37% 16.04% 1.01% 23.45%

MLP2 99.60% 54.02% 98.87% 16.56% 0.39% 24.17%

CHC1 97.16% 76.19% 89.27% 52.49% 3.92% 17.44%

CHC2 96.92% 75.20% 90.09% 55.88% 3.43% 17.92%

Table 8.4 Second experiment: comparison of the six classifier
accuracies for faultless (F) and damaged (D) classes

Classifiers
Average Worst case Std.Dev.

F D F D F D

LDC 99.22% 55.15% 96.31% 8.77% 1.22% 25.74%

QDC 98.72% 62.52% 92.63% 5.58% 1.85% 26.41%

MLP1 98.52% 63.73% 91.82% 25.25% 2.34% 23.97%

MLP2 98.95% 62.93% 95.28% 22.59% 1.49% 23.97%

CHC1 90.79% 84.77% 83.16% 53.78% 6.11% 14.26%

CHC2 93.1% 79.50% 82.81% 47.70% 5.41% 19.55%

havior of the CHCs with that of the traditional multi-class classifiers.

Please note that in Table 8.3, like in the following ones, with MLP1

and MLP2 we indicate the MLPs trained with the DFs extracted, re-

spectively, by LDC and QDC, and with CHC1 and CHC2 we identify

the CHCs trained with the DFs extracted, respectively, by LDC and

QDC.

Table 8.3, which is related to the first experiment, shows that, con-

sidering the damaged class, LDC and QDC present pretty poor perfor-

mance; on the other hand, also MLPs do not perform better than the

two statistical classifiers, while the two CHCs, which show pretty sim-

ilar behaviors, increase for more than 21% the best average accuracy
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Table 8.5 Third experiment: comparison of the six classifier ac-
curacies for faultless (F) and damaged (D) classes

Classifiers
Average Worst case Std.Dev.

F D F D F D

LDC 99.31% 60.38% 97.93% 12.63% 0.54% 28.69%

QDC 99.12% 72.13% 96.31% 19.04% 0.97% 26.69%

MLP1 98.47% 74.28% 96.08% 23.84% 1.38% 25.91%

MLP2 99.14% 69.19% 96.31% 24.10% 1.27% 25.01%

CHC1 87.31% 88.39% 84.20% 49.17% 1.87% 13.72%

CHC2 91.59% 86.24% 84.89% 34.11% 4.74% 19.01%

of all the multi-class classifiers. Furthermore, the CHCs improve the

worst case for even more than 35% and the standard deviation of the

traditional classifiers for at least 5%. In particular the best CHC out-

performs the best traditional classifier for more than 22%, 39%, and 6%,

respectively, for the average accuracy, the worst case and the standard

deviation.

The CHCs present a slight reduction of the faultless class accuracy

compared to the traditional classifiers; this reduction, however, can be

considered negligible if compared to the improvement obtained for the

damaged class accuracy.

It should also be noticed that if each classifier is tested with the

damaged class used during the training process the obtained accuracy is

pretty high (always over 90.00%), so the decrease in accuracy is basically

due to the inability of the used classifiers, and in particular of multi-

class classifiers, to generalize when one of the classes is not exhaustively

sampled. For these reasons the CHCs result to be more stable compared

to the multi-class classifiers.

Considering the damaged class, Table 8.4, which is related to the

second experiment, shows that the best CHC improves the average

accuracy of the traditional classifiers for more than 21%, the worst case

for even more than 28% and the standard deviation of the traditional

classifiers for at least 9%.

Table 8.5, which shows the results obtained in the third experiment,

shows that the best CHC improves the average accuracy of the tradi-
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tional classifiers for at least 14% and the worst case for even more than

25%. Furthermore CHCs improve the standard deviation for at least

11%.

Table 8.6 Fourth experiment: comparison of the six classifier
accuracies for faultless (F) and damaged (D) classes

Classifiers
Average Worst case Std.Dev.

F D F D F D

LDC 99.02% 60.34% 97.92% 21.27% 0.60% 26.64%

QDC 98.44% 79.69% 89.19% 20.48% 2.62% 27.15%

MLP1 98.50% 77.63% 96.54% 17.47% 1.17% 25.87%

MLP2 98.71% 77.36% 87.89% 4.25% 3.05% 27.23%

CHC1 86.14% 93.32% 83.74% 72.82% 1.51% 8.81%

CHC2 88.07% 91.97% 83.97% 66.30% 4.03% 13.59%

Table 8.7 Fifth experiment: comparison of the six classifier ac-
curacies for faultless (F) and damaged (D) classes

Classifiers
Average Worst case Std.Dev.

F D F D F D

LDC 99.58% 48.37% 98.85% 5.59% 0.37% 43.32%

QDC 99.19% 77.00% 98.39% 9.77% 0.48% 37.80%

MLP1 98.19% 82.45% 95.16% 49.18% 1.62% 21.24%

MLP2 99.50% 83.45% 99.08% 45.85% 0.25% 24.39%

CHC1 87.67% 92.43% 84.66% 65.00% 1.01% 13.81%

CHC2 86.99% 98.31% 83.74% 89.89% 1.71% 4.13%

Table 8.6 shows the results for the fourth experiment. In this table

we can see that the best CHC improves the average accuracy of the

traditional classifiers for at least 13%, the worst case for even more

than 51% and the standard deviation of the multi-class classifiers for

at least 17%.

From Table 8.7, which is related to the fifth experiment, we can

notice that the CHC improves the average accuracy for more than 14%,
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the worst case for even more than 40% and the standard deviation for

at least 17%.

Finally, Table 8.8, which refers to the sixth experiment, shows that,

once again, the best CHC improves the average accuracy of the tra-

ditional classifiers, even though only of 0.4%. Please note that in the

sixth experiment (Table 8.8) we did not report the worst case and the

standard deviation since there is only one combination that includes all

the damaged classes.

Table 8.8 Sixth experiment: comparison of the six classifier ac-
curacies for faultless (F) and damaged (D) classes

Classifiers
Average

F D

LDC 99.65% 85.14%

QDC 98.50% 99.41%

MLP1 99.19% 98.27%

MLP2 99.54% 99.31%

CHC1 86.66% 99.08%

CHC2 92.39% 99.81%

8.4.3 Conclusions to the experiments to compare one-

class with multi-class classifiers

In this section we have compared multi-class classifiers, such as statis-

tical classifiers, namely LDC and QDC, and neural networks, namely,

MLP, with a one-class classifier, namely, CHC.

From the shown results we can affirm that multi-class classifiers

generally perform quite poorly with respect to the unknown faults and

severities while the one-class CHC performs pretty better. Furthermore

the CHC presents for the damaged class a very low standard deviation

and a pretty good worst case compared with all the other classifiers.

Considering the damaged class, the difference in the behavior be-

tween the one-class classifier and traditional classifiers is more relevant

in the first experiments than the last ones. This is due to the fact

that as we increase the number of damaged classes used in the feature

selection process, the feature selection process itself becomes more ac-
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curate and selects more significant features. Thus multi-class classifiers

seem to be more dependent on the result of the feature selection pro-

cess as they work better when the feature selection process is performed

more accurately. However, in practical cases, it is very frequent that

the classification system will have to deal with unknown defects and

severities. Thus the choice of one-class classifiers, which show a higher

level of independence from the damaged samples used in the feature

selection process, seems to be a more proper choice for real industrial

environments.

8.5 Traditional one-class classifiers vs proposed

one-class classifiers

8.5.1 Introduction to the experiments to compare tradi-

tional with proposed one-class classifiers

In this section we propose to investigate and compare a set of one-

class classifiers, some well-known such as Gaussian, K-NN and 1-NN,

and others proposed in this chapter, namely, CSC and CSS, which

are based on the convex hull classifier (CHC) and the snake operator

classifier (SOC). All these classifiers are deeply described in Chap. 3.

8.5.2 Experiments and results

We have compared five one-class classifiers, namely, Gaussian, K-NN,

1-NN, CSC, and CSS. To compare these classifiers, we apply them to

“solve” the six experiments introduced above.

All the results shown in this section are computed as the average of

100 trails performed for each combination of each experiment, in order

to guarantee more stable and reliable results.

For each of the six experiments we have performed the feature se-

lection process to select the best two DFS. In Fig. 8.6 we can see the

histogram representing the two DFs selected as either first or second

over the six experiments and the number of times each of them has

been selected. The values reported in this histogram represent the av-

erage over the 100 trails of each combination.

In Figs. 8.7-8.12 we compare all these classifiers, showing the ROC

curve associated to each classifier in the six different experiments. Each

figure represents a different experiment, thus Fig. 8.7 refers to the first

experiment, Fig. 8.8 refers to the second, and so on.
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Figure 8.6 Histogram representing the two DFs selected in the
six experiments and the number of times each of them has been
selected.

In particular the x-axis represent the value 1-accuracyD, where

accuracyD, which ranges in the interval [0,1], represents the accuracy

on the damaged class, while the y-axis represent the accuracy on the

faultless class in the range [0,1].

In the following, with reference to the CSC classifier, we will consider

separately the sequence of convex hulls only, and the sequence of snake

operators only. We will refer to the two sequences as CSCCHC and

CSCSOC , respectively.

Please note that in the following figures not all the ROC curves

representing the classifiers span all the ROC space owing to the limited

range of classification accuracies achieved by the specific classifier.

As already stated, Fig. 8.7 refers to the first experiment, in which

we can see that, while the K-NN, the 1-NN and the CSCSOC classifiers

perform pretty poorly, the Gaussian, the CSCCHC and the CSS classi-

fiers result to be the best. Actually, an appropriate selection between

the CSCCHC and the CSS classifiers allows us to achieve a performance

higher than that obtained by the Gaussian classifier, as shown by the

fact that the ROC curve representing the Gaussian classifier is always

under the ROC curve of either of the two classifiers CSCCHC and CSS.
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(a)

(b)

Figure 8.7 First experiment: (a) ROC curves: Gaussian (red),
K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC (gray),
CSCSOC (magenta). (b) zoom of the most north-west part of
the ROC space.
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Figure 8.8 refers to the second experiment, in which we can see

that the 1-NN classifier performs pretty poorly, while the Gaussian, the

CSCCHC and the CSS classifiers achieve the best results. Actually, the

differences among the three classifiers are negligible (the ROC curve

of the Gaussian classifier is slightly higher) up to a point in which

the proposed classifiers (CSCCHC and CSS) outperform the Gaussian

classifier.

Finally the K-NN and the CSCSOC classifiers show intermediate

performance between the worst and the best classifiers.

Figure 8.9 refers to the third experiment, where we can notice that

once again the 1-NN classifier shows very bad results while the Gaus-

sian, the CSCCHC and the CSS classifiers obtain the best results. How-

ever, CSCCHC is by far the best classifier. Finally the K-NN and the

CSCSOC classifiers show intermediate performance between the worst

and the best classifiers.

As regards as the fourth experiment, Fig. 8.10 shows that the 1-

NN classifier is again the worst. Besides the Gaussian classifier is no

more among the best classifiers and its performance is comparable with

those of K-NN and CSCSOC classifiers. Finally, the CSCCHC and CSS

classifiers result to be by far the best.

As far as the fifth experiment is concerned, in Fig. 8.11 the 1-NN

classifier is still the worst classifier, the K-NN, the Gaussian, and the

CSCSOC classifiers obtain comparable, intermediate results (in particu-

lar, the Gaussian classifier achieves the worst results), and the CSCCHC

classifier achieves by far the best performance.

Finally Fig. 8.12 presents the results for the sixth and last experi-

ment. The 1-NN classifier is still the worst classifier. The K-NN, the

Gaussian, the CSCCHC and CSCSOC classifiers present quite similar,

intermediate performance. On the other hand the CSS classifier signif-

icantly outperforms all the other classifiers, resulting to be by far the

most accurate.

Summarizing the results thorough the six experiments, we can say

that the 1-NN classifier is always the worst classifier. The K-NN and

the CSCSOC classifiers improve their performances presenting accuracy

more similar to the Gaussian, CSCCHC , and CSS classifiers as more

damaged classes are used in the feature selection process. The Gaussian

classifier is generally the best among the traditional one-class classifiers,
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(a)

(b)

Figure 8.8 Second experiment: (a) ROC curves: Gaussian (red),
K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC (gray),
CSCSOC (magenta). (b) zoom of the most north-west part of
the ROC space.
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(a)

(b)

Figure 8.9 Third experiment: (a) ROC curves: Gaussian (red),
K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC (gray),
CSCSOC (magenta). (b) zoom of the most north-west part of
the ROC space.
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(a)

(b)

Figure 8.10 Fourth experiment: (a) ROC curves: Gaussian
(red), K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC

(gray), CSCSOC (magenta). (b) zoom of the most north-west
part of the ROC space.
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(a)

(b)

Figure 8.11 Fifth experiment: (a) ROC curves: Gaussian (red),
K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC (gray),
CSCSOC (magenta). (b) zoom of the most north-west part of
the ROC space.
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(a)

(b)

Figure 8.12 Sixth experiment: (a) ROC curves: Gaussian (red),
K-NN (yellow), 1-NN (green), CSS (blue), CSCCHC (gray),
CSCSOC (magenta). (b) zoom of the most north-west part of
the ROC space.
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however, increasing the number of faulty classes for feature selection, it

is outperformed by the two proposed one-class classifiers CSCCHC and

CSS. On the other hand, the CSCCHC and CSS classifiers are always

among the best classifiers throughout all the six experiments.

We can therefore claim that the two proposed one-class classifiers

have proved to be a valuable alternative to the traditional one-class

classifiers.

8.5.3 Conclusions to the experiments to compare tradi-

tional with proposed one-class classifiers

In this chapter we have dealt with diagnosis of rolling elements bear-

ings based on vibration signals represented in the frequency domain by

means of the FFT, registered by one accelerometer. We have coped

with this problem as a classification problem.

We have proposed the use of the convex hull, usually adopted in ap-

plication domains such as computer visualization, verification methods

and computational geometry problems, and the snake operator, typi-

cally employed for image segmentation, as two one-class classifiers for

rolling bearing fault diagnosis within CBM programs.

We have introduced two novel one-class classifiers, namely CSCCHC

and CSS, resulting from an appropriate integration of the convex hull

and snake operator classifiers. CSCCHC and CSS have been compared

with traditional one-class classifiers, such as Gaussian, 1-NN andK-NN,

in six experiments concerning the diagnosis of rolling bearing defects.

The proposed classifiers have proved to be very accurate being able to

achieve better results than traditional one-class classifiers in all cases

but one in which the difference between the proposed classifiers and the

Gaussian classifier (the best) is practically negligible.

We can therefore claim that the two proposed one-class classifiers

represent a valuable alternative to the traditional one-class classifiers.





Chapter 9

Conclusions

The purpose of this work was to design and develop new methodolo-

gies, with high levels of accuracy and robustness to noise, to perform

the detection, diagnosis and prognosis of defects on rolling elements

bearings.

We used vibration signals recorded by four accelerometers on a me-

chanical device including rolling element bearings: the signals were col-

lected both with all faultless bearings and after substituting one fault-

less bearing with an artificially damaged one. Four defects, namely,

indentation on the inner raceway, indentation on the roll, sandblasting

of the inner raceway, and unbalanced cage, and three levels of severity,

namely, light, medium, and high, were considered.

This research has carried out a complete analysis of advanced soft

computing techniques ranging from the multi-class and one-class clas-

sification to the combination strategies based on fusion and selection of

classifiers.

This research has started from the present state of the art and has

brought to the design and development of new maintenance methodolo-

gies to perform the prognosis and diagnosis of rotating machinery com-

ponents. The high levels of accuracy and robustness to noise, shown by

the results obtained in the performed experiments, prove the effective-

ness of such methodologies, which can be thus profitably used within

real-time condition-based maintenance programs.

Besides, we have also introduced two novel one-class classifiers re-

sulting from an appropriate integration of the convex hull and snake

operator classifiers. These new classifiers have proved to be very ac-
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curate and thus to represent a valuable alternative to the traditional

classifiers.

9.1 Future work

There are several interesting lines of research which arise from this Ph.D

work and that should be more deeply analyzed.

It would be of interest to apply the proposed methodologies to other

bearing fault data as well to extend the proposed study to the diagnosis

and prognosis of more types of faults and levels of severity.

Furthermore, a very interesting problem is the one related to the

balance of the data. Since more faultless samples than damaged ones

are likely to be collected, the use of different class-balancing algorithms

should be considered to increase the classification accuracy and the

robustness to noise.

Finally, the introduction of cost-sensitive classifiers instead of bal-

ancing algorithms should be taken into account. This way we could

further increase the performance of the presented classification sys-

tems/methodologies in terms of accuracy and robustness to noise.
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