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Abstract—System testing plays a crucial role in safety-critical
domains, e.g., automotive, where system test cases are used
to demonstrate the compliance of software with its functional
and safety requirements. Unfortunately, since requirements are
typically written in natural language, significant engineering
effort is required to derive test cases from requirements.

In such a context, automated support for generating system
test cases from requirements specifications written in natural
language would be highly beneficial. Unfortunately, existing
approaches have limited applicability. For example, some of them
require that software engineers provide formal specifications that
capture some of the software behavior described using natural
language. The effort needed to define such specifications is usually
a significant deterrent for software developers.

This paper proposes an approach, OCLgen, which largely
automates the generation of the additional formal specifications
required by an existing test generation approach named UMTG.
More specifically, OCLgen relies on semantic analysis techniques
to automatically derive the pre- and post-conditions of the activi-
ties described in use case specifications. The generated conditions
are used by UMTG to identify the test inputs that cover all the use
case scenarios described in use case specifications. In practice,
the proposed approach enables the automated generation of test
cases from use case specifications while avoiding most of the
additional modeling effort required by UMTG.

Results from an industrial case study show that the approach
can automatically and correctly generate more than 75% of the
pre- and post-conditions characterizing the activities described
in use case specifications.

I. INTRODUCTION

System testing plays a crucial role in the development
process of embedded software in safety critical domains, e.g.,
automotive, because system test cases are used to demonstrate
that the software meets its functional and safety require-
ments. This practice is enforced by safety standards, e.g. ISO
26262 [1].

Software requirements are commonly expressed by means
of natural language and, for this reason, system test cases
are typically derived manually by the software engineers.
Unfortunately, manual generation of system test cases is an
expensive and error-prone activity.

The adoption of automated techniques that reduce testing
costs and provide guarantees about requirements coverage
could be an important advantage for companies developing
safety-critical software. However, most of the existing ap-
proaches that generate system test cases from requirements
rely on simplistic natural language processing solutions that
limit their applicability.

Some approaches are based on the detection of specific
keywords (e.g., if and then) that enable the identification
of different use case scenarios [2], [3], [4]. The identified
scenarios are used to derive test cases that correspond to
sequences of use case steps. These test cases are, however,
abstract and only provide high-level guidance to the testers.
The mere identification of keywords, in fact, does not enable
the determination of actual input values to be used during
testing. For example, these approaches cannot automatically
determine that it is necessary to input a tension of 11 Volts in
order to check if the system complies with the specification if
the voltage is below 12 then signal low tension.

Other approaches [5], [6] require that software specifica-
tions be written according to a controlled natural language
(CNL) [7]. These approaches implement textual transforma-
tion rules specific to the CNL considered that translate CNL
specifications into formal specifications. The generated specifi-
cations are then processed to generate test inputs automatically
(e.g., using constraint solving). The CNL language supported
by these techniques is typically very limited as it only enables
engineers to use few verbs in requirements specifications.

Finally, other approaches that generate executable test cases
do not require a restricted vocabulary, but entail additional
modeling effort [8], [9]. These approaches rely on the identi-
fication of keywords to determine the sequences of use case
steps to consider during testing, but, in addition, they expect
that software engineers provide complementary formal speci-
fications that enable the automatic generation of concrete test
inputs. For example, UMTG (Use Case Modelling for System
Tests Generation) requires that engineers provide constraints
written using the Object Constraints Language (OCL) [10] to
capture the meaning of conditional sentences [8].

In this paper we propose OCLgen, a technique that auto-
matically derives constraints that capture either the effects
(post-conditions) of the activities described in a step of a
use case specification, or the pre-conditions described by the
conditional statement of a use case specification. We focus on
use case specifications because we build on UMTG and they
are frequently adopted to capture software requirements [11].

OCLgen complements the test generation approach named
UMTG by automating the definition of constraints expressed
using the OCL language, an activity that in UMTG is manually
performed by software engineers. OCLgen thus contributes to
further automating the generation of system test cases from
artifacts produced during requirements analysis (i.e., use case
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specifications and the domain model of the system).
A core contribution of the paper is the definition of text

transformation rules that rely on automated semantic analysis
techniques to generate OCL constraints without requiring the
adoption of a limited, constrained natural language.

OCLgen exploits recent advances in semantic analysis re-
search, such as semantic role labeling (SRL) techniques [12]
and lexicons [13], [14]. SRL techniques automatically deter-
mine the role of the nouns appearing in sentences (e.g., the
actor most directly affected by the action described in the
sentence). Lexicons enable the identification of synonyms.

OCLgen generates OCL constraints using text transforma-
tion rules based on the roles provided by SRL techniques.
More precisely, OCLgen uses the roles identified by SRL
to select the variables and operators to be included in the
generated OCL constraints. For instance, the noun that is
indicated by SRL as the actor most directly affected by the
action described in the sentence typically corresponds to the
object whose state should be captured by a post-condition.

OCLgen also relies on the VerbNet [14] and WordNet [13]
lexicon to determine if two verbs have the same meaning and,
as a consequence, if a same text transformation rule can be
adopted to process both. This choice enables the processing of
a big portion of the English vocabulary with a limited set of
transformation rules. The same rule can be reused to process
multiple verbs having the same meaning.

An industrial case study suggests that our approach is
promising as we can automatically and correctly generate 75%
of the constraints, the remaining 25% cannot be generated due
to a lack of precision in the use case specifications.

The paper proceeds as follows. Section II provides back-
ground information about UMTG, semantic role labelling,
and synonyms detection. Section III presents an overview
of the approach. Sections IV to IX give additional details
about the algorithmic choices behind OCLgen. Section X
discusses the completeness of the approach with respect to
the English vocabulary. Section XI provides an overview of
the empirical results obtained. Section XII discusses related
work. Section XIII concludes the paper.

II. BACKGROUND

A. System Testing with UMTG

UMTG is a technique that automatically generates exe-
cutable test cases by processing the use case specifications and
the domain model of a software system [8]. UMTG requires
that use case specifications are written according to the RUCM
format. RUCM is a use case format that provides restriction
rules and keywords constraining the use of natural language
that ease the automated extraction of data from use case
specifications. For details, the reader is referred to [15].

Table I shows a portion of the use case specifications used
to illustrate the UMTG approach in another work [8]. These
specifications describe the behaviour of a car seat occupant
classification system named BodySense™.

The basic flow section in the RUCM template captures the
main success scenario of a use case specification, sections

TABLE I
USE CASE Identify Initial Occupancy Status of a Seat

1 Precondition
2 The system has been initialized
3 1.1 Basic Flow
4 1. The seat SENDS occupancy status TO the system.
5 2. INCLUDE USE CASE Classify occupancy status.
6 3. The system VALIDATES THAT the occupant class for airbag control is

valid.
7 4. The system SENDS the occupant class for airbag control TO AirbagCon-

trolUnit.
9 Postcondition: The occupant class for airbag control has been sent.
11 1.2 Bounded Alternative Flow
12 RFS 2-3
13 1. IF voltage error is detected THEN
14 2. The system resets classification filters.
15 3. RESUME STEP 1.
16 4. ENDIF
17 Postcondition: Classification filters have been reset.
18 1.3 Specific Alternative Flow
19 RFS 3
21 2. The system SENDS the previous occupant class for airbag control TO

AirbagControlUnit.
22 3. RESUME STEP 1.
23 Postcondition: The previous occupant class has been sent.

named specific alternative flow capture the sequences of
steps taken when a certain condition does not hold (e.g., the
occupant class for airbag control not being valid in the case
of Table I), while bounded alternative flows capture activities
performed when a certain condition becomes true in a given
range of steps (e.g., a voltage error being detected before the
basic-flow steps number two or three in the case of Table I).

In Table I, capital letters are used to highlight the RUCM
keywords used to support automated processing in UMTG. The
keyword VALIDATES THAT, for example, indicates that the
system checks if a condition holds. The keyword IF ... THEN,
instead, is used in bounded alternative flows to indicate the
condition that activates the alternative flow. The keyword ..
SENDS..TO in Line 4 indicates that an input has been sent to
the system.

To support test case generation, UMTG requires that en-
gineers provide constraints written in the Object Constraint
Language (OCL) for every conditional clause appearing in the
use case specification (i.e., pre-conditions and steps containing
the keywords VALIDATES THAT and IF ... THEN). Since
internal steps may affect the evaluations in conditional steps,
UMTG also requires that engineers provide OCL constraints
that capture the post-conditions of every internal step. A
portion of the constraints required for the example use case
specification is shown in Table II.

To automatically generate test cases, UMTG first generates
a model capturing the sequences of steps appearing in a use
case specification. Figure 2 shows the model generated from
the specifications in Table I. UMTG then generates a different
test case for each path from the start step to an exit step of
the model. The test inputs of a test case are then identified by
solving the path condition that joins all the OCL conditions
associated with the steps appearing in the path. For example, to
generate a test case that covers the sequence of use case steps
in grey in Figure 2, UMTG joins the conditions appearing on
lines 2, 13 and 14, and generates an instance of the domain
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ated by constraint solving.

model that is a solution for the path condition (Figure 3).
UMTG then uses a mapping table to translate the abstract

test input generated (i.e., the domain model instance) into an
executable test case containing the concrete inputs to send to
the system under test. The executable test case generated for
the example above initializes the system, triggers a voltage
error (e.g., reduces the voltage of the circuit board) and then
checks if BodySense™ properly reacts (e.g., resets classifica-
tion filters).

Although UMTG can automatically generate test cases from
specifications, the effort required to specify additional OCL
constraints may prevent engineers from adopting UMTG.

B. Natural Language Processing and Semantic Role Labeling

Natural language processing (NLP) techniques extract struc-
tured information from documents written in natural language.
NLP techniques are implemented as a pipeline that exe-
cutes different analyses, for example tokenization, morphology
analysis, syntax analysis (e.g., part-of-speech tagging) and
semantic analysis (e.g., semantic role labeling) [16].

In this paper we rely on semantic analysis, more precisely
automated semantic role labelling (SRL) techniques. SRL
techniques process a sentence and automatically determine the
roles played by the phrases1 appearing in it, e.g., they can
identify the actor who is affected by an activity described in

1The term phrase indicates a word or a group of consecutive words.

a sentence [16]. Our choice is based on the observation that
determining the role of phrases is necessary for deriving pre-
and post-conditions. For example, to derive a post-condition
for a use case step, it is necessary to know who is affected by
the consequences of the activity.

Most of the existing NLP-based test generation [17], [18],
[19] and constraint generation [20], [21] approaches rely on
syntax analysis techniques like part-of-speech (POS) tagging,
which helps identify subjects and verbs, and dependency
parsing, which helps identify the determiners associated with
a word. The information provided by these techniques is
typically used to identify the concepts appearing in software
models or code (e.g., class names), but they are not capable of
directly identifying the role of phrases appearing in sentences.

If we consider the two sentences The system starts and The
system starts the database, SRL techniques can determine that
the actors affected by the actions described in these sentences
are the system and the database, respectively. This information
cannot be captured by POS tagging and dependency parsing
approaches, because the component that is started coincides
with the subject in the first sentence and with the object in the
second sentence, although the verb to start is used with active
voice in both.

A few automated SRL tools exist [22], [23], [24]. These
tools apply machine learning algorithms in order to perform
SRL, and they differ in the models adopted to capture semantic
roles. Semafor [22], [25], and Shalmaneser [23] are based
on the FrameNet model, while the CogComp NLP pipeline
(hereafter CNP [24]) is based on the PropBank [26] and the
NomBank models [27], [28]. According to our experience,
CNP is the only tool still under active development and for this
reason it has been used to implement the technique proposed
in this paper. CNP can be invoked either programmatically or
by using a Web interface [29].

In the following paragraphs we provide the details of the
SRL models adopted in the context of this paper, which are
PropBank and NomBank.

SRL tools based on the PropBank corpus [26] (e.g., CNP)
tag the words appearing in sentences with abstract keywords
(e.g., A0, A1, A2, AN) that capture the roles of the words
appearing in a sentence. The abstract keyword A0 always
indicates who (or what) is performing an action, while A1
indicates the participant most directly affected by an action.
The semantics of the other roles is specific to each verb,
although there are some commonalities. For example, A2 is
often used to indicate the end state of an action.

Tools based on PropBank use the keyword A1 to tag the
term The counter in the following three sentences The system
increases the counter, The counter was increased by the
system, The counter increased 5%. Also, in the two sentences
The system starts and The system starts the database, SRL
tools based on PropBank use the keyword A1 to tag the term
The system in the first sentence and the term the database in
the second sentence, thus enabling the automated identification
of the component which has been started.

The ProbBank model also includes additional semantic



TABLE II
SOME CONSTRAINTS FOR THE USE CASE ‘Identify Initial Occupancy Status of a Seat’.

Line Condition in the Use Case Corresponding OCL Constraint
2 The system has been initialized BodySense.allInstances()→ forAll(b|b.initialized = true)
6 the occupant class for airbag BodySense.allInstances()

control is valid → forAll(b|b.occupancyStatus.occupantClassForAirbagControl<>OccupantClass :: Error)
13 voltage error is detected VoltageError .allInstances()→ forAll(v |v .detected = true)
14 The system resets classification filters BodySense.allInstances()→ forAll(b|b.occupancyStatus.occupantClassForAirbagControl = null)

TABLE III
PROPBANK ADDITIONAL SEMANTIC ROLES USED IN THE PAPER.

Identifier Definition
AM-LOC Indicates a location.
AM-MNR Captures the manner in which an activity is performed.
AM-MOD Indicates a modal verb.
AM-NEG Indicates a negation, e.g. ’no’.
AM-PRD Secondary predicate with additional information about A1.

roles that are not verb specific. These roles are labeled with
general keywords and match adjunct information present in
different sentences (e.g., the keyword AM-NEG is used to
indicate that the verb is negated). Some of the ProbBank
additional semantic roles that are used in this paper are shown
in Table III.

The NomBank model, instead, captures the roles of nouns,
adverbs, and adjectives appearing in noun phrases. NomBank
relies on the same keywords adopted by PropBank.

When processing the sentence The system schedules the
daily jobs, the analysis based on ProbBank enables an SRL
tool (e.g., CNP) to indicate that the noun phrase the daily jobs
plays the role A1. The analysis based on NomBank, instead,
enables SRL tools to provide complementary information
indicating that the term jobs is the main noun, while the term
daily provides temporal information (labelled as AM-TMP).

C. Similarity Detection

The PropBank model does not help determine that two
distinct sentences describe similar concepts. When processing
the sentences The system stopped the database, The system
halted the database and The system terminated the database an
SRL tool based on PropBank labels the database with the tag
A1 thus indicating that the database is the thing that changes
its state in the three sentences. However, the tag A1 does not
enable us to determine that the three sentences have similar
meanings.

One of the available options to identify verbs with semantic
similarities is the VerbNet lexicon [30], which clusters together
verbs that have a common semantics. Each verb class is
provided with a set of role patterns that capture the roles
that commonly appear in clauses including these verbs. For
example <A1,V> and <A0,V,A1> are two of the role patterns
of the VerbNet class stop-55.4, which includes, among the
others, the verbs to stop, to halt and to terminate. The role
pattern <A1,V> indicates that a sentence can contain only the
verb and the actor whose state is altered (i.e., in the case of
the verb to stop, the actor that has been stopped). The role
pattern <A0,V, A1> indicates that a sentence can contain the

actor performing the stopping action (i.e, the phrase tagged
as A0), the verb, and the actor being stopped (i.e., the phrase
tagged as A1). Examples of these two frames are the database
stops and the system stops the database, respectively. In this
paper, we rely on VerbNet version 3.2 [31], which includes
272 verb classes and 214 subclasses (a subclass is a subset of
the verbs of a class that share specific semantics when used
with a particular role pattern).

VerbNet uses a role model different than PropBank. How-
ever, for each set of roles associated to verbs appearing in
VerbNet, there exist a mapping to the corresponding roles in
the PropBank model [14]. For the sake of simplification, in
this paper we use PropBank role labels only.

All the verbs appearing in a class are guaranteed to share
a common set of role patterns, which helps defining text
transformation rules based on semantic roles that can be reused
across all the verbs of a same class. However, not all the verbs
in a class are guaranteed to be synonym (e.g. the VerbNet class
stop-55.4 includes also the verb repeat). The state of the art
approach to identify verb synonyms is WordNet [32], which is
a database of lexical relations that uses sets of words (called
synsets) to cluster together words with the same meaning.

III. APPROACH OVERVIEW

The approach proposed in this paper, OCLgen, complements
UMTG [8] by automatically generating the OCL constraints
that in UMTG are manually written by engineers. UMTG
requires that engineers use OCL constraints to capture two
kinds of information: (1) the effect that the activities described
in internal steps have on the state of system (i.e., the postcon-
dition of internal steps) and (2) the pre-conditions described
in conditional steps and use case headings. OCLgen aims to
automate this process.

OCLgen requires the same inputs as UMTG: (1) textual
use-case specifications written according to RUCM [15], and
(2) a domain model of the system as a UML class diagram.
OCLgen automatically generates an OCL constraint for every
use case step that UMTG requires to be specified with an OCL
constraint.

To generate the OCL constraint that captures the meaning of
a use case step OCLgen leverages the capabilities of existing
SRL and similarity detection techniques. More specifically,
OCLgen selects the elements that should appear in an OCL
constraint based on the roles identified by SRL, decides the
comparison operators to be used in the constraints based on the
verb identified by SRL, introduces additional operators (e.g.,
negation) based on the additional semantic roles proposed by
SRL.



In OCLgen, the generation of OCL constraints is driven
by a set of transformation rules, each one tailored to the
meaning of a verb (OCLgen applies the rule corresponding to
the verb appearing in the use case step). To deal with general
use case specifications that are not limited to a very limited
constrained natural language, while keeping a manageable
set of transformation rules, OCLgen relies upon similarity
detection techniques. More precisely, the same rule is applied
to all the verbs belonging to the same VerbNet class that are
synonyms.

OCLgen executes four activities for each use-case step to
be translated to an OCL constraint:

1) Execute the SRL toolset of the University of Illinois
(CNP) on the sentence appearing in the use case step;

2) Based on the verb identified by CNP, select a set of
applicable transformation rules;

3) Execute each of the selected transformation rules. Each
transformation rule generates a candidate OCL constraint,
and assigns it a score.

4) Assign to the use case step the OCL constraint with the
highest score.

A sentence may lead to multiple OCL constraints (e.g., we
may apply multiple transformations rules to the same use case
step) and we want to generate the most precise constraint. For
this reason we adopt a scoring mechanism (activity 3 above)
which assigns the highest score to the OCL constraint that
reuses most of the information available in a use case step,
and is detailed in Section IX.

Table IV reports some examples of use case steps that are
used in the paper to describe how OCLgen works. Table IV
indicates the roles identified by CNP and the corresponding
OCL constraints that are generated by OCLgen. For example
in the case of sentence S1, CNP identifies “The system” in the
role A0 (actor who performs the action), “sets” as verb, “the
occupant class for airbag control” as A1, and “to Init” as A2
(final state). In the case of conditional steps, OCLgen ignores
the RUCM keyword The system VALIDATES THAT, which is
not useful to determine the corresponding pre-condition.

The following sections discuss the details of OCLgen.

IV. FORMAT OF THE OCL CONSTRAINTS

The constraints described in the use case specifications of
embedded systems are typically simple. For example, pre-
conditions and conditional steps usually describe safety checks
ensuring that the environment has been properly set up (e.g.,
Line 2 in Table II) or that values have been properly derived
(e.g., Line 6), while internal steps often describe updates of
state variables (e.g., Line 14). These types of constraints can
be expressed using the OCL language according to the pattern
reported in Figure 4, which allows us to capture assignments,
equalities, and inequalities. OCLgen focus on the generation
of constraints expressed with that pattern.

These OCL constraints include a class name, an optional
selection part, and an expression that should hold for all the
object instances i belonging to the selection (e.g., all the
instances of the class). The expression contains a left-hand

CONSTRAINT = CLASS .allInstances() [SELECTION] .forAll( EXPR )
EXPR = i | i.VARIABLE OPERATOR RHS
VARIABLE = ATTR | ASSOC { .ATTR | ASSOC }
RHS = VARIABLE | LITERAL;
SELECTION = → select( e | TYPESEL { and TYPESEL } )
TYPESEL = not e.TypeOf( CLASS )
Note: This pattern is expressed using a simplified EBNF grammar [33] where non-
terminals are bold and terminals are not bold. CLASS stands for a class name appearing
in the domain model, LITERAL is a OCL literal (e.g., ’1’ or ’a’), ATTR is an attribute
of a class in the domain model, ASSOC is the name of an association end appearing in
the domain model, OPERATOR is a math operator ( -, +, =, <, ≤, ≥, >).

Fig. 4. Pattern of OCL constraints generated by OCLgen.

Require: srl, a sentence annotated with the different roles identified by SRL
Require: systemClass, the main class of the system
Ensure: < ocl, score >, an OCL constraint with a score

1: function TRANSFORM(srl)
2: lhsVariables ←process srl and identify a set of variables that might appear
3: in the left-hand side of the OCL constraint
4: for each LHS in lhsVariables do
5: RHS ← identify the term to put on the right-hand side
6: OP ←identify the operator to use in the OCL constraint
7: SEL←if needed, build a sub-expression including the selection operator
8: if RHS 6= null and OP 6= null then
9: ocl ←build the OCL constraint using LHS , SEL, OP and RHS

10: score ←calculate the score of the OCL constraint
11: ocls ← ocls ∪ < ocl, score >
12: end if
13: end for
14: bestOcl ← select the OCL constraint with the best score from the list ocls
15: return bestOcl
16: end function

Fig. 5. Template structure shared by all the transformation rules.

side variable, an OCL operator, and a right-hand side term
(either another variable or a literal). The optional selection part
simply selects a subset of all the available instances based on
subtypes of the class CLASS.

V. TRANSFORMATION RULES

OCLgen implements a set of verb-specific transformation
rules that enable the automated generation of an OCL con-
straint from a use case step written in natural language. The
transformation rules implemented in OCLgen share a common
structure and execute a predefined set of activities that are
described in this section. Each transformation rule is associated
with a set of English verbs and is executed if one of the verbs
in the set appears in the use case step to process.

In Section X we discuss to what extent OCLgen covers all
the verbs of the English language. In the following sections,
to describe OCLgen we focus on the transformation rules
identified for the verbs to be, to set, and to enable.

Figure 5 shows the common algorithmic steps followed by
all the transformation rules implemented by OCLgen.

All the transformation rules rely on SRL roles to identify
the left-hand side variables (hereafter lhs-variables), operators,
selection elements, and right-hand side terms (hereafter rhs-
terms). For example, the phrases tagged with the role A1 are
usually used to determine the variable on the left-hand side of
an OCL expression.

All the transformation rules first identify a set of variables
that might be used on the left-hand side of the OCL expression
(Line 2 in Figure 5). Instead of identifying a single variable for
each OCL constraint to be generated, we opted for identifying



TABLE IV
SOME CONSTRAINTS FROM THE BodySense™ CASE STUDY, WITH TAGS GENERATED BY SRL.

# Sentence with SRL tags Corresponding OCL Constraint
S1 {The system}A0 {sets}verb {the occupant class for airbag BodySense.allInstances()→ forAll(b|b.itsOccupancyStatus.occupant

control}A1 {to Init}A2 ClassForAirbagControl = OccupantClass :: Init)
S2 {The system VALIDATES THAT}ignored {the NVM}A1 {is}verb

{accessible}AM−PRD

BodySense.allInstances()→ forAll(i|i.itsNVM.isAccessible = true)

S3 {The system}A0 {sets}verb {temperature errors}A1 {to detected}A2 TemperatureError.allInstances()→ forAll(i|i.isDetected = true)
S4 {The system VALIDATES THAT}ignored {the build check}A1 {has

been passed}verb

BodySense.allInstances() → forAll(i|I.buildCheckStatus =
BuildCheckStatus :: Passed)

S5 {The system VALIDATES THAT}ignored {no}NOM−NEG Errors.allInstances()→ select(e|!e.typeOf (VoltageError)and!e.typeOf (Memory
error {{except voltage errors}NOMNP and {memory
errors}NOMNP }NOM−A2}A1 {is detected}verb

Error))→ forAll(i|i.isDetected = false)

TABLE V
SUPPORT ROLES APPEARING IN OUR EXAMPLES

Rule (identified with the corresponding verb) Support roles
to be AM-PRD
to enable AM-MNR
to set A2
META− VERB − RULE AM-PRD,Verb

a set of potential variables to be used for generating a
corresponding set of OCL constraints and then select the OCL
constraint with the highest score.

The algorithm iterates over the lhs-variables identified to
generate a distinct OCL constraint for each one (Lines 4 to 13
in Figure 5). However, if the operator or the rhs-term of the
OCL expression is not identified, then the OCL constraint is
not generated (Line 8).

If all the required elements are available, then the algorithm
builds the OCL constraint according to the pattern reported
in Figure 4 (Line 9 in Figure 5) and finally calculates the
associated score (Line 10). Section IX provides details about
the formula used to calculate the score.

In addition to transformation rules specific for the different
verbs that can appear in use case steps, OCLgen includes a
general transformation rule that is applied for any verb. We
call this meta-verb transformation rule. This transformation
rule is based on the observation that use case steps are often
translated to OCL constraints whose lhs-variable is an attribute
whose name matches the name of the verb (or they are
similar). Additional details about this transformation rule are
provided in the rest of the paper. For every use case step,
OCLgen applies both the verb-specific transformation rule and
the meta-verb transformation rule and then selects the OCL
constraint with the highest score.

Sections VI to IX describe the different operations per-
formed during the execution of the algorithm, i.e., identifying
the lhs-variables, identifying the rhs-term, identifying the
operators to appear in the OCL constraint, and finally scoring
the generated constraints.

VI. IDENTIFICATION OF THE VARIABLES TO BE USED ON
THE LEFT-HAND SIDE OF THE OCL EXPRESSION

All the transformation rules identify the lhs-variables by
performing the same set of operations, which are captured
by function findVariables, reported in Figure 6. The behavior
of this function depends on a set of support roles. Support
roles correspond to a subset of SRL roles specific to each

1: function FINDVARIABLES(srl, systemClass, SupportRoles)
2: //Find an attribute of the system class with a name that matches A1
3: termA1 ← preprocess(srl.get(A1))
4: attr ← findAttribute(systemClass, termA1 )
5: Vars ← Vars ∪ attr
6: //Find a class with a name that matches A1
7: class ← findClass(termA1 )
8: if class 6= null then
9: for role in SupportRoles do

10: //Check if the class contains attributes matching the support roles
11: attr ← findAttribute(class, srl.get(role))
12: if attr 6= null then
13: Vars ← Vars ∪ attr
14: end if
15: end for
16: end if
17: //Find boolean attributes that match the additional roles to process
18: for var in Vars do
19: Vars ← Vars ∪ identifyBoolVars(srl, var ,SupportRoles)
20: end for
21: end function

Fig. 6. The algorithm to identify lhs-variables.

transformation rule that help the identification of lhs-variables.
Table V shows the support roles for the different transforma-
tion rules considered in the examples reported in the paper. The
use of support roles in OCLgen is described in the following
paragraphs.

In general, we expect that the phrase tagged as A1 (i.e., the
actor that is affected by the action described in the use case
step) provides part of the information required to identify the
lhs-variable (e.g., it may indicate the class it belongs to), while
the support roles provide information to further characterize
this variable (e.g., a support role may indicate which attribute
of the class identified by A1 should appear in the lhs-variable).

The strategy adopted for identifying lhs-variables is strongly
influenced by the practices commonly followed by engineers
when producing a domain model [11]. We have identified five
modelling choices that affect the resulting domain model and,
as a consequence, the format of OCL constraints:

1) In the case of embedded systems, the domain model
often includes a system class with attributes that capture
information about the system state. This mainly depends
on the fact that use case specifications often describe
abstract state-based behaviors, and thus state information
needs to be included in the domain model. BodySense is
the system class for the model in Figure 1.

2) In general, the concepts appearing in requirements speci-
fications are modeled as classes, associations or attributes
in the domain model.



3) The names of the attributes and associations appearing in
the domain model are usually consistent with the phrases
appearing in use case specifications.

4) Sometimes additional classes are introduced in the do-
main model to group concepts that are modelled using
attributes.

5) Boolean attributes often have names that are representa-
tive of a system state (e.g., isAccessible), while in the case
of other types of attributes state information is captured
by the values assigned to the attribute (see for example
buildCheckStatus appearing in S4 in Table IV).

To identify attributes while accounting for the five points
above, OCLgen adopts a flexible approach: it does not try
to determine which choices have been made during modeling
(e.g., whether attributes appear in a system class or in another
class), but identifies lhs-variables assuming that any of those
five choices may possibly hold, as described in the following.

To deal with the presence of a system class (Item 1
above), OCLgen checks if the system class (the name is
provided by software engineers) contains an attribute whose
name best matches the phrase tagged as A1 (Line 4 in
Figure 6).

To deal with concepts appearing in classes different than
the system class (Item 2), OCLgen uses the phrase tagged
as A1 to identify the class that should contain the lhs-variable
(Line 7) and then looks for an attribute name that best matches
one of the terms tagged with support roles (Lines 8 to 16).

To identify the class name to use in the OCL constraint,
OCLgen looks for a class whose name has a minimal distance
from the phrase labeled as A1. To this end, OCLgen relies
on the Needleman-Wunsch string alignment algorithm [34],
which maximizes the matching between characters and allows
for some degree of discrepancy between the class name and
the concept in the use case specifications.

In the case of sentence S3 in Table IV, function findVari-
ables first detects that the class to consider is TemperatureEr-
ror, then it determines that class TemperatureError contains
an attribute with a name (i.e., isDetected) that best matches
the name of the term tagged as A2 (i.e., detected).

To identify the attribute (or association) that best
matches a phrase (Item 3), OCLgen first preprocesses the
given phrase (i.e., removes spaces and preceding articles).
Then it looks for an attribute (or association) whose name
is a prefix or a postfix of the tagged phrase or, vice-versa, it
looks for an attribute (or association) that starts or ends with
the tagged phrase. For each matching attribute (or association),
OCLgen computes a similarity score equal to the percentage of
matching characters. When a matching attribute is not found,
the process is repeated considering only the root of the given
phrase (this allows to deal with plural names). OCLgen keeps
the attribute with the best score.

For example, in the case of sentence S2 in Table IV,
OCLgen adds the attribute BodySense.itsNVM to the list of lhs-
variables because it terminates with NVM, the phrase tagged
as A1 in sentence S2 (the score is 0.5 in this case).

To deal with classes introduced in the domain model
to group attributes (Item 4), OCLgen traverses all the
associations to classes related to the system class (or another
class considered to identify the lhs-variable) and checks if
these classes contain an attribute that best matches the phrase
labelled with the role used to identify the attribute name
(A1 or a support role). If a matching attribute is found then
the attribute score is divided by the number of associations
traversed. This compensates for the fact that the considered at-
tribute might be loosely related to the class initially considered
for the search (i.e., the system class or a class corresponding
to the role A1).

In the case of sentence S1 in Table IV the lhs-variable
BodySense.itsOccupancyStatus.occupantClassForAirbagCon-
trol is identified by traversing an association of the system
class BodySense. In this case, the resulting score is equal
to 0.5 because we have traversed one association (i.e.,
OccupancyStatus) and we have a perfect match between the
attribute name and the noun phrase tagged as A1.

To deal with boolean attributes (Item 5), OCLgen further
refines all the lhs-variables with a complex type (i.e., a class
or a data type) by checking if they contain a boolean attribute
that best matches one of the support roles appearing in the use
case step (Lines 18 to 20 in Figure 6).

For example, in the case of sentence S2, OCLgen refines the
variable BodySense.itsNVM, which was identified in previous
steps. In this case, function appendAdditionalAttributes adds
the variable BodySense.itsNVM.isAccessible to the list of lhs-
variables because the class pointed by itsNVM contains a
boolean attribute (i.e., isAccessible) with a name similar to
the term tagged as AM-PRD (i.e., accessible).

The flexible approach implemented by OCLgen for the
identification of lhs-variables leads to the identification of
multiple lhs-variables for each use case step. Each lhs-
variable has a score that is the average of the score
of all the attributes/associations appearing in this vari-
able (separated by dots). For example, in the case of
sentence S2, function findVariables returns a list with
three variables: BodySense.itsNVM, NVM.isAccessible and
BodySense.itsNVM.isAccessible with scores 0.5, 0.83 and 0.66,
respectively (details of the computation appear in Table VI).

VII. IDENTIFICATION OF THE TERM TO BE USED IN THE
RIGHT-HAND SIDE OF THE OCL EXPRESSION

The rhs-term can be a literal, a variable, or a constant, and it
captures some information about the value of the lhs-variable
(e.g., it may indicate the value assigned to the lhs-variable after
the ’execution’ of the internal step of a use case specification).

OCLgen selects the rhs-term based on the type of the lhs-
variable and on the support roles appearing in the sentence
that were not already processed to select lhs-variables.

If the lhs-variable is of a boolean or numeric type, then
the rhs-term is identified by translating phrases tagged with
support roles into boolean or numerical form. For example, in
the case of the verb to set the value is usually indicated by
the term tagged as A2, which, in the case of the verb to set,



indicates the final state to which the term tagged as A1 has
been set.

When the lhs-variable is a numeric type it often happens
that the value on the right-hand side corresponds with a
constant. To deal with these cases, when the word tagged with
a support role cannot be translated to a boolean or numeric
value, OCLgen looks for a constant in the domain model that
best matches it.

Also, if the lhs-variable is a boolean and semantic role
labeling indicates that the verb used in the use case step is
negative, OCLgen negates the value to be used.

Instead, if the lhs-variable is of an enumeration type,
OCLgen checks if the enumeration contains a value that best
matches the phrases tagged with support roles. An example is
sentence S4 in Table IV, where BodySense.buildCheckStatus
is the lhs-variable in the OCL expression, which is of an
enumeration type, BuildCheckStatus. Since this enumeration
contains a term that matches the root of the verb appearing
in S4 (i.e., pass), then the literal BuildCheckStatus::Passed is
selected as rhs-term.

In the presence of boolean lhs-variables, or in certain
transformation rules (e.g., reset), OCLgen uses default values
when no phrase has been tagged with a support role, or
when the word tagged with the support role has been used to
determine the lhs-variable. This happens, for example, in the
case of sentence S3, where the role A2 determines the name
of the attribute, which is a boolean, and the default value true
is thus used for the rhs-term.

OCLgen assigns a score also to the rhs-term. When the rhs-
term is a boolean, numeric or enumeration literal the score is
always set to one because in these cases OCLgen generates a
rhs-term only in the presence of an exact match with the phrase
tagged by the support role. When the rhs-term is a variable,
the score is computed as in the case of the lhs-variable.

VIII. IDENTIFICATION OF THE OCL OPERATORS

The identification of the operator to be used in the OCL
expression depends on the verb appearing in the sentence.

For most of the verbs we use the equal operator. For the
verb to be, instead, we rely on the approach of Roy et al. [35].
This approach, for example, enables OCLgen to determine that
the operator ’>’ should be used in the case of the sentence
“temperature is above 10”.

For what it concerns the selection operator, instead, we have
developed a solution that deals only with the pattern described
in Figure 4, i.e., when the selection operator is used to exclude
a subset of class instance types from a set. For example, in
the case of sentence S5 in Table IV, the selection operator is
used to indicate that the OCL expression holds for any error
except memory errors and voltage errors.

OCLgen introduces a selection operator in the generated
OCL constraint when the phrase tagged with A1 contains the
keyword except. To identify the names of the class types to be
excluded by the selection operation, OCLgen relies on the tags
generated according to SRL NomBank. More precisely, it first
identifies the adverbial clause that specifies which types should

be excluded by the selection operator (this is done by looking
for the phrases tagged as A2 by SRL) and then identifies all
the distinct noun phrases within this clause (voltage errors and
memory errors in the case of S5).

IX. SCORING OF THE GENERATED CONSTRAINTS

The score associated with an OCL constraint should ideally
measure both the completeness and correctness of the OCL
constraints. Completeness relates to the extent to which all
the concepts appearing in the sentence are accounted for.
Correctness relates to how similar are the variable names
in the OCL constraint to existing concepts in the use case
specifications.

OCLgen measures the completeness of an OCL constraint
in terms of the percentage of roles present in the use case
sentence that are used to identify the terms of the constraint.

To compute the correctness of the lhs-variable and the rhs-
term, instead, we use the following formula
correctness = (lhsScore+rhsScore+matchUniversalDeterminer)

3
where lhsScore and rhsScore are the similarity scores com-
puted when identifying the lhs-variable and the rhs-term, re-
spectively. matchUniversalDeterminer is a variable attempting
to capture whether universal determiners (e.g., any, every, or
no) are properly reflected in the constraint. If that is the case,
the numerator of correctness is increased by one.

Properly processing universal determiners is important to
derive precise constraints. For example, when applied to
sentence S2 of Table IV, OCLgen may generate two valid OCL
constraints, which are shown in the second and third line of
Table VI. Ideally, in this case, we would like to prioritize the
constraint on the third line because the use case step does not
explicitely indicate that all the NVM components should be
considered (we may have more than one).

We thus consider universal determiners to be properly
reflected in a constraint in the following two cases: (1) When
a universal determiner does not appear in the noun phrase
tagged with A1 and the constraint refers to a specific instance
associated with the system class (this is the case of sentence
S2 above). (2) When a universal determiner appears in the
noun phrase tagged with the role A1 and the constraint refers
to all the instances of the type matching this phrase (this is
the case of sentence S5 that checks if all the instances of class
Error have the attribute isDetected set to false).

The score of an OCL constraint is computed as the average
of the completeness and correctness score. Table VI shows
the score of the OCL constraints generated by OCLgen for
sentence S2 in Table IV.

X. COMPLETENESS AND GENERALIZABILITY

The transformation rules integrated into OCLgen are verb-
specific, which may limit the applicability of the approach
because of the need to implement a considerable number of
transformation rules. For example, the Unified Verb Index [36],
which is a popular lexicon in the NLP community based on
VerbNet and other lexicons, includes 8,537 English verbs.



TABLE VI
OCL CONSTRAINTS SCORING EXAMPLE FOR SENTENCE S2 OF TABLE IV

Candidate OCL Score
1 BodySense.allInstances()→ forAll(i|i.itsNVM = ...) −
2 NVM .allInstances()→ forAll(i|i.isAccessible = true) 0.33
3 BodySense.allInstances() →

forAll(i|i.itsNVM .isAccessible = true)
0.94

Notes on the computed values:
The OCL constraint on the first line is ignored because incomplete (the attribute
BodySense.itsNVM is a class type and does not enable the identification of any rhs-
term). The constraint on the second line receives a score of 0.81, which results from a
completeness score of 1 (all the roles are used to identify the constraint terms), and a
correctness score of 0.61. The lhs-variable score is 0.83 and results from the division
of the length of the word accessible (i.e., 10) by the length of the variable named
isAccessible (i.e., 12). The score of the rhs-variable is equal to one, while the score for
the universal determiner is zero because the constraint refers to all the instances of class
NVM although no universal determiner is used in the use case step. The algorithm then
computes (0.83+1+0)/3 = 0.61. In the case of the third constraint, the OCL score
results from a completeness score of 1 (all the roles are used) and a correctness score of
0.87. The lhs-variable score is 0.66, which is the average between the score computed
for attribute itsNVM (i.e., 0.5), and the score computed for the attribute isAccessible (i.e.,
0.83). Then, since the score for the rhs-term is equal to 1 and the generated OCL refers
to the system class, the correctness score is computed as (0.66 + 1 + 1)/3 = 0.87.

TABLE VII
VERBS UNLIKELY TO APPEAR IN USE CASE SPECIFICATIONS.

Reason for Exclusion Example Verbs
Verbs describing a human feeling love, like
Verbs describing a human sense smell, taste,
Verbs describing human behaviors wish, hope, wink, cheat, confess
Verbs describing body internal motion giggle, kick
Verbs describing body internal states quake, tremble
Verbs describing manner of speaking burble, croak, moan
Verbs describing nonverbal expressions scoff, whistle
Verbs describing animal sounds / behaviours bark, woof, quack
Communication verbs tell, talk

We rely on two key solutions to make OCLgen scale
and enable the processing of general use case specifications
without the need for writing and testing hundreds of transfor-
mation rules. First, we rely on VerbNet classes to use a single
transformation rule to target different verbs. Second, we have
identified a subset of English verbs that are unlikely to appear
in software requirements specifications, thus reducing the total
amount of transformation rules that need to be implemented.

Since all the verbs appearing in a VerbNet class are guaran-
teed to have the same semantics (i.e., they appear in sentences
with the same roles) we reuse the same transformation rule
for all the verbs of a class that also happen to be synonyms
according to WordNet.

To determine the subset of English verbs that should be
targeted by OCLgen we have manually inspected all the classes
of verbs appearing in VerbNet to determine if there exist
classes that are unlikely to be used in software requirement
specifications. We have identified nine main reasons to exclude
verbs and we report them in Table VII along with some
examples of the verbs excluded by our analysis. For example,
we do not expect to find verbs describing human feelings. We
excluded 225 VerbNet classes and 175 VerbNet subclasses.
The results of our analysis are available online [37].

In addition to manually filtering out classes of verbs that are
unlikely to appear in use case specifications we have further
analyzed the remaining verbs to determine if the concepts
expressed by those verbs are likely to be captured by OCL

constraints that are generated by the meta-verb transformation
rule. This further analysis shows that only 33 dedicated
transformation rules are required to process the 87 classes
of verbs likely to appear in requirements specifications. In
our current implementation of OCLgen we have implemented
seven transformation rules, including the meta-transformation
rule, which enable the approach to handle 408 verbs.

XI. EMPIRICAL EVALUATION

We have performed an empirical evaluation of OCLgen
aimed at addressing the following three research questions:

RQ1 Does OCLgen generate correct OCL constraints?
RQ2 To what extent does OCLgen support the automated
generation of OCL constraints from use case specifications?
RQ3 What are the factors that limit OCLgen effectiveness?

A. Object of the study

The object of the study is BodySense™, an automotive em-
bedded system developed by IEE [38], our industrial partner.
To perform our study we have used the domain model, the use
case specifications, and the OCL constraints that we used in
previous work to generate test cases for BodySense™ [8].

B. Methods and Results

To respond to RQ1 we have compared the OCL constraints
generated by OCLgen with the OCL constraints manually
written by BodySense™ engineers to adopt UMTG. All the
OCL constraints for UMTG follow the pattern in Figure 4 and,
for this reason, the comparison has been fully automated. In
general, when processing a use case step, OCLgen can either
generate a correct OCL constraint, a wrong OCL constraint,
or it may not generate any result.

This research question aims to evaluate the precision of
OCLgen. We compute the precision of OCLgen as the per-
centage of OCL constraints generated by OCLgen that are
correct. OCLgen generates 69 OCL constraints in total, 66
of which are correct. The precision of OCLgen is thus 0.97,
which is impressive since it shows that almost every time
OCLgen generates a constraint, it generates the right one.

To respond to RQ2 we measured the recall of OCLgen as
the percentage of OCL constraints required by UMTG that
were correctly generated by OCLgen.

OCLgen correctly generates 66 OCL constraints out of the
87 constraints required by UMTG, thus leading to a recall
of 0.76. This value clearly indicates that the effort saved by
OCLgen is significant since it correctly generates more than
75% of the constraints required by UMTG.

To respond to RQ3 we have manually inspected the sen-
tences not processed by OCLgen.

The main factor that affects the results generated by OCLgen
is the presence of imprecise specifications. For example, the
use case step The system VALIDATES THAT the temperature is
valid does not provide enough information to understand what
is a valid temperature (e.g., a temperature in a given range).
Other cases where OCLgen fails are due to inconsistencies
between the terminology used in use case specifications and in



the domain model. For example, the constraint expected for the
use case step the occupancy status is valid (Table II), cannot
be automatically derived because it is not straightforward to
determine that is valid should be translated to <> Error (the
noun error is not even an antonym of the adjective valid).

It is, however, possible to be more precise and consistent
with domain modeling. For example, the notion valid can be
defined as a derived attribute in the model. Such practice,
which is standard with domain modeling [11], would make
all or nearly all constraints processable by OCLGen.

C. Threats to validity

The main threat to validity in our study relates to generaliz-
ability, a common issue with industrial case studies. OCLgen
might be tailored to BodySense™ (T1) and this system might
not be representative (T2).

In Section IV, we have shown that the OCL patterns handled
by OCLgen are expressive enough for embedded systems, thus
partially addressing threat T1. Further, we have verified that
OCLgen can generate constraints from sentences containing
any of the patterns of the VerbNet classes.

To deal with threat T2, we have considered industrial use
case specifications and OCL constraints that were developed
in a representative automotive context, long before OCLgen
was designed and developed.

XII. RELATED WORK

Our discussion of related work addresses the automated
generation of executable system test cases and OCL constraints
from requirements written in natural language.

Approaches that automatically generate executable test
cases from requirements written in natural language require
that software specifications be written according to a con-
trolled natural language (CNL) [5], [6]. The main difference
between these approaches and OCLgen, is that the latter works
in a specific context (use case specifications and domain
modeling) but without relying on a constrained language.
OCLgen has been conceived to work with UMTG, which
requires that use case specifications be written according to
RUCM, a format that imposes some restrictions on the use of
natural language (e.g., it introduces some keywords). However,
RUCM does not restrict the set of verbs or nouns that can be
used in use case steps and thus does not limit the capability
of engineers to describe the interactions between actors and
the system. Furthermore RUCM keywords are used to specify
input and output steps but do not constraint the writing of
internal steps or validation steps (i.e., the ones processed
by OCLgen). On the other hand, approaches using CNLs
introduce stronger limitations, e.g., NAT2TEST [6] supports
only seven verbs of the English language. Further, because
these approaches are based on transformation rules that are
verb specific, they are hard to extend. OCLgen, instead, relies
on VerbNet classes to enable the processing of general use
case specifications with a limited set of transformation rules.

Other works [39], [20], [21] focus on the generation of
class invariants and method pre- and post-conditions, from

requirements written in natural language, which, in principle,
could be used for the purpose of testing. Pandita et al.
focus on API’s description [39] written according to a CNL
and thus cannot process general requirements specifications.
NL2OCL [20] and NL2Alloy [21], instead, process a UML
class diagram and requirements in natural language to derive
class invariants and method pre- and post- conditions. These
approaches rely on an ad-hoc semantic analysis algorithm that
uses information in the UML class diagram (e.g., class and
attribute names) to identify the roles of words in sentences
(e.g., an attribute is a characteristic), and rely on the presence
of specific keywords to determine passive voices or identify
the operators to be used in constraints. The generation of
constraints is rule-based and the authors do not provide a
solution to ease the processing of a potentially large number
of verbs with a reasonable number of transformation rules.
Thanks to the meta-verb rule and the exploitation of VerbNet
classes, in contrast, OCLgen can process a large set of verbs
with few transformation rules.

Though NL2OCL [20] and NL2Alloy [21] are no longer
available for comparison, they seem more useful for deriving
class invariants including simple comparison operators (which
was the focus of the empirical evaluation in [20]), rather than
for generating pre- and post-conditions (which is the focus of
OCLgen). Pre- and post-conditions are necessary for deriving
test inputs, while class invariants are not. This is the reason
why in this paper we focus on testing and leave the analysis
of other application contexts of OCLgen for future work.

XIII. CONCLUSION

In this paper we presented OCLgen, an approach that auto-
matically generates OCL constraints that capture the pre- and
post-conditions of the steps appearing in use case specifica-
tions written in natural language. The approach complements
UMTG, a technique that automatically generates an executable
test suite that covers all the use case scenarios appearing in use
case specifications. More specifically, OCLgen automates the
generation of OCL constraints, from their natural language de-
scriptions, that are required by UMTG to derive test inputs. In
UMTG, OCL constraints are manually provided by engineers.

Empirical results obtained with the use case specifications
of an automotive system show that OCLgen automatically
generates more than 75% of the OCL constraints required
by UMTG. Furthermore, we observe that more than 95%
of the constraints generated by OCLgen are correct. These
results show that OCLgen is a promising step towards the
fully automated generation of system test cases from natural
language use case specifications. A manual analysis shows
that the cases where OCLgen fails are due to imprecise and
incomplete natural language specifications.
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