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Abstract

Development of Variable Impedance Actuators (VIA)

is a recent evolution in robotics to face challenges as

adaptability to the environment, energy saving, safety

and robustness. VIA allow to change the impedance of

the limbs of a robot using physical elastic and dissipa-

tive elements rather than through traditional Impedance

Control.

This leads to the problem of controlling a VIA, one

important aspect of this problem lies in the absence of

sensors able to measure on-line the mechanical imped-

ance of a system. This thesis deals with the problem of

impedance parameters observation in a VIA robot. This

in order to develop an instrument to be used in imple-

menting real closed-loop control of impedance of a VIA.

After an introduction to VIA and traditional imped-

ance measurement techniques, we follow an innovative

approach to derive an observer able to estimate in real-

time the impedance of a VIA.

In particular three observers are presented: a non-

parametric stiffness observer, a parametric stiffness ob-

server, and an impedance observer able to estimate either

non-linear time-varying stiffness, as long as linear damp-

ing and inertia coefficients. Derivation of the algorithms

is shown and both simulation and experimental results

are presented to support the thesis.
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Foreword

This thesis is presented for the obtainment of the title of Dottore di

Ricerca (Doctor of Philosophy) by the candidate Giorgio Grioli. It

covers the main part of his studies on Variable Impedance Actua-

tion, performed within the “E. Piaggio” Interdepartmental Research

Center.

During my Ph.d. course I brought forward research in the area of

Physical Human-Robot Interaction and Variable Impedance Robot-

ics, contributing to several advancements in the design and control

of a novel generation of robots. However, for the sake of coherence

and focus, this thesis is organized as a monograph of one of the top-

ics investigated in my work, which I consider most innovative and

impacting.

Other result of my work led to several publications and a patent

application. In particular [A1, A2]1, [A3] and [A4] report about my

contribution to the state of the art of Variable Impedance Actua-

tors, with the development and characterization of VSA-2, VSA-HD

and the VSA CUBE-Bot, for which a European patent application

[A5] has been filed, [A6] describes the development of the DAVID

1Awarded with the ICRA 2008 best manipulation paper.
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lunar exploration rover within the “ESA Lunar Challenge” competi-

tion2, [A7, A8] are studies on human perception and learning through

haptic devices and [A9] is a study on characterization of non-linear

chaotic systems.

My work is framed within two international research projects

funded by the European community: PHRIENDS [W13] and VIAC-

TORS [W14], both related to Physical Human-Robot Interaction

and Variable Impedance Actuation.

2The team of the University of Pisa qualified for the final phase of the com-

petitions and qualified on the second place.
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Introduction

Theory of impedance is of capital importance when modeling a com-

plex mechanical system, in order to understand its behavior and to

control it as well. Modeling a mechanical system through impedance

is, nowadays, a very consolidate and rooted technique, and almost

every engineering book is based on such approach.

Nevertheless, in the 80’s, the concept of impedance has found

novel application in the field of robotics, as a mean to design the

control of a robotic manipulator which is deemed to interact with the

environment. Neville Hogan proposed in [16] the so-called Impedance

Control. He proposed the idea of designing the control law of a robot

in order to let its exposed behavior be that of an impedance. Since

the environment surrounding a robot can usually be modeled as an

admittance, the robot should behave as an impedance in order to let

the two systems complement each other in terms of causality.

Designing the control of a robot with this strategy has two im-

portant properties: First, impedances combine in a linear way, even

when they are non-linear, so if the dynamic behavior of the robot

is built out of a set of “Impedance blocks” the resulting impedance

is just the sum of those blocks. Second, impedances are passive

3
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mechanical systems, thus designing a controller which lets a robot

behave as an impedance allows for important consideration about

the stability of the overall interaction dynamics [17].

The birth of Variable Impedance Actuation

The development of robots which can operate outside a structured

environment (e.g. factories) and can interact with unknown scenar-

ios, people and even other robots, is one of the main goals of Robotics

itself. Impedance control was is important instrument to face such

problems.

Most of today’s robots are built with rigid links and joints, thus

Impedance Control is obtained through design of suitable control

laws, ultimately hiding the robot with a virtual (software or active)

impedance.

More recent robotic research shifted toward a new paradigm of

intrinsically compliant robots. Intrinsic (hardware or passive) im-

pedance in robots can empower many applications, for example al-

lowing safety [18], and interaction control [16], saving energy [19],

and preserving mechanisms integrity [20]. The first design solutions

to take advantage of this idea consisted in the introduction of linear

springs between the actuators and the links of a robot [21]. This

approach was later improved by realizing actuators which integrated

adjustable stiffness, where springs, which could be tuned to the par-

ticular task [22].

Latest developments led to a new category of devices, which goes

under the name of Variable Stiffness Actuators or VSA, actuators

with the possibility to tune stiffness during the execution of the task

4
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INTRODUCTION

itself [23], and [24] (for a complete reference see [25] ). Recently, de-

vices which can also regulate damping [26] or inertia [27] have been

proposed, thus generalizing Variable Stiffness Actuators (VSA) in

Variable Impedance Actuators (VIA) This new trend aims toward

the development of VIA [W14] that can adapt to the particular tasks

and even during the task itself, changing the shape of their output

dynamic characteristic, eventually with more than one degree of free-

dom of impedance adjustment.

Control of a Variable Impedance Actuator

From the most general viewpoint a Variable Impedance Actuator

device is a motor that presents a certain input-output characteristic

which can be changed with at least two degrees of freedom, giving

the ability to regulate both the output rest position (thus the word

actuator in the name) and, to a certain extent, the shape of the

output characteristic (thus Variable Impedance). The presence of

these two degrees of freedom in the control is what gives these devices

their main advantages. Nevertheless this important feature opens an

interesting problem, that is: how this second control input has to

be used. This problem can be further decomposed in at least three

parts (symbolically resumed in the picture):

1. How to design the impedance trajectory in order to obtain

some goal,

2. how to match the actuator impedance to the desired one,

3. how to measure impedance in order to regulate it.

5



INTRODUCTION

Problem number 1 is an optimization problem, that in the more

general case, also presents constraints. While solving techniques are

not always trivial and resort to numeric methods, it is more relevant

to state which is the problem to be solved, i.e. the choice of the target

function and the constraints. One important specialization of this

problem is the safe brachistochrone, answering the question of time

optimization with safety constraints; other typical approaches are

energy saving or transmission, and vibration damping just to name

some. Other approaches, finally, aim to the imitation of human or

animal behavior patterns.

Question number 2 translates in the control problem of a, typ-

ically, non-linear system. It can be solved using classical control

theory: PD regulator and feedback linearization are just two of the

solutions that were presented in literature.

The third problem is, in the opinion of the author, the one still

offering the largest improvement margins, and is the main topic of

this thesis. The typical solution, which has been almost universally

adopted in literature, is to measure the internal configuration of the

VIA device and, through a model of it, reconstruct what the actual

Impedance value is. This approach to the problem presents all the

typical drawbacks imputable to model-based control: heavy reliance

on the knowledge of the model brings arbitrary sensitivity to errors

in model and parameters.

The new research line, that has been followed in this work, is the

design of an algorithm to observe Impedance, which, relying on the

few prior knowledge as possible, is able to estimate in real-time the

value of the output impedance. This in order to feed it to the regu-

lator and, eventually, to the higher level in the control and planning

6
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INTRODUCTION

hierarchy, implementing real closed loop control of impedance in a

VIA.

Executive Summary

First chapter is an introduction to the concept of impedance of a me-

chanical system, from its intrinsic differential nature to the various

elements that physically constitute impedance.

Second chapter presents and discusses some commercial and aca-

demic techniques to identify the impedance of mechanical systems,

derived from the fields of vibration theory, biophysics and robotics.

Chapters three, four and five, finally, presents the main results

consisting in the derivation of a method for the on-line identification

of the impedance of a VIA robot.

In particular, chapter three presents a non-parametric method

for the identification of the non-linear time-varying stiffness of a

Variable Stiffness Actuator (VSA, a particular kind of VIA).

Chapter four extends results of chapter four with a parametric

stiffness observer, showing how its performance can overcome some

limitations of the non-parametric observer.

Finally, chapter five extends the framework to allow also the esti-

mation of the inertial and damping components of the impedance.
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Chapter 1

An introduction to

Impedance

Figure 1.1: A simple mass-spring-damper system.

The concept of impedance in mechanics is borrowed from the

field of circuit theory: electric impedance measures how strongly a

circuit or component opposes to the transit of current through it

with the generation of a voltage at its extremes. In analogy, me-

9



An introduction to Impedance

chanical impedance is the measure of how much a body or structure

resists to motion or deformation with the generation of a force (or

torque). To introduce impedance in a more formal way, consider the

paradigmatic example of a mass-spring-damper system (see fig. 1.1),

described as a relation between the applied force f(t) and displace-

ment y(t) through

f = mÿ + bẏ + ky. (1.1)

the three parameters m, b, k are constant, the O.D.E. (1.1) is linear

and time-invariant. Introducing the Laplace transforms F (s), Y (s)

of force and position, one has immediately

F (s) = (ms2 + bs+ k)Y (s). (1.2)

The operator Z(s) := (ms2+ bs+ k) is called the mechanical imped-

ance of the spring-damper-mass system1. The reciprocal operator

of impedance, called admittance (or mobility) A(s), generalizes com-

pliance as it maps forces in displacements: Y (s) = A(s)F (s). The

admittance operator is causal, while impedance is not.

1It should be noted that in the literature, the term impedance is sometimes

used to denote the relationship between velocity and force, maintaining a stricter

adherence to the electrical metaphor.
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1.1 Variational approach

The above approach can be generalized to a nonlinear dynamic set-

ting by considering the relation between forces, displacements, first

and second derivatives of displacements, and internal states u, and

its graph G ⊂ F × Y × DY × D2Y × U , comprised of 5-tuples

d(t) := (f(t), y(t), ẏ(t), ÿ(t), u) corresponding to an idealized, infinite

set of experiments. If G(f, y, ẏ, ÿ, u) = 0 is an analytical descrip-

tion of the graph, and d0 is a regular point, then a force function

f(y, ẏ, ÿ, u) is defined in a neighborhood of d0. Defining generalized

stiffness as

k(d) = −

(
∂G(d)

∂f

)−1
∂G(d)

∂y
, (1.3)

generalized damping as

b(d) = −

(
∂G(d)

∂f

)−1
∂G(d)

∂ẏ
, (1.4)

generalized mass as

m(d) = −

(
∂G(d)

∂f

)−1
∂G(d)

∂ÿ
, (1.5)

and generalized I/O trans-characteristic as

ν(d) = −

(
∂G(d)

∂f

)−1
∂G(d)

∂u
, (1.6)

one can compute the Frèchet differential of the force function as

δf = m(d) δÿ + b(d) δẏ + k(d) δy + ν(d) δu . (1.7)

From consideration of the positive definiteness of the kinetic energy,

the Rayleigh dissipation function, and the elastic energy associated

11



An introduction to Impedance

with the generalized inertia, damping and stiffness, it follows that

m, b, and k are always greater than zero (or positive definite).

Alternatively, one can describe admittance along a given trajec-

tory as the linear operator mapping small changes of the external

force to changes in the resulting motion. To do this, consider the

nonlinear ODE obtained by solving G(f, y, ẏ, ÿ, u, t) = 0 at a regular

point with respect to ÿ as

ÿ = g(y, ẏ, f, u)

and its state space form, with x ∈ IR2, x1 = y, x2 = ẏ, i.e.

d

dt

[
x1

x2

]
=

[
x2

g(x1, x2, f, u)

]

For given initial conditions x(0) = x̄0 and a given course in time for

force f̄(t) and input ū(t), let x̄(t) be the trajectory obtained, i.e. the

solution of the dynamics ODE. The first-order approximation of the

dynamics of the perturbed motion x̃(t) = x(t)− x̄(t) corresponding

to a change in force f̃(t) = f(t) − f̄(t) is the time-varying linear

system

˙̃x = Γ(t)x̃+Θ(t)

[
f̃

ũ

]
,

where

Γ(t) =

[
0 1

− k(d)
m(d)

− b(d)
m(d)

]
,Θ(t) =

[
0 0
1

m(d)
ν(d)
m(d)

]
.

12
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1.2 Impedance Components

This section pans over the various elements contributing to the im-

pedance of a mechanical system.

1.2.1 Stiffness

(a) traction (b) compres-

sion

(c) torsion

Figure 1.2: Typical linear springs.

The simplest example of mechanical impedance is a spring, i.e. a

sample of material characterized by the property of elasticity. This

property consists in the fact that the body exerts a force when de-

formed. In an ideal spring the relation between the applied force f

and the steady–state displacement y can be expressed as a function:

f = f(y). (1.8)

An important parameter used to characterize a spring is the deriva-

tive of the force f with respect to the deformation y:

σ(y) ,
∂f(y)

∂(y)
, (1.9)

13



An introduction to Impedance

this quantity is defined as spring rate or stiffness of the spring. In

linear springs

f(y) = ky, (1.10)

thus the constant k is the spring stiffness. The relation expressed

in 1.10 was first devised by the English scientist Robert Hooke2 in

1660 [28], from whom takes the name of Hooke Law.

In general, the force function of real springs f(y) can be nonlinear

and time-varying. Its behavior may depend on a vector of parameters

u (which represent internal states and/or, as it is the case of VIA,

inputs), which in turn may vary in time. Stiffness σ is, in this more

general case, defined as

σ(y, u) ,
∂f(y, u)

∂y
. (1.11)

Figure 1.3: Schematic diagram of a deformed spring.

In some texts the definition of stiffness differs from that presented

in equations 1.9 and 1.11 by the introduction of a minus sign. The

2Robert Hooke, 18 July 1635 – 3 March 1703, was an English natural philoso-

pher, architect and polymath, who played an important role in the scientific

revolution.
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1.2 Impedance Components

apparent confusion arises only from the adoption of different refer-

ence systems for the definition of f and y. To clarify this, refer to

figure 1.3, so to follow the rule that stiffness is positive when it is such

that the spring exerts a recoil force, so to oppose to the deformation.

15
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1.2.2 Inertia

Figure 1.4: Sample reference masses used for weighting. Mass is the

cause of inertial forces.

Inertia is the property of a body to oppose to a change in its

status of rest or motion with a force. The classical concept of inertia

goes back to the very foundations of classical mechanics, with the

principle of inertia, discovered by Galileo3 and described by New-

ton4 in its Principia [29]. Notwithstanding its long history it is still,

among physicists, a debuted and not fully eviscerated concept, root-

ing in the fields of relativity and quantum physics.

3Galileo Galilei, 15 February 1564 – 8 January 1642, was an Italian physicist,

mathematician, astronomer and philosopher who played a major role in the

Scientific Revolution.
4Sir Isaac Newton, 4 January 1643 – 31 March 1727, was an English physicist,

mathematician, astronomer, natural philosopher, alchemist, and theologian. His

“PhilosophiæNaturalis Principia Mathematica”, [29], published in 1687, lays the

groundwork for most of classical mechanics.

16
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1.2 Impedance Components

Limiting our analysis to ‘relativistically slow’ and ‘quantically

big’ mechanical systems, Newton’s definition of inertia (from [29]) is

valid:

The vis insita, or innate force of matter, is a power

of resisting by which every body, as much as in it lies,

endeavours to preserve its present state, whether it be of

rest or of moving uniformly forward in a straight line.

The most important aspect about inertia is that a body charac-

terized by inertia I and moving with velocity v can be associated

with a momentum p and a kinetic energy T , defined as

p , Iv (1.12)

T ,
1

2
vT Iv. (1.13)

Velocity and momentum are scalars for motions along one degree of

freedom (e.g. linear motion, where the inertia corresponds to the

mass of the body) but can be generalized to vectors (e.g. for spatial

motions of a rigid body) and in such cases inertia is a square matrix

(the inertia tensor).

The last important effect of inertia is described by the second

law of classical dynamics yielding that whenever there is a change

in the generalized momentum p (associated with an inertia I) it can

be related to the generalized force generating it by

f ,
dp

dt
= Iv̇ + İv, (1.14)

where the inertial force is due to both the change in velocity (accel-

eration) and the rate of change of the inertia matrix.

17
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As for stiffness, inertia can be non-linear and time-varying, as is

the case for the inertia matrix M(q) of a robot, which is a function

of its joint configuration vector q.

18
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1.2 Impedance Components

1.2.3 Damping

Figure 1.5: A damper used for car suspensions.

Damping is a property of some mechanical bodies to dissipate

kinetic energy, transferring it into the thermal domain. There can

be many sources of dissipation in a mechanical system, which most

of the times can be ultimately reduced to frictions phenomena. In

classical mechanics, the assumption of the existence of damping el-

ements, or dampers, can be made: they are bodies that oppose to

deformation y a force f (in this similar somehow to springs) which

is a function of the deformation rate ẏ, as:

f = f(ẏ). (1.15)

In analogy to springs, the parameter damping can be defined, which

is the partial derivative of the force with respect to the deformation

rate:

δ =
∂f

∂ẏ
. (1.16)

The simplest example of damper is, the linear viscous damper,
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An introduction to Impedance

which models the phenomenon of viscous friction, where

f = bẏ. (1.17)

Another common but non-linear example is dynamic friction, for

which it holds

f = b sign(ẏ). (1.18)
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1.2 Impedance Components

1.2.4 Transmission ratio

Figure 1.6: A pair of gears used for transmission of motion.

The last fundamental “brick” of impedance left to be consid-

ered is transmission ratio. It is not, strictly speaking, an impedance,

but rather a trans-impedance, which describes the interaction of two

bodies. It arises from a constraint between two elements of a system

binding the generalized displacement of one element to that of the

other. This generates, dually, an algebraic relationship also between

the generalized forces transmitted through the two elements. Given

the two generalized coordinates y1 and y2 for the two bodies, and the

two associated generalized forces f1 and f2, the existence of a trans-

mission ratio between the two bodies can be specified as a relation

among the speeds and the forces of the two bodies as:
{

ẏ1 = r(y1, y2, u)ẏ2

f2 = r(y1, y2, u)f1,
(1.19)

where the u accounts for eventual variability of the ratio itself.

The second equation of 1.19 is a straight consequence of the fact

that a transmission ratio is the effect of a constraint, thus, at ev-
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An introduction to Impedance

ery instant, it does not absorb nor produce energy. Applying the

principle of virtual works yields the result.

Many kinds of transmission ratios, associated with the many pos-

sible mechanical couplings, exist, linking two or more mechanical el-

ements. One of the simplest examples is a spur-gear pair, as in figure

1.6. For such a system the transmission ratio is a fixed constant r,

derived from the ratio of teeth in the two gears, thus it yields

{
ẏ1 = rẏ2

f2 = rf1,
(1.20)

Another common example is the shift gearbox used in automo-

biles, where r = r(u) and u ∈ {1 ,2, 3, 4, 5, R}. It can be noticed

how this system is linear but time-varying.

Another example worthwhile mentioning is the Jacobian matrix

of a serial robot, which is a multi-dimensional generalization of the

concept of transmission ratio, expressing the relationship between

the speed of the joints q̇ and the speed of the end-effector ẋEE as a

function of the joints coordinates q, as

ẋEE = J(q)q̇, (1.21)

the dual relationship maps forces acting on the end effectors fEE on

the torques felt at the joint levels as

τ = JT (q)fEE. (1.22)
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1.3 Model of a VIA

1.3 Model of a Variable Impedance Ac-

tuator

Given all the previous definitions, it is possible to define a little

more in detail what a Variable Impedance Actuator is. Assume, for

Figure 1.7: Schematic of a generic Variable Impedance Actuator.

Position Motor indirectly moves the Link trough the Variable Im-

pedance element actuated by Impedance Motor.

sake of simplicity, a VIA mechanism characterized by 3 degrees of

freedom (DOFs) as is the case for most of the prototypes developed

nowadays. Without loosing much detail a VIA can be modeled as one

motor (indirectly) actuating the link movement and another motor

actuating the impedance variation, as in Fig. 1.7, or:

23



An introduction to Impedance





Iq̈ +Nq̇ + F (θ2, · · · ) = τext

B1θ̈1 +D1θ̇1 − F (θ2, · · · ) = τ1

B2θ̈2 +D2θ̇2 +G(θ2, · · · ) = τ2.

(1.23)

The first equation of 1.23 represents the dynamics of the link: I,

N and Σ(θ2, · · · ) are inertia, damping and the non-linear variable

impedance of the link, respectively, τext is the external torque on the

link, q is the link angle. The second equation of 1.23 represents the

dynamics of the position actuating motor: B1 and D1 are inertia and

damping of the link motor, respectively, τ1 is the motor torque and

θ1 is the motor angle. The third equation represents the dynamics of

the impedance actuating motor: B2 and D2 are inertia and damping

of the stiffness motor, respectively. G(θ2, · · · ) is the torque needed

for the motors to change impedance and τ2 and θ2 are the motor

torque and angle, respectively.

The functions

F (θ2, · · · ) = F (θ2, q − θ1, q̇ − θ̇1, q̈ − θ̈1, · · · ) (1.24)

G(θ2, · · · ) = G(θ2, q − θ1, q̇ − θ̇1, q̈ − θ̈1, · · · ) (1.25)

, (1.26)

represent the variable impedance part of the system. Their effective

structure and the set of their arguments depend on the particular

VIA system considered. It can usually be restricted to the values of

θ2 , q − θ1 and their derivatives. In the case of a VSA, i.e. a VIA

where damping and inertia are constant, the arguments of F () and

G() reduce to just θ2 , q − θ1, respectively.
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Chapter 2

Impedance measuring

techniques

2.1 Metrology and Instrumentation

Adopting the definitions of section 1 follows that impedance is a dif-

ferential operator relating two physical quantities and not a physical

quantity per se. Here the definition of physical quantity given in [30]

is adopted:

Physical quantity - a property of a phenomenon, body,

or substance, where the property has a magnitude that

can be expressed as a number and a reference.

As a consequence of this, the characterization of the impedance of

a mechanical system is not a direct measurement, but instead it is

performed as a process of identification of a dynamical system (see

for example [31]).
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Impedance measuring techniques

Breaking down impedance of a system in its fundamental compo-

nents, direct measurements are sometimes possible (e.g. measuring

a the mass of a body), nevertheless, such measurements are not, in

general, possible.

Moreover, the possibility to directly measure impedance com-

ponents is sometimes unpractical or unfeasible; this happens, for

example, when the considered component of impedanceis non-linear

(e.g. the mechanical characteristic of a non-linear spring). In this

case one has to resort to the acquisition of a set of force and dis-

placement data pairs (or their derivatives).

After this step, if a theoretic model of the spring is available,

parametric fitting techniques can be adopted to extract from the

dataset a reconstruction of the underlying non-linear function. Oth-

erwise numerical derivation technique must be employed to resort to

the spring stiffness.

The first devices to characterize the impedance of a mechanical

systems were proposed in the 40’s of 20th century, (see for example

[32] and [33]). Their evolution led to the creation of the so-called

“impedance head”, which is discussed in the next section.
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2.1 Metrology and Instrumentation

2.1.1 Impedance Heads

Figure 2.1: Typical set-up for the characterization of mechanical

impedance.

The most common technique for the characterization of mechan-

ical impedance relies the the application of a forced vibration on the

specimen and the simultaneous recording of the applied force and

the resulting acceleration (as in figure 2.1).

To successfully achieve simultaneous acquisition of both force and

acceleration measurements, a particular kind of sensor is adopted,

which goes under the name of impedance head (an example is shown

in figure 2.2). It consists, substantially, in the combination of a load

cell and an accelerometer (both realized with piezoelectric technol-

ogy in modern devices), assembled such that the acceleration sensor

can be firmly attached to the specimen.

Exact procedures for the acquisition of the data may vary de-
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Impedance measuring techniques

Figure 2.2: Picture of a commercial impedance head. Positioning

labels can be noticed to help correct mounting of the sensor on the

specimen. Image from [W15].

pending on the advices of the particular impedance head, and the

material of the specimen. Detailed procedure descriptions are avail-

able in specific literature, as [31].

The straightforward application of such technology to VIA robot

systems is possible just during off-line calibration and identification,

requiring usually for the VIA to be disassembled from the robot.
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2.2 Impedance measurement on biological systems

2.2 Impedance measurement on biolog-

ical systems

A field where joint impedance measurement has already received

wide attention is Biophysics. Techniques for measuring the stiffness

of the human limbs have been proposed over the years. The biggest

problem arising when experimenting with biological systems, con-

sists in the difficulty to separate the different simultaneous phenom-

ena contributing to some effect. Limb impedance is not an exception.

Two major approaches can be followed to overcome this obstacle,

namely invasive and non-invasive. Invasive investigation techniques

will not be discussed in depth here, just remember that, on biolog-

ical system, they can range from acquisition of both live and dead

samples, to study on test animals/subjects.

While such “drastic” techniques can help to understand the in-

trinsic properties of biologic tissues constituting the musculo-skeletal

system, non-invasive techniques are, on the other hand, important

and necessary. Their application, indeed, allows studying the be-

havior of live systems as a whole, and lead to insight of the global

system as well as to the development of diagnostic tools which can

be used by physicians.

For a deeper introduction to the topic of impedance measurement

in bio-engineering refer to [34] or [35]. The main claim here is that

most methods address very specific tasks within very well determined

experimental condition. Such tasks are often very static.

To the best knowledge of the author, all the non-invasive meth-

ods adopted in bio-engineering and physiology literature to measure
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Impedance measuring techniques

impedance resort to a model of the system whose impedance is going

to be measured. They identify the parameters of that model, and

modeling muscles is still a controversial matter.

One of the few examples of dynamic setup for limb impedance

identification is the one proposed by [36]. The proposed method

identifies stiffness based on the outcome of a series of repeated exe-

cution of a trajectory by the subject. A first a set of the repetitions

is used to infer the reference motion of the limb. Thereafter, the next

set is used to inject disturbances and measure the reaction forces.

Stiffness is then calculated fitting the amplitude of recorded forces

and injected disturbances to a linear model.

This method is designed in this way to circumvent two problems.

The first one lies in the impossibility to know the reference position

with respect to which the stiffness is defined. This is due to the

intrinsic non-invasiveness of the procedure and to the lack of knowl-

edge of precise muscle models. To understand the effect of ignoring

the limb reference on the identification of its impedance, just look at

figure 2.3. Using the yh (where the subscript h stands for halfway) as

reference instead of y0 yields a spring which deforms half the amount

of the full one, thus with double the stiffness. This phenomenon can

not be easily circumvented due to the fact that it is not an error

on the method but rather an intrinsic ambiguity on the frame with

respect to which impedance is defined.

The second obstacle to overcome is separation of the passive and

active responses of the subject. Here passive response is used to

intend the response due to the effective stiffness of the musculo-

skeletal system, while active response encompasses all the effect

which involve nervous system, as reflexes and conscious reactions.
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2.2 Impedance measurement on biological systems

Figure 2.3: Effect of wrong reference trajectory in the estimation of

stiffness. If the deformation is measured with respect to the wrong

reference frame (yh in the image), the error on estimation of stiffness

can be substantial, altering completely the relationship between the

force and the yielding deformation. Given the spring in figure is

linear with stiffnessK, an observer measuring deflection with respect

to yh instead of y0 would measure a stiffness of 2K. Note that this,

rather than being an error is a pure matter of observation relativity:

the “half spring” comprised between yh and y has, indeed, double

stiffness with respect to the full spring.
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Impedance measuring techniques

Overcoming this second problem is usually possible performing the

measurement during the short time that starts on the instant when

the perturbation is applied and lasts when the first active response

arises. This time is well measured in humans and lasts around 100

ms, due to the travel time of the nervous pulses from the senses to

the spinal chord and back to the muscles.

Impedance identification methods proposed for biological sys-

tems are a step nigher to on-line identification of impedance of VIA

robots, but still do not apply to our case due to the high specificity

of their models and the requirement of injecting controlled pertur-

bations on the system.
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2.3 Impedance Estimation in Robotics

2.3 Impedance Estimation in Robotics

Within robotics literature, some attention has been dedicated to the

problem of impedance identification for tasks that involve contact

between the robot and the external world. In this case the impedance

being identified is that of the environment. This allows for a more

effective and controlled manipulation of the environment itself by

the robot. For example [37] suggests the estimation of impedance to

improve effectiveness of food processing; the estimation of impedance

is obtained, in this work, through estimation of contact forces and

measurement of contact point speed, which the author suggest to

feed to a digital Kalman filter [38] designed on a model of linear

impedance.

In [39] estimation of contact impedance is proposed as a mean to

improve tasks such as telemanipulation. There the authors stress the

importance of adopting a non-linear Hunt-Crossley model [40] rather

than the simpler linear Kelvin-Voight model. Thereafter a recursive

least square technique is adopted to build an ad-hoc observer to

successfully estimate the parameters of the model.

Work [41] is a nice review on four different techniques proposed

for the estimation of contact stiffness and damping in robotic contact

problems, namely: Signal Processing Method, Indirect Adaptive Con-

trol, Model Reference Adaptive Control and Recursive Least Squares.

All of the proposed approaches are shown to be capable of estimating

the parameters of the contact model (which is always linear), if con-

ditions of persistent excitation are met, otherwise some estimation

is still possible to some extent, depending on the observer gains and

the particular maneuver of the robot contacting the environment.
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Impedance measuring techniques

Recent works propose more sophisticate algorithms for contact

stiffness identification, like [42], or specialize their approaches for

particular types of sensors, like [43], or take into account the effects

on non-ideality of the model on the estimation process, as [44].

The various approaches followed by all the previous works have in

common reliance on the knowledge of the the model of the impedance

to be estimate (which is most often assumed linear).

These works are the nearest to the method that this thesis is are

going to develop in the next chapters.
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Chapter 3

Non-parametric

identification of stiffness

This and the next two chapters contain the major contribution of

this thesis. Results exposed in chapters 3, 4 and 5 are published in

[A10], [A11] and [A12], respectively.
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Non-parametric identification of stiffness

3.1 Impedance observability in a linear

mechanical system

Figure 3.1: A simple linear mass-spring-damper system.

Resorting to the system of figure 1.1, it can be described by

equation 1.1, as

mÿ + bẏ + ky = f (1.1)

consider the extended state vector z =
[
y ẏ − k

m
− b

m
1
m

]
, the

dynamics of 1.1 can be and rewritten as

ż =




z2

z1z3 + z2z4

0

0

0



+




0

z5

0

0

0



f,

y = h(z) = z1.

(3.1)

The identification of the impedance parameters can thus be cast as a

nonlinear state estimation problem, i.e., from the measurement of the
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3.1 Impedance observability in a linear mechanical system

external force f and position y, estimate the initial state z(0), and

in particular its three last components which completely determine

the linear impedance.

To establish that the problem is well posed, consider the observ-

ability codistribution for this system,

Ω(z) =




1 0 0 0 0

0 1 0 0 0

z3 z4 z1 z2 0

0 0 0 0 1

z3z4 z3 + z24 z2 + z1z4 z1z3 + 2z2z4 0

0 0 0 z5 z4




.

it turns out that for m, b, k > 0, dimΩ(z)⊥ = 0, ∀z except z1 = z2 =

0. Hence, if the system moves from the equilibrium, the three linear

impedance parameters can be reconstructed from position and force

measurements.
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Non-parametric identification of stiffness

3.2 Impedance observability in a non-

linear mechanical system

Consider now a simple mechanical system, similar to the previous

one, with the only difference that the mechanical characteristic of

the spring is not linear but rather a generic non-linear function, i.e.

fe = fe(y) 6= ky. (3.2)

Equation 1.1 transforms in

mÿ + bẏ + fe(y) = f. (3.3)

To proceed along the same steps as before, there is the need for a

model of the stiffness function fe(y). If one is available, as

fe(y) = fe(p, y)

where p is a vector of unknown parameters of length np, an aug-

mented state space can always be written as

z =




y

ẏ
1
m
b
m

p1
...

pnp




. (3.4)
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3.2 Impedance obs. in a non-linear mechanical system

This state space would have dimension equal to np+4. The dynamics

of the system can be rewritten as

ż =




z2

z2z4 + z3fe([z5, · · · , znp+4], z1)

0

0
...

0




+




0

z5

0

0
...

0




f,

y = h(z) = z1.

(3.5)

To conclude on the observability of the system, one has to specify the

structure of the function fe(p, y) and proceed with the calculation

of the particular observability codistribution Ω, without leaving the

possibility to draw generic conclusions.

The same approach can be taken also for systems where the non-

linear part of the impedance is damping and/or inertia and if the

system is time-varying. Again it would lead to open conclusions.

Pushed by this, in the next section the problem will be faced follow-

ing a slightly unconventional approach.

Now a different approach to measure stiffness in a system such

as (3.3) will be described. For simplicity’s sake, assume for the time

being that accurate measures of the applied force f(t) and of the

position y(t) are available, and that numerical derivatives of these

signals can be done. Assume also that both the mass and damping

coefficients, m and b, are known (these strong assumptions will be

discussed later on). No assumptions are made on the function f(y, u)

except that it is smooth in both arguments, with bounded derivatives

of all orders.
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Non-parametric identification of stiffness

Assume that the stiffness-regulating input u(t) is bounded with

its first derivative u̇(t)1. It should be noticed that, in building an

observer that relies only on measurements of the position y(t) corre-

sponding to the external load f(t), it is physically impossible to ob-

serve a stiffness which is changing in time (u̇(t) 6= 0) while the system

is at equilibrium (ẏ(t) = 0). More precisely then, the assumption

that the ratio between the stiffness regulation rate of change and the

velocity of the measured trajectory is bounded will be made, namely,

for all times t during the application of the observer, it holds

|u̇(t)|

|ẏ(t)|
< v ∈ IR, ∀t.

Let
∂f

∂y
=

∂f(y, u)

∂y
:= σ(y, u(t))

denote the stiffness to be measured. Also let σ̂(t) denote its estimate

at time t, and σ̃(t) = σ(y, u(t))− σ̂(t) be the estimation error.

Differentiate (3.3) once with respect to time to get

ḟ = m
...
y + bÿ + σẏ + suu̇,

where su := ∂s(y,u)
∂u

. Using the current estimate of stiffness and the

assumptions stated above, a best-effort prediction for ḟ can be writ-

ten (in the absence of information on s(y, u) and on u(t)) as

˙̂
f = m

...
y + bÿ + σ̂ẏ

The update law
˙̂σ = α ˙̃fsgn(ẏ), (3.6)

1Recalling eq. 1.23, it can be proved that this is a straightforward conse-

quence of the finiteness of the dynamic of u = θ2.
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3.2 Impedance obs. in a non-linear mechanical system

with α > 0 and

sgn(x) :=





x
‖x‖

if ‖x‖ 6= 0

0 if ‖x‖ = 0

,

can be shown to guarantee that σ̂(t) can be made to converge to

the true stiffness value σ(t) within an uniformly ultimately bounded

error.

Indeed, consider the positive definite error function

Vσ :=
1

2
σ̃2

and its derivative along the trajectory defined in (3.6), i.e.

V̇σ = σ̃ ˙̃σ = σ̃σ̇ − σ̃ ˙̂σ = σ̃σ̇ − ασ̃su u̇ sgn(ẏ)− ασ̃2|ẏ| . (3.7)

While the first two terms in the rightmost sum in (3.7) are indef-

inite in sign, the third term is negative definite. Therefore, wherever

the inequality holds

|σ̃| > |su|
|u̇|

|ẏ|
+

1

α

|σ̇|

|ẏ|
(3.8)

the derivative of the error function V̇σ is negative, hence the esti-

mation error decreases. By writing σ̇ = σyẏ + σuu̇, and using the

upper bound above assumed on the rate of stiffness change, stiffness

estimates converge to the true value within an ultimately uniformly

bounded error given by

|σ̃| >
|σy|

α
+

(
|su|+

|σu|

α

)
v (3.9)
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Non-parametric identification of stiffness

Remark 1 The assumption that the mass and damping are exactly

known is not realistic. However, it is easy to verify that the anal-

ysis above carries over exactly even with no knowledge of m and b,

provided that a force sensor directly placed on the elastic element

provides a measure of the force f(x, u). In case this is not available,

then errors on the m and b parameters have the effect of making the

ultimate error larger (this effect can be countered by increasing the

observer gain α).

3.3 Simulation Results

As a first illustration, the proposed stiffness observer is tested using

numeric simulations in two systems.

3.3.1 Single spring

In this first test, the observer algorithm is used to track the stiffness

value of a single spring with non-linear, time-invariant stiffness char-

acteristic. The simulated elastic element is an exponential spring,

whose force/displacement characteristic is

s(y) = aeby . (3.10)

Such springs are designed so that the stiffness at any operating point

is proportional to the force the spring is exchanging with the external

environment.

Figure 3.2(a) compares the observer estimate of the spring stiff-

ness with its exact value σ(y) = baeby, for three different values of

the spring parameters. The springs were subject to a external force
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3.3 Simulation Results

f(t) given by a chirp in the frequency range from 0.1 to 10 Hz, with

deformations y(t) in the range [0.25, 2.25]cm. The observation error

(shown in fig. 3.2(b)) decays to less than one percent in less than 0.3

s.
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Figure 3.2: Simulation results for the non-parametric observer esti-

mating three different springs (a = 2.7e−2, b = 1; a = 8.1e−6, b = 3;

a = 13.5e−10, b = 5, respectively). Stiffness tracking is shown in

panel (a), and relative estimation error in panel (b). Only the first

5s of the relative error are shown, to focus on the transient phase.

Relative error remains under 1% for the rest of the time.
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3.3 Simulation Results

3.3.2 Muscle-like antagonistic VSA systems

Consider the link in fig. 3.3, actuated by two antagonistic actuators

(with a role vaguely similar to that of the biceps and triceps muscles

at the elbow), with a quadratic damping and subject to gravity and

to an external torque load τe. The system dynamics are

Iθ̈ + βθ̇|θ̇| − τb + τt −mgl sin θ − τe = 0

Assume first that the two actuators generate torques according to

the model (cf. [45])

τb = (τmax − αθb) ub

τt = (τmax − αθt) ut

(3.11)

where θb = (π/2+θ), θt = (π/2−θ), τmax is the maximum isometric

torque, ub, ut are the normalized contraction parameters (0 ≤ u ≤ 1,

u = ub, ut), and α is a constant assumed to be equal for the two

actuators. It is easily obtained that m = I for the generalized mass,

b(θ̇) = 2β|θ̇| for the generalized damping, and

k(θ, u) = α(ub + ut)−mgl cos(θ)

for the generalized stiffness. In the latter expression, the role of a

gravity-induced term and a co-activation stiffness term are apparent.

If a different actuator model is adopted, namely (cf. [46])

τb = −α(θb − λb)
2,

τt = −α(θt − λt)
2

(3.12)

where λb, λt are interpreted as the rest lengths of the actuators, one

has

k(θ) = 2α(π − λb − λt)−mgl cos(θ)
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Non-parametric identification of stiffness

(a) Hogan model (b) Feldman model

Figure 3.3: A link subject to an external load and actuated by two

antagonistic actuators. Nomenclature refers to actuator models used

in (3.11) and (3.12), respectively.

The values of stiffness and damping for the two examples above,

corresponding to time-varying values of the control parameters, are

reported in figs. 3.4 and 3.5, respectively.

One of the simplest and most common examples of variable stiff-

ness, both in natural systems and in robotics, is the agonist-ant-

agonist arrangement on nonlinear actuators. To illustrate how our

proposed stiffness observer applies to antagonist VSA systems, con-

sider the examples reported above in fig. 3.3. Application of the

stiffness observer in this case can be carried out in two ways: 1) the

tendon tensions τb, τt are measured directly, or 2) the external torque

τe(t) is measured, and estimates of the link inertia and damping are

used. In all cases, a measurement of the link angle θ(t) is necessary.

It should be noticed that, while the first method does not require
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3.3 Simulation Results
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Figure 3.4: Generalized stiffness (left - dashed is without gravity

term) and generalized damping for the example with actuators as

in (3.11), subject to a unit step in external torque at T = 1s, and

with time-varying activation ub(t) = ut(t) linearly increasing from 0

at T = 1s to 1 at T = 15s. Numerical values used in simulation:

I = 0.05Nms2, mgl = 0.1Nm, β = 1Ns2m, alpha = 1Nm/rad,

taumax = 2Nm.

any estimate of link parameters, it is more invasive in the system,

and is inapplicable to e.g. stiffness measurement in a human elbow

joint. On the opposite, the second method is easily applicable to

this case, although its accuracy will be reduced if poor estimates of

inertia and damping are available.

Simulation results for the antagonist arrangements of two muscle-

like actuators as described in (3.11) and (3.12) are reported in fig. 3.6

a) and b), respectively. In both simulations, the external force τe is a

sinusoid with ω = 5 rad/s and amplitude 0.02 Nm. Stiffness is varied

during the simulation in a saturated ramp fashion. The ensuing joint
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Figure 3.5: Generalized stiffness (left - dashed is without gravity

term) and generalized damping for the example with actuators as in

(3.12), subject to a unit step in external torque at T = 1s, and with

time-varying reference angle λb(t) = λt(t) linearly decreasing from

π/3 at T = 1s to 0 at T = 15s. Numerical values used in simulation

as in fig. 3.4, except for α = 0.3.

motion θ(t) is in the range ±0.01rad, while θ̇ varies from zero to 0.05

rad/s.

To assess how strongly the performance of the stiffness observer

is affected by inertia and damping parameter mismatches (in the

case that only external torques are measured), simulations were per-

formed under the hypothesis that m and b were in error by 10%

of their actual value. Results reported in fig. 3.7 indicate that, for

both muscle models, the relative error on stiffness is of comparable

magnitude.
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3.3 Simulation Results
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Figure 3.6: Stiffness tracking for an antagonist VSA system realized

adopting nonlinear muscle-like actuators as in equations 3.11 and

3.12 (panels (a) and (b) respectively).

49



Non-parametric identification of stiffness

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

σ 
[N

m
/ra

d]

Time [s]

Real
Estimate

(a) example 1

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

3

σ 
[N

m
/ra

d]

Time [s]

Real
Estimate

(b) example 2

Figure 3.7: Stiffness tracking of the antagonist VSA systems with

muscle-like actuators as in (3.11) (a), and (3.12) (b), with a 10%

error in the knowledge of parameters m and b.
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3.4 Experimental Results

3.3.3 Exponential antagonistic VSA system

Finally, a simulation is reported for the same link actuated by two

exponential springs (3.8). In this case, the stiffness is exponentially

increasing in time (by linearly varying the co-contraction of the ant-

agonist springs). A sinusoidal external force is applied during the

initial and final phases of the experiment, while it is set to zero in

the time interval between 10s and 20s. Correspondingly, motion of

the links stops (θ̇ = 0), and the stiffness estimate is not updated in

the interval. When motion resumes, the estimation recovers quickly

to the exact value.

3.4 Experimental Results

The algorithm has been tested on the experimental device shown in

figure 3.9, implementing the antagonistic VSA device with exponen-

tial springs described previously. Two strain-gauge load cells were

used to measure the tendon tensions directly, while positions of the

link and of the tendon origin were measured using three HEDS-5540

encoders with a resolution of 2000 CPRs. Data were acquired using

a National Instruments PCI6251 ADC board for the strain gauges,

and an USB-PCI4e for the encoders. Data were sampled with sam-

pling time Ts = 0.015s, and afterward filtered with a second–order

filter with time constant of 0.02s. Signal derivatives used in the al-

gorithm were approximated by the numerical filter described by the

transfer function

D(s) =
s

1 + 10−4s
. (3.13)
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Figure 3.8: Simulation Results. Simulation results for the VSA sys-

tem with exponential springs. a) Comparison of the link stiffness

with its estimate; b) Relative estimation error; c) link motion dur-

ing the simulated experiment.

52



i

i

“PhDThesis” — 2011/4/9 — 17:07 — page 53 — #33
i

i

i

i

i

i

3.4 Experimental Results

Despite the simplicity of such “Dirty Derivatives” technique, results

were suitable for the purposes of the present work, proving the prac-

tical feasibility of the proposed method.

It should be pointed out that here the impedance estimates are

not used for control in a feedback loop, hence the effect of derivation

noise can not destabilize the system.

Input signals derivation could be avoided through use of sensors

of the rate of change of desired quantities, e.g. inductive sensors for

positions, and piezo-electric sensors for forces.

Both the external load and the torque actuating the tendon ten-

sions were generated manually, and not measured.

To obtain ground-truth data, the mechanical characteristics of

the two springs were experimentally evaluated through careful pre-

liminary calibration experiments. The calibration procedure con-

sisted in collecting a large number of force-displacement pairs (x, f),

translating them in semi-logarithmic coordinates (x, y = ln(f)),

finding the regression line in the semi-logarithmic space, such that

y = mx + q, to finally go back to the original space and obtain

f = ey = emx+q = eq · emx, from which a = m and b = eq. From the

mean square error of the regression MSE, the relative error margin

of the model can be easily evaluate as r = 1− eMSE.

The numeric values of the exponential curves fitting our data are

a1 = 0.999 , b1 = 3.267 ,

a2 = 0.950 , b2 = 2.780 ,

where subscripts are relative to the two spring. Figure 3.10 shows the

regressed curve alongside with experimental data for both the left (a)
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and right (b) springs. It is noticeable that, due to un-modeled fric-

tion in the mechanism implementing the exponential springs, a cer-

tain hysteresis is present, making the model correct only up to a rel-

ative error margin of about 25%. Anyway, this error only marginally

affected the performance of the proposed observer.

Raw experimental data are reported in fig. 3.11. The estimate of

stiffness reconstructed in real-time by the stiffness observer (α = 3)

is compared with the calibrated stiffness data in fig. 3.12

3.5 Conclusions

In this chapter an algorithm which can be used to observe stiffness

in real-time, using force and position sensors was presented. The

method’s main advantage is the avoidance of any a piori knowledge

on the model of the physical actuator. This renders it suitable to

be applied to any VSA, or other analogous non-linear time-varying

stiffness devices, considered as black-boxes.

Simulations and experimental test shown that the method is

practically applicable and robust to noisy data and uncertain pa-

rameters.
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3.5 Conclusions

Figure 3.9: Experimental setup of the exponential VSA. The setup

consists of an antagonistic VSA system with exponential springs,

realized using a linear spring forced to move on a suitable cam profile.

Force sensors (strain gauges) are mounted on the tendons connecting

the springs to the link. Position sensors (encoders) are mounted on

the link and on two tendon pulleys coupled with the input levers.
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(b) right spring

Figure 3.10: Experimental characterization of the two springs of the

exponential VSA. Force and displacement pairs recorded during a

calibration experiment, and regression curve are shown for each of

the two springs of the experimental VSA system.
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3.5 Conclusions
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Figure 3.11: Raw data recording from sensors is shown in the first

two panels. The third panel shows the values of f and x actually

fed to the observer during the experiment.

57



Non-parametric identification of stiffness

0 5 10 15 20 25 30

0

20

40

60

80

100

Time [s]

St
iff

ne
ss

 [N
/m

]

Model based estimate
Observer estimate

(a) tracking

0 5 10 15 20 25

0

20

40

60

80

100

Time [s]

R
el

at
iv

e 
Er

ro
r [

%
]

Error
25% threshold 
 (~ model SME)

(b) relative error

Figure 3.12: Experimental results for the non-parametric stiffness

observer. The first panel shows a comparison between the stiffness

values derived by the calibrated spring model and the estimate per-

formed by the stiffness observer algorithm. The second panel shows

the relative error (difference between estimator and model, normal-

ized w.r.t. the model) compared with the relative error underlying

the model itself.
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Chapter 4

Parametric estimation of

stiffness

Equations 3.8 and 3.9 defines the limitations of the non-parametric

observation approach. A first limitation, somehow intrinsic to the

observation problem, is due to fact that the algorithm uses movement

of the device to estimate its stiffness, so it cannot estimate when the

movement speed is null.

A second limitation to the non parametric approach comes from

the dependency of the mechanical characteristic function f on the

variable u. In the worst conditions, if the stiffness is changing while

outside of observability conditions (i.e. with deflection rate u̇ → 0),

the change can not be tracked by the non-parametric observer, which

simply stops observing (cfr. figure 3.8).

A smarter approach to the observation problem should try to ex-

ploit the knowledge of the variable u: Its value is not easily accessible

in every situations (as an example consider stiffness identification of
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a biological systems), however access to u is, in variable stiffness

actuators, given for granted. A VSA, in fact, can be described as

mechanical systems with 3 degrees of freedom: one for rest posi-

tion of the output shaft, one for the configuration of the stiffness

adjusting mechanism (u) and one for the deflection of the output

shaft from its rest position (y)1. Values of those coordinates, or of

an equivalent basis, are always measured for feedback control, thus

their knowledge should be used to improve estimation performance.

4.1 Derivation of the parametric stiff-

ness observer

A slightly different method can circumvent some of the limitations

just mentioned, namely by the adoption of a parametric observer

which tries to reconstruct the whole force function f(y, u).

Without loss of generality, group the two inputs of f in a vector

form:

f(y, u) = f(x), (4.1)

assuming now that it is possible to write down the elastic force ex-

pression on a series expansion on the vector basis of function space,

defined on functions from R2 to R, one gets2

f(x) =
∞∑

i=1

fi(x)ci, (4.2)

1 Remember the generic model of a VIA described by 1.23, in section 1.3.
2the limitation to R2 is just practical for our case, but most of the conclusion

drawn in this work can be generalized to functions with domain in Rn.

60



i

i

“PhDThesis” — 2011/4/9 — 17:07 — page 61 — #37
i

i

i

i

i

i

4.1 Derivation of the parametric stiffness observer

where ci are constant parameters.

The above expression can be truncated to the Nth term, obtain-

ing

f(x) =
N∑

i=1

fi(x)ci + fr(x) = cTf(x) + fr(x) (4.3)

c and f(x) are column vectors of length N , and fr(x) is the residual

term, neglected with the truncation.

The partial derivatives of f(x) with respect to the elements of

the vector x are collected in the row-vector

Σ =

[
∂f(x)

∂xi

]
=

[
σ

∂f(x)

∂u

]
. (4.4)

Exploiting the structure given to the function f(x) by equation

4.3, the above can be rendered as

Σ = cTS + Σr(x), (4.5)

where S = S(x) is a matrix with the derivatives of the elements of

the vector f with respect to the elements of x:

S =

[
∂fi(x)

∂xj

]
=

[
∂fi(x)

∂y

∣∣∣∣
∂fi(x)

∂u

]
= [S1|S2] . (4.6)

The output stiffness to be estimated is one of the partial deriva-

tives contained in Σ, thus if an approximation ĉ of the vector c is

known, and the residual term σr =
∂fr
∂y

is small enough, stiffness can

be approximated as

σ = Σ1 ≈ ĉTS1 = σ̂. (4.7)
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To discuss the dynamics of the stiffness estimate, analyze the Lya-

punov function and its Lyapunov derivative

VΣ = Σ̃Σ̃T (4.8)

V̇Σ = Σ̃ ˙̃ΣT + ˙̃ΣΣ̃T (4.9)

where Σ̃ is defined as the estimation error on Σ. Regarding the

derivative ˙̃Σ, it holds

˙̃Σ , Σ̇−
˙̂
Σ =

= Σ̇r + cT Ṡ − ˙̂c
T
S − ĉT Ṡ =

= Σ̇r + c̃T Ṡ − ˙̂c
T
S. (4.10)

Choose

˙̂c , S(STS)−1A sgn(ẋ) ˙̃f (4.11)

where here the operation sgn(ẋ) is intended component wise, A is a

positive definite gain matrix and ˙̃f is defined as

˙̃f , ḟ − ˙̃f

= cTSẋ+ Σrẋ− c̄TSẋ =

= c̃TSẋ+ Σrẋ. (4.12)

This implies

˙̂c = S(STS)−1A sgn(ẋ)ẋT
(
ST c̃+ ΣT

r

)
=

= S(STS)−1A sgn(ẋ)ẋT
(
Σ̃T + ΣT

r

)
,
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4.1 Derivation of the parametric stiffness observer

leading to

˙̃Σ = Σ̇r + c̃T Ṡ +

−
[
S(STS)−1A sgn(ẋ)ẋT

(
Σ̃T + ΣT

r

)]T
S

= Σ̇r + c̃T Ṡ −
(
Σ̃ + Σr

)
ẋ sgn(ẋ)T AT (STS)−1STS

= Σ̇r + c̃T Ṡ −
(
Σ̃ + Σr

)
ẋ sgn(ẋ)T AT . (4.13)

The definiteness of the outer product P (ẋ) = ẋ sgn(ẋ)T , should

be discussed. First notice that the matrix, generated by the outer

product of two vectors, has all but one of its eigenvalues equal to

zero. Being the trace of the matrix equal to the sum of all the

eigenvalues, it also equals, in this case, the only non-zero eigenvalue.

Looking at the trace of P (ẋ), it can be easily shown to be

trace(P (ẋ)) =
∑

i

|ẋi| ≥ 0, (4.14)

Implying that the matrix P (ẋ) is non-negative definite.

Going back to

V̇Σ = 2
(
Σ̇r + c̃T Ṡ −

(
Σ̃ + Σr

)
ẋ sgn(ẋ)T AT

)
ΣT ,

it is non-positive definite but for the two terms Σ̇rΣ
T and c̃T ṠΣT .

Suppose that the first can be neglected due to negligibility of the

residual term, the convergence of the second to zero and the Persis-

tent Excitation of the trajectory of x(t), that is

∀t, δt : (4.15)

α1I ≤

(∫ t+δt

t

A sgn(ẋ) ẋTdt

)
≤ α2I
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will ensure the convergence of the estimate to the real value of stiff-

ness (see [47] for details).

To check the convergence of c̃T Ṡ to 0, analyze now the dynamic

of the error c̃ = c− ĉ with the Lyapunov function, and its Lyapunov

derivative:

Vc = c̃T c̃ (4.16)

V̇c = c̃T ˙̃c+ ˙̃cT c̃. (4.17)

Exploiting the equivalent expression of ˙̃f it holds that

˙̃c = − ˙̂c =

= −S(STS)−1A sgn(ẋ) ẋTST c̃+

−S(STS)−1A sgn(ẋ) ẋTΣT
r (4.18)

the first of the two terms, namely SMST = S(STS)−1A sgn(ẋ) xTST ,

can be easily shown to be non-negative definite, this because M is

the product of

(STS)−1 > 0

A > 0

sgn(ẋ) xT = P T (ẋ) ≥ 0

and thus is non-negative definite. Once again, when the second

term is negligible, the error on the estimate of c is non-divergent,

Persistent Excitation of the trajectory, this time in terms of

∀t, δt : (4.19)

α1I ≤

(∫ t+δt

t

S(STS)−1A sgn(ẋ) ẋTSTdt

)
≤ α2I
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4.1 Derivation of the parametric stiffness observer

makes the estimate ĉ converge to the correct value.

Going back to the evolution of Σ̃, it is important to notice that

whenever

‖c̃‖ṠṠT < ‖c‖ṠṠT , (4.20)

it yields

‖c̃T Ṡ‖ < ‖cT Ṡ‖. (4.21)

Note that the right term ‖cT Ṡ‖ of the last equation the variation

induced by ẏ and u̇ on the stiffness, this is the point where the

advantage of the parametric observer over the non parametric one

becomes clear. Recall, in fact, that in 3.9 the error bound is pro-

portional to σ̇, one of the two elements of Σ̇ = cT Ṡ. Equation 4.21

implies that there exist, in the parametric observer, conditions for

which the error bound is smaller than the non-parametric observer

error, Those are, in substance, those of equation 4.20.

4.1.1 On the speed of convergence

Equation 4.19 shows, in ultimate analysis, the convergence condi-

tions for the error on the parameters c̃. These alone are enough to

imply the convergence of the stiffness estimate, in fact

lim
c̃→0

Σ̃ = lim
c̃→0

c̃TS = 0. (4.22)

However, all the analysis about the error Σ̃ was not pointless: re-

member that analyzing the dynamics of c̃ and Σ̃, both cases reduce

to negative semi-definite Lyapunov derivative function, and must re-

sort to ask Persistent Excitation conditions to ensure convergence of

the error. In both situations the error can decrease just along one
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direction of the error space, but an important difference exists: the

dimension of the state-space of c̃ is usually much bigger than that

of Σ̃ which is just of dimension 2. This consideration leads to state

that while the convergence speed of the parameters vector ĉ could

be slow, convergence of the estimate Σ̂ will be, in practice, much

faster. Experiments and simulations of latter sections will show it is

in fact comparable to the speed of the non-parametric observer.

4.1.2 Overcoming the need for derivatives

One limitation of the current approach is the need for derivatives of

signals x and f . Equation 4.22 hints a possibility to overcome it,

which consists in building an update law which converges c̃. Such

an update law can be built based solely on the prediction error on

the estimate of f as follows.

Given an estimate ĉ of the vector c, an estimate of the force f

can be built as f̂ = ĉTF , where F = F (x) as in equation 4.3, from

which the error f̃ for which holds

f̃ , f − f̂ = Fr(x) + cTF − ĉTF = Fr(x) + c̃TF . (4.23)

Defining an update law

˙̂c∗ , α(F TF )−1F f̃ , (4.24)

where B is a positive definite gain matrix (the subscript ∗ is used to

distinguish from the update law in 4.11), yields for the dynamics of

the c̃

˙̃c = − ˙̂c = −α(F TF )−1F
(
Fr(x) + c̃TF

)
=

= −α(F TF )−1FF T c̃− α(F TF )−1FFr(x),
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4.1 Derivation of the parametric stiffness observer

which renders the derivative of the Lyapunov function Vc of equation

4.16 non-positive definite provided that the truncation error term

Fr(x) is negligible. Persistent excitation in terms of

∀t, δt : α1I ≤

(∫ t+δt

t

α(F TF )−1FF Tdt

)
≤ α2I (4.25)

will make the estimate ĉ converge on the real value c. Convergence

of vector ĉ yields convergence of the parametric model to the real

mechanical characteristic represented by the function f(x); this, by

virtue of 4.22, yields convergence of estimation of stiffness calcu-

lated as ĉtS1. Nevertheless, deriving the innovation from the error

f̃ instead of ˜̇f , prevents considerations on convergence speed similar

to those derived in section 4.1.1. This translates, in practice, in a

slower convergence of the estimate of the stiffness value. Given a

point x where to measure stiffness, the estimate becomes accurate

only after the model has converged in the whole neighborhood x.

This renders, at the moment, the derivative-free approach less fea-

sible for real-time measurements like those needed for closed loop

control, unless an already accurate initial guess for the vector c is

available.

4.1.3 On the choice of the Function basis

The discussions of this section are abstract from the particular func-

tion basis chosen to represent the function f(y, u). The only strict

requirements lie on the differentiability of the functions composing

the basis, such that the matrix S can be derived from the vector f .

Nevertheless, a deeper analysis of this aspect of the problem could

lead to improvement on the performance of the estimator.
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Parametric estimation of stiffness

The simplest aspect to consider is that the error dynamic is ex-

cited by the value of the residual term fr(y, u) and its derivative,

a good choice for the function basis should take this into account

thus, whenever some information on the shape of the function f(y, u)

exists, the designer of the estimator should pick a basis where the

function f can be represented exactly by a finite set of basis elements

fi(y, u), or otherwise, minimizing the approximation error.

For the sake of this recall that, given both a domain for the

values of (y, u), and a scalar product between functions defined on

this domain, there exists a basis whose elements are orthogonal with

respect to the aforementioned scalar product and have unit length

in the norm induced by it, this ensures that

< fi(y, u), fr(y, u) > = 0.

4.2 Simulation Results

In this section results of the proposed stiffness observer are presented

and compared with the performance of the non-parametric method.

4.2.1 Exact Model Parametric identification

In this first application the parametric observer is applied to estimate

the stiffness of an Agonist-Antagonist VSA mechanism realized with

two identical cubic springs, whose force-displacement characteristic

is described by

f = (yi − yL)
3.
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4.2 Simulation Results
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Figure 4.1: Performance of the parametric and non-parametric

observers tracking the stiffness of an A-A VSA system featuring a

stiffness function which is completely representable on the truncated

basis of adopted by the parametric observer.
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Figure 4.2: Reconstruction of the functions describing the recoil

force and the stiffness of the system. Blue color is used for the real

functions and red color for the estimate ones respectively.
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4.2 Simulation Results

This determines a VSA system where the equilibrium point of the

link is, in the absence of external loads, in the middle position yE =

(y1 + y2)/2. The link deflection y, in consequence, is quantified by

y = yL−yE. The configuration of the stiffness can be easily described

by completing the configuration space of the mechanism, for example

with the variable u = (y2−y1)/2. Under these hypotheses the force-

displacement characteristic of the system can be easily shown to be

f(y, u) = (2y3 + 6yu2).

As a consequence, the stiffness function is

σ(y, u) = 6(y2 + u2).

This particular function can be completely represented on a function

basis of the kind

fk(y, u) = yiuj with k =
(
(i− j)2 + i+ j

)
/2, (4.26)

using only the first 9 elements of the basis, by

c = [0 0 0 0 0 0 0 2 6 0 · · · ]T .

This ensures that if expressing the function with at least 9 terms of

the basis 4.26 the residual term fr and its derivatives are null.

The parameters of the two observers are set as follows: for the

non-parametric observer, the gain is set to α = 100, for the para-

metric one, the first 10 elements of the basis in equation 4.26 are

adopted, and the gain matrix is set to A = 100I.

Results are shown in Fig. 4.1: both techniques exhibit analogous

satisfactory performance as expected. Panel (c) of Fig. 4.1 shows
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the time evolution of the Lyapunov functions VΣ and Vc on a semi-

logarithmic scale: as expected the magnitude of Vc is always non-

increasing but after a fast start its convergence speed is sensibly

slowed down. The magnitude of VΣ, on the other hand, is not always

decreasing because of the influence of c̃Ṡ, but, in practice, it is much

faster, shrinking its magnitude by two orders in the first few seconds,

and remaining contained afterwards.

The two panels on Fig. 4.2 show a comparison of the recon-

structed model in term of the functions f̂ and σ̂ with the real one,

highlighting a good conformance between the two.

4.2.2 Inexact Model Parametric identification

In this second simulated experiment, both observers are used to track

the stiffness of an Agonist-Antagonist VSA, realized with exponen-

tial springs, as described in section 3.3.3. It is characterized by the

force and stiffness functions

f(y, u) = k(ey+u − eu−y) (4.27)

σ(y, u) = k(ey+u + eu−y). (4.28)

The gain of both observers is kept the same as in the previous sim-

ulation, but the state-space of the parametric observer is increased,

using up to the 15th element of the function basis of equation 4.26.

This modification is introduced to face the fact that the exponential

functions of equation 4.28 can not be completely represented over

a finite sub-set of this basis, and thus, to render the residual term

small enough.
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4.3 Experimental Results

Results are shown in Fig. 4.3. Notwithstanding the imperfect

representability of the function over the chosen function basis subset,

the parametric observer performance keeps satisfactory.

Another important result is visible in the second simulation,

which is an advantage of the parametric observer over the non-

parametric one. Looking at the two time intervals [10, 20]s and

[40, 50]s in Fig. 4.3(c), it can be noted that the evolution of y

stops: this leads to a drop of the convergence conditions of the non-

parametric observer, which simply stops observing. The parametric

observer, on the other hand, is building its estimate also on the

knowledge of u. Thanks to the model it learned already, it keeps es-

timating the stiffness of the system even in those adverse conditions.

The error is sensibly lower justifies the increased complexity of the

algorithm.

4.3 Experimental Results

Results, reported in Fig. 4.4, show the substantial similarity between

the performance of the two methods. Nevertheless, the advantage

of the parametric approach, exposed in previous sections, is evident

once again: due to the drop of speed of y in conjunction with a tan-

gible change in u after time t = 24s, the non-parametric observer

suffers for a drop of performance. The parametric observer on the

other hand, exploiting the information relative to u, and the col-

lected information about the model, does not suffer from this incon-

venience, keeping the relative error small, comparable to the model

reliability threshold of 25%.
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Figure 4.3: Parametric and non-parametric observers tracking the

stiffness of an AA VSA system whose stiffness function has fr 6= 0.

The information learned in the first few seconds, allows the paramet-

ric observer a low error even between [10, 20]s and [40, 50]s when

the system trajectory does not allow a good bound for the non-

parametric estimate.
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4.3 Experimental Results
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Figure 4.4: Experimental results obtained using the parametric

and non-parametric algorithm are compared in terms of tracking

and relative error on panels a and b, in panel c the evolution of y

and u is shown. The performance of the two observers is similar for

most of the experiment but differ in favor of the parametric observer

after second 24.
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4.4 Conclusions

This chapter presented a parametric observer designed to measure

the non-linear, time-varying stiffness of a VSA device, using force

and position sensors. The method is an evolution of the non-para-

metric observer presented in previous chapter. At the cost of using a

wider state-space the proposed solution is proven to present two main

advantages over the former one: the possibility to use the measure-

ment of the stiffness-setting angle, and the capacity to reconstruct

the shape of the stiffness function.

A final interesting aspect of this algorithm is the possibility not

to use the derivative of the input signals, however this would slow

down the speed of convergence.

Conditions for the convergence of the algorithm were derived and

then performance of the observer was compared with results obtained

with the former approach, both with simulations and experimental

data.
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Chapter 5

Estimation of Impedance

In this section the approach of section 3 is extended, integrating it

with an extended Kalman filter, to estimate, along with the non-

linear and fast time-varying stiffness component of the impedance,

the linear components due to inertia and damping. Two techniques

are proposed to realize this idea, and the advantages of the two

approaches are briefly described.

The results of this approach have been tested on the AwAS Vari-

able Stiffness Actuator, a prototype of VSA developed within the

Italian Institute of Technology, a picture of which is shown in figure

5.2.

5.1 Combined EKF-Stiffness Observer

By differentiating the link dynamics in equation 1.23 with respect

to time, yields

τ̇ext = I
...
q +Nq̈ + σ(q̇ − θ̇1) + Fuθ̇2, (5.1)
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Estimation of Impedance

Assuming that a measurement of the torque τext is known, a possible

approach to the combined estimation problem relies on the juxtapo-

sition of a stiffness observer and an EKF. Rewriting equation 5.1

as

τ̇ext − σ(q̇ − θ̇1)− Fuθ̇2 = τ̇∗ = I
...
q +Nq̈ , (5.2)

an EKF can be easily built in to estimate the impedance parameters

of the rightmost side given a measurement of τ̇∗. Given the estimates

Î and N̂ derived from the EKF, the estimation of stiffness can be

obtained by using the best-effort prediction for the τ̇ext defined now

as
˙̂τext = Î

...
q + N̂ q̈ + σ̂(q̇ − θ̇1) , (5.3)

where τ̂ext, Î, N̂ and σ̂ are the estimations of external torque,

inertia, damping and stiffness, respectively.

By virtue of the robustness of the non-parametric stiffness ob-

server, the error on the knowledge of I and N should introduce only

an error on the estimate σ.

The knowledge of τ̇∗ is, unfortunately, unavailable but, possessing

possessing an estimate of the stiffness σ, can be approximate as

˙̂τ∗ = τ̇ext − σ̂(q̇ − θ̇1).

This approach has the advantage of estimating the whole set of

parameters using only torque and position measurement (and their

derivatives) without needing any other assumption. It works under

the hypothesis that the initial error on the estimates of I and N

and the influence of the term Fu are small enough. Nevertheless,

the problem of an interaction loop between the two observers arises.

This has a negative effect on the stability of the algorithm, and can
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5.2 Decoupled Impedance observer

make convergence depend strongly on initial guesses. A solution to

this problem is presented in the next section (5.2).

5.2 Decoupled Impedance observer

Assume that the torque sensor necessary for the stiffness estimation

is assembled between the actuator unit and the link so as to mea-

sure Σ. It is possible to notice, that the variable impedance term Σ,

giving rise to the stiffness σ, appears in both the first and second

equations of (1.23). Considering, in particular, the second equation

of (1.23), its general form is identical to that needed by the stiffness

observer. While accomplishing the stiffness estimation task on the

first equation of (1.23) requires the knowledge of I and N , perform-

ing the estimate on the second of (1.23) demands just the knowledge

of the motor parameters B1 and D1. Those values can be usually

deduced by the motor data-sheets, or otherwise measured with stan-

dard off-line calibration techniques 1. The rest of the problem, i.e.

the estimation of the inertia I and the damping N , can be realized

with a standard EKF on the system

Iq̈ +Nq̇ = û. (5.4)

1Moreover, small errors in the knowledge of these two parameters are robustly

tolerated.
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Defining the extended state vector




q

q̇

1/I

N/I


 =




x1

x2

x3

x4


 , (5.5)

allows to write the non linear discrete state representation of (5.4)

as





x
(k+1)
1 = x

(k)
2 Tc + x

(k)
1

x
(k+1)
2 = (−x

(k)
3 x

(k)
2 − x

(k)
4 û(k))Tc + x

(k)
2

x
(k+1)
3 = x

(k)
3

x
(k+1)
4 = x

(k)
4

, (5.6)

where Tc is the sampling time. From (5.6), a suitable EKF can be

designed which is effectively decoupled from the stiffness observer

(for some details see the appendix or [48]). The stiffness observer,

built in as explained in section 3, is discretized such as

σ̂(k+1) = [α ˙̃Σsgn(qD − θD1 )]Tc + σ̂(k), (5.7)

with ˙̃Σ defined as

˙̃Σ , ΣD − σ̂D(qD − θD1 )− B1q
DD −D1q

DDD, (5.8)

with xD calculated, for a generic quantity x, as

[xD](k) =
x(k) − x(k−1)

Tc

. (5.9)
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5.3 Results

5.3 Results

The impedance observer was tested through simulations and experi-

ments on the Actuator with Adjustable Stiffness (AwAS), developed

by the Italian Institute of Technology [11] (see Fig. 5.2). The dynam-

ics of the AwAS actuator, neglecting the gravity, can be described

by the following equations:




Iq̈ +Nq̇ + τE = τext

B1θ̈1 +D1θ̇1 − τE = τ1

B2θ̈2 +D2θ̇2 + τr = τ2

(5.10)

where I, N and M are the inertia, damping and mass of the link

with generalized coordinate q; Bi, Di and τi with i ∈ [1, 2] are the

inertia damping and command torque of the motors M1 and M2,

respectively, with generalized coordinate θi. The external torque

applied at the joint is represented with τext and the elastic torque τE

is formulated such as

τE = ksr
2 sin(2θs) (5.11)

where ks is the spring rate and θs = q − θ1 is the spring deflection;

the rotational stiffness σ = ∂τE
∂θs

is therefore obtained such as

σ = 2ksr
2cos(2θs). (5.12)

The joint stiffness σ depends on the lever arm r, which is the effective

distance between the center of rotation of the joint and the springs,

and, in minor contribution, from the deflection of the springs. The

lever arm is adjusted through a ball screw mechanism through the

actuator M2 such as

r = r0 − nθ2 (5.13)
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where n is the transmission ratio between the motor and the ballscrew

and r0 is the initial length. Finally, the torque τr which applies at

the motor M2 is given by

τr = −2ksnrsin(θs)
2. (5.14)

Note that, to simplify the notation the motors inertia and damping

factors are already scaled by the transmission ratios.

5.4 Tuning

The observer was calibrated by trial and error as following.

1. Extended Kalman Filter: starting from matrices Q, R e P0|0

(they are process noise covariance and observation noise co-

variance and initial guess covariance respectively) equal to the

identity, diagonal elements related to badly converging vari-

ables are tuned. 2

2. Stiffness observer: the only parameter to calibrate is the ob-

server gain α, it is obtained by optimizing the trade-off between

the effects of the measurement noise on one side, and speed of

convergence of the estimate on the other.

2In particular, elements of Q are related to oscillation of the variables, ele-

ments of R (refer to textbooks as [48] for details) to the convergence speed. P0|0,

influences the update speed on the initial moments in which EKF starts.
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5.5 Simulations

5.5 Simulations

Results of simulations are shown in Fig. 5.1. The simulated experi-

ment consisted in feeding the two motors of the AwAS actuator with

two sinusoidal torque signals.

5.6 Experimental Setup

The setup of the AwAS system, employed for the execution of the

experimental trials, is shown in Fig. 5.2. The AwAS unit consists

of two actuators. The main joint actuator (Link Motor) is based

on a combination of an Emoteq HT-2300 frameless brushless motor

(capable of a peak torque of 2.3Nm) and a harmonic reduction drive

CSD 20 (reduction ratio of N = 50 and peak rated torque of 80Nm).

The stiffness adjusting actuator (Stiffness Motor) is realized by a

DC motor from Faulhaber (peak torque of 0.8Nm) combined with a

ball screw reduction drive which converts the rotary motion of this

motor into a linear displacement, allowing to change the effective

lever arm and efficiently tune the joint stiffness. More details on

the mechanical implementation of the AwAS unit can be found in

[49]. The sensing system of AwAS includes four position sensors and

one torque sensor; one optical encoder measures the position of the

link motor, two absolute magnetic encoders measure position of the

joint before (at the harmonic drive output) and after the compliance

module (link position) while an incremental encoder monitors the

position of stiffness motor and subsequently the displacement of the

linear drive. A torque sensor is located between the harmonic drive

and the intermediate link and senses the torque applied by the link
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Figure 5.1: Impedance observer simulation results. Mean values of

relative errors: 5.1% for the link stiffness, 6.7% for link damping and

9.8% for link inertia.
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5.7 Results Discussion.

motor. The general specifications of AwAS are presented in Table

5.1. The unit controller and power driver used to control the AwAS

unit are custom control boards based on the Motorola DSP 56F8000

chip with CAN communication interface.

Table 5.1: General specification of AwAS

Range of Motion(deg) -120÷120

Range of Stiffness (N m/rad) 30÷130

Peak Output Torque (N) 80

Length (m) 0.27

Width (m) 0.13

Total Weight (Kg) 1.8

5.7 Results Discussion.

Results of simulations are shown in Fig. 5.1, while results of exper-

iments are presented in Fig. 5.3. The main differences that can be

noticed consist in a slower convergence speed and a larger error on

the stiffness estimate. They arise mostly due to the quantization

error on the position sensor, which has a negative relapse on the

calculation of the derivatives, and force the gains to be smaller.
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5.8 Conclusions

This chapter proposed the development of an impedance observer

for Variable Impedance Actuators, designed by combining a stiffness

observer for non-linear systems, and an Extended Kalman Filter. It

was shown how the clever placement of the torque sensor on the VIA

device allows decoupling the two observers, thus avoiding possible

instability issues that could arise from the interaction of the two

observation dynamics.

The resulting observer was successfully tested on the AwAS vari-

able stiffness actuator, in numerical simulation in a first phase, and

in physical experiments subsequently.
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5.8 Conclusions

(a) AwAS CAD

(b) AwAS real prototype

Figure 5.2: The AwAS, Actuator with Adjustable Stiffness.
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(c) Inertia estimation

Figure 5.3: Impedance observer experimental results. Mean values

of relative errors: 38.2% for the link stiffness, 9.4% for link damping

and 12.2% for link inertia.
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Conclusions

This thesis analyzed the problem of controlling a VIA and pointed

out the lack of a reliable way to implement closed-loop control of the

passive impedance of the VIA. This problem is due to the absence

of sensor which can measure mechanical impedance on-line.

Therefore, an innovative approach was proposed to observe on-

line the impedance of a VIA based on available force and position

measurements.

In particular, three embodiment of the observer idea were pre-

sented. The first is a non-parametric stiffness observer, for which

convergence bounds were derived, and which was shown to estimate

on-line the stiffness of a VSA with an error comparable to the reliabil-

ity margins of the stiffness derived from off-line model identification

of the same device.

Second, a parametric stiffness observer was shown, which is an

evolution of the previous approach. The parametric observer, at the

cost of a slightly more complex structure, is able to improve the

performance of the non-parametric approach in different aspects.

Especially, it is able to learn, over time, the shape of the whole

mechanical characteristic function. This in turn allows for the non-
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parametric observer to extrapolate the estimate even during time

intervals when lack of excitation does not guarantee good estimate

bounds to the non-parametric observer. Simulation and experiments

were reported to illustrate either this and other peculiarities.

Finally, it was shown, in a third and final version, how the stiff-

ness observer can be integrated with other existing approaches, in

particular EKF, to estimate either non-linear time-varying stiffness,

and linear damping and inertia coefficients of the link-side dynamic

of a VIA-powered robot. Experimental results were shown to vali-

date the approach.
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