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Abstract—In this paper, we consider the energy efficiency optimization

problem in MIMO multi-cell systems, where all users suffer from inter-
cell interference. To solve this multi-objective optimization problem,

we consider both socially optimal solutions and max-min fairness so-

lutions. We propose two novel iterative algorithms that converge to
socially optimal solutions and max-min fairness solutions. The proposed

algorithms have the following advantages: 1) fast convergence as the

structure of the original optimization problem is preserved as much

as possible in the approximate problem solved in each iteration, and
2) efficient implementation as each approximate problem is natural for

parallel computation and/or its solution has a closed-form expression. The

advantages of the proposed algorithms are also illustrated numerically.

Index Terms—Energy Efficiency, Interference Channel, MIMO, Suc-
cessive Pseudoconvex optimization

I. INTRODUCTION

With the advent of 5G by 2020, the number of connected devices

is predicted to reach 50 billions with a targeted 10-fold increase

of the data rates. The increase in the data rate is expected to be

achieved at the same or even a lower level of energy consumption.

Therefore the so-called energy efficiency (EE) of the network is a key

performance indicator that attracts extensive attention and imposes

stringent requirements on transmission schemes enhancing the EE.

In this paper, we adopt the definition of EE as the ratio between

achievable transmission rate and the consumed power, and study the

EE optimization problem in a downlink MIMO multi-cell system,

where the users served by different base station (BS) are sharing

the same frequency resources and suffer from inter-cell interference.

Since each BS has its own energy efficiency, the joint optimization of

all BSs’ energy efficiency is essentially a multi-objective optimization

problem, which is usually addressed from three aspects: i) global

energy efficiency (GEE), which is the ratio between the sum trans-

mission rate and the total consumed power; ii) sum energy efficiency

(SEE), also known as the socially optimal solution, which is the sum

of all BSs’ individual energy efficiency; and iii) max-min fairness,

where the minimum energy efficiency among all BSs is maximized.

Since a special instance of the GEE and the SEE, namely, sum rate

maximization in such an interference-limited system, is a nonconvex

problem and NP-hard [1], most studies (with [2] as an exception)

focus on efficient iterative algorithms that can find a stationary point.

For the GEE maximization problem, many algorithms are developed,

see [2–8] and the references therein. By comparison, less attention has

been paid to the SEE maximization and max-min fairness problems,

see [9–12] and [2, 13] and the references therein.

The SEE maximization problem in interference-limited systems is

more challenging than the GEE maximization problem, because the

SEE is a sum of multiple nonconvex fractional functions while the

GEE is a single nonconvex fractional function, see [9, 11, 12]. The
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iterative algorithm proposed in [9] has two limitations. Firstly, it has a

high complexity because it consists of two layers while the inner layer

is an iterative block coordinate descent (BCD) type algorithm which

typically converges after many iterations. Secondly, only convergence

in function value is established and the convergence to a stationary

point is left open. The sequential pricing algorithm proposed in [11]

is a variant of the BCD algorithm. On the one hand, it is designed for

MISO systems. On the other hand, the optimization problem solved

in each iteration does not exhibit any convexity, making the iterative

algorithm not suitable for practical implementation. In [12], both

centralized and distributed algorithms are proposed, which, however,

are only applicable for MISO systems.

In [2, 13], the max-min fairness solution is studied, and an iterative

algorithm is proposed for the MISO and MIMO systems, respectively.

The algorithms may have a high complexity, because the approximate

problem solved in each iteration does not have structures that can be

exploited to enable efficient parallel computation. Instead, it is solved

by general purpose convex optimization solvers and the performance

may not scale well with respect to the problem dimension.

To fill the above gap, we propose in this paper two novel iterative

algorithms for the EE maximization problem in a MIMO multi-

cell interference-limited system, one to achieve the socially optimal

solution and one to achieve the max-min fairness solution. The

proposed algorithms have the following notable features: 1) guaran-

teed convergence to a stationary point/Karush-Kuhn-Tucker (KKT)

point; 2) a parallel (Jacobi) best-response type implementation with

typically very fast convergence; 3) the approximate problem solved

in each iteration either admits a closed-form solution or can easily

be solved. In particular, the iterative algorithm achieving social op-

timality is based on the recently developed successive pseudoconvex

approximation framework [7], where the approximate problem solved

in each iteration may not even pseudoconvex. The iterative algorithm

achieving max-min fairness is based on the successive upper bound

minimization and the proximal point algorithm and can easily be

implemented by standard dual decomposition techniques.

II. PROBLEM MODEL

We consider a MIMO downlink multi-cell system where the BS

in each cell is serving a single user on given frequency resource and

all BSs are operating in the same frequency band. We assume the

number of cells is K. We denote Hkj as the channel coefficient

from the BS of cell j to user k. Assume the inter-user interference is

treated as noise, the downlink transmission rate of the k-th user is:

rk(Qk,Q−k) = log det
(

I+Rk(Q−k)
−1

HkkQkH
H
kk

)

, (1)

where Qk is BS k’s transmit covariance matrix, Q−k , (Qj)j 6=k,

and Rk(Q−k) , σ2
kI+

∑

j 6=k
HkjQjH

H
kj is the covariance matrix

of noise plus the inter-cell interference experienced by user k.



The power consumption at BS k can be approximated by P0,k +
ρktr(Qk) [14, Section 4.3], where P0,k and ρk is the constant

specifying the power consumption at the zero RF output power (i.e.,

Qk = 0) and the slope of the load dependent power consumption,

respectively. The values of P0,k and ρk depend on the types of the

cell, e.g., macro/micro cell and remote radio head [14, Table 8].

We define the EE of BS k as the ratio of the transmission rate and

the consumed power:

fk(Q) ,
rk(Qk,Q−k)

P0,k + ρktr(Qk)
, (2)

where Q , (Qk)
K
k=1. Given the coexistence of multiple users, a pop-

ular design approach for this multi-objective optimization problem

aims at finding the so-called socially optimal point that maximizes

the sum EE of all cells:

maximize
Q

f(Q) ,
∑K

k=1fk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k, (3)

where Pk is the power budget for BS k. However, to achieve the

socially optimal point, some BSs experiencing unfavorable channel

conditions may have to excessively limit their transmission. An

approach enhancing the fairness among the BSs is to maximize the

minimum EE among all BSs:

maximize
Q

min
k=1,...,K

fk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k. (4)

In Section III and Section IV, we propose an iterative algorithm

that can efficiently solve problem (3) and (4), respectively.

III. THE PROPOSED ITERATIVE ALGORITHM FOR SOCIALLY

OPTIMAL DESIGN

In this section, we propose an iterative algorithm for problem

(3) based on the successive pseudoconvex approximation framework

developed in [7]. It consists of solving a sequence of successively

refined approximate problems: in iteration t, the approximate problem

defined around the point Qt consists of maximizing an approximate

function, denoted as f̃(Q;Qt), under the same constraints as (3).

To start with, we introduce the definition of pseudoconvex func-

tions: a function f(x) is said to be pseudoconvex if [15]

f(y) < f(x) =⇒ (y − x)T∇f(x) < 0. (5)

In other words, f(y) < f(x) implies y − x is a descent direction

of f(x) [16]. A function f(x) is pseudoconcave if −f(x) is

pseudoconvex. We remark that the (strong) convexity of a function

implies that the function is pseudoconvex, which in turn implies that

the function is quasiconvex.

The numerator functions (rk(Q))Kk=1 in (2) are not concave in

Q, and thus the objective function f(Q) is not even pseudoconcave.

Meanwhile, the function rk(Q) is concave in Qk , and exploiting this

partial concavity may notably accelerate the convergence [17]. There-

fore, to design an approximate function that is easy to maximize, we

approximate the nonconcave function f(Q) with respect to Qk at

the point Qt by the following function denoted as f̃k(Qk;Q
t):

f̃k(Qk;Q
t) ,

rk(Qk,Q
t
−k) + (Qk −Qt

k) •Πk(Q
t)

P0,k + ρktr(Qk)
, ∀k, (6)

where

Πk(Q
t) , (P0,k + ρktr(Qt

k))
∑

j 6=k

∇Q∗

k
rj(Q

t)

P0,j + ρj tr(Qt
j)
.

In (6), we set Q−k to be Q−k = Qt
−k in rk(Qk,Q−k) and linearize

rj(Q) with respect to Qk. As a result, the numerator function

of f̃k(Qk;Q
t) is concave in Qk , and f̃k(Qk;Q

t), the fractional

function of a nonnegative concave function and a positive linear

function, is pseudoconcave in Qk [15, Chapter 9.6].

Given point Qt in iteration t, we define the approximate function

f̃(Q;Qt) to be the sum of all individual approximate functions:

f̃(Q;Qt) =
∑K

k=1 f̃k(Qk;Q
t). Then the approximate problem is

maximize
Q

∑K

k=1f̃k(Qk;Q
t)

subject to Qk � 0, tr(Qk) ≤ Pk, k = 1, . . . ,K. (7)

We remark that although f̃k(Qk;Q
t) is pseudoconcave in Qk ,

the approximate function
∑K

k=1 f̃k(Qk;Q
t) in (7) is not jointly

pseudoconcave in Q, because, unlike concave functions, the sum

of pseudoconcave functions is not necessarily pseudoconcave [15,

Chapter 9.5].

On solving the approximate problem (7). We denote as BQt =
(BkQ

t)Kk=1 the solution of the approximate problem (7). Since

(7) is well decoupled across different variables (Qk)
K
k=1, it can

be decomposed into many subproblems, each with a much smaller

dimension than (7), and they can be solved in parallel:

BQ
t = argmax

(Qk�0,tr(Qk)≤Pk)
K
k=1

∑K

k=1f̃k(Qk;Q
t)

m

BkQ
t = argmax

Qk�0,tr(Qk)≤Pk

f̃k(Qk;Q
t), k = 1, . . . ,K, (8)

where f̃k(Qk;Q
t) is defined in (6). Note that each subproblem in

(8) is pseudoconvex, and BkQ
t is unique as we will explain later.

On solving the subproblem (8). Since the subproblem (8) is

pseudoconvex and a fractional programming problem, we apply the

Dinkelbach’s algorithm to find BkQ
t iteratively. In particular, in

iteration τ of the Dinkelbach’s algorithm, the following problem is

solved for a given and fixed st,τk (st,0k can be set to 0):

maximize
Qk�0, tr(Qk)≤Pk

rk(Qk,Q
t
−k) + (Qk −Q

t
k) •Πk(Q

t)

− st,τk (P0,k + ρktr(Qk)). (9)

The optimal point of problem (9), denoted as Q⋆
k(s

t,τ
k ), has a

closed form expression based on the generalized waterfilling solution

[18, Lemma 2]. After (Q⋆
k(s

t,τ
k ))Kk=1 is obtained, st,τk is updated

according to the following rule:

st,τ+1
k =

rk(Q
⋆
k(s

t,τ
k ),Qt

−k) + (Q⋆
k(s

t,τ
k )−Qt

k) •Πk(Q
t)

P0,k + ρktr(Q⋆(st,τk ))
.

(10)

It follows from the convergence properties of the Dinkelbach’s

algorithm (cf. [4]) that limτ→∞ Q⋆
k(s

t,τ
k ) = BkQ

t for all k at a

superlinear convergence rate.

Despite the lack of pseudoconcavity in the approximate function

f̃(Q;Qt) =
∑K

k=1 f̃k(Qk;Q
t) in (7), BQt −Qt is still an ascent

direction of the original objective function f(Q) at Q = Qt. To

see this, we first remark that the approximate function f̃k(Qk;Q
t)

and the original function fk(Q) have identical functional value and

gradient at the point Qt around which f̃k(Q;Qt) is defined, i.e.,

∑K

k=1f̃k(Q
t
k;Q

t) =
∑K

k=1fk(Q
t),

∇Q∗

k

(

∑K

j=1f̃j(Qj ;Q
t)
)∣

∣

∣

Q=Qt
= ∇Q∗

k

(

∑K

j=1fj(Q)
)∣

∣

∣

Q=Qt
,∀k,

(11)

while the detailed verification steps are left to the reader. Note that

BkQ
t is unique because both Q⋆

k(s
t,τ
k ) and limτ→∞ st,τk are unique



(any stationary point of a pseudoconvex optimization problem is also

globally optimal). We can thus claim that either BkQ
t = Qt

k or

f̃k(BkQ
t;Qt) = max

Qk�0,tr(Qk)≤Pk

f̃k(Qk;Q
t) > f̃k(Q

t
k;Q

t),

while the latter implies that

0 < (BkQ
t−Q

t
k)•∇Q∗

k
f̃k(Q

t
k;Q

t) = (BkQ
t−Q

t
k)•∇Q∗

k
f(Qt),

(12)

where the inequality in (12) comes from the definition of pseudo-

concave functions, cf. (5), and the equality in (12) comes from (11).

Adding up (12) over all k = 1, . . . ,K, we obtain

(BQt −Q
t) • ∇Q∗f(Qt) > 0. (13)

Therefore BQt −Qt is an ascent direction of f(Q) at Q = Qt.

Given the ascent direction BQt − Qt, we calculate the stepsize

by the successive line search: given two scalars 0 < α < 1 and

0 < β < 1, γt is set to be γt = βmt , where mt is the smallest

nonnegative integer m satisfying the following inequality:

f(Qt + βm(BQt −Q
t)) ≥ f(Qt) + αβm∇f(Qt) • (BQt −Q

t).
(14)

Note that the successive line search is carried out over the original

objective function f(Q) defined in (3). After the stepsize γt is found,

the variable Qt is updated as

Q
t+1 = Q

t + γt(BQt −Q
t). (15)

From (13)-(15) it can be verified that the sequence {f(Qt)}t is

monotonically increasing. Moreover, the sequence {Qt} has a limit

point and every limit point is a stationary point of (3), whose proof

follows the same line of analysis as [7, Theorem 2].

In what follows, we draw some comments on the properties of the

proposed iterative algorithm.

The approximate function in (7) is constructed in the same spirit

as [7, 17] by keeping as much concavity as possible, namely,

rk(Qk,Q−k) in Qk and
∑K

k=1(P0,k+ρktr(Qk)) in Q, and lineariz-

ing the nonconcave functions only, namely,
∑

j 6=k
rj(Q). Besides

this, the fractional operator is also kept. Therefore, the proposed

algorithm is of a best-response nature and expected to exhibit a fast

convergence behavior, as we shall later illustrate numerically.

The proposed algorithm is the first parallel (Jacobi) best-

response algorithm of its type, while the approximate function
∑K

k=1 f̃k(Qk;Q
t) may not even be pseudoconcave. Instead, only

the component functions f̃k(Qk;Q
t) are pseudoconcave. This is

the weakest convergence condition available in literature and the

convergence of the proposed algorithm cannot be proved by existing

successive convex approximate frameworks such as [17, 19] which

requires the approximate function to be strictly or strongly concave.

The proposed algorithm could be implemented by a central unit

which has the knowledge of the channel state information of the

direct-link and cross-link channels, namely, (Hkj)j,k. In practical

networks, this central unit could be embedded in the centralized

radio access network (CRAN): each BS k measures the direct-link

channel Hkk and cross-link channels (Hkj)j 6=k and send the channel

state information (Hkj)j to the central unit in the CRAN. Then the

central unit implements the proposed algorithm and informs each BS

k the optimal transmit covariance matrix Qk. The incurred latency

is mainly due to the signaling exchange between the central unit and

the BSs, and the execution of the proposed algorithm.

IV. THE PROPOSED ITERATIVE ALGORITHM FOR MAX-MIN

FAIRNESS DESIGN

In this section, we propose an iterative algorithm for problem (4).

We start by introducing an auxiliary variable Y = (Yk)
K
k=1 and

rewriting (4) into the following equivalent form:

max
Q

min
k=1,...,K

r+k (Yk)− r−k (Q)

P0,k + ρktr(Qk)
,

s.t. Qk � 0, tr(Qk) ≤ Pk,Yk =
∑K

j=1HkjQjH
H
kj , ∀k, (16)

where the numerator function of fk(Q), namely, rk(Q) de-

fined in (1), can be written as the difference of two con-

cave functions r+k (Yk) , log det(σ2
kI + Yk) and r−k (Q) ,

log det
(

σ2
kI+

∑

j 6=k
HkjQjH

H
kj

)

. On one hand, it is easy to see

r+k (Yk) ≥ r+k (Yk)− c
∑K

j=1

∥

∥Yj −Y
t
j

∥

∥

2
, r+k (Y;Yt), (17)

where c is a given positive constant and the proximal term in (17) is

introduced for numerical benefit that will become clear later. On the

other hand, the concave function r−k (Q−k) is upper bounded by its

linear approximation at any feasible point, e.g., Q = Qt:

r−k (Q) ≤ r−k (Qt)+
∑

j 6=k
(Qj−Q

t
j)•∇Q∗

j
r−k (Qt)

+ c
∑K

j=1

∥

∥Qj −Q
t
j

∥

∥

2
, r̄−k (Q;Qt), (18)

where the linear approximation in (18) is further augmented by a

quadratic proximal term. Thus r+k (Y;Yt)− r̄−k (Q;Qt) is a global

lower bound of r+k (Yk)− r−k (Q) where equality holds at (Qt,Yt):

r+k (Yk)− r−k (Q−k) ≥ r+k (Y;Yt)− r−k (Q;Qt). (19)

In the proposed iterative algorithm, given (Qt,Yt) in iteration t,
we solve the following approximate problem:

max
Q,Y

min
k

r+k (Y;Yt)− r−k (Q;Qt)

P0,k + ρktr(Qk)

s.t. Qk � 0, tr(Qk) ≤ Pk,Yk =
∑K

j=1HkjQjH
H
kj , ∀k, (20)

and set the optimal solution of (20) as (Qt+1,Yt+1) as Qt+1 is a

better estimate of Q⋆ than Qt:

min
k

r+k (Y
t+1
k )−r−k (Qt+1)

P0,k + ρktr(Qt+1
k )

≥ min
k

r+k (Y
t+1;Yt)−r−k (Qt+1;Qt)

P0,k + ρktr(Qt+1
k )

≥ min
k

r+k (Y
t;Yt)− r−k (Q

t;Qt)

P0,k + ρktr(Qt
k)

= min
k

r+k (Yt
k)− r−k (Qt)

P0,k + ρktr(Qt
k)

,

where the first inequality and the equality come from (19), and the

second inequality from the optimality of Qt+1 for problem (20).

Therefore, the achieved objective value of problem (16) is monoton-

ically increasing. It turns out that the sequence (Qt)t generated by

(20) has a limit point, and every limit point is a KKT point of problem

(16) (and thus the original problem (4)). The proof follows standard

arguments of successive lower bound maximization algorithms, see

[2] for example, and is thus omitted here due to the page limit.

On solving the approximate problem (20). The approximate

problem (20) is much easier to solve than the original problem (16),

because it is a generalized fractional programming problem and can

be solved by the generalized Dinkelbach’s algorithm: given λτ (λ0

can be set to 0) in iteration τ , we solve the following problem

max
Q,Y

min
k

r+k (Y;Yt)− r−k (Q;Qt)− λt,τ (P0,k + ρktr(Qk))

s.t. Qk � 0, tr(Qk) ≤ Pk,Yk =
∑K

j=1HkjQjH
H
kj , ∀k, (21)



and denote its optimal point as (Q⋆(λt,τ ),Y⋆(λt,τ )). Then the

variable λt,τ is updated as follows:

λt,τ+1 = min
k=1,...,K

r+k (Y
⋆(λt,τ );Yt)− r−k (Q

⋆(λt,τ );Qt)

P0,k + ρktr(Q⋆
k(λ

t,τ ))
.

It follows from the properties of the Dinkelbach’s algorithm that

limτ→∞ Q⋆(λt,τ ) = Qt+1 at a superlinear convergence rate.

On solving problem (21). As the pointwise minimum of multiple

concave functions, the objective function of (21), although concave,

is nondifferentiable. We thus introduce an auxiliary variable µ and

rewrite problem (21) as

max
Q,Y,µ

µ− c
∑K

k=1

(∥

∥Qk −Q
t
k

∥

∥

2
+

∥

∥Yk −Y
t
k

∥

∥

2)
(22a)

s.t. Qk � 0, tr(Qk) ≤ Pk,Yk =
∑K

j=1HkjQjH
H
kj , (22b)

r+k (Yk)−r−k (Q
t)−

∑

j 6=k
(Qj −Q

t
j) • ∇Q∗

j
r−k (Qt)

−λt,τ (P0,k+ρktr(Qk))≥µ,∀k. (22c)

Problem (22) is convex and the constraint set has a nonempty interior,

so strong duality holds. Besides this, the auxiliary variables (Yk)
K
k=1

make the coupling constraints in (22), namely, the equality constraints

in (22b) and the inequality constraints (22c), separable among the

variables [20], so the dual decomposition technique can be used.

Suppose the dual variable associated with the coupling constraint

in (22b) and (22c) is Σk and ηk, respectively. The Lagrangian is:

L(Q, µ,Y,Σ,η) =
(

1−
∑K

k=1ηk
)

µ

+
∑K

k=1(LY,k(Yk,Σ,η)− LQ,k(Qk,Σ,η)),

where

LQ,k(Qk,Σ,η), c
∥

∥Qk −Q
t
k

∥

∥

2
+Qk •

(

ηkλ
t,τρkI+

∑

j 6=k
ηj∇Q∗

k
r−j (Qt

−j)−
∑K

j=1H
H
jkΣjHjk

)

,

LY,k(Yk,Σ,η), ηklog det(σ
2
kI+Yk)−c

∥

∥Yk−Y
t
k

∥

∥

2
−Σk •Yk.

The dual function of (22) is

d(Σ,η) , max
(Qk�0,tr(Qk)≤Pk,Yk�0)K

k=1

L(Q, µ,Y,Σ,η). (23)

The maximization problem in (23) can be decomposed into many

subproblems which are then solved in parallel: for all k = 1, . . . ,K,

Q
⋆
k(Σ, η) , argmax

Qk�0,tr(Qk)≤Pk

LQ,k(Qk,Σ,η), (24a)

Y
⋆
k(Σ, η) , argmax

Yk�0

LY,k(Yk,Σ,η). (24b)

Both Qk(Σ,η) and Yk(Σ, η) are unique and have a closed-form

expression, see [18, Lemma 2] and [20, Lemma 7], respectively. We

remark that the optimal dual variable (Σ, η) can be found by the

subgradient method; this is a standard technique and we omit the

details due to page limit, see [21, Sec. IV-B] for a similar discussion.

Similar to the iterative algorithm proposed in [2, Section V-

B], the proposed algorithm is essentially a successive lower bound

maximization method. Nevertheless, a quadratic proximal term is

incorporated into the proposed approximate function, cf. (17) and

(18). This subtle but important difference is beneficial from several

aspects. Firstly, the sequence {Q⋆(Σt,τ,υ)}υ , calculated from the

dual domain, converges to the optimal point of the primal problem

(22). Secondly, the dual problem is differentiable. Thirdly, the dual

decomposition technique can be used to solve the approximate prob-

lem efficiently and all variable updates have a closed-form expression.

The proposed algorithm thus has a guaranteed convergence and a

much lower complexity than [2] where the approximate problem is

solved by a general purpose convex optimization solver.
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Figure 1. Achieved SEE versus the number of iterations and CPU time in
seconds.

V. SIMULATIONS

We consider a cluster of K = 7 micro BSs with an inter-cell

distance of 500m. The number of transmit antennas at each BS

is MT,k = 4 and the number of receive antennas at each user

is MR,k = 4. The power consumption at the zero RF output is

P0,k =16 W, the power budget normalized by the number of transmit

antennas is 36 dBm, i.e., Pk/MT,k =36 dBm, and the slope of power

consumption ρ is 2.6; these parameters are mainly adopted from [14].

For each realization, all K users are randomly located in the multi-

cell space where each user falls into the respective hexagonal cell,

and the simulation results are averaged over 100 realizations.

Due to the page limit, we test the algorithm proposed in Sec. III for

the SEE maximization problem only. Among the algorithms proposed

in [9, 11, 12], we adopt the Linear Transformation Alternating (LTA)

algorithm in [9] as the benchmark because other algorithms are

applicable for MISO systems only. In Figure 1, we show the achieved

SEE versus the number of iterations and the CPU time in seconds. It

is easy to see from Figure 1 (a) that both the proposed algorithm and

the LTA algorithm converges in the same number of iterations, but

the proposed algorithm converges to a better solution. Besides this,

we see from Figure 1 (b) that the proposed algorithm converge in less

than 2 seconds, while the LTA algorithm converges in 100 seconds.

This is because each iteration of the LTA algorithm consists of a BCD

type algorithm, where the variables to be updated are matrices and

the typical convergence speed is linear [22], while each iteration of

the proposed algorithm consists of the Dinkelbach’s algorithm, where

the variable is a scalar and the convergence speed is superlinear [4].

Therefore, the proposed algorithm has a much lower complexity than

the benchmark algorithm, namely, the LTA algorithm in [9].

VI. CONCLUSIONS

In this paper, we have studied the energy efficiency optimization

problem in MIMO interference channels. Given the problem’s multi-

objective nature, we have considered two of the most popular design

criteria: socially optimality and max-min fairness. For the socially

optimal design, we have proposed for the first time a fast convergent

and easily implementable parallel algorithm that is of a best-response

type. For the max-min fairness design, we have also proposed a

convergent algorithm, which exhibits a much lower complexity than

state-of-the-art benchmarks, because, based on dual decomposition,

the approximate problem can be decomposed into independent sub-

problems which can then be optimized in parallel and whose optimal

solution have a closed-form expression.
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