
1

A Machine Learning-Driven Evolutionary
Approach for Testing Web Application Firewalls

Dennis Appelt, Cu D. Nguyen, Annibale Panichella, Lionel C. Briand Fellow, IEEE

F

Abstract— Web application firewalls (WAF) are an essential protection
mechanism for online software systems. Because of the relentless flow
of new kinds of attacks as well as their increased sophistication, WAFs
have to be updated and tested regularly to prevent attackers from
easily circumventing them. In this paper, we focus on testing WAFs
for SQL injection attacks, but the general principles and strategy we
propose can be adapted to other contexts. We present ML-Driven, an
approach based on machine learning and an evolutionary algorithm to
automatically detect holes in WAFs that let SQL injection attacks bypass
them.

Initially, ML-Driven automatically generates a diverse set of attacks
and submit them to the system being protected by the target WAF.
Then, ML-Driven selects attacks that exhibit patterns (substrings)
associated with bypassing the WAF and evolve them to generate new
successful bypassing attacks. Machine learning is used to incrementally
learn attack patterns from previously generated attacks according to
their testing results, i.e., if they are blocked or bypass the WAF. We
implemented ML-Driven in a tool and evaluated it on ModSecurity,
a widely used open-source WAF, and a proprietary WAF protecting a
financial institution. Our empirical results indicate that ML-Driven is
effective and efficient at generating SQL injection attacks bypassing
WAFs and identifying attack patterns.

Index Terms—Software Security Testing, SQL Injection, Web Applica-
tion Firewall.

1 INTRODUCTION

WEB application firewalls (WAF) protect enterprise
web systems from malicious attacks. As a facade to

the web application they protect, WAFs inspect incoming
HTTP messages and decide whether blocking or forwarding
them to the target web application. The decision is often
performed based on a set of rules, which are designed to
detect attack patterns. Since cyber-attacks are increasingly
sophisticated, WAF rules tend to become complex and dif-
ficult to manually maintain and test. Therefore, automated
testing techniques for WAFs are crucial to prevent malicious
requests from reaching web applications and services.

In this work, we focus our testing efforts on a common
category of attacks, namely SQL injections (SQLi). SQLi has
received a lot of attention from academia as well as practi-
tioners [7], [10], [14], [24], [25], [26], [27], [32], [34], [45]. Yet

• Dennis Appelt, Cu D. Nguyen, Annibale Panichella, and Lionel C. Briand
are with the SnT Centre, University of Luxembourg, L-2721 Luxembourg,
Luxembourg.

Manuscript received March xx, 2016; revised yyyyyy xx, 2016.

the Open Web Application Security Project (OWASP) finds
that the prevalence of SQLi vulnerabilities is common and
the impact of a successful exploitation is severe [50]. While
we assess our approach based on the example of SQLi, we
believe that many of the principles of our methodology can
be adapted to other forms of attacks.

Various techniques have been proposed in the literature
to detect SQLi attacks based on a variety of approaches,
including white-box testing [21], static analysis [20], model-
based testing [30], and black-box testing [18]. However,
such techniques present some limitations which may ad-
versely impact their practical applicability as well as their
vulnerability detection capability. For example, white-box
testing techniques and static analysis tools require access to
source code [33], which might not be possible when dealing
with third-party components or industrial appliances, and
are linked to specific programming languages [19]. Model-
based testing techniques require models expressing the se-
curity policies or the implementation of WAFs and the web
application under test [30], which are often not available
or very difficult to manually construct. Black-box testing
strategies do not require models or the source code but they
are less effective in detecting SQLi vulnerabilities. Indeed,
comprehensive reviews on black-box techniques [13], [18]
have revealed that many types of security vulnerabilities
(including SQLi attacks) remain largely undetected and,
thus, warrant further research.

In our preliminary work [9], we introduced a novel
black-box technique, namely ML-Driven, that combines
the classical (µ+λ) evolutionary algorithm (EAs) with ma-
chine learning algorithms for generating tests (i.e., attacks)
bypassing a WAF’s validation routines. ML-Driven uses
machine learning to incrementally learn attack patterns and
build a classifier, i.e., that predicts combinations of attack
substrings (“slices”) associated with bypassing the WAF.
The resulting classifier is used within the main loop of
(µ+λ)-EAs to rank tests depending on which substrings
compose them and the corresponding bypassing probabili-
ties. In each iteration, tests with the highest rank are selected
and mutated to generate λ new tests (offsprings), which are
then executed against the WAF. The corresponding execu-
tion results are used to re-train the classifier to incrementally
improve its accuracy. Through subsequent generations, tests
are evolved to increase the number of attacks able to bypass
the target WAF.

We defined two variants of ML-Driven, namely

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147015292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ML-Driven D and ML-Driven B, that differ in the number
of tests being selected for generating new tests (offsprings).
The former variant selects fewer tests to evolve but gener-
ates more offsprings per selected test, thus increasing ex-
ploitation (deep search). The latter variant selects more tests
to mutate, which results in a lower number of offsprings
per selected test, hence increasing exploration (broad search).
Our preliminary study with ModSecurity1, a popular open
source WAF, has shown that both ML-Driven D and
ML-Driven B are effective in generating a large number
of distinct SQLi attacks passing thought the WAF. However,
ML-Driven D performs better in the earlier stages of the
search while ML-Driven B outperforms it in the last part
of the search, for reasons we will explain.

In the race against cyber-attacks, time is vital. Being
able to learn and anticipate attacks that successfully bypass
WAFs in a timely manner is critical. With more successful,
distinct attacks being detected, the WAF administrator is
in a better position to identify missed attack patterns and
to devise patches that block all further attacks sharing the
same patterns. Therefore, our goal is to devise a technique
that can efficiently generate as many successful distinct
attacks as possible. To this aim, in this paper we ex-
tended our prior work and propose an adaptive variant
of ML-Driven, namely ML-Driven E (Enhanced), that
combines the strengths of ML-Driven D (deep search) and
ML-Driven B (broad search) in an adaptive manner. In
ML-Driven E, the number of offsprings is computed dy-
namically depending on the bypassing probability assigned
to each selected test by the constructed classifier. Conversely,
ML-Driven B and D generate a fixed number of offsprings
per attack/test. Therefore, ML-Driven E is a more flexible
approach that better balances exploration over run time.

Moreover, we conducted a much larger empirical study
with two popular WAFs that protect three open-source
and 44 proprietary web services. The results show that the
enhanced version of our technique (ML-Driven E) signifi-
cantly outperforms: (i) its predecessors ML-Driven B and
ML-Driven D; (ii) a random test strategy, which serves as
a baseline; (iii) two state-of-the-art vulnerability detection
tools, namely SqlMap and WAF Testing Framework. We
also performed a qualitative analysis of the attacks gener-
ated by our approach and we found out that they enable the
identification of attack patterns that are strongly associated
with bypassing the WAFs, thus providing better support for
improving the WAFs’ rule set.

To summarize, the key contributions of this paper in-
clude:

• Enhancing ML-Driven with an adaptive test selec-
tion and generation heuristic, which more effectively
explores attack patterns with higher likelihood of by-
passing the WAF. This enhanced ML-Driven variant
is intended to replace its predecessors, leaving the
practitioners with a single, yet the best, option.

• Assessing the influence of the selected machine
learning algorithm on the test results by comparing
two alternative classification models, namely Ran-
domTree and RandomForest, which are both adapted

1. https://www.modsecurity.org

to large numbers of features and datasets, but with
complementary advantages and drawbacks.

• Extending the previous evaluation and conducting a
large-scale experiment on a proprietary WAF protect-
ing a financial institution.

• Comparing ML-Driven with SqlMap and WAF
Testing Framework, which are state-of-the-art
vulnerability detection tools.

• A qualitative analysis showing that the additional
distinct attacks found by ML-Driven E help secu-
rity analysts design better patches compared to the
other ML-Driven variants, RAN, and state-of-the-
art vulnerability detection tools.

The remainder of the paper is structured as follows.
Section 2 provides background information on WAFs as well
as SQLi attacks and discusses related work. Section 3 details
our approach followed by Section 4 where we describe the
design and procedure of our empirical evaluation. Section 5
describes the evaluation results and their implications re-
garding our research questions while Section 6 explains and
illustrates how to use the generated attacks for repairing
vulnerable WAFs. Further reflections on the results are
provided in Section 7 while Section 8 concludes this paper.

2 BACKROUND AND RELATED WORK

In this section, we provide background notions about SQLi
vulnerabilities and describe existing white-box and black-
box approaches aimed at uncovering them.

2.1 SQL Injection Vulnerabilities

In systems that use databases, such as web-based systems,
the SQL statements accessing back-end databases are usu-
ally treated as strings. These strings are formed by con-
catenating different string fragments based on user choices
or the application’s control flow. Once a SQL statement is
formed, it is submitted to the database server to be executed.
For example, a SQL statement can be formed as follows (a
simplified example from one of our web services in the case
study):

$sql = "select * from hotelList where
country =’";

$sql = $sql.$country;
$sql = $sql."’";
$result = mysql_query($sql) or

die(mysql_error());

The variable $country is an input provided by the user,
which is concatenated with the rest of the SQL statement
and then stored in the string variable $sql. The string is
then passed to the function mysql_query that sends the
SQL statement to the database server to be executed.

SQLi is an attack technique in which attackers inject
malicious SQL code fragments into input parameters that
lack proper validation or sanitization. An attacker might
construct input values in a way that changes the behavior of
the resulting SQL statement and performs arbitrary actions
on the database (e.g. exposure of sensitive data, insertion
or alteration of data without authorization, loss of data, or
even taking control of the database server).

3

In the previous example, if the input $country received
the attack payload ’ or 1=1 --, the resulting SQL state-
ment is:

select * from hotelList
where country=’’ or 1=1 --’

The clause or 1=1 is a tautology, i.e., the condition will
always be true, and is thus able to bypassing the original
condition in the where clause, making the SQL query return
all rows in the table.

Web Application Firewalls. Web applications with high
security requirements are commonly protected by WAFs. In
the overall system architecture, a WAF is placed in front of
the web application that has to be protected. Every request
that is sent to the web application is examined by the
WAF before it reaches the web application. The WAF hands
over the request to the web application only if the request
complies with the firewall’s rule set.

A common approach to define the firewall’s rule set
is using a black-list. A black-list contains string patterns,
typically defined as regular expressions. Requests recog-
nized by these patterns are likely to be malicious attacks
(e.g., SQLi) and, therefore, are blocked. For example, the
following regular expression describes the syntax for SQL
comments, e.g., /**/ or #, which are frequently used in
SQLi attacks:

/*!?|*/|[’;]--|--[\s\r\n\v\f]
|(?:--[^-]*?-)
|([^\-&])#.*?[\s\r\n\v\f]|;?\\x00

There are several reasons why a WAF may provide
insufficient protection, including implementation bugs or
misconfiguration. One way to ensure the resilience of a WAF
against attacks is to rely on an automated testing procedure
that thoroughly and efficiently detects vulnerabilities. This
paper addresses this challenge for SQL injections, one of the
main types of attacks in practice.

2.2 Related Work

Previous research on ensuring the resilience of IT systems
against malicious requests has focused on the testing of
firewalls as well as input validation mechanisms.

Offutt et al. introduced the concept of Bypass Testing in
which an application’s input validation is tested for robust-
ness and security [38]. Tests are generated to intentionally
violate client-side input checks and are then sent to the
server application to test whether the input constraints are
adequately evaluated. Liu et al. [35] proposed an automated
approach to recover an input validation model from pro-
gram source code and formulated two coverage criteria for
testing input validation based on the model. Desmet et
al. [17] verify a given combination of a WAF and a web
application for broken access control vulnerabilities, e.g.
forceful browsing, by explicitly specifying the interactions
of application components on the source code level and by
applying static and dynamic verification to enforce only
legal state transitions. In contrast, we propose a black-
box technique that does not require access to source code
or client-side input checks to generate test cases. In our
approach, we use machine learning to identify the patterns

recognized by the firewall as SQLi attacks and generate
bypassing test cases that avoid those patterns.

Tripp et al. [48] proposed XSS Analyzer, a learning
approach to web security testing. The authors tackle the
problem of efficiently selecting from a comprehensive input
space of attacks by learning from previous attack executions.
Based on the performed learning, the selection of new
attacks is adjusted to select attacks with a high probability
of revealing a vulnerability. More specifically, XSS Analyzer
generates attacks from a grammar and learns constraints
that express which literals an attack cannot contain in order
to evade detection. The authors find that XSS Analyzer
outperforms a comparable state-of-the-art algorithm, thus,
suggesting that learning input constraints (a concept similar
to the path conditions in ML-Driven) is effective to guide
the test case generation.

In contrast to our work, XSS Analyzer applies learning
to individual literals only while our approach also learns
if a combination of literals is likely to bypass or be blocked.
Therefore, XSS Analyzer cannot capture more complex input
constraints involving multiple literals simultaneously, e.g.,
an attack should contain literal a, but not b and c in order to
evade detection. Furthermore, to analyze which literals in
an attack are blocked, XSS Analyzer first splits each attack
into its composing tokens; then, it resends each token to the
target web application. Since multiple attacks can share the
same tokens, XSS Analyzer sends each token only once to
avoid performing the same analysis multiple times. This
procedure consumes a large quantity of HTTP requests. In
contrast, ML-Driven does not require to resubmit individ-
ual slices, but learns path conditions solely from previously
executed test case and, thus, spends its test budget more
efficiently. In addition, there are differences between XSS
Analyser and ML-Driven in terms of objectives: The former
addresses cross-site scripting sanitization in web applica-
tions, while the latter addresses the detection of SQLi attacks
in WAFs.

In grammar-based testing, a strategy typically samples a
large input space defined by a grammar. Several grammar-
based approaches exist in the literature for testing security
properties of an application under test [37], [47]. Gode-
froid et al. [23] proposed white-box fuzzing, which starts
by executing an application under test with a given well-
formed input and uses symbolic execution to create input
constraints when conditional statements are encountered on
the execution path. Then, new inputs are created that ex-
ercise different execution paths by negating the previously
collected constraints. The implementation of the approach
found a critical memory corruption vulnerability in a file-
processing application. In a follow-up work, the authors
propose grammar-based white-box fuzzing [21], which ad-
dresses the generation of highly structured program inputs.
In this work, well-formed inputs are generated from a gram-
mar and the constraints created during execution are ex-
pressed as constraints on grammar tokens. To generate new
inputs, a constraint solver searches the grammar for inputs
that satisfy the constraints. The authors implemented their
work in a tool named SAGE and found several security-
related bugs [22]. In contrast to the mentioned work of
Godefroid et al., our work does not require access to the
source code of the application under test, which is in many

4

practical scenarios not available, but proposes a black-box
approach based on machine learning to efficiently sample
the input space defined by an attack grammar.

The topic of testing network firewalls has also been
addressed by an abundant literature. Although network
firewalls operate on a lower layer than application firewalls,
which are our focus, they share some commonalities. Both
use policies to decide which traffic is allowed to pass or
should be rejected. Therefore, testing approaches to find
flaws in network firewall policies might also be applicable
to web application firewall policies. Bruckner et al. [1]
proposed a model-based testing approach which transforms
a firewall policy into a normal form. Based on case studies
they found that this policy transformation increases the
efficiency of test case generation by at least two orders of
magnitude. Hwang et al. [29] defined structural coverage
criteria of policies under test and developed a test gener-
ation technique based on constraint solving that tries to
maximize structural coverage. Other research has focused
on testing the firewalls implementation instead of policies.
Al-Shaer et al. [3] developed a framework to automatically
test if a policy is correctly enforced by a firewall. Therefore,
the framework generates a set of policies as well as test
traffic and checks whether the firewall handles the gen-
erated traffic correctly according to the generated policy.
Some authors have proposed specification-based firewall
testing. Jürjens et al. [30] proposed to formally model the
tested firewall and to automatically derive test cases from
the formal specification. Senn et al. [43] proposed a formal
language for specifying security policies and automatically
generate test cases from formal policies to test the firewall.
In contrast, in addition to targeting application firewalls, our
approach does not rely in any models of security policies
or the firewall under test, such formal models are rarely
available in practice.

3 APPROACH

This section introduces an approach for testing WAFs. Sec-
tion 3.1 defines the input space for this testing problem
as a context-free grammar. Section 3.2 presents a simple
attack generation strategy that randomly samples the input
space and serves as baseline. Section 3.3 presents two test
generation strategies that make use of machine learning
to guide test generation towards areas in the input space
that are more likely to contain successful attacks. Finally,
Section 3.4 details an approach to combine such attack
generation strategies to achieve better results.

3.1 A Context-Free Grammar for SQLi Attacks

SQLi attacks (or test cases in this context) are small “pro-
grams” that aim at changing the intent of the target SQL
queries they are injected in. We systematically surveyed
known SQLi attacks published in the literature, e.g., [5], [6],
[24] and from other sources e.g., OWASP2, and SqlMap3.
Then, we defined a context-free grammar for generating and
analyzing SQLi attacks.

2. https://www.owasp.org
3. http://sqlmap.org

We consider three main categories of SQLi attacks in our
grammar: (i) Boolean, (ii) Union, and (iii) Piggy-Backed. These
type of attacks aim at manipulating the intended logic by
injecting additional SQL code fragments in the original SQL
queries. We briefly discuss each attack category and provide
example attacks that can be derived using our grammar. For
a detailed discussion refer to the literature [10], [27].

Boolean Attacks. The intent of a boolean SQLi attack is to
influence the where clause within a SQL statement to always
evaluate either to true or false. As a result, a statement,
into which a boolean SQLi attack is injected, returns on its
execution either all data records of the queried database
tables (in case the where clause evaluates always to true) or
none (in case the where clause evaluates always to false).
This attack method is typically used to bypass authenti-
cation mechanisms, extract data without authorization, or
to identify injectable parameters. The example described in
Section 2.1 is an instance of boolean attacks.

Union Attacks. The union keyword joins the result
set of multiple select statements and, hence, union SQLi
attacks are typically used to extract data located in other
database tables than the original statement is querying.
For example, consider an application that retrieves a list of
product names based on a search term. The SQL statement
to retrieve the product names might be:

SELECT name FROM products WHERE name LIKE
"%search term%"

where search term is a string provided by the user.
If the SQL statement is formed in an insecure way, an
attacker could provide the search term phone%" UNION
SELECT passwd FROM users #%", which would result
in the statement:

SELECT name FROM products WHERE name LIKE
"%phone%" UNION SELECT passwd FROM users

Hence, in addition to a list of products containing the search
term phone, the attacker could obtain the passwords of all
users with the modified query above.

Piggy-Backed Attacks. In SQL, the semicolon (;) can be
used to separate two SQL statements. Piggy-Backed attacks
use the semicolon to append an additional statement to the
original statement and can be used for a wide range of attack
purposes (e.g. data extracting or modification, and denial of
service). An example of a piggy-backed attack is ; DROP
TABLE users #. If this attack is injected into a vulnerable
SQL statement, it drops the table user and, thus, potentially
breaks the application.

The grammar. We defined a grammar for SQLi attacks
in the Extended Backus Normal Form, which is publicly
available4 on GitHub. An excerpt of the grammar is de-
picted in Figure 1. The start symbol of the grammar
is 〈start〉, while “::=” denotes the production symbol, “,”
is concatenation, and “|” represents alternatives (grammar
rule 1 of Figure 1). The grammar covers three different
contexts in which SQLi attacks can be inserted into: numer-
icCtx, sQuoteCtx, and dQuoteCtx. SQLi attacks belonging to
the first context yield syntactically correct statements if they
are injected in a numerical context (rule 2 of Figure 1). For

4. https://github.com/dappelt/xavier-grammar

https://github.com/dappelt/xavier-grammar

5

example, the attack 1 OR true belongs to numericCtx and
yields a syntactically correct statement if injected into the
statement SELECT * FROM person WHERE age=<user_-
input> where the placeholder <user_input> is intended to
be replaced with a numerical value. Similarly, the second
and third context, sQuoteCtx and dQuoteCtx, target SQL
statements in which the user input is used as string literal
and surrounded by single quotes (rule 3 of Figure 1) and
double quotes (rule 4), respectively. For example, the SQLi
attack " OR "a"="a belongs to dQuoteCtx and yields a
syntactically correct statement if injected into SELECT *
FROM person where name="<user_input>".

Our grammar can be extended to incorporate other vari-
ants of SQLi attacks. For example, the non-terminal 〈blank〉
(rule 30 of Figure 1) can have more semantically equivalent
terminal characters: +, /**/, or unicode encodings: %20,
%09, %0a, %0b, %0c, %0d and %a0; the quotes (single or
double) can be represented using HTML encoding, and so
on. Since the grammar is an input to our approach it can
also be replaced with alternative grammars, which define an
input space for different attack types (e.g. cross-site scripting
or XML injection).

3.2 Grammar-based Random Attack Generation
Based on the proposed grammar, the random attack gener-
ation (RAN) procedure is straightforward: Beginning from
the start symbol 〈start〉, a randomly selected production rule
is applied recursively until only terminals are left. Since
there is no loop in the grammar, this attack generation
procedure will always terminate. The output SQLi attack is
produced by concatenating all terminal symbols appearing
in the generated instance of the grammar.

To produce a set of diverse random SQLi attacks that
yields a good coverage of the grammar, each production rule
is selected with a probability proportional to the number of
distinct production rules descending from the current one.

Among the techniques presented in this work, RAN
implements the simplest strategy for sampling the input
space defined by the attack grammar. Indeed, multiple SQLi
attacks can be generated by simply re-applying RAN mul-
tiple times until the maximum number of tests/attacks (or
the maximum running time) is reached. Bypassing attacks
are then detected by executing all generated SQLi attacks
against the target WAF.

3.3 Machine Learning-Guided Attack Generation
As the difficulty to find bypassing attacks increases, i.e. a
WAF detects a large proportion of attacks, a random attack
generation strategy (e.g., RAN) will increasingly become in-
efficient. In such situations, a more advanced test generation
strategy that spends more computational effort to identify
test cases with a higher bypassing probability is expected
to be more efficient. In this section, we introduce a machine
learning-based approach, called ML-Driven, to sample the
input space in a more efficient manner than RAN does.

Theoretically, SQLi attacks could be generated using
search-based testing techniques [4], [12], [36], [40]. However,
the application of these techniques requires the definition
of a distance function f that measures the distance between
a coverage target to reach and the execution results of a

1. 〈start〉 ::= 〈numericCtx〉 | 〈sQuoteCtx〉 | 〈dQuoteCtx〉 ;

Injection Context
2. 〈numericCtx〉 ::= 〈digitZero〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉

| 〈digitZero〉, 〈parC〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉, 〈operOr〉,
〈parO〉, 〈digitZero〉

| 〈digitZero〉, [〈parC〉], 〈wsp〉, 〈sqliAtk〉, 〈comment〉 ;
3. 〈sQuoteCtx〉 ::= 〈squote〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉, 〈operOr〉,

〈squote〉
| 〈squote〉, 〈parC〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉, 〈operOr〉,
〈parO〉, 〈squote〉

| 〈squote〉, [〈parC〉], 〈wsp〉, 〈sqliAtk〉, 〈comment〉 ;
4. 〈dQuoteCtx〉 ::= 〈dquote〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉, 〈operOr〉,

〈dquote〉
| 〈dquote〉, 〈parC〉, 〈wsp〉, 〈booleanAtk〉, 〈wsp〉, 〈operOr〉,
〈parO〉, 〈dquote〉

| 〈dquote〉, [〈parC〉], 〈wsp〉, 〈sqliAtk〉, 〈comment〉 ;
5. 〈sqliAtk〉 ::= 〈unionAtk〉 | 〈piggyAtk〉 | 〈booleanAtk〉 ;

Union Attacks
6. 〈unionAtk〉 ::= 〈union〉, 〈wsp〉, [〈unionPostfix〉], 〈operSel〉, 〈wsp〉,

〈cols〉
| 〈union〉, 〈wsp〉, [〈unionPostfix〉] , 〈parO〉, 〈operSel〉, 〈wsp〉,
〈cols〉,〈parC〉 ;

7. 〈union〉 ::= 〈operUni〉 | "/*!", ["50000"], 〈operUni〉, "*/" | ... ;
8. 〈unionPostfix〉 ::= "all", 〈wsp〉 | "distinct", 〈wsp〉;

Piggy-backed Attacks
9. 〈piggyAtk〉 ::= 〈operSem〉, 〈operSel〉, 〈wsp〉, 〈funcSleep〉 | ... ;

Boolean-based Attacks
10. 〈booleanAtk〉 ::= 〈orAtk〉 | 〈andAtk〉 ;
11. 〈orAtk〉 ::= 〈operOr〉, 〈booleanTrueExpression〉 ;
12. 〈andAtk〉 ::= 〈operAnd〉, 〈booleanFalseExpression〉 ;
13. 〈booleanTrueExpression〉 ::= 〈unaryTrue〉 | 〈binaryTrue〉 ;

SQL Operators and Keyword
15. 〈operNot〉 ::= "!" | "not" ;
16. 〈operBinInvert〉 ::= " " ;
17. 〈operEqual〉 ::= "=" ;
18. 〈operLt〉 ::= "<" ;
19. 〈operGt〉 ::= ">" ;
20. 〈operLike〉 ::= "like" ;
21. 〈operIs〉 ::= "is" ;
22. 〈operMinus〉 ::= "-" ;
23. 〈operOr〉 ::= "or" | "||" ;
24. 〈operAnd〉 ::= "and" | "&&" ;
25. 〈operSel〉 ::= "select"
26. 〈operUni〉 ::= "union" ;
27. 〈operSem〉 ::= ";" ;
28. 〈comment〉 ::= "#" | 〈ddash〉, 〈blank〉;
29. 〈ddash〉 ::= "– –"

Obfuscation
30. 〈inlineComment〉 ::= "/**/" ;
31. 〈blank〉 ::= " " ;
32. 〈wsp〉 ::= 〈blank〉 | 〈inlineComment〉

Fig. 1. Excerpt of the grammar used in the paper expressed in Extended
Backus Normal Form.

given test case [36], [39], [46]. For example, in white-box
unit testing, approach level [36] and branch distance [36] are
used to determine how far is the execution path of test t
from covering a given branch in the control flow graph.
However, in the context of security testing, the target SQLi
vulnerabilities are not known a-priori and, thus, such a
distance function f cannot be defined. Therefore, we face the
problem to efficiently choose from a large set of SQLi attacks
the ones that are more likely to reveal holes in the WAF
under test. The problem is challenging because there is little
information available to estimate how close a test comes to

6

bypassing the WAF. When a test is executed, only one of the
following two events can be observed: bypassing, or blocked.
This leaves the search with no guidance to effectively assess
how close a blocked attack is from bypassing the WAF.
Lack of guidance is a well-known issue to address when
applying search-based techniques since previous studies
(e.g., [44]) showed that sophisticated search algorithms (e.g.,
evolutionary algorithm) do not provide any advantage over
random search (i.e., the approach in Section 3.2) when the
gradient of the function f has many plateaus (flag problem).

To tackle this problem, we introduce ML-Driven, a
search-based technique that uses machine learning to model
how the elements (attributes of attacks) of the tests are
associated with the likelihood of bypassing the WAF, the
latter being used to guide the search. In the search process,
tests that are predicted to have such high likelihood are
considered to have a high fitness and are more likely to
be generated. ML-Driven first employs random test gen-
eration, as described in the previous section, to generate
an initial training set. Then, these tests are sent to a web
application protected by the WAF, and are labelled as “P”
or “B” depending on whether they bypass or are blocked by
the WAF, respectively. Tests and execution results are then
encoded and used as initial training data to learn a model
estimating the likelihood (f) with which tests can bypass the
WAF. Using this measure we can rank, select, and modify
tests associated with high f values to produce new tests.
These new tests are then executed, and their results (“P” or
“B”) are used to improve the prediction model, which will
in turn help generating more distinct tests that bypass the
WAF.

In what follows, we will discuss in detail the procedure
used to decompose and encode test cases into a training
set, and the machine learning algorithms that are used to
estimate the likelihood of each test to bypass the WAF.
Finally, we describe ML-Driven, our search-based approach
guided by machine learning.

3.3.1 Attack Decomposition
We can derive a test from the grammar by applying recur-
sively its production rules. This procedure can be repre-
sented as a derivation tree. A derivation tree (also called
parse tree) of a test is a graphical representation of the
derivation steps that are involved in producing the test.
In a derivation tree, an intermediate node represents a
non-terminal symbol, a leaf node represents a terminal
symbol, and an edge represents the applied production.
Fig. 2 depicts the derivation tree of the boolean attack:
’ OR“a”=“a”#. In the course of generating this test, we
first apply the 〈start〉 rule:

〈start〉 ::= 〈numericCtx〉 | 〈sQuoteCtx〉
| 〈dQuoteCtx〉 ;

and derive 〈sQuoteCtx〉. We then apply the third rule of the
grammar to derive 〈squote〉, 〈wsp〉, 〈sqliAtk〉, and 〈comment〉.
This procedure is repeated until all non-terminal symbols
are transformed into terminal symbols. The attack string
represented by a derivation tree is obtained by concatenat-
ing the leaves from left to right.

We use derivation trees to identify which substrings of
a SQLi attack are likely to be responsible for the attack
being blocked or not. Specifically, an attack is divided into

<start>

<sQuoteCtx>

<squote> <wsp> <sqliAtk> <comment>

<booleanAtk>

<orAtk>

<operOr> <booleanTrueExpression>

OR <binaryTrue>

<dquote> <char> <dquote> <operEqual> <dquote> <char> <dquote>

“ a ” = “ a ”

‘ #⎵

Fig. 2. The derivation tree of the “boolean” SQLi attack: ’ OR“a”=“a”#.

<squote> <wsp> <sqliAtk> <comment>

<booleanAtk>

<orAtk>

<operOr> <booleanTrueExpression>

OR <binaryTrue>

<dquote> <char> <dquote> <operEqual> <dquote> <char> <dquote>

“ a ” = “ a ”

‘ #⎵

S1 S2 S3 S4

Fig. 3. Example subset of slices decomposed from the tree in Fig. 2.

substrings by decomposing its derivation tree into slices.
The definition of a slice is as follows:

Definition 1 (Slice). A slice s is a subtree T ′ of a derivation tree
T such that T ′ contains a strict subset of leaves of T .

A slice is supposed to represent a substring of an attack,
hence only subtrees of a derivation tree that contain a
subset of leaves are considered to be slices. Otherwise, if
the subtree contains the same leaves as the derivation tree,
the represented string is not a substring, but the same string
as the derivation tree. For example, for the derivation tree
in Fig. 2 the subtree with the root 〈sQuoteCtx〉 contains all
the leaves of the whole derivation tree and, therefore, is
not a slice. A sample of four slices decomposed from the
derivation tree of this example is depicted in Fig. 3. Among
all possible slices of a derivation tree, we are interested in
extracting the minimal ones, i.e., slices that cannot be further
divided into sub-slices:

Definition 2 (Minimal Slice). A slice s is minimal if it has only
two nodes: a root and only one child that is a leaf.

The procedure to decompose a derivation tree into slices
is detailed in Algorithm 1. Starting from the root node
the algorithm recursively computes slices from descendant
nodes by calling VISIT(child, root, S) in line 5. In line 11,
the condition (root.leafs \ node.leafs) 6= ∅ ensures that
only subtrees complying with Def. 1 are considered. In line
14, the recursion ends if the node forms a minimal slice,
as defined in Def. 2, otherwise the recursion continues.

7

Algorithm 1 Tree decomposition into slices.
1: procedure DECOMPOSETREE(root)
2: S ← ∅
3: children← root.childNodes
4: for all child ∈ children do
5: VISIT(child, root, S)
6: end for
7: return S
8: end procedure
9: procedure VISIT(node, root, S)

10: s← getSlice(node) . get the slice for which node is the
root

11: if (root.leafs \ node.leafs) 6= ∅ then
12: S ← S ∪ s
13: end if
14: if s is minimal then
15: return
16: else
17: children← node.childNodes
18: for all child ∈ children do
19: VISIT(child, root, S)
20: end for
21: end if
22: end procedure

For example, applying the decomposition procedure to the
derivation tree in Fig. 2 yields a set of 12 distinct slices.

We conjecture that the appearance of one or more slices
in a test could result in the test getting blocked or not. In
the next sections, we develop this idea further by analyzing
slices of a collection of tests and predicting, using machine
learning, how their appearance in the tests affect their
likelihood of bypassing a WAF or being blocked.

3.3.2 Training Set Preparation
Given a set of tests that have been labelled with their
execution result against a WAF, that is a “P” or “B” label,
we transform each test into an observation instance to feed
our machine learning algorithm.

1) Each test is decomposed into a vector of slices ti =
〈s1, s2, . . . , sNi

〉 by applying the attack decomposition
procedure.

2) Each slice is assigned a globally unique identifier. If the
same slice is part of multiple tests, it is referenced by
the same identifier. We map each unique slice to an
attribute (a feature) of the training data set for machine
learning.

3) Every test is transformed into an observation of the
training data set by checking whether the slices used
as attributes are present or not in the corresponding
vector of slices of the test.

As a concrete example, let us consider three tests
t1, t2, t3; the first two are blocked while the last can bypass a
WAF. Their decompositions into slices and labels are shown
on the left side of Table 1, and their encoded representation
on the right side of the table. In total, we have five unique
slices from all the tests and they become attributes of the
training data for machine learning. If a slice appears in a
test, its corresponding attribute value in the training data is
“1”, and otherwise “0”.

3.3.3 Decision Tree and Path Condition
By decomposing tests into slices and transforming them into
a labelled data set, we can now apply a supervised machine

TABLE 1
An example of test decompositions and their encoding.

t.id vector label
1 〈s1, s2, s3〉 B
2 〈s1, s2, s4〉 B
3 〈s4, s5〉 P

t.id s1 s2 s3 s4 s5 clz
1 1 1 1 0 0 B
2 1 1 0 1 0 B
3 0 0 0 1 1 P

learning technique to predict which slices or combinations
of slices are associated with tests bypassing or being blocked
by the WAF. To be able to identify such slices, we rely on
machine learning techniques that provide an interpretable
output model. That is, the reason for the classification of
attacks into bypassing or blocked should be easily com-
prehensible. Therefore, though other algorithms generating
classification rules could have been used as well, we selected
decision trees (DTs) for this task.

A DT is a tree structure with decision nodes and leaves;
a decision node represents an attribute from a data set; each
branch from such a node represents a possible value for the
corresponding attribute; and a leaf node represents a classi-
fication for all instances that reach this node. In our context,
each decision node represents a slice and the branches from
the node can be “0” or “1”, corresponding to whether the
slice is absent or present. A leaf node classifies instances
into blocked or bypassing and is labelled accordingly with
“B” or “P”. Fig. 4 shows an example decision tree learned
from the data in Table 1.

The paths from the root node of the decision tree to
its leaf nodes embody the combinations of slices which are
likely to be the reason for tests to bypass or to be blocked,
depending on the classification. More generally, we define a
concept of path condition as:

Definition 3 (Path Condition). A path condition represents
a set of slices that the machine learning technique deems to be
relevant for the attack’s classification into blocked or bypassing.
The path condition is represented as a conjunction

∧k
i (si = val),

in which val = 1 | 0, and k is the number of relevant slices.

The procedure for computing path conditions depends
on the machine learning algorithm that is used to build
decision trees. We have selected two alternative algorithms
and assessed their overall impact on test results.

RandomTree. The most prominent difference to classical
decision tree algorithms (e.g. C4.5 [42]) is that RandomTree
relies on randomization for building the decision tree [15].
When selecting an attribute for a tree node, the algorithm
chooses the best attribute amongst a randomly selected sub-
set of attributes. By choosing only subset of attributes, the
algorithm scales well with the size of the training data set.
In our context, a scalable learner is important since the data
sets contain a larger number of attributes and the decision
tree is frequently rebuilt, as described in Section 3.3.4.

Given a decision tree and a slice vector V of a test
t, we can obtain the path condition for t by visiting the
decision tree from the root and check the presence (value =
1) or absence (value = 0) of the attributes encountered with
respect to V . The procedure stops once a leaf is reached.
For instance, Fig. 4 presents a decision tree learned from the
example data discussed in Table 1. For test t1, the attribute
s3 is present in the test’s slice vector 〈s1, s2, s3〉, and thus
t1 follows the left branch. Hence, the path condition is

8

P B

S5

01

1 0
B

S3

Fig. 4. An example of a deci-
sion tree obtained from the training
data in Table 1.

(s3 = 1). Similarly, for test t3 with the slice vector 〈s4, s5〉,
the attribute s3 is not present, thus the right branch is
followed leading to attribute s5, which is present in the
slice vector. Therefore, the resulting path condition for t3
is (s3 = 0 ∧ s5 = 1).

RandomForest. Machine classification methods are well-
known to be unstable, i.e., a small change in the training
data can result in a different classification model [51]. En-
semble methods have been proposed to address the issue. In
essence, multiple models are learned so that their collective
predictions can mitigate bias in individual models. In this
work, we implement an ensemble of classifiers to guide the
test generation, i.e., instead of using only one RandomTree,
we extend our technique to make use of ensembles of trees
produced by RandomForest [15]. However, the benefits of
RandomForest come at the cost of an increased computa-
tional overhead, e.g. learning an ensemble of RandomTrees
takes longer than learning only a single RandomTree. We
evaluate in Section 5 whether the benefits justify the in-
creased overhead.

A RandomForest consists of multiple RandomTrees. To
classify an attack with RandomForest, each individual Ran-
domTree first classifies the attack and computes the predic-
tion confidence (an estimated probability for the classifica-
tion is to be correct). Then, all individual classifications are
consolidated by computing the average of the prediction
confidence values for each class. Finally, the class with the
highest prediction confidence is chosen by RandomForest as
final classification.

To compute the path condition for a given attack with
RandomForest, for all trees that classify the attack as by-
passing a path condition is computed separately. Thereby,
the path condition for each tree is computed according to the
previously described procedure. The overall path condition
for the entire RandomForest is, then, the conjunction of the
path conditions computed from the trees.

3.3.4 ML-Driven Evolutionary Testing Strategy

To increase the likelihood of generating bypassing attacks,
we propose a ML-driven evolutionary testing strategy
whose pseudo-code is detailed in Algorithm 2. It combines
machine learning algorithms (either RandomTree or Ran-
domForest) with the classical (µ+λ) Evolutionary Algorithm
(EA), which is a population-based evolutionary algorithm
with a population size µ and a restricted number of λ
offsprings.

As any EA, Algorithm 2 starts with an initial set of
solutions (initTests) usually called population. The initial
population can be either generated by the random attack
generator from Section 3.2 or by selecting tests from existing
test suites. The initial tests are executed against a target
WAF (line 2) if their execution results are not yet known
(i.e., in case of randomly generated tests). Each solution
is assigned a fitness score according to its probability of

Algorithm 2 ML-Driven SQLi attack generation.
1: procedure MLDRIVENGEN(initTests, outputTests)
2: execute(initTests)
3: P ← initTests
4: archive← UPDATEARCHIVE(P)
5: // learn the initial classifier
6: trainData← transform(archive)
7: DT ← learnClassifier(trainData)
8: rankTests(P,DT)
9: while not-done do

10: O← OFFSPRINGSGEN(P , λ, MAXM)
11: execute(O)
12: archive← UPDATEARCHIVE(O)
13: // re-training the classifier
14: trainData← transform(archive)
15: DT ← learnClassifier(trainData)
16: // new population
17: P ← SELECT(P ∪O)
18: end while
19: outputTests← filterBypassingTests(archive)
20: return outputTests
21: end procedure

bypassing the WAF determined the classifier built in lines 5-
6 of Algorithm 2. The classifier is built as follows: (i) the tests
are transformed into the training set (routine trainData in
line 6); (ii) a classifier DT is then trained from the data (line
7 of Algorithm 2). Then, individuals in the initial population
are ranked using the DT classifier (routine rankTests in
line 8), which assigns each individual (test) a probability of
bypassing the WAF.

In the main loop in lines 9-18, the population is evolved
through subsequent iterations, called generations. λ new so-
lutions are generated using the routine OFFSPRINGSGEN in
line 10. Such a routine selects the best individuals (parents)
and mutates them to generate λ new individuals, called
offsprings. The offsprings are executed against the target
WAF (line 11) and labelled as “bypassing” or “blocked”
depending on their execution results. In line 12, the newly
generated tests are added to an archive (line 12), which is a
second population used to keep track of all tests being gen-
erated across the generations [39]. Then, the DT classifier is
retrained by converting the archive into the training set (line
14) and re-applying the ML training (line 15). At the end of
each generation, a new population is formed in line 17 by
selecting the fittest µ tests among parents and offsprings
according the DT classifier. The loop terminates when the
maximum number of generations (or the maximum running
time) is reached (condition not-done in line 9).

Therefore, the three key components of Algorithm 2
are: (i) the ML-driven fitness assignment; (ii) the selection
operator; and (iii) the mutation operator applied for gener-
ating offsprings. These key components are detailed in the
following paragraphs.

ML-driven fitness assignment. In this paper, each can-
didate test t is assigned a fitness score by using machine
learning algorithms. In Algorithm 2, a classifier DT is built
at the beginning of the search (lines 6-7) at the end of each
generation (lines 14-15 of Algorithm 2) using the archive as
training set. Such an archive is updated whenever new test
cases (either “bypassing” or “blocked”) are generated (lines
4, 12). To build the classifier, the archive is transformed

9

Algorithm 3 Offsprings generation
1: procedure OFFSPRINGSGEN(parents, λ, MAXM)
2: offsprings← ∅
3: while |offsprings| < λ do
4: t← selectTest(parents)
5: V ← getSliceV ector(t)
6: pathCondition← getPath(V,DT)
7: s← pickASliceFrom(V)
8: while s 6= null do
9: if satisfy(s, pathCondition) then

10: newTests← mutate(t, s, MAXM)
11: offsprings← offsprings ∪ newTests
12: end if
13: s← pickASliceFrom(V)
14: end while
15: end while
16: return offsprings
17: end procedure

into a training set (lines 6, 7) using the steps discussed in
Section 3.3.2. Then, the classifier DT is trained using either
RandomTree or RandomForest. Once built, DT can be used
to estimate the probability of a given test t to bypass the
target WAF depending on which slices appear in the three
decomposition of t (see Section 3.3.1).

Elitist selection. In (µ+λ)-EAs, µ parents and λ off-
springs compete to form the new population of µ individ-
uals for the next generation. In Algorithm 2, this procedure
is implemented by the routine SELECT (line 17). Once the
fitness assignment has been performed using DT , the tests
in the current population are ranked in descending order
of their bypassing probability. The top µ test cases in the
ranking are selected to form the next population.

Generating offsprings. The routine used to generate
offsprings is detailed in Algorithm 3. Given a set of µ
parents, such a routine generates mutants from each parent
until reaching a total number of λ offsprings (loop condition
in line 3 of Algorithm 3). In each iteration of the loop in lines
3-15, Algorithm 3 selects the test with the highest rank as
candidate test for mutation. If more than one candidate have
tied ranks, the selection is random among them. If a test has
been selected before, it will not be selected again. For each
selected parent t (line 4), offsprings are generated starting
from its corresponding path condition (pathCondition),
which is determined using the routine getPath (line 6) from
the slice vector V of the attack t (obtained in line 5).

Then, offsprings are generated from a parent t by replac-
ing its slices s in V with other alternative slices according to
our grammar. In particular, one slice s is randomly picked
from the slice vector V of the attack t (line 7) and it is
replaced with an alternative slice s′ to generate new tests
(routine mutate in line 10). Both s and s′ have to satisfy
the given path condition. That is, they either appear in
the predicate and comply with it, or do not appear in
the predicate of the path condition. If s does not satisfy
the path condition, it is not considered for generating mu-
tants/offsprings (condition in line 9).

To better explain this mutation procedure, let us con-
sider the test t2 from Table 1 with slice vector 〈s1, s2, s4〉.
According to the slices in Figure 3, the path condition for
t2 is (s1 = 1); thus, we can select s2 or s4 and replace
them with their alternatives. Equivalent alternatives of a

slice are determined based on the root symbol of the slice
and all production rules of the grammar that start with this
symbol. For example, taking slice s2 in Fig. 3 that starts with
〈wsp〉 and derives 〈blank〉, we obtain only one production
rule from the grammar:

〈wsp〉 ::= 〈blank〉 | 〈inlineComment〉 ;
As a result, we determine only one alternative slice that
starts with 〈wsp〉 and derives 〈inlineComment〉.

At the mutation step in line 10 of Algorithm 3, the pa-
rameter MAXM is an integer value that limits the number of
mutants that are generated for test t and slice s. If the num-
ber of alternative slices for t and s is greater than MAXM ,
only MAXM alternative slices are selected and used, in
turn, to form mutants. If the number of alternative slices
is lower than MAXM , all available slices are used to form
mutants. Therefore, at most MAXN offsprings (mutants) are
generated from each parent t, where each offspring differs
from its parent in one single (alternative) slice.

Motivations. Let us now explain why we decided to
opt for the classical (µ,λ)-EA, which is a mutation-based
evolutionary algorithm with no crossover operator. With
this algorithm, MAXN offsprings are generated from one
single test t via mutation only. Crossover, which is another
well-know operator widely applied in various evolutionary
algorithms (e.g., genetic algorithms), is not applied here.
Usually, it generates two offsprings from a pair of solutions
(parents) by randomly exchanging their genes. However,
for our problem, a crossover operator cannot be defined
since different solutions (tests) within the same population
have different derivation trees that represent instances of
incompatible derivation rules of our grammar. For example,
let us assume we select for reproduction two test cases t1
and t2. The former instantiates the derivation rule 〈start〉
::= 〈numericCtx〉 while the latter is an instance of the rule
〈start〉 ::= 〈sQuoteCtx〉. If we apply any crossover operator
(e.g., the single-point crossover), then the resulting two
offsprings would violate our grammar since each of the new
test case would contain slices from different (incompatible)
derivation rules.

Exploration vs. Exploitation. Assuming that the total
number of offsprings (λ) to generate is constant, MAXM

controls how the evolutionary algorithm explores the test
space either broadly (exploration) or deeply (exploitation).
When MAXM is small, the approach generates fewer off-
springs per selected test, but selects more tests to mutate,
thus exploring the test space in a broader fashion (higher
exploration). When MAXM is large, on the contrary, the
approach generates more offsprings per selected test, but
selects fewer tests to mutate, thus exploring the test space
in a deeper fashion (higher exploitation). In the evalua-
tion section two variants of ML-Driven are distinguished:
ML-Driven B (broad, withMAXM = 10) and ML-Driven
D (deep, with MAXM = 100). Section 3.4 presents a thor-
ough analysis on how the parameter MAXM influences the
overall test results.

3.4 Enhancing ML-Driven: An Adaptive Approach to
Balance Exploration and Exploitation
Maintaining a good balance between exploration and ex-
ploitation is extremely important for a successful applica-
tion of EAs [49]. In our case, the balance is determined

10

by the parameter MAXM , which affects the number mu-
tants (offsprings) generated from each selected test. For
ML-Driven D, MAXM is set to a higher value, which leads
selecting fewer tests for mutation (≈ λ/100), but generating
more mutants per selected test (higher exploitation). For
ML-Driven B, MAXM is set to a lower value, which leads
selecting more tests for mutation (≈ λ/10), but generating
fewer mutants per selected test (higher exploration). Notice
that for both variants the total test budget is the same, but
the allocation of the test budget differs.

A detailed analysis presented in Section 5.1, shows that
no variant is superior over the other [8]: ML-Driven D per-
forms better at the beginning of the search but ML-Driven
B outperforms it in later stages. The reason for this phe-
nomenon is because of the number of bypassing tests se-
lected and their influence on the overall performance. At
the beginning, there are only a few available tests with
a high bypassing probability. Due to the higher value of
MAXM , ML-Driven D is likely to select only these tests
for mutation and, thus, exploits better the neighborhood of
highly probable bypassing tests. This leads to generating
more bypassing attacks in the earlier stages of the search.
Reversely, since MAXM is lower in ML-Driven B, more
tests are selected for mutation, resulting in selecting not only
the few tests with a high bypassing probability, but also tests
with a low bypassing probability. As a result, ML-Driven
B generates fewer new bypassing tests.

On the other hand, after some iterations there are more
tests with a high bypassing probability being available
for mutation. In such a scenario, selecting more tests and
mutating each one less often helps preserving diversity:
ML-Driven B will explore the neighborhoods of multiple
highly probable bypassing tests. ML-Driven D explores the
neighborhoods of fewer tests while many other tests with
similar bypassing probability remain unexplored.

In this section, we propose an improved variant of
our attack generation strategy called ML-Driven E (En-
hanced). Its goal is to combine the strengths of ML-Driven
B and ML-Driven D by adaptively adjusting the parameter
MAXM to better balance exploration and exploitation. We
propose ML-Driven E, which is a more flexible approach
for assigning the test budget to individual tests. Instead
of generating a fixed number of mutants per test, as done
with ML-Driven B/D, the number of mutants is calculated
dynamically. The rationale of ML-Driven E is twofold:
First, the available test budget should be allocated only
to tests with a high bypassing probability. Second, the test
budget should be divided amongst all tests in proportion
of that probability, thus favoring those more likely to yield
new attacks.

Given the total number of offsprings λ to generate, a set
T of tests selected as parents, the probability P (t) of test
t to bypass the WAF, then the number of offsprings mt to
generate for test t is defined as:

mt =
P (t)∑

x∈T P (x)
∗ λ (1)

On the right-hand side, the fraction represents the relative
bypassing probability of t by dividing its bypassing prob-
ability with the sum of all bypassing probabilities of tests
x ∈ T . By multiplying the relative bypassing probability

Algorithm 4 Adaptive offsprings generation
1: procedure ADAPTIVEOFFSPRINGSGEN(population, λ, DT)
2: offsprings← ∅
3: while |offsprings| < λ do
4: T ← selectAttacksForMutation(parents)
5: for all t ∈ T do
6: mt ← getMutationBudget(t, T,DT)
7: V ← getSliceV ector(t)
8: pathCondition← getPath(V,DT)
9: while mt > 0 do

10: s← pickASliceFrom(V)
11: if satisfy(s, pathCondition) then
12: newTest← mutate(t, s)
13: offsprings← offsprings ∪ newTest
14: mt ← mt − 1
15: end if
16: end while
17: end for
18: end while
19: return offsprings
20: end procedure

of test t with λ (total number of offsprings), t is assigned
a share of the total budget proportional to its relative
bypassing probability. In other words, the number of off-
springs/mutants to generate for each test t is proportional
to its bypassing probability in relation to the probabilities of
all selected parents.

ML-Driven E shares the same pseudo-code with
ML-Driven D and ML-Driven B with the exception of
the routine OFFSPRINGSGEN used to generate offsprings
in Algorithm 2. Instead of using Algorithm 3, ML-Driven
E uses the new adaptive routine detailed in Algorithm 4,
which includes the proposed modification to the budget
calculation.

Similarly to Algorithm 3, Algorithm 4 generates λ off-
springs within the loop in lines 3-18. The differences concern
(i) the number test cases selected as parents; and (ii) the
number of mutants/offsprings generated from each individ-
ual parent. In line 4, the routine selectAttacksForMutation
selects a set of attacks T that have the highest bypass-
ing probability from all available attacks in the current
population. All attacks above a configurable threshold σ,
e.g., in our experiment σ=80%, are selected. The loop from
line 5 to 17 is executed for each selected attack in T .
Within the loop, in line 6 the routine getMutationBudget
calculates the number of offsprings/mutants mt to gen-
erate from attack t with respect to T and DT , the latter
being the classifier. In other words, this method implements
Equation 1. Lines 9 to 16 describe the mutation procedure
for t, that is mostly unchanged from the original version
of the algorithm, except that the number of generated off-
springs/mutants for t is set to mt.

Since the number of tests with a bypassing probability
larger than 80% may vary across generations, both the
number of selected parents and the budget allocation vary
over time. When there are only few tests with a large
bypassing probability (≥ σ), Algorithm 4 selects only those
tests as parents. As result, the number of offsprings mt gen-
erated from each parent t will be large (higher exploitation).
Instead, when the current population contains many tests
with a large bypassing probability (≥ σ), the total budget

11

of µ offsprings is shared among a larger set of parents.
As a consequence, fewer mutants will be generated from
each parent (higher exploration). Therefore, Algorithm 4
adaptively balances exploration and exploitation depending
on the number tests in the current population that have a
bypassing probability greater than σ.

4 EMPIRICAL STUDY

This section evaluates the proposed testing strategies in two
separate case studies: a popular open-source WAF and a
proprietary WAF that protects a financial institution. Sec-
tion 4.1 introduces the case studies. Section 4.2 formulates
the research questions. Section 4.3 explains the procedure
we followed to execute the experiments while Section 4.5
describes the experiment variables.

4.1 Subject Applications
4.1.1 Open-Source WAF
In this case study, the firewall under test is ModSecurity,
which implements the OWASP core rule set. ModSecurity
is an open-source web application firewall that can be
deployed with the Apache HTTP Server to protect web
applications hosted under the server. Depending on the
applications under protection, different firewall rule sets
defined for different purposes can be used. The OWASP core
rules target various kinds of attacks, e.g. Trojan, Denial of
Service, and SQL Injection, and are maintained by an active
community of security experts.

The web applications under protection are HotelRS, Cy-
clos, and SugarCRM. HotelRS is a service-oriented based
system, providing web services for room reservation. It was
developed and used in [16]. Cyclos is a popular open-source
Java/Servlet Web Application for e-commerce and online
payment5. SugarCRM is a popular customer relationship
management system6. SugarCRM and Cyclos have been
widely used in practice. In our experiment setting, the three
applications are deployed on an Apache HTTP Server under
Linux. ModSecurity is embedded within the web server; it
protects the application’s web services from SQLi attacks.
Specifically, since these web services receive SOAP mes-
sages7 from web clients, a malicious client can seed a SQLi
attack string into a SOAP message and submit it to the web
services in order to gain illegal access to data or functionality
of the system.

In this paper, note that our testing target is the WAF that
protects the applications, not the applications themselves, as
our focus is on testing firewalls. HotelRS, SugarCRM, and
Cyclos play solely the role of a destination for SQLi tests
that bypass the WAF.

4.1.2 Proprietary WAF
In the industrial setting, we evaluate our approach on a
proprietary WAF that is used in a corporate IT environment
to protect back-end web services. These services are the
backbone of a financial corporation and process thousands
of transactions daily. To provide protection from malicious

5. http://project.cyclos.org
6. http://sourceforge.net
7. http://www.w3.org/TR/soap12-part1

requests, the WAF validates incoming requests in two steps:
First, the values in a request are validated with respect
to data types (e.g., string or numeric) and boundary con-
straints, e.g., a credit card number is expected to be a
sequence of 16 to 19 digits. In a second step, each value is
checked to make sure that it does not contain known mali-
cious string patterns (i.e., using a SQLi blacklist) commonly
used in attacks. Only if the request passes both validation
steps the request is forwarded to the back-end services.

The computation time required to evaluate all testing
strategies with the proprietary WAF is highly expensive
because of (i) the slow responsive time of the web ser-
vices, (ii) the number of testing strategies to compare, and
(iii) the number of repetitions to perform for each testing
strategy. Therefore, for the experiment we used of a high-
performance cluster [2] when testing the proprietary WAF.
Furthermore, we had to optimize a replica of the test en-
vironment to significantly decrease response times when
invoking services.

In our optimized test environment, all configurations
related to request filtering, that is whether a request is
blocked or let through, are copied. Other configurations,
e.g. logging or encryption, are disabled. The web appli-
cation under protection is replaced by a simple mock-up
application, which implements the same interface as the
original application under protection. The mock-up replays
a set of recorded responses from the original application
and, thus, the WAF remains unaffected. Table 2 shows the
message round trip time (RTT) per operation computed
over a time span of 30 days with the actual environment
(RTTACT) compared to the optimized environment on the
HPC (RTTHPC). As we can see, the time has been reduced
significantly. Note that, even with these optimizations, the
total computation time of our experiments is equivalent to
8 years, 337 days, and 12 hours on a single CPU core.

Even though an optimized test environment is required
from an experimental standpoint, in practice, testing the
firewall is just a single test activity in an array of test
activities (e.g., testing the WAF, services, front-end). Given
time and resource constraints, creating and maintaining test
environments that are specific for each single test activity is
very costly. Based on our experience, we found that test en-
gineers prefer to test copies of the actual WAF configuration
and services.

Since we, by design, optimized our test environment
to enable large scale experiments, the test execution times
in our experimental setting is not representative of test
execution times in the actual environment (see Table 2). This
is a problem as it biases the results of our experiments to the
advantage of approaches that are less expensive in terms of
test case generation but lead to the execution of more test
cases, such as random testing. Therefore, in our analyses,
we transform the time scale of the optimized environment
into a realistic one, accounting for the actual test execution
times in practice.

Assume T = {t1, . . . , tn} is a set of timestamps mea-
sured on the experimental environment, such that one
timestamp is noted after the execution of every test. Then,
for the i-th test case execution, f(ti) = ti + (RTTACT −
RTTHPC) ∗ i transforms a timestamp ti ∈ T into the
corresponding timestamp in the actual environment (f(ti)).

12

TABLE 2
Average response time in milliseconds of some web service operations

in our experimental environment compared to the case study’s
environment.

Op. 1 Op. 2 Op. 3 Op. 4
RTTHPC 11,36 11,39 11,46 16,61
RTTACT 456,56 180,02 302,09 854,63

We will use the latter time scale to compare test strategies in
a realistic fashion.

4.2 Research Questions

This work investigates several variants of a machine
learning-driven testing strategy and a random testing strat-
egy. We compare and evaluate all these strategies for their
capability of finding bypassing attacks on both subject ap-
plications, i.e. ModSecurity and the proprietary WAF.

Since all testing strategies generate attacks from the
same input space, i.e. the grammar introduced in section
3.1, we evaluate how efficient the different strategies are in
sampling the input space for bypassing attacks. Therefore,
we measure for each strategy how many distinct bypassing
attacks are found over time.

RQ1: How efficient are ML-Driven E, ML-Driven
B, ML-Driven D, and RAN in finding bypassing tests?

To assess the impact of the machine learning algorithms
on the test result, we implemented two alternative classi-
fiers for each of the ML-Driven strategies: RandomTree and
RandomForest. As detailed in Section 3.3.3, both algorithms
have complementary advantages and drawbacks. In brief,
RandomForest is an ensemble classifier and, hence, is ex-
pected to be more robust against changes in the training
set than RandomTree. However, RandomForest comes at a
higher computational cost than RandomTree, since multiple
models have to be learned. To assess the influence of both
algorithms on our approach, we run ML-Driven with both
algorithms and compare the number of identified bypassing
attacks and path conditions in a given time budget.

RQ2: Does the choice of machine learning algorithm
matter?

We evaluate whether, in our context, the benefits of
the RandomForest compared to the RandomTree justify
the increased computation overhead to learn the classifier.
Therefore, we compare how many bypassing tests are found
over time with these two algorithms. In addition, we assess
whether the algorithms have an impact on the stability
of the test result, i.e., we compare the variation among
repetitions of the same test run.

RQ3: How does ML-Driven compare to similar tech-
niques?

RQ3 compares our proposed technique with existing
techniques for testing WAFs. We perform a quantitative

comparison of the techniques by comparing the number of
bypassing attacks found by each technique.

RQ4: Are we learning new, useful attack patterns as the
number of distinct, bypassing attacks increases?

RQ4 assesses whether, as we find more bypassing tests,
we also identify more attack patterns that can be use-
ful to improve the rule set of the WAF. In our con-
text, an attack pattern is the underlying root cause that
enables an attack to bypass the WAF. For example, the
attacks union *!50000*select pwd from user and
union *!50000*select 99 share the pattern union

*!50000*select (root cause) while the remainder of the
attacks differ. We want to investigate whether identifying
successful attack patterns help understanding why attacks
are bypassing and eventually fix the WAF to correctly detect
further attacks. For the ML-Driven techniques, such a pat-
tern is characterized by a path condition (see Def. 3). A path
condition characterizes the slices, or combination of slices,
that are likely causing an attack to bypass. Thus, a path
condition represents a pattern that is not correctly detected
by the WAF.

To answer RQ4, we measure how many path condi-
tions can be extracted from a model that is learned by the
ML-Driven techniques. More specifically, we analyze the
growth in the number of path conditions as the number of
successful, distinct attacks grows over time.

4.3 Procedure

We implemented the techniques proposed in this work into
our SQLi testing tool called Xavier. Xavier supports the au-
tomated testing of web services for SQLi vulnerabilities and
has been described in [10]. ML-Driven generates test cases
in the form of SQLi attack strings, such as ’ OR“1”=“1”#.
To generate malicious requests, Xavier takes such attack
strings and injects them into sample SOAP messages, which
are subsequently sent to an application under test. Xavier
therefore relies on sample SOAP messages as inputs. They
can be taken from existing web service test suites, or can
easily be generated from the WSDL8 that describes the
service interface under test.

In our experiments, when available, we use SOAP mes-
sages from the functional test suite of the service under test
(Cyclos and our industrial case study) or, otherwise, we
manually create SOAP messages from the WSDLs (HotelRS,
SugarCRM). Each of these messages consists of a number of
parameters and their legitimate values, which the services
expect and that the WAF has to let through. In our testing
process, each SOAP message is considered separately. A test
generation technique, ML-Driven or RAN, continuously
generates attacks, injecting one attack each time into a
parameter of the selected SOAP message to create a new
SOAP message, and then sends it to the web server.

Incoming SOAP requests to the web server are first
treated by the WAF and only those that comply with firewall
rules are forwarded to web applications, and otherwise are
blocked. In case a request is blocked, the WAF replies to

8. http://www.w3.org/TR/wsdl

13

the client that issued the request with a special response,
stating that the request has been denied. When our testing
tool, Xavier, receives such a response, it marks the test,
embedded in the original request, with a blocked label “B”
(for blocked), and otherwise a passed label “P” (bypassing).

4.4 Parameter Setting

For the ML-Driven approaches, there are various param-
eters to set for both the machine learning algorithms and
(µ+λ)-EA. For most of the parameters (e.g., machine learn-
ing training setting), we follow the recommendations from
the literature [15], [28], [41]. Moreover, we used a trial-and-
error procedure to calibrate the parameters µ and λ. The
final parameter values are as follows:

Population size (µ). Typically, the population size for
EAs can vary from tens to several thousands of individ-
uals [41]. The best setting for this parameter depends on
the nature of the problem and on the size of the search
space [31]. In our case, the population size determines
the number of tests that will be preserved for the next
generation. A small population size may lead to loss of
test cases with large bypassing probability, thus reducing
the chances of generating new attacks able to pass through
the WAF. From our preliminary experiments, we observed
that a population size of 500 individuals works best for
ML-Driven since it helps preserving as many as possible
probable bypassing attacks.

Number of offsprings (λ). In ML-Driven, newly gen-
erated offsprings (test cases) are used to update the archive,
which is later used to retrain the classifier DT by applying
either RandomTree or RandomForest. Therefore, offsprings are
the additional “data points” that are used for updating DT .
A large λ value means that in each generation a significant
portion of the training set consists of new test cases; a
small λ value leads to retraining DT with almost the same
training set (i.e., updating DT would be less effective). In
this paper, we set λ = 4000 to guarantee that DT is always
retrained with a large portion new test cases. While the
total number offsprings is fixed, the number of offsprings
generated from each test t differs for the three variants of
ML-Driven. For ML-Driven B and ML-Driven D, it is
fixed and it is equal to MAXM = 10 and MAXM = 100,
respectively. In ML-Driven E, the number of offsprings
for each test is determined dynamically using the adaptive
strategy described in Section 3.4.

Archive size. The archive keeps track of all attacks
generated across the generations and it is used at the end
of each generation as training set for machine learning. To
avoid exceeding the resources of a typical laptop and to
finish in a reasonable time we limit the training set to 6000
blocked attacks and 6000 bypassing attacks. If the number
of tests in the archive is larger, we consider only the most
recent tests, i.e., those produced in latest generations.

Stopping condition. The search terminates when the
maximum search budget of 175 minutes is reached for
ModSecure. For the proprietary WAF, we used a larger
search budget of 500 minutes. To allow a fair comparison,
RAN was configured with the same stopping condition.

Machine learning setting. For the machine learning
algorithms used in this paper, i.e., RandomTree and Random-

Forest, we used their implementations available in Weka [28]
with the default parameter values.

Number of repetition. To account for the randomization
involved in the testing techniques (e.g., RAN), each algo-
rithm was run 10 times for each subject application.

4.5 Variables
The following dependent variables are controlled or mea-
sured in our experiments:

• Dt: The number of distinct tests that can bypass
a target WAF at time t is a way to measure the
efficiency of a test strategy. Note that, given two
distinct tests in the same attack category, one might
be caught by the WAF while the other bypasses it.
This may be caused by tests in a category that should
be handled by different rules, some of them missing
or incorrect in the current WAF rule set, or by an
identical rule that is not general enough to block all
tests in a category. Therefore, identifying similar but
distinct bypassing tests is useful to identify attack
patterns.

• Dpc: The number of distinct path conditions that can
be extracted from decision trees. Each path condition
characterizes a string pattern that a group of bypass-
ing attacks has in common. Such string patterns can
be added to the WAF rules to prevent further attack
attempts containing the same pattern. Hence, Dpc is
a measure for how many attack patterns have been
uncovered.

For each subject application, we ran each testing strategy
10 times and collected the number of distinct bypassing tests
(Dt) and distinct path conditions (Dpc) in each run. To this
aim, every time a new test t was generated, we collected the
passing wall-clock time since the beginning of the search
and then executed t to see whether or not it could bypass
the WAF. Therefore, we can compare the values of Dt and
Dpc collected over time.

To verify whether Dt scores significantly differ when
using two different testing strategies (e.g., RAN and
ML-Driven E), we used the Wilcoxon test with a signifi-
cance level of α=0.05. The Wilcoxon test is a non-parametric
test and, thus, does not require the data to be normally
distributed. For the statistically analysis, we collected the
Dt scores achieved by each alternative testing approach
after intervals of 35 minutes for each repetition, resulting
in five time windows for each run.

5 RESULTS

In this section, we describe the results obtained in our
case studies regarding the research questions formulated in
Section 4.2.

5.1 RQ1: How efficient are ML-Driven E, ML-Driven
B, ML-Driven D, and RAN in finding bypassing tests?
To answer RQ1, we applied the testing techniques to both
subject applications and measured how many bypassing
tests were found over time (Dt). In particular, we compared

14

0 35 70 105 140 175

Time (minutes)

0

200

400

600

800

1000

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 5. Average number of bypassing tests (Dt) found for nine tested
operations (10 repetitions each) for ModSecurity.

the performance of the techniques based on the cumulative
number of distinct bypassing tests generated over time. In
the following, we discuss the results for ModSecurity and
the proprietary WAF separately.

5.1.1 Results for ModSecurity
For the open-source WAF, we randomly selected nine pa-
rameters in total for testing, three parameters from each
web application (HotelRS, SugarCRM, and Cyclos). For each
technique, Fig. 5 depicts the average number of distinct,
bypassing tests generated over time for ModSecurity mea-
sured within intervals of five minutes. The testing results for
each individual parameter are in a technical report [8]. Fig. 6
depicts the same data as boxplots to help visualize statistical
variation across the 10 repetitions. Table 3 reports the results
of the Wilcoxon test by listing, in each cell, the test strategies
that are significantly outperformed by the strategy matching
the corresponding column.

The first observation is that all techniques can generate
tests that bypass the WAF, suggesting that the WAF does
not provide complete protection from SQLi attacks, putting
online systems under its protection at risk. Further, by ob-
serving executed SQL statements on the database, we found
that these bypassing tests can exploit SQLi vulnerabilities
in HotelRS and SugarCRM. Second, the sharply increasing
plots corresponding to ML-Driven E, ML-Driven B and
ML-Driven D indicate that they are much more efficient
than RAN, the baseline for comparison. Overall, the results
show that the ML-Driven techniques outperform RAN by
an order of magnitude with respect to the number of dis-
tinct bypassing tests generated. The Wilcoxon test revealed
that these differences were always statistically significant as
depicted in Table 3 (p-values<0.01).

Among the machine learning-driven techniques,
ML-Driven E constantly finds the most bypassing tests
compared to ML-Driven B and ML-Driven D, which
suggests that the adaptive budget allocation works
well. The differences between ML-Driven E and its
predecessors are always statistically significant in all the
five time windows. One issue with ML-Driven D/B is
that at the beginning of the test run, ML-Driven D finds

0 35 70 105 140 175

Time (minutes)

0

200

400

600

800

1000

1200

1400

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 6. Statistical variation for the number of bypassing tests found (Dt)
across all tested parameters for ModSecurity.

TABLE 3
Results of the Wilcoxon test for ModSecure. For each testing strategy

(e.g., ML-E) we report whether it statistically outperforms the its
counterparts (e.g., RAN) when p-values <0.01.

Time Window RAN (p<0.01) ML-B (p<0.01) ML-D (p<0.01) ML-E (p<0.01)
35 min RAND RAND RAND

ML-B ML-B
ML-D

70 min RAND RAND RAND
ML-B
ML-D

105 min RAND RAND RAND
ML-B
ML-D

140 min RAND RAND RAND
ML-D ML-B

ML-D
175 min RAND RAND RAND

ML-D ML-B
ML-D

more bypassing tests, while this is the opposite later
in the test run. More specifically, after a time window
of 35 minutes ML-Driven D is statistically superior to
ML-Driven B while between 70 and 105 minutes the two
ML-Driven approaches are statistically equivalent; finally,
in the last two time windows (i.e., 140 and 175 minutes),
ML-Driven B statistically outperforms ML-Driven D.
Since both techniques implement the same algorithm,
this phenomenon can be attributed to a difference in the
choice of parameters, or, more precisely, the parameter that
determines the number of mutants generated per test (a
detailed analysis is provided in a technical report [8]). While
ML-Driven D and B generate a fixed number of mutants
per test, ML-Driven E adjusts the number of mutants in
proportion to the test’s bypassing probability. As a result,
ML-Driven E spends the test budget more efficiently and
finds bypassing attacks faster.

The plots for the ML-Driven techniques are also slightly
oscillating, thus depicting the effect of iterative re-training
of the classifier. The flat segments match the time intervals
where the classifier is recomputed and no new tests are
generated. The slopes of the plots tend to decrease over time
as it becomes increasingly harder to find new bypassing
tests that have not yet been executed.

15

0 125 250 375 500

Time (minutes)

0

2000

4000

6000

8000

10000

12000

14000

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 7. Average number of bypassing attacks, proprietary WAF, all tested
parameters.

5.1.2 Results for the proprietary WAF

We now address RQ1 for the second subject application,
the proprietary WAF. As for ModSecurity, all techniques are
evaluated measuring the number of bypassing tests that are
found over time.

Due to the considerably higher complexity of the WAF
in the industrial case study, we selected a higher number
of parameters for testing. Given that all testing strategies
have to be applied to each parameter and each test run
was repeated 10 times, testing all parameters would have
been infeasible. Therefore, we selected one parameter for
each distinct data type in the WSDL of the services under
test, which resulted in a total of 75 parameters. The WAF in
this case study determines the input validation routine to be
executed for a parameter based mainly on the correspond-
ing data type; hence selecting one parameter per data type
maximizes the coverage of input validation routines.

Out of the 75 tested parameters, bypassing tests could
be generated for 29 parameters. Each testing technique
was able to generate bypassing tests for all of these 29
parameters. Fig. 7 depicts the average number of distinct
bypassing tests per test strategy. The average is computed
from all tested parameters and 10 repetitions per parameter.

Out of all techniques, ML-Driven E generates the most
bypassing tests on average, followed by ML-Driven B and
ML-Driven D. RAN finds the least bypassing tests. Since
the statistical variation in the plots is high (see boxplot in
Fig. 8), we separate the parameters into groups to better an-
alyze the results. Parameters in the same group share similar
input constraints in terms of number of allowed characters
and tend to produce a similar number of bypassing test
cases. It is worth noticing that this particular WAF considers
not only such input constraints but also other criteria (e.g.,
SQLi blacklist). Therefore, parameters in a same group do
not necessarily produce the same results. Table 4 shows
the groups: Group 1 has two parameters that share an
input constraint that restricts the number of characters to a
maximum of eight. Similarly, Groups 2, 3, and 4 have similar
constraints with 16, 25, and 35 characters, respectively. For
each group, Table 5 reports the results of the Wilcoxon test
when comparing the number of bypassing attacks generated

0 125 250 375 500

Time (minutes)

0

5000

10000

15000

20000

25000

30000

35000

40000

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 8. Boxplots of the number of bypassing tests, all tested parameters,
proprietary WAF.

0 125 250 375 500

Time (minutes)

0

500

1000

1500

2000

2500

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 9. Group 2: Average number of bypassing attacks, proprietary WAF,
7 parameters.

by the different testing strategies.
According to Table 5, we observe that for Groups 2, 3,

and 4 ML-Driven E is always significantly superior to its
predecessor as well as to RAN. However, looking at Fig. 9-
11 we notice the following trend: the more bypassing tests,
the smaller the difference in test results across ML-Driven
techniques. For example, ML-Driven E generates on aver-
age +25% bypassing attacks compared to the second best
approach in the comparison (i.e., ML-Driven B) for Group
2. For Group 3, the gap between ML-Driven E and the
closest alternative approach (i.e., RAN) is +30% on average.
For Group 4, the average difference between ML-Driven E
and its predecessor is lower than 10%.

The average number of bypassing tests for the two

TABLE 4
Groups of parameters with a similar input constraint.

#Parameter Input Constraint
Group 1 2 Up to 8 Char.
Group 2 7 Up to 16 Char.
Group 3 8 Up to 25 Char.
Group 4 12 Up to 35 Char.

16

0 125 250 375 500

Time (minutes)

0

2000

4000

6000

8000

10000

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 10. Group 3: Average number of bypassing attacks, proprietary
WAF, 8 parameters.

0 125 250 375 500

Time (minutes)

0

5000

10000

15000

20000

25000

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 11. Group 4: Average number of bypassing attacks, proprietary
WAF, 12 parameters.

parameters in Group 1 is depicted in Fig. 12. All techniques
tend to saturate after about 125 minutes and, after that,
the number of bypassing tests increases very slightly. RAN
is the most effective approach, significantly outperforming
all ML-Driven variants after 105 minutes of running time
(see Table 5). At the end of the search, RAN reaches up to
approximately 40 bypassing tests while all the ML-Driven
techniques find around 30 bypassing tests. The most promi-
nent difference of this group, as compared to the others, is
that very few bypassing tests are found. This is due to the
fact that the number of allowed characters is only eight, thus
resulting in a small number of attacks to bypass. Examining
the training sets used to learn the classifiers more closely, we
find that the training sets are heavily imbalanced. There are
only between 15 and 30 bypassing attacks compared to up
to 6000 blocked attacks, i.e., they represent only 0.25%-0.5%
of the data points in the training set. For the other tested
parameters, where the machine-learning driven techniques
outperform RAN, there are typically several hundreds of
bypassing attacks in a training set. As a result of the imbal-
anced training data, the learned classifier has a low recall (≈
80%) and is less accurate in predicting an attack’s bypassing

0 125 250 375 500

Time (minutes)

0

5

10

15

20

25

30

35

40

45

D
t

ML-Driven E
ML-Driven B
ML-Driven D
RAN

Fig. 12. Group 1: Average number of bypassing attacks, proprietary
WAF, 2 parameters.

probability. RandomTree and RandomForest tend to generate
a constant classifier in such a scenario, i.e., the resulting
classifier likely labels all data tests as “blocked” because this
leads to a very low classification error (< 1%).

Moreover, if we analyze the training sets used in con-
secutive retraining iterations (generations), we find that
there are not substantially more bypassing attacks added
to the training set. The quality of the classifier does not
improve over the subsequent generations and is hardly
worth the computation time necessary for retraining. To
address this shortcoming, we conclude that the classifier
should only be retrained if the training data has sufficiently
improved. Otherwise, the existing classifier may be used to
generate more offsprings until more bypassing attacks are
found or the test budget is exceeded. In addition, in the
presence of high imbalanced training sets, we may apply
various well-known strategies in machine learning, such as
data re-sampling strategies, weighted training, and penalty-
based training. Investigating the best strategy to address
the imbalance problem for ML-Driven is part of our future
agenda.

5.2 RQ2: Does the choice of machine learning algo-
rithm matter?

To answer RQ2, we run ML-Driven E with the chosen
machine learning algorithms, namely RandomTree and Ran-
domForest, and we compare the results. For this analysis,
we focus on ML-Driven E only since it is the most efficient
variant of ML-Driven according to the results discussed in
Section 5.1. The evaluation is performed on the open-source
case study (ModSecurity) in the same fashion as for RQ1.

Fig. 13 shows the average number of bypassing tests
for nine selected parameters and 10 repetitions. The re-
sult indicates that ML-Driven E with RandomForest finds
slightly more bypassing tests than ML-Driven E with Ran-
domTree. However, the difference is not practically signif-
icant. The advantage of using a more stable classifier is
partially lost due to the increased computation time for
constructing this classifier. Therefore, although Random-
Forest may generate a more accurate/stable classifier than

17

TABLE 5
Results of the Wilcoxon test for the proprietary WAF. For each testing
strategy (e.g., ML-E) we report whether it statistically outperforms its

counterparts (e.g., RAN) as well the corresponding p-values.

Group Time Window RAN ML-B ML-D ML-E

1

35 min ML-D (p=0.01)
70 min ML-D (p=0.01) ML-D (p=0.03) RAND (p<0.01)
105 min ML-B (p=0.03) ML-D (p=0.04)

ML-D (p=0.01)
ML-E (p<0.01)

140 min ML-B (p<0.01)
ML-D (p<0.01)
ML-E (p<0.01)

175 min ML-B (p<0.01)
ML-D (p<0.01)
ML-E (p<0.01)

2

35 min ML-D (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-B (p<0.01)
ML-D (p<0.01)

70 min ML-D (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-B (p<0.01)
ML-D (p<0.01)

105 min ML-D (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-B (p<0.01)
ML-D (p<0.01)

140 min ML-D (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-B (p<0.01)
ML-D (p<0.01)

175 min ML-D (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-B (p<0.01)
ML-D (p<0.01)

3

35 min ML-B (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)
70 min ML-B (p<0.01) RAND (p<0.01)

ML-D (p<0.01) ML-B (p<0.01)
ML-D (p<0.01)

105 min ML-B (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)
140 min ML-B (p<0.01) RAND (p<0.01)

ML-D (p<0.01) ML-B (p<0.01)
ML-D (p<0.01)

175 min ML-B (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)

4

35 min RAND (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)
70 min RAND (p<0.01) RAND (p<0.01) RAND (p<0.01)

ML-D (p<0.01) ML-B (p<0.01)
ML-D (p<0.01)

105 min RAND (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)
140 min RAND (p<0.01) RAND (p<0.01) RAND (p<0.01)

ML-D (p<0.01) ML-B (p<0.01)
ML-D (p<0.01)

175 min RAND (p<0.01) RAND (p<0.01) RAND (p<0.01)
ML-D (p<0.01) ML-B (p<0.01)

ML-D (p<0.01)

RandomTree, its overhead negatively affects the number
of generations (i.e., the number of tests to run against the
WAF) that can be performed within the same amount of
time (search budget). In other words, the gain in accuracy
when using RandomForest does not compensate its over-
head when used inside the test case generation loop. Even
if less precise, RandomTree enables more iterations and an
increased number of new test executions.

Fig. 14 shows a sample boxplot corresponding to the ob-
served statistical variation for one representative parameter
over 10 repetitions. We can see that the variation is small
and similar for RandomForest and RandomTree. Similar
results are observed for the other parameters. Therefore, to
conclude, the choice between the two considered machine
learning algorithms has no significant impact with respect
to the number of bypassing tests or the degree of variation
among repetitions.

5.3 RQ3: How does ML-Driven compare to similar
techniques?

To answer RQ3, we compare our proposed technique
ML-Driven with similar tools. The tools considered in this
comparison are chosen according to the following selection
criteria: Similar objective as ML-Driven, i.e., finding SQLi

0 35 70 105 140 175
Time (minutes)

0

200

400

600

800

1000

1200

#
B

y
p
a
ss

in
g
 t

e
st

s

ML-Driven E (Forest)
ML-Driven E (Tree)

Fig. 13. Comparison of the RandomTree and RandomForest classifier.
Average number of bypassing tests found for nine tested operations (10
repetitions each) in ModSecurity.

0 35 70 105 140 175
Time (minutes)

0

200

400

600

800

1000

1200

1400

#
B

y
p
a
ss

in
g
 t

e
st

s

ML-Driven E (Forest)
ML-Driven E (Tree)

Fig. 14. Boxplots for the number of bypassing tests found with one
representative parameter (get-relationships) in ModSecurity.

attacks that bypass a WAF under test; state-of-the-art cov-
ering a range of SQLi attacks and obfuscation methods;
widely used or developed by known institutions or secu-
rity experts. Following these criteria, we selected the WAF
Testing Framework and SqlMap for comparison.

The WAF Testing Framework9 tests the attack detection
capabilities of a WAF under test. It is a state-of-the-art
tool developed by Imperva, which is the developer of a
proprietary WAF and several other security solutions. The
tool comes with a number of malicious HTTP requests that
contain common SQLi attacks. To test a WAF, it submits the
HTTP requests one by one to the WAF and checks if the
malicious requests are blocked correctly.

SqlMap10 is a well-known penetration testing tool to
detect SQLi vulnerabilities in web applications and services.
It generates a large and diverse set of SQLi attacks, which
cover all common SQLi attack techniques. To evade de-
tection of WAFs, SqlMap uses several tamper scripts. Each

9. Downloaded from
https://www.imperva.com/Resources/FreeEvaluationTools

10. Version 1.0.7.42 downloaded from https://sqlmap.org

https://www.imperva.com/Resources/FreeEvaluationTools
https://sqlmap.org

18

TABLE 6
Tamper scripts of SqlMap selected for our experiments.

Tamper Script Name Short Description
between.py Inserts a clause with the SQL keyword BETWEEN
commalesslimit.py Replaces instances like ’LIMIT M, N’ with ’LIMIT N OFFSET M’
commalessmid.py Replaces instances like ’MID(A, B, C)’ with ’MID(A FROM B FOR C)’
concat2concatws.py Replaces instances like ’CONCAT(A, B)’ with ’CONCAT_WS(MID(CHAR(0), 0, 0), A, B)’
equaltolike.py Replaces all occurrences of operator equal (’=’) with operator ’LIKE’
greatest.py Replaces greater than operator (’>’) with ’GREATEST’ counterpart
halfversionedmorekeywords.py Adds versioned MySQL comment before each keyword
ifnull2ifisnull.py Replaces instances like ’IFNULL(A, B)’ with ’IF(ISNULL(A), B, A)’
informationschemacomment.py Adds a comment to the end of all occurrences of "information_schema" identifier
lowercase.py Changes each keyword character to lower case
modsecurityversioned.py Surrounds the attack string with a MySQL version-specific comment (randomly generated version number)
modsecurityzeroversioned.py Surrounds the attack string with a MySQL version-specific comment (version number set to 0)
multiplespaces.py Adds multiple spaces around SQL keywords
randomcase.py Changes randomly the case of letters in a SQL keyword
randomcomments.py Add random comments to SQL keywords
unionalltounion.py Replaces UNION ALL SELECT with UNION SELECT
uppercase.py Changes each keyword character to upper case
versionedmorekeywords.py Surrounds each keyword with a version-specific MySQL comment

TABLE 7
Results for testing the proprietary WAF with the

WAF TestingFramework and SqlMap.

Parameter WAF Testing Framework SqlMap
#TCTotal #TCBypass #TCTotal #TCBypass

Group 1 19 0 3283.9 0.0
Group 2 19 0 3281.6 0.0
Group 3 19 0 3278.9 0.3
Group 4 19 3 3260.5 66.5

tamper script applies a specific obfuscation method to a
SQLi attack (e.g. randomly changes the case of letters
in a SQL keyword). Since some tamper scripts are only
meant to be applied with particular WAFs, web application
frameworks (e.g. ASP or PHP), or database management
systems, we selected a number of tamper scripts that are
applicable to our subject applications (i.e., applicable to the
proprietary WAF/ModSecurity, SOAP web services written
in PHP/Java, and MySQL). Table 6 lists the tamper scripts
selected for our experiments and gives a brief description for
each. Note that SqlMap does not report how many or which
attacks bypassed a WAF under test. Therefore, we routed
the HTTP traffic between SqlMap and the WAF under test
through a custom HTTP proxy, which determines whether
each generated attack bypassed the WAF or was blocked.

To compare ML-Driven with the WAF Testing Frame-
work and SqlMap, we use both tools to test ModSecurity
and our industry partner’s proprietary WAF. The configu-
ration of both WAFs is the same as in the other reported ex-
periments. Since SqlMap’s attack generation is randomized,
we repeated each experiment involving SqlMap 10 times
and report the averages. The attack generation in the WAF
Testing Framework is deterministic and, hence, we report
the result of a single run. We do not impose any limit on the
number of generated test cases; both tools are configured to
execute as many test cases as they are capable of generating.

For the experiment with the proprietary WAF, we ran-
domly selected from each of the four parameter groups
(refer to Table 4) one representative parameter to test. We
found in the evaluation of RQ1 that parameters in a same
group share a similar number of bypassing attacks. Given

how computation intensive these experiments are, we test
only a representative parameter of each group and interpret
the result as a performance indicator for the other parame-
ters in the same group. Table 7 reports for both tools the total
number of generated test cases (TCTotal) and the number of
test cases bypassing the proprietary WAF (TCBypass). The
WAF Testing Framework executes for each tested parameter
19 test cases. For the tested parameter of Group 4, three of the
19 attacks are bypassing. For all other tested parameters, the
WAF Testing Framework does not find a bypassing attack.
SqlMap generates a similar number of test cases for each
tested parameter (on average between 3260.5 and 3283.9
test cases). For the parameter of Group 4, SqlMap finds
on average 66.5 bypassing attacks and for the parameter
of Group 3, SqlMap finds on average only 0.3 bypassing
attacks. For the other parameters, SqlMap does not find any
bypassing attacks.

The fact that both tools find the most bypassing attacks
for Group 4 can be explained with the fact that the input
length constraint for this group is the least strict (refer to
Table 4). This also confirms the trend observed in the results
for ML-Driven, which found the most bypassing attacks
for Group 4 as well. For the other groups, the WAF Testing
Framework and SqlMap do not reliably find bypassing
attacks, because the generated attacks are either too long
to satisfy the input length constraint or contain a pattern
that is blacklisted.

For the experiment with ModSecurity, we use the WAF
Testing Framework and SqlMap to test the same nine pa-
rameters as selected for the evaluation of ML-Driven (refer
to RQ1). The WAF Testing Framework executes again 19 test
cases per tested parameter and SqlMap executes a similar
number of test cases as in the previous experiment (~3270
test cases per parameter). However, neither the WAF Testing
Framework nor SqlMap find any bypassing attack for any
of the tested parameters.

When comparing the results of the WAF Testing Frame-
work and SqlMap with ML-Driven (refer to Section 5.1),
we find that the formers are either completely ineffective
or significantly less effective than ML-Driven. For most of
the tested parameters, both tools fail to find any bypassing

19

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

D
p
c

0

200

400

600

800

1000

1200

D
t

ML-Driven E (Tree)
ML-Driven E (Forest)

Fig. 15. Number of path conditions (red y-axis on the left) and bypassing
tests (blue y-axis on the right) for ML-Driven E with RandomTree and
RandomForest.

attack, while ML-Driven finds a considerable number of
them. For the few parameters, for which the alternative
tools find bypassing attacks, ML-Driven finds an order
of magnitude more bypassing attacks. Furthermore, the
attacks found by the alternative tools are a subset of the
attacks found by ML-Driven and, hence, using the alter-
native tools in combination with ML-Driven would not
provide more distinct bypassing attacks. Another advantage
of ML-Driven over the alternative tools is that ML-Driven
abstracts path conditions from the bypassing attacks, which
helps the firewall administrator to repair the WAF (refer to
Section 6).

5.4 RQ4: Are we learning new, useful attack patterns as
the number of distinct, bypassing attacks increases?

As explained in Section 3.3, the ML-Driven techniques
periodically build a model (i.e., decision trees) that is used
to guide the generation of new attacks. However, this model
can also be used to abstract common string patterns shared
by and possibly causing bypassing attacks. Therefore, for
RQ4 we analyze the models that are learned during the test
runs of ML-Driven E. For both RandomForest and Ran-
domTree, we analyze how the number of path conditions
increases as the result of generating more distinct bypassing
attacks.

Fig. 15 depicts the average number of path conditions
that can be extracted from a model (red) and the number of
bypassing tests with which the model is trained (blue). Since
the ML-Driven techniques retrain the model at the end of
each generation, the corresponding training iterations (or
EA generations) are depicted on the horizontal axis. These
curves are based on the average of all test runs performed
with the ModSecurity case study.

The number of distinct, bypassing tests, which are used
to train the model, is steadily increasing for both techniques.
This is due to fact that the further a test run progresses,
the more bypassing tests are found and are used, in turn,
to retrain the model. The number of path conditions that
can be extracted from a model is also steadily increasing
for both techniques, although beginning from generation 4,
there are significantly more path conditions extracted with

TABLE 8
Slice encodings.

Slice Literal Slice Literal
S1d or Sb !
Sf1 or 1 S3 1
S5 /**/ S6 ∼ 1
S26 # S57 1
S2 S29 0
S0 0 S15)
Sf true Sc "

RandomForest than with RandomTree. For RandomForest,
the number of path conditions is close to 200 after 10
generations, compared with 50 for RandomTree.

For both techniques, the number of bypassing tests used
to train the model and the number of path conditions
obtained from the model are concurrently increasing. This
is no surprise as more test cases lead to refined models.
For RandomForest, that leads to even more path conditions
since many more trees are built.

In general, path conditions can help determine the rea-
son why a set of attacks is bypassing. This knowledge can
be utilized to stop further attack attempts from succeeding
by inferring a string pattern from the path condition that
matches all the attacks described by it. Such a string pattern
can be in turn added to the WAF’s rule set to block all
further attacks containing the same string pattern.

To better explain the benefits of having more attack
patterns, let us describe examples of path conditions and the
attacks they characterize that are obtained from a test run of
the industrial WAF used in our evaluation. In particular,
let us consider an example of a path condition: pc1 =
S1d∧Sf1∧S5∧¬S11∧¬S25∧¬S26∧¬S1b∧¬S15∧¬S2f .
Table 8 shows the literals that are represented by the corre-
sponding slices. An example attack characterized by pc1 is 0
or 1/**/, which is an obfuscated variation of a tautology
attack, e.g. " or 1=1. All attacks characterized by pc1
contain the slices S1d, Sf1 and S5. If a WAF blocks inputs
containing any of the three slices, the attacks characterized
by pc1 do no longer bypass.

As shown by our quantitative analysis, the number of
discovered path conditions increases during test execution.
With more path conditions, the reasons why attacks are
bypassing can be more precisely characterized. To illustrate
this phenomenon, we analyze the path conditions obtained
in different generations of the same test run. To limit the
number of path conditions in this example, we only consider
path conditions that contain the slice S1d, like in pc1. This
slice represents the SQL keyword or and can for example
be part of a SQL tautology attack, e.g., " or 1=1.

The previously analyzed path condition pc1 is obtained
from the first generation of a test run. In contrast, Table 10
shows more path conditions from the same test run obtained
after the fifth generations. Table 9 depicts the string patterns
that can be devised from the path conditions.

The first notable difference between both sets of path
conditions is their number. In the first generation, only one
path condition contains slice S1d while there are eight of
them by the fifth generation. When analyzing the patterns
identified by the path conditions, there are several inter-
esting observations. First, pc2 to pc7 identify patterns of

20

TABLE 9
This table shows the pattern learned from each path condition and

example attacks containing the pattern (the pattern characterized by
the path conditions is highlighted in red).

Generations Id Pattern Example SQLi Attack
1 pc1 or 1, /**/ 0 or 1/**/
5 pc2 or, 1 'or true like 1 ||'
5 pc3 or,), # ') or not false#
5 pc4 or, 0 1 or true>(0)
5 pc5 or, true, # 'or∼true#
5 pc6 or, 0 0) or ! ''−−
5 pc7 or, " " || true or"
5 pc8 or, /**/, #, , 0, ! ' or/**/!0 is true#
5 pc9 or, /**/, 1, ∼ 1 1 or/**/ 0<(∼ 1)

bypassing attacks that use slice S1d, but require S5 to be
absent (¬S5), thus, suggesting the pattern identified in the
first generation was incomplete. For example, pc5 character-
izes bypassing attacks containing slice S1d combined with
the boolean identifier true and the comment symbol #, e.g.,
" or true#. Such attacks are not matched by the pattern
represented by pc1 and, thus, would still bypass the WAF if
only pc1 would be considered in fixing the WAF.

To conclude, we see from the example above that having
more path conditions helps derive a better understanding
of the patterns shared by bypassing attacks. In turn, this
puts a firewall administrator in a better position to devise an
effective patch for a WAF’s rule set, as we will demonstrate
in Section 6.

6 USING ATTACK PATTERNS TO REPAIR A WAF
In this section, we demonstrate how the identified bypass-
ing attacks and corresponding path conditions can be used
to improve the WAF’s rule set. We also discuss the benefits
of ML-Driven E compared to the other ML-Driven strate-
gies, RAN, SqlMap and WAF Testing Framework.

6.1 Repair Strategy
Typically, a rule set uses regular expressions to match
known malicious attacks (refer to Section 2.1). Our goal is to
modify these regular expressions in such a way that the by-
passing attacks found by ML-Driven do no longer bypass
the WAF. We investigated a first attempt to semi-automate
the WAF repairing process in our recent work [11]. In
particular, we use multi-objective optimization algorithms
to optimize two goals: (i) maximizing the number of blocked
attacks and (ii) minimizing the number legitimate requests
being blocked (false positives).

In this paper, we consider a general strategy for mod-
ifying the regular expressions as outlined in Algorithm 5.
While parts of the strategy can be automated [11], regular
expressions derived from attack patterns (line 8 and 9) still
require manual inspection and adaptation depending on the
WAF under evaluation. The required inputs for the strategy
are the test outputs of ML-Driven, i.e., a set A of bypassing
attacks and a set PC of path conditions learned from A,
and a set R of regular expressions used by the WAF under
test to match known attacks. Note that the attacks in A
are not matched by any regular expression in R, otherwise
the attacks would not bypass in the first place, and, hence,
∀ a ∈ A @ r ∈ R : rmatches a. The output of the strategy is a

Algorithm 5 A strategy to repair a faulty WAF rule set using
bypassing attacks and path conditions.

1: Inputs:
A: a set of bypassing attacks such that |A| > 0
PC: a set of path conditions learned from A
R: a set of regular expressions such that
∀ a ∈ A @ r ∈ R : rmatches a

2: Output:
R′: a set of regular expressions such that
∀ a ∈ A∃ r ∈ R′ : rmatches a

3: R′ ← R
4: while PC 6= ∅ do
5: s← selectMostFrequentSlice(PC)
6: PCs ← getPathConditionsContainingSlice(s)
7: As ← getCharacterisedAttacks(PCs)
8: Select ri ∈ R that matches attacks similar to As

9: Modify rule ri to r∗i such that it matches As

10: R′ ← (R′ \ {ri}) ∪ {r∗i }
11: PC ← PC \ PCs

12: end while
13: return R′

set of regular expressions R′, which results from modifying
some regular expressions in R such that they match all
attacks in A. We will use a running example in which A
and PC are initialized with the attacks and path conditions
from generation five of the previous examples (refer to
Table 9). R is initialized with the regular expressions from
the proprietary WAF used in our evaluation. Note that the
examples are not artificial as the regular expressions were
actively protecting the industrial web service application
used in our evaluation. The attacks in Table 9 would have
bypassed the WAF deployed in the production system.

The strategy starts in line 3 by initializing the output
variable R′ by assigning R to it. The while loop from
line 4 to 12 is repeated until all path conditions in PC are
processed. In line 5, the loop begins by selecting a slice
s that is the most frequently contained slice among the
path conditions in PC. Line 6 selects all path conditions
PCs ⊂ PC that contain slice s. Then, line 7 selects all attacks
As ⊂ A that are characterized by the path conditions in
PCs. In the running example, the slice S1d is assigned to s
because it is part of eight path conditions (pc2 to pc9) and,
hence, is part of more path conditions than any other slice.
The path conditions pc2 to pc9 (see Table 10) are assigned to
PCs because they contain slice S1d. Accordingly, the attacks
characterized by the path conditions pc2 to pc9 are assigned
to As (refer to Table 9).

In line 8, a security analyst manually inspects the regular
expressions in R and identifies a regular expression ri that
should be modified in order to correctly identify the bypass-
ing attacks in As. Depending on the regular expressions R,
there might already exist an expression ri ∈ R that identifies
attacks similar to those in As and, hence, could be modified
to also account for As. Alternatively, if no such regular
expression exists, a new regular expression can be created
or, if there is more than one candidate regular expression for
modification, several regular expressions can be modified
so that each expression matches a subset of As. The security
analyst is free to make this decision based on how he intends
to logically structure the rule set. In the running example,

21

TABLE 10
Path Conditions from generation 5.

Id Path condition
pc2 S1d∧ S57∧¬S25∧¬S26∧¬Sc∧¬S14∧¬S1∧¬S3e∧¬S0∧¬S38∧¬S29∧¬S5∧¬Se1∧¬S1c∧¬S1de∧¬S76∧¬S67
pc3 S1d ∧ S26 ∧ S15 ∧ ¬Sf ∧ ¬S1c ∧ ¬Se1 ∧ ¬S25 ∧ ¬S5 ∧ ¬Sc ∧ ¬S14 ∧ ¬S1de ∧ ¬S3e ∧ ¬S76 ∧ ¬S29 ∧ ¬S38 ∧ ¬S67
pc4 S1d ∧ S29 ∧ ¬Se1 ∧ ¬S25 ∧ ¬S5 ∧ ¬S14 ∧ ¬S1de ∧ ¬S3e ∧ ¬S76 ∧ ¬S38 ∧ ¬S67
pc5 S1d ∧ Sf ∧ S26 ∧ ¬S1c ∧ ¬Se1 ∧ ¬S25 ∧ ¬S5 ∧ ¬Sc ∧ ¬S14 ∧ ¬S1de ∧ ¬S3e ∧ ¬S76 ∧ ¬S29 ∧ ¬S38 ∧ ¬S67
pc6 S1d ∧ S0 ∧ ¬S25 ∧ ¬S26 ∧ ¬Sc ∧ ¬S14 ∧ ¬S3e ∧ ¬S38 ∧ ¬S29 ∧ ¬S5 ∧ ¬Se1 ∧ ¬S1c ∧ ¬S1de ∧ ¬S76 ∧ ¬S67
pc7 S1d ∧ Sc ∧ ¬S1c ∧ ¬Se1 ∧ ¬S25 ∧ ¬S5 ∧ ¬S14 ∧ ¬S1de ∧ ¬S3e ∧ ¬S76 ∧ ¬S29 ∧ ¬S38 ∧ ¬S67
pc8 S1d∧S5∧S26∧S2∧S0∧Sb∧¬Sa8∧¬S7c3∧¬Sf ∧¬S1e1∧¬S25∧¬Sd∧¬Sc∧¬S14∧¬S15∧¬S26d∧¬S60∧¬S2e∧

¬S2d ∧ ¬S38 ∧ ¬S3
pc9 S1d ∧ S3 ∧ S5 ∧ S6 ∧ ¬Sf ∧ ¬S25 ∧ ¬Sf1 ∧ ¬Sc ∧ ¬S26 ∧ ¬S1b ∧ ¬S5a ∧ ¬S14 ∧ ¬S71

we assign the following regular expression to ri:

(?i)'[\s]+or

The regular expression begins with (?i), which enables
case-insensitive matching. It matches strings that contain
an apostrophe followed by at least one whitespace ([\s]+)
followed by the SQL keyword or. We select this expression
for modification because it is the only expression in the rule
set that tries to match attacks containing the SQL keyword
or. Since all attacks in As also contain or, the expression is
a suitable candidate for modification.

In line 9, the security analyst extends the regular expres-
sion ri so that it also matches the attacks in As. The path
conditions in PCs provide guidance on how ri could be
extended. In the running example, when we contrast the
expression ri with the path conditions in PCs, we make
several observations regarding why ri does not identify the
attacks in As: (i) unlike in ri, not all attacks in As start with
an apostrophe, but they start either with an apostrophe, a
double quote (e.g. pc7), or a digit (e.g. pc6); (ii) unlike in ri,
none of the path conditions requires a leading whitespace
before the literal or; and (iii) ri does not account for SQL
comment characters, i.e., # and /**/, which are frequently
used in bypassing attacks (e.g. pc3, pc5, pc8, and pc9).
Based on these observations, we devise an improved regular
expression r∗i to avoid the mentioned shortcomings:

(?i)(('|"|\d) .∗or)|(or .∗(/**/|#))

The modified expression r∗i consists of two parts. The
first part is (('|"|\d) .∗ or) and addresses (i) as well
as (ii). It addresses (i) by replacing the apostrophe with
('|"|\d) and it addresses (ii) by replacing [\s]+ with
an arbitrary character sequence (denoted by .∗). Therefore,
the first part matches strings that contain either an apos-
trophe, a double quote, or a digit, followed by an arbitrary
character sequence, and followed by or. The second part is
(or .∗ (/**/|#)) and addresses (iii) as it matches strings
that contain or and a SQL comment character (/**/ or
#). Since both parts are joined with an alternation (|), the
strings matched by r∗i is the union set of the strings matched
by the first part and the second part.

With the performed changes, r∗i matches all attacks in
As. In line 11, we remove the old expression ri from the
output set R′ and add r∗i to R′. Since all attacks in As

are now correctly identified, we remove in line 11 the path
conditions PCs from PC and continue with the next loop
iteration until all path conditions in PC are processed. In
the running example, PC is empty after the first iteration

and the main loop ends.
Note that the proposed strategy helps a security expert

efficiently deal with the typically large number of path
conditions found by ML-Driven by grouping conditions
containing similar attack patterns. Grouping patterns helps
the security experts to consider relevant patterns together
when devising an improved regular expression and, hence,
they do not have to consider each pattern individually. The
strategy is defined in such a way that the most frequent
attack patterns are tackled first.

6.2 Suitability of other techniques for the purpose of
repairing a WAF
The testing techniques and tools discussed throughout this
paper find bypassing attacks with varying effectiveness.
This section discusses how suitable the different techniques
are for the purpose of repairing a WAF.

In our experiments, SqlMap and the WAF Testing Frame-
work did find none or very few bypassing attacks and,
hence, do not provide much useful information for repairing
a WAF as many bypassing attacks would remain uncovered.
RAN is more effective in finding bypassing attacks than
SqlMap and the WAF Testing Framework, but it does not
identify common bypassing attack patterns. In absence of
such patterns, a security analyst has to translate a possibly
large number of bypassing attacks into an WAF patch. This
limitation affects not only RAN but also the other tools (i.e.,
SqlMap and WAF Testing Framework) as they provide the
set of bypassing attacks without any additional information
about which substrings are associated with bypassing the
WAF. Instead, our ML-Driven techniques provide both the
set of bypassing attacks (which are larger in number) and
the associated attack patterns identified by machine learning
algorithms (i.e., RandomTree and RandomForest).

Amongst the ML-Driven techniques, ML-Driven E
was found to be the most efficient. Having more successful
bypassing attacks provides additional benefits for security
analysts in charge of repairing the vulnerable WAF. First,
a lower number of distinct attacks will lead to less attack
patterns being identified and less new regular expressions
to be added to the WAF rule set. Therefore, ML-Driven
B/D may miss some distinct attacks, leading to less robust
patches as the fixed WAF would not be able to detect/match
the missed patterns. Second, machine learning algorithms
better identify useful and useless attack patterns (or path
conditions) when more bypassing attacks are provided as
shown in Section 5.4. For example, let us assume that
ML-Driven B/D generate one single bypassing attack with

22

TABLE 11
Comparison of the attack patterns found by ML-Driven E,

ML-Driven B and ML-Driven D.

Id Pattern ML-E ML-B ML-D
pc1 or 1, /**/ 3 3 3
pc2 or, 1 3 3 7
pc3 or,), # 3 3 3
pc4 or, 0 3 3 3
pc5 or, true, # 3 7 7
pc6 or, 0 3 3 3
pc7 or, " 3 3 3
pc8 or, /**/, #, , 0, ! 3 7 7
pc9 or, /**/, 1, ∼ 1 3 3 7

the following slices: S1=’, S2= , S3=“a”=“a”, S4=#. With
one single attack, it may be difficult for security analysts to
determine which of these slices is actually associated with
bypassing the WAF. Therefore, deeper analysis (or more
attacks) is needed to determine which slices should form
regular expressions to add to the WAF’s rule set.

To illustrate the practical usefulness of the three
ML-Driven techniques, let us now compare the gener-
ated attacks patterns for the running example used in Sec-
tion 6.1. It corresponds to one of the regular expressions
that were actively protecting the industrial web service
application used in our evaluation. Table 11 lists the attack
patterns that were found in the same amount of time by
ML-Driven E, ML-Driven B and ML-Driven D, respec-
tively. As we can notice, ML-Driven E generated more
attacks patterns compared to the other ML-Driven variants:
ML-Driven E misses pc5 and pc8 while ML-Driven D
further misses pc2 and pc9. Assuming the analyst would
rely on ML-Driven B, she would add the following reg-
ular expression containing all found attack patterns: r =
pc1|pc2|pc3|pc4|pc6|pc7|pc9, i.e., r matches the attacks sat-
isfying either pc1-pc4, pc6-pc7, or pc9. However, this patch
would miss attacks found by ML-Driven E as the gener-
ated r would not match any attacks containing either pc5 or
pc8. The patches generated with ML-Driven D would be
less robust compared to ML-Driven E and ML-Driven B
as the resulting regular expressions would not match attacks
satisfying the missing four patterns.

The example above shows that generating more distinct
attacks leads to uncovering more successful attack patterns
and implementing more robust patches to the WAF.

7 DISCUSSION

This section discusses some practical implications of our
ML-Driven approach and its empirical results. .

7.1 Differences between Case Studies
When comparing the testing results of the two case stud-
ies some notable differences stand out. First, bypassing
attacks could be found for each parameter protected by
ModSecurity, whereas with the proprietary WAF, only 29
out of 75 parameters lead to bypassing attacks. This can be
attributed to the fact that the latter strictly validates each
input to follow an expected format. For example, a value
provided to the parameter credit card number must consist
of 16 to 19 digits and, otherwise, the request is rejected.
SQL injection attacks typically require a larger character

set and thus all attacks are blocked. Similarly, for the 46
parameters for which no attack is found, the expected input
format prevents attacks. However, it is not possible to define
such strict validation rules for all parameters, since the
inputs might vary significantly in terms of character set and
length. This is the case for the other 29 parameters where
the expected input format is very general and the input
validation rules rather loose, thus being prone to attacks.
For example, the vulnerable parameter Address is expected
to be a string with a maximum of 35 characters, a constraint
with which many of the SQLi attacks comply.

Another major difference between the two case studies
are the number of bypassing attacks per tested parameter.
For ModSecurity, about 1,000 bypassing attacks per param-
eter are found while, for the proprietary WAF, they are on
average 10,000. This significant difference can be attributed
to the attack detection capabilities of each respective firewall
and highlights the difficulty of customizing a rule set for a
particular IT environment in practice. In our experiment, we
use a default rule set for ModSecurity, while the proprietary
WAF has a customized rule set to match a particular IT
system. Such a customization is often necessary to achieve
an acceptable false positive rate, but comes at the cost of
reduced attack detection capabilities due in part to the lack
of suitable tools to test the firewalls.

7.2 Application of the Proposed Techniques

We have proposed and evaluated three variants of a
machine learning driven technique for the generation of
SQLi attacks, namely ML-Driven E, ML-Driven D, and
ML-Driven B. ML-Driven D and ML-Driven B entail
different strategies in allocating the test generation budget.
ML-Driven E reconciles these differences and delivers a
better performance. We have compared all these variants
with RAN, the baseline technique considered in our work,
on ModSecurity (a popular open-source WAF) and a pro-
prietary WAF. Our experiments show that ML-Driven E
outperforms all the other techniques.

We have also demonstrated the usefulness of mining
more bypassing attacks in devising string patterns to fix
WAFs. In our context, we experimented with RandomTree
and RandomForest as machine classifiers for ML-Driven
E. Since we show that the latter helps extract more path
conditions that are useful in identifying patterns and fixing
WAFs, we recommend the use of RandomForest.

8 CONCLUSION

Web application firewalls (WAFs) play an important role
to protect online systems. The rising occurrence of new
kinds of attacks and their increasing sophistication require
that firewalls be updated and tested regularly, as otherwise
attacks might remain undetected and reach the systems
under protection.

We propose ML-Driven, a search-based approach that
combines machine learning and evolutionary algorithms
to automatically test the attack detection capabilities of
WAFs. The approach automatically generates a diverse set
of attacks, sends them to a WAF under test, and checks
if they are correctly identified. By incrementally learning

23

from the tests that are blocked or bypassing the firewall, our
approach selects tests that exhibit string patterns with high
bypassing probabilities (according the machine learning)
and mutates them using an attack grammar designed to
generate new and hopefully successful attacks. Identified
bypassing attacks can be used to learn path conditions,
which characterize successful attack patterns.

With such a set of bypassing attacks and path conditions
that characterize them, a security expert can fix or fine-tune
the WAF rules in order to block imminent SQLi attacks. In
the attacker-defender war, time is vital. Being able to quickly
learn and anticipate more attacks that can circumvent a
firewall, in a timely manner, is very important to secure
business data and services.

Though our approach was applied to SQL injection
attacks in this paper, it can be adapted to other forms of
attacks by making use of other attack grammars targeting
different types of vulnerabilities.

Our key contributions in this work include (i) enhanc-
ing our preliminary techniques by consolidating them and
improving their performance, (ii) comparing two different
and adequate machine learning classifiers, (iii) carrying out
a large-scale evaluation on two popular WAFs and (iv) com-
paring our approach with state-of-the-art tools. Evaluation
results suggest that the performance of ML-Driven (and
its enhanced variant in particular) is effective at generating
many undetected attacks and provides a good basis to
identify attack patterns to protect against. Further, it also
fares significantly better than the best available tools.

In our future work, we will investigate automated ap-
proaches to generate effective patches for the WAF under
test starting from the learned attack patterns. We reported
on an initial attempt to automate the repairing process in
a recent paper [11], where we generated patches that block
as many bypassing attacks as possible while limiting the
blocking of legitimate inputs. Investigating further, more
effective, repairing strategies that better exploit the attack
patterns generated by ML-Driven E is part of our future
agenda. Finally, we plan to investigate various strategies
(e.g., data re-sampling strategies, weighted training, and
penalty- based training) to improve the effectiveness and the
efficiency of ML-Driven by addressing the data imbalance
problem.

ACKNOWLEDGEMENTS

This work builds on Dennis Appelt’s Ph.D. dissertation. The
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
694277).

REFERENCES

[1] Verified firewall policy transformations for test case generation.
In Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on, pages 345–354. IEEE, 2010.

[2] Management of an Academic HPC Cluster: The UL Experience.
In Proc. of the 2014 Intl. Conf. on High Performance Computing &
Simulation (HPCS 2014), pages 959–967, Bologna, Italy, July 2014.
IEEE.

[3] E. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live
testing of firewall configuration enforcement. Selected Areas in
Communications, IEEE Journal on, 27(3):302–314, 2009.

[4] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn. An
orchestrated survey of methodologies for automated software test
case generation. Journal of Systems and Software, 86(8):1978–2001,
2013.

[5] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira.
Command injection vulnerability scanner for web services.
http://eden.dei.uc.pt/ mvieira/.

[6] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira. Effective
detection of SQL/XPath injection vulnerabilities in web services.
In Proceedings of the 6th IEEE International Conference on Services
Computing (SCC ’09), pages 260–267, 2009.

[7] D. Appelt, N. Alshahwan, and L. Briand. Assessing the impact
of firewalls and database proxies on sql injection testing. In Pro-
ceedings of the 1st International Workshop on Future Internet Testing,
2013.

[8] D. Appelt, A. Nguyen, Cu D. Panichella, and L. Briand. Au-
tomated testing of web application firewalls: Technical report.
Technical Report TR-SnT-2016-1, University of Luxembourg, 2016.

[9] D. Appelt, C. D. Nguyen, and L. Briand. Behind an application
firewall, are we safe from sql injection attacks? In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, pages 1–10. IEEE, 2015.

[10] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan. Auto-
mated testing for sql injection vulnerabilities: An input mutation
approach. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages 259–269, New
York, NY, USA, 2014. ACM.

[11] D. Appelt, A. Panichella, and L. C. Briand. Automatically repair-
ing web application firewalls based on successful SQL injection
attacks. In 28th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2017, Toulouse, France, October 23-26, 2017,
pages 339–350, 2017.

[12] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin. Genetic
Programming: An Introduction: on the Automatic Evolution of Com-
puter Programs and Its Applications. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1998.

[13] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art:
Automated black-box web application vulnerability testing. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages 332–345.
IEEE, 2010.

[14] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing sql injection
attacks. In Applied Cryptography and Network Security, pages 292–
302. Springer, 2004.

[15] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[16] J. Coffey, L. White, N. Wilde, and S. Simmons. Locating software

features in a soa composite application. In Web Services (ECOWS),
2010 IEEE 8th European Conference on, pages 99–106, 2010.

[17] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten. Bridging the
gap between web application firewalls and web applications. In
Proceedings of the fourth ACM workshop on Formal methods in security,
pages 67–77. ACM, 2006.

[18] A. Doupé, M. Cova, and G. Vigna. Why johnny canâĂŹt pen-
test: An analysis of black-box web vulnerability scanners. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pages 111–131. Springer, 2010.

[19] M. Felderer, M. BÃijchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner. Security testing. Advances in Computers, 101:1 – 51,
2016.

[20] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static
analysis framework for detecting sql injection vulnerabilities. In
31st Annual International Computer Software and Applications Confer-
ence (COMPSAC 2007), volume 1, pages 87–96, July 2007.

[21] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based white-
box fuzzing. In ACM Sigplan Notices, volume 43, pages 206–215.
ACM, 2008.

[22] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing
for security testing. Queue, 10(1):20, 2012.

[23] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[24] W. Halfond, J. Viegas, and A. Orso. A classification of sql-
injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering, volume 1,
pages 13–15. IEEE, 2006.

[25] W. G. Halfond, S. Anand, and A. Orso. Precise interface identi-
fication to improve testing and analysis of web applications. In
Proceedings of the 18th International Symposium on Software Testing
and Analysis (ISSTA ’09), pages 285–296, 2009.

24

[26] W. G. Halfond and A. Orso. Amnesia: analysis and monitoring
for neutralizing sql-injection attacks. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, pages 174–183. ACM, 2005.

[27] W. G. J. Halfond and A. Orso. Preventing SQL injection attacks
using AMNESIA. In Proceedings of the 28th International Conference
on Software Engineering (ICSE’ 06), pages 795–798, 2006.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: An update. SIGKDD
Explor. Newsl., 11(1):10–18, Nov. 2009.

[29] J. Hwang, T. Xie, F. Chen, and A. X. Liu. Systematic structural
testing of firewall policies. In Reliable Distributed Systems, 2008.
SRDS’08. IEEE Symposium on, pages 105–114. IEEE, 2008.

[30] J. Jürjens and G. Wimmel. Specification-based testing of firewalls.
In D. Bjørner, M. Broy, and A. Zamulin, editors, Perspectives
of System Informatics, volume 2244 of Lecture Notes in Computer
Science, pages 308–316. Springer Berlin Heidelberg, 2001.

[31] G. Karafotias, M. Hoogendoorn, and A. E. Eiben. Parameter
control in evolutionary algorithms: Trends and challenges. IEEE
Transactions on Evolutionary Computation, 19(2):167–187, April 2015.

[32] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic
creation of SQL injection and cross-site scripting attacks. In Pro-
ceedings of the 31st International Conference on Software Engineering
(ICSE ’09), pages 199–209, 2009.

[33] Y.-F. Li, P. K. Das, and D. L. Dowe. Two decades of web application
testingâĂŤa survey of recent advances. Information Systems, 43:20
– 54, 2014.

[34] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou. Sqlprob: A proxy-
based architecture towards preventing sql injection attacks. In
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC
’09, pages 2054–2061, New York, NY, USA, 2009. ACM.

[35] H. Liu and H. B. Kuan Tan. Testing input validation in web
applications through automated model recovery. Journal of Systems
and Software, 81(2):222–233, 2008.

[36] P. McMinn. Search-based software test data generation: a survey.
Software Testing, Verification and Reliability, 14(2):105–156, 2004.

[37] R. McNally, K. Yiu, D. Grove, and D. Gerhardy. Fuzzing: the state
of the art. Technical report, DTIC Document, 2012.

[38] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of web
applications. In Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on, pages 187–197. IEEE, 2004.

[39] A. Panichella, F. Kifetew, and P. Tonella. Automated test case gen-
eration as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Transactions on Software Engineering,
PP(99):1–1, 2017.

[40] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch
coverage as a many-objective optimization problem. In 8th IEEE
International Conference on Software Testing, Verification and Valida-
tion, ICST 2015, Graz, Austria, April 13-17, 2015, pages 1–10, 2015.

[41] A. Petrowski and S. Ben-Hamida. Evolutionary Algorithms. John
Wiley & Sons, 2017.

[42] J. R. Quinlan. C4.5: Programs for Machine Learning, volume 1.
Morgan kaufmann, 1993.

[43] D. Senn, D. Basin, and G. Caronni. Firewall conformance testing.
In F. Khendek and R. Dssouli, editors, Testing of Communicating
Systems, volume 3502 of Lecture Notes in Computer Science, pages
226–241. Springer Berlin Heidelberg, 2005.

[44] S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn. Random or
genetic algorithm search for object-oriented test suite generation?
In Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’15, pages 1367–1374, New York, NY,
USA, 2015. ACM.

[45] L. K. Shar and H. B. K. Tan. Defeating sql injection. Computer,
(3):69–77, 2013.

[46] M. Soltani, A. Panichella, and A. van Deursen. A guided genetic
algorithm for automated crash reproduction. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, pages 209–220, 2017.

[47] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerabil-
ity discovery. Pearson Education, 2007.

[48] O. Tripp, O. Weisman, and L. Guy. Finding your way in the testing
jungle: a learning approach to web security testing. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
pages 347–357. ACM, 2013.

[49] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and exploita-
tion in evolutionary algorithms: A survey. ACM Comput. Surv.,
45(3), 2013.

[50] J. Williams and D. Wichers. Owasp, top 10, the ten most critical
web application security risks. Technical report, The Open Web
Application Security Project, 2013.

[51] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2011.

	Introduction
	Backround and Related Work
	SQL Injection Vulnerabilities
	Related Work

	Approach
	A Context-Free Grammar for SQLi Attacks
	Grammar-based Random Attack Generation
	Machine Learning-Guided Attack Generation
	Attack Decomposition
	Training Set Preparation
	Decision Tree and Path Condition
	ML-Driven Evolutionary Testing Strategy

	Enhancing ML-Driven: An Adaptive Approach to Balance Exploration and Exploitation

	Empirical Study
	Subject Applications
	Open-Source WAF
	Proprietary WAF

	Research Questions
	Procedure
	Parameter Setting
	Variables

	Results
	RQ1: How efficient are ML-Driven E, ML-Driven B, ML-Driven D, and RAN in finding bypassing tests?
	Results for ModSecurity
	Results for the proprietary WAF

	RQ2: Does the choice of machine learning algorithm matter?
	RQ3: How does ML-Driven compare to similar techniques?
	RQ4: Are we learning new, useful attack patterns as the number of distinct, bypassing attacks increases?

	Using attack patterns to repair a WAF
	Repair Strategy
	Suitability of other techniques for the purpose of repairing a WAF

	Discussion
	Differences between Case Studies
	Application of the Proposed Techniques

	Conclusion
	References

