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Abstract—In this paper, we consider the energy efficiency
maximization problem in downlink multi-input multi-output
(MIMO) multi-cell systems, where all users suffer from inter-
cell interference. To solve this optimization problem with a
nonconcave objective function and a complex-valued matrix
variable, we extend the recently developed successive pseudo-
convex approximation framework and propose a novel iterative
algorithm that has the following advantages: 1) fast convergence
as the structure of the original optimization problem is preserved
as much as possible in the approximate problem solved in
each iteration, 2) easy implementation as each approximate
problem is natural for parallel computation and its solution has
a closed-form expression, and 3) guaranteed convergence to a
stationary point. The advantages of the proposed algorithm are
also illustrated numerically in terms of energy efficiency gains
from mobile network infrastructure perspective.

Index Terms—Energy Efficiency, Interference-limited System,
MIMO, Nonconvex Optimization, Pseudoconvex optimization

I. INTRODUCTION

In the era of 5G and Internet of Things by 2020, the number

of connected devices is predicted to reach 50 billions. On

one hand, the data rate should be 1000x faster to serve these

devices simultaneously. On the other hand, the significant

increase in the data rate is expected to be achieved at the same

or even a lower level of energy consumption. Therefore the so-

called energy efficiency (EE) is a key performance indicator

that should be considered in the design of efficient transmis-

sion schemes enhancing the spectral and energy efficiency.

In this paper, we study the EE maximization problem in a

downlink multi-input multi-output (MIMO) multi-cell system,

where the users are sharing the same frequency resources

and suffer from inter-cell interference. It is well known that

sum rate maximization in such an interference-limited system

is a nonconvex optimization problem and NP-hard [1]. The

EE maximization problem in an interference-limited system is

even more challenging because the EE is a fractional function

where the nonconcave sum rate function is in the numerator

and the consumed energy is an additional variable in the

denominator [2].

In state-of-the-art studies, the EE maximization problem in

interference-limited systems has received considerable atten-

tion, see [2, 3, 4, 5, 6, 7] for some recent examples and

the references therein. An iterative algorithm was proposed

in [2] and [3] to maximize the EE in a single-input single-

output (SISO) system and a multi-input single-output (MISO)

system, respectively, but they are not applicable for a MIMO

system. They also suffer from a high complexity, because,

although the optimization problem solved in each iteration is

convex, it does not have structures that can be exploited to

enable, e.g., parallel computation, and it can only be solved

by general purpose optimization solvers and this may incur a

large latency in the decision making process. The sequential

pricing algorithm proposed in [5] is a variant of the well-

known block coordinate descent algorithm. Although it can be

extended to a MIMO system, the optimization problem solved

in each iteration does not exhibit any convexity, making the

iterative algorithm not suitable for practical implementation.

A general framework for EE optimization based on monotonic

programming is proposed in a recent paper [7], but it is not

applicable for MIMO systems where the optimization variables

are complex-valued matrices.

In this paper, we extend the recently developed successive

pseudoconvex approximation (SPCA) framework proposed

in [6] to solve the EE maximization problems in MIMO

interference-limited systems. In each iteration, an approximate

problem is solved, and the approximate function only needs

to be pseudoconvex, a weak form of convexity. This weak

assumption makes it possible to preserve as much structure

available in the original EE function as possible, e.g., the

partial concavity in the numerator function and the division

operator. Besides this, the proposed approximate problem is

natural for parallel computation, as the approximate problem

can be decomposed into many independent subproblems that

can be solved in parallel and each subproblem has a closed-

form solution. Therefore, the proposed algorithm presents a

fast convergence behavior and enjoys an easy implementation.

II. PROBLEM MODEL

We consider a downlink MIMO multi-cell system. We

assume the number of cells is K , and each cell is serving

one user. This assumption is considered realistic especially

in practical dense urban scenarios, where instantaneously the

number of active users connected to a single BS at a specific

frequency is low (most of the time only one single user per

small cell). The number of transmit antennas at the base station

(BS) of cell k is MT,k, and the number of receive antennas

of user k served by cell k is MR,k. We denote Hkk as the

channel coefficient from BS k to user k, and Hkj as the

channel coefficient from BS j to user k. We assume that all

K users are active and the inter-cell interference is treated as

noise, so the downlink transmission rate towards the k-th user
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Figure 1. System topology with 1-tiered small cell interferers and central
processing unit in CRAN

is:

rk(Qk,Q−k) = log det
(

I+Rk(Q−k)
−1HkkQkH

H
kk

)

,

where Qk , E
[

xkx
H
k

]

(with xk being the transmitted sym-

bol) is BS k’s transmit covariance matrix, Q−k is a compact

notation denoting all transmit covariance matrices except Qk:

Q−k = (Qj)j 6=k , and Rk(Q−k) , σ2
kI +

∑

j 6=k HkjQjH
H
kj

is the noise plus interference covariance matrix experienced

by user k.

The power consumption at BS k can be approximated by

the following equation [8, Section 4.3]:

P0,k + ρktr(Qk),

where P0,k is the power consumption at the zero RF output

power (i.e., Qk = 0), and ρk is the slope of the load

dependent power consumption. The concrete values of P0,k

and ρk depend on the types of the cell, e.g., macro cell, remote

radio head, and micro cell. Interested readers can refer to [8,

Table 8].

The EE maximization problem at the network level is then

formulated as the ratio between the sum transmission rate in

the multi-cell system and the total consumed power:

maximize
Q

f(Q) ,

∑K

k=1 rk(Qk,Q−k)
∑K

k=1(P0,k + ρktr(Qk))

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k, (1)

where Pk is BS k’s (predefined) sum transmission power

budget and the optimization variable is the (complex-valued)

transmit covariance matrices Q , (Qk)
K
k=1. Note that the

objective function of (1) has a unit of bits/Joule and it specifies

the EE of the entire cluster depicted in Figure 1).

III. THE PROPOSED ITERATIVE ALGORITHM FOR

SUM-RATE-SUM-POWER RATIO MAXIMIZATION

Problems (1) is known to be nonconvex and NP-hard, and

we aim at developing an algorithm that can efficiently find a

stationary point. Note that a stationary point is a point that

satisfies the necessary optimality conditions of problems (1),

and it is the classical goal of algorithmic design for nonconvex

problems [9].

To design an iterative algorithm for problem (1) that enjoys

a low complexity but at the same time a fast convergence

behavior, we need on one hand to overcome the nonconvexity

in the objective function and, on the other hand, to preserve the

original problem’s structure as much as possible. Towards this

end, we propose an iterative algorithm based on the successive

pseudoconvex approximation framework developed in [6].

To start with, we introduce the definition of pseudoconvex

functions: a function f(x) is said to be pseudoconvex if [10]

f(y) < f(x) =⇒ (y − x)T∇f(x) < 0. (2)

In other words, f(y) < f(x) implies y − x is a descent

direction of f(x) [9]. A function f(x) is pseudoconcave if

−f(x) is pseudoconvex. We remark that the (strong) convexity

of a function implies that the function is pseudoconvex, which

in turn implies that the function is quasi-convex.

The proposed iterative algorithm for problem (1) consists

of solving a sequence of successively refined approximate

problems. In iteration t, the approximate problem defined

around the point Qt consists of maximizing an approximatie

function, denoted as f̃(Q;Qt), under the same constraints as

(1). The lack of concavity in the objective function should be

properly compensated so that the approximate problems are

much easier to solve than the original problem (1).

The numerator functions {rk(Q)} are not concave in Q,

and thus the objective function f(Q) is not even pseudo-

concave, a weaker form of convexity that is recognized to

play an essential role in many optimization problems [6, 10].

Meanwhile, the function rk(Q) is concave in Qk, and ex-

ploiting this partial concavity may notably accelerate the

convergence [11]. Therefore, we approximate the numerator

function
∑K

j=1 rj(Q) with respect to Qk at the point Qt by a

function denoted as r̃k(Qk;Q
t), which is obtained by fixing

the other variables Q−k in rk(Qk,Q−k) and linearizing only

the functions {rj(Q)}j 6=k that are not concave in Qk:

r̃k(Qk;Q
t) , rk(Qk,Q

t
−k)+

∑

j 6=k(Qk−Q
t
k)•∇Q∗

k
rj(Q

t),

where X •Y , ℜ(tr(XHY)) and ∇Q∗

k
rj(Q) is the Jacobian

matrix of rj(Q) with respect to Q∗
k (the conjugate of Qk).

Since r̃k(Qk;Q
t) is concave in Qk,

∑K

k=1 r̃k(Qk;Q
t) is

concave in Q. This paves the way to define the following

approximate function of the original objective function f(Q)
at point Qt, denoted as f̃(Q;Qt):

f̃(Q;Qt) ,

∑K

k=1 r̃k(Qk;Q
t)

∑K

k=1(P0,k + ρktr(Qk))
. (3)

The approximate function f̃(Q;Qt) has some important prop-

erties as we outline.
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Firstly, the approximate function f̃(Q;Qt) is still noncon-

cave, but it is a fractional function between a nonnegative

concave function and a positive linear function, which is thus

pseudoconcave [6].

Secondly, the approximate function f(Q;Qt) is differen-

tiable and its gradient is the same as that of the origi-

nal function f(Q) at the point Qt where the approximate

function f(Q;Qt) is defined. To see this, we remark that

∇Q∗

k
r̃j(Qj ;Q

t)
∣

∣

Q=Qt
= 0 if j 6= k, and

∇Q∗

k
r̃k(Qk;Q

t)
∣

∣

Q=Qt
= ∇Q∗

k

(

∑K

j=1rj(Q)
)∣

∣

∣

Q=Qt
, (4)

r̃(Qt;Qt) = rk(Q
t). (5)

Based on the observations in (4)-(5), it can be verified that

∇Q⋆
j
f̃(Q;Qt)

∣

∣

∣

Q=Qt

=
∇Q∗

j

(

∑K

k=1 r̃k(Q
t
k;Q

t)
)
∣

∣

∣

∑K

k=1(P0,k + ρktr(Qt
k))

−

(

∑K

k=1 r̃k(Q
t
k;Q

t)
)

I

(

∑K

k=1(P0,k + ρktr(Qt
k))
)2

=
∇Q∗

j

(

∑K

k=1 rk(Q
t)
)

∑K

k=1(P0,k + ρktr(Qk))
−

(

∑K

k=1 rk(Q
t)
)

I

(

∑K

k=1(P0,k + ρktr(Qk))
)2

= ∇Q∗

j

(

∑K

k=1 rk(Q
t)

∑K

k=1(P0,k + ρktr(Qt
k))

)

= ∇Q∗

j
f(Q)

∣

∣

∣

Q=Qt
.

(6)

These properties coincide with those given in [6] and have

been shown to play an essential role in establishing the

convergence properties.

At iteration t of the proposed algorithm, the approximate

problem defined at the point Qt is to maximize the approx-

imate function f̃(Q;Qt) defined in (3) subject to the same

constraints as in the original problem (1):

maximize
Q

f̃(Q;Qt)

subject to Qk � 0, tr(Qk) ≤ Pk, k = 1, . . . ,K. (7a)

We denote as BQt the (unique) solution of problem (7a):

BQt , argmax
(Qk�0,tr(Qk)≤Pk)Kk=1

f̃(Q;Qt). (7b)

Due to the pseudoconcavity, differentiability and equal

gradient at Qt as discussed above, the approximate function

f̃(Q;Qt) defined in (3) satisfies the assumptions specified in

[6, A1-A3]. As a result, BQt −Qt is an ascent direction of

the original objective function f(Q) at Q = Qt, unless Qt

is already a stationary point of problem (1), as stated in the

following proposition.

Proposition 1 (Stationary point and ascent direction). A point

X is a stationary point of (1) if and only if X = BX. If X

is not a stationary point of (1), then BX − X is an ascent

direction of r(Q) in the sense that

(BX−X) • ∇f(X) > 0.

Proof: The proof follows from the same line of analysis

as that of [6, Proposition 1].

Algorithm 1 The successive pseudoconvex approximation

method for energy efficiency maximization

S0: Q0 = 0, t = 0, and a stopping criterion ε.

S1: Compute BQt by solving problem (7):

S1.0: st,0 = 0, τ = 0, and a stopping criterion ǫ.
S1.1: Compute Q⋆

k(s
t,τ ) by (12).

S1.2: Compute st,τ+1 by (13).

S1.3: If |st,τ+1 − st,τ | < ǫ, then BQt = Q⋆(st,τ ).
Otherwise τ ← τ + 1 and go to S1.1.

S2: Compute γt by the successive line search (8).

S3: Update Qt+1 according to (9).

S4: If ‖BQt −Qt‖ ≤ ε, then STOP; otherwise t← t+1 and

go to S1.

Since BQt−Qt is an ascent direction of f(Q) at Q = Qt

according to Proposition 1, there exists a scalar γt ∈ (0, 1]
such that f(Qt + γt(BQt −Qt)) > f(Qt). In practice, the

stepsize γt is usually obtained by the so-called successive line

search. That is, given two scalars 0 < α < 1 and 0 < β < 1,

γt is set to be γt = βmt , where mt is the smallest nonnegative

integer m satisfying the following inequality:

f(Qt+βm(BQt−Qt)) ≥ f(Qt)+αβm∇f(Qt)•(BQt−Qt).
(8)

Note that the successive line search is carried out over the

original objective function f(Q) defined in (1).

After the stepsize γt is found, the variable Q is updated as

follows:

Qt+1 = Qt + γt(BQt −Qt). (9)

The resulting sequence {f(Qt)}t is monotonically increasing:

f(Qt+1) = f(Qt + βmt(BQt −Qt)) (10a)

≥ f(Qt) + αβmt∇f(Qt) • (BQt −Qt) (10b)

≥ f(Qt), ∀t, (10c)

where (10a) and (10b) come from the definition of the suc-

cessive line search (8), and (10c) comes from Proposition 1.

The proposed algorithm is formally summarized in Al-

gorithm 1 and its convergence properties are given in the

following theorem.

Theorem 2 (Convergence to a stationary point). The sequence

{Qt} generated by Algorithm 1 has a limit point, and every

limit point is a stationary point of problem (1).

Proof: The constraint set of problem (1), namely,

{(Qk)
K
k=1 : Qk � 0, tr(Qk) ≤ Pk}, is nonempty and

bounded. The sequence {Qt}t is thus bounded and has a limit

point. Then the latter statement can be proved following the

same line of analysis as [6] and thus not duplicated here.

In Step 1 of Algorithm 1, a constrained pseudoconvex

optimization problem, namely, problem (7), must be solved.

Since the optimal point BQt does not have a closed-form

expression, we apply the Dinkelbach’s algorithm to solve prob-

lem (7) iteratively: at iteration τ of Dinkelbach’s algorithm,

the following problem is solved for a given and fixed st,τ (st,0
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can be set to 0):

maximize
Q

∑K

k=1r̃k(Qk;Q
t)− st,τ

∑K

k=1(P0,k + ρktr(Qk))

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k. (11)

Since problem (11) is well decoupled across different vari-

ables, it can be decomposed into many smaller optimization

problems that can be solved in parallel: for all k = 1, . . . ,K ,

maximize
Q

r̃k(Qk;Q
t)− st,τ (P0,k + ρktr(Qk)

subject to Qk � 0, tr(Qk) ≤ Pk.

This problem is convex and its optimal point has a closed form

expression based on the generalized waterfilling solution [12,

Lemma 2]:

Q⋆
k(s

t,τ ) , argmax
Qk�0,tr(Qk)≤Pk

{

r̃k(Qk;Q
t)

−st,τ (P0,k + ρktr(Qk)

}

= V[I −Σ−1]+VH , (12)

where [X]+ denotes the projection of X onto the cone

of positive semidefinite matrices, (V,Σ) is the generalized

eigenvalue decomposition of (HH
kkRk(Q

t
−k)

−1Hkk, (s
t,τρk+

ρ⋆)I−
∑

j 6=k∇Q∗

k
rj(Q

t)), and ρ⋆ is the Lagrange multiplier

such that 0 ≤ ρ⋆ ⊥ tr(Q⋆
k(s

t,τ )) − Pk ≤ 0, which can easily

be found by bisection.

After (Q⋆
k(s

t,τ ))Kk=1 is obtained, st,τ is updated as follows:

st,τ+1 =

∑K

k=1 r̃k(Q
⋆
k(s

t,τ );Qt)
∑K

k=1(P0,k + ρktr(Q⋆(st,τ ))
. (13)

It follows from the convergence properties of the Dinkelbach’s

algorithm (cf. [2]) that

lim
τ→∞

Q⋆(st,τ ) = BQt

at a superlinear convergence rate. This iterative procedure (12)-

(13) is nested under Step 1 of Algorithm 1 as Steps 1.0-1.3.

In the following, we discuss some properties and implemen-

tation aspects of the proposed Algorithm 1.

The approximate function in (3) is constructed in the same

spirit as [6, 11] by keeping as much concavity as possible,

namely, rk(Qk,Q−k) in Qk and
∑K

j=1(P0,k + ρktr(Qk)) in

Q, and linearizing the nonconcave functions only, namely,
∑

j 6=k rj(Q). Besides this, the division operator is also kept.

Therefore, the proposed algorithm is of a best-response nature

and expected to exhibit a fast convergence behavior, as we

shall later illustrate numerically.

In iterative algorithms, the major computational complexity

lies in solving the approximate problem in each iteration, or

more specifically, the eigenvalue decomposition in (12) with a

complexity of
∑K

k=1 O(M3
T,k). As a result, the complexity is

cubic in the number of transmit antennas, and only linear in the

number of cells. On the one hand, in the proposed algorithm,

the optimal point of the approximate problem has a closed-

form expression, making the proposed algorithm easy to

implement. On the other hand, this also notably accelerates the

convergence speed, making the proposed algorithm suitable for

real time applications.

The proposed algorithm converges to a stationary point of

problem (1) in the sense specified in Theorem 2. Besides, the

sequence {f(Qt)}t is monotonically increasing. The optimal-

ity of the solution to which the algorithm converges is thus

always guaranteed.

The proposed algorithm could be implemented by a central

unit which has the knowledge of the channel state information

of direct-link and cross-link channels, namely, (Hkj)j,k. In

practical system, this central unit could be embedded in

the Centralized Radio Access Network (CRAN): each BS k
measures the direct-link channel Hkk and cross-link channels

(Hkj)j 6=k and send the channel state information (Hkj)j to

the central unit in the CRAN; see the system scenario depicted

in Figure 1. Then the central unit invokes Algorithm 1 and

informs each BS k the optimal transmit covariance matrix Qk.

The incurred latency is mainly due to the signaling exchange

between the central unit and the BSs, and the execution of the

proposed algorithm.

IV. SIMULATIONS

We consider an urban scenario with a cluster of K = 7
micro BSs, each serving one UE, as depicted in Figure 1,

where the inter-cell distance is 500m. As mentioned before,

this assumption is considered realistic in practical dense ur-

ban scenarios, as the number of active users instantaneously

connected to a single BS at a specific frequency is low (most

of the time only one single user per small cell).

The number of transmit antennas at the BS is MT,k = 4
and the number of receive antennas at the UE is MR,k = 4.

The power consumption at the zero RF output is P0,k =16

W, the power budget normalized by the number of transmit

antennas is 36 dBm, i.e., Pk/MT,k =36 dBm, and the slope

of power consumption ρ is 2.6; these parameters are mainly

adopted from [8]. The simulation results are averaged over

1000 realizations.

For each realization, all K users are randomly located in

the multi-cell space where each user falls into the respective

hexagonal cell. The following quantities are calculated:

• The optimal transmit covariance matrices (Q⋆
k)

K
k=1, as

the output of the proposed Algorithm 1;

• The optimal EE indicator for the entire cluster, as per the

objective function in problem (1);

• The benchmark EE, as fair reference for performance

comparison with the proposed algorithm, where the trans-

mit covariance matrices are produced by the following

two schemes:

– The sum-rate maximizing scheme, i.e., (Qk)
K
k=1

maximizes
∑K

k=1 rk(Q) subject to the constraints:

Qk � 0, tr(Qk) ≤ Pk for all k = 1, . . . ,K;

– The uniform transmission scheme, i.e., Qk =
Pk/MTx · I;

• EE gain in percentage defined as:

the optimal EE− the benchmark EE

the benchmark EE
· 100%.

To check if the number of realizations is large enough to

average out the randomness in the simulation parameters,
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Figure 2. Average EE vs. the number of realizations

we plot in Figure 2 the average EE with the number of

realizations. We see that the average EE enters a stable phase

after 300 realizations, so the chosen number of realizations,

namely 1000, gives us an accurate estimation of the average

EE that could be achieved by the proposed scheme.

In Figure 3, we show the convergence speed of the proposed

algorithm, and compare the achieved EE by the proposed

algorithm and benchmark algorithms. On the one hand, it is

easy to see from the black solid line indicating the proposed

algorithm that after 2 iterations, the achieved EE is very

close to the optimal EE. In practice, the algorithm could be

stopped after 2 iterations, which yields a good tradeoff be-

tween the achieved EE and the number of iterations. Since the

approximate problems solved in each iteration has a closed-

form solution based on the waterfilling solution, both the

computational complexity (linear in the number of cells) and

the incurred latency is maintained at a very low level, making

the proposed algorithm very suitable in practice. On the other

hand, the comparison of the EE achieved by the proposed

algorithm and benchmark algorithms (blue dash-dot curve and

red dash curve) indicates a notable EE gain. In particular, the

EE gain over the uniform transmission is 153.07% and the EE

gain over the sum-rate optimal transmission scheme is 46.56%.

V. CONCLUSIONS

In this paper, we have proposed an efficient optimization

algorithm to maximize the EE in interference-limited MIMO

systems, based on the recently developed successive pseu-

doconvex approximation framework. The proposed algorithm

not only converges to a stationary point, but also exhibts fast

convergence and low complexity, because the structure of the

original optimization problem is preserved as much as possible

in the approximate problem solved in each iteration, and each

approximate problem is natural for parallel computation with

a closed-form solution. These advantages are also illustrated

by numerical simulations.
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Figure 3. Performance comparison between the proposed scheme and the
benchmark schemes
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