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Abstract—MIMO systems have become a de-facto standard
in modern wireless communication, and with the upcoming of
large-scale MIMO systems, efficient symbol detection techniques
become more significant than ever. In this paper, we propose a
new symbol detection technique for M -PSK modulated symbols.
In order to implement the proposed technique efficiently, we
develop an iterative, low-complexity algorithm. Each iteration
of the developed algorithm comprises of independent subprob-
lems, which can be solved independently and concurrently on
a parallel-computing platform, making it ideal for advanced
wireless systems. Our complexity analysis reveals that the com-
putational complexity of the proposed algorithm scales well with
the number of transmit/receive antennas of the MIMO systems,
and it is independent of constellation size. Simulation results show
that the bit error rate (BER) of the proposed detection method
is lower than those of conventional suboptimal detectors, and the
BER decays faster as the size of the MIMO system increases.

I. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) is one
of the emerging technologies capable of effectively addressing
the ever increasing demand for wireless data, providing higher
spectral and energy efficiency [1–3]. It is foreseen to be one
of the key enablers of 5G technology [4, 5]. With tens or
hundreds of antennas at the transmitter and/or receiver, a
large-scale MIMO system facilitates numerous data stream
transmissions within the same time and frequency resources.

A main challenge associated with the large-scale MIMO
technology is to design reliable and fast symbol detectors [2, 6,
7]. Even though extensive research work has been done in the
last decade, and numerous techniques have been proposed [8–
10], many of them are not well-suited for large-scale MIMO
systems for two reasons. Firstly, they become infeasible or
extremely slow for large systems. For example, the complexity
of the optimal maximum-likelihood (ML) detector, even with
its efficient implementations like the sphere decoder (SD),
grows exponentially with the number of simultaneously trans-
mitted data streams [11–13]. Secondly, suboptimal detectors
such as the zero-forcing (ZF) detector, minimum mean-square
error (MMSE) detector, and fixed sphere decoding (FSD), are
highly sensitive to noise, and offer significantly higher bit error
rates (BERs) compared with an optimal detector, in scenarios
where the users’ channels exhibit non-vanishing correlations
[14]. Moreover, the performance of these detectors degrade
further as the number of transmitted data streams approaches
the number of receive antennas [15–18].

Over the last three decades, there has been tremendous
advancement in semiconductor technology, with a major focus

on parallel processing [19]. With the development of mas-
sively parallel processor array (MPPA) technology, it is not
a distant future that we have economically viable embedded
systems with hundreds or thousands of processing units on
a single millimeter-size die [20–23]. Such parallel hardware
architectures can benefit the large-scale MIMO systems to
process a huge amount of data in real-time. By designing
detection algorithms which facilitate the parallel processing,
the available hardware can be efficiently utilized to speed-up
the detection process.

In this paper, we propose a novel MIMO detector for M -
PSK modulated symbols, which can be readily expressed as
a convex optimization problem. To implement the proposed
technique efficiently, we formulate an iterative algorithm1.
Each iteration of the developed algorithm constitutes a number
of subproblems, which can be solved independently and simul-
taneously on parallel-computing platforms, such as MPPA, to
further speed up the detection process. Simulation results show
that the proposed detection approach achieves significantly
lower BER compared with conventional suboptimal detectors,
such as the ZF and MMSE. Furthermore, the proposed scheme
performs well even when the number of transmitted data
streams is equal to the number of receive antennas. Theoretical
analysis shows that the convergence of the proposed iterative
algorithm is guaranteed, and numerical results show that it
converges in a noticeably low number of iterations.

Notation: The symbol C denotes the set of complex num-
bers. Conjugate transpose operator is denoted by (·)H . The
notation || · || denotes the Euclidean norm of a vector, and | · |
denotes the absolute value of a scalar.

II. SYSTEM MODEL

Consider a multiuser MIMO system with N single antenna
mobile devices simultaneously transmitting to a multiantenna
base station with K receive antennas, where N ≤ K. Let
s = [s1, . . . , sN ]T be the transmit symbol vector, where
the element sn,∀n ∈ N , {1, 2, . . . , N}, denotes the
symbol transmitted by the nth mobile device. Each symbol
is assumed to be drawn from an M -ary phase-shift keying
(M -PSK) constellation, for M being a positive integer greater
than 1. Let SM denote the set of constellation points, and
r = |sn|,∀n ∈ N , denote the constant amplitude of each

1After the acceptance of this paper, we found a similar approach proposed
in paper [24] in the context of CDMA.
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constellation point. Let H = [h1, . . . ,hN ] ∈ CK×N be the
channel matrix, with the channel vector of the nth mobile
device denoted as hn ∈ CK×1. The instantaneous channel
information is assumed to be perfectly known at the receiver.
The received signal vector y ∈ CK×1 during each symbol
duration can be expressed as

y = Hs+ n, (1)

where n ∈ CK×1 is a noise vector, and all elements of the
vector n are complex Gaussian variables with zero-mean and
variance σ2.

III. CONVENTIONAL DETECTORS

The ML detector provides an optimal performance by per-
forming an exhaustive search over all possible combinations
of transmit symbols, i.e.,

xML = argmin
xn∈SM , ∀n∈N

||y −Hx||2, (2)

where x is a vector whose elements xn,∀n ∈ N , are the op-
timization variables, and the vector xML is the estimate of the
transmit symbol vector s. However, in the ML technique the
search space of each transmit symbol is restricted to discrete
constellation points, and its complexity grows exponentially as
the number of transmit symbols increases. Therefore, the ML
detector is ill-suited for the large-scale MIMO systems. On the
contrary, the ZF detector completely relaxes the constraints on
the transmit symbols, and searches the entire complex plane
for the transmit symbol vector that minimizes the sum of
squared errors, i.e.,

xZF = argmin
xn∈C,∀n∈N

||y −Hx||2. (3)

Eq. (3) is a convex problem, and it has a closed form solution,
which is given by

xZF = (HHH)−1HHy. (4)

In contrast to the exponential complexity of the ML detector,
the ZF detector has a polynomial complexity. However, the
ZF detector suffers from noise amplification in scenarios
where the channel matrices have large condition numbers. The
covariance matrix of the ZF estimation error vector is given
by σ2(HHH)−1.

IV. PROPOSED SYMBOL DETECTION TECHNIQUE

In this section, we propose a novel MIMO detection tech-
nique to overcome the drawbacks of the ZF and ML detectors.

A. MIMO Detector as Convex Optimization Problem

The ML and ZF detectors rest on the opposite extremes
on the transmit symbol search space scale; the ML detector
search space is limited to the discrete constellation points,
and in contrast, the ZF detector search space occupies the
entire complex plain. We propose to relax the search space
constraints on the transmit symbols from the discrete points
to a closed disk space, with the M -PSK constellation points
residing on the boundary of the disk. The benefits of limiting
the search space to the disk space are twofold. Firstly, due
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Fig. 1: Solutions of different detectors for a 4 × 4 MIMO
system with 4-PSK modulation scheme. The gray region
represents the search space of the proposed detection method.

to the restriction on the search space the noise amplification
is bounded (see Fig. 1), and thus the BER will be reduced
compared with the ZF detector. Secondly, the disk is a convex
set, which enable us to formulate the detection problem as the
following simple convex optimization problem:

x∗ = argmin
xn,∀n∈N

||y −Hx||2 (5a)

subject to |xn|2 ≤ r2, ∀n ∈ N . (5b)

Similar to the ZF detector, elementary slicing (quantization)
operation can be performed on x∗ to obtain the estimated
symbols.

B. Parallel Low-Complexity Iterative Algorithm

In this subsection, we develop an efficient iterative algo-
rithm to solve problem (5) in a parallel, distributed manner, to
accelerate the detection process in a large-scale MIMO system
equipped with multiple parallel processing units.

The presentation of the new algorithm is organized as
follows. Firstly, an iterative approximate problem is formulated
to the original convex optimization problem, whose conver-
gence is guaranteed to the optimal solution of the original
problem. Then, the approximate problem is decomposed into
N independent subproblems, which can be solved in parallel.
Subsequently, a closed form solution to the subproblems is
constructed. Computation of the optimal step-size, as required
for the update phase, is presented afterwards.

The Approximate Problem: In order to tailor problem (5)
for the parallel implementation, we decompose the problem
into multiple subproblems, which can be solved independently
and simultaneously. To achieve this goal, we exploit the
fact that the objective function in (5a) of problem (5) is
convex in each variable xn,∀n ∈ N . Employing the Jacobi
algorithm [25–27], we can formulate the approximate function
of the original objective function f(x) = ||y−Hx||2, whose
convergence to the optimal solution of the original problem
is ensured with an appropriate step-size selection. Let xt

denote the approximate solution to the problem (5) obtained
in the (t − 1)th iteration. At t = 0, x0 is assigned with any
random feasible vector. Based on the Jacobi algorithm, the



approximate function of f(x) in the tth iteration around the
point xt can be expressed as

N∑
n=1

||y −H−nx
t
−n − hnxn||2. (6)

In Eq. (6), H−n denotes the matrix obtained by eliminating
the nth column hn from matrix H, and x−n denotes the vector
obtained by discarding the nth element xn from vector x.

Upon defining yt−n , y −H−nx
t
−n, the resulting approx-

imate problem can be expressed as

x̂t = argmin
xn,∀n∈N

N∑
n=1

||yt−n − hnxn||2 (7a)

subject to |xn|2 ≤ r2, ∀n ∈ N . (7b)

The vector x̂t − xt represents a descent direction of the
objective function f(x) in the domain of problem (5) [26].
Therefore, the vector xt is updated after each iteration, using
the following rule:

xt+1 = xt + γt(x̂t − xt), (8)

where γt ∈ (0, 1] is an appropriate step-size. The algorithm
has converged to the optimal solution x∗, when x̂t = xt.

Decomposition of the Approximate Problem: The objec-
tive function in (7a) of problem (7) is composed of N addends,
where each addend involves only one variable xn,∀n ∈ N .
Furthermore, the constraint set (7b) is a Cartesian product
of closed convex sets, with each convex set corresponds to
one variable xn,∀n ∈ N . Consequently, we can decompose
problem (7) into N independent subproblems [27] as

x̂n = argmin
xn

||yt−n − hnxn||2 (9a)

subject to |xn|2 ≤ r2, (9b)

where x̂n is the nth element of vector x̂t. Since each subprob-
lem exclusively depends on a single variable, each subproblem
can be solved independently and concurrently.

Closed Form Solution of the Subproblem: In order to
derive a closed form expression for the optimal solution
x̂n of the convex problem (9), we apply the Lagrangian
duality principle, and derive the Karush-Kuhn-Tucker (KKT)
optimality system [28].

The Lagrangian function L(xn, λn) associated with problem
(9) can be written as

L(xn, λn) = ||yt−n − hnxn||2 + λn(|xn|2 − r2), (10)

where λn is a Lagrangian multiplier. Let x̂n and λ̂n be any
primal and dual optimal points with zero duality gap. Then,
we have the following KKT conditions:

x̂n = (‖hn‖2 + λ̂n)
−1hHn yt−n, (stationarity) (11a)

|x̂n|2 − r2 ≤ 0, (primal feasibility) (11b)

λ̂n ≥ 0, (dual feasibility) (11c)

λ̂n(|x̂n|2 − r2) = 0. (complementary slackness) (11d)

There are two mutually exclusive possibilities that arise due
to Eq. (11c): a) λ̂n = 0, b) λ̂n > 0. Suppose λ̂n = 0, using

Eq. (11a), the corresponding value of xn can be expressed as

x(λ̂n=0)
n =

hHn yt−n

‖hn‖2
. (12)

If x(λ̂n=0)
n satisfies Eq. (11b), then all the KKT conditions are

fulfilled, and x̂n = x
(λ̂n=0)
n . However, if x(λ̂n=0)

n does not
satisfy Eq. (11b), then λ̂n > 0 must hold. Moreover, due to
Eq. (11d), we have

|x̂n|2 − r2 = 0. (13)

Substituting Eq. (11a) into Eq. (13), we obtain

(yt−n)
Hhn(‖hn‖2 + λ̂n)

−2hHn yt−n − r2 = 0. (14)

Solving Eq. (14), λ̂n(> 0) can be derived as

λ̂n =
|hHn yt−n|

r
− ‖hn‖2. (15)

Finally, substituting Eq. (15) into Eq. (11a), we obtain

x(λ̂n>0)
n = r

hHn yt−n
|hHn yt−n|

. (16)

Eq. (16) can be interpreted as the projection of the point
hHn yt−n onto the disk of radius r, and the technique is known
as the gradient projection method [29, 30].

Combining Eq. (12) and Eq. (16), the optimal solution of
problem (9) can be mathematically expressed as

x̂n = min

(
|hHn yt−n|
‖hn‖2

, r

)
hHn yt−n
|hHn yt−n|

. (17)

Computation of Optimal Step-size: The optimal update
step-size γt in Eq. (8), which minimizes the objective function
f(x) in the domain of problem (5), can be computed using
the exact line search method [26, 30] as

γt = argmin
γ≤1

∣∣∣∣y −H
(
xt + γ(x̂t − xt)

)∣∣∣∣2︸ ︷︷ ︸
Z(γ)

. (18)

Since Z(γ) in Eq. (18) is a convex function in γ, and x̂t−xt

is a descent direction, γt is always non-negative. Moreover,
suppose the gradient of Z(γ) with respect to γ vanishes at
γ∗, then γt is the projection of γ∗ onto the interval [0, 1].
Consequently, γt can be computed as

γt =

[
Re{pHq}

qHq

]1
0

, (19)

where p = y − Hxt, q = H (x̂t − xt), and [·]10 denotes
the projection operation onto the interval [0, 1]. Furthermore,
the exact line search based step-size computation according to
Eq. (19) guarantees the convergence of Eq. (8) to the optimal
solution of problem (5) [27, 30].

In summary, each iteration of the proposed algorithm con-
sists of computing solutions of each subproblem according to
Eq. (17), computing the corresponding step-size according to
Eq. (19), and performing the update according to Eq. (8).

C. Computational Complexity Analysis
In this subsection, we analyse the complexity of the pro-

posed algorithm, in terms of complex multiplications (CMs)
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Fig. 2: BER vs. SNR of various detectors on MIMO systems of different orders for a 4-PSK modulation scheme.

and complex additions (CAs).
The terms hHn hn, hHn y, and hHn H−n can be computed

concurrently, ∀n ∈ N , in the initiation phase of the algorithm.
The only major computation involved in each subproblem
of an iteration is the calculation of (hHn H−n)x

t
−n, which

is needed for the computation of hHn yt−n. The approximate
numbers of CMs and CAs involved in the initiation phase and
in each iteration are listed in Table I. The proposed algorithm
has a complexity that is cubic with the dimension of H, similar
to the ZF and MMSE detectors [31]. Moreover, on a parallel-
computing platform with N parallel processors, the initiation
phase and the step-size computation phase of the proposed
algorithm have quadratic complexities, and each subproblem
and update-phase have linear complexities on each processor.

V. NUMERICAL RESULTS
In this section, we compare the performance of the proposed

detection technique and the conventional detection techniques,
namely, the ZF detector, the MMSE detector, and the ML
detector, in the case of 4-PSK modulation.

Fig. 2-(a) shows that the BER achieved by the proposed
detection method is significantly lower than that of the ZF
detector and MMSE detector. In Fig. 2-(b), it can be noticed
that the proposed detection method performs well even when
the number of transmitted symbols N is equal to the number of
receive antennas K, and the BER reduces further as the size of
the MIMO system grows. On the contrary, the BER of the ZF
detector in such systems is significantly higher, and its BER
increases further for higher order MIMO systems due to the
noise amplification effects. The performance improvement of
the proposed detector results from the increase in the number
of constraints of problem (5), for higher order MIMO systems.
Fig. 2-(c) shows that the performance of the proposed method
is considerably better than the ZF detector even after reducing
the number of transmitted symbols N to the half of the number
of receive antennas K.

Fig. 3 shows that low iteration numbers are sufficient to
achieve the optimal BER of the proposed detection scheme,
especially when SNR ≤ 10 dB.

In Table II we can notice that, in the SNR range of 0-20
dB, only 2 iterations are sufficient for the proposed algorithm
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Fig. 3: BER vs. iterations of the proposed detection method
for a 64× 64 MIMO system with 4-PSK modulation scheme.

TABLE I: Approximate number of CMs and CAs required to
implement the proposed algorithm.

- CMs CAs
Initiation phase NK(N + 1) N(N + 1)(K − 1)

Per iteration N2 + 2NK + 2K N2 + 2NK +N +K

to deliver the BER performance of ZF detector on a 64× 64
MIMO system, and less than 25 iterations are sufficient to
match the performance of the MMSE detector.

TABLE II: Number of iterations required by the proposed
algorithm to match the BER performance of the ZF and
MMSE detectors on a 64×64 MIMO system.

SNR in dB 0 5 10 15 20
ZF detector 2 2 2 2 2
MMSE detector 5 6 9 15 24

VI. CONCLUSION

A novel MIMO detection technique has been proposed,
and formulated as a convex optimization problem. To speed
up the detection process, a parallel, low-complexity, iterative
algorithm has been developed. Numerical results show that
the BER performance of the proposed detection approach is
better than that of the conventional suboptimal detectors. The
performance of the proposed technique further inflates as the
order of the MIMO system increases.
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