
Hidden-Token Searchable Public-Key Encryption

Cong Zuo†, Jun Shao†∗, Zhe Liu‡, Yun Ling† and Guiyi Wei†
†School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China

Email: zuocong10@gmail.com, chn.junshao@gmail.com, yling@zjgsu.edu.cn, weigy@zjgsu.edu.cn
‡APSIA, Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

Email: sduliuzhe@gmail.com

Abstract—In this paper, we propose a variant of searchable
public-key encryption named hidden-token searchable public-key
encryption with two new security properties: token anonymity
and one-token-per-trapdoor. With the former security notion,
the client can obtain the search token from the data owner
without revealing any information about the underlying keyword.
Meanwhile, the client cannot derive more than one token from
one trapdoor generated by the data owner according to the latter
security notion. Furthermore, we present a concrete hidden-
token searchable public-key encryption scheme together with the
security proofs in the random oracle model.

Index Terms—Searchable Encryption, Public-Key, Hidden-
Token, Random Oracle Model

I. INTRODUCTION

In recent years, the development and deployment of Inter-

net of Things (IoT) have gained substantial attention in the

industry and research community since it enables people to

collect data everywhere including environment, infrastructures

and businesses. However, it is not easy to store this huge

amount of information locally. The popular solution nowadays

is to outsource these data to a third party (e.g. the cloud).

While these data are the assets of the one who implemented

the devices of IoT, they should be encrypted before outsource,

which at the same time jeopardizes the usefulness of these

data, such as searchability.

To solve this dilemma between usefulness and confidential-

ity of data, many research efforts have been proposed, e.g.

Oblivious RAM (ORAM) [1], [2], Private Information Re-

trieval (PIR) [3], [4] and Searchable Encryption (SE) [5], [6],

[7], [8]. Among these, searchable encryption, which enables

searchability on ciphertexts, is the most promising technique.

For instance, the SE scheme in [8] allows many data sources

to generate encrypted index of the data and the data owner

to delegate the searchability by giving search trapdoors to

the clients. By using this SE scheme, the devices of IoT can

encrypt the collected data, and upload the resulting ciphertexts

with the index generated by using this SE scheme to the cloud

directly. Meanwhile, the data owner can generate the search

trapdoor according to the query from the client, who can later

use the search token generated from the trapdoor to ask the

cloud do the search on the index. The high level description

of the above framework is given in Fig. 1.

∗Corresponding author.

Cloud

Query for TrapdoorSystem Parameter

Data
Owner

IoT

Clients
The Data Owner has no idea about

the underlying keyword!

1a

1b

2
6

5

3

4

Fig. 1. Architecture of our framework

In most of the existing SE schemes, the data owner is

usually considered as trusted, while the cloud and the client

are considered as malicious. They focus on how to protect the

confidentiality of the trapdoor and the corresponding keyword,

while the privacy of the client is always ignored. However, in

some situations, the way how the client deals with the data

could be considered as an asset. For example, the information

of stock market and how to deal with the information are both

valuable. Hence, the keyword corresponding to the trapdoor

should be also protected. Once the client privacy (keyword

hidden) is considered, the benefit of the data owner could be

hurt. For example, without knowing the underlying keyword of

the trapdoor, the client could trick the data owner to generate

one trapdoor corresponding to many tokens. It is not good for

the data owner especially when the payment of data service

is based on how many tokens the client obtains.

To address the above challenges, in this paper, we pro-

pose a variant of searchable encryption, named hidden-token

searchable encryption. One of the important security properties

of hidden-token searchable encryption is to protect the client

privacy, i.e., the data owner cannot deduce the keyword corre-

sponding to the queried trapdoor. Besides, we also guarantee

the benefit of the data owner when the client privacy is under

protection, i.e., one trapdoor can derive only one token. The

contributions of this paper can be summarized as follows.

• To protect the client privacy while guaranteeing the ben-

efit of the data owner, we propose the concept of hidden-

token searchable encryption, including its definitions and

security models.

• We present the first concrete hidden-token searchable

encryption scheme along with its security analysis.

2017 IEEE Trustcom/BigDataSE/ICESS

2324-9013/17 $31.00 © 2017 IEEE

DOI 10.1109/Trustcom/BigDataSE/ICESS.2017.244

248

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147015197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Related Works

Generally speaking, there are two kinds of searchable

encryption, one is searchable symmetric-key encryption, the

other is searchable public-key encryption.

Song et al. [5] were the first one using symmetric-key

encryption to address keyword search on encrypted data.

Later, many works have been done in this area [5], [9], [10].

The term of Searchable Symmetric-Key Encryption was first

introduced by Curtmola et al. [6]. After that, Kamara et al.

[11] proposed a dynamic searchable encryption which extends

the scheme in [6]. To make the searchable symmetric-key

encryption more expressive, in 2013, Cash et al. [12] proposed

a practical highly-scalable searchable symmetric encryption

which is quite efficient and expressive. Later, many schemes

have been proposed based on this scheme. In 2013, Jarecki

et al. [13] proposed searchable symmetric encryption with

private information retrieval. In 2014, Cash et al. [14] proposed

dynamic searchable encryption which extends [12]. To make

the scheme in [12] more expressive, in 2016, Zuo et al. [7]

proposed a trusted boolean search on cloud using searchable

symmetric encryption.

In the line of research of searchable symmetric-key encryp-

tion, the most basic setting is where the data owner is the

one who performing the search on the encrypted database

which is stored in a third party (e.g. the cloud). The work

of Curtmola et al. [6] was the first scheme to extend the two-

party model (the data owner and the server) of SSE to the

multi-client setting. However, this scheme did not allow the

interaction between the data owner and the client in each query

which led to the inefficient implementation. To circumvent this

obstacle, in 2010, Chase et al. [15] introduced a SSE with

controlled disclosure which allowed such interaction. Later,

in 2011, to protect the privacy of the query, De Cristofaro

et al. [16] proposed a privacy-preserving sharing of sensitive

information scheme which extended the multi-client SSE to

the OSPIR setting. Later, [13] introduced a more expressive

and scalable SSE with OSPIR by using the technique of [12].

Most of the above schemes do not consider the protection

of the client privacy, only the scheme in [16], [13] considered

the multi-client with private information retrieval which called

OSPIR. However, in OSPIR, the data owner still knows some

information about the keyword, e.g., the attribute.

The concept of Searchable Public-Key Encryption was first

introduced by Boneh et al. [8]. Later, many schemes [17],

[18], [19] improved the security of the scheme. In [18],

Rhee et al. first gave the security notion named trapdoor

indistinguishability against an active attacker who is able to

get trapdoors for any keyword of his choice. This security

of a trapdoor guarantees that the trapdoor does not reveal

any information on any keyword without the data owners

secret key. However, this security is different from the one we

study in this paper. In particular, we aim to guarantee that the

data owner cannot know the keyword from trapdoors, while

trapdoor indistinguishability cannot guarantee this. In [19],

Zhu et al. proposed a searchable public-key encryption scheme

which provided predicate privacy. However, the scheme cannot

hide the keyword from the data owner who is responsible

for issuing the trapdoor either. Moreover, this scheme is quite

inefficient in the real world.

The main difference between searchable symmetric-key

encryption and searchable public-key encryption is that the

encryption key is public or not. Recall the IoT application

of searchable encryption, searchable public-key encryption is

more suitable. Hence, in this paper, we only consider the

(hidden-token) searchable public-key encryption.

B. Organization

The remaining paper is organized as follows. In Section II,

we give the definition of our hidden-token searchable public-

key encryption (HSPE) and the corresponding security models.

Besides that, we also give the necessary background for our

assumption. After that, we present a concrete HSPE scheme

in Section III and its security analysis in Section IV. Finally,

we give the conclusion in Section V.

II. DEFINITIONS AND SECURITY MODELS

In this section, we present a variant of searchable public-

key encryption named hidden-token searchable public-key en-

cryption (HSPE), including its definitions and security models.

Compared to the normal searchable public-key encryption,

HSPE aims to prevent the search keyword of clients being

leaked to the data owner while protecting the data owner’s

rights. Furthermore, in this section we also review the com-

plexity assumptions that are used to prove the security of our

proposed HSPE scheme.

A. Definition of Hidden-Token Searchable Public-Key Encryp-
tion

As mentioned before, HSPE aims to keep the search key-

word of clients secret from the data owner, while clients

cannot abuse this property. For easy expression, we separate

the trapdoor generation algorithm in the normal searchable

public-key encryption into three algorithms: Randomization,

Trapdoor Generation and Token Generation algorithms. The

details of the definition are as follows.

Definition 1 (Hidden-Token Searchable Public-Key Encryp-

tion). A hidden-token searchable public-key encryption scheme
consists of the following algorithms:

• (pk, sk) ← Setup(1λ): It takes the security parame-
ter 1λ as input, the setup algorithm Setup outputs a
public-key pk and the corresponding private key sk. This
algorithm is usually performed by the data owner who
owns the data stored in a third party, e.g., a cloud.

• (s, kw′) ← Rand(kw, pk): It takes a keyword kw and
(part of) the public-key as input, the keyword random-
ization algorithm Rand outputs a masked keyword kw′

corresponding to kw and a state s. This algorithm is
usually performed by the client who wants to do the
search on the encrypted data.

• (trapkw) ← Trap(kw′, sk, pk): It takes a masked key-
word kw′ corresponding to kw and the key pair (sk, pk)

249

as input, the trapdoor generation algorithm Trap outputs
a trapdoor trapkw corresponding to the masked keyword
kw′. This algorithm is usually performed by the data
owner who holds the private key sk.

• (tokenkw) ← Token(trapkw, s, pk): It takes a trap-
door trapkw and state value s corresponding to the
masked keyword kw′, and (part of) public-key pk as input,
the token generation algorithm Token outputs a token
tokenkw corresponding to the masked keyword kw′. This
algorithm is usually performed by the client who wants
to do the search on the encrypted data.

• (Ikw) ← Index(kw, pk): It takes a keyword kw and
(part of) a public-key pk as input, the index generation
algorithm Index outputs an index Ikw of the data stored
in the third party. This algorithm can be performed by
the party who holds the public key pk.

• (1 or 0)← Test(IkwI
, tokenkwt

, pk): It takes an index
IkwI

corresponding to keyword kwI , a token tokenkwt

corresponding to keyword kwt, and (part of) the public-
key pk as input, the test algorithm Test outputs 1 if
kwI = kwt or 0 otherwise.

Correctness. The correctness of a HSPE scheme

requires that (pk, sk) ← Setup(1λ), and any pair

(s, kw′) ← Rand(kwt, pk), the following conditions

must hold: if kwt = kwI , then the value of

Test(Index(kwI , pk),Token(Trap(kw
′, sk, pk), s, pk), pk)

is 1; otherwise, it is 0.

B. Security Models of Hidden-Token Searchable Public-Key
Encryption

Like the normal searchable public-key encryption, the

hidden-token searchable public-key encryption should hold In-
dex Anonymity security that aims to prevent adversaries know-

ing keywords of the data from the index. Furthermore, as the

underlying applications require, the hidden-token searchable

public-key encryption should also hold Token Anonymity to

prevent the data owner knowing search keywords of clients via

the trapdoor generation, and One-Token-Per-Trapdoor security

to prevent clients abusing the token anonymity security. The

details are as follows.

1) Index Anonymity: The index anonymity is defined via

the following game between a challenger C and an adversary

A.

• Setup: The challenger C takes a security parameter 1λ

and runs Setup algorithm to get a key pair (pk, sk). It

gives the adversary A the resulting pk while keeping the

secret key sk to itself.

• Phase 1: In this phase, A is allowed to query the

following oracles adaptively.

– Orand(kw): On input a keyword kw, C returns a

corresponding masked keyword kw′ and a state s.

– Otrap(kw
′): On input a masked keyword kw′, where

kw′ is generated from Orand, C returns the corre-

sponding trapdoor trapkw.

– Otoken(trapkw, s): On input a trapdoor trapkw cor-

responding to the masked keyword kw′ and a state s,

where (kw′, s) are generated from Rand(kw, pk),
C returns the corresponding token tokenkw.

• Challenge: A sends two keywords kw∗
0 , kw

∗
1 of equal

length to C. kw0 and kw1 are restricted by the following

condition: The adversary never queries Otrap with kw′

corresponding to kw∗
0 or kw∗

1 . Note that oracle Otrap

never answers the query with kw′ that is not from Orand,

which enables the challenger C to check whether kw0 and

kw1 violate the above restriction. On receiving the valid

kw∗
0 , kw

∗
1 , C encapsulates kw∗

b as the challenge Index

I∗kw∗
b

to A, where b is chosen randomly from {0, 1}.
• Phase 2: Almost the same as Phase 1, except that the

restriction in Challenge phase also validates in this phase.

• Guess: A outputs a guess b′ of b, and wins the game if

b = b′.
The advantage AdvIA(1

λ) is defined as |Pr[b = b′] − 1/2|
for the index anonymity game. The HSPE scheme is said to be

CPA−IA secure if all efficient adversaries A, the advantage

AdvIA(1
λ) is negligible.

2) Token Anonymity: The token anonymity is also defined

by a game played between a challenger C and an adversary A.

As mentioned before, the token anonymity is used to prevent

the data owner knowing search keywords of clients. In this

case, the data owner could be corrupted by the adversary.

• Setup: Identical to that in the index anonymity game.

• Phase 1: A is allowed to query the following oracles

adaptively.

– Osk(pk): On input the public-key pk, C returns the

corresponding private key sk. Note that this oracle

is allowed to be queried only once during the whole

game.

– Orand(kw): On input a keyword kw, C returns a

corresponding masked keyword kw′ and a state s.

– Otrap(kw
′): On input a masked keyword kw′, C

returns the corresponding trapdoor trapkw.

– Otoken(trapkw, s): On input a trapdoor trapkw
corresponding to the masked keyword kw′ and a

state s, C returns the corresponding token tokenkw.

• Challenge: A sends two keywords kw∗
0 , kw

∗
1 of equal

length to C. C generates the masked keyword kw′
b
∗

and

returns to A as the challenge masked keyword, where b
is chosen randomly from {0, 1}.

• Phase 2: Identical to Phase 1.

• Guess: A outputs a guess b′ of b, and wins the game if

b = b′.
The advantage AdvTA(1

λ) is defined as |Pr[b = b′] − 1/2|
for the token anonymity game. The HSPE scheme is said to be

CPA−TA secure if all efficient adversaries A, the advantage

AdvTA(1
λ) is negligible.

3) One-Token-Per-Trapdoor: The One-Token-Per-Trapdoor

security guarantees that clients can only derive one token

from one trapdoor, which prevents clients abusing the token

anonymity. Likewise, it is also defined by a game played

250

between a challenger C and an adversary A. The details are

as follows.

• Setup: Identical to that in the index anonymity game.

• Phase 1: A is allowed to query the following oracles

adaptively.

– Orand(kw): On input a keyword kw, C returns a

corresponding masked keyword kw′ and a state s.

– Otrap(kw
′): On input a masked keyword kw′, C

returns the corresponding trapdoor trapkw.

– Otoken(trapkw, s): On input a trapdoor trapkw
corresponding to the masked keyword kw′ and a

state s, C returns the corresponding token tokenkw.

• Challenge: A sends a masked keyword kw′∗ to C. C
outputs Trap(kw′∗, sk) as the challenge trapdoor.

• Phase 2: Identical to Phase 1.

• Output: A outputs two tokens (token∗kw∗
0
, s∗0) and

(token∗kw∗
1
, s∗1). If (kw′∗, s∗b) ← Rand(kw∗

b , pk) and

kw∗
0 �= kw∗

1 , A wins the game.

The advantage AdvOT (1
λ) is defined as Pr[A wins] for

the one-token-per-trapdoor security game. The HSPE scheme

is said to be OT secure if all efficient adversaries A, the

advantage AdvOT (1
λ) is negligible.

C. Bilinear Map and Complexity Assumptions

In this part, we will briefly review the bilinear map, deci-

sional bilinear Diffie-Hellman assumption and extended dis-

crete logarithm assumption that will be used in our proposal.

1) Bilinear Map: Let G and GT be two cyclic groups of

the same big prime order p, and g be a generator of G. let

e : G×G→ GT be a pairing, i.e. a map satisfies the following

properties:

• Bilinearity. e(ga, gb) = e(g, g)ab for any a, b ∈ Z
∗
p.

• Non-degenerate. e(g, g) is a generator of group GT .

• Computability. e can be computed efficiently.

We denote BSetup as an algorithm that takes as input the

security parameter 1λ and outputs the parameters for a bilinear

map as (p, g,G,GT , e).
2) Decisional Bilinear Diffie-Hellman (DBDH) Assump-

tion: Let e : G × G → GT be a bilinear map, both G and

GT are cyclic groups of prime order p. Choose a random

generator g of G and random a, b, c, z from Z
∗
p. The decisional

Bilinear Diffie-Hellman (DBDH) problem is to distinguish

between the tuples of the form (g, ga, gb, gc, e(g, g)abc) and

(g, ga, gb, gc, e(g, g)z). An algorithm A has an advantage ε in

solving DBDH if

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]−
Pr[A(g, ga, gb, gc, e(g, g)z) = 1]| ≥ ε.

The decisional Bilinear Diffie-Hellman (DBDH) assumption

is that for any efficient A, ε is negligible.

3) Extended Discrete Logarithm (eDL) Assumption: Let

G be a cyclic group of prime order p. Choose a random

generator g of G and random a, b from Z
∗
p. The extended

discrete logarithm (eDL) problem is to compute a/b from the

tuple (g, ga, gb). An algorithm A has an advantage ε in solving

eDL if

Pr[A(g, ga, gb) = a/b] ≥ ε.

The extended discrete logarithm (eDL) assumption is that for

any efficient A, ε is negligible.

III. THE PROPOSED HSPE SCHEME

In this section, we present our concrete HSPE scheme which

is based on the identity-based encryption scheme due to Boneh

and Franklin [20]. The details are as follows.

• Setup: On input the security parameter 1λ, it runs

BSetup(1λ) to obtain (p, g,G,GT , e). After that, it

chooses a random sk from Z
∗
p and computes pk = gsk.

It also chooses a secure cryptographic hash function H :
{0, 1}∗ → G. The security analysis will consider H as

random oracle. At last, it publishes (p, g,G,GT , e, pk,H)
as the public-key while keeping sk secret.

• Rand: On input a keyword kw, it outputs kw′ =
H(kw)r as the masked keyword and s = r as the state,

where r is chosen randomly from Z
∗
p.

• Trap: On input a masked keyword kw′ = H(kw)r

and the private key sk, it outputs a trapdoor trapkw =
(kw′)sk.

• Token: On input a trapdoor trapkw and a state s, it

outputs a token tokenkw = trap
1/s
kw .

• Index: On input a keyword kw and the public-

key (p, g,G,GT , e, pk,H), it outputs an index Ikw =

(I
(1)
kw , I

(2)
kw) = (gt, e(H(kw), pk)t), where t is chosen

randomly from Z
∗
p.

• Test: On input a token tokenkwt
and an index IkwI

,

it outputs 1 if e(tokenkwt
, I

(1)
kwI

)
?
= I

(2)
kwI

holds, or 0

otherwise.

Correctness: We can easily obtain the correctness of

our proposal according to the correctness of Boneh-

Franklin scheme [20]. Especially, when kwt = kwI ,

we have that e(tokenkwt
, I

(1)
kwI

) = e(trap
1/r
kwt

, gt) =

e(((H(kwt)
r)sk)1/r, gt) = e(H(kwt), pk)

t =

e(H(kwI), pk)
t = I

(2)
kwI

, and e(tokenkwt
, I

(1)
kwI

) �= I
(2)
kwI

if

kwt �= kwI .

IV. SECURITY ANALYSIS

In this section, we will prove that our proposal holds the

index anonymity, token anonymity and one-token-per-trapdoor

security properties in the random oracle model.

Theorem 1 (Index Anonymity). Our proposal holds the index
anonymity based on the DBDH assumption in the random
oracle model.

Proof: Assume that A is an index anonymity adversary

that has advantage ε against our proposal, then we can build

an algorithm B solving the DBDH problem with advantage at

least 4ε/e2(2+q)2 via interacting A with the following game,

where A makes at most q > 0 hash queries.

251

• Setup: The challenger C takes a DBDH tuple

(g, ga, gb, gc, T), where T is either e(g, g)abc or e(g, g)z.

B sets public-key as (g, pk = ga, H). Note that sk = a
is unknown to B. H is a random oracle controlled by B
as described below.

Oh: All hash values in this game are generated from this

oracle. To answer the hash queries, algorithm B should

maintain a list named H list of tuples {kwi, Qi, αi, coini}
that is built as below. H list is initially empty, and

algorithm B responds the hash queries kwi as follows.

1) If kwi exists in a tuple {kwi, Qi, αi, coini} of H list

then algorithm B responds with H(kwi) = Qi ∈
G

∗.

2) Otherwise, B chooses a random coini ∈ {0, 1} with

Pr[coini = 0] = δ, where δ will be determined

later. Algorithm B chooses a random αi ∈ Z
∗
p. If

coini = 0 compute Qi = gαi ∈ G
∗; otherwise,

Qi = (gb)αi . At last, algorithm B adds the tuple

{kwi, Qi, αi, coini} into H list and responds to A
with H(kwi) = Qi.

Note that either way Qi is uniformly distributed in G
∗

and independent of A’s current view as required.

• Phase 1: B builds the following oracles.

– Orand: This oracle maintains a list of tuples

{kwi, kw
′
i, si}, named Rlist. On input kwi, algo-

rithm B chooses a random ri and sets kw′
i = Qri

i

and si = ri, where Qi is from Oh(kwi). At last,

algorithm B gives (kw′
i, si) to algorithm A and

stores (kwi, kw
′
i, si) into Rlist.

– Otrap: On input kw′
i, algorithm B searches kw′

i in

Rlist. If it does not exist, algorithm B refuses this

query; otherwise, it searches kwi in H list. If coini =
0, compute trapkwi

= (ga)αisi , where αi and si are

the values corresponding to kwi in H list and Rlist,

respectively; otherwise, it reports failure and aborts.

– Otoken: On input a pair (trapi, si), B responds A
with tokeni = trap

1/si
i .

• Challenge: A sends two keywords kw∗
0 , kw

∗
1 with the

restrictions specified in the index anonymity game. B
queries Oh with kw∗

0 and kw∗
1 . If coinkw∗

0
= 0 or

coinkw∗
1
= 0, then it reports failure and aborts. Other-

wise, it computes I∗kw∗
b
= (gc, T

αkw∗
b), where b is chosen

randomly. Note that if T = e(g, g)abc, then I∗kw∗
b

is a

valid index of keyword kw∗
b .

• Phase 2: Almost the same as Phase 1, except that kw0

and kw1 should follow the restriction as specified in the

index anonymity game.

• Guess: A outputs a guess b′ of b.

If algorithm B does not abort during the simulation and the

input tuple is sampled from e(g, g)abc, then algorithm A’s

view is identical to its view in a real attack game and therefore

A satisfies |Pr[b = b′]− 1/2| ≥ ε.
To complete the proof, it remains to calculate the probability

that algorithm B does not abort during the simulation, while

the analysis can be proceeded similar as that in [20]. The

probability that B does not abort in phase 1 or 2 is δq which

is same as [20]. While in the challenge phase, B queries Oh

twice. Hence, the probability that B does not abort during the

challenge phase is (1−δ)2. So, the probability that B does not

abort in this game is δq(1−δ)2. When δ = q/(2+q), this value

is maximized which is 4/e2(2+q)2. Therefore, the probability

that B does not abort is at least 4/e2(2+ q)2, where A makes

at most q > 0 hash queries. As a result, B’s advantage is at

least 4ε/e2(2 + q)2 as required.

Theorem 2 (Token Anonymity). Our proposal holds the token
anonymity, and the adversary’s advantage is zero.

Proof: We will show that A’s winning probability is exact

1/2 in the below.

• Setup: The challenger C runs Setup(1λ) to obtain the

key pair (pk, sk), and sends pk to A while keeping sk
secret.

• Phase 1: The challenger C builds the following oracles.

– Osk(pk): The challenger C simply returns sk to the

adversary A.

– Orand: On input kwi, the challenger C runs

Rand(kwi, pk) to obtain (kw′
i, si) and sends

(kw′
i, si) to A.

– Otrap: On input kw′
i, the challenger C runs

Trap(kw′
i, sk, pk) to obtain trapkwi

and sends

trapkwi
to A.

– Otoken: On input a pair (trapi, si), the challenger

C runs Token(trapi, si) to obtain tokenkwi
and

sends tokenkwi
to A.

• Challenge: A sends two keywords kw∗
0 , kw

∗
1 with the

restrictions specified in the token anonymity game. C
chooses coin from {0, 1} randomly. If coin = 1, it re-

turns H(kw∗
b)

r to A, where b and r are chosen randomly

from {0, 1} and Z
∗
p, respectively. If coin = 0, it returns

a random R∗ from G to A.

• Phase 2: Identical to Phase 1.

• Guess: A outputs a guess b′ of b.

It is easy to see that if R∗ is responded to A, then Pr[b′ =
b] = 1/2. On the other hand, r is chosen randomly from Z

∗
p,

hence H(kw∗
b)

r has the same distribution with R from the

view of the adversary and we have that Pr[b′ = b] = 1/2
when H(kw∗

b)
r is responded to A.

Theorem 3 (One-Token-Per-Trapdoor). Our proposal holds
the one-token-per-trapdoor security based on the eDL assump-
tion in the random oracle model.

Proof: Assume that A is a one-token-per-trapdoor adver-

sary that has advantage ε against our proposal, then we can

build an algorithm B solving the eDL problem by interacting

with A as follows.

• Setup: The challenger C takes an eDL tuple {g, ga, gb},
and runs Setup(1λ) to obtain the key pair (pk, sk), and

sends pk to A while keeping sk secret. H is a random

oracle controlled by B as described below.

252

Oh: All hash values in the game are generated from this

oracle. To answer the hash queries, algorithm B should

maintain a list named H list of tuples (kwi, Qi, αi, coini)
that is built as below. H list is initially empty, and

algorithm B responds the hash queries kwi as follows.

1) If kwi exists in a tuple (kwi, Qi, αi, coini) of H list

then algorithm B responds with H(kwi) = Qi ∈
G

∗.

2) Otherwise, B chooses a random coini ∈ {0, 1} with

Pr[coini = 0] = δ, where δ will be determined

later. Algorithm B chooses a random αi ∈ Z
∗
p. If

coini = 0 compute Qi = (ga)αi ∈ G
∗; otherwise,

Qi = (gb)αi . At last, algorithm B adds the tuple

(kwi, Qi, αi, coini) into H list and responds to A
with H(kwi) = Qi.

Note that either way Qi is uniformly distributed in G
∗

and independent of A’s current view as required.

• Phase 1: B builds the following oracles.

– Orand: On input kwi, B runs Rand(kwi, pk) to

obtain (kw′
i, si) and sends (kw′

i, si) to A.

– Otrap: On input kw′
i, B runs Trap(kw′

i, sk, pk) to

obtain trapkwi
and sends trapkwi

to A.

– Otoken: On input a tuple (trapi, si), B runs

Token(trapi, si) to obtain tokenkwi and sends

tokenkwi
to A.

• Challenge:A sends a masked keyword kw′∗ to B. B
runs Trap(kw′∗, sk, pk) to obtain trapkw∗ and sends

trapkw∗ to A.

• Phase 2: Identical to Phase 1.

• Output: A outputs two pairs (token∗kw∗
0
, s∗0) and

(token∗kw∗
1
, s∗1) satisfying (kw′∗, s∗b)← Rand(kw∗

b , pk)
and kw∗

0 �= kw∗
1 , where b ∈ {0, 1}. We have that

(token∗kw∗
0
)s

∗
0 = (token∗kw∗

1
)s

∗
1 = (kw′∗)sk.

Once A outputs (token∗kw∗
0
, s∗0) and (token∗kw∗

1
, s∗1), B

searches (token∗kw∗
0
)1/sk and (token∗kw∗

1
)1/sk in H list, and

obtains the corresponding (α∗
0, coin

∗
0) and (α∗

1, coin
∗
1) from

H list. If coin∗
0 = coin∗

1, B reports failure and aborts; other-

wise, B can solve the eDL problem as follows.

• If coin∗
0 = 0 and coin∗

1 = 1, then we have that a·α∗
0 ·s∗0 =

b · α∗
1 · s∗1 ⇒ a/b = α∗

1 · s∗1/(α∗
0 · s∗0).

• If coin∗
0 = 1 and coin∗

1 = 0, then we have that b·α∗
0 ·s∗0 =

a · α∗
1 · s∗1 ⇒ a/b = α∗

0 · s∗0/(α∗
1 · s∗1).

It is easy to see that the probability of coin∗
0 �= coin∗

1 is

2δ · (1− δ) which is maximized at δopt = 1/2. Using δopt, the

probability that B solves the eDL problem with 1/2 at least as

required.

V. CONCLUSION

In this paper, we studied the problem how to keep the

keyword corresponding to the trapdoor secret from the data

owner. At the same time, we also proposed the security notion

named one-token-per-trapdoor that aims to protect the benefit

of the data owner. In particular, we present the concept of

hidden-token searchable public-key encryption, including the

definitions and security models. Furthermore, we gave a con-

crete hidden-token searchable public-key encryption scheme

together with the security proofs in the random oracle model.

In the future, we would like to study the new scheme proven-

secure in the standard model or with more expressive keyword

search.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for the valuable comments. Cong Zuo and Jun Shao are

supported by NSFC No. 61472364, Yun Ling is supported by

NSFC No. 61379121, and Guiyi Wei is supported by NSFC

No. 61472365.

REFERENCES

[1] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of
outsourced data via oblivious ram simulation,” in International Collo-
quium on Automata, Languages, and Programming. Springer, 2011,
pp. 576–587.

[2] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamas-
sia, “Privacy-preserving group data access via stateless oblivious ram
simulation,” in Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2012, pp. 157–167.

[3] C. Gentry and Z. Ramzan, “Single-database private information retrieval
with constant communication rate,” in International Colloquium on
Automata, Languages, and Programming. Springer, 2005, pp. 803–
815.

[4] S. Yekhanin, “Private information retrieval,” Communications of the
ACM, vol. 53, no. 4, pp. 68–73, 2010.

[5] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
CCS06, pp. 79–88, 2006.

[7] C. Zuo, J. Macindoe, S. Yang, R. Steinfeld, and J. K. Liu, “Trusted
boolean search on cloud using searchable symmetric encryption,” Trust-
Com, vol. 16, pp. 113–120.

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2004,
pp. 506–522.

[9] E.-J. Goh, “Secure indexes.” IACR Cryptology ePrint Archive, vol. 2003,
p. 216, 2003.

[10] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in International Conference on
Applied Cryptography and Network Security. Springer, 2005, pp. 442–
455.

[11] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 965–976.

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 353–373.

[13] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security.
ACM, 2013, pp. 875–888.

[14] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation.” in NDSS, vol. 14. Citeseer, 2014,
pp. 23–26.

[15] M. Chase and S. Kamara, “Structured encryption and controlled dis-
closure,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2010, pp. 577–594.

253

[16] E. De Cristofaro, Y. Lu, and G. Tsudik, “Efficient techniques for privacy-
preserving sharing of sensitive information,” in International Conference
on Trust and Trustworthy Computing. Springer, 2011, pp. 239–253.

[17] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with
keyword search revisited,” in International conference on Computational
Science and Its Applications. Springer, 2008, pp. 1249–1259.

[18] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Trapdoor security
in a searchable public-key encryption scheme with a designated tester,”
Journal of Systems and Software, vol. 83, no. 5, pp. 763–771, 2010.

[19] B. Zhu, B. Zhu, and K. Ren, “Peksrand: Providing predicate privacy in
public-key encryption with keyword search,” in Communications (ICC),
2011 IEEE International Conference on. IEEE, 2011, pp. 1–6.

[20] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Annual International Cryptology Conference. Springer,
2001, pp. 213–229.

254

