
1

An Online Parallel Algorithm for Recursive
Estimation of Sparse Signals

Yang Yang, Member, IEEE, Marius Pesavento, Member, IEEE, Mengyi Zhang, Member, IEEE, and Daniel P.
Palomar, Fellow, IEEE,

Abstract—In this paper, we consider a recursive estimation
problem for linear regression where the signal to be estimated
admits a sparse representation and measurement samples are
only sequentially available. We propose a convergent parallel
estimation scheme that consists of solving a sequence of ℓ1-
regularized least-square problems approximately. The proposed
scheme is novel in three aspects: i) all elements of the unknown
vector variable are updated in parallel at each time instant,
and the convergence speed is much faster than state-of-the-art
schemes which update the elements sequentially; ii) both the
update direction and stepsize of each element have simple closed-
form expressions, so the algorithm is suitable for online (real-
time) implementation; and iii) the stepsize is designed to accel-
erate the convergence but it does not suffer from the common
intricacy of parameter tuning. Both centralized and distributed
implementation schemes are discussed. The attractive features of
the proposed algorithm are also illustrated numerically.

Index Terms—LASSO, Linear Regression, Minimization Step-
size Rule, Parallel Algorithm, Recursive Estimation, Sparse
Signal Processing, Stochastic Optimization

I. INTRODUCTION

Signal estimation has been a fundamental problem in a
number of scenarios, such as wireless sensor networks (WSN)
and cognitive radio (CR). WSN has received a lot of attention
and is found application in diverse disciplines such as environ-
mental monitoring, smart grids, and wireless communications
[2]. CR appears as an enabling technique for flexible and
efficient use of the radio spectrum [3, 4], since it allows
unlicensed secondary users (SUs) to access the spectrum
provided that the licensed primary users (PUs) are idle, and/or
the interference generated by the SUs is below a certain level
that is tolerable for the PUs [5, 6].

Y. Yang is with Intel Deutschland GmbH, Germany (email:
yang1.yang@intel.com). His work was supported by the Seventh Framework
Programme for Research of the European Commission under grant number
ADEL-619647 and the Hong Kong RGC 16207814 research grant.

M. Pesavento is with Communication Systems Group, Darmstadt University
of Technology, Darmstadt, Germany (Email: pesavento@nt.tu-darmstadt.de).
His work was supported by the Seventh Framework Programme for Research
of the European Commission under grant number: ADEL 619647.

M. Zhang is with Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (Email:
zhangmy@cse.cuhk.edu.hk). Her work was supported by the Hong Kong RGC
16207814 research grant.

D. P. Palomar is with Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Hong Kong (Email:
palomar@ust.hk). His work was supported by the Hong Kong RGC 16207814
research grant.

Part of this work has been presented at The Asilomar Conference on
Signals, Systems, and Computers, Nov. 2014 [1].

The authors would like to thank the reviewers whose comments have greatly
improved the quality of the paper.

One prerequisite in CR systems is the ability to obtain a
precise estimate of the PUs’ power distribution map so that
the SUs can avoid the areas in which the PUs are actively
transmitting. This is usually realized through the estimation
of the position, transmit status, and/or transmit power of PUs
[7, 8, 9, 10], and the estimation is typically obtained based on
the minimum mean-square-error (MMSE) criterion [2, 9, 11,
12, 13, 14, 15].

The MMSE approach involves the calculation of the ex-
pectation of a squared ℓ2-norm function that depends on the
so-called regression vector and measurement output, both of
which are random variables. This is essentially a stochastic
optimization problem, but when the statistics of these ran-
dom variables are unknown, it is impossible to calculate the
expectation analytically. An alternative is to use the sam-
ple average function, constructed from sequentially available
measurements, as an approximation of the expectation, and
this leads to the well-known recursive least-square (RLS)
algorithm [2, 12, 13, 14]. As the measurements are available
sequentially, at each time instant of the RLS algorithm, an LS
problem has to be solved, which furthermore admits a closed-
form solution and thus can efficiently be computed. More
details can be found in standard textbooks such as [11, 12].

In practice, the signal to be estimated may be sparse in
nature [2, 8, 9, 15, 16]. In a recent attempt to apply the
RLS approach to estimate a sparse signal, a regularization
function in terms of ℓ1-norm was incorporated into the LS
function to encourage sparse estimates [2, 15, 16, 17, 18, 19],
leading to an ℓ1-regularized LS problem which has the form of
the least-absolute shrinkage and selection operator (LASSO)
[20]. Then in the recursive estimation of a sparse signal, the
fundamental difference from the standard RLS approach is that
at each time instant, instead of solving an LS problem as in
the RLS algorithm, an ℓ1-regularized LS problem in the form
of LASSO is solved [2].

However, a closed-form solution to the ℓ1-regularized LS
problem does not exist because of the ℓ1-norm regularization
function and the problem can only be solved iteratively. As a
matter of fact, iterative algorithms to solve the ℓ1-regularized
LS problems have been the center of extensive research in
recent years and a number of solvers have been developed,
e.g., GP [21], l1_ls [22], FISTA [23], ADMM [24], FLEXA
[25], and DQP-LASSO [26]. Since the measurements are
sequentially available, and with each new measurement, a
new ℓ1-regularized LS problem is formed and solved, the
overall complexity of using solvers for the whole sequence
of ℓ1-regularized LS problems is no longer affordable. If the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147015192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

environment is furthermore rapidly changing, this method is
not suitable for real-time applications as new measurements
may already arrive before the previous ℓ1-regularized LS
problem is solved.

To reduce the complexity of the estimation scheme so that it
is suitable for online (real-time) implementation, the authors in
[15, 17, 18] proposed algorithms in which the ℓ1-regularized
LS problem at each time instant is solved only approximately.
For example, in the algorithm proposed in [15], at each time
instant, the ℓ1-regularized LS problem is solved with respect
to (w.r.t.) only a single element of the unknown vector variable
while the remaining elements are fixed, and the update of
that element has a simple closed-form expression based on
the so-called soft-thresholding operator [23]. With the next
measurement that arrives, a new ℓ1-regularized LS problem
is formed and solved w.r.t. the next element only while the
remaining elements are fixed. This sequential update rule is
known in literature as the block coordinate descent method
[27].

Intuitively, since only a single element is updated at each
time instant, the online sequential algorithm proposed in [15]
sometimes suffers from slow convergence, especially when the
signal has a large dimension while large dimensions of sparse
signals are universal in practice. It is tempting to use a parallel
scheme in which the update directions of all elements are
computed and updated simultaneously at each time instant, but
the convergence properties of parallel algorithms are mostly
investigated for deterministic optimization problems (see [25]
and the references therein) and they may not converge for
the stochastic optimization problem at hand. Besides this,
the convergence speed of parallel algorithms heavily depends
on the choice of the stepsizes. Typical rules for choosing
the stepsizes are the Armijo-like successive line search rule,
constant stepsize rule, and diminishing stepsize rule. The
former two suffer from high complexity and slow convergence
[25, Remark 4], while the decay rate of the diminishing
stepsize is very difficult to choose: on the one hand, a slowly
decaying stepsize is preferable to make notable progress and
to achieve satisfactory convergence speed; on the other hand,
theoretical convergence is guaranteed only when the stepsizes
decays fast enough. It is a difficult task on its own to find the
decay rate that yields a good trade-off.

Sparsity-aware learning over network algorithms have been
proposed in [16, 28, 29, 30]. They are suitable for distributed
implementation, but they do not converge to the exact MMSE
estimate. Other schemes suitable for the online estimation of
sparse signals include LMS-type algorithms [18, 31, 32, 33].
However, their convergence speed is typically slow and the
free parameters (e.g., stepsizes) are difficult to choose: either
the selection of the free parameters depends on information
that is not easily obtainable in practice, such as the statistics
of the regression vector, or the convergence is very sensitive
to the choice of the free parameters.

A recent work on parallel algorithms for stochastic opti-
mization is [34]. However, the algorithms proposed in [34] are
not applicable for the recursive estimation of sparse signals.
This is because the regularization function in [34] must be
strongly convex and differentiable while the regularization

gain must be lower bounded by some positive constant so
that convergence can be achieved. However the regularization
function in terms of ℓ1-norm for sparse signal estimation is
convex (but not strongly convex) and nondifferentiable while
the regularization gain is decreasing to zero.

In this paper, we propose an online parallel algorithm
with provable convergence for recursive estimation of sparse
signals. In particular, our contributions are as follows:

(i) At each time instant, the ℓ1-regularized LS problem is
solved approximately and all elements are updated in paral-
lel, so the convergence speed is greatly enhanced compared
with [15]. As a nontrivial extension of [15] from sequential
update to parallel update, and of [25, 35] from deterministic
optimization problems to stochastic optimization problems, the
convergence of the proposed algorithm is established.

(ii) We propose a new procedure for the computation of the
stepsize based on the so-called minimization rule (also known
as exact line search) and its benefits are twofold: firstly, it is
essential for the convergence of the proposed algorithm, which
may however diverge under other stepsize rules; secondly,
notable progress is achieved after each variable update and
the common intricacy of complicated parameter tuning is
saved. Besides this, both the update direction and stepsize of
each element exhibit simple closed-form expressions, so the
proposed algorithm is fast to converge and suitable for online
implementation.

The rest of the paper is organized as follows. In Section
II we introduce the system model and formulate the recursive
estimation problem. The online parallel algorithm is proposed
in Section III, and its implementations and extensions are
discussed in Section IV. The performance of the proposed
algorithm is evaluated numerically in Section V and finally
concluding remarks are drawn in Section VI.

Notation: We use x, x and X to denote scalar, vector and
matrix, respectively. Xjk is the (j, k)-th element of X; xk

and xj,k is the k-th element of x and xj , respectively, and
x = (xk)

K
k=1 and xj = (xj,k)

K
k=1. We use x−k to denote

the elements of x except xk: x−k , (xj)
K
j=1,j ̸=k. We denote

d(X) as a vector that consists of the diagonal elements of X,
diag(X) as a diagonal matrix whose diagonal elements are
the same as those of X, and diag(x) as a diagonal matrix
whose diagonal vector is x, i.e., diag(X) = diag(d(X)).
The operator [x]ba denotes the element-wise projection of x
onto [a,b]: [x]ba , max(min(x,b),a), and [x]

+ denotes the
element-wise projection of x onto the nonnegative orthant:
[x]

+ , max(x,0). The Moore-Penrose inverse of X is
denoted as X†, and λmax(X) denotes the largest eigenvalue
of X.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Suppose x⋆ = (x⋆
k)

K
k=1 ∈ RK is a deterministic sparse

signal to be estimated based on the the measurement yn ∈ R,
and both quantities are connected through a linear regression
model:

yn = gT
nx

⋆ + vn, n = 1, . . . , N, (1)

where N is the number of measurements at any time instant.
The regression vector gn = (gn,k)

K
k=1 ∈ RK is assumed

3

to be known, and vn ∈ R is the additive estimation noise.
Throughout the paper, we make the following assumptions on
gn and vn for n = 1, . . . , N :
(A1.1) gn is a random variable with a bounded positive

definite covariance matrix;
(A1.2) vn is a random variable with zero mean and bounded

variance;
(A1.3) gn and vn are uncorrelated.
Sometimes we may also need bounded assumptions on the
higher order moments of gn and vn:
(A1.1’) gn is a random variable whose covariance matrix is

positive definite and whose moments are bounded;
(A1.2’) vn is a random variable with zero mean and bounded

moments;
(A1.3’) gn and vn are uncorrelated.

Given the linear model in (1), the problem is to estimate
x⋆ from the set of regression vectors and measurements
{gn, yn}Nn=1. Since both the regression vector gn and esti-
mation noise vn are random variables, the measurement yn is
also random. A fundamental approach to estimate x⋆ is based
on the MMSE criterion, which has a solid root in adaptive
filter theory [11, 12]. To improve the estimation precision, all
available measurements {gn, yn}Nn=1 are exploited to form a
cooperative estimation problem which consists of finding the
variable that minimizes the mean-square-error [2, 9, 36]:

x⋆ = argmin
x=(xk)Kk=1

E

[
N∑

n=1

(
yn − gT

nx
)2]

(2)

= argmin
x

1

2
xTGx− bTx,

where G ,
∑N

n=1 E
[
gng

T
n

]
and b ,

∑N
n=1 E [yngn], and

the expectation is taken over {gn, yn}Nn=1.
In practice, the statistics of {gn, yn}Nn=1 are often not

available to compute G and b analytically. In fact, the absence
of statistical information is a general rule rather than an excep-
tion. A common approach is to approximate the expectation
in (2) by the sample average function constructed from the
measurements (or realizations) {g(τ)

n , y
(τ)
n }tτ=1 sequentially

available up to time t [12]:

x
(t)
rls , argmin

x

1

2
xTG(t)x− (b(t))Tx (3a)

= G(t)†b(t), (3b)

where G(t) and b(t) is the sample average of G and b,
respectively:

G(t) , 1

t

t∑
τ=1

N∑
n=1

g(τ)
n (g(τ)

n)T , b(t) , 1

t

t∑
τ=1

N∑
n=1

y(τ)n g(τ)
n .

(4)
In literature, (3) is known as the recursive least square (RLS),
as indicated by the subscript “rls”, and x

(t)
rls can be computed

efficiently in closed-form, cf. (3b). Note that in (4) there are
N measurements (y(τ)n ,g

(τ)
n)Nn=1 available at each time instant

τ . For example, in a WSN, (y(τ)n ,g
(τ)
n) is the measurement

available at the sensor n.

In many practical applications, the unknown signal x⋆ is
sparse by nature or by design, but x

(t)
rls given by (3) is not

necessarily sparse when t is small [20, 22]. To overcome
this shortcoming, a sparsity encouraging function in terms of
ℓ1-norm is incorporated into the sample average function in
(3), leading to the following ℓ1-regularized sample average
function at any time instant t = 1, 2, . . . [2, 8, 15]:

L(t)(x) , 1

2
xTG(t)x− (b(t))Tx+ µ(t) ∥x∥1 , (5)

where µ(t) > 0. Define x
(t)
lasso as the minimizing variable of

L(t)(x):

x
(t)
lasso = argmin

x
L(t)(x), t = 1, 2, . . . , (6)

In literature, problem (6) for any fixed t is known as the least-
absolute shrinkage and selection operator (LASSO) [20, 22]
(as indicated by the subscript “lasso” in (6)). Note that in
batch processing [20, 22], problem (6) is solved only once
when a certain number of measurements are collected (so t is
equal to the number of measurements), while in the recursive
estimation of x⋆, the measurements are sequentially available
(so t is increasing) and (6) is solved repeatedly at each time
instant t = 1, 2, . . .

The advantage of (6) over (2), whose objective function
is stochastic and whose calculation depends on unknown
parameters G and b, is that (6) is a sequence of determin-
istic optimization problems whose theoretical and algorith-
mic properties have been extensively investigated and widely
understood. A natural question arises in this context: is (6)
equivalent to (2) in the sense that x(t)

lasso is a strongly consistent
estimator of x⋆, i.e., limt→∞ x

(t)
lasso = x⋆ with probability one?

The relation between x
(t)
lasso in (6) and the unknown variable

x⋆ is given in the following lemma [15].

Lemma 1. Suppose Assumption (A1) as well as the following
assumptions are satisfied for problem (6):
(A2) g

(t)
n (y(t)n , respectively) is a iid random process with

the same probability density function of gn (yn, respec-
tively).

(A3)
{
µ(t)
}

is a positive sequence converging to 0, i.e., µ(t) >
0 and limt→∞ µ(t) = 0.

Then limt→∞ x
(t)
lasso = x⋆ with probability one.

An example of µ(t) satisfying Assumption (A3) is µ(t) =
α/tβ with α > 0 and β > 0. Typical choices of β are β = 1
and β = 0.5 [15]. Note that the diminishing regularization gain
µ(t) differentiates our work from [37] in which the sparsity
regularization gain is a positive constant µt = µ for some
µ > 0: the algorithms proposed in [37] does not necessarily
converge to x⋆ while the algorithm to be proposed in the next
section does.

Lemma 1 not only states the relation between x
(t)
lasso and

x⋆ from a theoretical perspective, but also suggests a simple
algorithmic solution for problem (2): x⋆ can be estimated
by solving a sequence of deterministic optimization problems
(6), one for each time instant t = 1, 2, However, in
contrast to the RLS algorithm in which each update has a
closed-form expression, cf. (3b), problem (6) does not have a

4

closed-form solution and it can only be solved numerically
by an iterative algorithm such as GP [21], l1_ls [22],
FISTA [23], ADMM [24], and FLEXA [25]. As a result, solving
(6) repeatedly at each time instant t = 1, 2, . . . is neither
computationally practical nor real-time applicable. The aim of
the following sections is to develop an algorithm that enjoys
easy implementation and fast convergence.

III. THE PROPOSED ONLINE PARALLEL ALGORITHM

The LASSO problem in (6) is convex, but the objective
function is nondifferentiable and it cannot be minimized in
closed-form, so solving (6) completely w.r.t. all elements of x
by a solver at each time instant t = 1, 2, . . . is neither com-
putationally practical nor suitable for online implementation.
To reduce the complexity of the variable update, an algorithm
based on inexact optimization is proposed in [15]: at time
instant t, only a single element xk with k = mod(t−1,K)+1
is updated by its so-called best response, i.e., L(t)(x) is
minimized w.r.t. xk only: x

(t+1)
k = argminL(t)(xk,x

(t)
−k)

with x−k , (xj)j ̸=k, which can be solved in closed-form,
while the remaining elements {xj}j ̸=k remain unchanged,

i.e., x
(t+1)
−k = x

(t)
−k. At the next time instant t + 1, a new

sample average function L(t+1)(x) is formed with newly
arriving measurements, and the (k + 1)-th element, xk+1,
is updated by minimizing L(t+1)(x) w.r.t. xk+1 only, while
the remaining elements again are fixed. Although easy to
implement, sequential updating schemes update only a single
element at each time instant and they sometimes suffer from
slow convergence when the number of elements K is large.

To overcome the slow convergence of the sequential update,
we propose an online parallel update scheme, with provable
convergence, in which (6) is solved approximately by simul-
taneously updating all elements only once based on their
individual best response. Given the current estimate x(t) which
is available before the t-th measurement arrives1, the estimate
update x(t+1) is determined based on all the measurements
collected up to time instant t in a three-step procedure as
described next.

Step 1 (Update Direction): In this step, all elements of
x are updated in parallel and the update direction of x at
x = x(t), denoted as x̂(t) − x(t), is determined based on the
best-response x̂(t). For each element of x, say xk, its best
response at x = x(t) is given by:

x̂
(t)
k , argmin

xk

{
L(t)(xk,x

(t)
−k) +

1

2
c
(t)
k (xk − x

(t)
k)2

}
, ∀ k,

(7)
where x−k , {xj}j ̸=k and it is fixed to the values of the
preceding time instant x−k = x

(t)
−k. An additional quadratic

proximal term with c
(t)
k > 0 is included in (7) for numerical

simplicity and stability [27], because it plays an important
role in the convergence analysis of the proposed algorithm;
conceptually it is a penalty (with variable weight c

(t)
k) for

moving away from the current estimate x
(t)
k .

1x(1) could be arbitrarily chosen, e.g., x(1) = 0.

After substituting (5) into (7), the best-response in (7) can
be expressed in closed-form:

x̂
(t)
k = argmin

xk

{
1
2G

(t)
kkx

2
k − r

(t)
k · xk

+µ(t)|xk|+ 1
2c

(t)
k (xk − x

(t)
k)2

}

=
Sµ(t)(r

(t)
k (x(t)) + c

(t)
k x

(t)
k)

G
(t)
kk + c

(t)
k

, k = 1, . . . ,K, (8)

or compactly: x̂(t) = (x̂
(t)
k)Kk=1 and

x̂(t) = (diag(G(t)) + diag(c(t)))−1·
Sµ(t)1(r

(t)(x(t)) + diag(c(t))x(t)),
(9)

where

r(t)(x(t)) = (r
(t)
k (x(t)))Kk=1

, diag(G(t))x(t) − (G(t)x(t) − b(t)) (10)

and
Sa(b) , [b− a]+ − [−b− a]+

is the well-known soft-thresholding operator [23, 38]. From
the definition of G(t) in (4), G(t) ≽ 0 and G

(t)
kk ≥ 0 for all

k, so the matrix inverse in (9) is defined2.
Given the update direction x̂(t) − x(t), an intermediate

update vector x̃(t)(γ) is defined:

x̃(t)(γ) = x(t) + γ(x̂(t) − x(t)), (11)

where γ ∈ (0, 1] is the stepsize. The update direction x̂(t) −
x(t) is a descent direction of L(t)(x) in the sense specified by
the following proposition.

Proposition 2 (Descent Direction). For x̂(t) = (x̂
(t)
k)Kk=1

given in (9) and the update direction x̂(t)−x(t), the following
holds for any γ ∈ [0, 1]:

L(t)(x̃(t)(γ))− L(t)(x(t))

≤ −γ
(
c
(t)
min − 1

2λmax(G
(t))γ

)∥∥x̂(t) − x(t)
∥∥2
2
, (12)

where c
(t)
min , mink

{
G

(t)
kk + c

(t)
k

}
> 0.

Proof: The proof follows the same line of analysis in [25,
Prop. 8(c)] and is thus omitted here.

Step 2 (Stepsize): In this step, the stepsize γ in (11) is
determined so that fast convergence is observed. It is easy to
see from (12) that for sufficiently small γ, the right hand side
of (12) becomes negative and L(t)(x̃(t)(γ)) decreases as com-
pared to L(t)(x(t)). Thus, to minimize L(t)(x̃(t)(γ)), a natural
choice of the stepsize rule is the so-called “minimization rule”
[39, Sec. 2.2.1] (also known as the “exact line search” [40, Sec.
9.2]), which is the stepsize, denoted as γ

(t)
opt , that decreases

L(t)(x̃(t)(γ)) to the largest extent:

γ
(t)
opt =argmin

0≤γ≤1

{
L(t)(x̃(t)(γ))− L(t)(x(t))

}
=argmin

0≤γ≤1

1
2 (x̂

(t) − x(t))TG(t)(x̂(t) − x(t)) · γ2

+(G(t)x(t) − b(t))T (x̂(t) − x(t)) · γ
+µ(t)(

∥∥x(t) + γ(x̂(t) − x(t))
∥∥
1
−
∥∥x(t)

∥∥
1
)

.
(13)

2Due to the diagonal structure of diag(G(t)) + diag(c(t)), the matrix
inverse can be computed from the scalar inverse of the diagonal elements

5

γ(t) =

[
−
(G(t)x(t) − b(t))T (x̂(t) − x(t)) + µ(t)(

∥∥x̂(t)
∥∥
1
−
∥∥x(t)

∥∥
1
)

(x̂(t) − x(t))TG(t)(x̂(t) − x(t))

]1
0

(17)

Therefore by definition of γ(t)
opt we have for any γ ∈ [0, 1]:

L(t)(x(t) + γ
(t)
opt (x̂

(t) − x(t))) ≤ L(t)(x(t) + γ(x̂(t) − x(t))).
(14)

However, the applicability of the standard minimization rule
(13) is usually limited in practice because of the high computa-
tional complexity of solving the optimization problem in (13).
In particular, the nondifferentiable ℓ1-norm function makes it
impossible to find a closed-form expression of γ

(t)
opt and the

problem in (13) can only be solved numerically by a solver
such as SeDuMi [41].

To obtain a stepsize that exhibits a good trade off between
convergence speed and computational complexity, we propose
a simplified minimization rule which yields fast convergence
but can be computed at a low complexity. Firstly, note that
the high complexity of the standard minimization rule lies in
the nondifferentiable ℓ1-norm function in (13). Then it follows
from the convexity of norm functions that for any γ ∈ [0, 1]:

µ(t)(
∥∥x(t) + γ(x̂(t) − x(t))

∥∥
1
−
∥∥x(t)

∥∥
1
)

= µ(t)
∥∥(1− γ)x(t) + γx̂(t)

∥∥
1
− µ(t)

∥∥x(t)
∥∥
1

≤ (1− γ)µ(t)
∥∥x(t)

∥∥
1
+ γµ(t)

∥∥x̂(t)
∥∥
1
− µ(t)

∥∥x(t)
∥∥
1

(15a)

= µ(t)(
∥∥x̂(t)

∥∥
1
−
∥∥x(t)

∥∥
1
) · γ. (15b)

The right hand side of (15b) is linear in γ, and equality is
achieved in (15a) either when γ = 0 or γ = 1.

In the proposed simplified minimization rule, instead of
directly minimizing L(t)(x̃(t)(γ))−L(t)(x(t)) over γ, its upper
bound based on (15) is minimized:

γ(t) , argmin
0≤γ≤1

1
2 (x̂

(t) − x(t))TG(t)(x̂(t) − x(t)) · γ2

+(G(t)x(t) − b(t))T (x̂(t) − x(t)) · γ
+µ(t)(

∥∥x̂(t)
∥∥
1
−
∥∥x(t)

∥∥
1
) · γ

 .

(16)
The scalar optimization problem in (16) consists of a convex
quadratic objective function along with a simple bound con-
straint and it has a closed-form solution, given by (17) at the
top of this page. It is easy to verify that γ(t) is obtained by
projecting the unconstrained optimal variable of the convex
quadratic problem in (16) onto the interval [0, 1].

The advantage of minimizing the upper bound function of
L(t)(x̃(t)(γ)) in (16) is that the optimal γ, denoted as γ(t),
always has a closed-form expression, cf. (17). At the same
time, it also yields a decrease in L(t)(x) at x = x(t) as the
standard minimization rule γ

(t)
opt (13) does in (14), and this

decreasing property is stated in the following proposition.

Proposition 3. Given x̃(t)(γ) and γ(t) defined in (11) and
(16), respectively, the following holds:

L(t)(x̃(t)(γ(t))) ≤ L(t)(x(t)),

and equality is achieved if and only if γ(t) = 0.

Proof: Denote the objective function in (16) as
L
(t)
(x̃(t)(γ)). It follows from (15) that

L(t)(x̃(t)(γ(t)))− L(t)(x(t)) ≤ L
(t)
(x̃(t)(γ(t))), (18)

and equality in (18) is achieved when γ(t) = 0 and γ(t) = 1.
Besides this, it follows from the definition of γ(t) that

L
(t)
(x̃(t)(γ(t))) ≤ L

(t)
(x̃(t)(γ))

∣∣
γ=0

= L(t)(x(t)). (19)

Since the optimization problem in (16) has a unique optimal
solution γ(t) given by (17), equality in (19) is achieved if and
only if γ(t) = 0. Finally, combining (18) and (19) yields the
conclusion stated in the proposition.

The signaling required to perform (17) (and also (9)) when
implemented distributedly will be discussed in Section IV.

Step 3 (Dynamic Reset): In this step, the estimate update
x(t+1) is defined based on x̃(t)(γ(t)) given in (11) and (17).
We first remark that although x̃(t)(γ(t)) yields a lower value
of L(t)(x) than x(t), it is not necessarily the solution of the
optimization problem in (6), i.e.,

L(t)(x(t)) ≥ L(t)(x̃(t)(γ(t))) ≥ L(t)(x
(t)
lasso) = min

x
L(t)(x).

(20)
This is because x is updated only once from x = xt to x =
x̃(t)(γ(t)), which in general can be further improved unless
x̃(t)(γ(t)) = x

(t)
lasso, i.e., x̃(t)(γ(t)) already minimizes L(t)(x).

The definitions of L(t)(x) and x
(t)
lasso in (5)-(6) reveal that

0 = L(t)(x)
∣∣
x=0

≥ L(t)(x
(t)
lasso), t = 1, 2, (21)

Depending on whether L(t)(x(t)) is smaller than 0 or not, it
is possible to relate (20) and (21) in the following three ways:

0 = L(t)(0) ≥ L(t)(x(t)) ≥ L(t)(x̃(t)(γ(t))) ≥ L(t)(x
(t)
lasso),

L(t)(x(t)) ≥ 0 = L(t)(0) ≥ L(t)(x̃(t)(γ(t))) ≥ L(t)(x
(t)
lasso),

L(t)(x(t)) ≥ L(t)(x̃(t)(γ(t))) ≥ 0 = L(t)(0) ≥ L(t)(x
(t)
lasso).

(22)

The last case in (22) implies that x̃(t)(γ(t)) is not necessarily
better than the point 0. Therefore we define the estimate update
x(t+1) to be the best point between the two points x̃(t)(γ(t))
and 0:

x(t+1) = argmin
x∈{x̃(t+1),0}

L(t)(x)

=

{
x̃(t)(γ(t)), if L(t)(x̃(t)(γ(t))) ≤ L(t)(0) = 0,

0, otherwise,
(23)

and it is straightforward to infer the following relationship
among x(t), x̃(t)(γ(t)), x(t+1) and x

(t)
lasso:

L(t)(x(t)) ≥ L(t)(x̃(t)(γ(t))) ≥ L(t)(x(t+1)) ≥ L(t)(x
(t)
lasso).

6

Algorithm 1 : The Online Parallel Algorithm for Recursive
Estimation of Sparse Signals

Initialization: x(1) = 0, t = 1.
At each time instant t = 1, 2, . . .:
Step 1: Calculate x̂(t) according to (9).
Step 2: Calculate γ(t) according to (17).
Step 3-1: Calculate x̃(t)(γ(t)) according to (11).
Step 3-2: Update x(t+1) according to (23).

Moreover, the dynamic reset (23) guarantees that

x(t+1) ∈
{
x : L(t)(x) ≤ 0

}
, t = 1, 2, . . . , (24)

Since limt→∞ G(t) ≻ 0 and b(t) converges from Assumptions
(A1)-(A2), (24) guarantees that

{
x(t)

}
is a bounded sequence.

Remark 4. Although L(t)(xt+1) ≤ 0 for any t according to
(24), it may happen that L(t+1)(xt+1) > 0 (unless xt+1 = 0,
which corresponds to the first two cases in (22)). The last
case in (22) is thus still possible and it is necessary to check
if L(t+1)(x̃t+1(γt+1)) ≤ 0 as in (23).

To summarize the above development, the proposed online
parallel algorithm is formally described in Algorithm 1. To
analyze the convergence of Algorithm 1, we assume that the
sequence {µ(t)} monotonically decreases to 0:
(A3’)

{
µ(t)
}

is a positive decreasing sequence converging to
0, i.e., µ(t+1) ≥ µ(t) > 0 for all t and limt→∞ µ(t) = 0.

We also assume that c(t)k is selected such that:

(A4) G
(t)
kk + c

(t)
k ≥ c for some c > 0 and all k = 1, . . . ,K.

Theorem 5 (Strong Consistency). Suppose Assumptions
(A1’), (A2), (A3’) and (A4) are satisfied. Then x(t) is a
strongly consistent estimator of x⋆, i.e., limt→∞ x(t) = x⋆

with probability one.

Proof: See Appendix A.
Assumption (A1’) is standard on random variables and is

usually satisfied in practice. We can see from Assumption (A4)
that if there already exists some value c > 0 such that G(t)

kk ≥ c
for all t, the quadratic proximal term in (7) is no longer needed,
i.e., we can set c(t)k = 0 without affecting convergence. This is
the case when t is sufficiently large because limt→∞ G(t) ≻ 0.
In practice it may be difficult to decide if t is large enough,
so we can just assign a small value to c

(t)
k for all t in order

to guarantee the convergence. As for Assumption (A3’), it is
satisfied by the previously mentioned choices of µ(t), e.g.,
µ(t) = α/tβ with α > 0 and 0.5 ≤ β ≤ 1.

Theorem 5 establishes that there is no loss of strong consis-
tency if at each time instant, (6) is solved only approximately
by updating all elements simultaneously based on the best-
response only once. In what follows, we comment on some of
the desirable features of Algorithm 1 that make it appealing
in practice:

(i) Algorithm 1 belongs to the class of parallel algorithms
where all elements are updated simultaneously at each time
instance. Compared with sequential algorithms where only one
element is updated at each time instant [15], the improvement

in convergence speed is notable, especially when the signal
dimension is large. This is illustrated numerically in Sec. V
(cf. Figures 1-2).

(ii) Algorithm 1 is easy to implement and suitable for online
implementation, since both the computations of the best-
response and the stepsize have closed-form expressions. With
the simplified minimization stepsize rule, a notable decrease in
objective function value is achieved after each variable update,
and the difficulty of tuning the decay rate of the diminishing
stepsize as required in [35] is saved. Most importantly, the
algorithm may not converge under decreasing stepsizes.

(iii) Algorithm 1 converges under milder assumptions than
state-of-the-art algorithms. The regression vector gn and the
noise vn do not need to be uniformly bounded, which is
required in [42, 43] and which is not satisfied in case of
unbounded distributions, e.g., in the Gaussian distribution.

IV. IMPLEMENTATION AND EXTENSIONS

A. A special case: x⋆ ≥ 0

The proposed Algorithm 1 can be further simplified if
x⋆, the signal to be estimated, has additional properties. For
example, in the context of CR studied in [8], x⋆ represents
the power vector and it is by definition always nonnegative.
In this case, a nonnegative constraint on xk in (7) is needed:

x̂
(t)
k = argmin

xk≥0

{
L(t)(xk,x

(t)
−k) +

1

2
c
(t)
k (xk − x

(t)
k)2

}
, ∀ k,

and the best-response x̂
(t)
k in (9) simplifies to

x̂
(t)
k =

[
r
(t)
k + c

(t)
k x

(t)
k − µ(t)

]+
G

(t)
kk + c

(t)
k

, k = 1, . . . ,K.

Furthermore, since both x(t) and x̂(t) are nonnegative, we have

x(t) + γ(x̂(t) − x(t)) ≥ 0, 0 ≤ γ ≤ 1,

and∥∥x(t) + γ(x̂(t) − x(t))
∥∥
1
=

K∑
k=1

|x(t)
k + γ(x̂

(t)
k − x

(t)
k)|

=
K∑

k=1

x
(t)
k + γ(x̂

(t)
k − x

(t)
k).

Therefore the standard minimization rule (13) can be adopted
directly and the stepsize is accordingly given as

γ(t) =

[
− (G(t)x(t) − b(t) + µ(t)1)T (x̂(t) − x(t))

(x̂(t) − x(t))TG(t)(x̂(t) − x(t))

]1
0

,

where 1 is a vector with all elements equal to 1.

B. Implementation details and complexity analysis

Algorithm 1 can be implemented in a centralized and
parallel or a distributed network architecture. To ease the ex-
position, we discuss the implementation details in the context
of a WSN with a total number of N nodes.

Network with a fusion center: The fusion center first per-
forms the computation of (9) and (17). Towards this end,

7

signaling from the sensors to the fusion center is required:
at each time instant t, each sensor n sends the values
(g

(t)
n , y

(t)
n) ∈ RK+1 to the fusion center. Note that G(t) and

b(t) defined in (4) can be updated recursively:

G(t) =
t− 1

t
G(t−1) +

1

t

N∑
n=1

g(t)
n (g(t)

n)T , (25a)

b(t) =
t− 1

t
b(t−1) +

1

t

N∑
n=1

y(t)n g(t)
n . (25b)

Then after updating x according to (11) and (23), the fusion
center sends x(t+1) ∈ RK back to all sensors.

We next discuss the computational complexity of Algorithm
1. Note that in (25), the normalization by t is immaterial as
it appears in both the numerator and denominator. Among
others, (N +1)(K2 +K)/2 multiplications and additions are
required to compute (25a). Besides this, 3K2 multiplications
and 3K(K − 1) additions are required to perform the matrix-
vector multiplications G(t)x(t) of (10), G(t)(x̂(t) − x(t)) of
(14) and G(t)x̃(t)(γ(t)) of (23). It is possible to verify that
these operations dominate the others in terms of multiplica-
tions and additions, and the overall computational complexity
is the same as the traditional RLS algorithm [12, Ch. 14].

We further remark that the computations specified in (9),
(17) and (23), e.g., the matrix-vector and element-wise vector-
vector multiplications, are easily parallelizable by using par-
allel hardware (e.g., FPGA) or multiple processors/cores. In
this case, the computation time could be significantly reduced
and this is of great interest in a centralized network as well.

Network without a fusion center: In this case, the computa-
tional tasks are evenly distributed among the sensors and the
computation in each step of Algorithm 1 is performed locally
by each sensor at the price of some signaling exchange among
different sensors.

We first define the sensor-specific variables G
(t)
n and b

(t)
n

for sensor n as:

G(t)
n , 1

t

t∑
τ=1

g(τ)
n (g(τ)

n)T , and b(t)
n =

1

t

t∑
τ=1

y(t)n g(t)
n , (26)

so that G(t) =
∑N

n=1 G
(t)
n and b(t) =

∑N
n=1 b

(t)
n . Note that

G
(t)
n and b

(t)
n can be computed locally by sensor n without

any signaling exchange required. It is also easy to verify that,
similar to (25), G(t)

n and b
(t)
n can be updated recursively by

sensor n, so the sensors do not have to store all past data.
The information exchange among sensors in carried out in

two phases. Firstly, for sensor n, to perform (9) [Step 1 of
Algorithm 1], d(G(t)) and r(t) are required3, and they can be
decomposed as follows:

d(G(t)) =
N∑

n=1

d(G(t)
n) ∈ RK , (27a)

G(t)x(t) − b(t) =

N∑
n=1

(
G(t)

n x(t) − b(t)
n

)
∈ RK . (27b)

3Recall that diag(G(t)) = diag(d(G(t))).

Furthermore, to determine the stepsize (17) [Step 2 of Al-
gorithm 1], the following computations must be available at
sensor n:

G(t)x(t) =
N∑

n=1

G(t)
n x(t) ∈ RK (27c)

G(t)x̂(t) =
N∑

n=1

G(t)
n x̂(t) ∈ RK , (27d)

and

(G(t)x(t) − b(t))T (x̂(t) − x(t))

=

(
N∑

n=1

(G(t)
n x(t) − b(t)

n)

)T

(x̂(t) − x(t)),

(27e)

however, computing (27e) does not require any additional
signaling since

∑N
n=1(G

(t)
n x(t) − b

(t)
n) is already available

from (27b).
With x̂(t) and γ(t), each sensor n can locally calculate

x̃(t)(γ(t)) according to (11) [Step 3-1 of Algorithm 1]. Note
that L(t)(x̃(t)(γ(t))) [Step 3-2 of Algorithm 1] can be com-
puted based on available information (27b)-(27d) because

L(t)(x̃(t)(γ(t))) =
1

2
(x̃(t)(γ(t)))TG(t)x̃(t)(γ(t))

− (b(t))T x̃(t)(γ(t)) + µ(t)
∥∥x̃(t)(γ(t))

∥∥
1

=
1

2
(x̃(t)(γ(t)))T (G(t)x̃(t)(γ(t))− 2b(t))

+µ(t)
∥∥x̃(t)(γ(t))

∥∥
1

=
1

2
(x̃(t)(γ(t)))T (2(G(t)x(t) − b(t))−G(t)x(t)

+γ(t)G(t)(x̂(t) − x(t))) + µ(t)
∥∥x̃(t)(γ(t))

∥∥
1
,

where G(t)x(t) − b(t) comes from (27b), G(t)x(t) comes
from (27c), and G(t)(x̂(t) − x(t)) comes from (27c)-(27d).
We can also infer from the above discussion that the most
complex operations at each node are the computation of G(t)

n

in (26), which consists of (K2 + K)/2 multiplications and
additions, and the matrix-vector multiplications G

(t)
n x(t) in

(27b)-(27c) and G
(t)
n x̂(t) in (27d), each of which consists of

K2 multiplications and K(K−1) additions, leading to a total
of 2.5K2 + 0.5K multiplications and 2K(K − 1) additions.

To summarize, in the first phase, each node needs
to exchange (d(G

(t)
n),G

(t)
n x(t) − b

(t)
n) ∈ R2K×1, while

in the second phase, the sensors need to exchange
(G

(t)
n x(t),G

(t)
n x̂(t)) ∈ R2K×1; thus the dimension of the

vector that needs to be exchanged at each time instant is 4K.
In what follows, we draw several comments on the information
exchange and its implications.

(i) The dimension of the vector to be exchanged is much
smaller than in [2] and [8]. For example in [2, A.5], the
optimization problem (6) is solved exactly at each time instant
t (whereas it is solved only approximately in the proposed
Algorithm 1, cf. (20)). In this sense it is essentially a double
layer algorithm: in the inner layer, an iterative algorithm is
used to solve (6) while in the outer layer t is increased to t+1
and (6) is solved again. Suppose the iterative algorithm in the

8

inner layer converges in T (t) iterations; in general T (t) ≫ 1. In
each iteration of the inner layer, the sensors should exchange a
vector of the size 2K, and this is repeated until the termination
of the inner layer, leading to a total size of 2T (t)K, which is
much larger than that of the proposed algorithm, namely, 4K.
Furthermore, since the information exchange must be repeated
for T (t) times at each time instant, the incurred latency is
much longer than that of the proposed algorithm, in which the
information exchange is carried out only twice. The analysis
for the distributed implementation of [15], proposed in [8], is
similar and thus omitted.

(ii) In practice, the information exchange could be realized
by broadcast, or consensus algorithms if only local commu-
nication with neighbor nodes is possible. Since consensus
algorithms are of an iterative nature, the proposed distributed
algorithm would have an additional inner layer if the consensus
algorithm were explicitly counted: in the outer layer, the
sensors perform the estimate update (11) and (23); in the inner
layer, the sensors compute the average values (27) using an
iterative consensus algorithm4.

(iii) Since the convergence of Algorithm 1 is based on
perfect information exchange, we should use consensus al-
gorithms under which the exact consensus is reached in a
finite number of steps, for example, [44]. More specifically,
the exact consensus in [44] is achieved in at most Tmax ≤
N + 1 − minn |Nn| steps, where |Nn| is the number of
neighbors of the sensor n, so the total signaling overhead
at each time instant t of Algorithm 1 is 4TmaxK. However,
this specific choice of consensus algorithm imposes additional
constraints on the network and the sensors (for example, each
sensor should have the knowledge of topology of the global
network and additional coordination is required among the
sensors), which may impair the applicability of the proposed
algorithm.

(iv) If consensus algorithms with asymptotic convergence
are used for information exchange, they are typically termi-
nated after finite iterations in practice. Then the information
available at each sensor is a noisy estimate of the real
information and the proposed algorithm may not converge.
The convergence in this case requires further investigation.

C. Time- and norm-weighted sparsity regularization

For a given vector x, its support Sx is defined as the set of
indices of nonzero elements:

Sx , {1 ≤ k ≤ K : xk ̸= 0}.

Suppose without loss of generality that Sx⋆ =
{1, 2, . . . , ∥x⋆∥0}, where ∥x∥0 is the number of nonzero
elements of x. It is shown in [15] that with the time-weighted
sparsity regularization (6), the estimate x

(t)
lasso does not

necessarily satisfy the so-called “oracle properties”: an
estimator x(t) is said to satisfy the oracle properties if

lim
t→∞

Prob [Sx(t) = Sx⋆] = 1, (28a)

4The two-layer structure of the proposed algorithm is different from that of
[2, 8]: since the average values in [2, 8] are also computed using an iterative
consensus algorithm, the algorithms proposed in [2, 8] would have three layers
if the consensus algorithm were explicitly counted.

and
√
t(x

(t)
1:∥x⋆∥0

− x⋆
1:∥x⋆∥0

) →d N (0, σ2G1:∥x⋆∥0,1:∥x⋆∥0
),
(28b)

where →d means convergence in distribution and G1:k,1:k ∈
Rk×k is the upper left block of G. The first property (28a)
and the second property (28b) is called support consistency
and

√
t-estimation consistency, respectively [15].

To make the estimation satisfy the oracle properties, it was
suggested in [15] that a time- and norm-weighted LASSO can
be used, and the loss function L(t)(x) in (5) can be modified
as follows:

L(t)(x) =
1

t

t∑
τ=1

N∑
n=1

(y(τ)n − (g(τ)
n)Tx)2

+ µ(t)
K∑

k=1

Wµ(t)(|x(t)
rls,k|) · |xk|, (29)

where i) x
(t)
rls is given in (3); ii) limt→∞ µ(t) = 0 and

limt→∞
√
t · µ(t) = ∞, so µ(t) must decrease slower than

1/
√
t; iii) the weight factor Wµ(x) is defined as

Wµ(x) ,

1, if x ≤ µ,
aµ−x
(a−1)µ , if µ ≤ x ≤ aµ,

0, if x ≥ aµ,

and a > 1 is a given constant. Therefore, the value of the
weight function µ(t)Wµ(t)(|x(t)

rls,k|) in (29) depends on the
relative magnitudes of µ(t) and x

(t)
rls,k.

After replacing the universal sparsity regularization gain
µ(t) by µ(t)Wµ(t)(

∣∣x(t)
rls,k

∣∣) for each element xk in (9) and
(17), Algorithm 1 can readily be applied to estimate x⋆ based
on the time- and norm-weighted loss function (29) and the
strong consistency also holds. To see this, we only need
to verify the nonincreasing property of the weight function
µ(t)Wµ(t)(|x(t)

rls,k|). We remark that when t is sufficiently large,
it is either µ(t)Wµ(t)(|x(t)

rls,k|) = 0 or µ(t)Wµ(t)(|x(t)
rls,k|) = µ(t).

This is because limt→∞ x
(t)
rls = x⋆ under the conditions of

Lemma 1. If x⋆
k > 0, since limt→∞ µ(t) = 0, there exists for

any arbitrarily small ϵ > 0 some t0 such that aµ(t) < x⋆
k − ϵ

for all t ≥ t0; the weight factor in this case is 0 for all t ≥ t0,
and the nonincreasing property is automatically satisfied. If,
on the other hand, x⋆

k = 0, then x
(t)
rls converges to x⋆

k = 0 at
a rate of 1/

√
t [45]. Since µ(t) decreases slower than 1/

√
t,

there exists some t0 such that x(t)
rls,k < µ(t) for all t ≥ t0. In

this case, Wµ(t)(x
(t)
rls,k) is equal to 1 and the weight factor is

simply µ(t) for all t ≥ t0, which is nonincreasing.

D. Recursive estimation of time-varying signals
If the signal to be estimated is time-varying, the loss

function (5) needs to be modified in a way such that the new
measurement samples are given more weight than the old ones.
Defining the so-called “forgetting factor” β, where 0 < β < 1,
the new loss function is given as [2, 12, 15]:

min
x

1

2t

N∑
n=1

t∑
τ=1

βt−τ ((g(τ)
n)Tx− y(τ)n)2 + µ(t) ∥x∥1 . (30)

9

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

time instant t (number of measurements)

re
la

tiv
e

er
ro

r
in

 o
bj

ec
tiv

e
va

lu
e

sequential algorithm
enhanced sequential algorithm
parallel algorithm (proposed, Algorithm 1)
parallel algorithms with standard minimization rule (proposed, cf. (13))

(a) Signal dimension: K = 100

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

time instant t (number of measurements)

re
la

tiv
e

er
ro

r
in

 o
bj

ec
tiv

e
va

lu
e

sequential algorithm
enhanced sequential algorithm
parallel algorithm (proposed, cf. Algorithm 1)
parallel algorithm with standard minimization rule (proposed, cf. (13))

(b) Signal dimension: K = 500

Figure 1. Convergence behavior in terms of objective function value.

We observe that when β = 1, (30) is as same as (5). In this
case, the only modification to Algorithm 1 is that G(t) and
b(t) are updated according to the following recursive rule:

G(t) =
1

t

(
(t− 1)βG(t−1) +

N∑
n=1

g(t)
n (g(t)

n)T

)
,

b(t) =
1

t

(
(t− 1)βb(t−1) +

N∑
n=1

y(t)n g(t)
n

)
.

For problem (30), since the signal to be estimated is
time-varying, the convergence analysis in Theorem 5 does
not hold any more. However, simulation results show that
there is little loss of optimality when optimizing (30) only
approximately by Algorithm 1. This establishes the superiority
of the proposed algorithm over the distributed algorithm in
[2] which solves (30) exactly at the price of a large delay
and a large signaling burden. Besides this, despite the lack
of theoretical analysis, Algorithm 1 performs better than the
online sequential algorithm [15] numerically, cf. Section V.

V. NUMERICAL RESULTS

In this section, the desirable features of the proposed
algorithm are illustrated numerically. Unless otherwise stated,
the simulation setup is as follows: i) the number of sensors
N = 1, so the subscript n in gn is omitted; ii) the dimension
of x⋆: K = 100; iii) the proportion of the nonzero elements
of x⋆: 0.1; iv) both g and v are generated by i.i.d. standard
normal distributions: g ∈ CN (0, I) and v ∈ CN (0, 0.2); v)
the sparsity regularization gain µ(t) = 10/t; vi) the simulations
results are averaged over 100 realizations.

A. Convergence to the optimal value

We plot in Figure 1 the relative error of the objective value
(L(t)(x(t)) − L(t)(x

(t)
lasso))/L

(t)(x
(t)
lasso) versus the time instant

t for two dimensions of x⋆ (with x(0) = 0), namely, K =
100 in Figure 1 (a) and K = 500 in Figure 1 (b), where
i) x

(t)
lasso is defined in (6) and calculated by MOSEK [46]; ii)

x(t) is returned by Algorithm 1 in the proposed online parallel

algorithm (coined as “parallel algorithm”); iii) x(t) is returned
by [15, Algorithm 1] in the online sequential algorithm (coined
as “sequential algorithm”), where only one element of x is
updated at each time instant; iv) in the “enhanced sequential
algorithm”, all elements of x are sequentially updated once at
each time instant. Define

z(t,k) , [x̂
(t)
1 , . . . , x̂

(t)
k , x

(t)
k+1, . . . , x

(t)
K]T , 1 ≤ k ≤ K,

where x̂
(t)
k = (G

(t)
kk + c

(t)
k)−1Sµ(t)(r

(t)
k (x(t,k−1)) + c

(t)
k x

(t)
k);

the variable update in the enhanced sequential algorithm can
mathematically be expressed as5

x(t+1) = z(t,K). (31)

Note that L(t)(x
(t)
lasso) is by definition the lower bound of

L(t)(x) and L(t)(x(t)) − L(t)(x
(t)
lasso) ≥ 0 for all t. From

Figure 1 it is clear that the proposed algorithm (black curve)
converges to a precision of 10−2 with less than 200 mea-
surements while the sequential algorithm (blue curve) either
requires many more measurements (cf. Figure 11 (a)) or does
not even converge with a reasonable number of measurements
(cf. Figure 1 (b)). The improvement in convergence speed
is thus notable, and the proposed online parallel algorithm
outperforms the sequential algorithm both in convergence
speed and solution quality. Besides this, a comparison of the
proposed algorithm for different signal dimensions in Figure
1 (a) and Figure 1 (b) indicates that the proposed algorithm
scales well and it is very practical.

We remark that the computational complexity per time
instant of the sequential algorithm [15] is approximately 1/K
that of the proposed algorithm, because the former updates
a single element of x only according to (8), while the latter
updates all elements of x simultaneously based on (9). The
computational complexity per time instant of the enhanced
sequential algorithm is roughly the same as that of the pro-
posed algorithm, because the operation (8) is performed for
K times after a complete cycle of element updates. However,
the associated computational time per time instant of the

5The enhanced sequential algorithm is suggested by the reviewers.

10

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

time instant (number of measurements)

re
la

tiv
e

sq
ua

re
 e

rr
or

truncated gradient algorithm
SPARLS with optimal parameters
SPARLS with suboptimal parameters
sequential algorithm
enhanced sequential algorithm
recursive least square (RLS)
parallel algorithm (proposed)

(a) Signal dimension: K = 100

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

time instant t (number of measurements)

re
la

tiv
e

sq
ua

re
 e

rr
or

truncated gradient algorithm
SPARLS with optimal parameters
SPARLS with suboptimal parameters
sequential algorithm
enhanced sequential algorithm
recursive least square (RLS)
parallel algorithm (proposed)

(b) Signal dimension: K = 500

Figure 2. Relative square error for recursive estimation of time-varying signals.

enhanced sequential algorithm is (at least) K times as long as
that of the proposed algorithm, because the proposed update
(9) is parallelizable by using parallel hardware (e.g., FPGA)
or multiple processors/cores. Thus the proposed algorithm is
more suitable for online applications.

When implemented in a distributed manner, the enhanced
sequential algorithm incurs a large signaling overhead. Fol-
lowing the line of analysis in Section IV, we remark that
the nodes need to exchange G

(t)
n x(t,k) − b(t) ∈ RK after

x(t,k) is obtained so that x(t,k+1) can be computed by each
node locally. At each time instant, a complete cycle with K
sequential element updates then leads to a total dimension of
K2, which is much larger than that of the proposed algorithm,
namely, 4K. The larger signaling overhead also increases the
latency. Thus the proposed algorithm is more suitable for
distributed implementation. Although we observe from Figure
1 that the proposed algorithm converges slightly slower than
the enhanced sequential algorithm, the significantly reduced
computational time and signaling overhead justify the superi-
ority of the proposed algorithm.

We also evaluate in Figure 1 the performance loss incurred
by the simplified minimization rule (16) (indicated by the
black curve) compared with the standard minimization rule
(13) (indicated by the red curve). It is easy to see from Figure
1 that these two curves almost coincide with each other, so
the extent to which the simplified minimization rule decreases
the objective function is nearly the same as the standard
minimization rule and the performance loss is negligible.

B. Convergence to the optimal variable

Then we consider in Figure 2 the relative square error∥∥x(t) − x⋆
∥∥2
2
/ ∥x⋆∥22 versus the time instant t. To compare

the estimation approaches with and without sparsity regular-
ization, the RLS algorithm in (3) is also implemented, where
a ℓ2 regularization term 10−4 ∥x∥22 is included into (3). Some
observations are in order.

• We see that the proposed online parallel algorithm (in-
dicated by the black curve) and the enhanced sequential
algorithm (indicated by the red curve with upper triangular)
exhibit faster convergence than other algorithms. From Figure
2 we see that when the signal dimension is increased from
K = 100 to K = 500, the convergence speed of the proposed
online parallel algorithm is not severely slowed down, which
shows that the proposed algorithm scales well.

• The enhanced sequential algorithm converges slightly
faster than the proposed online parallel algorithm in the
early iterations, but the difference is negligible. Note that the
computational time and signaling overhead of the enhanced
sequential algorithm does not scale well because they are
proportional to K, the dimension of x⋆. By comparison, as
the update is parallelizable and signaling exchange is carried
out only once at each time instant, the proposed algorithm
achieves almost the same performance but at a reduced cost of
computational time and signaling overhead than the enhanced
sequential algorithm (cf. Sec. V-A).

• We note that the estimation with sparsity regularization
performs better than the classic RLS approach (indicated by
the magenta curve), especially when t is small. This can be
explained by the fact that a prior information of the sparsity
of the signal x⋆ is exploited.

• The proposed algorithm performs better than the SPARLS
algorithm with optimal parameters [17] (indicated by the blue
curve with reversed triangular). However, to obtain the optimal
parameters, the maximum eigenvalue of G(t) must be com-
puted, which is a computational prohibitive task in large-scale
problems. If we use a suboptimal parameter tr(G(t)) instead
of the optimal parameter λmax(G

(t)), then the performance
of SPARLS with suboptimal parameters (indicated by the
blue curve with triangular) deteriorates significantly, especially
when K is large, cf. Figure 2 (b).

• We use the same choice of free parameters (e.g., stepsize
and regularization gain) for the truncated gradient algorithm
(indicated by the the green) in both settings K = 100 and

11

0 20 40 60 80 100
−2

−1

0

1

2

el
em

en
t v

al
ue

time instant (number of measurements): 100

original signal
estimated signal by the paralle algorithm (proposed)
estimated signal by RLS

0 20 40 60 80 100
−2

−1

0

1

2

element index

el
em

en
t v

al
ue

time instant (number of measurements): 1000

Figure 3. Comparison of original signal and estimated signal at different
time instant: t = 100 in the upper plot and t = 1000 in the lower plot.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

w
µ
t
(|
x
rl
s

t,
1
|)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

time instant t (number of measurements)

w
µ
t
(|
x
rl
s

t,
1
1
|)

Figure 4. Weight factor in time- and norm-weighted sparsity regularization.

K = 500. It is observed from the comparison of Figure 2
(a) and Figure 2 (b) that the truncated gradient algorithm
[18] is sensitive to the choice of free parameters and no
general rule applies to all problem parameters. Furthermore, it
converges slowly because it is essentially a gradient method.
By comparison, no pretuning is required in the proposed
algorithm and simple closed-form expressions exist for each
update. The proposed algorithm is easy to use in practice and
robust to changes in problem parameters.

The precision of the estimated signal by the proposed online
parallel algorithm (after 100 and 1000 time instant, respec-
tively) is shown element-wise in Figure 3 when K = 100.
Given 100 measurements, we observe from the upper plot
of Figure 3 that the proposed online parallel algorithm can
accurately estimate the support of x⋆, while as expected, the
estimated signal based on the RLS algorithm is not sparse.
When the number of measurements is increased to 1000, we
can see from the lower plot of Figure 3 that the value of x⋆ is
accurately estimated by the proposed online parallel algorithm.
The same observation holds for the RLS algorithm as well
because x

(t)
rls → x⋆.

C. Weight factor in time- and norm-weighted sparsity regu-
larization

In Figure 4 we simulate the weight factor Wµ(t)(|x(t)
rls,k|)

versus the time instant t in time- and norm-weighted sparsity
regularization, where K = 100, k = 1 is used in the upper
plot and k = 11 in the lower plot. The parameters are the
same as in the previous simulation examples, except that
µ(t) = 1/t0.4 and x⋆ are generated such that the first 0.1×K
elements (where 0.1 is the proportion of nonzero elements of
x⋆) are nonzero while all other elements are zero. The weight
factors of other elements are omitted because they exhibit
similar behavior as the ones plotted in Figure 4. As analyzed,
Wµ(t)(|w(t)

rls,1|), the weight factor of the first element, where
x⋆
1 ̸= 0, quickly converges to zero, while Wµ(t)(|w(t)

rls,11|),

the weight factor of the eleventh element, where x⋆
1 = 0,

quickly converges to one, making the overall weight factor
monotonically decreasing, cf. (29). Therefore the proposed
algorithm can readily be applied to the recursive estimation of
sparse signals with time- and norm-weighted regularization.

D. Estimation of the time-varying signal

When the signal to be estimated is varying, the theoretical
analysis of the proposed algorithm is not valid anymore, but
we can test numerically how the proposed algorithm performs
compared with the online sequential algorithm. The time-
varying unknown signal is denoted as x⋆

t ∈ R100×1, and it
is changing according to the following law:

x⋆
t+1,k = αx⋆

t,k + wt,k,

where wt,k ∼ CN (0, 1 − α2) for any k such that x⋆
t,k ̸= 0,

with α = 0.99 and β = 0.9. In Figure 5, the relative square
error ∥xt − x⋆

t ∥
2
2 / ∥x⋆

t ∥
2
2 is plotted versus the time instant

t. Despite the lack of theoretical analysis, we observe the
estimation error of the proposed online parallel algorithm
(indicated by the black curve) is almost as same as that of
the benchmark in which the LASSO problem is solved exactly
(indicated by the red curve), so the approximate optimization
is not an impeding factor for the estimation accuracy. This is
another advantage of the proposed algorithm over [2] where
a distributed iterative algorithm is employed to solve (30)
exactly, which inevitably incurs a large delay and extensive
signaling.

VI. CONCLUDING REMARKS

In this paper, we have considered the recursive estimation of
sparse signals and proposed an online parallel algorithm with
provable convergence. The algorithm is based on approximate
optimization but it converges to the exact solution. At each
time instant, all elements are updated in parallel, and both the

12

0 200 400 600 800 1000

10
0

time instant t (number of measurements)

re
la

tiv
e

sq
ua

re
 e

rr
or

sequential algorithm
parallel algorithm (proposed)
recursive lasso (benchmark, cf. (6))

Figure 5. Relative square error for recursive estimation of time-varying
signals.

update direction and the stepsize can be calculated in analytical
expressions. The proposed simplified minimization stepsize
rule is well motivated and easily implementable, achieves a
good trade-off between complexity and convergence speed,
and avoids the common drawbacks of the standard stepsizes
used in literature. Simulation results have demonstrated the no-
table improvement in convergence speed over state-of-the-art
techniques. Our results show that the loss in convergence speed
compared with the benchmark (where the LASSO problem is
solved exactly at each time instant) is negligible. We have
also considered numerically the recursive estimation of time-
varying signals where the theoretical convergence does not
necessarily hold, and the proposed algorithm performs better
than state-of-the-art algorithms. As future work it is interesting
to analyze the convergence behavior under a partial update
scheme where only part of the elements are updated at each
time instant. This partial update scheme could probably lead
to an acceleration in the convergence speed and a reduction
in the signaling overhead.

APPENDIX A
PROOF OF THEOREM 5

Proof: It is easy to see that L(t) can be divided into
the differentiable part f (t)(x) and the nondifferentiable part
h(t)(x): L(t)(x) = f (t)(x) + h(t)(x),

f (t)(x) , 1

2
xTG(t)x− (b(t))Tx, (32a)

h(t)(x) , µ(t) ∥x∥1 . (32b)

We also use f
(t)
k (x;x(t)) to denote the smooth part of the

objective function in (9):

f
(t)
k (x;x(t)) , 1

2
G

(t)
kkx

2 − r
(t)
k · x+

1

2
c
(t)
k (x− x

(t)
k)2. (33)

Functions f
(t)
k (x;x(t)) and f (t)(x) are related according to

the following equation:

f
(t)
k (xk;x

(t)) = f (t)(xk,x
(t)
−k) +

1

2
c(t)(xk − x

(t)
k)2, (34)

from which it is easy to infer that ∇f
(t)
k (x

(t)
k ;x(t)) =

∇kf
(t)(x(t)). Then from the first-order optimality condition,

h(t)(xk) has a subgradient ξ
(t)
k ∈ ∂h(t)(x̂

(t)
k) at xk = x̂

(t)
k

such that for any xk:

(xk − x̂
(t)
k)(∇f

(t)
k (x̂

(t)
k ;x(t)) + ξ

(t)
k) ≥ 0, ∀k. (35)

Now consider the following equation:

L(t)(x(t+1))− L(t−1)(x(t)) =

L(t)(x(t+1))− L(t)(x(t)) + L(t)(x(t))− L(t−1)(x(t)).
(36)

The rest of the proof consists of three parts. Firstly we
prove in Part I that there exists a constant η > 0 such that
L(t)(x(t+1))−L(t)(x(t)) ≤ −η

∥∥x̂(t) − x(t)
∥∥2
2
. Then we show

in Part 2 that the sequence
{
L(t)(x(t+1))

}
t

converges. Finally
we prove in Part 3 that any limit point of the sequence

{
x(t)

}
t

is a solution of (2).
Part 1) Since c

(t)
min ≥ c > 0 for all t (c(t)min is defined in

Proposition 2) from Assumption (A4), it is easy to see from
(12) that the following is true:

L(t)(x(t) + γ(x̂(t) − x(t)))− L(t)(x(t))

≤ − γ
(
c− 1

2
λmax(G

(t))γ
)∥∥x̂(t) − x(t)

∥∥2
2
, 0 ≤ γ ≤ 1.

Since λmax(G
(t)) is a continuous function [47] and G(t)

converges to a positive definite matrix by Assumption (A1’),
there exists a λ̄ < +∞ such that λ̄ ≥ λmax(G

(t)) for all t.
We thus conclude from the preceding inequality that for all
0 ≤ λ ≤ 1:

L(t)(x(t) + γ(x̂(t) − x(t)))− L(t)(x(t))

≤− γ

(
c− 1

2
λ̄γ

)∥∥x̂(t) − x(t)
∥∥2
2
. (37)

It follows from (15), (16) and (37) that

L(t)(x̃(t+1))

≤ f (t)(x(t) + γ(t)(x̂(t) − x(t)))

+ (1− γ(t))h(t)(x(t)) + γ(t)h(t)(x̂(t)) (38)

≤ f (t)(x(t) + γ(x̂(t) − x(t)))

+ (1− γ)h(t)(x(t)) + γh(t)(x̂(t)) (39)

≤ L(t)(x(t))− γ(c− 1

2
λ̄γ)
∥∥x̂(t) − x(t)

∥∥2
2
. (40)

Since the inequalities in (40) are true for any 0 ≤ γ ≤ 1, we
set γ = min(c/λ̄, 1). Then it is possible to show that there is
a constant η > 0 such that

L(t)(x(t+1))− L(t)(x(t)) ≤ L(t)(x̃(t+1))− L(t)(x(t))

≤ −η
∥∥x̂(t) − x(t)

∥∥2
2
. (41)

Besides this, because of Step 3 in Algorithm 1, x(t+1) is in
the following lower level set of L(t)(x):

L(t)
≤0 , {x : L(t)(x) ≤ 0}. (42)

Because ∥x∥1 ≥ 0 for any x, (42) is a subset of{
x :

1

2
xTG(t)x− (b(t))Tx ≤ 0

}
,

13

which is a subset of

L̄(t)
≤0 ,

{
x :

1

2
λmax(G

(t)) ∥x∥22 − (b(t))Tx ≤ 0

}
. (43)

Since G(t) and b(t) converges and limt→∞ G(t) ≻ 0, there
exists a bounded set, denoted as L≤0, such that L(t)

≤0 ⊆ L̄(t)
≤0 ⊆

L≤0 for all t; thus the sequence {x(t)} is bounded and we
denote its upper bound as x̄.

Part 2) Combining (36) and (41), we have the following:

L(t+1)(x(t+2))−L(t)(x(t+1))

≤L(t+1)(x(t+1))−L(t)(x(t+1))

= f (t+1)(x(t+1))−f (t)(x(t+1))+h(t+1)(x(t+1))−h(t)(x(t+1))

≤ f (t+1)(x(t+1))−f (t)(x(t+1)), (44)

where the last inequality comes from the decreasing property
of µ(t) by Assumption (A3’). Recalling the definition of
f (t)(x) in (32), it is easy to see that

(t+ 1)(f (t+1)(x(t+1))− f (t)(x(t+1)))

= l(t+1)(x(t+1))− 1

t

t∑
τ=1

l(τ)(x(t+1)),

where

l(t)(x) ,
N∑

n=1

(y(t)n − (g(t)
n)Tx)2.

Taking the expectation of the preceding equation with
respect to {y(t+1)

n ,g
(t+1)
n }Nn=1, conditioned on the natural

history up to time t+ 1, denoted as F (t+1):

F (t+1) ={
x(0), . . . ,x(t+1),

{
g
(0)
n , . . . ,g

(t)
n

}
n
,
{
y
(0)
n , . . . , y

(t)
n

}
n

}
,

we have

E
[
(t+ 1)(f (t+1)(x(t+1))− f (t)(x(t+1)))|F (t+1)

]
= E

[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

E
[
l(τ)(x(t+1))|F (t+1)

]
= E

[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

l(τ)(x(t+1)), (45)

where the second equality comes from the observation that
l(τ)(x(t+1)) is deterministic as long as F (t+1) is given. This
together with (44) indicates that

E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]
≤ E

[
f (t+1)(x(t+1))− f (t)(x(t+1))|F (t+1)

]
≤ 1

t+ 1

(
E
[
l(t+1)(x(t+1))|F (t+1)

]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

)

≤ 1

t+ 1

∣∣∣∣∣E [l(t+1)(x(t+1))|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

∣∣∣∣∣ ,

and [
E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

≤ 1

t+ 1

∣∣∣∣∣E [l(t+1)(x(t+1))|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x(t+1))

∣∣∣∣∣
≤ 1

t+ 1
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣ , (46)

where [x]0 = max(x, 0), and X in (46) with X ,
{x(1),x(2), . . . , } is the complete path of x.

Now we derive an upper bound on the expected value of
the right hand side of (46):

E

[
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣
]

= E
[
sup
x∈X

∣∣y̆(t) − (r
(t)
2)Tx+ xTR

(t)
3 x

∣∣]
≤ E

[
sup
x∈X

∣∣y̆(t)∣∣+ sup
x∈X

∣∣(b̆(t))Tx
∣∣+ sup

x∈X

∣∣xT Ğ(t)x
∣∣]

= E
[
sup
x∈X

∣∣y̆(t)∣∣]+E
[
sup
x∈X

∣∣(b̆(t))Tx
∣∣]+E

[
sup
x∈X

∣∣xT Ğ(t)x
∣∣],

(47)

where

y̆(t) , 1

t

t∑
τ=1

N∑
n=1

(
Eyn

[
y2n
]
− (y(τ)n)2

)
,

b̆(t) , 1

t

t∑
τ=1

N∑
n=1

2
(
E{yn,gn} [yngn]− y(τ)n g(τ)

n

)
,

Ğ(t) , 1

t

t∑
τ=1

N∑
n=1

(
Egn [gngn]− g(t)

n g(τ)T
n

)
.

Then we bound each term in (47) individually. For the first
term, since y̆(t) is independent of x(t),

E
[
sup
x∈X

∣∣y̆(t)∣∣] = E
[∣∣y̆(t)∣∣] = E

[√
(y̆(t))2

]
≤
√
E
[
(y̆(t))2

]
≤
√

σ2
1

t
(48)

for some σ1 < ∞, where the second equality comes from
Jensen’s inequality. Because of Assumptions (A1’) and (A2),
y̆(t) has bounded moments and the existence of σ1 is then
justified by the central limit theorem [48].

For the second term of (47), we have

E
[
sup
x

∣∣(b̆(t))Tx
∣∣]≤E

[
sup
x
(
∣∣b̆(t)

∣∣)T |x|
]
≤
(
E
[∣∣b̆(t)

∣∣])T |x̄| .
Similar to the line of analysis of (48), there exists a σ2 < ∞
such that

E
[
sup
x

∣∣(b̆(t))Tx
∣∣] ≤ (E [∣∣b̆(t)

∣∣])T |x̄| ≤
√

σ2
2

t
. (49)

14

For the third term of (47), we have

E
[
sup
x∈X

∣∣xT Ğ(t)x
∣∣]

= E
[

max
1≤k≤K

∣∣λk(Ğ
(t))
∣∣ · ∥x̄∥22]

= ∥x̄∥22 · E
[√

max{λ2
max(Ğ

(t)), λ2
min(Ğ

(t))}
]

≤ ∥x̄∥22 ·
√
E
[
max{λ2

max(Ğ
(t)), λ2

min(Ğ
(t))}

]
≤ ∥x̄∥22 ·

√√√√E

[
K∑

k=1

λ2
k(Ğ

(t))

]

= ∥x̄∥22 ·
√
E
[
tr
(
Ğ(t)(Ğ(t))T

)]
≤
√

σ2
3

t
(50)

for some σ3 < ∞, where the first equality comes from the
observation that x should align with the eigenvector associated
with the eigenvalue with largest absolute value. Then combing
(48)-(50), we can claim that there exists σ ,

√
σ2
1 +

√
σ2
2 +√

σ2
3 > 0 such that

E

[
sup
x∈X

∣∣∣∣∣E [l(t+1)(x)|F (t+1)
]
− 1

t

t∑
τ=1

l(τ)(x)

∣∣∣∣∣
]
≤ σ√

t
.

In view of (46), we have

E
[[
E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

]
≤ σ

t3/2
.

(51)
Summing (51) over t, we obtain
∞∑
t=1

E
[[
E
[
L(t+1)(x(t+2))− L(t)(x(t+1))|F (t+1)

]]
0

]
< ∞.

Then it follows from the quasi-martingale convergence the-
orem (cf. [42, Th. 6]) that

{
L(t)(x(t+1))

}
converges almost

surely.
Part 3) Combining (36) and (41), we have

L(t)(x(t+1))− L(t−1)(x(t)) ≤

−η
∥∥x̂(t) − x(t)

∥∥2
2
+L(t)(x(t))− L(t−1)(x(t)). (52)

Besides this, it follows from the convergence of{
L(t)(x(t+1))

}
t

lim
t→∞

L(t)(x(t+1))− L(t−1)(x(t)) = 0,

and the strong law of large numbers that

lim
t→∞

L(t)(x(t))− L(t−1)(x(t)) = 0.

Taking the limit inferior of both sides of (52), we have

0 = lim inf
t→∞

{
L(t)(x(t+1))− L(t−1)(x(t))

}
≤ lim inf

t→∞

{
−η
∥∥x̂(t) − x(t)

∥∥2
2
+ L(t)(x(t))− L(t−1)(x(t))

}
≤ lim inf

t→∞

{
−η
∥∥x̂(t) − x(t)

∥∥2
2

}
+ lim sup

t→∞

{
L(t)(x(t))− L(t−1)(x(t))

}
= −η · lim sup

t→∞

∥∥x̂(t) − x(t)
∥∥2
2
≤ 0,

so we can infer that lim supt→∞
∥∥x̂(t) − x(t)

∥∥
2
= 0. Since

0 ≤ lim inft→∞
∥∥x̂(t)−x(t)

∥∥
2
≤ lim supt→∞

∥∥x̂(t)−x(t)
∥∥
2
=

0, we can infer that lim inft→∞
∥∥x̂(t) − x(t)

∥∥ = 0 and thus
limt→∞

∥∥x̂(t) − x(t)
∥∥ = 0.

Consider any limit point of the sequence
{
x(t)

}
t
, denoted

as x(∞). Since x̂ is a continuous function of x in view of (9)
and limt→∞

∥∥x̂(t) − x(t)
∥∥
2
= 0, it must be limt→∞ x̂(t) =

x̂(∞) = x(∞), and the minimum principle in (35) can be
simplified as

(xk − x
(∞)
k)(∇kf

(∞)(x(∞)) + ξ
(∞)
k) ≥ 0, ∀xk,

whose summation over k = 1, . . . ,K leads to

(x− x(∞))T (∇f (∞)(x(∞)) + ξ(∞)) ≥ 0, ∀x.

Therefore x(∞) minimizes L(∞)(x) and x(∞) = x⋆ almost
surely by Lemma 1. Since x⋆ is unique in view of Assump-
tions (A1’), the whole sequence {x(t)} has a unique limit point
and it thus converges to x⋆. The proof is thus completed.

REFERENCES

[1] Y. Yang, M. Zhang, M. Pesavento, and D. P. Palomar, “An online
parallel algorithm for spectrum sensing in cognitive radio networks,”
in The 48th Asilomar Conference on Signals, Systems and Computers,
2014, pp. 1801–1805.

[2] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Distributed detection
and estimation in wireless sensor networks,” in Academic Press Library
in Signal Processing, R. Chellappa and S. Theodoridis, Eds., 2014,
vol. 2, pp. 329–408.

[3] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, pp. 201–220, Feb. 2005.

[4] J. Mitola and G. Maguire, “Cognitive radio: making software radios
more personal,” IEEE Personal Communications, vol. 6, no. 4, pp.
13–18, 1999.

[5] R. Zhang, Y.-C. Liang, and S. Cui, “Dynamic Resource Allocation in
Cognitive Radio Networks,” IEEE Signal Processing Magazine, vol. 27,
no. 3, pp. 102–114, May 2010.

[6] Y. Yang, G. Scutari, P. Song, and D. P. Palomar, “Robust MIMO
Cognitive Radio Systems Under Interference Temperature Constraints,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 11,
pp. 2465–2482, Nov. 2013.

[7] S. Haykin, D. Thomson, and J. Reed, “Spectrum Sensing for Cognitive
Radio,” Proceedings of the IEEE, vol. 97, no. 5, pp. 849–877, May
2009.

[8] S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Cooperative Spectrum
Sensing for Cognitive Radios Using Kriged Kalman Filtering,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp.
24–36, Feb. 2011.

[9] F. Zeng, C. Li, and Z. Tian, “Distributed Compressive Spectrum
Sensing in Cooperative Multihop Cognitive Networks,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 37–48, Feb.
2011.

[10] O. Mehanna and N. D. Sidiropoulos, “Frugal Sensing: Wideband
Power Spectrum Sensing From Few Bits,” IEEE Transactions on Signal
Processing, vol. 61, no. 10, pp. 2693–2703, May 2013.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory. Prentice Hall, 1993.

[12] A. Sayed, Adaptive filters. Hoboken, N.J.: Wiley-Interscience, 2008.
[13] G. Mateos, I. Schizas, and G. Giannakis, “Distributed Recursive Least-

Squares for Consensus-Based In-Network Adaptive Estimation,” IEEE
Transactions on Signal Processing, vol. 57, no. 11, pp. 4583–4588,
Nov. 2009.

[14] G. Mateos and G. B. Giannakis, “Distributed Recursive Least-Squares:
Stability and Performance Analysis,” IEEE Transactions on Signal
Processing, vol. 60, no. 7, pp. 3740–3754, Jul. 2012.

[15] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the ℓ1-Norm,” IEEE
Transactions on Signal Processing, vol. 58, no. 7, pp. 3436–3447, Jul.
2010.

15

[16] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online Sparse System
Identification and Signal Reconstruction Using Projections Onto
Weighted ℓ1 Balls,” IEEE Transactions on Signal Processing, vol. 59,
no. 3, pp. 936–952, Mar. 2011.

[17] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The sparse RLS
algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp.
4013–4025, 2010.

[18] J. Langford, L. Li, and T. Zhang, “Sparse Online Learning via
Truncated Gradient,” Journal of Machine Learning Research, vol. 10,
pp. 777–801, 2009.

[19] Y. Chen and A. O. Hero, “Recursive ℓ1,∞ Group Lasso,” IEEE
Transactions on Signal Processing, vol. 60, no. 8, pp. 3978–3987, Aug.
2012.

[20] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retro-
spective,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 58, no. 1, pp. 267–288, Jun. 1996.

[21] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
Projection for Sparse Reconstruction: Application to Compressed
Sensing and Other Inverse Problems,” IEEE Journal of Selected Topics
in Signal Processing, vol. 1, no. 4, pp. 586–597, Dec. 2007.

[22] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-
Point Method for Large-Scale l1-Regularized Least Squares,” IEEE
Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–
617, Dec. 2007.

[23] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, Jan. 2009.

[24] T. Goldstein and S. Osher, “The Split Bregman Method for L1-
Regularized Problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 2, pp. 323–343, 2009.

[25] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel Selective
Algorithms for Nonconvex Big Data Optimization,” IEEE Transactions
on Signal Processing, vol. 63, no. 7, pp. 1874–1889, Nov. 2015.

[26] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, 2010.

[27] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
Numerical methods. Prentice Hall, 1989.

[28] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A
sparsity promoting adaptive algorithm for distributed learning,” IEEE
Transactions on Signal Processing, vol. 60, no. 10, pp. 5412–5425,
2012.

[29] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on
diffusion adaptation,” IEEE Transactions on Signal Processing, vol. 61,
no. 6, pp. 1419–1433, 2013.

[30] P. Di Lorenzo, “Diffusion Adaptation Strategies for Distributed
Estimation Over Gaussian Markov Random Fields,” IEEE Transactions
on Signal Processing, vol. 62, no. 21, pp. 5748–5760, Nov. 2014.

[31] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identifica-
tion,” IEEE International Conference on Acoustics, Speech and Signal
Processing, no. 3, pp. 3125–3128, 2009.

[32] ——, “Regularized Least-Mean-Square Algorithms,” Tech. Rep., Jun.
2010. [Online]. Available: http://arxiv.org/abs/1012.5066

[33] Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over
networks,” IEEE Transactions on Signal Processing, vol. 60, no. 8, pp.
4480–4485, 2012.

[34] Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, “A Parallel
Decomposition Method for Nonconvex Stochastic Multi-Agent Opti-
mization Problems,” Dec. 2015, to appear in IEEE Transactions on
Signal Processing.

[35] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by Partial Linearization: Parallel Optimization of
Multi-Agent Systems,” IEEE Transactions on Signal Processing,
vol. 62, no. 3, pp. 641–656, Feb. 2014.

[36] Z. Quan, S. Cui, H. Poor, and A. Sayed, “Collaborative wideband
sensing for cognitive radios,” IEEE Signal Processing Magazine,
vol. 25, no. 6, pp. 60–73, Nov. 2008.

[37] S. Ghadimi and G. Lan, “Optimal Stochastic Approximation Algorithms
for Strongly Convex Stochastic Composite Optimization I: A Generic
Algorithmic Framework,” SIAM Journal on Optimization, vol. 22,
no. 4, pp. 1469–1492, Nov. 2012.

[38] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, 2010.

[39] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[40] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ

Pr, 2004.
[41] J. F. Sturm, “Using SeDuMi 1.02: A Matlab toolbox for optimization

over symmetric cones,” Optimization Methods and Software, vol. 11,
no. 1-4, pp. 625–653, Jan. 1999.

[42] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online Learning for Matrix
Factorization and Sparse Coding,” The Journal of Machine Learning
Research, vol. 11, pp. 19–60, 2010.

[43] M. Razaviyayn, M. Sanjabi, and Z.-Q. Luo, “A stochastic successive
minimization method for nonsmooth nonconvex optimization,” Jun.
2013, submitted to Mathematical Programming. [Online]. Available:
http://arxiv.org/abs/1307.4457

[44] S. Sundaram and C. Hadjicostis, “Distributed function calculation and
consensus using linear iterative strategies,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 4, pp. 650–660, 2008.

[45] W. H. Greene, Econometric Analysis, 7th ed. Prentice Hall, 2011.
[46] “The MOSEK Optimization toolbox for MATLAB manual, version

7.0,” https://www.mosek.com/.
[47] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University

Press, 1985.
[48] R. Durrett, Probability: Theory and examples, 4th ed. Cambridge

University Press, 2010.

Yang Yang (S’09–M’13) received the B.S. degree
in School of Information Science and Engineering,
Southeast University, Nanjing, China, in 2009, and
the Ph.D. degree in Department of Electronic and
Computer Engineering, The Hong Kong University
of Science and Technology. From Nov. 2013 to Nov.
2015 he had been a postdoctoral research associate
at the Communication Systems Group, Darmstadt
University of Technology, Darmstadt, Germany. He
joined Intel Deutschland GmbH as a research scien-
tist in Dec. 2015.

His research interests are in distributed solution methods in convex op-
timization, nonlinear programming, and game theory, with applications in
communication networks, signal processing, and financial engineering.

Marius Pesavento (M’00) received the Dipl.-Ing.
and M.Eng. degrees from Ruhr-Universität Bochum,
Germany, and McMaster University, Hamilton, ON,
Canada, in 1999 and 2000, respectively, and the
Dr.-Ing. degree in electrical engineering from Ruhr-
Universität Bochum in 2005. Between 2005 and
2007, he was a Research Engineer at FAG Industrial
Services GmbH, Aachen, Germany. From 2007 to
2009, he was the Director of the Signal Processing
Section at mimoOn GmbH, Duisburg, Germany. In
2010, he became an Assistant Professor for Robust

Signal Processing and a Full Professor for Communication Systems in 2013 at
the Department of Electrical Engineering and Information Technology, Darm-
stadt University of Technology, Darmstadt, Germany. His research interests
are in the area of robust signal processing and adaptive beamforming, high-
resolution sensor array processing, multiantenna and multiuser communication
systems, distributed, sparse and mixed-integer optimization techniques for
signal processing and communications, statistical signal processing, spectral
analysis, parameter estimation. Dr. Pesavento was a recipient of the 2003
ITG/VDE Best Paper Award, the 2005 Young Author Best Paper Award of
the IEEE TRANSACTIONS ON SIGNAL PROCESSING, and the 2010 Best
Paper Award of the CROWNCOM conference. He is a member of the Editorial
board of the EURASIP Signal Processing Journal, an Associate Editor for
the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He currently is
serving the 2nd term as a member of the Sensor Array and Multichannel
(SAM) Technical Committee of the IEEE Signal Processing Society (SPS).

16

Mengyi Zhang (S’09–M’13) received the B.Sc.
degree in Department of Electronic Information from
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2009, and the Ph.D
degree in Department of Electronic and Computer
Engineering from The Hong Kong University of
Science and Engineering (HKUST), in 2013. Cur-
rently she is a Postdoctoral Research Associate in
Department of Computer Science and Engineering at
The Chinese University of Hong Kong (CUHK). Her
research interests are on statistical signal processing,

optimization, and machine learning with applications in wireless communica-
tions and financial systems.

Daniel P. Palomar (S’99-M’03-SM’08-F’12) re-
ceived the Electrical Engineering and Ph.D. degrees
from the Technical University of Catalonia (UPC),
Barcelona, Spain, in 1998 and 2003, respectively.

He is a Professor in the Department of Electronic
and Computer Engineering at the Hong Kong Uni-
versity of Science and Technology (HKUST), Hong
Kong, which he joined in 2006. Since 2013 he is
a Fellow of the Institute for Advance Study (IAS)
at HKUST. He had previously held several research
appointments, namely, at King’s College London

(KCL), London, UK; Stanford University, Stanford, CA; Telecommunica-
tions Technological Center of Catalonia (CTTC), Barcelona, Spain; Royal
Institute of Technology (KTH), Stockholm, Sweden; University of Rome “La
Sapienza”, Rome, Italy; and Princeton University, Princeton, NJ. His current
research interests include applications of convex optimization theory, game
theory, and variational inequality theory to financial systems, big data systems,
and communication systems.

Dr. Palomar is an IEEE Fellow, a recipient of a 2004/06 Fulbright Research
Fellowship, the 2004 and 2015 (co-author) Young Author Best Paper Awards
by the IEEE Signal Processing Society, the 2002/03 best Ph.D. prize in
Information Technologies and Communications by the Technical University
of Catalonia (UPC), the 2002/03 Rosina Ribalta first prize for the Best
Doctoral Thesis in Information Technologies and Communications by the
Epson Foundation, and the 2004 prize for the best Doctoral Thesis in
Advanced Mobile Communications by the Vodafone Foundation.

He is a Guest Editor of the IEEE Journal of Selected Topics in Signal
Processing 2016 Special Issue on “Financial Signal Processing and Machine
Learning for Electronic Trading” and has been Associate Editor of IEEE
Transactions on Information Theory and of IEEE Transactions on Signal
Processing, a Guest Editor of the IEEE Signal Processing Magazine 2010
Special Issue on “Convex Optimization for Signal Processing,” the IEEE
Journal on Selected Areas in Communications 2008 Special Issue on “Game
Theory in Communication Systems,” and the IEEE Journal on Selected
Areas in Communications 2007 Special Issue on “Optimization of MIMO
Transceivers for Realistic Communication Networks.”

