
Fast Discretized Gaussian Sampling and
Post-quantum TLS Ciphersuite

Xinwei Gao1[0000−0003−1155−9160], Lin Li1�, Jintai Ding2�[0000−0003−1257−7598],
Jiqiang Liu1, Saraswathy RV2, and Zhe Liu3

1 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, Beijing, 100044, P.R.China

{xinweigao, lilin, jqliu}@bjtu.edu.cn
2 Department of Mathematical Sciences, University of Cincinnati, Cincinnati, 45219,

United States
jintai.ding@gmail.com, rvsaras86@gmail.com

3 APSIA, Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg

sduliuzhe@gmail.com

Abstract. LWE/RLWE-based cryptosystems require sampling error term
from discrete Gaussian distribution. However, some existing samplers are
somehow slow under certain circumstances therefore efficiency of such
schemes is restricted. In this paper, we introduce a more efficient discre-
tized Gaussian sampler based on ziggurat sampling algorithm. We also
analyze statistical quality of our sampler to prove that it can be adop-
ted in LWE/RLWE-based cryptosystems. Compared with ziggurat-based
sampler by Buchmann et al., related samplers by Peikert, Ducas et al. and
Knuth-Yao, our sampler achieves more than 2x speedup when standard
deviation is large. This can benefit constructions rely on noise flooding
(e.g., homomorphic encryption). We also present two applications: First,
we use our sampler to optimize the RLWE-based authenticated key ex-
change (AKE) protocol by Zhang et al. We achieve 1.14x speedup on
total runtime of this protocol over major parameter choices. Second, we
give practical post-quantum Transport Layer Security (TLS) ciphersuite.
Our ciphersuite inherits advantages from TLS and the optimized AKE
protocol. Performance of our proof-of-concept implementation is close to
TLS v1.2 ciphersuites and one post-quantum TLS construction.

Keywords: Post-quantum Cryptography, Lattice, RLWE, Sampling, TLS

1 Introduction

1.1 Backgrounds

Various public key algorithms had been proposed and widely deployed in real
world since the ground-breaking Diffie-Hellman key exchange protocol [?]. With
the advent of quantum computers however, it is believed that most current pu-
blic key cryptographic constructions are no longer secure while lattice-based

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147015184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

algorithms can survive. Best known attacks on current cryptosystems are Shor’s
algorithm [?] and Grover’s algorithm [?]. Shor’s algorithm can break most public
key algorithms efficiently when practical quantum computers are available. Gro-
vers algorithm can speedup attacks against most symmetric ciphers and hash
functions, but they are considered to be relatively secure [?]. Bennett et al. pro-
ved that a quantum computer may provide quadratic speedup on brute-force
key search [?] and this attack can be defeated by doubling key length. However,
increasing key size while remain practical does not work for public key cryp-
tosystems.

During the past years, lattice-based cryptographic primitives had been re-
cognized for their attractive properties, including resistant to quantum attacks,
strong provable security and efficiency. Currently, no public algorithms can ef-
ficiently solve hard lattice problems. During the past decade, Learning With
Errors (LWE) [?] and Ring-LWE (RLWE) [?] underlie as foundation for nu-
merous modern lattice-based cryptosystems. Constructions based on these hard
problems enjoy strong provable security and high efficiency. The secret, fresh
and random error term e in LWE/RLWE makes both problems very hard to
solve when parameters are properly chosen. For common practices, e and secret
key s are sampled from discrete Gaussian distribution, therefore efficient sam-
pling algorithm is essential towards practical LWE/RLWE-based cryptographic
constructions. However, some papers have pointed out that sampling may take
up too much time in practice. Weiden et al. [?] reported that sampling time
takes up > 50% of total runtime when they implement Lyubashevskys signa-
ture scheme [?]. In the authenticated key exchange from ideal lattices protocol
proposed at EUROCRYPT 2015 [?], they report that sampling operations may
take up > 60% of total runtime. Therefore, design and implement Gaussian sam-
pler with high efficiency and nice statistical quality become a major technical
challenge.

1.2 Related Works

Buchmann et al. proposed the first ziggurat-based discrete Gaussian sampler at
SAC 2013 in [?]. This work adapts original ziggurat sampling algorithm designed
for continuous Gaussian distribution to discrete case. They claimed that when
standard deviation σ is large, their sampler outperforms several common sam-
pling methods. Peikert introduced a sampler using cumulated distribution tables
(CDT) at CRYPTO 2010 [?]. This sampler has been proven to be extremely ef-
ficient when σ is small, but rather inefficient for large σ. Ducas et al. gave a new
sampler that has better trade-off between time and memory at CRYPTO 2013
[?]. It does not use precomputed tables and they claim that sampler is efficient
even when σ is large. Knuth-Yao algorithm [?] can sample from Gaussian distri-
bution using binary tree search technique. It is efficient but might cost too much
memory. There are various constructions (e.g., homomorphic encryption) that
require samples from discrete Gaussian distribution with large σ. This technique
is known as noise-flooding.

A RLWE-based authenticated key exchange protocol was proposed at EU-
ROCRYPT 2015 [?] (denoted as AKE15). This protocol behaves in HMQV [?]
manner and its hardness is directly based on RLWE problem. It is mutual au-
thenticated, proven secure under Bellare-Rogaway model [?] and forward secure.
Bos et al. proposed an implementation of RLWE key exchange protocol at IEEE
Symposium on Security and Privacy 2015 [?] (denoted as BCNS15) and integra-
tion into TLS. Their ciphersuites adopt RSA or ECDSA as signing algorithm
which are vulnerable to quantum computers. Moreover, their ciphersuites cannot
achieve mutual authentication.

1.3 Contributions

Our contributions are summarized as follows: First, we introduce a much faster
discretized ziggurat Gaussian sampler. We discretize original ziggurat sampling
algorithm with several improvement techniques to make it more efficient. We
prove that the statistical distance between distribution generated by our sampler
and discrete Gaussian distribution is smaller than 2−80, therefore it can be used
in lattice-based cryptosystems. Performance of our optimized implementation
shows that our sampler is more than 2x speedup over [?], [?] and [?] when
σ is large. This could benefit constructions that using distributions with large
standard deviations to flood small noises (e.g., homomorphic encryption etc.).

Second, we optimize a RLWE-based authenticated key exchange protocol
[?]. We replace the sampler for sampling from distribution with large standard
deviation in original AKE15 with our efficient discretized Gaussian sampler. We
achieve 1.14x speedup on total runtime of this protocol over major parameter
choices.

Third, we integrate our optimized AKE implementation into TLS v1.2 as
post-quantum TLS ciphersuite. We also present proof-of-concept implementation
and benchmark. Our ciphersuite inherits advantages from both AKE15 and TLS
v1.2, including mutual authentication, resistant to quantum attacks and forward
secrecy. Performance of our ciphersuite is close to standard TLS v1.2 ciphersuites
and BCNS15.

1.4 Organization

In section ??, we recall background knowledge. In section ??, we present our
efficient discretized ziggurat-based Gaussian sampler, security proofs, implemen-
tation, benchmark and comparison with related works. In section ??, we show
how our sampler optimizes AKE15 and report benchmarks on 6 parameter choi-
ces ranging from 80 to 256-bit security. Section ?? introduces our post-quantum
TLS ciphersuite, implementation, runtime and comparisons with related works.
We conclude the paper in section ??.

2 Preliminaries

2.1 Notation

Let ring R = Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). Polynomial xn + 1 is n-th
cyclotomic polynomial where n is a power of 2. χ is a probability distribution
on Rq,← χ denotes sampling according to distribution χ,←r denotes randomly
choosing an element from a finite set. A discrete Gaussian distribution over Z
with standard deviation σ > 0 and mean c ∈ Z is denoted as DZ,σ,c. If c is 0,
we denote DZ,σ,c as DZ,σ. log denotes natural logarithm. Let L be a discrete
subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R > 0, let

ρσ,c(x) = e−
‖x−c‖2

2σ2 be the Gaussian function on Rm with center c and parameter
σ. Denote ρσ,c(L) =

∑
x∈L ρσ,c(x) be the discrete integral of ρσ,c over L, and

DL,σ,c be the discrete Gaussian distribution over L with center c and parameter

σ. Specifically, for all y ∈ L, we have DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

[?].

2.2 LWE and RLWE

LWE and its ring variant RLWE are hard problems when parameters are pro-
perly chosen. The core idea of these two problems is to perturb random linear
equations with small noise. Due to perturbation from error terms, it is very
hard to distinguish these equations from truly uniform ones. There are quan-
tum [?] and classical reduction [?] between LWE problem in average-case and
worst-case hard lattice problems. If there exists a polynomial-time algorithm to
solve LWE/RLWE problem, then there exists algorithms to solve hard lattice
problems. Hardness of LWE/RLWE serves as the solid foundation to nume-
rous cryptographic schemes. In practice, RLWE-based schemes are more prefe-
rable than LWE-based ones since LWE has an inherent quadratic overhead in
computation and communication (large matrix) and this leads to inefficiency.
RLWE sample is constructed as polynomial pair (a, b), where a ∈ Rq is uni-
formly random, b = a · s + e ∈ Rq, s is small and secret term, e is sampled
from discrete Gaussian distribution. Search-RLWE problem is to recover s given
many RLWE samples. Decision-RLWE problem is to distinguish b from uniform
random. There are similar variants for search-LWE and decision-LWE therefore
we ignore details. Cryptographic constructions based on RLWE (e.g., public key
encryption, signature, key exchange, homomorphic encryption etc.) can be made
truly efficient and practical for real-world deployment.

2.3 Statistical Distance

Since discrete Gaussian distribution has infinitely long tail and high precision for
the probabilities of sampled points, it is impossible to generate a truly discrete
Gaussian distribution within finite computations. Therefore, it is required that
the statistical distance between distribution generated by sampler and discrete
Gaussian distribution to be very small.

Statistical distance is defined as follows: If X and Y are two random variables
corresponding to given distributions on L, the statistical difference is defined as:

∆(X,Y) =
1

2

∑
x∈L
|Pr(X = x)− Pr(Y = x)| (1)

If the statistical distance between two distributions is very small (e.g., <
2−80), the difference between these two distributions is negligible.

3 Faster Discretized Gaussian Sampler

Generally, secret key s and error term e of LWE/RLWE-based schemes are sam-
pled from discrete Gaussian distribution. Sampling takes up large portion of
runtime in implementation, therefore efficiency of sampling algorithm is very
crucial. Ziggurat sampling algorithm [?] can sample from Gaussian distribution
very efficiently. However, ziggurat algorithm is designed for continuous distribu-
tion and lattice-based schemes require discretized version.

Our sampler is discretized version of [?] and we improve efficiency of our
sampler by eliminating computations in sampling operations. We prove that
our sampler has very close statistical distance to discrete Gaussian distribution,
therefore our sampler can be used in LWE/RLWE-based cryptosystems securely.
We also introduce optimized implementation. We explain the construction of
our sampler, analyze its statistical quality with proofs, present implementation
details, benchmark, discussion and comparisons with several samplers in the
following sections.

3.1 Ziggurat Gaussian Sampling Algorithm

We recall the ziggurat Gaussian sampling algorithm [?]: Area A encloses the
probability density function ρσ(x) with n rectangles. Rectangles are chosen in a
way such that they have equal area. (xi, yi) denotes the coordinate of the lower
right corner of each rectangle Ri. R

l
i lies within the area of ρσ(x) and Rri is partly

covered by ρσ(x). We first randomly select i ∈ [1, n] to select one rectangle, then
randomly sample x-coordinate inside Ri by choosing x′ ∈ [0, xi]. If x′ ≤ xi−1, x′

is accepted and returned, otherwise we sample a value γ ∈ [yi+1, yi]. If γ+yi+1 ≤
ρσ(x′), x′ is accepted and returned, otherwise it is rejected and start over again.
The probability of sampling a point in these rectangles are equal since they
have same size and rectangle is randomly chosen. Marsaglia also suggested an
algorithm for tail region: The following procedure is repeated until 2y > x2:
uniformly sample a ∈ (−1, 0) ∪ (0, 1) and b ∈ (0, 1), x = − 1

r log |a|, y = − log b.
If a > 0, return (r + x), else return −(r + x).

3.2 Our Fast Discretized Gaussian Sampling and Statistical Quality
Analysis

Our sampler is designed directly based on original ziggurat sampling algorithm,
which is designed for continuous Gaussian distribution. We discretize it and
improve the efficiency of this algorithm with several optimization techniques. The
result is our sampler can get samples subjected to discrete Gaussian distribution
efficiently with high statistical quality.

We notice that the most expensive part in original ziggurat algorithm is
exponential computation since original ziggurat algorithm requires large amount
of exponential computations. This computation is directly related to certain σ,
therefore it is more inefficient when σ is large. We improve this by sampling
from normal continuous Gaussian distribution (σ = 1, instead of distribution
with certain σ), then multiply the sampled value to σ and a randomly generated
sign. Finally, we round it to nearest integer to get discretized value. Our approach
effectively avoid the inefficiency where plenty of samplers cannot handle large σ
efficiently.

We optimize our sampler even further. We use 3 precomputed tables: ytab,
ktab and wtab to reduce online computations. Computations on generating these
tables are irrelevant from both sampling computation and different standard
deviations, since it is a once-for-all computation. Value of precomputed tables are
hard-coded in implementation. We can comfortably use same tables when dealing
with different standard deviations. Precomputed tables are generated as follows:
ytab = ρ1(xi) which stores tabulated values for the height of each ziggurat.
ktab is for quick acceptance check with ktab0 = b2128 · r · ρ1(r)/vc, ktabi =
b2128 ·(xi−1/xi)c, r = x127 ≈ 3.444286476761, v is the size of each rectangle. wtab
is for quick value conversion with wtab0 = 0.5128 ·v/ρ1(r) and wtabi = 0.5128 ·xi.
We note that other samplers may need to generate precomputed tables again
when σ changes while our sampler does not.

Pseudocode of our sampler is given in Figure ?? (urandom() refers to generate
a uniformly distributed 128-bit precision random float number between 0 and
1):

Here we prove that statistical distance between distribution generated by
our sampler and discrete Gaussian distribution is very small. We approximate
statistical distance between the distribution generated by our sampler and dis-
crete Gaussian distribution to be less than 2−80 for n = 1024 samples and
σ = 869.632. We utilize a similar approach as [?] since our sampler takes n sam-
ples from discrete Gaussian on Z to get discrete Gaussian distribution samples
on Zn. Conclusion still holds for other parameter choices. We first recall two
useful lemmas from [?] for our proofs:

Lemma 1. Let σ > 0 and n ∈ N be fixed. Consider distribution DZn,σ. Let
k ∈ N and suppose c ≥ 1 is such that:

c >
√

1 + 2 log c+ 2(k/n) log 2 (2)

Algorithm 1 Fast Discretized Gaussian Sampling

Input: ytab, ktab, wtab, r, σ
Output: Integer distributed according to discrete Gaussian distribution
1: while true do
2: i←r {0, · · · , 127}, s←r {−1, 1}
3: r ←rurandom(), j ← r · 2128, x← j · wtabi
4: if j < ktabi then
5: break
6: end if
7: if i < 127 then
8: y0← ytabi, y1← ytabi+1

9: y ← y1 + (y0− u1)·urandom()
10: else
11: x← r − log (1−urandom())/r
12: y ← e−r(x−0.5r)·urandom()
13: end if
14: if y < e−0.5x2

then
15: break
16: end if
17: end while
18: if s = 1 then
19: return bs · σe
20: else
21: return −bs · σe
22: end if

Then:

Pr
v←DZn,σ

(‖v‖ > c
√
nσ) <

1

2k
(3)

Next lemma gives us a way to approximate distributions in Z based on the
approximation we need for Zn:

Lemma 2. Let σ > 0, ε > 0 be given. Let k ∈ N and t > 0 be such that the
tail bound Pr(‖v‖ > tσ) as in lemma ?? is at most 1/2k. For x ∈ Z, denote
ρx as the probability of sampling x from the distribution Dσ. Suppose one has
computed approximations 0 ≤ px ≤ Q for x ∈ Z, −tσ ≤ x ≤ tσ such that:

|px − ρx| < ε (4)

and such that
∑tσ
x=−tσ = 1. Let D′ be the distribution on [−tσ, tσ] ∩ Z corre-

sponding to the probabilities px.
Denote by D′′ the distribution on Zn corresponding to taking n independent

samples vi from D′ and forming the vector v = (v1, · · · , vn). Then:

∆(D′′, DZn,σ) < 2−k + 2ntσε (5)

Let χβ denote the distribution generated by our sampler, DZn,β denote the
discrete Gaussian distribution on Zn. We show the approximation for our sam-
pler using parameters from parameter choice I in Table ??. In order to use lemma
??, we first need to compute the value of c for k = 81 and n = 1024 in lemma ??,
thus we have c = 1.242617 and this gives us tail t = c

√
n ≈ 40. Note that this

tail cut is much larger than most samplers (e.g., [?] has tail cut t = 13). For our
sampler, we have ∆(χ,DZn,β) < 2−k + 2ntβε. By choosing the precision level to
be 128 for the precomputed tables, we can approximate px in the lemma, for the
tail cut to be close to discrete Gaussian in Z with the error-constant ε as 2−128,
therefore we have ∆(χ,DZn,β) < 2−81 + 2 · 1024 · 40 · 869.632 · 2−128 < 2−80. The
efficiency of rejection procedure is estimated to be 98.78% [?] which contributes
to the performance of our sampler.

3.3 Implementation and Runtime

We use MPFR, GMP and NTL library implement our sampler. We set precision
to 128-bit to achieve highly accurate computations. We use 128-bit seed and
128-bit random numbers to remain secure against brute-force quantum attacks.
Each value in precomputed tables has 40 significant figures. In one execution,
a vector with 2048 samples is generated. Each sampled value mod to a 78-bit
prime p and stored in a vec ZZ p type vector. We test on a Lenovo ThinkCentre
M8500t equipped with 3.6GHz Intel Core i7-4790 processor running Ubuntu
14.04 64-bit version with 3GB memory. Our implementation is compiled by g++
4.8.4 with ‘-O3 -m64’ compilation flags and only runs on single core. We report
average runtime of 1,000 times execution of our sampler with different standard
deviations σ in Table ??:

Table 1. Performance of our sampler

σ
Million
samples/s

σ
Million
samples/s

σ
Million
samples/s

5 2.94 106 2.95 1012 2.91
50 3.01 107 2.92 1013 2.89
102 2.99 108 2.93 1014 2.87
103 3.02 109 2.90 1015 2.88
104 2.97 1010 2.88 1016 2.85
105 2.99 1011 2.89 1017 2.84

We also use Valgrind to profile memory cost. Our implementation costs max-
imum of 11.07MB memory to generate 2048 samples. Each precomputed ta-
ble consumes nearly 6KB of memory. Generate three precomputed tables costs
0.173s but they are computed offline and values are hard-coded in our imple-
mentation. In each execution, same precomputed tables are used and they are
irrelevant to different standard deviation. We report this timing for complete-
ness.

3.4 Comparisons and Discussions

We present detailed introduction, analysis and comparison with other samplers
in [?], [?], [?] and [?]. We also test actual performance of these samplers using
same test environment, compiler and compilation flags as section ?? with various
σ.

A ziggurat-based discrete Gaussian sampler was proposed in [?]. Their ap-
proach of adapting original ziggurat algorithm to discrete case is different from
ours. Compared with their work, our sampler has following improvements and
differences:

1. We effectively avoid expensive computation caused by standard deviation.
This major contributes to efficiency of our sampler.
Bottlenecks of their sampler are:
– More than 50% of total runtime is spent on computing e−x

2/2σ2

(x is
also related to σ) in constructing each rectangle.

– Computation in rejection judgement (calculate e−0.5x
2

when judging y

is smaller than e−0.5x
2

or not).
– Computation in tail region (y = e−r(x−0.5r)·urandom(), line 12 of algo-

rithm ??).
It is clear that when σ is large, large amount of time is spent on exponential
computation. Our sampler avoids this by sampling from normal distribution
first and this is much more efficient.

2. We use 3 precomputed tables to store the values required in sampling pro-
cedure, compared to only 1 table to store xi in their implementation. Our

sampler can fetch results from these tables directly instead of online com-
putation, therefore the performance is further improved. In our implemen-
tation, multiplication, conversion and generating random numbers take up
most time. We use their implementation to test their sampler using same
environment and precision with various σ. They claimed that their sampler
is the fastest when σ = 1.6 · 105. In our test environment, their sampler
produces 1.34 million samples/s and 1.23s to generate precomputed tables,
while our sampler produces 2.97 million samples/s with no additional time
cost. We fail to test σ > 108 cases since their code crashes.

3. Their implementation needs to compute precomputed tables again when
σ is different. This increases total sampling time significantly. Time spent
on generating these tables is not even counted when comparing sampling
performance in Table ??. If this part is also included, their sampler is much
slower. Our sampler can generate precomputed tables within 0.2 second.
These tables are hard-coded in implementation and irrelevant with different
σ.

4. Their sampler has statistical distance < 2−100 at 106-bit precision and it is
better than ours. We are able to achieve much faster sampling at the expense
of statistical quality to some extent, but statistical quality of our sampler is
still good enough to be adopted in LWE/RLWE-based constructions.

At CRYPTO 2010, Peikert gave a very efficient Gaussian sampler (denoted
as PKT) using cumulated distribution table (CDT) [?]. We implement it and
benchmark shows that PKT is extremely efficient and much faster than all others
when σ < 106, but it can be very slow when σ is large, thus it is more preferable to
deal with distributions with smaller σ. We did not count time spent on generating
precomputed tables in Table ?? when comparing sampling speed.

Ducas et al. presented a sampling algorithm that offered better trade-off
between time and memory at CRYPTO 2013 (denoted as DDLL) [?]. It can
sample efficiently without using precomputed tables. We implement DDLL and
it is faster than all other samplers (except ours) when σ is large, but our sampler
is twice as fast when σ > 108. We note that DDLL consumes less memory than
our sampler, thus it is more suitable in resource-constrained devices.

Knuth-Yao algorithm (denoted as KY) [?] can sample from Gaussian distri-
bution efficiently. According to [?], their KY implementation outputs nearly 5.8,
4.9, 3.2 and 1.2 million samples/s when σ = 10, 32, 1000 and 1.6·105 respectively.
However, when σ = 1.6 · 105, KY consumes 424 times more memory but only
4.26% faster than ziggurat sampler in [?], where their ziggurat implementation
consumes 30.57MB memory with 2048 samples by our profiling. We use another
KY implementation and test in same environment to verify their results. When
σ = 103, it outputs 7.85 million samples/s but costs more than 200MB memory.
When σ = 104, the process is terminated by operating system because it costs
too much memory.

The importance for developing efficient samplers for large standard devia-
tion is that various constructions require sampling from such distributions. For
constructions like homomorphic encryption, it is required to use noise-flooding

technique to preserve security and privacy of circuit etc. However, various cur-
rent samplers cannot deal with large standard deviation efficiently. Our efficient
sampler solve this problem. This is very important for efficiency and practicality
of such constructions.

We implement [?] and [?] fairly to test their performance. Implementation
of [?] we use is what they provided in the paper. We test all implementations
on same machine, compiled with same compilation flags, executes same number
of times and report average performance in Table ??. Sampling speed is given
in million samples per second. Time spent on generating precomputed tables is
given in second.

Table 2. Performance comparison between our sampler and related works

Standard
deviation

This work
Discrete zigguart ([?]) PKT ([?])

DDLL([?])
Sampling
speed

Generate
CDT (s)

Sampling
speed

Generate
CDT (s)

102 2.99 1.67 1.11 10.41 0.017 4.86
103 3.02 1.61 1.12 8.36 0.166 3.29
104 2.97 1.52 1.14 6.76 1.61 2.69
105 2.99 1.46 1.09 4.95 16.07 2.22
106 2.95 1.25 1.12 2.35 163.79 1.84
107 2.92 1.17 1.22 1.33 1620.8 1.64
108 2.93 1.04 1.11 Cost too much time 1.47

We can see that our sampler is much more efficient than [?], [?] and [?] when
standard deviation > 104. It is known that noise-flooding use much larger stan-
dard deviation than 104, therefore our sampler has an advantage. Moreover, our
sampler and DDLL do not require additional precomputations except sampling.
Before sampling operation, [?] and [?] first need to compute ziggurat tables and
CDT respectively. This costs additional time and it is inefficient.

4 Applications: Optimizing RLWE Key Exchange and
Post-quantum TLS Ciphersuite

4.1 Optimizing AKE15

Bottleneck and Our Approach AKE15 [?] is a RLWE-variant of HMQV. It
is mutual authenticated and proven secure under Bellare-Rogaway model with
enhancements to capture weak perfect forward secrecy. Communicating parties
do not need to encrypt or sign messages. One major bottleneck of this protocol
is sampling from Gaussian distribution. According to [?], sampling operation
may take up > 60% of total runtime for some parameter choices. In their im-
plementation, generating long-term static key, polynomial c and d adopt PKT
sampler. DDLL sampler is adopted in generating ephemeral keys and computing

shared session key. As we discussed in section ??, DDLL sampler is less efficient
than our sampler when σ is large, thus we replace DDLL sampler with ours to
sample from DZn,β to reduce total runtime. In one complete execution of key
exchange, it requires 3 online sampling operations from DZn,β : 2 in ephemeral
key generation and 1 in shared key computation, thus our sampler can improve
the efficiency of their implementation. Sampling from DZn,α and DZn,γ still
uses PKT sampler as original work. Parameter choices of the protocol remain
the same and we recall them in Table ??:

Table 3. Parameter choices of AKE15 protocol

Parameter
choice

Security
(bits)

n α γ β
Bit-length
of q

I 80 1024 3.397 101.919 8.7 · 102 40
II 80 2048 3.397 161.371 4.56 · 108 78
III 128 2048 3.397 161.371 1.78 · 106 63
IV 128 4096 3.397 256.495 3.82 · 1015 125
V 192 4096 3.397 256.495 2.33 · 1011 97
VI 256 4096 3.397 256.495 9.12 · 108 81

Implementation and Performance We report average runtime of our preli-
minary implementation of original AKE15 and our optimized version. Our im-
plementation uses NTL 9.6.2, MPFR 3.1.3 and GMP 6.1.0 library with 128-bit
precision. Implementation of AKE15 is executed 1,000 times and use same test
environment as section ??. Average runtime is reported in Table ??:

Table 4. Sampling and runtime of original and optimized AKE15 protocol

Parameter
choice

DDLL
(ms)

This work
(ms)

Sampling
speedup

Original AKE15
runtime (ms)

Optimized AKE15
runtime (ms)

Runtime
speedup

I 0.312 0.355 0.88x 2.993 4.687 0.64x
II 1.635 0.694 2.36x 11.673 10.361 1.13x
III 1.269 0.721 1.76x 9.963 9.132 1.09x
IV 2.591 1.397 1.85x 26.741 21.964 1.22x
V 2.514 1.394 1.80x 22.865 21.457 1.07x
VI 3.349 1.394 2.40x 24.887 21.064 1.18x

By adopting our sampler, we achieve nearly 1.14x speedup of total runtime of
this protocol for last 5 parameter choices. We fail to optimize parameter choice
I since when σ is not large enough, our sampler is outperformed by DDLL and
this leads to deceleration.

4.2 Practical Post-quantum TLS Ciphersuite

Introduction TLS is designed to ensure secure communications over adversary
controlled network, providing secrecy and data integrity between two commu-
nicating parties. It is widely deployed in real world and it already comprises
more than 50% of total web traffic. It supports various algorithms for key ex-
change, authentication, encryption and message integrity check. Since TLS is so
important and we are moving into the era of quantum computing, we consider
TLS should also adopt post-quantum cryptographic primitives. However, most
ciphersuites in the latest version of TLS fail to meet the demands since available
key exchange and signature algorithms can be broken by quantum computers.

Our Post-quantum TLS Ciphersuite We integrate optimized AKE15 into
TLS v1.2 and this forms our post-quantum TLS ciphersuite. We give detailed
cryptographic primitive combination of our ciphersuite:

– Key exchange and authentication: We integrate optimized AKE15 to achieve
post-quantum key exchange and authentication. Quantum-insecure digital
signatures are no longer necessary. Parameter choices follow Table ??.

– Authenticated encryption: We choose AES-128-GCM. It provides confiden-
tiality, integrity and authenticity assurances on data.

– Hash function: We choose SHA-256. Our choice followed the principle pro-
posed by NIST of deprecating SHA-1.

Implementation and Runtime We use mbedTLS 1.3.10, WinNTL 9.6.2,
MPFR 3.1.1 and MPIR 2.6.0 to implement our ciphersuite. Test programs si-
mulate a TLS session between client and server. Server listens on localhost at
port 443 and client communicates with local server. We measure runtime of ses-
sion initiation and handshake. Test programs run in the following environment:
Lenovo ThinkCentre M8500t equipped with a 3.6GHz Intel Core i7-4790 pro-
cessor and 8GB RAM running Windows 7 SP1 64-bit version. Test programs
are compiled by Visual Studio 2010 with optimization flags and execute 1,000
times using single core. For parameter choices aimed at 80, 128, 192 and 256-
bit security, average time cost is 24.417ms, 51.224ms, 123.443ms and 98.842ms
respectively, communication overhead for key exchange messages is 33.125KB,
102.25KB, 312.25KB and 264.5KB respectively. In our ciphersuite, most time is
spent on sending/receiving public key and key exchange messages since they are
much larger than standard TLS. This might be a bottleneck of our ciphersuite.

Comparison We compare performance of some ciphersuites in standard TLS
and the post-quantum TLS ciphersuite proposed at IEEE S&P 2015 with our
work. Our ciphersuite is faster in some cases but slower in others.

– Standard TLS v1.2: We choose two standard TLS ciphersuites: 0x9F (1024-
bit DH+2048-bit RSA) and 0xC030 (elliptic curve secp521r1+2048-bit RSA).

Test environment and procedure remain the same as section ??. Runtime of
these two ciphersuites are 30.959ms and 49.742ms respectively. For compa-
rison, our 80-bit parameter choice I is faster than ciphersuite 0x9F, 256-bit
parameter choice VI is slower than ciphersuite 0xC030.

– BCNS15: This work introduced implementation of an unauthenticated post-
quantum key exchange aimed at 128-bit security and integration in TLS
protocol. We implement client/server side test programs using code in [?]
and test these ciphersuites: RLWE-RSA-AES128-GCM-SHA256 and RLWE-
ECDSA-AES128-GCM-SHA256. Test environment remain the same as section
??. For first ciphersuite, server adopts a self-signed 3072-bit RSA certificate
and average execution time is 44.536ms. For the second ciphersuite, server
adopts a self-signed ECDSA certificate using curve secp256k1 and average
execution time is 41.539ms. Our post-quantum TLS ciphersuite at same
128-bit security is slower and average runtime is 51.224ms. Our ciphersuite
has much larger communication overhead than this work (around 10KB).
Another difference is that our ciphersuite can achieve mutual authentication
while this work only authenticates the server. Furthermore, we use different
library and operating system to test, thus it is harder to compare directly
and fairly. We believe their ciphersuites have better performance and smaller
communication cost, but ours is more closer to a fully post-quantum TLS
ciphersuite.

5 Conclusion

In this paper, we introduce a much faster discretized Gaussian sampler based
on the ziggurat sampling algorithm. We utilize several optimization techniques
to improve our sampler, so that our sampler has advantage on computation effi-
ciency. We prove that the statistical distance between distribution generated by
our sampler and discrete Gaussian distribution is very small so that our sampler
is suitable for lattice-based cryptography. We also present optimized implemen-
tation and comparisons with several related samplers. Results show that our
sampler is very computational efficient, especially when σ is large. This can bene-
fit constructions using noise-flooding technique (e.g., homomorphic encryption).
We also give two applications: first is optimizing RLWE-based authenticated key
exchange protocol. We achieve 1.14x speedup on total runtime of this protocol
over major parameter choices. Another application is we present our practical
post-quantum TLS ciphersuite. Performance of ciphersuite is close to standard
TLS v1.2 ciphersuites and BCNS15. We believe our sampler and post-quantum
TLS ciphersuite will have further optimizations and more applications.

6 Acknowledgement

We would like to thank Jiang Zhang for valuable help and discussions, Chen Feng
for the support on this paper. We also thank anonymous reviewers for valuable
feedbacks. Implementation for testing Knuth-Yao sampler is from Rachid El

Bansarkhani. This work is supported by National Natural Science Foundation
of China (Grant No. 61402035) and Fundamental Research Funds for the Central
Universities (Grant No. 2014JBM033, No. 2015YJS039 and No. 2017YJS038).

	Fast Discretized Gaussian Sampling and Post-quantum TLS Ciphersuite

