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Abstract. Compact implementations of the ring variant of the Learning
with Errors (Ring-LWE) on the embedded processors have been actively
studied due to potential quantum threats. Various Ring-LWE implemen-
tation works mainly focused on optimization techniques to reduce the ex-
ecution timing and memory consumptions for high availability. For this
reason, they failed to provide secure implementations against general
side channel attacks, such as timing attack. In this paper, we present se-
cure and fastest Ring-LWE encryption implementation on low-end 8-bit
AVR processors. We targeted the most expensive operation, i.e. Number
Theoretic Transform (NTT) based polynomial multiplication, to provide
countermeasures against timing attacks and best performance among
similar implementations till now. Our contributions for optimizations are
concluded as follows: (1) we propose the Look-Up Table (LUT) based fast
reduction techniques for speeding up the modular coefficient multiplica-
tion in regular fashion, (2) we use the modular addition and subtraction
operations, which are performed in constant timing. With these opti-
mization techniques, the proposed NTT implementation enhances the
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performance by 18.3∼22% than previous works. Finally, our Ring-LWE
encryption implementations require only 680,796 and 1,754,064 clock cy-
cles for 128-bit and 256-bit security levels, respectively.

Keywords: ring learning with errors, software implementation, public
key encryption, 8-bit AVR, number theoretic transform, discrete Gaus-
sian sampling, timing attack

1 Introduction

Classic public key cryptography algorithms such as RSA and Elliptic Curve
Cryptography (ECC) are built based on integer factorization and discrete log-
arithm problems, which are believed to be secure against classical computer
environments with properly chosen parameters. For this reason, a number of
works focused on compact implementations of RSA and ECC [17, 22, 5, 21, 13,
23, 9, 12, 24, 10, 8, 6]. However, such hard problems can be solved using Shor’s
algorithm on a sufficient large quantum computer in polynomial time [25]. To
defeat potential attacks and threats, lattice-based cryptography is considered as
one of the most promising candidates for post-quantum cryptography. Lattice-
based cryptography is built based on worst-case computational assumptions in
lattices that would remain hard even for quantum computers. Furthermore, the
emerging Internet of Things (IoT) technology introduces new computing envi-
ronments including all kinds of sensors, actuators, meters, consumer electronics,
medical monitors, household appliances and vehicles. Since these devices are very
resource-constrained in terms of computing power, power supply and memory
resources, implementing public-key cryptographic algorithms on low-end 8-bit
processors poses a big challenge. Therefore, it is necessary to further study the
post-quantum cryptosystems on the low-end IoT devices.

The introduction of Learning with Errors (LWE) problem and its ring variant
(Ring-LWE) [18, 14] provide efficient ways to build lattice-based public key cryp-
tosystems. The following software implementations of Ring-LWE based public-
key encryption or digital signature schemes improved performance and memory
requirements: Oder et al. presented an efficient implementation of Bimodal Lat-
tice Signature Scheme (BLISS) on a 32-bit ARM Cortex-M4F microcontroller
[15]. De Clercq et al. implemented Ring-LWE encryption scheme on the identical
ARM processors [3]. They utilized 32-bit registers to retain two 13 ∼ 14 coeffi-
cients. Boorghany et al. implemented a lattice-based cryptographic scheme on an
8-bit processor for the first time in [1, 2]. The authors evaluated four lattice-based
authentication protocols on both 8-bit AVR and 32-bit ARM processors. In par-
ticular, Fast Fourier Transform (FFT) transform and Gaussian sampler function
are implemented. In LATINCRYPT’15, Pöppelmann et al. studied and com-
pared implementations of Ring-LWE encryption and BLISS on an 8-bit Atmel
ATxmega128 microcontroller [16]. In CHES’15, Liu et al. optimized implemen-
tations of Ring-LWE encryption by presenting efficient modular multiplication,
NTT computation and refined memory access schemes to achieve high perfor-
mance and low memory consumption [11]. They presented two implementations
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of Ring-LWE encryption scheme for both medium-term and long-term security
levels on an 8-bit AVR processor. Liu et al. presented the first secure Ring-LWE
encryption and BLISS signature implementations against timing attack [7]. NTT
and sampling computations are implemented in constant time to prevent timing
attack. Particularly, modular reduction is performed in Montgomery reduction
to reduce computation complexity. Recently, in [4, 9], high efficient implementa-
tions on ARM-NEON and MSP430 processors are also covered.

1.1 Contributions

This paper continues the line of research on the secure and compact implemen-
tations of the Ring-LWE encryption scheme on low-end 8-bit AVR processor.
Core contributions are the techniques to prevent information leakage and opti-
mizations to improve real-world performance of Ring-LWE encryption scheme.

In particular, we focused on the optimization of Number Theoretic Transform
(NTT) based polynomial multiplication, which is the most expensive computa-
tion in the Ring-LWE. In NTT computation, a number of modular arithmetic
operations are required and optimization of modular reduction is highly related
with performance. To accelerate performance, we use Look Up Table (LUT)
based fast reduction techniques for modular coefficient multiplication. Modular
addition and subtraction operations are also implemented in constant time and
incomplete representation. To optimize the performance in assembly level, NTT
routines fully utilize general purpose registers in the target processors.

Based on the above NTT optimization techniques, we present secure and
compact implementations of Ring-LWE encryption scheme on an low-end 8-bit
AVR processor. All operations are designed to prevent the timing attack. The
implementation only requires 681K and 1, 754K clock cycles for 128-bit and 256-
bit security level encryption respectively.

The rest of this paper is organized as follows. In section 2, we recall back-
ground of Ring-LWE encryption scheme, NTT algorithm, and previous imple-
mentation techniques for NTT algorithm. In Section 3, we present optimization
techniques for NTT on low-end 8-bit AVR processors. In particular, we propose
techniques to prevent information leakage through timing and reduce execution
time of NTT algorithm. In Section 4, we report performance of our implementa-
tion and compare with the state-of-the-art NTT and Ring-LWE encryption on
the low-end 8-bit AVR platforms. Finally, we conclude the paper in Section 5.

2 Background

2.1 Ring-LWE encryption scheme

In 2010, Lyubashevshy et al. proposed an encryption scheme based on a more
practical algebraic variant of LWE problem defined over polynomial rings Rq =
Zq[x]/⟨f⟩ with an irreducible polynomial f(x) and a modulus q. In Ring-LWE
problem, elements a, s and t are polynomials in the ring Rq. Ring-LWE encryp-
tion scheme proposed by Lyubashevshy et al. was later optimized in [20]. Roy et
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al.’s variant aims at reducing the cost of polynomial arithmetic. In particular, the
polynomial arithmetic during a decryption operation requires only one Number
Theoretic Transform (NTT) operation. Beside this computational optimization,
the scheme performs sampling from the discrete Gaussian distribution using a
Knuth-Yao sampler. In next subsection, we will first present mathematical con-
cepts of NTT and Knuth-Yao sampling operations, then we will describe the
steps used in the Roy et al.’s version of the encryption scheme.

Now, we describe steps applied in the encryption scheme proposed by Roy
et al. [20]. We denote the NTT of a polynomial a by ã.

– Key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
sampler twice.

r̃1 = NTT (r1), r̃2 = NTT (r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. Public key is
polynomial pair (ã, p̃) and private key is polynomial r̃2.

– Encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a binary
vector of n bits. This message is first encoded into a polynomial in the
ring Rq by multiplying the bits of message by q/2. Three error polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is computed as a set of

two polynomials (C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 +NTT (e3 +M ′))

– Decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT is performed to recover
M ′:

M ′ = INTT (r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

2.2 Number Theoretic Transform

We use the Number Theoretic Transform (NTT) to perform polynomial mul-
tiplication. NTT can be seen as a discrete variant of Fast Fourier Transform
(FFT) but performs in a finite ring Zq. Instead of using the complex roots of

unity, NTT evaluates a polynomial multiplication a(x) =
n−1∑
i=0

aix
i ∈ Zq in the

n-th roots of unity ωi
n for i = 0, . . . , n − 1, where ωn denotes a primitive n-th

root of unity. Algorithm 1 shows the iterative version of NTT algorithm.
The iterative NTT algorithm consists of three nested loops. The outermost

loop (i-loop) starts from i = 2 and increases by doubling i, and the loop stops
when i = n, thus it has only log2n iterations. In each iteration, the value of

twiddle factor ωi are computed by executing a power operation ωi = ω
n/i
n ,

and the value of ω is initialized by 1. Compared to i-loop, the j-loop executes
more iterations, the number of iteration can be seen as a sum of a geometric
progression for 2i where i starts from 0 and has a maximum value of log2(n−1),
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Algorithm 1 Iterative Number Theoretic Transform

Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and n-th primitive ω ∈ Zq of
unity

Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V
10: ω = ω · ωi

11: return a

thus, the j-loop has n−1 iterations. In each iteration of j-loop, the twiddle factor
ω is updated by performing a coefficient modular multiplication. Apparently,
the innermost loop (k-loop) occupies most part of the execution time of NTT
algorithm since it is executed roughly n

2 log2n times. In each iteration of the
innermost loop, two coefficients a[i+j] and a[i+j+i/2] are loaded from memory
into registers, and then a[i+j+ i/2] are multiplied by the twiddle factor ω, after
that, the value of a[k + j] and a[k + j + i/2] are updated and stored in the
memory.

2.3 Previous Implementations of NTT

In LATINCRYPT’15, Pöppelmann et al. optimized the NTT operation by merg-
ing inverse NTT and multiplication by powers of ψ−1. Furthermore, bit-reversal
step is removed by the manipulation of the standard iterative algorithms. In
CHES’15, Liu et al. suggested the high-speed NTT operations with efficient co-
efficient modular multiplication [11]. They presented the Move-and-Add (MA)
method to perform the 16-bit wise coefficient multiplication and the Shift-Add-
Multiply-Subtract-Subtract (SAMS2) techniques to replace the expensive re-
duction operations with the MUL instructions by cheaper shift and addition in-
structions. In TECS’17, Liu et al. improved the modular reduction by using
Montgomery reduction [7]. This improves the previous SAMS2 techniques when
the case requires a number of shift and addition operations on low-end devices.
The new technique ensures the constant time computation together with high
performance.

3 Proposed Methods

NTT computation takes up the majority of the execution time on modular mul-
tiplication operation since it is performed in the innermost k-loop. The 16-bit
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wise multiplication requires only 4 8-bit wise multiplication operations and this
is already well covered in previous works [11]. Thus, the optimization of fast
reduction operation is a perquisite for high-speed implementation of NTT al-
gorithm. We chose the prime modulus q = 7681 (i.e. 0x1e01 in hexadecimal
representation) and q = 12289 (i.e. 0x3001 in hexadecimal representation) for
the target parameters, which are used in previous works [11, 7].

Unlike previous SAMS2 method by [11, 7], we propose an optimized Look-
Up Table (LUT) based fast reduction technique for performing the mod7681
and mod 12289 operations. The main idea is to first reduce the result by using
the 8-bit wise pre-computed reduced results, and then perform the tiny fast
reduction steps on short coefficients. The results are kept in the incomplete
representation in order to optimize the number of subtraction in the reduction
step. For the case of prime modulus q = 7681, the variables are always kept in
range of (0, 214 − 1) in incomplete representations and the intermediate results
(IR) of multiplication are kept in (0, 228 − 1). We set two pre-computed LUTs
with (mod 7681) operation. One input variable are ranging from 17-th bit to
24-th bit, which are the values located in (x × 216) where x is ranging from 0
to 28. Afterwards, the variable is reduced to 13-bit wise results through (mod
7681) operation (≈ ((IR div 216) mod 28) mod 7681). The other input variable
is from 25-th bit to 28-th bit, which are values (x × 224) where x is ranging
from 0 to 245. The LUT ensures that the variable is reduced to the 13-bit results
(≈ (IR div 224) mod 7681). After two times of LUT based reduction operations,
the two 13-bit wise outputs are added to the remaining 16-bit wise intermediate
results (1-st ∼ 16-th bits), which output 17-bit intermediate results. Afterwards,
the tiny fast reduction is performed on the intermediate results. Observing that
213 ≡ 29 − 1 mod 7681, the fast reduction can be performed with 16-bit wise
addition (29) and 8-bit wise subtraction operations (−1).

The detailed method is described in Figure 1. We keep the product in four
registers (r3, r2, r1, r0), which has been marked by different colors. Each of reg-
ister (r3, r2, r1, r0) is 8-bit long. The colorful parts mean that this bit has been
occupied while the white part means the current bit is empty. The reduction
with 7681 using LUT approach can be performed as follows:

1. LUT access. We first perform the LUT access with variable (r2) to get the 13-
bit wise reduced results (s1 and s0). Then, the variable (r3) is also reduced
to the results (t1 and t0). Both results are 13-bit wise long and stored in 2
8-bit registers.

2. Addition. We then perform the addition of (r1, r0)+(s1, s0)+(t1, t0). Appar-
ently, the sum result is less than 18-bit, which can be kept in three registers
(k2, k1, k0).

3. Shifting. We right shift (k2, k1, k0) by 13-bit to get the result (u0). After-
wards, the value (u0) is left shifted by 9-bit to get the (d1, d0).

5 Two LUTs only require 1KB (28×2+28×2) and the LUTs are stored in the ROM.
Considering that AVR platforms support ROM size in 128, 256, and 384 KB, the
ROM consumption of LUT is negligible.
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Fig. 1. Look-Up Table based Fast Reduction for q = 7681, 1⃝ 2⃝: LUT access; 3⃝:
addition; 4⃝ 5⃝: shifting; 6⃝: modulo; 7⃝: addition and subtraction.

4. Modulo. Thereafter, the intermediate results (k2, k1, k0) below 13-bit are
extracted and we obtain the (w1, w0).

5. Addition and Subtraction. Finally, we perform the addition and subtraction
operations of (w1, w0) + (d1, d0)− u0.

In Algorithm 2, the LUT based modular reduction in source code level is
described. In Step 1∼13, MOV-and-ADD multiplication is used to perform the
16-bit wise multiplication. The 32-bit intermediate results are stored in 4 8-bit
registers (R18, R19, R20, R21). In Step 14∼15, the address of LUT 1 is loaded
to 2 registers (R30, R31). Then, the 17∼24-th bits (R20) is added to the address.
When the address pointer is ready, the LUT access is performed. From Step 22 to
29, the 25∼28-th bits (R21) are used to access the LUT 2. Afterwards the results
are reduced. In Step 30∼31, two 13-bit LUT results are added. Afterwards, the
summation is added to the intermediate results. From Step 35 to 45, tiny fast
reduction is performed on 17-bit intermediate results with 16-bit wise addition
and 8-bit wise subtraction operations.

Since the LUT approach is generic approach for any primes, proposed LUT
based approach is also available in the case of mod 12289. Two differences are
LUT value and final step (tiny fast reduction). We need to construct the (mod
12289)’s LUT. For the final step, we perform the tiny fast reduction with modulus
equation (214 ≡ 212 − 1 mod 12289). The detailed descriptions are drawn in
Figure 2. We execute two LUT and one tiny final reduction. After the tiny fast
reduction, it outputs 16-bit results and this can incur the overflow in following
operations. We perform the fast reduction once again to fit the results within 15-
bit. By leaving the most significant bit in the register, addition and subtraction
operations do not need to check whether the intermediate results generate the
overflow/underflow or not.
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Algorithm 2 LUT based modular reduction in source code (mod 7681)

Input: operands R22, R23, R24, R25

Output: results {R24, R25}
1: CLR R26 {MOV-and-ADD}
2: MUL R24, R22

3: MOVW R18, R0

4: MUL R25, R23

5: MOVW R20, R0

6: MUL R24, R23

7: ADD R19, R0

8: ADC R20, R1

9: ADC R21, R26

10: MUL R25, R22

11: ADD R19, R0

12: ADC R20, R1

13: ADC R21, R26

14: LDI R30, lo8(LUT 1) {LUT access}
15: LDI R31, hi8(LUT 1)

16: ADD R30, R20

17: ADC R31, R26

18: ADD R30, R20

19: ADC R31, R26

20: LPM R22, Z+

21: LPM R23, Z+

22: LDI R30, lo8(LUT 2) {LUT access}
23: LDI R31, hi8(LUT 2)

24: ADD R30, R21

25: ADC R31, R26

26: ADD R30, R21

27: ADC R31, R26

28: LPM R24, Z+

29: LPM R25, Z+

30: ADD R24, R22

31: ADC R25, R23

32: ADD R24, R18

33: ADC R25, R19

34: ADC R26, R26

35: MOV R20, R25{tiny fast reduction}
36: ANDI R25, 0X1F

37: LSR R26

38: ROR R20

39: SWAP R20

40: ANDI R20, 0X0F

41: SUB R24, R20

42: SBC R25, R26

43: LSL R20

44: ADD R25, R20

45: CLR R1

Constant Modular Addition and Subtraction To prevent timing attacks,
modular addition and subtraction operations should be implemented in constant
time. We used the incomplete representation and unsigned type for variable
format. The results are always kept in 2 bytes and positive values. The detailed
descriptions are available in Algorithm 3. First addition or subtraction operation
is performed. In particular, subtraction operation is performed with addition
of variable (q2) to avoid underflow condition. From Step 6 to 9, the tiny fast
reduction operation is performed. However, the result we get in Step 9 may still
be larger than modulus (q = 7681), thus, we do the correction by subtracting
the modulus (q). If the underflow condition occurs, we perform the addition with
modulus (q) with the mask variable (P ). Finally, the results (R) are always kept
within 0x2000 in the incomplete representation.
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Fig. 2. Look-Up Table based Fast Reduction for q = 12289, 1⃝ 2⃝: LUT access; 3⃝:
addition; 4⃝ 5⃝: shifting; 6⃝: modulo; 7⃝: addition and subtraction; 8⃝ 9⃝: shifting; 10⃝:
modulo; 11⃝: addition and subtraction.

Algorithm 3 Constant modular addition/subtraction for q = 7681 (0x1E01)

Require: Two 2-word operands A and B in [0, 214 − 1].
Ensure: The incomplete result R = A(+,−)B mod 0x2000 [0, 214 − 1] or 0x1E01.
1: if addition then
2: R← A+B {addition operation}
3: else if subtraction then
4: q2 ← q ≪ 2 {subtraction operation}
5: R← q2 +A−B {underflow prevention}
6: R1 ← R≫ 13 {tiny fast reduction}
7: R2 ← (R≫ 4)&0x1E00
8: R← R&0x1FFF
9: R← R−R1 +R2

10: if complete then
11: {Borrow,R} ← R− 0x1E01 {last correction}
12: P ← 0x0000−Borrow
13: R← R+ (0x1E01&P )
14: return R
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Algorithm 4 Constant modular addition/subtraction for q = 12289 (0x3001)

Require: Two 2-word operands A and B in [0, 215 − 1].
Ensure: The incomplete or complete result R = A(+,−)B mod 0x4000 ∈ [0, 215 − 1]

or 0x3001.
1: if addition then
2: R← A+B {addition operation}
3: else if subtraction then
4: q2 ← q ≪ 2 {subtraction operation}
5: R← q2 +A−B {underflow prevention}
6: R1 ← R≫ 14 {tiny fast reduction}
7: R2 ← (R≫ 2)&0x7000
8: R← R&0x3FFF
9: R← R−R1 +R2

10: if complete then
11: {Borrow,R} ← R− 0x3001 {last correction}
12: P ← 0x0000−Borrow
13: R← R+ (0x3001&P )
14: return R

For the case of 12289, we can adopt the constant modular addition and
subtraction techniques in Algorithm 3. Only the parameters are different. The
detailed descriptions are given in Algorithm 4. Firstly, the addition and subtrac-
tion operations are performed. Afterwards, the fast reduction is performed. The
obtained results (R) are always kept within 0x4000 in the incomplete represen-
tation.

4 Performance Evaluation

This section presents performance results of our implementation. We first give
the experimental platform in section 4.1. Afterwards, we show a comparison with
the previous modular multiplication and NTT implementations in section 4.2.
Finally, we show a comparison with the previous Ring-LWE implementation in
section 4.3.

4.1 Experimental platform

Our implementation uses ATxmega128A1 processor on an Xplain board as tar-
get platform. This processor has a maximum frequency of 32 MHz, 128 KB flash
program memory, and 8 KB SRAM. It supports an AES crypto-accelerator and
can be used in a wide range of applications, such as industrial, hand-held bat-
tery applications as well as some medical devices. The implementation is written
using a mixed ANSI C and Assembly languages. In particular, the main struc-
ture and interface are written in C while the core operations such as modular
arithmetic is implemented in Assembly. For the LUT based approach, the con-
stant LUT variables are stored in flash program memory, which requires 0.5KB
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Table 1. Execution time of modular multiplication and NTT (in clock cycles), where
128-bit security represents (n : 256, q : 7681) and 256-bit security represents (n : 512, q :
12289) on 8-bit AVR processors, e.g., ATxmega64, ATxmega128.

Implementation
128-bit security 256-bit security

MOD MUL NTT Const Mod MUL NTT Const

Boorghany et al. [2] N/A 1,216,000 – N/A 2,207,787 –

Boorghany et al. [1] N/A 754,668 – N/A N/A –

Pöppelmann et al. [16] N/A 334,646 – N/A 855,595 –

Liu et al. [11] N/A 193,731 – N/A 441,572 –

Liu et al. [7] 73 194,145
√

70 516,971
√

This work 57 158,607
√

66 403,224
√

for saving the parameters and 3 clock cycles for each byte access. We complied
our implementation with speed optimization option ‘-O3’ on Atmel Studio 6.2.
In order to obtain accurate timing, we execute each operation for at least 1000
times and report average cycle count for each operation.

4.2 Comparison of modular multiplication and NTT

Table 1 summarizes execution time of modular multiplication and NTT for both
of medium-term and long-term security levels. First, various works including [2,
1, 16, 11] are not constant-time solutions, which means the attackers can per-
form timing attack to extract the secret information. Recent work by Liu et al.
introduced the secure approach with tiny Montgomery reduction [7]. They per-
form the Montgomery reduction to reduce the 28/30-bit variables to 14/15-bit
results. However, the complexity of n-word Montgomery reduction is generally
n2 +n, which is still high overheads on the low-end devices. Unlike previous ap-
proaches, we used LUT based approach to achieve high performance and secure
implementation.

As shown in the Table 1, the proposed modular multiplication with 7681
and 12289 only requires 57 and 66 clock cycles, which are 16 and 4 clock cycles
smaller than previous approaches, respectively [7]. The proposed NTT operation
also shows higher performance than previous works. NTT operation only requires
158, 607 clock cycles for 128-bit security implementation and 403, 224 cycles for
256-bit security implementation. Results of NTT for medium and long-term
security are 18.3% and 22.0% faster than previous works, respectively.

4.3 Comparison of Ring-LWE

With optimized NTT implementation, we evaluated the Ring-LWE encryption
scheme with parameter sets (n, q, σ) with (256, 7681, 11.31/

√
2π) and (512,12289,

12.18/
√
2π) for security levels of 128-bit and 256-bit. The tailcut of discrete

Gaussian sampler is limited to 12σ to achieve a high precision statistical differ-
ence from the theoretical distribution, which is less than 2−90. These parameter
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Table 2. Performance comparison of software implementation of 128-bit and 256-bit
security level lattice-based cryptosystems on 8-bit AVR processors, e.g., ATxmega64,
ATxmega128.

Implementation NTT/FFT Sampling Enc Secure

Implementations of 128-bit security level

Boorghany et al. [2] 1,216,000 N/A 5,024,000 –

Boorghany et al. [1] 754,668 N/A 3,042,675 –

Pöppelmann et al. [16] 334,646 N/A 1,314,977 –

Liu et al. [11] 193,731 26,763 671,628 –

Liu et al. [7] 194,145 53,023 796,872
√

This work 158,607 35,409 680,796
√

Implementations of 256-bit security level

Boorghany et al. [1] 2,207,787 617,600 N/A –

Pöppelmann et al. [16] 855,595 N/A 3,279,142 –

Liu et al. [11] 441,572 255,218 2,617,459 –

Liu et al. [7] 516,971 105,153 1,975,806
√

This work 403,224 69,062 1,754,064
√

sets were also used in most of the previous software implementations, e.g., [1–3,
11, 7].

Discrete Gaussian sampling is an integral part of Ring-LWE algorithm. How-
ever, previous implementations are not secure against timing and simple power
analysis, since the Knuth-Yao sampler uses a bit/byte scanning operation in
which the sample generated is related to the number of probability-bits/bytes
scanned during a sampling operation and its timing provides secret information
to an adversary about the value of the sample. In [19], Roy et al. suggested a
random shuffling method to protect the Gaussian distributed polynomial against
such attacks. The random permutation is performed after generating all samples.
The random shuffle operation swaps all samples randomly, which removes any
timing information from samplings. In the implementation, we adopt the pre-
vious Knuth-Yao sampler with byte-scanning [19, 11]. Afterwards, all generated
samples are randomly mixed with the random numbers.

Table 2 compares software implementations of 128-bit and 256-bit security
lattice-based cryptosystems on the 8-bit AVR processors. We compare the pre-
vious work [1, 2, 16, 11, 7] with ours. Proposed 128-bit security implementation
requires 159K, 35K, and 681K cycles for NTT, sampling and encryption, re-
spectively. Compared to the recent work [7], the NTT operation is significantly
improved because we used compact modular multiplication routine. For the se-
cure sampling, we adopted lightweight random shuffling technique, which shows
better performance than previous works. The proposed implementations are con-
stant timing, which ensures a secure computation against simple power analysis
and timing attacks. The similar performance enhancement is observed in 256-bit
case.
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5 Conclusion

This paper presents optimization techniques for efficient and secure implementa-
tion of NTT and its application Ring-LWE encryption on the low-end 8-bit AVR
platform. For the secure KY sampler, we use the random shuffling technique to
prevent the side channel attack. A combination of both NTT and KY sampler
implementation achieved new speed records for secure 128-bit and 256-bit Ring-
LWE encryption implementation on low-end 8-bit AVR platforms.

Our future works are applying the proposed techniques to the other low-
end IoT devices, such as 8-bit PIC and 16-bit MSP processors. Similarly, these
platforms also support very limited Arithmetic Logic Unit (ALU) and memory
consumptions. Second, we will further investigate side channel attacks on the
implementation of Ring-LWE. Unlike traditional RSA and ECC, only few works
explored potential threats on the implementation of Ring-LWE.

References

1. S. B. S. Ahmad Boorghany and R. Jalili. On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. Cryptology ePrint
Archive, Report 2014/514, 2014. https://eprint.iacr.org/2014/514.pdf.

2. A. Boorghany and R. Jalili. Implementation and Comparison of Lattice-based
Identification Protocols on Smart Cards and Microcontrollers. Cryptology ePrint
Archive, Report 2014/078, 2014.

3. R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient Software
Implementation of Ring-LWE Encryption. 18th Design, Automation & Test in
Europe Conference & Exhibition–DATE, 2015.

4. Z. Liu, R. Azarderakhsh, H. Kim, and H. Seo. Efficient software implementation of
Ring-LWE encryption on IoT processors. IEEE Transactions on Computers, 2017.

5. Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo, and L. Zhou. On emerging family of
elliptic curves to secure internet of things: ECC comes of age. IEEE Transactions
on Dependable and Secure Computing, 14(3):237–248, 2017.

6. Z. Liu, P. Longa, G. Pereira, O. Reparaz, and H. Seo. Fourq on embedded de-
vices with strong countermeasures against side-channel attacks. Technical report,
Cryptology ePrint Archive, Report 2017/434, 2017. 28, 29.
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