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Abstract
The numerical simulation of barotropic flows in complex geometries is consid-
ered together with its application to cavitating flows and sediment transport
problems. A general methodology based on different finite-volume methods
applicable to unstructured grids is developed and validated. Second-order
extension in space is obtained by using MUSCL-like methodologies. The
time-advancing is carried out by using implicit linearised methods and the
second-order accuracy in time is achieved by exploiting the Defect Correction
technique.

As far as cavitating flows are concerned, a homogeneous fluid cavita-
tion model is considered, which leads to a barotropic state equation. The
continuity and momentum equations for compressible flows are discretized
through a mixed finite-element/finite-volume approach, applicable to un-
structured grids. P1 finite elements are used for the viscous terms, while
finite volumes for the convective ones. The numerical fluxes are computed
by shock-capturing schemes and ad-hoc preconditioning is used to avoid ac-
curacy problems in the low-Mach regime. A HLL flux function for barotropic
flows is proposed, in which an anti-diffusive term is introduced to counteract
accuracy problems for contact discontinuities and viscous flows typical of this
class of schemes.

For this HLL-like flux function two different time linearizations are con-
sidered: in the first one the upwind part of the flux function is frozen in time,
while in the second one its time variation is taken into account. The proposed
numerical ingredients are validated through the simulations of different flow
configurations, namely the Blasius boundary layer, a Riemann problem, the
quasi-1D cavitating flow in a nozzle, the flow around a hydrofoil mounted in
a tunnel, both in non-cavitating and cavitating conditions The introduction
of the RANS k− ε model is validated by the simulation of the high-Reynolds
number flow over a flat plate. Finally the simulation of the flow in a real
three dimensional inducer in both non-cavitating and cavitating conditions
is addressed.

Sediment transport problems are also considered. The problem is modeled
through the Shallow-Water equations coupled with the Exner one to describe
the time evolution of the bed profile. The system is closed by the Grass model
which is used for the sediment transport fluxes. The governing equations are
discretized by using two different finite-volume methods, the SRNH predictor-
corrector scheme and a Modified Roe scheme for non conservative systems of
equations. Starting from the explicit versions, the corresponding linearised
implicit schemes are generated. The flux Jacobians are computed through
automatic differentiation thus avoiding the difficult analytical differentiation
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of the numerical fluxes. Finally, the considered numerical ingredients are
compared in terms of accuracy and computational time using different one
dimensional and two dimensional problems, characterised by different time
scales for the evolution of the bed and of the water flow.



Sommario
Nella presente tesi é considerata la simulazione di flussi barotropici all’inter-
no di geometrie complesse e le sue applicazioni a flussi cavitanti e a problemi
di trasporto di sedimenti. Un approccio generale basato su vari metodi ai
volumi finiti e applicabile a griglie non strutturate, é stato sviluppato e te-
stato. L’estensione al secondo ordine spaziale é ottenuta usando metodi tipo
MUSCL. L’avanzamento temporale si basa su metodi impliciti linearizati e il
secondo ordine temporale si basa sulla tecnica Defect Correction.

Per quanto riguarda i flussi cavitanti, é stato utilizzato un modello a flus-
so omogeneo che si basa su una equazione di stato barotropica. Il bilancio di
massa e di quantitá di moto per flussi comprimibili sono discetizati tramite
un metodo misto ai volumi finiti e agli elementi finiti. Gli elementi finiti P1
sono utilizzati per i termini viscosi mentre i volumi finiti per quelli convet-
tivi. I flussi numerici sono calcolati utilizzando schemi in grado di calcolare
soluzioni discontinue e una strategia di precondizionamento ad-hoc é stata
utilizzata per risolvere i problemi di accuratezza che si riscontrano per bassi
numeri di Mach. Una funzione di flusso di tipo HLL per flussi barotropici é
stata proposta introdotta. In questa funzione di flusso é stato aggiunto un
termine antidiffusivo che riduce i problemi di accuratezza che tipicamente si
riscontrano per discontinuità di contatto e flussi viscosi quando si utilizzano
schemi appartenenti a questa categoria.

Per questa funzione di flusso di classe HLL due differenti linearizazioni
temporali sono state considerate: nella prima la matrice di upwind della fun-
zione di flusso é considerata constante, mentre nella seconda la sua variazione
temporale viene tenuta in considerazione. Gli ingredienti numerici proposti
sono stati quindi testati simulando varie tipologie di flussi, in particolare lo
strato limite di Blasius, un problema di Riemann, il flusso quasi-1D in un
ugello e il flusso di acqua intorno ad un profilo, sia in condizioni cavitanti
che non cavitanti. Inoltre l’introduzione degli effetti della turbolenza tramite
il modello RANS k − ε é stata testata simulando il flusso ad alto numero di
Reynolds su una lastra piana e, per finire, é stata affrontata la simulazione
numerica di un induttore reale tridimensionale, sia in condizioni non cavitanti
e cavitanti.

Oltre a quanto detto sono stati considerati anche problemi di trasporto
di sedimenti. Il modello fisico di questo problema é basato sulle equazioni
Shallow-Water a cui si aggiunge l’equazione di Exner per descrivere l’evolu-
zione temporale del profilo del fondale. In particolare é il flusso di sedimenti
é stato descritto utilizzando il modello di Grass. Il sistema completo di equa-
zioni é stato discretizato utilizzando due metodi ai volumi finiti, lo schema di
tipo predittore-correttore SRNH e uno schema di Roe modificato per siste-
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mi di equazioni in forma non conservativa. Partendo dalle versioni esplicite
di questi schemi, sono stati sviluppati i corrispondenti metodi impliciti e,
in particolare lo Jacobiano della funzione di flusso é stato calcolato utiliz-
zando strumenti di differenziazione automatica. Questo approccio permette
di non dover calcolare manualmente le complesse espressioni delle derivate
della funzione di flusso. Questi metodi sono poi stati comparati in termini
di accuratezza e costi computazionali utilizzando specifici problemi mono-
dimensionali e bidimensionali caratterizzati da scale temporali diverse per
l’evoluzione del fondale e del flusso d’acqua
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Chapter 1
Introduction

The present thesis reports the progress made for the development of numeri-
cal tools for the simulation of barotropic flows in complex geometries. Many
physical models can be classified as barotropic flows, the most popular of
them being probably the Shallow-Water equations.

From a practical point of view barotropic models can be attractive. In-
deed, while the standard systems of conservation laws include mass, momen-
tum and energy balances, the barotropic formulation permits to decouple the
energy balance from the rest of the governing equations and, thus, a reduced
system can be considered. The computational resources required for the nu-
merical simulations are therefore greatly reduced, making barotropic models
interesting alternatives for engineering or environmental applications.

Two main categories of problems, which may be described by barotropic
flows, are considered in this study, namely cavitating flows and sediment
transport problems. In this context, the present work is part of a research
activity aimed at developing a numerical set-up for the simulation of flows
characterised by a generic barotropic equation of state [97,102–104].

The numerical approaches developed and validated in the present the-
sis for these two classes of problems are different, but they share a few
commnon points. First, space and time discretisation are kept separated
(“method of lines”) in order to simply switch between different space dis-
cretisation schemes and time-advancing techniques. The development of nu-
merical tools suitable for the simulations of barotropic flows in real conditions
usually requires to deal with complex geometries. Thus, the use of triangu-
lar or tetrahedral unstructured grids, which are easily adaptable to generic
geometries, becomes particularly attractive. Since, for both cavitation and
shallow-water applications, the convective part of the equation systems is
hyperbolic, finite-volume discretizations applicable to unstructured grids are
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used. Furthermore, we are interested in stiff problems; the sources of stiff-
ness for cavitating flows and sediment transport problems will be described
in details in the following sections. To counteract the efficiency and stability
problems due to the problem stiffness, implicit linearised approaches have
been adopted and developed herein for time-advancing.

1.1 Cavitating flows
Cavitating flows occur in a number of engineering devices, as, for instance,
rocket turbopumps, turbomachinery, hydrofoils, marine propellers, nozzles,
etc. The prediction and characterisation of cavitating flows is hence of great
importance, since cavitation has strong effects, usually negative, on perfor-
mance and life of such devices.

From a physical view point cavitating flows are characterised by different
phenomena interacting each other, such as change of phase, complex inter-
actions between vapour and liquid, unsteadiness, not well defined vapour to
liquid interfaces and turbulence. All this renders the modeling of cavitating
flows a very complex task. Several models exist in the literature of different
levels of complexity, see i.e. [3, 46, 65, 67, 77, 99, 100, 102] and the references
there contained for a review. Among them are the so-called one-fluid or
equivalent-fluid models, in which the cavitating flow is described in terms
of a single fluid or mixture, whose properties are derived through suitable
assumptions, and, more particularly, the barotropic homogeneous fluid mod-
els, in which the density and the pressure are linked each other through an
equation of state, both for pure liquid and for the liquid-vapour mixture (see
e.g. [37,42,80,87]). The models of this kind, although they introduce rather
strong simplifications and neglect a fine description of the local behaviour of
cavitation, are attracting because of their simplicity and because they a-priori
have the capability of describing the large-scale effects of cavitation, which
are dominating in many applications of interest, such as for instance in the
field of rocket propulsion. Examples of numerical simulations using this type
of models can be found in [33–35,54,62,87,105,114]. In spite of the simplifying
assumptions made and the apparent simplicity of such models, strong difficul-
ties arise for numerical simulation, which are mainly due to the fact that the
cavitating mixture is described as a highly compressible fluid, characterised
by speed of sound values of several orders of magnitude lower that those of the
pure liquid. Moreover, an abrupt transition from the wetted (incompressible)
to the cavitating (highly supersonic) regimes occurs. In the present work, in
the non-cavitating regions, a weakly-compressible liquid at constant temper-
ature was considered, while for the cavitating regime, the homogeneous-flow
model explicitly accounting for thermal cavitation effects and for the concen-
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tration of the active cavitation nuclei in the pure liquid proposed in [37] was
adopted. For cavitating flow simulation, it is clear, on the basis of the previ-
ous considerations, that the numerical schemes must be designed in order to
cope with nearly incompressible and highly-compressible regions coexisting
in the flow. Two opposite approaches can be found in the literature: adap-
tation to compressible flows of methods developed for incompressible flows
(e.g. [101, 114]) or adaptation to the incompressible limit, usually through
ad-hoc preconditioning, of compressible flow solvers (e.g. [33, 54, 74]). The
latter approach in particular, was used in a work [102] prior to the one pre-
sented here, which was our starting point. In the aforementioned work a
preconditioned linearised implicit numerical method for the simulation of in-
viscid compressible barotropic flows on unstructured grids was developed, in
which the spatial discretization of the convective terms is carried out through
a finite-volume approach. The Roe numerical flux function [91] was adapted
to barotropic flows while a Turkel-like preconditioning was considered to deal
with low Mach number regime [102,104]. As for time advancing, a linearised
implicit algorithm was defined by considering a Jacobian-free linearization of
fluxes only relying on the properties of the Roe matrix [97, 102, 104]. The
set-up numerical tool was tested for different types of barotropic equations
of state and flow regimes, and this validated most of the used ingredients,
as, for instance, the accuracy and efficiency in the low Mach regime [97,102].
In [104], an application to the simulation of the inviscid flow in a realistic con-
figuration of a rocket turbopump inducer in non-cavitating conditions is de-
scribed. However, for cavitating flows, the stability properties of the scheme
were found to deteriorate dramatically and only very small time steps are
allowed. This clearly increases the computational costs and, thus, makes dif-
ficult to afford the simulation of complex cavitating flows, as occur in many
aerospace and industrial applications. A rather strong reduction of the CFL
number allowed by numerical stability was also recently observed in [54] for a
linearised implicit time-advancing scheme, when passing from non-cavitating
to cavitating conditions.

Two new ingredients are introduced and investigated in the present the-
sis, in order to counteract with these efficiency limitations. First, a different
numerical flux function is used for the convective fluxes. The starting point
is the Rusanov numerical flux function [41,95], which is the simplest scheme
of the HLL family [107]. This scheme is known to have excellent robust-
ness properties and is attracting because of its simplicity. A preliminary
study [16] was carried out in this direction showing promising results. How-
ever, the Rusanov flux as well all the HLL schemes are also known for their
excessive diffusive behaviour in presence of a contact discontinuity and they
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are, thus, not well suited for viscous flow simulations. To avoid this prob-
lem, more complex average-state approximate Riemann solvers have been
introduced as, for instance, the HLLC scheme, proposed in [107], which in-
volves two intermediate states in the approximate solution. Alternatively, an
anti-diffusive term for the contact discontinuity can be directly added in the
single-state HLL formulation as done in the HLLEM [44] and HLLE+ [84]
schemes. In the present work, on the basis of the observation that in the
1D Riemann problem for barotropic flows density, velocity and pressure are
continuous across the contact discontinuity, and thus, the presence of two
different intermediate states is only due to the passive scalar (see [102] for
details on the Riemann problem for barotropic flow), an anti-diffusive term
only acting in the passive scalar equation is introduced. This leads to a
low-diffusive HLL (LD-HLL) scheme, in which the first two equations, which
are related to the acoustic waves, are unchanged with respect to the origi-
nal Rusanov scheme. Thus, the simple structure of the Rusanov scheme is
maintained in the LD-HLL one. Furthermore, on the basis of an asymptotic
analysis in power of Mach, a preconditioning of the same kind of that used
in [57] for perfect gases was adapted to barotropic flows and introduced in
the upwind part of the numerical flux, in order to counteract the accuracy
problems encountered in the low Mach regime. Since the preconditioning
matrix multiplies the upwind part of the flux only, consistency in time is
preserved.

The second point investigated herein is the linearization in time of the
numerical flux function, which is needed in order to avoid the solution of a
non-linear system at each time step of the implicit algorithm. A classical
linearization consists in applying a first-order Taylor expansion in time but
with a complete differentiation only for the centred part of the numerical
flux function while the matrix in the upwind part is frozen at the previous
time (see, e.g., [4, 119]). Even if this choice of linearization is in general a
reasonable one, the time variation of the upwind part of the flux can be large
in presence of huge variations of the flow velocity or when the speed of sound
has a stiff change in magnitude. The latter is a typical situation in pres-
ence of cavitation. Hence, a more complete time linearization of the LD-HLL
flux is proposed herein. Thanks to the simple structure of this scheme, the
time variation of the upwind terms of the flux function is analytically derived
while some simplifications are made on the basis of physical considerations
suitable for the cavitating case. The remaining terms are numerically com-
puted through centred finite differences.

Second-order accuracy in space is obtained through the MUSCL recon-
struction technique [115]. Furthermore, the linearised implicit formulation is
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associated to a defect-correction technique to obtain second-order accuracy
(both in time and space) at limited computational costs [103].

Finally, the implementation of viscous and turbulent effects is carried out
in the present study through a mixed finite-volume/finite-element approach
in which P1 finite elements are considered for the discretization of viscous
terms. More in details, turbulence effects have been implemented in the
code through a k − ε RANS turbulence model [2, 76]: even if the considered
turbulence model does not explicitly take into account cavitating effects, it
is a well-known model and its positive features, as well as its drawbacks
have been widely studied. Thus, it seems a reasonable starting point for the
introduction of turbulence effects.

Several test-cases are considered to investigate the effects of the previously
described new numerical and modelling ingredients. The anti-diffusive term
introduced in the LD-HLL scheme is validated using a Riemann problem
characterised by the presence of a contact discontinuity and the classical
Blasius boundary layer over a flat plate. Comparison with exact solutions
and with the results given by the Roe scheme are provided. The accuracy,
robustness and efficiency properties of the Roe and the LD-HLL schemes in
cavitating conditions are analysed for the quasi-1D steady cavitating flow in a
convergent-divergent nozzle and for the flow around a NACA0015 hydrofoil
mounted in a wind tunnel, for which experimental data are available [30].
For the LD-HLL scheme, the effects of the more complete time linearization
are investigated. In particular, it is shown that this is a key point to largely
improve the efficiency in cavitating conditions.

The implementation of turbulence effects is validated for the turbulent
flow over a flat plate at zero angle of attack.

Finally, to conclude this part of the thesis, the flow in a real inducer is
considered. This kind of application is really challenging due to the pres-
ence of both complex physical phenomena and complex geometries and, as a
consequence, they require large computational resources. However since the
experimental set-up is even more expensive, the interest in the development
of numerical tools for these applications is growing, see e.g. [25,36,50,63,66,
69, 71, 82, 85, 86, 118], although 3D simulations in complete inducer geome-
tries and in actual cavitating conditions are only a few [63,86]. The inducer
considered in this work is a three blade axial inducer. The geometry was
provided by Alta Space, which also made available experimental data for
both non-cavitating and cavitating flow conditions [31, 32, 38–40, 110–112].
Simulations in non-cavitating conditions at a specific value of the angular ve-
locity ωz and different values of the discharge have been done. Comparisons
between numerical and experimental solutions are then performed. Simula-
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tions of the inducer flow in cavitating conditions have also been carried out.
The obtained results are compared with experimental data and preliminary
analyses on the possible presence of different kinds of instabilities related to
cavitation are carried out.

1.2 Sediment transport problems
Let us focus on the second category of barotropic flows considered herein.
The design and validation of numerical methods for the simulation of bed-
load sediment transport processes caused by the movement of a fluid in con-
tact with the sediment layer has a significant interest for environmental and
engineering problems. A few examples of such problems are beach profile
changes due to severe climate waves, seabed response to dredging procedures
or imposed structures, harbour siltation or transport in gravel-bed rivers.

The hydrodynamic part is usually modeled through the classical Shallow-
Water equations coupled with an additional equation modeling the morpho-
dynamical component. The system of Shallow-Water equations is used in a
wide range of field, ranging from oceanographic to atmospheric applications.
Moreover the standard Shallow-Water equations with constant bottom to-
pography are equivalent to Euler equations for a barotropic flow. Thus,
many numerical methods suitable for the simulation of inviscid compressible
flows can be easily extended to this field of applications.

On the other hand, when the bottom topography is not constant, an
additional source term appears in the system of equation. Indeed, a well
known problem is that shallow water equations on non-flat topography have
steady-state solutions in which the flux gradients are non-zero but are ex-
actly balanced by the source terms. Standard numerical methods for the dis-
cretization of conservation laws may fail in correctly reproducing this balance
and thus, specific methods have been developed to deal with this problem
(C-property, well-balanced schemes, see e.g. [10, 51,88,89,93,108,116,120]).

Focusing on sediment transport problems, the additional morphodynam-
ical component is usually modelled by continuity or Exner equation, express-
ing the conservation of the sediment volume, in which the solid transport
discharge is provided by a closure model. According to [26] sediment trans-
port can be classified into three main categories: bedload, saltation and
suspension: in this thesis only the former is considered. Namely, in bedload
sediment transport the sediment simply slides along the bed [26].

Many different models of solid transport discharge are available in the
literature both deterministic as well as probabilistic ones (see, e.g., [26] for a
review). As a first step, the Grass equation [56] is considered herein, which
is one of the most popular and simple models.
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A huge amount of work has been done in the last decades to develop
numerical methods for the simulation of the previous system of equations
(see, e.g., the references in [7, 8, 26, 28, 90, 109]). In particular the treatment
of source terms and of the bed-load fluxes has received the largest atten-
tion. On the other hand, in Shallow-Water problems, time advancing has re-
ceived much less attention since it is usually carried out by explicit schemes.
Recently a semi-implicit method has been proposed [92] for Shallow-Water
problems with fixed bed.

In this context, the focus of the present thesis is on the comparison be-
tween explicit and implicit schemes in the simulation of coupled shallow-water
equations and sediment transport. Indeed, if the interaction of the water flow
with the mobile bed is weak, the characteristic time scales of the flow and of
the sediment transport can be very different introducing time stiffness in the
global problem. For these cases, the stability properties of explicit schemes
may significantly be deteriorated and, hence, it can be advantageous to use
implicit schemes. On the other hand, since the considered problems are un-
steady, attention must be paid for implicit schemes in the choice of the time
step. Indeed, a too large time step could deteriorate the accuracy of the re-
sults and one issue is to investigate whether and for which conditions the use
of implicit schemes is really convenient from a computational viewpoint. A
first investigation of this issue is provided in the present thesis for 1D and 2D
sediment-transport problems, involving different rates of bedload/water-flow
interaction. We focus on flows over wet areas. The extension to the case of
dry bed will the object of further studies.

As previously mentioned, the considered numerical formulation is based
on the method of the lines, in which the spatial and temporal discretisation
are kept separated. The computational domain is discretized by the use of
unstructured triangular grids. Two different existing explicit numerical meth-
ods have been considered in this work, namely the SRNH scheme [5,6,8] and
a Modified Roe one [26–28]. The second-order spatial accuracy is obtained
by using MUSCL-like reconstruction techniques. Exploiting the indepen-
dence between spatial and temporal discretisation, an implicit linearised for-
mulation has been considered for the time-advancing of the aforementioned
numerical methods and second-order order accuracy in time is obtained by
using a backward differentiation formula coupled with the Defect Correction
technique. Thus, the numerical setup for sediment transport problems shows
several aspects (unstructured grids, finite-volume approach, MUSCL-like re-
construction, implicit time-advancing, DeC technique) in common with the
one developed for cavitating flows.

A specific peculiarity of the numerical tool developed in this work for
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sediment transport problem concerns the linearised implicit time-advancing.
The presence of source terms, of non conservative products and the specific
structure of the considered numerical methods (e.g. the SRNH scheme is a
predictor-corrector method), clearly make difficult to define a time lineari-
sation, even approximated, for the numerical fluxes. The efforts required to
compute the analytical Jacobian of the numerical fluxes are really remarkable,
even when the simple Grass model is employed. In addition they are further
increased by practical issues, as for instance the time required for writing
and debugging a routine implementing the aforementioned linearisation pro-
cedure. In order to overcome these difficulties, an automatic differentiation
tool (Tapenade, [59], http://www-sop.inria.fr/tropics/) has been used in this
work. Given an explicit method, this tool can automatically generate a rou-
tine which computes the Jacobian of the considered function. Thus, starting
from an explicit scheme, it is possible to quickly generate a routine which
computes the Jacobian of the numerical fluxes and, by using this routine it
is possible to straightforwardly define an implicit linearised method. Finally,
it is work notice that the aforementioned numerical ingredients are easily
adaptable to different numerical methods (thanks to the automatic differ-
entiation procedure) and different physical models, as for instance different
models for the solid transport discharge.

As previously mentioned, the different considered numerical schemes, viz.
SRNH and Roe schemes with implicit or explicit time advancing and at first
and second-order of accuracy, are applied to 1D and 2D benchmark problems.
Comparisons in terms of accuracy and efficiency are provided.

1.3 Thesis Outline
The present thesis is organised in two main parts: in Part. I the study con-
cerning cavitating flows is discussed, while Part. II deals with sediment trans-
port problems.

1. Part. I: Numerical Simulations of Cavitating Flows

• In Chap. 2 the adopted barotropic equations of state for cavita-
ting flows are presented. In addition, several systems of governing
equations of increasing level of complexity, are discussed. The
main mathematical properties of the aforementioned systems are
briefly described in order to set the ground for the development
of the numerical discretisation.
• In Chap. 3 the proposed 1D numerical discretisation is introduced.
A general finite-volume discretization for hyperbolic systems of
conservation laws is presented. A low-diffusive HLL scheme is
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introduced and a linearised implicit time-advancing strategy, ca-
pable of overcome the severe CFL limitations encountered in cav-
itating conditions, is proposed. The extension to the second-order
accuracy both in space and in time is achieved using the MUSCL
reconstruction technique and the Defect Correction method. Fi-
nally the behaviour of the consider method dealing with nearly-
incompressible flows is analysed and a suitable preconditioning
strategy is proposed.
• In Chap. 4 the proposed numerical ingredients are validated us-
ing 1D benchmarks for which the exact solution is available. The
considered test-cases involves a non-cavitating and a cavitating
Riemann problem which, respectively, test the second-order exten-
sion and the diffusive properties of the numerical approaches. Two
additional benchmarks on the stationary solution in a convergent-
divergent nozzle are also considered to validate the preconditioning
strategy and the efficiency of the proposed linearisation technique.
• In Chap. 5 the numerical ingredients proposed in the 1D case are
extended to the 3D case and the issue of the discretisation of the
3D computational domain is discussed. Furthermore, the numeri-
cal discretisation of the laminar viscous fluxes and of the turbulent
fluxes and source terms introduced by a RANS turbulence model
is addressed. Finally, the aforementioned numerical ingredients
are extendend to 3D rotating frame of reference.
• In Chap. 6 the 3D numerical ingredients are validated against
some reference benchmark problems. More specifically, they in-
clude the flow over a flat plate, both in laminar (Blasius boundary
layer) and turbulent conditions in order to validate the proposed
discretisation for the viscous fluxes, to test the diffusive proper-
ties of the LD-HLL scheme and to validate the implementation
of the turbulence model. In addition the water flow around a
NACA0015 hydrofoil is considered, both in non-cavitating e cav-
itating conditions. In this latter case a quantitative appraisal,
based on available experimental data is given and the efficiency of
the proposed linearisation technique is analysed.
• In Chap. 7 the proposed 3D numerical method is exploited for the
simulation of the flow in a real axial turbopump inducer. Several
operational points, at different flow rates in non-cavitating as well
as in cavitating conditions, have been considered. The numerical
results are analysed on the ground of the available experimental
data for this case. In addition a preliminary analysis of the in-
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stabilities induced by cavitation in the aforementioned inducer is
presented.

2. Part. II: Numerical Simulation of Sediment Transport Problems

• In Chap. 8 the physical model considered for the description of sed-
iment transport problems is introduced. A few alternative formu-
lations and their mathematical properties are described in order to
set the ground for the development of the numerical discretisation.
• In Chap. 9 the proposed 2D numerical discretisation is addressed.
Two explicit finite-volume numerical methods, namely the SNRH
and the Modified Roe one are introduced and their main features
are described. Starting from these explicit methods, their lin-
earised implicit counterparts, which are generated by exploiting
an automatic differentiation tool, are proposed. The extensions
to second-order accuracy both in space and in time for both the
explicit and implicit approaches are discussed.
• In Chap. 10 the proposed numerical methods (explicit and implicit
as well as first and second-order accurate both for the SNRH and
Modified Roe schemes) are compared by using a 1D benchmark
problem, in terms of efficiency and accuracy. Different conditions,
characterised by different time scales for the evolution of the flow
and of the sediment, are considered.
• In Chap. 11 a 2D numerical test case is considered to validate
the proposed 2D numerical methodologies and, in particular the
linearised implicit time advancing automatically generated. Two
test-cases, characterised by different ratios between the time scales
of the evolution of the flow and of the sediment, are considered to
compare the different numerical approaches.

Furthermore, Part. III contains some additional appendices. In appendices
A and D the derivation of the exact solution for, respectively, the Riemann
problem and the convergent-divergent nozzle are reported. Those exact so-
lutions are the ones used for the appraisal of the 1D numerical approaches
for cavitating flows. Appendix C presents the study of the preconditioning
strategy proposed in this work and, finally, appendix B proves the equivalence
between two different formulations for the Roe numerical scheme.

1.4 Related scientific publications and projects
Some of the topics described in this thesis have been documented through
previous works, and in particular:
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- The international publication [18]:
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vetti, Linearised implicit time-advancing applied to sediment transport
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M. Bilanceri, F. Beux, and M. V. Salvetti, An Implicit Low-
Diffusive HLL Scheme for Cavitating Flow Simulation, in V European
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France, 22–24 Jannuary 2008
M. Bilanceri, E. Sinibaldi, F. Beux, and M. V. Salvetti, A
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Numerical Simulation of
Cavitating Flows





Chapter 2
Physical Model

In this chapter several physical models, of different level of complexity, are
presented for the case of barotropic flows. They include the 1D governing
equations for an inviscid barotropic flow, the 3D laminar viscous case as well
as the classical k−ε turbulence model. Note that the only specificity relative
to cavitating flows is furnished by the choice of the cavitating equations
and, thus, by the particular barotropic equation of state (EOS) adopted
herein (see Sec. 2.2). By virtue of the barotropic EOS, the energy balance is
decoupled from the mass and momentum balances and therefore, it is possible
to consider a reduced set of governing equations.

First, the mathematical notation is described in Sec. 2.1 and the baro-
tropic EOS under consideration is presented in Sec. 2.2. The 1D governing
equations for an inviscid barotropic flow are presented in Sec. 2.3, they form
the basis for the different numerical approaches considered in this work, as
shown in Chap. 3. In Sec. 2.4 the 3D laminar viscous case is presented and,
finally, the classical k−ε turbulence model is added to the system of equations
in Sec. 2.5.

2.1 Mathematical Notation
The adopted mathematical notation is briefly presented. Vectors are denoted
using a bold character. Considering a reference frame in a 3D space, the
position of a generic point P with respect to the origin is denoted by the
vector x, whose components x1, x2, x3 are the Cartesian coordinates of P .

For a generic fluid system, ρ is density of the fluid, p its pressure and a the
speed of sound. The symbol for the velocity vector is u and its components
will be addressed either as u1, u2, u3 or as u, v, w, depending on which of them
makes easier the comprehension. The symbol uT means the transpose of the
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vector u. In some circumstances it is useful to consider a compact notation
for the components of a vector: the symbol (1,u, 1)T is a five-components
vector whose first and last elements are 1 and the others are the components
of u, that is:

(1,u, 1)T = (1, u1, u2, u3, 1)T (2.1)

The Einstein notation, summation over repeated indexes is used in this work,
that is:

ujvj =⇒
∑
j

ujvj (2.2)

Finally the component of a generic vector v along a direction (a vector with
unit norm) n is defined as:

vn = vjnj = 〈v,n〉 (2.3)

nj being the jth component of n.
Some simplifications of the notation are considered when dealing with 1D
systems. In this case the position of a point is defined by x and the only
velocity component is u. A final remark is deserved to the symbols W, F ,
V which denote, respectively, the vector of unknowns, the convective flux
function and the viscous fluxes. Depending on the particular physical model
investigated, 1D or 3D, laminar or turbulent, the number of unknowns and
the definition of the fluxes are different. However, to avoid a heavy use of
the notation, the symbols W, F , V are always used for the different physical
models. Time by time the specific system referred by those quantities will
be clear from the context.

2.2 Constitutive equations
The physical formulation and the development of the numerical methods are
based on a generic barotropic equation of state:

p = p(ρ) (2.4)

The derivative dp/dρ is assumed to be strictly positive (a classical thermody-
namic stability requirement for common fluids) and can be regarded as the
square of the fluid sound speed a(ρ):

a(ρ) .=
√

dp(ρ)
dρ (2.5)

In particular for cavitating flows a weakly-compressible liquid at constant
temperature TL is considered as working fluid. The liquid density ρ is allowed
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to locally fall below the saturation limit ρLsat = ρLsat (TL) thus originating
cavitation phenomena. A regime-dependent (wetted/cavitating) constitutive
relation is therefore adopted. As for the wetted regime (ρ ≥ ρLsat), the
chosen model is of the form

p = psat + 1
βsL

ln
(

ρ

ρLsat

)
(2.6)

psat = psat (TL) and βsL = βsL (TL) being the saturation pressure and the liq-
uid isentropic compressibility, respectively. Concerning the cavitating regime
(ρ < ρLsat), a homogeneous-flow model explicitly accounting for thermal cav-
itation effects and for the concentration of the active cavitation nuclei in the
pure liquid has been adopted [37]:

p

ρ

dρ

dp
= (1− α)

[
(1− εL) p

ρLsata2
Lsat

+ εLg
?
(
pc
p

)η]
+ α

γv
(2.7)

where g?, η, γV and pc are constant parameters depending on the particular
substance considered, aLsat is the liquid sound speed at saturation, and α is
the void fraction defined as

α = ρLsat − ρ
ρLsat − ρv

' 1− ρ

ρLsat
(2.8)

ρv being the vapour density.
Finally, εL is the fraction of the liquid in thermal equilibrium with the vapour
and is given by:

εL =
{[

((1 + ζ)3 − 1) α

1− α

]−3
+ 1

}−1/3

(2.9)

ζ being a free model parameter accounting for thermal cavitation effects and,
possibly, for the concentration of the active cavitation nuclei, see [37] for
more details. Note that despite the model simplifications leading to a unified
barotropic EOS, the transition between wetted and cavitating regimes is
extremely abrupt. Indeed, the sound speed falls from values of order 103 m/s
in the pure liquid down to values of order 10−1 m/s or 1 m/s in the mixture
[37, 102, 104]. The corresponding Mach number variation makes this state
equation very stiff from a numerical viewpoint. Note, also, that equations
(2.6) and (2.7) for the cavitating case are a particular instance of (2.4).

As for the definition of the molecular viscosity, a simple model, which is
linear in the cavitating regime, is considered:

µ(ρ) =


µL if ρ ≥ ρLsat
µv if ρ ≤ ρv
αµv + (1− α)µL otherwise

(2.10)
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in which µv and µL are the molecular viscosity of the vapour and of the liquid
respectively, which, consistently with the assumptions made in the adopted
cavitation model, are considered constant and computed at T = TL.

2.3 1D Physical Model
Let us consider a 1D inviscid barotropic flow coupled with an additional
substance ξ, which is simply advected with the flow. The evolution of the
fluid variables can be described by the following system of equations:

∂W
∂t

+ ∂F (W)
∂x

= 0

F (W) =
(
ρu, ρu2 + p, ρuξ

)T
W = (ρ, ρu, ρξ)T

(2.11)

The first two equations of system (2.11) are, respectively, the mass and mo-
mentum balances for the fluid. The third equation equation describes the
time-evolution of the substance ξ. The conservation law for ξ is decoupled
from the rest of the system and, as a consequence, ξ is usually referred as a
passive scalar. From a mathematical point of view, system (2.11) is hyper-
bolic. In order to verify this property, it is sufficient to explicitly write the
Jacobian matrix A(3) of the flux function F (W):

A(3) .= ∂F (W)
∂W =

 0 1 0
a2 − u2 2u 0
−uξ ξ u

 (2.12)

where the superscript (3) reminds the three components of the flux function.
The eigenvalues of A(3) are:

λ
(3)
1 = u− a, λ

(3)
2 = u, λ

(3)
3 = u+ a (2.13)

and the matrix R(3), whose columns correspond to the right eigenvectors of
A(3) is easily computed as:

R(3) =

 1 0 1
u− a 0 u+ a
ξ 1 ξ

 (2.14)

Since the passive scalar equation is decoupled from the other equations, sys-
tem (2.11) is easily generalisable to cases in which two or more passive scalars
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are included. Considering the presence of two passive scalars, ξ1 and ξ2, a
system equivalent to (2.11) can be formulated as:

∂W
∂t

+ ∂F (W)
∂x

= 0

F (W) =
(
ρu, ρu2 + p, ρuξ1, ρuξ2

)T
W = (ρ, ρu, ρξ1, ρξ2)T

(2.15)

The Jacobian matrix A(4) is:

A(4) .= ∂F (W)
∂W =


0 1 0 0

a2 − u2 2u 0 0
−uξ1 ξ1 u 0
−uξ2 ξ2 0 u

 (2.16)

and the corresponding eigenvalues and right eigenvectors matrix R(4) are:

λ
(4)
1 = u− a, λ

(4)
2 = λ

(4)
3 = u, λ

(4)
4 = u+ a (2.17)

R(4) =


1 0 0 1

u− a 0 0 u+ a
ξ1 1 0 ξ1
ξ2 0 1 ξ2

 (2.18)

Comparing (2.16) with (2.12) and (2.18) with (2.14) the generalisation to an
arbitrary number of passive scalar equations is straightforward. Note that
in the following the superscripts ( · ) indicating the number of components
of the system will be dropped, since it should be always clear what is the
specific system considered.

2.4 3D Laminar Physical Model
The 3D laminar Navier-Stokes equations for a barotropic flow can be for-
mulated in the following compact form, which is also the starting point for
the derivation of the Galerkin formulation and of the discretization of the
problem:

∂W
∂t

+ ∂

∂xj
Fj(W)− ∂

∂xj
µVj(W,∇W) = 0 (2.19)

The vector of the unknown variables W is defined as:

W = (ρ, ρu, ρv, ρw)T (2.20)
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and the vectors F = (F1, F2, F3) and V = (V1, V2, V3) are, respectively, the
convective fluxes and the diffusive ones defined as:

F1 =
(

ρu, ρu2 + p, ρuv, ρuw
)T

F2 =
(

ρv, ρvu, ρv2 + p, ρvw
)T

F3 =
(

ρw, ρwu, ρwv, ρw2 + p
)T (2.21)

and 
V1 = ( 0, σ11, σ12, σ13 )T

V2 = ( 0, σ21, σ22, σ23 )T

V3 = ( 0, σ31, σ32, σ33 )T
(2.22)

where σij is the generic component of the stress tensor:

σij = −2
3

(
∂uk
∂xk

δij

)
+
(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.23)

Let us consider the integral formulation of system (2.19) obtained by inte-
grating over a general control volume V:∫

V

∂W
∂t

dV +
∫
V

∂

∂xj
Fj(W)dV −

∫
V

∂

∂xj
µVj(W,∇W)dV = 0 (2.24)

Using the divergence theorem it is possible to reformulate (2.24) as follows∫
V

∂W
∂t

dV +
∫
S
njFj(W)dS −

∫
S
µnjVj(W,∇W)dS = 0 (2.25)

where S is the surface of the control volume V and n = (n1, n2, n3)T is the
external normal unit vector to the surface. Considering now the convective
part of system (2.19), the Jacobian matrix An of the convective flux njFj is:

An =


0 n1 n2 n3

a2n1 − uun un + un1 un2 un3
a2n2 − vun vn1 un + vn2 vn3
a2n3 − wun wn1 wn2 un + wn3

 (2.26)

We can notice that, taken ξ1 = v and ξ2 = w, the 1D and 3D formulations
are consistent since the matrix An is equivalent to the matrix A(4) defined in
(2.16) when the normal vector n is coincident with the x1-axis. This feature
will be further investigated in Chap. 5 where the 3D numerical methods are
described.
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2.4.1 3D laminar physical model in rotating frames
In the previous sections it was implicitly assumed that the reference frame
was a Cartesian inertial frame. Instead in this section a frame rotating with
constant angular velocity ~ω is considered. When a rotating frame is consid-
ered, the system (2.19) must be modified as follows:

∂W
∂t

+ ∂

∂xj
Fj(W)− ∂

∂xj
µVj(W,∇W) = S (~ω,x,W) (2.27)

where S (ω,x,W) is the source term taking into account non-inertial effects: S = − (2~ω ∧ ρu + ρ~ω ∧ (~ω ∧ x))
S (~ω,x,W) =

(
0, ST

)T (2.28)

2.5 3D Turbulent Physical Model
In order to account for the turbulence effects, the RANS standard k − ε

model [76] has been used. The governing equations are the following:

∂W
∂t

+ ∂

∂xj
Fj(W) + ∂

∂xj
F̃j(W)

− ∂

∂xj
µVj(W,∇W)− ∂

∂xj
µtṼj(W,∇W) = Ω(W) (2.29)

In (2.29) the vector of unknowns W is defined as

W = (ρ, ρu, ρv, ρw, ρk, ρε)T (2.30)

where k is the turbulent kinetic energy and ε is the turbulent dissipation. The
other terms appearing in (2.29) are the convective fluxes Fj , the turbulence
contribution to convective fluxes F̃j , the viscous laminar fluxes Vj , the viscous
turbulent fluxes Ṽj and the source term Ω related to the k − ε model. The
molecular and turbulent viscosity are, respectively, µ defined by (2.10) and
µt defined as follows:

µt = Cµ
ρk2

ε
(2.31)

Cµ being an empirical parameter. The convective fluxes have the following
expression:

F1 =
(

ρu, ρu2 + p, ρuv, ρuw, ρuk, ρuε
)T

F2 =
(

ρv, ρvu, ρv2 + p, ρvw, ρvk, ρvε
)T

F3 =
(

ρw, ρwu, ρwv, ρw2 + p, ρwk, ρwε
)T (2.32)
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F̃1 =

(
0, 2

3ρk, 0, 0, 0, 0
)T

F̃2 =
(

0, 0, 2
3ρk, 0, 0, 0

)T
F̃3 =

(
0, 0, 0, 2

3ρk, 0, 0
)T (2.33)

The laminar and turbulent viscous fluxes are defined as follows:

V1 =
(

0, σ11, σ12, σ13,
∂k

∂x1
,

∂ε

∂x1

)T
V2 =

(
0, σ21, σ22, σ23,

∂k

∂x2
,

∂ε

∂x2

)T
V3 =

(
0, σ31, σ32, σ33,

∂k

∂x3
,

∂ε

∂x3

)T (2.34)



Ṽ1 =
(

0, σ11, σ12, σ13,
1
σk

∂k

∂x1
,

1
σε

∂ε

∂x1

)T
Ṽ2 =

(
0, σ21, σ22, σ23,

1
σk

∂k

∂x2
,

1
σε

∂ε

∂x2

)T
Ṽ3 =

(
0, σ31, σ32, σ33,

1
σk

∂k

∂x3
,

1
σε

∂ε

∂x3

)T (2.35)

in which σε and σk are empirical parameters. Finally the formulation of the
source term Ω (W) is:

P = −
(

2
3ρkδij − µt

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

))
∂ui
∂xj

ωk = −ρε+ P

ωε = cε1
k

ε
P − cε2

ρε2

k

Ω (W) =
(

0 0 0 0 ωk ωε
)T

(2.36)

P being the production term of the turbulent kinetic energy. For all the em-
pirical parameters contained in the k−ε model, the standard values proposed
in [76] are used herein. Similarly to the laminar case, the integral form of
(2.29) can be recasted as:∫
V

∂W
∂t

dV +
∫
S
njFj(W)dS +

∫
S
njF̃j(W)dS −

∫
V

∂

∂xj
µVj(W,∇W)dV

−
∫
V

∂

∂xj
µtṼj(W,∇W)dV =

∫
V

Ω(W)dV

(2.37)
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Considering now the convective part of system (2.37), the Jacobian matrix
An of the flux njFj is:

An =



0 n1 n2 n3 0 0
a2n1 − uun un + un1 un2 un3 0 0
a2n2 − vun vn1 un + vn2 vn3 0 0
a2n3 − wun wn1 wn2 un + wn3 0 0
−kun kn1 kn2 kn3 un 0
−εun εn1 εn2 εn3 0 un


(2.38)

Applying the same arguments considered for the laminar case, it is clear that
using a suitable reference frame, the Jacobian matrix An is equivalent to a
1D hyperbolic system augmented with four passive scalar equations.
2.5.1 Wall treatment
As often done for the k−εmodel, a free-slip condition is imposed at a distance
δ from the wall, which depends on the used computational grid; then, the
shear stress due to the presence of the wall is obtained from the computed
velocity by using a wall law. The Reichardt wall [61] law is used herein. Let
u+ and y+ be the velocity and distance from the wall in wall units defined
as follows:

u+ = ut
uf

(2.39)

y+ = ρuf
µ
y (2.40)

in which ut is the velocity component in the direction locally tangent to the
wall, y the distance from the wall and uf the friction velocity which can be
computed from the wall shear stress, τw, as follows:

uf =
(
τw
ρ

) 1
2

(2.41)

The Reichardt wall law can be written as follows (see [61] for more details):

u+ = 1
k

ln(1 + ky+) + 7.8
(

1− e−
y+
11 − y+

11 e
−0.33y+

)
(2.42)

This wall-law has the advantage of describing once for all the three types
of behaviour of the turbulent boundary layer, viz. the viscous layer, the
logarithmic zone and the intermediate one, which is generally not accounted
for in usual wall laws. For additional details we refer to [2].
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2.5.2 3D Turbulent Physical Model in rotating frames
The extension of system (2.29) to a rotating frame of reference can be carried
using the same approach considered for the laminar case:

∂W
∂t

+ ∂

∂xj
Fj(W) + ∂

∂xj
F̃j(W)− ∂

∂xj
µVj(W,∇W)

− ∂

∂xj
µtṼj(W,∇W) = Ω(W) + S (~ω,x,W) (2.43)

where S (~ω,x,W) is the source term taking into account non-inertial effects: S = − (2~ω ∧ ρu + ρ~ω ∧ (~ω ∧ x))
S (~ω,x,W) =

(
0, ST , 0, 0

)T (2.44)

From (2.44) and (2.43) it is clear that the formulation of the equations for
k and ε is unchanged in a rotating frame of reference. This is a well-known
feature of the k − ε model see [23, 70, 117] and, as many authors point out,
could lead to an underestimation of the turbulence generation due to the
rotation [23]. In the literature some modification of the standard k−ε model
for rotating frame of reference can be found. However the physical mod-
elling of turbulent cavitating flows is really challenging and, in the author
knowledge, there is no physical model free from drawbacks or case-dependent
assumptions.
On the other hand, the standard k− ε model is commonly applied to a wide
range of cases and its limitations are well-known. As a consequence, this
model seems a good starting point for the introduction of turbulence in the
physical model.



Chapter 3
1D Numerical Method

In this chapter is proposed a numerical formulation for the simulation of the
barotropic flows which are described by the physical models introduced in
Chap. 2. The spatial discretization of the governing equations and, more
specifically, of the convective fluxes, is based on a finite-volume formulation.
Time advancing is carried out through an implicit linearised algorithm. In
this chapter the main numerical ingredients are presented in details in the
1D inviscid case, while the generalisations to 3D viscous and turbulent flow
equations are discussed in Chap. 5.
First, from Sec. 3.1 to Sec. 3.4 a general finite volume formulation for 1D hy-
perbolic system of conservation laws is presented. The proposed formulation,
which is independent from any specific structure of the hyperbolic system,
is then specialised in the sections from 3.5 to 3.8 for the specific case under
consideration, i.e. barotropic flows.

3.1 A linearised implicit formulation for a generic hy-
perbolic system of conservation laws

Let us consider a generic hyperbolic system of conservation laws,
∂W
∂t

+ ∂F (W)
∂x

= 0

W(x, 0) = W0(x)
(3.1)

of which, systems (2.11) and (2.15) are particular instances.
A semi-discrete finite-volume formulation for (3.1) can be expressed as

d

dt
Wh + Ψ(p)

h (Wh) = 0

Wh(0) = W0
h

(3.2)
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where Wh = Wh(t) is the state vector representing the semi-discrete solution
and Ψ(p)

h ( · ) corresponds to the discretization with an accuracy of order p of
the spatial differential operator.
In order to avoid severe Courant-Friedrichs-Lewy (CFL) restrictions typical of
explicit approaches, an implicit formulation can be used for time integration.
In particular, the whole discretization of (3.1) can be achieved through the
use of a Backward Differentiation Formula (hereafter BDF), q being the order
of accuracy of the method, which yields the following non-linear system:

Lp(Wn+1
h ) = 0 with Lp(U) = 1

∆nt

(
anq,0U−

q∑
i=1

anq,iWn+1−i
h

)
+ Ψ(p)

h (U)

(3.3)
where Wn

h is an approximation of Wh in t = tn, ∆n( · ) = ( · )n+1− ( · )n and
anq,i are the coefficients of the BDF method.

3.1.1 A linearised implicit DeC approach
A possible way to proceed is to define an adequate linearisation of the non
linear term in (3.3). Usually linearisation is obtained via differentiation, for
instance through the following approximation:

Ψ(p)
h (Wn+1

h ) ' Ψ(p)
h (Wn

h) + ∂Ψ(p)
h

∂Wh
(Wn

h) ∆nWh (3.4)

Thus, using (3.4) in (3.3), which just corresponds to the application of one
Newton iteration to (3.3) starting from Wn

h, the following linear system is
obtained:[
anq,0
∆nt

I+ ∂Ψ(p)
h

∂Wh
(Wn

h)
]
∆nWh = 1

∆nt

[ q∑
i=1

anq,iWn+1−i
h −anq,0Wn

h

]
−Ψ(p)

h (Wn
h).

(3.5)
In practise, it is not always possible nor convenient to exactly compute the
Jacobian matrix of Ψ(p)

h . Indeed, it is not unusual to have some lack of dif-
ferentiability of the numerical fluxes and, moreover, even when the existence
of the Jacobian is guaranteed, it can be a rather tedious task to define its
exact expression. Thus, the exact Jacobian matrix is commonly replaced by
an approximate one or, more generally, by a matrix M (p)

h such that an ap-
proximation like (3.4) is still verified. More precisely, adopting the following
approximate linearisation

Ψ(p)
h (Wn+1

h ) ' Ψ(p)
h (Wn

h) +M
(p)
h (Wn

h)
(

Wn+1
h −Wn

h

)
(3.6)
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the resulting linear system, which should be solved instead of (3.5) at each
time step is expressed as:[
anq,0
∆nt

I +M
(p)
h (Wn

h)
]

∆nWh = 1
∆nt

[ q∑
i=1

anq,iWn+1−i
h − anq,0Wn

h

]
−Ψ(p)

h (Wn
h)

(3.7)
Let us now specialise to first-order accuracy in space and in time, namely
taking p = q = 1, then (3.7) reduces to:[ 1

∆nt
I +M

(1)
h (Wn

h)
]

(Wn+1
h −Wn

h) = −Ψ(1)
h (Wn

h). (3.8)

In this way, a first-order accurate approximation of a time-dependent solu-
tion is obtained at the cost of solving one linear system at each time step.
Increasing the order of accuracy can lead to additional difficulties: the com-
putational effort required for the matrix inversion increases with the order of
the spatial accuracy p (the matrix bandwidth and condition number becom-
ing larger). Avoiding the use of an exact Jacobian is not in general sufficient
to cure this problem in a satisfactory way. A possible approach to cope with
this problem is to introduce Defect-Correction (DeC) techniques, in which
a numerical discretization of lower accuracy degree is involved for the im-
plicit part. More precisely, instead of directly solving (3.3), simpler non
linear problems are iteratively considered through the following fixed-point
like algorithm with 1 ≤ m < p:

W0 given
Lm(Ws+1) = Lm(Ws)− Lp(Ws) for s = 0, · · · , sM − 1.
Wn+1

h =WsM

(3.9)

Then, adopting the approximate linearisation (3.6), applied to Ψ(m)
h ( · ) the

resulting linear system, which should be solved at the s-th DeC iteration, is
expressed as:[
anq,0
∆nt

I+M (m)
h (Ws)

]
∆sW = − 1

∆nt

(
anq,0Ws −

q∑
i=1

anq,iWn+1−i
h

)
−Ψ(p)

h (Ws)

(3.10)
where ∆s is clearly understood.
Let us now specialise to second-order accuracy in space, which can already
be considered as a high-order accuracy in the context of industrial CFD
applications. A formulation as (3.2) is often used also for solving steady
hyperbolic problems through a pseudo-time marching procedure. In this case,
a first-order accuracy in time is, in general, sufficient since we only need a fast
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convergence to a steady solution. Then, one DeC iteration (symbol t is also
kept for the pseudo-time, for simplicity) starting from W0 = Wn

h reduces to:[ 1
∆nt

I +M
(1)
h (Wn

h)
]

(Wn+1
h −Wn

h) = −Ψ(2)
h (Wn

h).

In this way, a second-order accurate approximation of the steady solution
is obtained at convergence by only solving simplified linear systems. We
refer to [43] for a study of the convergence properties. For unsteady cases,
this second-order accuracy is not a priori guaranteed. First of all, the time
accuracy should also be increased to the second-order yielding the following
s-th DeC iteration:( (1 + 2τ)

∆nt(1 + τ)I +M
(1)
h (Ws)

)
∆sW =

−
(

(1 + 2τ)Ws − (1 + τ)2Wn
h + τ2Wn−1

h

(1 + τ)∆nt
+ Ψ(2)

h (Ws)
)

(3.11)

where τ = ∆nt
∆n−1t is the ratio between two consecutive time steps. Then, a

second-order approximation should be recovered asymptotically when a full
convergence of the DeC iterations is obtained. Fortunately, a finite termi-
nation property of DeC methods ensures that only few DeC iterations are
necessary to reach the higher-order of accuracy. Indeed, it has been proved
in [81] that sM ≥ p/(m+ 1) is a sufficient condition to obtain a pth-order ac-
curacy for q = p, assuming a linear relationship between time and space steps
and taking W0 = Wn

h. In particular, one DeC iteration of (3.11) should be
sufficient to reach a second-order accurate approximation. In this case, the
computation of one time iteration is reduced to the solution of the following
linear system:( (1 + 2τ)

∆nt(1 + τ)I +M
(1)
h (Wn

h)
)

(Wn+1
h −Wn

h) =

−
(

τ2

(1 + τ)
Wn−1

h −Wn
h

∆nt
+ Ψ(2)

h (Wn
h)
)

(3.12)

Note that the theoretical results presented in [81] are obtained by assum-
ing a sufficient regularity and by using, in particular, the exact Jacobians.
Nevertheless, this result can be generalised in order to include the complete
formulation, i.e. considering also the error due to the linearisation. In par-
ticular the second-order accuracy of the one-iteration DeC approach (3.12),
in which the first-order linearisation is used, can be checked as shown in
Sec. 3.1.2. Furthermore, from a practical point of view, it has been observed
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that the use of few additional DeC iterations generally increase the robustness
of the numerical approach. As a consequence, in 3D industrial applications
it is common practise to use several DeC iterations.
3.1.2 An appraisal of the accuracy order for the one-iteration DeC
The linearisations proposed in this thesis and defined in Sec. 3.3 introduce
an error which is formally of O(ν2) where ν2 = max((∆t)2,∆t∆x) (lineari-
sations (3.26) and (3.32)) or ν2 = (∆t)2 (linearisation (3.52)). This kind
of linearisation can be applied for the extension to second-order accuracy in
space, keeping the same order for the truncation error. Hence, it means that
for m = 1, 2:

Ψ(m)
h (Wn+1

h ) = Ψ(m)
h (Wn

h ) +M
(m)
h (Wn

h ) ∆nWh +O(ν2)

Let us define DΨ = Ψ(2)
h −Ψ(1)

h ; then we have at least:

DΨ(Wn+1
h )−DΨ(Wn

h ) = [M (2)
h (Wn

h )−M (1)
h (Wn

h )] ∆nWh +O(ν2) (3.13)

Since DΨ corresponds to the difference between a first- and a second-
order spatial discretisation of the same differential equation, both DΨ(Un+1)
and DΨ(Un) should be O(∆x). Moreover, if DΨ is regular enough (e.g.
Lipschitzian), DΨ(Un+1)−DΨ(Un) should also be O(∆t) and, therefore, the
following relation is formally introduced:

DΨ(Un+1)−DΨ(Un) = O(∆t∆x)

Consequently, from (3.13) we obtain that

[M (2)
h (Wn

h )−M (1)
h (Wn

h )] ∆nWh = O
(
(∆t)2,∆x∆t

)
and thus M (1)

h can be used instead of M (2)
h , without loss of accuracy. In

particular, we obtain:

Ψ(2)
h (Wn+1

h ) = Ψ(2)
h (Wn

h ) +M
(1)
h (Wn

h ) ∆nWh +O((∆t)2,∆x∆t). (3.14)

Let us consider a second-order BDF time discretisation scheme, associated
with a second-order spatial discretisation, namely:

3
2∆tI (Un+1 − Un) + Un−1 − Un

2∆t + Ψ(2)
h (Un+1) = O

(
(∆t)2, (∆x)2

)
.

Thus, by introducing (3.14) we obtain:( 3
2∆t +M

(1)
h (Wn

h )
)

∆nWh =

−
(
Wn−1
h −Wn

h

2∆t + Ψ(2)
h (Wn

h )
)

+ O
(
(∆x)2,∆x∆t, (∆t)2

)
(3.15)
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Thus, the resulting scheme can be viewed as a second-order accurate
approach, since the corresponding error is O

(
η2), with η = max (∆x,∆t).

3.2 First-order spatial discretization
In order to completely specify the previously described numerical formula-
tion, a spatial discretisation Ψ(p)

h ( · ), as well as a specific linearizationM (q)
h ( · )

should be defined. Concerning the spatial discretisation, let us consider, in
a first step, the first-order accuracy, i.e. Ψ(1)

h ( · ). Thus the semi-discrete
formulation can be expressed as:

d

dt
Wi + 1

δxi

(
Φi,i+1 − Φi−1,i

)
= 0 (3.16)

where Wi represents the mean integral value of W on the i-th cell centred on
xi, δxi is the length of i-th cell i.e. δxi = (hi + hi+1)/2, with hi = xi − xi−1
and Φl,r is the numerical flux function between the l-th (left) cell and the
r-th (right) one.
For a generic system of conservation laws several choices are possible. In the
following some families of numerical schemes and their main features will be
addressed.
3.2.1 Godunov-like schemes
In this work all the considered numerical methods are based on Godunov-type
schemes. In the original work of Godunov [53], a Riemann problem is solved
at each cell interface and the exact solution is used to define the numerical flux
function. However the exact solution of the Riemann problem is in general
non-linear (see i.e. appendix A for the solution of the Riemann problem for a
convex barotropic state law) thus greatly increasing the computational cost
of the numerical method. As a consequence, many Godunov-type schemes,
in which the numerical flux function is defined by only approximately solving
a Riemann problem at each cell interface, can be found in the literature.
3.2.2 The Roe scheme
One of the most popular choices for Φl,r is the so-called Roe numerical flux
function [91], which defines a first-order (in space) upwind scheme. We recall
here its expression:

Φl,r = Φ(Wl,Wr) = F (Wl) + F (Wr)
2 − 1

2 |J̃(Wl,Wr)|(Wr −Wl) (3.17)

where the matrix |J̃ | is given by a suitable matrix J̃ , called “Roe matrix”,
verifying the following conditions for any (Wl,Wr):
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1. J̃(Wl,Wr) is diagonalizable with real eigenvalues;

2. lim
Wl,Wr→W∗

J̃(Wl,Wr) = ∂F

∂W(W∗);

3. J̃(Wl,Wr) (Wr −Wl) = F (Wr)− F (Wl).

The matrix |J̃ | in (3.17) is defined as |J̃ | = T |D|T−1 where T is the matrix
of the right eigenvectors associated with J̃ and |D|km = |λk|δkm, λk and δkm
respectively being the k-th eigenvalue and the Kronecker symbol. It is well-
known that this scheme suffers of some limitations with the possibility to
encounter non-physical solutions or shock instabilities (see Chap. 4). These
problems can be partially solved by introducing an entropy fix correction.
Clearly, the Roe matrix, originally defined in [91] for the case of the Euler
equations with an ideal-gas state law, depends on the specific hyperbolic
problem under consideration.
3.2.3 The Rusanov scheme
Another possible choice for Φl,r is the Rusanov scheme [95], a simple average-
state approximate Riemann Solver, which can be expressed as follows:

Φl,r = Φ(Wl,Wr) = F (Wl) + F (Wr)
2 − 1

2S(Wl,Wr)(Wr −Wl) (3.18)

where
S(Wl,Wr) = λI (3.19)

and I denotes the identity matrix. Besides, the parameter λ = λ (WlWr)
appearing in (3.19) is an upper bound for the fastest signal velocities of the
Riemann problem [107]. It is well known that the Rusanov scheme is more
dissipative than the Roe one and, in particular, it is exceedingly dissipative
for contact discontinuities (see [107] for the analytical treatment). This means
that the Rusanov scheme is not well suited for viscous computations, since a
contact discontinuity is numerically equivalent to a limiting case of a viscous
boundary layer [84].
On the other hand, as far as the choice of λ is a reasonable one, the stability
properties of this scheme are usually better than those of Roe. As for the
Roe scheme, the Rusanov scheme depends on the specific hyperbolic problem
under consideration. A slightly more general formulation can be to consider
a matrix S with different diagonal coefficients, i.e. in which each coefficient
can be written in the following form:

Skm = λkδkm (3.20)

Indeed this formulation will be useful in the following in order to take into
account more sophisticated schemes, as it is shown in Sec. 3.6 and Sec. 3.5.3.
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3.2.4 The Q schemes
We can notice that as long as the Rusanov scheme, the Roe scheme or, in
general, a scheme defined by (3.18) are concerned, the numerical flux function
can be expressed as follows:

Φ (Wl,Wr) = Φlr = Φlr,c + Φlr,u (3.21)

in which the centred part Φlr,c and the upwind one Φlr,u are defined as:

Φlr,c = F (Wr) + F (Wl)
2 , Φlr,u = −1

2 Qlr (Wr −Wl) (3.22)

where the matrix Qlr = Q (Wl,Wr) is a generic matrix which characterises
the particular scheme. Indeed, Q = |J̃(Wl,Wr)| for the Roe scheme (3.17)
while Q = λI for the Rusanov scheme (3.18). However, it is also important
to notice that contrary to the Rusanov scheme or, generally speaking, to its
extension (3.20), the upwind matrix of the Roe scheme is not diagonal.

3.3 Flux linearisation
Let us consider the flux linearisation, still for the first-order of accuracy, i.e.
the matrix M (1)

h ( · ). A fully discrete formulation of (3.16) can be obtained
by applying a backward Euler scheme for the time discretization of :

δxi
∆nt

∆nWi + ∆nΦi,i+1 −∆nΦi−1,i = −
(
Φn
i,i+1 − Φn

i−1,i

)
.

Then, through a classical linearisation via differentiation, the following block
tridiagonal linear system, which corresponds to (3.8) is obtained:

−H(1)n
i−1,i ∆nWi−1 +Hni ∆nWi+H(2)n

i,i+1 ∆nWi+1 = −
(
Φn
i,i+1 − Φn

i−1,i

)
(3.23)

in which: 
H

(1)n
i,j = ∂Φij

∂Wi
(Wn), H(2)n

i,j = ∂Φij

∂Wj
(Wn)

Hni =
(
δxi
∆nt

I +H
(1)n
i,i+1 −H

(2)n
i−1,i

) (3.24)

As previously pointed out, the exact computation of the Jacobian matri-
ces is not always possible since the numerical flux function is generally not
differentiable, as it is indeed the case for the Roe and the Rusanov schemes.
On the other hand, simplified Jacobian-free linearisations, which maintain
the sparse structure of the final linear system, can be obtained by finding
two matrices D1 and D2 such that

∆nΦij ' D1(Wn
i ,Wn

j ) ∆nWi +D2(Wn
i ,Wn

j ) ∆nWj . (3.25)
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In particular, this could be achieved by exploiting the first-order homo-
geneity of the flux function F (this property being verified, for instance, for
the Euler equations for perfect gases); see, e.g. [49]. However, as previously
mentioned, in this study we are interested in linearisations which do not
require particular properties for the flux function.
3.3.1 A linearisation for the Roe scheme
Let us consider the following relation which is satisfied for any Roe numerical
flux function:

∆nΦij = J̃+(Wn
i ,Wn

j ) ∆nWi + J̃−(Wn
i ,Wn

j ) ∆nWj +Rn,n+1
ij (3.26)

in which, if J̃± = 1
2
(
J̃ ± |J̃ |

)
are sufficiently regular, Rn,n+1

ij is such that

‖Rn,n+1
ij ‖ = O

(
(∆t)2,∆t∆x

)
(see [102, 103] for a proof) and thus can be

neglected in (3.26), yielding the following block tridiagonal linear system in
place of (3.23):

Bi,n
−1 ∆nWi−1 +Bi,n

0 ∆nWi + Bi,n
1 ∆nWi+1 = −

(
Φn
i,i+1 − Φn

i−1,i

)
(3.27)

where: 

Bi,n
−1 = −J̃+(Wn

i−1,Wn
i )

Bi,n
0 = δxi

∆nt
I + J̃+(Wn

i ,Wn
i+1)− J̃−(Wn

i−1,Wn
i )

Bi,n
1 = J̃−(Wn

i ,Wn
i+1)

(3.28)

It may be worth remarking that the linearisation has been derived by exploit-
ing only the algebraic properties of the Roe matrix and, therefore, it does not
depend on the specific equation of state which completes the mathematical
problem.
3.3.2 A simple linearisation for the Q-schemes
Due to its particular construction, the linearisation (3.26) can be used only
for the Roe scheme. More generally, let us now consider a generic Q-scheme.
Without assuming any particular algebraic property for the matrix Q, let us
express ∆nΦij as follows:

∆nΦij = ∆nΦij,c + ∆nΦij,u

where Φij,c and Φij,u are defined by (3.22). Since the centred term is a
differentiable function of W, its variation can be easily approximated by a
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Taylor expansion as:

∆nΦij,c = 1
2
(
A(Wn

i )∆nWi +A(Wn
j )∆nWj

)
+O(∆t2) (3.29)

in which A is the Jacobian matrix of F , i.e. A .= ∂F

∂W .
It is more difficult to estimate the variation of the upwind term because

it is generally non differentiable. However, it is possible to rewrite this term
as:

∆nΦij,u = −
Qnij
2 (∆nWj −∆nWi)−

∆nQij
2 (Wn+1

j −Wn+1
i ) (3.30)

Only the second term of the right hand side of (3.30) involves quantities at
time n+ 1 and, as a consequence, several approximations of ∆nΦij,u can be
obtained simply varying the way in which this implicit term is approximated.
A first linearisation can be derived by assuming that the solution is regular
enough to satisfy:

Wn+1
j −Wn+1

i ∝ O(∆x) and ∆nQij ∝ O(∆t) (3.31)

which implies that

Γn,n+1
ij

.= ∆nQij
2 (Wn+1

j −Wn+1
i ) ∝ O(∆t∆x)

Then, an approximation of ∆nΦij can be obtained by neglecting the term
Rn,n+1
ij in the following expression:

∆nΦij =1
2
(
A(Wn

i )∆nWi +A(Wn
j )∆nWj

)

−
Q(Wn

i ,Wn
j )

2 (∆nWj −∆nWi) +Rn,n+1
ij

(3.32)

where Rn,n+1
ij corresponds to Γn,n+1

ij plus the term in O(∆t2) of (3.29). If
(3.31) holds true, Rn,n+1

ij is such that ‖Rn,n+1
ij ‖ = O

(
(∆t)2,∆t∆x

)
. We

can remark that ∆nΦij,u, is already a term in O(∆t∆x), and thus, since a
contribution of the upwind part in the approximation of ∆nΦij is suitable,
a term of the same order of Rn,n+1

ij is also present in (3.32). It corresponds
on the non neglected part of ∆nΦij,u. On the other hand, by comparing
(3.32) with (3.26), it is clear that this approach leads to a truncation error
analogous to that of the linearisation for the Roe scheme. It is worth noting
that this approach, which can be used as long as (3.31) is satisfied, is quite
general since it does not require any particular property for the matrix Qij .
Moreover, it corresponds to the frozen Jacobian method described e.g. in [4].
Note that in [4] this approach has been used for both the Roe and the Rusanov
schemes.
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3.3.3 A complete linearisation for diagonal Q-schemes
Hypothesis (3.31) is a reasonable one but there are situations of practical
interest in which it is not satisfied, as it is pointed out in [4]. If a discontinuity
is present (i.e. a shock wave), the magnitude of the term Wn+1

j −Wn+1
i can

be large, independently of the size of ∆x. Moreover, the term ∆nQij can
be not so small. This can happen, in particular, when the speed of sound
has a stiff change in magnitude or in presence of huge variations of the flow
velocity.

Let us focus now on diagonal Q-schemes, i.e. when the upwind matrix Q
is a diagonal matrix S as, for instance, for the Rusanov scheme. To estimate
the second part of (3.30), i.e. Γn,n+1

ij , let us consider, in a first step, one
diagonal coefficient of S, λk. Indeed, due to the particular expression of the
matrix S, approximating ∆nS is equivalent to find an approximation for each
term ∆nλk. Moreover, we assume here that λk is a composite function of
two variables, a and u, i.e.

λk = λk (u (Wi(t),Wj(t)) , a (Wi(t),Wj(t))) (3.33)

Note that this particular dependency on the flow variables is always verified
for the numerical schemes proposed in this study (see section 3.5).

In the following we assume that the solution is differentiable with respect
to time and it is regular enough so that the following Taylor expansion holds
true:

∆nλk = dλk
dt

∣∣∣∣
tn

∆nt + O
(
(∆nt)2

)
(3.34)

it is possible to recast the term dλk
dt in (3.34) as:

dλk
dt = ∂λk

∂u

(〈
∂u

∂Wi
,
dWi

dt

〉
+
〈

∂u

∂Wj
,
dWj

dt

〉)

+ ∂λk
∂a

(〈
∂a

∂Wi
,
dWi

dt

〉
+
〈

∂a

∂Wj
,
dWj

dt

〉) (3.35)

where the notation 〈., .〉 represents the Euclidean scalar product in IRν , ν
being the number of components of Wi. Moreover, considering also a Taylor
expansion in time at Wi, we obtain:

dλk
dt

∣∣∣∣
tn

= ∂λk
∂u

∣∣∣∣
tn

(〈
∂u

∂Wi

∣∣∣∣
tn
,
∆nWi

∆nt

〉
+
〈

∂u

∂Wj

∣∣∣∣∣
tn

,
∆nWj

∆nt

〉)
+

∂λk
∂a

∣∣∣∣
tn

(〈
∂a

∂Wi

∣∣∣∣
tn
,
∆nWi

∆nt

〉
+
〈

∂a

∂Wj

∣∣∣∣∣
tn

,
∆nWj

∆nt

〉)
+O (∆nt) (3.36)
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and consequently, by substituting (3.36) into (3.34) the following expression
is achieved:

∆nλk = ∂λk
∂u

∣∣∣∣
tn

(〈
∂u

∂Wi

∣∣∣∣
tn
,∆nWi

〉
+
〈

∂u

∂Wj

∣∣∣∣∣
tn

,∆nWj

〉)
+

∂λk
∂a

∣∣∣∣
tn

(〈
∂a

∂Wi

∣∣∣∣
tn
,∆nWi

〉
+
〈

∂a

∂Wj

∣∣∣∣∣
tn

,∆nWj

〉)
+O

(
(∆nt)2

)
(3.37)

(3.37) are independent from the index k, that is from the particular term of
matrix S into consideration.
Furthermore, ∆nSij can be directly written as a function of the terms ∆nλk
since the coefficients of this matrix can be expressed as:(

∆nSij
)
km

= δkm∆nλk

Thus, using (3.37) the following expression for ∆nSij is obtained:

∆nSij =
〈

∂u

∂Wi

∣∣∣∣
tn
,∆nWi

〉
∂S

∂u

∣∣∣∣
tn

+
〈

∂a

∂Wi

∣∣∣∣
tn
,∆nWi

〉
∂S

∂a

∣∣∣∣
tn

+〈
∂u

∂Wj

∣∣∣∣∣
tn

,∆nWj

〉
∂S

∂u

∣∣∣∣
tn

+
〈

∂a

∂Wj

∣∣∣∣∣
tn

,∆nWj

〉
∂S

∂a

∣∣∣∣
tn

+O
(
(∆nt)2

)
(3.38)

where the matrices ∂S
∂u

and ∂S

∂a
are defined as follows:

for k and m = 1, ν
(
∂S

∂u

)
km

.= δkm
∂λk
∂u

and
(
∂S

∂a

)
km

.= δkm
∂λk
∂a
(3.39)

Finally we can recast (3.38) in the form

∆nSij = H1
(
Wn

i ,Wn
j ,∆nWi

)
︸ ︷︷ ︸

H1,ij

+H2
(
Wn

i ,Wn
j ,∆nWj

)
︸ ︷︷ ︸

H2,ij

+O
(
(∆nt)2

)
(3.40)

Using (3.40) it is now possible to approximate the term ∆nSij(Wn+1
j −

Wn+1
i ). Firstly let us decompose Wn+1

j −Wn+1
i as:

Wn+1
j −Wn+1

i = Wn
j −Wn

i + ∆nWj −∆nWi (3.41)
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then we can write

∆nSij(Wn+1
j −Wn+1

i ) =
(
H1,ij +H2,ij +O

(
(∆nt)2

)) (
Wn+1

j −Wn+1
i

)
= (H1,ij +H2,ij)

(
Wn

j −Wn
i

)
+ (H1,ij +H2,ij) (∆nWj −∆nWi)

+O
(
(∆nt)2

) (
Wn+1

j −Wn+1
i

)
(3.42)

Then, we obtain the following expression:

∆nSij(Wn+1
j −Wn+1

i ) = (H1,ij +H2,ij)
(
Wn

j −Wn
i

)
+ R̄n,n+1

ij (3.43)

where R̄n,n+1
ij , defined as follows, should be neglected:

R̄n,n+1
ij = (H1,ij +H2,ij) (∆nWj −∆nWi)

+O
(
(∆nt)2

) (
Wn+1

j −Wn+1
i

)
(3.44)

To estimate the order of magnitude of ‖R̄n,n+1
ij ‖ we firstly assume that the

solution is sufficiently regular both in space and in time in order to have:
Wn+1

j −Wn+1
i ∝ O (∆x)

∆nWj −∆nWi ∝ O (∆x∆t)
Hn1,ij +Hn2,ij ∝ O (∆t)

(3.45)

where the last one is a direct consequence that Hn1,ij + Hn2,ij is an approxi-
mation of dS

dt ∆nt. Substituting (3.45) into (3.44) yields:

‖R̄n,n+1
ij ‖ = O

(
(∆nt)2∆x

)
(3.46)

Since we are trying to approximate terms which have been previously ne-
glected in the first linearisation (3.32), an increase in accuracy is expected.
Actually, an improvement for ‖R̄n,n+1

ij ‖ of one order of magnitude (more
precisely of order of max(∆t,∆x)) is achieved when the solution is regular
enough. Nevertheless, as previously pointed out, we are interested here in
less regular solutions. This second linearisation is of major interest in this
case, since for regular solutions the frozen Jacobian approach is already ac-
curate enough with respect to the global order of accuracy of the numerical
method. Indeed, we consider here the formulation (3.8) which is first-order
accurate in time and space, and moreover, even with a higher accurate ap-
proach, i.e. with (3.7) with p > 1 and q > 1, we are limited to second order
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in time as long as approximation (3.29) is used. On the contrary, it seems
crucial to take into account an approximation of Γn,n+1

ij when ∆nSij and
Wn+1

j −Wn+1
i are independent from the time and space discretization as

for instance, in presence of a shock where no assumption on the regularity in
space of the solution can be done. Nevertheless, in this case, a second-order
accuracy is still obtained if we suppose that the solution is regular enough in
time to satisfy (3.34). Indeed, it is then possible to write{

∆nWj −∆nWi ∝ O (∆t)
Hn1,ij +Hn2,ij ∝ O (∆t)

(3.47)

and substituting (3.47) into (3.44) yields:

‖R̄n,n+1
ij ‖ = O

(
(∆nt)2

)
(3.48)

As done for the previous linearisations, i.e. (3.26) and (3.32), we are inter-
ested in obtaining an approximation of ∆nΦij as proposed in equation (3.25),
that is with a linear dependency on the unknowns ∆nWi and ∆nWj . How-
ever, from (3.43) we have apparently lost this kind of expression. Taking into
account (3.43), and using (3.38), (3.40) and (3.43), the term depending on
∆nWi can be expressed as follows:[〈

∂u

∂Wi

n

,∆nWi

〉
∂S

∂u

n

+
〈
∂a

∂Wi

n

,∆nWi

〉
∂S

∂a

n] (
Wn

j −Wn
i

)
Let us consider only one of the previous terms, i.e. let us define the following
vector:

Tnij =
〈
∂v

∂Wi

n

,∆nWi

〉
∂S

∂v

n (
Wn

j −Wn
i

)
in which v can be either u or a. Then, developing both the scalar product
and the product matrix by vector, we obtain the following expression for the
k-th component of Tnij :

(
Tnij
)
k

=
[ ν∑
m=1

∂vn

∂Wi,m
∆nWi,m

] ν∑
s=1

(
∂S

∂v

n)
ks

(
Wn

j,s −Wn
i,s

)
Wn

i,s being the s-th component of Wn
i . Then, the previous expression can

be simplified using (3.39) as:

(
Tnij
)
k

=
[ ν∑
m=1

∂vn

∂Wi,m
∆nWi,m

]
∂λk
∂v

n (
Wn

j,k −Wn
i,k

)
=

ν∑
m=1

[
∂λk
∂v

n ∂vn

∂Wi,m

(
Wn

j,k −Wn
i,k

) ]
∆nWi,m

(3.49)
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Consequently, an adequate dependency on ∆nWi has been obtained and
(3.43) can be rewritten as follows:

∆nSij
(
Wn+1

j −Wn+1
i

)
= K+

ij∆
nWj +K−ij∆

nWi + R̄n,n+1
ij (3.50)

in which R̄n,n+1
ij is the one defined in (3.44) while the matrices K+

ij and K−ij
are defined by:

(
K+
ij

)
km

=
(
∂λk
∂u

∂u

∂Wj,m
+ ∂λk

∂a

∂a

∂Wj,m

)(
Wn

j,k −Wn
i,k

)
(
K−ij

)
km

=
(
∂λk
∂u

∂u

∂Wi,m
+ ∂λk

∂a

∂a

∂Wi,m

)(
Wn

j,k −Wn
i,k

) (3.51)

Finally, using (3.50) the following more complete approximation of the time
variation of the numerical flux function can be obtained:

∆nΦij '
(1

2
[
A(Wn

i ) + S(Wn
i ,Wn

j )
]

+K−ij

)
∆nWi

+
(1

2
[
A(Wn

j )− S(Wn
i ,Wn

j )
]

+K+
ij

)
∆nWj (3.52)

If we use now this linearisation in the formulation (3.8), as for the case of
the Roe scheme, we obtain a block tridiagonal linear system for a general
diagonal Q-scheme. More precisely:

Ci,n−1 ∆nWi−1 + Ci,n0 ∆nWi + Ci,n1 ∆nWi+1 = −
(
Φn
i,i+1 − Φn

i−1,i

)
(3.53)

where: 

Ci,n−1 =
−A(Wn

i−1)− Sni−1,i +K−i−1,i
2

Ci,n0 = δxi
∆nt

I +
Sni−1,i + Sni,i+1 +K+

i−1,i −K
−
i,i+1

2

Ci,n1 =
A(Wn

i+1)− Sni,i+1 −K
+
i,i+1

2

(3.54)

Note that if K+ and K− are null matrices, this linearisation reduces to the
previous one obtained from (3.32).
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3.4 Extension to second-order accuracy
In this section the numerical techniques used to reach the second-order of
accuracy both in space and in time are described. First, in Sec. 3.4.1 the
numerical formulation proposed in sections 3.2 and 3.3 is extended to the
second-order accuracy in space, then in Sec. 3.4.2 the second-order accuracy
in time is achieved.
3.4.1 Spatial second-order accuracy
The extension to second-order accuracy in space can be achieved by using a
classical MUSCL technique [115], in which instead of Φi,i+1 = Φ(Wi,Wi+1),
the numerical flux Φi+ 1

2
= Φ(W−

i+ 1
2
,W+

i+ 1
2
) is considered at the cell interface

xi+ 1
2
. The considered values W±

i+ 1
2
are defined by piecewise linear recon-

struction of the solution, and can be expressed as follows in a β-scheme form
(see, e.g. [58]):

W−
i+ 1

2
= Wi + hi+1

2

[
(1− β)Wi+1 −Wi

hi+1
+ β

Wi −Wi−1
hi

]

W+
i+ 1

2
= Wi+1 −

hi+1
2

[
(1− β)Wi+1 −Wi

hi+1
+ β

Wi+2 −Wi+1
hi+2

] (3.55)

where β is a given parameter.
Formulation for second-order schemes with limiters
The slopes used for the MUSCL extrapolation have to be limited in order
to avoid overshoots, specially when strong gradients and/or discontinuities
are present in the solution (see, e.g. [78]). More precisely, the average values
W±

i+ 1
2
defined in (3.55) should be substituted by the following limited values:


W−

i+ 1
2

= Wi + hi+1
2

(
Λ−
i+ 1

2

Wi+1 −Wi

hi+1
+ Λ+

i− 1
2

Wi −Wi−1
hi

)

W+
i+ 1

2
= Wi+1 −

hi+1
2

(
Λ+
i+ 1

2

Wi+1 −Wn
i

hi+1
+ Λ−

i+ 3
2

Wn
i+2 −Wi+1
hi+2

)
(3.56)

in which Λ±l are diagonal matrices introducing the (non linear) limiter func-
tion. Several classical choices can be used to obtain a total variation dimin-
ishing scheme [107]. For instance, in the numerical experiments presented
in section 4, the slope limiter of van Albada [113] has been used. Then, in
particular, matrix Λ−

i+ 1
2
depends on Wi−1,Wi and Wi+1 while Wi,Wi+1

and Wi+2 are involved in the definition of Λ+
i+ 1

2
. Thus, the introduction of
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limiters adds additional levels of non linearity: the limiter by itself is not
linear (nor differentiable) so as the products like Λ±l Wj . Consequently, in
this case a DeC approach seems to be particularly suitable since it requires
only the linearisation of the first order numerical flux function, where this
additional non-linearity is not present.
3.4.2 DeC second-order formulation
Let us consider the algorithm (3.11) associated with the linearisation (3.25).
In this case, the following space and time second-order accurate implicit
formulation is obtained:

W0 = Wn

Bi,s−1∆sWi−1 + Bi,s0 ∆sWi + Bi,s1 ∆sWi+1 = Ssi s = 0, · · · , sM − 1

Wn+1 = WsM

(3.57)
in which:

Bi,s−1 = −D1(Ws
i−1,Ws

i )

Bi,s0 = δxi(1 + 2τ)
(1 + τ)∆nt

I +D1(Ws
i ,Ws

i+1)−D2(Ws
i−1,Ws

i )

Bi,s1 = D2(Ws
i ,Ws

i+1)

Ssi = −
(
δxi

(1 + 2τ)Ws − (1 + τ)2Wn
h + τ2Wn−1

h

(1 + τ)∆nt
+ Φs

i+ 1
2
− Φs

i− 1
2

)
(3.58)

D1 and D2 being the generic matrices of the approximation (3.25) which, for
the specific case of the Roe and diagonal Q-schemes are defined by, respec-
tively, (3.26) and (3.52).

3.5 Barotropic flows
The formulation defined in the previous sections for a hyperbolic system of
conservation laws is rather general since it can be applied to a generic flux
function F . However, as previously pointed out, the complete definition of
the aforementioned numerical methods, depends on the specific hyperbolic
problem under consideration. Hence, hereafter the 1D system (2.11) closed
by a convex barotropic state law is considered.

The numerical flux functions considered in this section are constructed
through an approximation of the Riemann problem, by considering a lin-
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earised problem, as in the case of the Roe scheme, or an average-state ap-
proximation, as in the case of HLL schemes. The solution for the Riemann
problem with a generic convex barotropic equation of state has been de-
scribed in [102,103] and it is reported in appendix A. It is composed by three
waves: the intermediate one is always a contact discontinuity, the others can
be shock or rarefaction waves. This simple three-waves configuration is ob-
tained in particular for the barotropic EOS described in section 2.2, i.e. Eqs.
(2.6) and (2.7). Indeed, the convexity is trivially obtained for the wetted
regime, while, even if it has not be rigorously proved due to the complexity
of (2.7), this assumption has been also systematically verified by an analyt-
ical/numerical analysis for all the considered cavitating mixtures (we refer
to [102] for details).
3.5.1 The Roe scheme
The generic Roe scheme described in (3.2.2) is completely defined once a
suitable Roe matrix is derived for the specific hyperbolic problem under con-
sideration. For a generic barotropic state equation and the 1D hyperbolic
system (2.11), the following Roe matrix has been derived in [102,103]:

J̃ij =


0 1 0
ã2
ij − ũ2

ij 2ũij 0
−ũij ξ̃ij ξ̃ij ũij

 (3.59)

in which ũij and ξ̃ij correspond to the well-known “Roe averages” for the
states Wi and Wj of u and ξ respectively, i.e.:

ũlr =
√
ρiui +√ρjuj√
ρi +√ρj

and ξ̃lr =
√
ρi ξi +√ρj ξj√
ρi +√ρj

whereas ãij , which can be considered as a Roe average for the sound speed,
is defined as:

ãij =


√
p(ρj)− p(ρi)
ρj − ρi

if ρj 6= ρi

a (ρ?, p(ρ?)) if ρi = ρj = ρ?

(3.60)

Note that as far as the numerical implementation is concerned, ãlr should be
defined as follows:

ã2
lr =


p(ρr)− p(ρl)
ρr − ρl

if | ρr − ρl |> ε

a2(ρ̄lr, p(ρ̄lr)) if | ρr − ρl |< ε
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where ε is a suitable numerical threshold and ρ̄lr is an average value such
that: lim

Wl,Wr→W ?
ρ̄lr = ρ?. Besides, the eigenvalues of the matrix J̃ij have the

same formal expression of whose of the analytical Jacobian (2.12):

λ̃1 = ũij + ãij , λ̃2 = ũij − ãij and λ̃3 = ũij (3.61)

3.5.2 A simple HLL scheme
The HLL schemes [58], which assume one intermediate wave state between
two acoustic waves in the approximate Riemann problem, are widely used
due to their simplicity, reliability and robustness. The choice of sL and sR,
the acoustic wave speed estimates, fully determines each particular scheme.
The simplest approach, known as the Rusanov scheme [41, 95], is obtained
by considering sL = −sR, and thus, can be expressed as

Φi,j = F (Wi) + F (Wj)
2 − λij

2 (Wj −Wi) (3.62)

where λij = sR is an upper bound for the fastest wave speed. A classical
choice for λij is the largest absolute value of the Roe matrix eigenvalues.

The HLL schemes are trivially generalisable to the case of barotropic
EOS. Indeed, both the acoustic wave speeds of the exact Riemann problem
and the corresponding Roe matrix eigenvalues are formally identical in the
barotropic and non-barotropic cases even if the definition of the sound speed
is different. Thus, a Rusanov scheme for barotropic EOS is proposed, here,
considering the numerical flux function (3.62) associated with

λij = max
p

(|λ̃p|) = |ũij |+ ãij (3.63)

in which ãij is obtained by (3.60) and λp is defined by (3.61). As already
mentioned, note that equation (3.62) is a particular instance of the family
of schemes defined in section 3.2.3. Equations (3.63) is not the only possible
choice for λij , another common approach is to consider:

λij = max(|ui|+ ai, |uj |+ aj) (3.64)

Some numerical experiments carried out in [16] (see also Sec. 4.3.2) proved
that the choices (3.64) and (3.63) can be considered equivalent since they
computed the same results. Thus, in this work, except when differently
stated, only the first choice, (3.63) is considered.
3.5.3 A modified HLL scheme with an anti-diffusive term
The HLL schemes are known for their excessive diffusive behaviour in pres-
ence of a contact discontinuity. Indeed, due to the assumption of a two-
wave configuration with only one intermediate state, the two intermediate
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states of the exact Riemann solution are averaged, smearing, in this way,
the contact discontinuity. To avoid this problem, more complex average-
state approximate Riemann solvers have been introduced as, for instance,
the HLLC scheme, proposed in [107], which involves two intermediate states
in the approximate solution. Alternatively, an anti-diffusive term for the con-
tact discontinuity can be directly added in the single-state HLL formulation.
This kind of approaches initially proposed in [44] with the HLLEM scheme,
has been successively improved considering the HLLE+ scheme [84]. In this
context, the following unified expression of the flux function can be used to
represent HLL (taking δ̄ = 0), HLLEM, HLLE+ as well as Roe fluxes:

Φ(Wl,Wr) = b+F (Wl)− b−F (Wr)
b+ − b−

+ b+b−

b+ − b−

Wr −Wl −
∑
p∈Scd

δ̄αprp


(3.65)

in which b+, b− and δ̄ are parameters depending on the states Wl and Wr,
while rp are the right eigenvectors of the Jacobian matrix of the flux function
F evaluated at a particular intermediate state and αp the components of
Wr−Wl in the right-eigenvector basis. Scd is the set of indexes for which rp
is associated with the eigenvalue u of the flux Jacobian matrix, i.e. related
to the contact discontinuity. Thus, the last term in the right hand side of
(3.65) represents an anti-diffusive term for the contact discontinuity. How-
ever, for the classical case of an ideal-gas EOS, any modification of this term
acts on the whole system of equations, and consequently, the choice of an
adequate parameter δ̄ is rather critical (see [84]). The situation is different
for the barotropic case since density, velocity and pressure are continuous
across the contact discontinuity, and thus, the presence of two different in-
termediate states is only due to the passive scalar (see [102,103]). Moreover,
only one eigenvalue is associated with the contact discontinuity while the
corresponding eigenvector r3 can be always chosen to be (0 0 1)T whatever
is the particular intermediate state. Consequently, the anti-diffusive term in
(3.65) affects only the third equation of the system. Due to this decoupling
from mass and momentum equations, there are less restrictions on the choice
of δ̄ in the barotropic case. Clearly, it should correspond to an anti-diffusive
term in order to avoid the smearing of the contact discontinuity of the HLL
scheme, and on the other hand, the estimate of the wave speeds should re-
main as close as possible to the real ones. The simplicity of the scheme is
privileged here for the choice of the modified term in view of its incorporation
in the complete formulation including preconditioning for low Mach number
and linearised implicit approach (see sections 3.6 and 3.3). Consequently,
starting from the simplest HLL scheme, i.e. the Rusanov one, the following
modified scheme, called in the following LD-HLL (Low-Diffusive HLL), is
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proposed:

Φi,j = F (Wi) + F (Wj)
2 − 1

2

 λij 0 0
0 λij 0
0 0 |ũij |

 (Wj −Wi) (3.66)

With respect to the original Rusanov scheme, the first two equations, which
are related to the acoustic waves, are unchanged, while for the third equation,
i.e. the one directly related to the contact discontinuity, the diffusive part of
the scheme has been reduced. This can be more clearly shown by rewriting
(3.66) as follows:

Φi,j = F (Wi) + F (Wj)
2 − 1

2λij

(
(Wj −Wi)−

ãij
ãij + |ũij |

(ρjξj − ρiξi) r3

)
(3.67)

reminding that r3 = (0 0 1)T .
Furthermore, this scheme can also be expressed in terms of the unified

Godunov-type formulation (3.65) by considering the following parameters:

b− = −λij , b+ = λij and δ̄ = ãij
ãij + |ũij |

(
1 + ξ̃ij(ρj − ρi)

ρ̃ij(ξj − ξi)

)
(3.68)

in which we have chosen to express Wj −Wi in the basis of the right eigen-
vectors of the Roe matrix. It is also interesting to investigate the behaviour
of this scheme in the asymptotic limits. In particular, when the flow is nearly
incompressible, i.e. ρj ' ρi, |ũij | � ãij and consequently λij ' λ̃1 = −λ̃2,
the parameters defined in (3.68) tend to the following values:

b− = min
(
λ̃2, 0

)
, b+ = max

(
λ̃1, 0

)
and δ̄ = ãij

ãij + |ũij |
(3.69)

The scheme associated with these parameters in the unified formulation (3.65)
coincides with the Roe scheme. This is a classical result for ideal-gas EOS
(see [84]) but it is also true for the barotropic case (the proof is reported in
appendix B). Thus, in the limit of incompressible flows and, as a consequence,
for low Mach number flows, the LD-HLL and Roe schemes are equivalent.
Conversely, in the limit of highly compressible flows since |ũij | � ãij we have
λij ' |ũij |, and thus, it follows that the scheme (3.66) is equivalent to the
standard Rusanov one.

3.6 Preconditioning for low Mach number flows
For the cavitating flow problem, a large part of the flow is characterised by
very low Mach numbers since we have to deal with a weakly-compressible
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liquid. Compressible solvers encounter accuracy problems when dealing with
nearly-incompressible flows [57]. In order to counteract this difficulty, some
preconditioning must be applied.
3.6.1 A preconditioned Roe scheme
A Turkel-like preconditioning has been proposed in [102, 104] for the Roe
flux function associated with a barotropic EOS using a similar formulation
as proposed in [57] for a perfect-gas state equation. This preconditioning is
acting only on the upwind part of the numerical flux function; more precisely,
Qij = |J̃(Wi,Wj)| is replaced by:

Qij = P−1
ij |Pij J̃(Wi,Wj)|

in which Pij is the preconditioning matrix defined by

Pij = ∂Wp

∂W

∣∣∣∣
ij

Λp
∂W
∂Wp

∣∣∣∣∣
ij

where Wp is the vector of the primitive variables and Λp = diag(θ2, 1, 1), the
parameter θ being proportional to a reference Mach number, which is herein
defined as:

θ = θ(M) =
{

10−6 if M ≤ 10−6

min(M, 1) otherwise (3.70)

in which M represents a local Mach number as function of the Roe average
values, i.e. M = |ũ|

ã
. It has been shown in [102] that, with this choice of

Pij , the preconditioned semi-discrete solution recovers the same asymptotic
behaviour (with an expansion in power of a reference Mach number M) of
the analytical one in the low Mach number limit. This theoretical result
has been also corroborated by numerical experiments which show that the
preconditioned formulation does not present accuracy problems for low Mach
number flows. We refer to [97,102,104] for more details.
3.6.2 A preconditioned HLL-like scheme
By carrying out an asymptotic analysis reported in appendix C, it has been
found that the Rusanov scheme also encounters accuracy problems in the low
Mach number limit [16]. However, the correct asymptotic behaviour of the
analytical solution can be recovered acting directly on the acoustic diagonal
terms of the matrix Sij . More precisely, it is possible to consider the following
“preconditioned” matrix:

Sij =

λ
p
ij,1 0 0
0 λpij,2 0
0 0 λpij,3

 (3.71)
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For the preconditioned Rusanov scheme, the “preconditioned” eigenvalues
λpij,1 appearing in (3.71) are defined as:

λpij,1 = θ−1λij , λ
p
ij,2 = θλij , λ

p
ij,3 = λij (3.72)

where the parameter θ is the same previously defined for the preconditioned
Roe scheme (see (3.70)). With this simple preconditioning procedure, the
correct asymptotic behaviour of the analytical solution is recovered (for de-
tails see appendix C).
Note that since the preconditioning affects only the mass and momentum
balances and not the passive scalar field, the analysis is also valid for the LD-
HLL scheme (3.66) and thus, the “preconditioned matrix” for this scheme is:

Sij =

 λijθ
−1 0 0

0 λijθ 0
0 0 |ũij |

 (3.73)

Note that (3.73) is a particular instance of (3.71) when the “preconditioned”
eigenvalues are defined as:

λpij,1 = θ−1λij , λ
p
ij,2 = θλij , λ

p
ij,3 = |ũij | (3.74)

3.7 Simplified expression of the matrices for the com-
plete linearisation

To deal with the complete linearisation in 3.3.2 it is necessary to write the
matrices K+ and K− for the particular case under consideration. For this
purpose it is worth noting that the elements of the matrix S, even in the
preconditioned case, λk, are in the form f(M)(|u|+ a) where M = |u|

a
and,

as a consequence, they satisfy (3.33).
Independently of the way |u| and a are chosen, λk is always a differentiable
function of a (a being always > 0) and is differentiable with respect to u
when u is different from 0. Furthermore, a and u are of the form:

a = a(ρj , ρi) u = u(ρj , ρi, (ρu)j , (ρu)i)

Both u and a are differentiable functions of ρj , ρi but u is not always differ-
entiable with respect to (ρu)j and (ρu)i. However, excepting when the flow
is highly supersonic, we have that the flow derivatives of u are far smaller
than the ones of a. Consequently, it seems reasonable to neglect the variation
in u for the expression of K+ and K− in (3.51), and then, to approximate
the variation of the matrix S only through the variation in a. Moreover, it
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is important to notice that the matrices K+ and K− introduce a term that
is second-order accurate except in presence of a discontinuity. Due to the
particular state law under consideration, a shock wave is nearly constantly
associated with a transition from vapour to liquid. This transition involves
a step-like change of the speed of sound and, as a consequence, set straight
the choice to neglect the variation in u. Then, with this assumption and
using the fact that a only depends on the density, the matrices K+ and K−
previously defined in (3.51) reduce here to:

K±ij =



∂λ1
∂a

∂a

∂ρ±
(ρnr − ρnl ) 0 0

∂λ2
∂a

∂a

∂ρ±

(
(ρu)nr − (ρu)nl

)
0 0

∂λ3
∂a

∂a

∂ρ±

(
(ρξ)nr − (ρξ)nl

)
0 0


(3.75)

in which ρ± is equal to ρj and ρi for K+ and K− respectively.
3.7.1 A numerical approximation of the eigenvalues derivatives
Matrix K+

ij and K−ij require the computation of the eigenvalues derivatives
with respect to density, but considering only the variation in a, i.e. terms
∂ρλk defined by:

∂ρλk = ∂Λk
∂ρ

where Λk = Λk(ρj , ρi) = λk

(
u, a(ρj , ρi)

)
The analytical expression of those terms can be very complex, especially in
the preconditioned case when λk is chosen as in (3.74). Also, ∂ρλk could
be discontinuous at the saturation point for cavitating flows. While the
last point could be solved using some “average” between the right and left
derivatives, the analytical expression of ∂ρλk is expensive from a computa-
tional point of view. A possible way to overcome this problem is to consider
the following approximation:

∂ρjλk '
λk(u, a(ρj + ε, ρi))− λk(u, a(ρj − ε, ρi))

2ε

∂ρiλk '
λk(u, a(ρj , ρi + ε))− λk(u, a(ρj , ρi − ε))

2ε

(3.76)

When the analytical derivative exists, this approximation is second-order
accurate, but (3.76) is always defined and near a discontinuity its value is an
average of the right and left limits of the derivative.
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3.8 Summary of the 1D numerical methods
In this study different linearised implicit numerical methods have been con-
sidered for barotropic flows. For the second-order accurate in space and time
schemes, the general formulation of those approaches can be summarised in
system (3.57)-(3.58). The expression of the matrices D1 and D2 appearing
in (3.58) depends on the specific numerical flux function considered, (Roe,
Rusanov, LD-HLL) as well as on the presence of a preconditioner and on the
chosen flux linearisation. For the sake of clarity, a summary of the possible
expressions of D1 and D2 is reported in table 3.1. Similarly, it is possible to

Roe Rusanov LD-HLL

D1 Q−1
[
QJ̃ij

]+
1
2(A(Wn

i ) + Snij −Kij)

D2 Q−1
[
QJ̃ij

]−
1
2(A(Wn

j )− Snij +Kji)

no precond. Q = I Snij = λijI Snij from (3.66)
precond. Q = Pij Snij from (3.71) Snij from (3.73)

linearisation defined standard (from (3.32)): Kij = 0
in (3.26) complete (from (3.52)): Kij from (3.51)

Table 3.1: Expressions of D1 and D2 for the different choices of linearisation
and numerical flux function (with or without preconditioning).

define a general formulation for the first-order schemes, the only difference
with the formulation (3.57)-(3.58) is that the time derivative is approximated
with a backward Euler scheme instead that with a second-order BDF. Note
in particular that even using the preconditioning both the Rusanov and the
LD-HLL schemes are diagonal Q-schemes Thus, the complete linearisation
defined by (3.52) in Sec. 3.3.3 can be applied also for these schemes.





Chapter 4
1D Numerical Experiments

In this chapter, the previously defined numerical approaches are validated and
compared by considering different test-cases, for which the exact solution is
available. They include, in particular, both steady and unsteady problems
as well as different kinds of solutions (smooth, continuous and discontinuous
ones) and regimes (from low Mach number to supersonic flows).

First a brief description of the considered test-case is given at the be-
gin of each of the sections 4.2 and 4.3. Then the proposed methodologies
for the second-order extension and the low diffusive modification of the Ru-
sanov scheme are validated in section 4.2.1 and 4.2.2 respectively. The pre-
conditioning strategy is addressed in section 4.3.2 and, finally the complete
linearization proposed in section 3.3 is analysed in 4.3.3.

4.1 A barotropic state law model
Since the main purpose of this part of the thesis is the simulation of cavitating
flows, most of the test-cases presented in this chapter have been performed
considering the cavitating EOS (2.6)-(2.7). Nevertheless, less specific test-
cases have also been considered in order to independently study the different
numerical ingredients described in Chap. 2. Thus, the following barotropic
state law has been also considered for some of the 1D test-cases:

p = κ ρκ + γ (4.1)

with κ > 0, κ > 0 and γ given (real) constants. Note that this family of ba-
rotropic equations of state includes several classical cases as, for instance, the
homogeneous shallow water equations, of course, augmented by the advec-
tion of the passive scalar (κ = 2−1, κ = 2 and γ = 0) or the Tait law, which
is used for describing the isentropic flow of compressible liquids (κ = ε ρ−κ0
and γ = −ε, with ε > 0 and ρ0 > 0).
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4.2 Riemann problems for convex barotropic law
Riemann problems, which are characterised by the convection of continuous
and discontinuous waves, are classical benchmarks to test numerical schemes
for time-dependent problems, as well as to investigate the behaviour of the
schemes in presence of discontinuities (see e.g. [107]). The initial condition
for this problem consists of constant right and left states separated by a
discontinuity. The exact solution of the Riemann problem for (2.11) closed
by a convex EOS, i.e. (2.4), is described in [102] and is reported in appendix
A. For a generic convex barotropic equation, the solution for the Riemann
problem is composed by three waves: the intermediate one is always a contact
discontinuity, the others can be shock or rarefaction waves [102]. Moreover,
the presence of contact discontinuities in the aforementioned solution to the
Riemann problem permits to compare the results of the Rusanov scheme,
which is known to have poor accuracy for this kind of discontinuities, with
those of the Roe scheme.
4.2.1 Non-cavitating Riemann problem: study of DeC approaches
For the present test-case only one numerical scheme, namely the Roe one,
has been considered. Indeed, the study is centred on the validation of the
second-order DeC formulation (3.11)-(3.12). In particular, the actual increase
of accuracy of the second-order approach, as well as the practical impact on
the solution of using more than one DeC iteration is shown. In the present
Riemann problem, the equation of state (4.1) is exploited using κ = 106, κ =
1 and γ = 0. The initial conditions are the following: ρL = 1 kg/m3, ρR =
1.25 kg/m3, uL = −90 m/s, uR = 100 m/s, ξL = −2 and ξL = 2, where
the subscripts L and R denote the left and right states respectively. In this
case, the unsteady solution corresponds to the progressive separation of two
waves (one shock and one rarefaction respectively) for pressure, density and
velocity (and the evolution of a contact discontinuity for the passive scalar).
The study is focused here on the second-order defect correction approaches
considering different levels of refinement both in space and time (∆x from
0.5 to 500 and from ∆t from 0.5 · 10−4 to 0.05, respectively). The results
computed by the first-order version of the Roe scheme and the second-order
one with 1, 2 and 3 DeC iterations are shown in the following. All the
solutions are taken at the time t = 1. Figs. 4.1 and 4.2 show the convergence
with respect to space refinement with, as expected, an important diffusivity
of the first-order approach near strong gradients and discontinuities. One
iteration of defect correction is already sufficiently accurate since the cases
with SM = 2 or SM = 3 provide very similar results.

Figs. 4.1 and 4.3 correspond to different numerical solutions obtained
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by varying the refinement, but now taking ∆x∆t constant. For the second-
order approaches, the best solution is obtained by an intermediate set of
values of (∆x,∆t) (Fig. 4.3a); this appears in agreement with the accuracy
appraisal of O

(
(∆η)2), (∆η)2 = max

(
(∆x)2,∆x∆t, (∆t)2), proposed in sec-

tion 3.1.2. Indeed, for large ∆x (Fig. 4.1), the term of order (∆x)2 should
be predominant and the grid coarseness deteriorates the solution accuracy
and, similarly, too large ∆t (∆t = 10−2) yields significant errors. In order to
be more quantitative, a scaling issue can be introduced in the present case.
Indeed, the self-similar character of the solution of the Riemann problem in-
trinsically introduces a space/time ratio which, for low Mach number flows
like the one considered, is basically associated with the fluid sound speed
(equal to 103). By observing the exact solution in Figs. 4.1 or 4.3 (at t = 1),
it appears that the characteristic length scale, given by the distance between
the waves, is roughly equal to Lx = 2000. Hence, by comparing ∆x/Lx and
∆t, it is not surprising that the best results amongst those shown in Figs.
4.1 and 4.3 are associated with ∆t = 10−3. Indeed, in this case, the chosen
settings tend to approach the optimal condition ∆x/Lx = ∆t minimising the
non-dimensional counterpart of O

(
(∆x)2,∆x∆t, (∆t)2).
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Figure 4.1: Non cavitating Riemann problem (Roe scheme), comparison be-
tween the first-order implicit scheme and second-order DeC ap-
proaches: velocity field for ∆t = 10−4 and ∆x = 100.

In this spirit, the oscillations appearing in Fig. 4.3b, even if limiters are
used, are probably due to the coarsening of ∆t with respect to ∆x (∆t here
is 20 times larger than ∆x/Lx). In consideration of this difference, it seems
reasonable that applying several defect-correction steps does not significantly
improve the numerical solution. On the other hand, by increasing ∆x to 10
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(a) ∆x = 10
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(b) ∆x = 1

Figure 4.2: Non cavitating Riemann problem (Roe scheme), comparison be-
tween the first-order implicit scheme and second-order DeC ap-
proaches: velocity field for ∆t = 10−4.
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(a) (∆t,∆x) = (10−3, 10)
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(b) (∆t,∆x) = (10−2, 1)

Figure 4.3: Non cavitating Riemann problem (Roe scheme), comparison be-
tween the first-order implicit scheme and second-order DeC ap-
proaches: velocity field with ∆t∆x = 10−2.

(thus reducing the gap between time and space discretisation), an improved
numerical solution is obtained by increasing the number of defect-correction
steps, as shown in Fig. 4.4. More in detail, two defect-correction iterations
seem to be enough to damp the oscillations as additional iterations do not
refine the solution. Finally, it may be worth remarking that only implicit
schemes permit to approach the aforementioned optimal condition for the
space/time discretisation settings, being free of CFL-like constraints.

Let x1, · · · , xN be the nodes corresponding to a particular spatial dis-
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Figure 4.4: Non cavitating Riemann problem (Roe scheme), comparison be-
tween the first-order implicit scheme and second-order DeC ap-
proaches: velocity field with (∆t,∆x) = (10−2, 10).

cretisation, it is possible to define the error of the numerical simulation with
respect to the exact solution, as e(ϕ) = ‖~ϕ− ~ϕe‖/‖~ϕe‖, where ‖.‖ is the
Euclidean norm in IRN , ϕ and ϕe are the numerical and the exact solutions
respectively and ~ϕ = (ϕ(x1), · · · , ϕ(xN ))T . Fig. 4.5 shows the evolution of
the density error with refinement. The refinement is made simultaneously
in space and time, i.e. with a constant ratio ∆x/∆t (corresponding to the
case of Fig. 4.3a). The asymptotic slopes of the error curve are about 0.42
for first-order and 0.71 for the DeC approaches (DeC1, DeC2 and DeC3)
respectively. The presence of discontinuities and strong gradients where the
second-order is lost and which yield a major contribution to e(u) prevents
us from expecting the classical asymptotic error slopes of 1 and 2 for, re-
spectively, the first and second order formulation. Nevertheless, it must be
noticed that in the present case the difference of accuracy between the first-
order approach and the DeC ones is clearly illustrated by a slope ratio around
2 (namely 1.7) thus confirming the effectiveness of the proposed methodol-
ogy for second-order extensions. Furthermore, the error behaviour for a more
regular solution will be shown in Sec. 4.3.1.
4.2.2 A Riemann problem for cavitating barotropic flow
As previously mentioned, the presence of the contact discontinuity permits
to compare the results of the Rusanov scheme, which is known to encounter
accuracy problems for this kind of discontinuities, with those of the Roe
scheme and of the proposed LD-HLL scheme. The working fluid is water at
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Figure 4.5: Non cavitating Riemann problem (Roe scheme), comparison be-
tween the first-order implicit scheme and second-order DeC ap-
proaches: density error with respect to ∆t (∆x/∆t frozen)

a temperature of T = 293.16 K and the equations of state are those given by
the barotropic cavitation model (2.6)-(2.7), in which TL = 293.16 K while the
free model parameter ζ (involved in the definition of εL in Eq. (2.9)) is chosen
equal to 0.1. The initial conditions are the following: ρL = ρR = 998 kg/m3,
uL = −0.1 m/s, uR = 0.1 m/s, ξL = 2 and ξL = 4, were the subscripts L and
R denote the left and right states respectively. With these initial conditions,
the exact solution is characterised by the formation of two rarefaction waves.
This leads to an intermediate region which is cavitating (ρ ≈ 960.47 < ρLsat).
The sound speed in the liquid is aL = aR ≈ 1415.63 m/s while in the cavita-
ting region falls down to approximately acav ≈ 0.37 m/s.

Simulations have been carried out with two different spatial grids, with
∆x equal to 100 and 10, and using a constant CFL for all the schemes, equal
to 1.4, which is the maximum allowable for the stability of the Roe scheme.
The CFL number is defined herein by taking the local value of the speed of
sound as a reference velocity. Consequently, given ∆x and CFL, the time
step is set equal to ∆t = CFL∆x/(max

i
ai), ai being the value of the speed

of sound in cell i.
A comparison between the first-order version of the different schemes,

namely Roe, Rusanov and LD-HLL has been performed. Figs. 4.6 show the
velocity obtained with the different schemes for the two grid resolutions,
compared against the exact solution. All the schemes give practically the
same results for velocity, with grid refinement leading to the expected im-
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Figure 4.6: Velocity for the cavitating Riemann problem.

provement of accuracy and decrease of numerical dissipation. The analysis
of the behaviour of the passive scalar in Fig. 4.7 is particularly interesting.
Indeed, it is clear that, as expected, the Rusanov scheme introduces a much
larger dissipation than the Roe one. Conversely the LD-HLL scheme recovers
the same accuracy as the Roe one and, thus, these results confirm that the
proposed LD modification actually improves the accuracy for contact discon-
tinuities. It may be surprising that, for a fixed grid resolution and numerical
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Figure 4.7: Passive scalar for the cavitating Riemann problem.

scheme, the contact discontinuity appears to be better captured than the
rarefaction waves; this for all the considered schemes, included the Rusanov
one. This behaviour is mainly due to the specific character of the barotropic
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state law in presence of cavitation and to the low Mach number of this test
case M ' 10−5. Indeed, in all the numerical schemes the upwind part of
mass and momentum fluxes is associated with the acoustic eigenvalues and,
as a consequence, the introduced numerical diffusivity is related to the speed
of sound. Thus, all the schemes give the same numerical viscosity for the
two rarefaction waves, which is rather large since they occur in zones of pure
water, for which the speed of sound is, as previously said, of the order of
1400 m/s. Conversely, the upwind part of the flux in the passive scalar equa-
tion for the Roe and LD-HLL schemes is associated with the flow velocity
which is 0.1 m/s, while for the Rusanov one is again related to the speed
of sound. However, in this particular test case, the contact discontinuity is
inside a cavitating region where the speed of sound is much lower than in
pure liquid (as previously said it falls down to approximately 0.37 m/s), and
thus, even if the numerical diffusivity introduced at the contact discontinuity
by the Rusanov scheme is significantly larger than the one given by the other
two schemes, it remains lower than the one introduced by all the schemes at
the rarefaction waves.

Finally, in order to give an idea of the peculiarity of the Riemann problem
solution due to cavitation, the pressure behaviour is shown in Fig. 4.8. As can
be seen, most of the pressure variation occurs at the rarefaction waves, leading
to values lower than the saturation one (psat = 2340 Pa). Furthermore, a
spike-like pressure variation takes place in a narrow region centred at x = 0
(see the zoom in Fig. 4.8), which corresponds to the zone in which the sound
speed reaches the value of acav. Clearly to accurately capture this behaviour
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Figure 4.8: Pressure for the Riemann problem and ∆x = 10.

a more refined grid would be required; nevertheless, also for pressure all the
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schemes give practically the same results.

4.3 Barotropic flows in a 1D convergent-divergent noz-
zle

Here an inviscid flow in a quasi 1D convergent-divergent nozzle is considered.
The governing equations are the reduced 1D Euler equations (without passive
scalar) with a source term, which accounts for variations of the cross-sectional
area S of the nozzle. More precisely, the following system of differential
equations is obtained:

∂W

∂t
+ ∂F (W )

∂x
= − 1

S(x)
dS

dx
G(W ) (4.2)

in which W and F (W ) corresponds to the first two components of the same
terms in Eq. (2.11) and G(W ) =

(
ρu, ρu2)T . The steady exact solution for a

barotropic flow governed by Eq. (4.2) is derived in appendix D and is used
here as a reference. Note, in particular, that since in this test-case the flow is
inviscid and the passive scalar is not taken into account, the Rusanov scheme
and the LD-HLL one are equivalent.
4.3.1 A supersonic non-cavitating polytropic flow
In this test-case, a fully supersonic flow, characterised by high Mach number
values is obtained by considering the following inlet conditions ρ∞ = 900,
u∞ = 300 and nozzle area ratio Smin/S∞ = 0.07. Smin and S∞ being
the cross-section area at the nozzle throat and inlet (or outlet) respectively.
Indeed, the Mach number, which is taken equal to 10 at the inlet, decreases
to about 2 in the nozzle throat (see Fig. 4.9a).

For this problem different formulations of the Roe scheme have been com-
pared; more specifically, the first-order linearised implicit scheme (3.27), and
the DeC second-order formulation, with sM = 1 and sM = 2 (DeC1 and DeC2
respectively). The steady solution has been obtained after very few pseudo-
time iterations (about 3) for all the linearised implicit approaches. Note that
the exact steady solution can be obtained as described in Appendix D by
using the barotropic EOS (4.1) with κ = 0.5, κ = 2 and γ = 0.

The comparison between the different steady solutions clearly shows a
significant difference between the first-order approach and the second-order
ones, which give very similar results. This is illustrated in Fig. 4.9, where
at the considered level of grid refinement (∆x = 10), the second-order ap-
proaches are already close to the exact solution, while the first-order one still
presents large discrepancies. Furthermore, Fig. 4.10 shows e(u), the error on
the velocity field (defined in Sec. 4.2.1), at different levels of refinement in
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Figure 4.9: Non cavitating supersonic flow, comparison between several im-
plicit formulations, ∆x = 10.

space (from 40 to 4 × 104 cells corresponding to a space discretisation step
∆x from 100 to 0.1 respectively). For the first-order approach the slope of the
error curve tends to 1 as ∆x tends to zero while the second-order accuracy is
recovered for all the other approaches since the slope tends asymptotically to
2, as shown in Fig. 4.10b. Thus, the second-order of accuracy is maintained
by the Defect correction technique and, in particular, according to Sec. 3.1.2,
one iteration of DeC (DeC1) is enough to provide a second-order accuracy.
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Figure 4.10: Non cavitating supersonic flow, comparison between different
implicit formulations, for the velocity error e(u)
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4.3.2 A subsonic non-cavitating polytropic flow
In this test-case, a fully subsonic flow, characterised by a low Mach number
value (approximately 10−3), is obtained by considering the following inlet
conditions ρ∞ = 900, u∞ = 0.03 and nozzle area ratio Smin/S∞ = 0.9.
Moreover, the barotropic law (4.1) with κ = 0.5, κ = 2 and γ = 0 is used as
equation of state. Similar test cases have been used in previous works [97,102]
to investigate the behaviour of the numerical solution in the low Mach num-
ber regime, and, in particular, to validate the preconditioning defined for the
Roe scheme. Thus, the purpose, here, is to verify that the Rusanov scheme re-
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Figure 4.11: Comparison of the pressure field between the Roe (RO) and the
Rusanov flux functions RR and RC which are, respectively based
on the formulations (3.63) and (3.64), ∆x = L/4000.

quires a preconditioning strategy, and successively, to validate the technique
proposed in (3.71)-(3.70). Fig. 4.11 shows the comparison between the pre-
conditioned and the non-preconditioned simulations, as well as between the
Roe and the Rusanov schemes. It turns out that a preconditioner is actually
needed and the proposed one seems effective. For this test-case two different
versions of the Rusanov scheme are considered, namely RC-approach which is
based on equation (3.64) for the definition of the upwind matrix, and the RR
one, which is based on (3.63). Note that, only the first-order formulations of
the considered schemes have been used in these simulations. As previously
pointed out, both the RC and RR compute the same steady solution which
appears slightly less accurate than the one obtained using the Roe scheme,
as shown in Fig. 4.11(b). This confirms that the RC and RR formulations
are equivalent (see also [16] for a detailed investigation). Thus, this is the
only test-case in which the Rusanov scheme based on formulation (3.64) is
considered and in the following the formulation (3.63) will always be used
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4.3.3 A Quasi-1D nozzle cavitating flow with shock
This test-case is characterised by inlet conditions ρ∞ ' 997.94994, u∞ '
1.0005 and Smin/S∞ = 0.5. The equations of state (2.6)-(2.7) for cavitating
flows are used by taking TL = 293.16K and ζ = 0.1. For the considered
conditions, a subsonic/supersonic cavitating flow with a steady shock wave
is obtained. Indeed, at the inlet the flow is characterised by a very low
Mach number (M∞ = 1.4 · 10−3), in the convergent zone the liquid expands
and transitions to the vapour phase immediately upstream the throat, where
Mach equal to 1 is reached. Afterward the flow is expanded until Mach 14
and then, through a shock wave, the flow reverts to subsonic and to the
liquid phase (see e.g. Fig. 4.13b). This test-case contains all the difficul-
ties typically encountered in cavitating conditions: two smooth flow regions
divided by a shock wave, huge variations of the Mach number value with
both highly compressible and incompressible areas and liquid/vapour and
vapour/liquid transitions. This test-case is aimed at comparing the different
schemes proposed in section 3.5 in a cavitating case as well as at evaluating
their behaviour in presence of discontinuities.

It has been shown in previous studies [97,102] that strong stability limita-
tions appear when cavitation occurs for the case of a preconditioned linearised
Roe formulation. Thus, by taking a fixed spatial grid (∆x = L/250, L being
the computational domain length), the stability properties of the different
approaches have been appraised. The maximum values of the CFL allowed
by numerical stability obtained by this analysis are reported in Tab. 4.1.
In accordance with the previous studies, the Roe scheme is constrained by
a stability condition which limits the maximum CFL coefficient to a small
value, here of about 0.01. The same limitation is also observed for the LD-
HLL scheme when the standard approximated time linearization (3.32) is
used. Conversely, by adopting the more complete linearization in time, i.e.
(3.52)-(3.75), this limit is increased up to 1400, both for the first- and second-
order schemes, as it is shown in Table 4.1. Thus, the LD-HLL scheme with

1st order 1st order 1st order 2nd order
Roe LD-HLL SL LD-HLL CL LD-HLL CL

CFLmax 0.01 0.01 1400 1400

Table 4.1: Maximum CFL values for the quasi-1D cavitating nozzle flow. SL
stands for the standard time linearization (3.32) and CL for the
more complete one (3.52)-(3.75).

the complete linearization can be considered a major improvement in term
of robustness, since an increase of five orders of magnitude is obtained for
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the CFL coefficient. These results confirm that the more complete lineariza-
tion takes into account terms that become important when a subsonic phase
transition or a shock wave (or both) are present.

Moreover, Fig. 4.12 shows that all the first-order accurate formulations
based on the LD-HLL scheme provide practically the same results, which
are in good agreement with the exact solution. Conversely, the Roe scheme
introduces an unphysical expansion shock wave and, as a consequence, the
solution given by the numerical scheme is not accurate: this is the well-know
problem of the entropy violation of the Roe scheme and would require an
entropy fix (see, e.g., [107]). Finally Fig. 4.13 shows the comparison between
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Figure 4.12: Cavitating quasi-1D nozzle flow: comparison between different
1st-order schemes.

the results for the first- and second-order LD-HLL scheme with the complete
linearization. For the considered grid resolution, the second-order scheme is
slightly less diffusive than the first-order one. However, even with the use of
a limiter, near the shock wave there is a small overshoot of the solution. We
recall that vapour to liquid phase transition occurs at the same location as
the shock wave, this adding to the problem stiffness.
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Figure 4.13: Cavitating quasi-1D nozzle flow: comparison between 1st- and
2nd-order LD-HLL scheme with complete time linearization.



Chapter 5
3D numerical formulation

In this chapter a 3D numerical method for the simulation of cavitating flows
is presented. The proposed method is based on a mixed finite-volume/finite-
element formulation. The convective fluxes are defined by generalising the
finite-volume formulation proposed in Chap. 3 while a finite-element ap-
proach is considered for the discretization of the viscous fluxes.

First the generation of a suitable discretisation for the computational
domain is addressed in Sec. 5.1. Then the extension to the 3D case of the
discretization of the convective fluxes and of the MUSCL reconstruction tech-
niques are described in Sec. 5.3 and Sec. 5.4 respectively. Finally, the treat-
ment of the viscous fluxes and of the source terms are presented in Sec. 5.5
and Sec. 5.6.

5.1 Mixed finite volume/finite elements approximation
The considered spatial approximation of the computational domain is based
on a mixed finite-volume/finite-element approach. The same approach con-
sidered in [102] is used to discretise the computational domain. An unstruc-
tured grid is used to discretize the computational domain D in Nt tetrahe-
drons. The hth tetrahedron is denoted by Th and i(Th) is the set of indexes
marking the vertexes Pr belonging to Th. The generic tetrahedrons Th will be
also the basic geometric element for the finite element formulation described
in section 5.5.

Starting from a tetrahedral grid, it is possible to associate a finite volume
cell Ci to each vertex Pi by simply defining:

Ci =
⋃

h∈t(i)
C

(h)
i (5.1)



5.2 3D Spatial discretization 66

Figure 5.1: Example of the construction of a 3D finite volume cell starting
from triangular elements.

where C(h)
r represents the subset of Th which is defined by further dividing

Th into 24 sub-tetrahedrons by means of its median planes and subsequently
considering those 6 sub-tetrahedrons which share Pr as a vertex. The set t(i)
is the set of indexes marking those tetrahedrons which share Pi as a vertex.
The boundary ∂Ci of the cell can be defined as:

∂Ci =
⋃

j∈N (i)
∂Cij (5.2)

where N (i) is the set of the neighbours of the i-th vertex and ∂Cij is the
common interface between the i-th cell the j one.

Clearly, there is a finite volume cell for each vertex and it is sometimes
referred to as a “dual mesh” (see e.g. [52]), by virtue of the specific procedure
which is adopted in order to build the cells by starting from the tetrahedrons.
An example of the construction of the finite volume cells is shown in Fig. 5.1.

5.2 3D Spatial discretization
Let us specialise equation (2.37) for the case in which the control volume V
is defined by (5.1):∫

Ci

∂W
∂t

dV +
∫
∂Ci

nk
(
Fk + F̃k

)
dS −

∫
Ci

∂

∂xk

(
µVk + µtṼk

)
dV =

∫
Ci

ΩdV

(5.3)
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Thus, it is possible to reformulate (5.3) in the semi-discrete form:

Ci
dWi

dt +
∑

j∈N(i)
Φij + Υi = Ωi (5.4)

where Φij , Υi, and Ωi are numerical approximation for, respectively, the
convective fluxes, the viscous ones and the source term. Ci is the cell volume
and Wi is the semi-discrete unknown associated with Ci, that is:

Wi = 1
Ci

∫
Ci

WdV (5.5)

The semi-discrete formulation (5.4) is completely defined once the definition
of Φij , Υi, and Ωi are given.

5.3 3D Convective fluxes
Comparing equations (5.3) and (5.4), it follows that the numerical flux func-
tion Φij must satisfy the relation:

Φij '
∫
∂Ci

nk
(
Fk + F̃k

)
dS (5.6)

For the sake of clarity, initially only the laminar convective fluxes will be
considered, that is:

Φij '
∫
∂Ci

nkFkdS (5.7)

then the required modifications needed to take into account F̃k will be briefly
outlined.
In section 2.4 it has been pointed out that F defined in (2.15) is a particular
instance of nkFk, corresponding to the case n = (1, 0, 0)T . Considering two
different Cartesian frames, O and O′, sharing the same origin, let R denote
the matrix associated with the rotation from O′ to O (note that R−1 = RT )
The formal expression of R is:

R =

 e′1,1 e′2,1 e′3,1
e′1,2 e′2,2 e′3,2
e′1,3 e′2,3 e′3,3

 (5.8)

where e′i,j is the component of the j-th coordinate axis of the Cartesian frame
O′ along the i-th axis of the O one. Considering the state vector W, its first
component, the density, is a scalar which is invariant with respect to a frame
change, while the others are the components of the momentum vector. As
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a consequence, the expressions of the state vector in the reference frame O
(W) and in the O′ one (W′) are related by the following transformation:

W = R ·W′ (5.9)

where R is defined as:

R =


1 0 0 0
0 e′1,1 e′2,1 e′3,1
0 e′1,2 e′2,2 e′3,2
0 e′1,3 e′2,3 e′3,3

 (5.10)

Also, the flux function must be invariant by rotation ( [52] and [107]), that
is:

Φij = R ·Φ′ij (5.11)

Applying (5.9) and (5.11) to the flux function (3.21)-(3.22) the transforma-
tion of the flux function reads:

Φij = Φij,c + Φij,u

Φij,c =
RF (W′

i) + RF (W′
j)

2

Φij,u = −1
2RQ

(
W′

i,W′
j

)
R−1(Wj −Wi)

(5.12)

Once (5.12) is given, it is straightforward to generalise all the numerical flux
functions described in Chap. 3 to the 3D case. To ease the comprehension, let
consider for instance the following preconditioned S matrix for the LD-HLL
scheme, i.e.Sij defined by:

Sij =


λp1 0 0 0
0 λp2 0 0
0 0 λp3 0
0 0 0 λp3

 (5.13)

where λp1, λ
p
2 and λp3 are defined by (3.74).

The normal vector nij = (nij,1, nij,2, nij,3)T to the interface between the
i-th cell and j-th is defined as:

nij =
∫
∂Cij

ndS (5.14)

The 1D numerical flux function is a particular instance of the 3D case when
nij is coincident with the first Cartesian axis of the reference frame, that is
when:

nij ≡ e′1 (5.15)
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First, let us decompose Sij as follows:

Sij =


λp1 0 0 0
0 λp3 0 0
0 0 λp3 0
0 0 0 λp3

+


0 0 0 0
0 ∆32λp 0 0
0 0 0 0
0 0 0 0

 (5.16)

where ∆32λp = λp2 − λ
p
3. Then, by applying (5.10) and (5.12) to (5.13) in

the specific case (5.15), the following equality is obtained by using also the
orthonormality of the base (e′1, e′2, e′3):

R Sij R−1 =


λp1 0 0 0
0 λp3 0 0
0 0 λp3 0
0 0 0 λp3

+ R


0 0 0 0
0 ∆32λp 0 0
0 0 0 0
0 0 0 0

 RT (5.17)

and, finally, the resulting 3D upwind matrix for the LD-HLL scheme is:

Sij =


λp1 0 0 0
0 ∆32λp n2

ij,1 + λp3 ∆32λp nij,1 nij,2 ∆32λp nij,1 nij,3
0 ∆32λp nij,2 nij,1 ∆32λp n2

ij,2 + λp3 ∆32λp nij,2 nij,3
0 ∆32λp nij,3 nij,1 ∆32λp nij,3 nij,2 ∆32λp n2

ij,3 + λp3

 (5.18)

Using the same approach the definition of the upwind matrix for the Roe and
Rusanov schemes is straightforward.
5.3.1 Turbulent convective fluxes
The generalisation to the 3D case of the turbulent convective fluxes can be
easily obtained considering the sum of the turbulent and laminar convective
fluxes nk

(
Fk + F̃k

)
instead of simply the laminar ones. However, the equa-

tion of the turbulent kinetic energy k is not decoupled from the mass and
momentum balances and, thus, a specific analysis is required for this case.
For the sake of simplicity let us consider a reduced 1D turbulent system
containing only the unknowns ρ, ρu and ρk:

∂Ŵ
∂t

+ ∂F̂ (Ŵ)
∂x

= 0

F̂ (Ŵ) =
(
ρu, ρu2 + p+ 2

3ρk, ρuk
)T

Ŵ = (ρ, ρu, ρk)T

(5.19)

The Jacobian matrix of F̂ (Ŵ) in (5.19) is different from the one of (2.11),
due to the coupling term between the momentum balance and the equation



5.3 3D Convective fluxes 70

for ρk:

Â
.= ∂F̂ (Ŵ)

∂Ŵ
=


0 1 0

a2 − u2 2u 2
3

−uk k u

 (5.20)

However, by defining a “turbulent” speed of sound â:

â
.=
√
a2 + 2

3

the eigenvalues of Â can be formulated in formal analogy with (2.13) as:

λ̂1 = u− â, λ̂2 = u, λ̂3 = u+ â (5.21)

Let us focus on the consequences of (5.21) for the Rusanov and LD-HLL
schemes. In the Rusanov scheme, the diagonal elements of the upwind matrix
S should be an upper bound for the fastest signal velocity in the Riemann
problem. However, considering the barotropic EOS described in section 2.2,
it is almost always verified that:

a2 � 2
3 (5.22)

and, as consequence:

λ̂1 ' u− a, λ̂2 = u, λ̂3 ' u+ a (5.23)

Thus, when (5.22) is verified, it is reasonable to approximate the eigenvalues
of the turbulent system (5.20) with the ones of (2.11). Even when (5.22)
is not satisfied, it is possible to use (5.23) to approximate the eigenvalues
of the system. Indeed, for the Rusanov and LD-HLL schemes, the choice
of the eigenvalues only affects the upwind part of the numerical method
so that a modification of the upwind term does not affect the consistency
of the numerical scheme. As a consequence, when (5.22) is not satisfied,
(5.23) is an underestimation of the true eigenvalues. However, in view of
the previous considerations, this could affect only the stability properties
of the numerical method, not its consistency. Using (5.23) it is possible to
extend the Rusanov method to the 3D turbulent case without any additional
modification. Instead, more attention is required for the LD-HLL. The low
diffusive modification of the Rusanov scheme is based on the structure of
the eigenvectors of system (2.11), where the eigenvector associated with u

is in the form (0 0 1)T . This is not true for system (5.19), where the right
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eigenvector matrix can be formulated as:

R̂ =


1 −2

3
1
a2 1

u− â −2
3
u

a2 u+ â

k 1 k

 (5.24)

However, when (5.22) is satisfied, it is reasonable to approximate R̂ as (5.23):

R̂ '


1 0 1

u− a 0 u+ a

k 1 k

 (5.25)

and, thus, the low diffusive modification of the Rusanov scheme is appliable
even to this case. On the contrary, if (5.22) is not verified, the use of (5.25)
instead of (5.24) could results in a “partial” low diffusive modification. The
consistency of the resulting scheme is not affected since the aforementioned
modification only concerns the upwind part of the numerical method. On
the other hand, the accuracy of the numerical method could be deteriorated.
Nevertheless, as previously pointed out, the considered turbulence model does
not explicitly take into account cavitation and no specific modification has
been included in this work. Thus, since also the considered turbulent physical
model can be questionable when (5.22) is not satisfied, it seems reasonable
to always use the approximation (5.25), at least at this stage.

In view of the aforementioned considerations, remembering that v, w, ε
can be regarded as passive scalars, the upwind matrix Sij for the Rusanov or
the LD-HLL in the 3D turbulent case can be formulated as:

λp1 0 0 0 0 0
0 ∆32λp n2

ij,1 + λp3 ∆32λp nij,1 nij,2 ∆32λp nij,1 nij,3 0 0
0 ∆32λp nij,2 nij,1 ∆32λp n2

ij,2 + λp3 ∆32λp nij,2 nij,3 0 0
0 ∆32λp nij,3 nij,1 ∆32λp nij,3 nij,2 ∆32λp n2

ij,3 + λp3 0 0
0 0 0 0 λp3 0
0 0 0 0 0 λp3


(5.26)

where ∆32λp = λp2 − λ
p
3 and λp1, λ

p
2 and λp3 are approximated using (5.23).

5.4 Second-order extension for the 3D case
The second-order extension of the convective fluxes described in Sec. 5.3 is
carried on using a MUSCL reconstruction technique [115] similar to the one
described for the 1D case in section 3.4. In particular the flux function Φij
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is not computed using the values Wi and Wj but considering two suitable
states which, except in presence of discontinuities, approximate with second-
order accuracy the solution at the boundary between the two cells, that is:

Φij = Φij

(
W−

ij ,W
+
ij

)
(5.27)

where

W−
ij = Wi + 1

2∇Wi ·dij , W+
ij = Wj −

1
2∇Wj ·dij (5.28)

In (5.28) dij is the vector joining the i-th node with the j-th one and ∇Wi

is an approximation of the gradient in the i-th cell, possibly taking into
account slope limiters. The definition of ∇Wj ·dij in this work is based
on the same approach considered in [1, 24] when limiters are not required
and on the works [45, 48] when limiters have to be included. First, a linear
approximation ∇W|Th

of the gradient in each tetrahedron Th is considered:

∇W|Th
=

∑
k∈i(Th)

Wk∇µkTh
(5.29)

where µkTh
is the barycentric coordinates associated with the kth-vertex of

Th. Once ∇W|Th
is available, a centred approximation of the gradient in the

i-th cell is derived as follows:

∇Wc
i =

∑
h∈t(i)

VTh
∇W|Th∑

h∈t(i)
VTh

(5.30)

VTh
being the volume of the h-tetrahedron. Following [45, 48], it is now

possible to obtain a second-order MUSCL reconstruction operator with slope
limiters by defining ∇Wi ·dij and ∇Wj ·dij by:{
∇Wi ·dij = minmod{Wj −Wi, 2∇Wc

i ·dij − (Wj −Wi)}
∇Wj ·dij = minmod{Wj −Wi, 2∇Wc

j ·dij − (Wj −Wi)}
(5.31)

where minmod{a, b} is defined as follows

minmod{a, b} =


min{a, b} if a > 0, b > 0
max{a, b} if a < 0, b < 0
0 otherwise

(5.32)
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5.5 Diffusive fluxes
To correctly discretize (5.4), Υi must approximate the contribution of the
viscous fluxes, that is:

Υi '
∫
Ci

∂

∂xk

(
µVk + µtṼk

)
dV (5.33)

For the sake of simplicity, only the laminar diffusive fluxes will be considered
since the extension to the turbulent fluxes is straightforward.

The discretization of the viscous fluxes is carried out using a P1 finite-
element approach. The aforementioned formulation for the diffusive terms is
obtained by multiplying the diffusive terms by a basis test function. First,
let us focus on a single generic tetrahedron Th: in the following the P1 finite-
element basis function associated to the ith node restricted to the tetrahedron
Th is denoted by φ(i,Th). In particular φ(i,Th) is assumed to be of unit value on
the node i and to vanish linearly at the remaining vertexes of Th. Thus, by
integrating by parts the viscous fluxes multiplied by the basis test function
on the Th tetrahedron we obtain:∫

Th

∂µVj
∂xj

φ(i,Th) dV =
∫
∂Th

µVjφ
(i,Th)nTh

j dS −
∫
Th

µVj
∂φ(i,Th)

∂xj
dV (5.34)

where nTh is the external unit normal vector to tetrahedron Th. In the P1
formulation for the finite-element method, the test functions, φ(i,Th), are lin-
ear functions on the element Th and so their gradient is constant. Moreover,
in this formulation also the unknown variables are approximated by their
projection on the P1 basis function. That is, considering the generic term σij
defined in (2.23), the corresponding P1-approximation on the tetrahedron Th
is given by:

σTh
ij =

 ∑
L∈i(Th)

−2
3

(
uL,k

∂φ(L,Th)

∂xk

)
δij

+

uL,i∂φ(L,Th)

∂xj
+ uL,j

∂φ(L,Th)

∂xi

) (5.35)

where uL,i represents the ith components of the velocity of the Lth node.
Using (5.35) it is possible to define the following approximation of the viscous
fluxes on each tetrahedron:

V Th
1 =

(
0, σTh

11 , σTh
12 , σTh

13

)T
V Th

2 =
(

0, σTh
21 , σTh

22 , σTh
23

)T
V Th

3 =
(

0, σTh
31 , σTh

32 , σTh
33

)T (5.36)
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Starting from (5.36), the approximation of the second term of the right hand
side of (5.34) is done as follows:∫

Th

µVj
∂φ(i,Th)

∂xj
dV ' V Th

j

∂φ(i,Th)

∂xj

∫
Th

µdV (5.37)

where V Th
j and φ(i,Th) have been taken out of the integral since they are

constant. Consistently with the P1 formulation, even the viscosity µ is a
linear function on the tetrahedron Th and, thus:∫

Th

µdV = VTh
µTh where µTh =

∑
L∈i(Th)

µL
4 (5.38)

and VTh
is the volume of the tetrahedron Th. As a consequence, substituting

(5.38) in (5.37) the following approximation of the viscous fluxes on the Th
tetrahedron is obtained:∫

Th

µVj
∂φ(i,Th)

∂xj
dV ' VTh

µTh V Th
j

∂φ(i,Th)

∂xj
(5.39)

In order to build the fluxes for the node i consistently with the finite-volume
formulation, the contribution of all the elements having i as a vertex needs
to be summed together as follows [47,75,94]:∫

Ci

∂

∂xj
µVjdV '

∑
Th∈t(i)

(∫
∂Th

µVjφ
(i,Th)nTh

j dS −
∫
Th

µVj
∂φ(i,Th)

∂xj
dV
)
(5.40)

Considering (5.40) and (5.39), except for an additional contribution due to
the boundary conditions, the following approximation holds for the viscous
fluxes:

Υi = −
∑

Th∈t(i)
VTh

µTh V Th
j

∂φ(i,Th)

∂xj
(5.41)

Note that (5.41) has been derived for the laminar viscous fluxes. However,
due to the formal analogy in the expression of the laminar and turbulent
viscous fluxes, the extension to the turbulent case is straightforward.

5.6 Source Terms
In this section the numerical discretization of the source term appearing in
(5.1) is addressed. Two contributions appear in the source term, the first one
is the turbulence generation while, in rotating frames of reference, also the
non inertial terms must be taken into account.
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5.6.1 Turbulence generation
The discretization of the turbulence term appearing in (2.36) can be carried
out using the same approach described in the previous sections. In particular
for the discretization of the term P, the contribution due to the viscous stress
is computed as described in section 5.5.
5.6.2 Rotating frames
The non inertial terms due to a rotating frame of reference are addressed.
Considering the boundary of the computational domain, ∂D, only boundaries
symmetric with respect to the rotation axis will be addressed in this work.
Under this hypothesis, the frontier behaves like a fixed one in the body-frame
and therefore it is possible to discretize the system of equation (5.3) without
dealing with moving computational grids [102]. Let gi denote the centroid
associated with Ci:

gi := 1
Ci

∫
Ci

x dV (5.42)

Moreover, let ri denote the projection of gi on the rotation axis:

ri := − ~̂ω ∧
(
~̂ω ∧ gi

)
where ~̂ω is the unit vector associated with ~ω:

~̂ω := ~ω

‖~ω‖

Then it is possible to approximate the source term (2.44) as:∫
Ci

S dV ≈ Ci Si (5.43)

where
Si := ‖~ω‖

(
0

− 2 ~̂ω ∧ ρiui + ρi ‖~ω‖ ri

)
(5.44)

5.7 Boundary conditions
The boundary conditions are introduced in a weak way, i.e. they are not
forced directly on the solution vector at each time step. Firstly, the real
boundary ∂D is approximated by a polygonal boundary Γ; this can be split
in four parts:

Γ = ΓI ∪ ΓO ∪ Γs ∪ Γb (5.45)

in which the term ΓI represents the inflow far-field boundary, ΓO is the out-
flow far-field boundary, and Γs and Γb are, respectively, the boundaries at
which free-slip and no-slip conditions are imposed.



5.7 Boundary conditions 76

Considering the convective fluxes, the treatment of the inflow and outflow
boundary conditions is based on the conventional ghost-cell approach. More
precisely, the numerical flux function at the aforementioned boundaries is
computed through the same numerical flux function as for the internal cells
by introducing fictitious state vectors. Namely, the flux ΦiI between the
inflow boundary and the generic boundary ith cell is computed as follows:

ΦiI = Φ (Wi,WI,niI) (5.46)

where niI is the normal to the inflow boundary and WI = WI (Wi) is the
inflow state vector associated to the ith cell. The number and type of con-
ditions at a boundary are defined by the eigenvalues of the Jacobian of the
flux function [72, 73]. In particular at each boundary only the waves which
are propagating inside the computational domain should be defined by the
fictitious state vectors while the outgoing waves should be undisturbed in
order to avoid reflections at the boundary. However, the definition of time-
dependent non reflecting boundary conditions could require the solution of
an additional equation for the definition of WI [73, 106].

A simpler approach, commonly used (see i.e. [60,68]), is to assign a num-
ber of components of the fictitious state vector equal to the number of in-
coming waves and to extrapolate the others. In particular, by considering a
subsonic inflow, the number of positive eigenvalues of the flux function is 3
and only one eigenvalue is negative. Thus 3 components of the state vector
WI, namely the 3 componets of the momentum vector ρuI, ρuI and ρuI, are
assigned while the last one, the density is extrapolated, that is:

WI (Wi) = (ρi, ρuI, ρvI, ρwI)
T (5.47)

The same approach is considered for the outflow boundary: in this case
there is only one incoming wave and thus only one componet of the state
vector WO is assigned, namely the density ρO, which, due to the barotro-
pic state law is equivalent to assign the outlet pressure. Thus, the outflow
convective flux is computed as:

ΦiO = Φ (Wi,WO,niO) (5.48)

where
WO (Wi) = (ρO, ρui, ρvi, ρwi)

T (5.49)

Concerning the free-slip conditions on the boundary Γs the standard im-
permeable condition:

u ·n = 0 (5.50)
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is adopted in this work. Thus, in this case the boundary condition can be
computed as follows:

Φis = (0, pinis)T and Φib = (0, pinib)T (5.51)

Finally, in the laminar case the no-slip condition u = 0 is strongly imposed on
the solution. Instead, when turbulent simulations are considered approximate
boundary conditions based on the Reichardt wall-law (see Sec. 2.5.1) are
imposed. When the wall-law is applied, it is assumed that the wall nodes are
not exactly on the body (Γb) but on an ideal surface Γb∗ that is located at
a small distance δ from Γb. The boundary conditions introduced on Γb∗ are
the following:

• u ·n = 0: the ideal surface Γb∗ is assumed to be impermeable ;

• σijnj = τwnj : the viscous stresses on Γb∗ are supposed to be assigned
equal to τw;

where τw is defined by (2.41). The conditions on Γb∗ leads to the following
weak conditions:∫

∂Th∩Γs
µVjφ

(i,Th)nTh
j dS ' |∂Th ∩ Γs| (0, τwn)T (5.52)

where |∂Th ∩ Γs| is the surface of the boundary. For the closure of the prob-
lem, it is necessary to assign the viscous stresses τw as a function of the
unknown variables of the problem. This is done by applying the Reichardt
wall-law which joins the velocity on Γi with a proper velocity profile that is
imposed in the gap between Γb∗ and Γb and satisfies the no-slip conditions on
Γb. This procedure, which allows the shear stresses on Γb∗ to be evaluated,
is schematically sketched in Fig. 5.2.

5.8 3D time discretization
The time discretization for the 3D numerical method can be readily obtained
from its 1D counterpart. Let consider a second-order accurate in space and
time approach (the modifications for the first order case are straightforward).
Then the implicit formulation of (5.4) is:

Ci
(1 + 2τ)

(1 + τ)∆nt
∆nWi +

∑
j∈N(i)

∆nΦij + ∆nΥi −∆nΩi =

Ci
τ2

(1 + τ)∆nt

(
Wn−1

i −Wn
i

)
−

∑
j∈N(i)

Φn
ij −Υn

i + Ωn
i (5.53)



5.8 3D time discretization 78

Figure 5.2: Schematic representation of the wall approach adopted.

In order to solve (5.53) it is necessary to define a suitable approximation for
∆nΦij , ∆nΥi and ∆nΩi.

Concerning the variation of the convective part, ∆nΦij , in view of the
considerations of section 5.3, the time linearisations proposed in section 3.3
are applicable to the 3D case. In particular for the Rusanov and LD-HLL
schemes both the simple (3.32) and the complete (3.52) time linearisation
can be used in the 3D case.

Concerning the term ∆nΥi, a simple linearisation technique is sufficient
since, from (5.41), (5.39) and (5.35) it clearly appears that Υi is linearly
dependent on the velocity vector. In particular ∆nσTh

ij can be written as:

∆nσTh
ij =

 ∑
L∈i(Th)

−2
3

(
∆nuL,k

∂φ(L,Th)

∂xk

)
δij

+
(

∆nuL,i
∂φ(L,Th)

∂xj
+ ∆nuL,j

∂φ(L,Th)

∂xi

))
(5.54)

Thus, the linearisation of ∆nσTh
ij is completed once the dependence of ∆nuL,k

on ∆nWL is explicitly taken into account. In particular, by approximating
∆nuL,k as:

∆nuL,k = −
unL,k
ρnL

∆nρL + 1
ρnL

∆nρuL,k +O
(
(∆nt)2

)
(5.55)

a second-order time linearisation for the viscous fluxes is achieved. Also, with
a similar approach a second-order time linearisation for the source term is
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obtained. Thus, once ∆nΦij , ∆nΥi and ∆nΩi are given, the second-order
defect correction approach described in 3.4 can be applied also for the 3D
case.
5.8.1 A linearised approach for turbulent flows
In this work a specific treatment has been considered for the linearisation of
the turbulent case. In particular in the turbulent system (2.29) 6 components
define the state vector W, while in the laminar case only 4 components are
considered. As a consequence, the matrix of the linear system which must be
solved at each time step is a sparse matrix whose elements are 6 × 6 blocks
instead of the 4× 4 blocks of the laminar case. This clearly largely increases
the memory and computational requirement of the numerical method.
In order to alleviate the memory and computational requirement, we intro-
duced an additional approximation in the linearisation technique. In particu-
lar we set to zero the “mixed” derivatives, that is, in the mass and momentum
equations the derivatives with respect to k and ε are nullified and similarly
for the derivatives with respect ρ and ρu of the equations for k and ε. This
is equivalent to keep frozen at time tn some quantities in each equation. As a
consequence if B was a generic 6× 6 block, then the modified block B̂ reads:

B =



b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36
b41 b42 b43 b44 b45 b46
b51 b52 b53 b54 b55 b56
b61 b62 b63 b64 b65 b66


=⇒

B̂ =



b11 b12 b13 b14 0 0
b21 b22 b23 b24 0 0
b31 b32 b33 b34 0 0
b41 b42 b43 b44 0 0
0 0 0 0 b55 b56
0 0 0 0 b65 b66


(5.56)

Considering the structure of the approximated block B̂, the linear system
which must be solved at each time step can be divided into two linear systems,
one composed by 4 × 4 blocks, which updates the flow variables, ρ, ρu, ρv,
ρw, and another one for the turbulent variables, ρk, ρε, composed by 2 × 2
blocks. Note that, even if (5.56) introduces an additional approximation
to the discretization technique described in the previous sections, a linear
system composed by modified block in the form (5.56) can be considered as
particular instance of the DeC approach (3.11). As a consequence even if for
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this case we do not have theoretical results of a finite termination property,
the second-order approximation should be recovered asymptotically when a
full convergence of the DeC iteration is obtained.



Chapter 6
Numerical experiments for the validation of

the 3D formulation

In this chapter, in order to validate and compare the previously defined
numerical approaches, they have been applied to the simulation of different
flow configurations. Two sets of test-cases have been considered: the first
one, described in Sec. 6.1, is aimed at investigating the effects of the anti-
diffusive term introduced in the LD-HLL scheme using as test problem the
classical Blasius boundary layer problem.

Moreover, in Sec. 6.1.3 the methodology proposed in Chap. 5 for the
discretization of the turbulent model (2.29) is validated by considering the
turbulent flow over a flat plate. The second set of test-cases is aimed at inves-
tigating the accuracy, robustness and efficiency properties of the considered
schemes in cavitating conditions by considering the flow around a NACA0015
hydrofoil mounted in a wind tunnel, for which experimental data are avail-
able [30]. For this last test-case the effects of viscosity have been neglected in
the simulations: although the flow is obviously viscous, a sensible comparison
against experimental data in terms of pressure distribution is possible also
under the assumption of inviscid flow. On the other hand, this assumption
clearly leads to an easier appraisal of the robustness and efficiency proper-
ties of the different numerical schemes in presence of cavitation in a realistic
configuration.

Note that the aforementioned test-cases are essentially 2D. Nevertheless,
the 3D formulation described in Chap. 5 has been used in these simulations
by using computational domains with a little extension, i.e. containing only
few nodes, in the spanwise direction.

The results shown in the following for the Rusanov and LD-HLL schemes,
are obtained with the complete time linearisation (3.52), while the standard
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linearisation (3.32) is used only in Sec. 6.2.2 to compare with the more com-
plete one. Indeed, only for these cases, in which cavitation is present, the
problem of efficiency is substantial and thus significant differences are ob-
served between the two approaches.

6.1 Flow Over a Flat Plate
In this section the flow over a flat plate is considered. More precisely, the
laminar and the turbulent flow over a flat plate at zero angle of attack are
analysed in order to validate the numerical ingredients introduced in Sec. 5.
As previously mentioned, it is well-known that due to their excessive diffusiv-
ity in presence of contact discontinuities, the HLL schemes, as the standard
Rusanov one, are not well-suited for viscous flow simulation. The Blasius
boundary layer can thus be considered an appropriate test to validate the
effectiveness of the anti-diffusive term introduced in the LD-HLL scheme.
We consider hence the laminar viscous flow along a flat plate at zero angle
of attack and water at T = 293.16 K is used as a working fluid. The con-
sidered free-stream conditions are described in Tab. 6.1 Note that the free-
stream Mach number is approximately 10−5 and thus compressibility effects
are negligible and comparison with the Blasius solution for incompressible
flows can be made. The Reynolds number, based on the free-stream velocity
and the flat plate length, is about 10000. The second test case is a turbulent
flow. The set up of the turbulent problem is the same as for the laminar
Blasius case except than for the free-stream velocity, which is increased, as
shown in Tab. 6.1, in order to obtain a Reynolds number equal to 106. We
remark that in this test-cases no cavitation phenomena occur in the flow.
The computational domain is the following:{

−1 ≤ x ≤ 1
0 ≤ y ≤ 2

where x is the streamwise direction and y the direction normal to the flat
plate. The flat plate is located at 0 ≤ x ≤ 1 and y = 0. The characteristic
based boundary conditions described in Sec. 5.7 are used at the inflow (x =
−1) and at the outflow (x = 1). Free-slip is imposed for y = 0 and−1 < x < 0
while no-slip conditions are considered at the flat-plate. Finally, free-slip
conditions are used at y = 2. The independence of the results to the normal
width of the domain has been checked.
6.1.1 Grid generation
The computational grids are generated as follows. Firstly, the square 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1 is considered. The edge along the x direction is divided
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Test case ρ∞ p∞ u∞ µ Lplate Re

Blasius 998 100000 0.01 0.001 1 10000
Turbulent 998 100000 1 0.001 1 1000000

Table 6.1: Main parameters of the flow along the flat plate; ρ∞, p∞ and u∞
are the inflow density, pressure and velocity, µ is the fluid viscosity
and Lplate is the flat plate length. All parameters are in SI units.

in a given number of segments, Nx, with length ∆x varying in geometric pro-
gression with the smallest element (∆xmin) at the leading edge. Analogously
the edge along the y direction is divided in Ny segments, with length ∆y
varying in geometric progression with the smallest element (∆ymin) at the
wall. A structured quadrilateral grid is then generated and is reflected along
the axis x = 0. For y > 1 the value of ∆y is constant equal to the maximum
value over the the square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Finally, each element of
this grid is divided in 5 tetrahedrons by an English-flag type procedure. By
using the previously described procedure, four grids whose main parameters
are given in Tab. 6.2 were obtained.

Grid Nx qx ∆xmin ∆xmax Ny qy ∆ymin ∆ymax

Grid1 25 1.21 0.0018 0.18 25 1.44 4.8× 10−5 0.33
Grid2 50 1.1 0.00086 0.1 50 1.2 2.2× 10−5 0.16
GR1 50 1 0.02 0.02 50 1.1 2.4× 10−3 0.068
GR2 100 1 0.01 0.01 100 1.04 1.2× 10−3 0.034

Table 6.2: Grids used for the flat plate simulations. Nx is the number of
divisions of 0 ≤ x ≤ 1, qx is the ratio of the geometrical progres-
sion used for setting the length of the elements in the x direction,
∆xmin and ∆xmax are the minimum and maximum length of the
elements in the x direction. Ny, qy, ∆ymin, ∆ymax are the cor-
responding quantities in the y direction.

The grids Grid1 and Grid2 are used for the laminar simulations described
in Sec. 6.1.2, while GR1 and GR2 are used for the turbulent computations.
Note in particular that the considered grids for turbulent simulations are uni-
form in the x direction. This was done in order to avoid in these simulations
a too large stretching of the grid elements and, as a consequence, to avoid
numerical difficulties related to the discretization of the ε-equation. Also,
the size of ∆y for GR1 and GR2 has been chosen in order to define a near
wall normal resolution corresponding to about 50-70 wall units for the first
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grid and to 25-40 for the second one.
6.1.2 Blasius Boundary Layer
The results of the simulations of the Blasius Boundary Layer with three
different numerical schemes (Roe, Rusanov and LD-HLL) on grid Grid1 and
Grid2 are compared and validated against the Blasius solution. Note that, for
this test-case, all the simulations have been carried out by using the second-
order accurate formulation. Figures 6.1 show the comparison of the velocity
profiles at different sections over the flat plate, i.e. x/c = 0.2, x/c = 0.4,
x/c = 0.6 and x/c = 0.8.
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Figure 6.1: Velocity profiles at different sections over the flat plate obtained
on grid Grid1.

Fig. 6.2 shows the comparison of the wall shear stress along the flat plate.
While the results obtained with the standard Rusanov scheme lack in accu-
racy and confirm its over-diffusive character, the LD-HLL scheme gives very
similar results to the Roe one and in good agreement with the Blasius solu-
tion. Small discrepancies are present between the Blasius solution and the
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numerical ones from LD-HLL and Roe approaches (see e.g. Fig. 6.2).
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Figure 6.2: Comparison of the wall shear stress over the flat plate obtained
on grid Grid1.

Nevertheless, they tend to vanish with grid refinement, as shown by the
results obtained with the Roe and the LD-HLL schemes on grid Grid2 and
reported in Figs. 6.3 and 6.4. Note how the standard Rusanov scheme gives
inaccurate results also on this more refined grid. This test-case thus confirms
that the anti-diffusive term introduced in the LD-HLL scheme actually coun-
teracts the accuracy problems encountered by the standard Rusanov scheme
in viscous flow simulations.
6.1.3 Validation for the turbulent flow around a flat plate at zero

angle of attack
In this section, the results of the turbulent simulations performed using the
LD-HLL scheme on the grids GR1 and GR2 are presented. Figure 6.5 shows
the wall shear stress along the flat plate obtained in the present simula-
tions compared to a well established empirical formula for the fully turbulent
boundary layer over a flat plate, obtained by interpolating experimental data
available in the literature:

cf (x) = τw(x)
1
2ρu

2
∞

= 0.0592
Re0.2

x

(6.1)
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Figure 6.3: Velocity profiles at different sections over the flat plate obtained
on grid Grid2.

where Rex is the local Reynolds number based on the free-stream velocity,
u∞, and the distance from the plate leading edge, x. The agreement is rea-
sonably good and improves with grid refinement. As it could be expected,
the largest discrepancies are found near the leading-edge of the plate and
they could be reduced by using a non uniform grid in the x direction, more
refined near the leading edge, as the ones previously employed for the Bla-
sius boundary layer. This is not done at this stage, since the objective of
the present simulations was simply to validate the implementation of the
turbulence model, which can be considered achieved already from the results
reported in this section.

Fig. 6.6 shows the velocity profiles in wall units obtained at two different
sections over the plate for the two considered grids. We recall that an ap-
proximate boundary condition based on the wall-law has been used; thus, the
first computational point is located in the logarithmic region. The logarith-
mic behaviour is qualitatively well reproduced in the simulations, although
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Figure 6.4: Comparison of the wall shear stress over the flat plate obtained
on grid Grid2.
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Figure 6.5: Comparison of the wall shear stress over the flat plate at Re=106.

there is a quantitative overestimation with respect to the wall law Fig. 6.6.
However, this is due to the fact that u+ is computed by using the local shear
velocity obtained in the simulations, which is underestimated with respect
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to the reference one, as shown in Fig. 6.5. Indeed, if the profiles are rescaled
by using the shear velocity given by the well established empirical formula in
the computation of u+ and y+, a very good agreement is obtained as shown
in Fig. 6.7.
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Figure 6.6: Velocity profiles in wall units at different sections.
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Figure 6.7: Rescaled velocity profiles in wall units at different sections.

Note that for the turbulent simulations a maximum CFL number of 10000
could be reached. This value is one order of magnitude smaller than the one
found for laminar computations, 105. Indeed, this stability restriction could
be a consequence of the specific linearisation proposed in Sec. 5.8. However,
the allowed values of the CFL number found in this test-case are still two
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order of magnitude larger than the ones found in more complex applications
and, as a consequence, no investigation of its cause has been carried on.

6.2 Flow Over a NACA 0015 Hydrofoil
In this section the liquid flow over a NACA0015 hydrofoil in cavitating and
non-cavitating conditions is considered. The hydrofoil of chord length c equal
to 115 mm is mounted in a water tunnel at 4◦ incidence angle and spans the
entire width of the rectangular test chamber section. The test section, which
is obtained by cutting the chamber along its symmetry plane has a width of
1.28c. This configuration has been considered in an experimental study [30]
for which the pressure coefficient distribution on the symmetry plane of the
hydrofoil is available.

Three different sets of inlet conditions are considered herein, as sum-
marised in Tab. 6.3; the first conditions (TC1) correspond to a non-cavitating
case while the second and the third ones (TC2 and TC3) generate a cavitating
flow. The inlet conditions TC1 and TC2 correspond to those of the reference
experiments. The equations of state (2.6)-(2.7) for cavitating flows are used

Test-case U∞ p∞ T M∞ σ∞
m/s Pa K

TC1 3.115 59050 298.15 2.2× 10−3 11.71
TC2 3.46 12000 298.15 2.4× 10−3 1.49
TC3 3.46 11400 298.15 2.4× 10−3 1.38

Table 6.3: Inlet conditions for the flow around a NACA0015 hydrofoil: σ∞ is
the inlet cavitation number defined as σ∞ = p∞ − psat

1/2ρU2
∞

.

by taking TL equal the temperature T given by Tab. 6.3 and ζ = 0.01. The
dimensions of the computational domain in the lateral direction are the same
of the experimental test section, while in the streamwise direction the inlet
is at a distance of 3c from the leading edge and the outflow at a distance
of 4c from the trailing edge. Finally, in the spanwise direction the domain
thickness is 0.1c, i.e. only a slice of the actual chamber width is considered.
In [14] it was shown that this has not significant effects on the numerical
pressure distribution over the hydrofoil, except for slight differences near the
trailing edge (see also the brief discussion in the following). The charac-
teristic based boundary conditions (see Sec. 5.7) are used at the inflow and
outflow, while free slip is imposed at the remaining boundaries. Three dif-
ferent unstructured grids, shown in Figs. 6.8 and 6.9 are considered, the first
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one GR1, made of 115728 nodes, is used for the non-cavitating test TC1, the
second (GR2) and third (GR3) grids are used for the cavitating cases and
have 263832 and 502234 nodes respectively.
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Figure 6.8: Zoom of the grid used for the simulations of the non-cavitating
water flow over a NACA0015 hydrofoil.
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Figure 6.9: Zoom of the different grids used for the simulations of the cavi-
tating water flow over a NACA0015 hydrofoil.

6.2.1 Results of the non-cavitating simulations
For non-cavitating flows, large CFL values can be used for all the considered
schemes. Here in particular a CFL value of 200 has been chosen for the
different simulations. Since this already led to very reduced computational
times on the considered grid GR1, a systematic analysis of the actual stability
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limit has not been carried out for these simulations.
The pressure coefficient distributions obtained on the hydrofoil in the

simulations with the 1st- and 2nd-order versions of the Roe and LD-HLL
schemes on GR1 are shown in Fig. 6.10, together with the experimental
data. As expected, both schemes introduce a larger dissipation at 1st order
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Figure 6.10: Cp distribution over the hydrofoil for the TC1 test-case (non-
cavitating flow).

than in their 2nd-order version, as can be seen in particular from the lower
predicted values of the suction peak. Note how at 1st order the LD-HLL
scheme appears to be more dissipative than the Roe one, as also shown by
the overestimation of Cp at the stagnation point. However, at 2nd order the
results obtained by the two different schemes are almost identical. As for
accuracy, although there are no measurement points at the suction peak, a
previously carried out potential flow simulation gave a suction peak value
of approximately −1.7, in well agreement with simulations carried out with
schemes of high-order of accuracy (see [14]). Thus, the predictions obtained
with the 2nd-order versions of both considered schemes can definitely be
considered as more accurate than those of the 1st-order ones. The small
discrepancies observed near the trailing edge are due to the fact that the
present simulations are inviscid and almost 2D; indeed, a similar behaviour
was observed in a 2D potential flow solution and in other Euler calculations
in [14].
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6.2.2 Results for cavitating conditions
For the cavitating test-cases, a CFL coefficient limitation of about 0.01 has
been found for the Roe scheme and the LD-HLL one with the classical time
linearisation, while the LD-HLL flux with the more complete linearisation
permits to reach CFL 100, both at first order and 2nd order of accuracy.
This confirms the previous observations made for the quasi-1D nozzle case
(see Sec. 4.3.3) and, in particular, that the more complete time linearisation
is a key point to significantly increase numerical efficiency in presence of
cavitation.

Therefore, only the simulations carried out with the most efficient ap-
proach, i.e. the LD-HLL one with the more complete time linearisation, have
been advanced in time sufficiently to obtain meaningful results. Note that an
accurate prediction of the pressure near the leading edge and, in particular,
of the suction peak is very important to correctly capture the cavitating re-
gion, which starts near the leading edge. The 1st-order version of the scheme,
indeed, due to the underprediction of the suction peak, is not able to cap-
ture the cavitating region and gives no phase transition for the TC2 case.
Consequently, also in accordance with the analysis carried in Sec. 6.2.1 for
non-cavitating conditions, only 2nd-order accurate results are shown in the
following (Figs. 6.11 to 6.14). Finally, two different grids are considered
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Figure 6.11: Cp distribution for the TC2 test-case on grid GR3 (cavitating
flow): instantaneous and averaged values.

(GR2 and GR3), both more refined that the one used for the non-cavitating
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simulations. Fig. 6.11 shows the Cp distribution on the upper side of the
hydrofoil obtained in the simulation on GR3, together with the relevant ex-
perimental data. Both instantaneous and averaged (over 5000 time steps)
values are shown; practically no differences are found, thus, indicating that
no significant unsteady effects are observed and that the solution is enough
advanced in time. The cavitation region is clearly visible and coincides with
the Cp plateau near the leading edge. This behaviour of pressure is typical of
the adopted barotropic homogeneous-flow cavitation model, in which large
density variations at almost constant pressure characterise the vapour regions
(see, e.g., [102] or [37]). Note also the sharp pressure gradient at the vapour
to liquid transition occurring at the end of the cavitation region, which also
characterises this type of cavitation models. Conversely, the wiggle observed
at that location in Fig. 6.11 seems to be due to numerics and is indeed largely
reduced by grid refinement, as can be seen from the comparison between the
solutions obtained on GR2 and GR3 in Fig. 6.12. Fig. 6.12 also shows that,
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Figure 6.12: Cp distribution for the TC2 test-case (cavitating flow) for dif-
ferent grid resolutions.

except for this wiggle, grid independence of the results has been reached. To
better highlight the behaviour of the solution in the cavitation region pre-
dicted by the adopted barotropic homogeneous-flow model, Fig. 6.13 shows
the evolution of the Cp curve with the cavitation number value obtained on
the most refined grid, i.e. GR3. As expected, a decrease of the cavitation
number corresponds to a larger cavitation region. Note also that in all cases



6.2 Flow Over a NACA 0015 Hydrofoil 94

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x / c

C
p

 

 

Experiment

Sigma 1.5

Sigma 1.4

Figure 6.13: Cp distribution for cavitating flow on grid GR3: test-cases TC2
(σ∞ = 1.49) and TC3 (σ∞ = 1.38).

the pressure is characterised by a plateau in this region, with a value increas-
ing as the cavitation number decreases, and that a sharp gradient is always
present at the vapour to liquid transition. The agreement with the experi-
ments for the TC2 solution (the same inlet conditions as in the experiments)
appears to be reasonable, although there are no experimental points in the
plateau region and some discrepancy is present at the end of the cavitating
region. However, based on the previous analysis, this discrepancy seems to
be due more to modelling than to numerics.

Finally, in order to give an idea of the numerical stiffness, the iso-contours
of the local cavitation number and of the Mach number obtained on grid
GR3 for the TC3 case are shown in Fig. 6.14. The local cavitation number
is defined as

σ = p− psat
1/2ρU2

∞

Hence, negative values of σ identify the cavitation region (dark grey in Fig.
6.14). Note how in the cavitation region the Mach number reaches the value
of 10, while in the free-stream liquid flow it is equal to 2.4×10−3. Therefore,
there is an increase of about 4 orders of magnitude.
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(a)
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Figure 6.14: Test-case TC3: time-averaged isocontours of (a) cavitation
number and (b) Mach number.





Chapter 7
Numerical simulations in a real 3D inducer

In the previous chapter, a validation of the numerical tools introduced in
Chaps. 3 and 5 has been carried out by using several test-cases for which
theoretical as well as experimental data are available. Simulations of 3D
flows for a real aerospace engineering application are proposed here. More
specifically, the flow in a three blade axial inducer is considered. The afore-
mentioned inducer has been developed and studied by Alta SpA in several
works [31, 32, 38–40, 110–112]: it is a three blade inducer with a tip blade
radius RT of 81 mm and 2 mm radial clearance between the blade tip and
the external case. Note that, as shown in Fig. 7.1, the considered geometry is
really complex, and thus the simulations of the flow in a inducer is a challeng-
ing task. Experimental data are available for all the numerical simulations
described in the following. In particular the pressure jump between two dif-
ferent stations has been measured for a wide range of working conditions:
from small to large mass flow rates, non-cavitating and cavitating flows and
different values of the rotational velocity ωz of the inducer.

This chapter is organised as follows: first in Sec. 7.1 the main features
of the computational grids developed for the numerical simulations are out-
lined, then in Sec. 7.2 the method of comparison between experimental and
numerical data is described. In Secs. 7.3 and 7.4 the results obtained for,
respectively, the non-cavitating and cavitating conditions are presented. Fi-
nally in Sec. 7.5 a preliminary analysis of the instabilities related to presence
of cavitation is carried out.

7.1 Description of the computational grids
Two different computational domains and three different computational grids,
shown in Tab. 7.1, have been considered. The external boundary is cylin-



7.1 Description of the computational grids 98

(a) Global view (b) Detailed view

(c) Front view (d) Lateral view

Figure 7.1: Geometry of the inducer considered in this work.

Grid Nodes Tetrahedrons zmin zmax
G1 1926773 10572116 −319 mm 339 mm
G1L 2093770 11517393 −1190 mm 339 mm
G2 3431721 19133143 −319 mm 339 mm

Table 7.1: Grids used for the simulations of the inducer.

drical with radius R = 83 mm, while the internal boundary coincide with
the inducer (see Fig. 7.1). The two domains differ by their extension in the
axial direction z. For the first computational domain zmin = −319 mm and
zmax = 339 mm: the inlet is placed 249 mm ahead of the inducer nose and
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the outlet is placed 409 mm behind. A second computational domain charac-
terised by a larger streamwise length has also been considered, in particular
zmin = −1190 mm (the inlet 1120 mm ahead the inducer nose). Two differ-
ent grids have been generated to discretize the shorter domain: the basic one
G1 (1926773 cells) and G2 (3431721 cells) obtained from G1 by refining the
region between the blade tip and the external case. In particular, while in
the grid G1 the clearance region is discretised by using 3-4 nodes, in the grid
G2 9-10 nodes have been used. The larger domain has been discretized by
grid G1L (2093770 cells), which coincides with G1 in the original domain.

As far as the computational costs are concerned, it is worth notice that
the simulations on the grid G1 requires 32 processors and the simulation of
one rotation of the inducer requires about 75 hours. Similarly the simulations
on the grid G2 have been carried out on 64 processors and one non-cavitating
rotation of the inducer requires about 200 hours of computational time while
1000 are required for a cavitating simulation. The difference between the
computational time required by cavitating and non-cavitating simulations is
the following: to increase the robustness of the numerical method, each time
the numerical method detects a phase transition (i.e. a point whose den-
sity cross the saturation density) an additional DeC iteration is carried out.
This improves the robustness of the numerical method, especially when near
vacuum conditions are reached, at the cost of increasing the computational
time.

However it is worth notice that this methodology has been proved to be
robust and reliable. Indeed even the cavitating simulations in this complex
geometry have been carried out using CFL numbers up to 500. Since 1000
hours are still required to simulate one rotation of the cavitating inducer,
this clearly points out that less efficient numerical approaches would easily
make these simulations not affordable from a practical point of view.

7.2 Comparison between numerical and experimental
data

In this section the comparison between experimental and numerical data is
addressed. In order to correctly perform a comparison with the experimental
data, it is useful to define a time-averaged numerical solution, that is:

W̃i =

n∑
k=1

W k
i ∆kt

n∑
k=1

∆kt

(7.1)
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in which W k
i is the instantaneous solution at time tk. This averaging proce-

dure is consistent with experimental data which is collected with measures
that last 5 seconds, a time far greater than the period required by the inducer
to make a complete revolution.
However, caution must be used when dealing with (7.1): the barotropic re-
lation p = p(ρ) is not linear and, as a consequence it is possible to have two
different definitions for the averaged pressure, the time averaged pressure and
the pressure corresponding to the time averaged density which are in general
different, that is:

p̃i 6= p(ρ̃i)

As long as we deal with nearly incompressible flow the difference between
these two averaged pressures is negligible but if we are interested in cavitating
flows (i.e. highly compressible flows) the difference can be remarkable. Since
the experimental data is collected using pressure probes we considered that
to compare correctly the results we need to use the time-averaged pressure
p̃ computed as in (7.1) and, in the following, unless explicitly stated, this
should be the meaning of the term averaged pressure.

Another issue is the local character of the experimental data. Two pres-
sure probes are positioned at a specific location, with a well defined axial co-
ordinate and angular position. The first probe is located at 82.2 mm ahead
the inducer nose, that is z = −152.2 mm, while the latter one 259.8 mm
behind, that is z = 189.8 mm.

To compare properly our results we need to collect numerical data at the
same locations of the experiments. The difficulty arises from the fact that the
numerical simulation is carried out in a rotating frame. That is, a fixed point
in space is a rotating point in the reference frame of the numerical simulation
and, conversely, any fixed point in the computational domain is indeed a
rotating one. However, since the experimental measures last 5 seconds, a
time larger than the period of rotation of the inducer, it is reasonable to
consider that any pressure variation along the circumference is averaged in
the measurement process. Hence we used a double average: we computed
the average over the outer circumference of radius R = 83 mm of the time-
averaged pressure, that is we compare the experimental data with a time and
circumferential averaged pressure field.

This process of double average of the pressure can introduce a discrepancy
between numerical and experimental data, in particular if the flow field is
not stationary and the pressure is not constant in the azimuthal direction.
In order to make an estimation of the error that could be introduced by this
technique we compute also the local maximum and minimum of the time-
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averaged pressure.
Finally we must take into account that, due to the use of unstructured

grids, we have few nodes with the same axial coordinate of the probes. So, to
avoid averaging only with few nodes, we select all the nodes within a specific
tolerance from the geometric axial coordinate. That is, let be zp the axial
coordinate of the probe, we select all the nodes i with axial coordinate zi
which satisfies:

|zi − zp| < δ (7.2)

and in particular we choose:

δ = 2.5 mm

which corresponds to the local grid spacing in the z direction. To conclude,
the averaged variable used in the comparison with the experimental data is
the time-averaged pressure averaged over the outer circumference at a specific
location, that is:

̂̃
P z =

∑
i∈δzp

P̃iSi

∑
i∈δzp

Si
(7.3)

while the estimation of the error is given by

P̃z,min = min
i∈δzp

P̃i

P̃z,max = max
i∈δzp

P̃i
(7.4)

In (7.3) and (7.4) Si is the surface of the ith cell centred at node i and δzp is
the set containing all the cells which satisfy (7.2).

The results are presented in terms of the mean adimensionalised pressure
jump Ψ as a function of the adimensionalised discharge Φ:

Ψ = ∆P
ρLω2

zR
2
T

Φ = Q

πR2
TωzRT

(7.5)

where Q is the discharge, RT = 81 mm is the radius of the tip of the blade,
ρL the density of the liquid and ωz is the angular velocity. In (7.5), ∆P is the
difference between the pressure measured by the downstream experimental
probe and the upstream one. This is an indicator of the inducer efficiency
since the aim of inducers is to increase the inlet pressure of the pumps they
are attached to, thus reducing or completely avoid cavitation. These adimen-
sionalised variables are widely applied to characterise the performance of the
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Figure 7.2: Experimental data given by Alta Spa for different values of the
angular velocity.

inducer because in the plane Φ− Ψ the performance curves for different an-
gular velocities collapse on a single curve as shown in Fig. 7.2. Finally, given
the experimental value of the pressure jump Ψexp, it is possible to define the
error of the simulation with respect the experimental data as:

Err(%) = Ψave − Ψexp
Ψexp

· 100 (7.6)

where Ψave is the numerical pressure jump averaged .

7.3 Non-cavitating simulations
The working conditions considered for the non-cavitating simulations are
shown in Tab. 7.2. All the considered cases use the same outlet pressure of
the flow, pout, and the same rotational velocity of 1500 rpm (revolution per
minute). As previously pointed out, in the Φ − Ψ plane the experimental
curves of the performances of the inducer are practically independent from
the rotational velocity ωz [110] (see also Fig. 7.2). As a consequence, validat-
ing the numerical tool for a specific rotational velocity and different flow rates
should validate the proposed numerical tool for a generic rotational velocity.
In particular, three different flow rates have been considered and the corre-
sponding simulations, G1-Ind1, G1-Ind2, G1-Ind3 have been run on the grid
G1. For the small and intermediate flow rates, Ind3 and Ind2, respectively,
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Benchmark Ind1 Ind2 Ind3
Φ 0.0584 0.0391 0.0185

ωz (rpm) 1500 1500 1500
pout (Pa ) 125000 125000 125000
T (◦C ) 25◦ 25◦ 25◦

Table 7.2: Conditions of the numerical simulations and of the experiments.

also the more refined grid G2 has been used for the simulations G2-Ind3 and
G2-Ind2. Finally the influence of the upstream boundary conditions has been
tested for the small flow rate Ind3 by using the extended computational do-
main with the grid G1L in the simulations G1L-Ind3 and G1L-Ind3-T. Note
that all the aforementioned numerical simulations are laminar one: the only
turbulent simulation carried out for this test-case is the last one, G1L-Ind3-T.

Fig. 7.3 and Tab. 7.3 show the numerical results obtained for the consid-
ered test-cases.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.05

0.1

0.15

0.2

0.25

0.3
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Ψ

 

 

Numerical G1
Numerical G2
Numerical G1L
Experimental

Figure 7.3: Comparison between laminar numerical simulations and experi-
mental data.

From Fig. 7.3 it clearly appears that the lower is the discharge Φ the worse
are the results. In particular the laminar simulations for the benchmark Ind3,
G1-Ind3, G2-Ind3 and G1L-Ind3, give results that clearly overestimate the
pressure jump while the turbulent simulation G1L-Ind3-T, the purple point
closer to the experimental data in Fig. 7.3, greatly improves the results (see
also Tab. 7.3). A detailed analysis of the results and, in particular of this
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Ψexp Numerical Ψave Ψmin Ψmax Error%
G1-Ind1 0.122 0.114 0.108 0.120 −6.6%
G1-Ind2 0.186 0.204 0.193 0.215 +9.7%
G2-Ind2 0.186 0.179 0.171 0.192 −3.8%
G1-Ind3 0.214 0.302 0.290 0.316 +41%
G2-Ind3 0.214 0.278 0.270 0.292 +30%
G1L-Ind3 0.214 0.297 0.283 0.313 +39%

G1L-Ind3-T 0.214 0.239 0.236 0.241 +12%

Table 7.3: Pressure jump in non-cavitating conditions

point, is proposed in Secs. 7.3.1-7.3.3.
7.3.1 High-discharge conditions, Ind1
Considering the highest discharge value, corresponding to the case Ind1, al-
ready with the coarse grid G1 the pressure jump is underestimated by only
6.6%. The global features of the flow field at specific locations are illustrated
in figures from 7.4 to 7.6. The aforementioned figures show a comparison

(a) Instantaneous field (b) Averaged field

Figure 7.4: Simulation G1-Ind1, cross section of the axial velocity field at z
= 189.8 mm, comparison between instantaneous and averaged
solutions.

between the instantaneous solution and the one averaged over one complete
revolution of the inducer. The discrepancies between the two fields are hardly
distinguishable, thus giving an additional proof that a steady condition has
been reached. Furthermore, it is interesting to point out that Fig. 7.4 shows
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(a) Instantaneous field (b) Averaged field

Figure 7.5: Simulation G1-Ind1, cross section of the pressure field at z =
189.8 mm, comparison between instantaneous and averaged so-
lutions.

a nearly 120◦ symmetry of the flow field which is expectable since a 3 blade
inducer is considered in these simulations. Finally, Fig. 7.6 shows an axial
cross section of the pressure field: it is possible to observe how the maximum
value of the pressure is located just downstream of the last inducer blade and,
similarly the minimum pressure value is located upstream the first blade of
the inducer.
7.3.2 Intermediate-discharge conditions, Ind2
For the intermediate value of the discharge Ind2, results qualitatively similar
to the case Ind1 have been obtained. On the coarse grid G1 the pressure
jump is over estimated by 9.7%: by considering the more refined grid G2, an
absolute value of the error of 3.8% is obtained but in this case the pressure
jump is underestimated. The numerical results for the second simulation
with the more refined grid are shown in figures from 7.7 to 7.9. Figs. 7.7
and 7.8 show a comparison between the averaged solution computed on the
grids G1 and G2. In particular, considering the axial velocity field shown
in Fig. 7.7, the improved resolution of the refined grid clearly appears, even
if, from a qualitative point of view the two grids computes similar results.
The results for the pressure fields, shown in Fig. 7.8 confirm the benefits of
grid refinement: while in all cases the pressure jump, as for the benchmark
Ind1, takes place in the inducer region, its magnitude is different for the two
grids. This is clearly understood by studying Fig. 7.9: the pressure upstream
the inducer is the same for the two computational grids. Nevertheless the
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(a) Instantaneous field

(b) Averaged field

Figure 7.6: Simulation G1-Ind1, cross section of the pressure field at θ = 15◦,
comparison between instantaneous and averaged solutions.

pressure jump downstream the inducer is clearly higher for the grid G1, and
this is confirmed by Fig. 7.8: this is consistent with the overestimation of the
pressure jump computed with the first grid G1.
7.3.3 Small-discharge conditions Ind3
The lowest value of the discharge is qualitatively different from the previ-
ous ones. The results for both the high and intermediate flow rates, Ind1
and Ind2, can be considered in good agreement with the experimental data.
Conversely, for the low discharge case, Ind3, the simulations with the grid
G1 and G2 greatly overestimate the pressure jump by 41% and 30%, respec-
tively. The Ind3 test-case is characterised by a strong backflow between the
inducer blades and the external case which is the largest among the three
considered cases, as it is clearly visible from Fig. 7.10.
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(a) G1 (b) G2

Figure 7.7: Benchmark Ind2, cross section of the axial velocity field at z =
189.8 mm, comparison between grids G1 and G2.

(a) G1 (b) G2

Figure 7.8: Benchmark Ind2, cross section of the pressure field at z =
189.8 mm, comparison between grids G1 and G2.

From the experimental data it follows that the smaller is the mass flow
rate, the larger is the pressure jump. It is natural to expect that the larger
is the pressure gradient, the stronger will be the force pushing the flow back-
ward through the tip clearance between the blades and the inducer case.
This backward flow, with different pressure and velocity, interacts with the
incoming flow. Thus, the correct resolution of the backward flow is of cru-
cial importance for the determination of the performance of an inducer. A
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(a) G1

(b) G2

Figure 7.9: Benchmark Ind2, cross section of the pressure field at θ = 15◦,
comparison between grids G1 and G2.

possible source of error comes from grid resolution: if the mesh size in the
tip clearance is too coarse this could reduce the “effective” clearance and, as
a consequence, increases the pressure jump, as shown in Fig. 7.11. However,
grid refinement does not seem to be an effective solution. Indeed, by switch-
ing from grid G1 to G2 a remarkable reduction of the error ( from 41% to
30%) has been achieved, but the error is still much larger than the one found
in the previous cases. Thus, since grid G2 is already composed by more than
3 millions nodes, a further grid refinement does not seem a viable solution.
Thus, for this test-case we investigated the influence on the numerical solu-
tion of two additional possible sources of error. The first one was a possibly
too small distance of the inlet from the inducer nose and the second one was
the neglection of the turbulence effects.

As shown in Fig. 7.10, for the benchmark Ind3 the backflow extension
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(a) Benchmark Ind1

(b) Benchmark Ind2

(c) Benchmark Ind3

Figure 7.10: Comparison of the averaged flow field for the three non cavita-
ting benchmarks at θ = 15◦, grid G1.
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(a) G1

(b) G2

Figure 7.11: Benchmark Ind3, cross section of the pressure field at θ = 15◦,
comparison between grids G1 and G2.

upstream the inducer blades is significant and thus, it is possible that the so-
lution is influenced by the proximity of the inlet boundary. However, Tab. 7.3
shows that the increase of the streamwise dimension of the computational
domain has a small effect in reducing the discrepancy with respect to the
experimental data, from 41% to 39%, noticeably smaller than the reduction
obtained using grid G2 instead of G1. Furthermore, Fig. 7.12 clearly shows
that in the simulation with the larger domain G1L-Ind3 the backflow is not
affected by the inlet conditions and, as consequence, no spurious effects on
the solution are present (compare also Fig. 7.12a with 7.10c). Clearly, this
error could be further reduced by carrying out a simulation on the refined
grid GR2 with an extended width of the domain. However it seems unlike
that this could lead to a satisfactory accuracy of the results.

Conversely, the results of the RANS simulation G1L-Ind3-T, which used
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(a) Detailed view

(b) Global view

Figure 7.12: Cross section of the flow field at θ = 15◦, averaged axial velocity,
simulation G1L-Ind3

the same numerical set-up and the same grid as for the G1L-Ind3, show that
in this case turbulence is a key-issue. Indeed, the error falls down to 12%,
less than the error obtained with the refined grid G2 in laminar conditions.
It is therefore clear that the introduction of turbulence significantly improves
the agreement with experiments. As expected the effects of turbulence are
particularly important near the gap between the blades and the external case,
as it is shown for instance by the averaged isocontours of k in Fig. 7.13. This
strongly affects the backflow (compare Figs. 7.14 and 7.12) and, thus, the
pressure jump. This also explains why for larger flow rates, for which the
backflow is less important, the effects of turbulence are not so strong and
a good agreement with experimental data can be obtained also in laminar
simulations.

7.4 Cavitating simulations
In this section the results of the cavitating simulations are presented. The
characteristics of the chosen benchmarks are described in Tab. 7.4, all the
test-cases share the same discharge value Φ = 0.0531 and the same rotational
velocity ωz = 3000 rpm. They differ in the outlet pressure or, equivalently,
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Figure 7.13: Cross section of the averaged k field at θ = 15◦, simulation
G1L-Ind3-T

Figure 7.14: Cross section of the flow field at θ = 15◦, averaged axial velocity,
simulation G1L-Ind3-T

Benchmark Ind4 Ind5 Ind6
Φ 0.0531 0.0531 0.0531

ωz (rpm) 3000 3000 3000
pout (Pa ) 60000 85000 82500
T (◦C ) 16.8◦ 16.8◦ 16.8◦

σ 0.056 0.084 0.077

Table 7.4: Conditions of the numerical simulations and of the experiments.

in the cavitation number σ of the test which, for the inducer simulations, is
defined as:

σ = p− pLsat
0.5ρω2

zR
2
T

(7.7)
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The choice of the benchmarks has been done by trying to reproduce differ-
ent points on the experimental curves of the cavitating performance of the
inducer. While in the non-cavitating case different flow rates at constant ωz
have been considered, in the cavitating case the performance at different σ
and fixed ωz and Φ have been analysed. Note that, since the mass flow rate for
the cavitating cases is large enough to prevent the issues related to the back-
flow previously described, only laminar simulations have been considered.
Tab. 7.5 reports the results obtained by the three cavitating simulations. It

Ψexp Numerical Ψave Ψmin Ψmax Error%
G1-Ind4 0.105 0.143 0.135 0.151 +36%
G2-Ind5 0.143 0.130 0.123 0.139 −8.9%
G2-Ind6 0.137 0.130 0.123 0.139 −5.0%

Table 7.5: Numerical results for the cavitating simulations

is clear that the first grid G1 is not enough refined to correctly describe cav-
itation for this case since the pressure jump is greatly overestimated by 36%.
For the benchmark Ind4 the error is related to the underestimation of the
cavitating region: the experimental data for σ = 0.056 show a large cavitating
zone which completely floods the inducer and, consequently, the performance
of the inducer is significantly deteriorated. Instead, in the simulation with
grid G1 the cavitating region is small as shown in Fig. 7.15. Furthermore it

(a) Instantaneous field (b) Averaged field

Figure 7.15: Pressure isosurface for the cavitating simulation G1-Ind4: cavi-
tating region.

is clearly noticeable from Fig. 7.15 that the cavitating region is nearly sta-
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tionary, which is clearly in contrast with the experimental results. Thus, the
“numerical” performance of the inducer is similar to the non cavitating case,
as it can be also shown by comparing the numerical pressure jump obtained
for the benchmark Ind4 and Ind1. Also for cavitating cases grid refinement
has clearly a beneficial effect: in the simulations carried out on the more
refined grid GR2 for, respectively, σ = 0.084 and σ = 0.077 (G2-Ind5 and
G2-Ind6) cavitating zones can be observed. Conversely, for these values on
grid G1 no cavitation has been found. The numerical prediction of the pres-
sure jump is in this case in rather good agreement with the experiments (see
Tab. 7.5), showing once again the positive effects of grid refinement. Fig. 7.16
finally shows that the extension of the cavitating region is slightly smaller
than the one obtained with grid G1-Ind4. However, since the cavitation num-
ber is increased this clearly shows an improvement in the resolution of the
cavitating region. Note in particular that the cavitating simulations on grid

(a) Benchmark Ind5 (b) Benchmark Ind6

Figure 7.16: Pressure isosurface for the cavitating simulation on the grid G2:
cavitating region.

G2 are not stationary. In order to show this characteristic of the flow, we vi-
sualise the cavitating regions on the blades, identified by an isosurface of the
void fraction corresponding to the value of 0.05, at different instants during
one inducer rotation. Fig. 7.17 and Fig. 7.18 shows these cavitating regions
for 8 time instants uniformly distributed over one complete rotation of the
inducer. It clearly appears that the cavitating regions are highly unsteady
and progressively shrink in time. In the second half of the rotation the op-
posite occurs, i.e. the cavitating region sizes progressively increases to reach
roughly the same dimensions as at the beginning of the rotation. Moreover,
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the cavitating regions over the three blades are slightly asymmetric and this
is particularly evident when the regions reduce to their smallest dimensions;
see for instance Fig. 7.17d in which the cavitating region has disappeared on
one blade while this is not the case for the other two.

(a) 1/8 (b) 2/8

(c) 3/8 (d) 4/8

Figure 7.17: Isosurfaces of the void fraction for the cavitating simulation G2-
Ind5 at different instants during the first half of the inducer
rotation.



7.5 Preliminary analysis of instabilities related to cavitation 116

(a) 5/8 (b) 6/8

(c) 7/8 (d) 8/8

Figure 7.18: Isosurfaces of the void fraction for the cavitating simulation G2-
Ind5 at different instants during the second half of the inducer
rotation.

7.5 Preliminary analysis of instabilities related to cav-
itation

In this section a preliminary analysis aimed at investigating whether flow
instabilities related to cavitation can be observed in the present numerical
simulations, is presented. In particular the simulation G2-Ind6 carried out
on the most refined grid is considered.

The aforementioned instabilities have been detected in the experiments
carried out by Alta Spa in [110]. The asymmetric cavitation (also called
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attached uneven cavitation or synchronous rotating cavitation) is first con-
sidered. It is generated by uneven cavitation length on the inducer blades,
with one blade cavitating more (or less) than the others and can therefore be
considered as a 1-cell rotating instability with the same frequency as the in-
ducer rotational speed (i.e. synchronous). In the experiments this behaviour
may be caused by the fact that the inducer blades are not perfectly equal,
due to uncontrolled small manufacturing defects, but also to uncontrolled
asymmetric disturbances in the flow. In numerical simulations, the blades
are exactly equal to the nominal ones, but uncontrolled small asymmetric
disturbances might be introduced, for instance by the fact that the computa-
tional grid is not symmetric leading to an asymmetric response of the blades
of the inducer, as described in Sec. 7.4 and shown in Fig. 7.17d.

The detection of the instabilities from the experimental data was mainly
based on the spectral analysis of the time pressure signals recorded by the
inlet probe. On the basis of the experimental analysis (see [32,110]), for the
considered values of the discharge and of the cavitation number, the instabil-
ity classified as surge may be expected, which is characterised by a global axial
oscillation of the flow at a frequency of about 0.2 of the rotational frequency,
ωz. Additional instabilities, such as BVI1 (at approximately 0.7-0.8 ωz), 3Ω-
BVI1 (about 2.3 ωz), BVI2 (about 3.3 ωz), 2Ω+BVI2 (approximately 5.3 ωz)
have been found in experiments for the considered value of discharge but at
lower values of the cavitation number [110]. They are related to different
instabilities of backflow vortexes originating from the blades. Consistently
with the experimental findings, we did not detect any significant instability
of backflow vortexes.

In order to carry out a spectral analysis similar to the experimental one,
time pressure signals have been recorded on the case at z = −56.5 mm,
−28.8 mm, −7.2 mm, 189.8 mm. In particular z = −7.2 mm corresponds to
the location of the experimental probe. For each z location we have extracted
the signals at six different locations, namely θ = 0◦, 90◦, 120◦, 180◦, 240◦,
270◦.

The signals have been recorded over 13 inducer complete rotations, with
8000 time steps per rotation and a total computational cost of roughly 13000
hours of computational time. The signals have been then divided in four (in-
tersecting) groups, each composed by ten rotations. As it is clear from figure
7.19, no significant differences have been observed in the spectra computed
at different azimuthal locations. Two peaks are evident, the first at 1.5 ωz
and the second at 3 ωz. The latter one was expected since it is related to the
passage of the three blades. The first one might be simply a sub-harmonic or
could be related to some phenomenon occurring at the passage of two blades
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(a) θ = 0◦
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(b) θ = 120◦
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(c) θ = 240◦
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(d) θ = 270◦

Figure 7.19: Comparison of the Pressure Power Spectrum at four different
locations, z = −7.2 mm.

over three: it is interesting to notice that, as shown in Fig. 7.20, upstream
the inducer nose the amplitude of the peak at 1.5 ωz is roughly independent
from the distance from the inducer blades. Conversely the magnitude of 3
ωz peak increases approaching the inducer blades. This could suggest the
presence of an axial instability which, for these working conditions, disagrees
with the experimental results. It is also possible that the 1.5 ωz peak is a
consequence of a transient which has not ended as shown in 7.21. Indeed
Fig. 7.21 shows that the power spectrum is still not time independent and,
in particular, the magnitude of the 3 ωz peak is increasing. Thus, it could be
possible that at the very end of the transient only a greater 3 ωz peak will
be present at the expenses of the 1.5 ωz. However, verifying this hypothe-
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(a) z = −56.5 mm
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(b) z = −28.8 mm
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(c) z = −7.2 mm
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(d) z = 189.8 mm

Figure 7.20: Comparison of the Pressure Power Spectrum at different axial
coordinates, θ = 180◦.

sis would require an huge amount of additional computational time which is
beyond the scope of the present work. Finally, as done in the experiments,
the frequencies which are entire multiples of ωz have been filtered out; we
use a notch filter having a band of ±0.1 ωz. The filtered spectrum for the
location θ = 180◦ is shown in Fig. 7.22: the range of the vertical axis has
been reduced in order to also visualise local peaks characterised by a lower
level than those at 1.5 ωz.. Besides zones of significant power content, which
seem residuals of peaks at entire multiples of ωz, not eliminated by the notch
filter, there is a peak in the lowest frequency region, which might be related
to surge. This assumption is supported by the fact that this peak survives
far upstream the blades, as it is expected for a frequency related to surge,
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(a) Rotations 1-10
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(b) Rotations 2-11
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(c) Rotations 3-12
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(d) Rotations 4-13

Figure 7.21: Evolution of the Pressure Power Spectrum, z = −7.2 mm.

which is a global axial flow oscillation. Note that, for a more accurate anal-
ysis of surge, pressure signals should be recorded over longer time intervals,
but again this would imply additional computational costs.
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(a) z = −56.5 mm
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(b) z = −28.8 mm

Figure 7.22: Filtered pressure power spectrum.





Part II

Numerical Simulation of
Sediment Transport Problems





Chapter 8
Physical Model for Sediment Transport

Problems

In this chapter different physical models for the study of sediment transport
problems are presented. First, the standard Shallow Water equations, for
both the 1D and 2D cases are shown in Sec. 8.1. After that, the 1D govern-
ing equations for sediment transport problems and their 2D extensions are
described, respectively, in Sec. 8.2 and Sec. 8.3. The standard formulation of
Shallow Water equations is derived starting from the incompressible Navier-
Stokes equations [121] and by assuming that the velocity in one direction, let
suppose it is x3, and the corresponding acceleration are negligible. In addi-
tion, by depth averaging the the governing equations the standard Shallow
Water formulation is recovered [121].

As for the mathematical notation, considering a fixed reference level Lref ,
H is the bathymetry function with respect to Lref and the height of the
bottom is denoted by Z. Therefore, we have (see also Fig. 8.1):

H + Z = Lref (8.1)

The height of the flow above the bottom Z is denoted by h, while Qi is the
sediment transport flux in the xi direction. Since only 1D and 2D physical
models are considered in this part of the work, the axis x1 and x2 will be
simply denoted by x and y. Finally the symbol reserved for the acceleration
of gravity is g and the sediment porosity is denoted by p.
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Figure 8.1: Physical variables considered for sediment transport problems.

8.1 Shallow Water equations
In this section the Shallow Water system of equations with variable bottom
topography is presented: in the 1D case they can be formulated as follows:

∂h

∂t
+ ∂hu

∂x
= 0

∂hu

∂t
+ ∂

∂x

(
hu2 + 1

2gh
2
)

= −ghdZ
dx

(8.2)

while in the 2D case they assume the following form:

∂h

∂t
+ ∂hu

∂x
+ ∂hv

∂y
= 0

∂hu

∂t
+ ∂

∂x

(
hu2 + 1

2gh
2
)

+ ∂

∂y
(huv) = −gh∂Z

∂x

∂hv

∂t
+ ∂

∂x
(huv) + ∂

∂y

(
hv2 + 1

2gh
2
)

= −gh∂Z
∂y

(8.3)

Note that, in standard Shallow Water formulation the bed level Z is fixed in
time, thus Z = Z(x) or Z = Z(x, y) for (8.2) and (8.3),respectively. The vari-
able bottom topography introduces an additional, non-homogeneous, term in
the set of equations: the discretization of this term requires particular atten-
tion, as shown in Chap. 9. The mathematical structure of the Shallow Water
equations is strictly related to the one of the Euler equations for barotropic
flows described in Sec. 2.3. Indeed, by considering only the homogeneous
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part of the system or, equivalently, a constant bed level, the following 1D
system is recovered: 

∂h

∂t
+ ∂hu

∂x
= 0

∂hu

∂t
+ ∂

∂x

(
hu2 + 1

2gh
2
)

= 0
(8.4)

Except for the presence of the (decoupled) passive scalar equation, system
(8.4) is a particular instance of the 1D system (2.11) when the following
substitutions are operated:

ρ⇒ h, p⇒ 1
2gh

2 (8.5)

Thus the mathematical properties of (8.4) can be readily derived from the
ones of (2.11). In particular the eigenvalues of the homogeneous part of (8.2)
are:

λ1 = u− c, λ2 = u+ c (8.6)

where c is the equivalent of the speed of sound of system (2.11) defined as:

c
.=
√
gh =

√
∂

∂h

(1
2gh

2
)

(8.7)

Similarly, for the 2D case (8.3), the eigenvalues are easily computed as:

λ1 = u− c, λ2 = u, λ3 = u+ c (8.8)

8.2 1D Sediment Transport Model
In order to include the effects of sediment transport, an additional equation
which describes the time evolution of the bed level must be added to system
(8.2). In this work the Exner equation, a well-known approach to model the
time evolution of the bottom topography, has been used:

(1− p) ∂Z
∂t

+ ∂Q1
∂x

= 0 (8.9)

The Exner equation is a common choice since a wide range of formulations,
deterministic and probabilistic as well as analytical and empirical ones, are
available for the definition of the sediment transport flux Q1. In this study
the sediment transport fluxes are defined through the use of the classical
Grass model [56]:

Q1 = Agu|u|m−1 (8.10)
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where 0 ≤ Ag ≤ 1 takes into account the grain diameter and the cinematic
viscosity [26] and 1 ≤ m ≤ 4 is an experimental constant depending on the
particular problem under consideration. More precisely, in the following only
the standard value m = 3 is considered so that (8.10) reduces to:

Q1 = Agu
3 (8.11)

Note that instead of the classical model (8.11), used here for the sake of sim-
plicity, more complex formulations can also be considered for the formulation
of Q1 (see e.g. [26]). Using (8.3) and (8.9) the following coupled system is
then obtained: 

∂h

∂t
+ ∂hu

∂x
+ ∂hv

∂y
= 0

∂hu

∂t
+ ∂

∂x

(
hu2 + 1

2gh
2
)

= −gh∂Z
∂x

∂Z

∂t
+ ξ

∂Q1
∂x

= 0

(8.12)

where
ξ = 1

1− p (8.13)

It is possible to rewrite (8.12) as a system of conservation laws with a source
term, that is:

∂W
∂t

+ ∂F1(W)
∂x

= S(W) (8.14)

where 

W = ( h, hu, Z )T

F1(W) =
(

hu, hu2 + 1
2gh

2, ξQ1

)T
S(W) =

(
0, −gh∂Z

∂x
, 0

)T (8.15)

The Jacobian matrix of F1(W) in (8.15) is singular. Indeed, the eigen-
values and the matrix R, whose columns correspond to the right eigenvectors
of the Jacobian of F1(W) can be expressed as follows:

λ1 = u− c, λ2 = 0, λ3 = u+ c (8.16)

R =


1 0 1

u− c 0 u+ c
−cd
u− c

1 cd

u+ c

 (8.17)
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where d is defined as:
d
.= 3ξAgu2

h
= ξ

∂Q1
∂hu

(8.18)

A singular Jacobian matrix may cause severe numerical difficulties in many
finite volume schemes [9]. Furthermore, in order to obtain a well-balanced
scheme [10], the presence of the source term requires a specific treatment, as
it is shown is Chap. 9. Thus, in the literature several alternative formulations
of system (8.14) have been derived to cope with these difficulties. Three of
them, which are used in the numerical methods considered in this work, are
shown in Secs. 8.2.1-8.2.3.
8.2.1 A formulation with non singular Jacobian
In order to avoid the singularity of the Jacobian of the flux function, it is
possible to incorporate the variable Z into the flux function as shown in [64].
In particular, by using the product rule:

∂hZ

∂x
= Z

∂h

∂x
+ h

∂Z

∂x
(8.19)

it is possible to recast system (8.12) as:

∂W
∂t

+ ∂F̃1(W)
∂x

= S̃(W) (8.20)

where 
F̃1(W) =

(
hu, hu2 + 1

2gh
2 + ghZ, ξQ1

)T
S̃(W) =

(
0, gZ

∂h

∂x
, 0

)T (8.21)

The formulation (8.20) overcomes the issue of the singularity of the Jacobian
matrix of (8.14). Indeed the right eigenvectors matrix R̃ of the Jabian of
F̃1(W) can be recasted in the following form:

R̃ =


1 1 1
λ̃1 λ̃2 λ̃3

β̃2
1 − c2 − gZ

c2
β̃2

2 − c2 − gZ
c2

β̃2
3 − c2 − gZ

c2

 (8.22)

where
β̃i

.= λ̃i − u (8.23)

and λ̃i is the ith eigenvalue of system (8.20).
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The eigenvalues λ̃i cannot be easily obtained since they are the roots of
the polynomial:

λ̃3 − 2uλ̃2 +
(
u2 − g (h+ Z + hd)

)
λ̃+ ghud = 0 (8.24)

where d is defined by (8.18). In [64] it is shown that the roots of the polyno-
mial are always real and distinct if h+Z > 0 and, in this case, the eigenvalues
can be expressed in the following form:

λ̃1 = 2
√
−L̃ cos

(
θ̃

3

)
+2

3u

λ̃2 = 2
√
−L̃ cos

(
θ̃ + 2π

3

)
+2

3u

λ̃3 = 2
√
−L̃ cos

(
θ̃ + 4π

3

)
+2

3u

and



M̃ = u

27

(
9g
(
h− hd2 + Z

)
− u2

)
L̃ = −1

9
(
u2 + 3g (h+ hd+ Z)

)
cos θ̃ = M̃√

−L̃3

(8.25)
8.2.2 A non conservative formulation
Following [26,28], it is possible to consider (8.12) as a non-conservative system
in the form:

∂Ŵ
∂t

+ ∂F̂1(Ŵ)
∂x

= B̂1(Ŵ)∂Ŵ
∂x

(8.26)

where 
Ŵ = ( h, hu, H )T

F̂1(Ŵ) =
(

hu, hu2 + 1
2gh

2, −ξQ1

)T (8.27)

and

B̂1(Ŵ) =

 0 0 0
0 0 gh
0 0 0

 (8.28)

Note that in (8.27) the variable H, defined by (8.1) is used instead of Z.
System (8.26)-(8.27) can be also rewritten as a homogeneous hyperbolic

system in the form:
∂Ŵ
∂t

+ Â1
∂Ŵ
∂x

= 0 (8.29)

where the matrix Â1 is defined as follows:

Â1
.= ∂F̂1(Ŵ)

∂Ŵ
− B̂1(Ŵ) =

 0 1 0
c2 − u2 2u −c2

−ud̂ d̂ 0

 (8.30)
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with:
d̂
.= −3ξAgu2

h
= −ξ ∂Q1

∂hu
(8.31)

The right eigenvectors matrix R̂ of Â1 can be expressed as follows:

R̂ =


1 1 1
λ̂1 λ̂2 λ̂3

1− β̂2
1
c2 1− β̂2

2
c2 1− β̂2

3
c2

 (8.32)

where
β̂k = λ̂k − u (8.33)

and λ̂k, the eigenvalues of Â1, are the solutions of the following characteristic
polynomial:

λ̂3 − 2uλ̂2 +
(
u2 − gh

(
1− d̂

))
λ̂− ghud̂ = 0 (8.34)

whose solution can be expressed in the following form:

λ̂1 = 2
√
−L̂ cos

(
θ̂

3

)
+2

3u

λ̂2 = 2
√
−L̂ cos

(
θ̂ + 2π

3

)
+2

3u

λ̂3 = 2
√
−L̂ cos

(
θ̂ + 4π

3

)
+2

3u

where



M̂ = u

54
(
9gh

(
2 + d̂

)
− u2

)
L̂ = −1

9
(
u2 + 3gh

(
1− d̂

))
cos θ̂ = M̂√

−L̂3

(8.35)
8.2.3 Physical-variable based homogeneous formulation
Through the use of the primitive variables h, u and Z, system (8.14) can be
also rewritten in order to eliminate the source term [64]. More precisely, the
following homogeneous system is obtained:

∂U
∂t

+ ∂F̌1(U)
∂x

= 0 (8.36)

where 
U = ( h, u, Z )T

F̌1(U) =
(

hu,
1
2u

2 + g (h+B) , ξQ1

)T (8.37)
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Similarly to system (8.21) the right eigenvectors matrix Ř of the Jacobian of
F̌1(U) can be formulated as a function of the eigenvalues as follows:

R =


1 1 1
β̌1
h

β̌2
h

β̌3
h

β̌2
1 − c2

c2
β̌2

1 − c2

c2
β̌2

1 − c2

c2

 (8.38)

where
βk

.= λ̌k − u (8.39)

and λ̌k are the solutions of the third order polynomial:

λ̌3 − 2uλ̌2 +
(
u2 − g (h+ d)

)
λ̌+ gud = 0 (8.40)

where ď is defined as:
ď
.= 3ξAgu2 = ξ

∂Q1
∂u

(8.41)

Similarly to the previous cases, the eigenvalues are always real and different,
provided that h > 0, and can be computed by the following equation.

λ̌1 = 2
√
−Ľ cos

(
θ̌

3

)
+2

3u

λ̌2 = 2
√
−Ľ cos

(
θ̌ + 2π

3

)
+2

3u

λ̌3 = 2
√
−Ľ cos

(
θ̌ + 4π

3

)
+2

3u

where



M̌ = u

54
(
9g (2h− d)− 2u2

)
Ľ = −1

9
(
u2 + 3g (h+ d)

)
cos θ̌ = M̌√

−Ľ3

(8.42)

8.3 2D Physical Models
In this section the 2D extensions of the different formulations described in
Sec. 8.2 are addressed. Concerning the fluid variables h, hu and hv, their
evolution in time is governed by the 2D Shallow Water equations (8.3). As
for the bottom topography Z, its evolution is governed by the 2D Exner
equation:

∂Z

∂t
+ ξ

∂Q1
∂x

+ ξ
∂Q2
∂y

= 0 (8.43)

where Q1 and Q2 are, respectively, the sediment transport fluxes in the x
and y directions. Similarly to the 1D case, several choices are possible for
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the definition of Q1 and Q2 and, in particular, in this study the sediment
transport fluxes are defined through the use of the 2D Grass model [56]:

Q1 = Agu
(
u2 + v2)m−1

2 , Q2 = Agv
(
u2 + v2)m−1

2 (8.44)

More precisely, as in the 1D case, the classical value m = 3 is considered so
that (8.44) reduces to:

Q1 = Agu
(
u2 + v2) , Q2 = Agv

(
u2 + v2) (8.45)

Using (8.3) and (8.43) the following coupled system is then obtained:

∂h

∂t
+ ∂hu

∂x
+ ∂hv

∂y
= 0

∂hu

∂t
+ ∂

∂x

(
hu2 + 1

2gh
2
)

+ ∂

∂y
(huv) =− gh∂Z

∂x

∂hv

∂t
+ ∂

∂x
(huv) + ∂

∂y

(
hv2 + 1

2gh
2
)

=− gh∂Z
∂y

∂Z

∂t
+ ξ

∂Q1
∂x

+ ξ
∂Q2
∂y

= 0

(8.46)

which can be recasted in the following vector form:

∂W
∂t

+ ∂F1(W)
∂x

+ ∂F2(W)
∂y

= S(W) (8.47)

where

W = ( h, hu, hv, Z )T

F1(W) =
(

hu, hu2 + 1
2gh

2, huv, ξQ1

)T
F2(W) =

(
hv, hvu, hv2 + 1

2gh
2, ξQ2

)T
S(W) =

(
0, −gh∂Z

∂x
, −gh∂Z

∂y
, 0

)T
(8.48)

Let us consider the integral formulation of system (8.48): by integrating over
a general control volume V, the expression of the system is:∫

V

∂W
∂t

dV +
∫
V

(
∂

∂x
F1(W) + ∂

∂y
F2(W)

)
dV =

∫
V

S(W)dV (8.49)

Using the divergence theorem it is possible to reformulate (8.49) as follows:∫
V

∂W
∂t

dV +
∫
S

(nxF1(W) + nyF2(W)) dS =
∫
V

S(W)dV (8.50)
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where, similarly as for the previously physical models for cavitating flows
described in Chap.2, S is the surface of the control volume V and n =
(nx, ny)T is the unit vector normal to the surface pointing externally with
respect to V. Let us consider the Jacobian matrix of nxF1(W) + nyF2(W):
the rotational invariance property introduced in Sec. 5.3 holds true also for
this system of equations. Thus, in order to study the mathematical properties
of system (8.50), it is possible to assume that n is coincident with the x axis
and, as a consequence, the mathematical properties of the system can be
derived by only considering for instance F1(W). The Jacobian matrix of
F1(W) can be expressed as follows:

∂F1(W)
∂W =


0 1 0 0

c2 − u2 2u 0 0
−uv v u 0

−ud2 − vd3 d2 d3 0

 (8.51)

where d2 and d3 are defined as:

d2
.= ξ

Ag
(
3u2 + v2)
h

= ξ
∂Q1
∂hu

, d3
.= ξ

2Aguv
h

= ξ
∂Q1
∂hv

(8.52)

As for the 1D case, the Jacobian matrix of the sediment transport physical
model is singular since its eigenvalues are:

λ1 = u− c, λ2 = 0, λ3 = u+ c λ4 = u (8.53)

As a consequence, even for the 2D case different alternative formulations
of system (8.46) are considered. More precisely, following the 1D, three
different models are presented: an approach based on a non-singular matrix,
a non-conservative one and a homogeneous formulation based on physical
variables. These models will be used in the construction of the different
numerical schemes presented in Chap. 9.
8.3.1 A 2D formulation with non singular Jacobian
Similarly to the 1D case, by using the product rule (8.19), the system (8.46)
can be recast in the following form:

∂W
∂t

+ ∂F̃1(W)
∂x

+ ∂F̃2(W)
∂y

= S̃(W) (8.54)
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where W is unchanged with respect to (8.48) and

F̃1(W) =
(

hu, hu2 + 1
2gh

2 + ghZ, huv, ξQ1

)T
F̃2(W) =

(
hv, hvu, hv2 + 1

2gh
2 + ghZ, ξQ2

)T
S̃(W) =

(
0, gZ

∂h

∂x
, gZ

∂h

∂y
, 0

)T
(8.55)

Using this formulation, the Jacobian matrix of F̃1(W) is:

∂F̃1(W)
∂W =


0 1 0 0

c2 − u2 + gZ 2u 0 c2

−uv v u 0
−ud2 − vd3 d2 d3 0

 (8.56)

After some algebraic manipulation, the matrix of the right eigenvectors of
the Jacobian (8.56) can be computed as:

R̃ =


1 1 1 0
λ̃1 λ̃2 λ̃3 0
v v v 1

β̃2
1 − c2 − gZ

c2
β̃2

2 − c2 − gZ
c2

β̃2
3 − c2 − gZ

c2
2Agv
h

 (8.57)

where β̃i = λ̃i−u and λ̃i are the eigenvalues of (8.56). The fourth eigenvalue
λ̃4 is:

λ̃4 = u (8.58)

while the other eigenvalues are the solutions of the third order polynomial:

λ̃3 − 2uλ̃2 +
(
u2 − g (h+ Z + hd2)

)
λ̃+ ghud2 = 0 (8.59)

which can be expressed as:

λ̃1 = 2
√
−L̃ cos

(
θ̃

3

)
+2

3u

λ̃2 = 2
√
−L̃ cos

(
θ̃ + 2π

3

)
+2

3u

λ̃3 = 2
√
−L̃ cos

(
θ̃ + 4π

3

)
+2

3u

where



M̃ = u

54
(
9g (2h− hd2 + 2Z)

− 2u2
)

L̃ = −
(
u2 + 3g (h+ hd2 + Z)

)
9

cos θ̃ = M̃√
−L̃3

(8.60)
Equations (8.59) and (8.57) show an important feature of system (8.54)-

(8.55). For the case of cavitating flows, multidimensional problems were
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equivalent to 1D problems with a suitable number of passive scalar equations.
For sediment transport problems, even with the simple Grass model, this is
not true in general. Due to the formulation of Q1 in (8.45), the equation for
hv is not decoupled from the other equations. This is clearly shown in (8.57)
where the eigenvector associated to λ̃4 = u is not in general an element of
the canonical basis (i.e. it is not (0, 0, 1, 0)T ) as for the case of passive scalar
equations. Note also that despite their formal analogy, even the polynomial
(8.59) and (8.24) are different since d2 6= d. These differences between the
1D and 2D physical models clearly add to the difficulty of the problem.
8.3.2 A 2D non conservative formulation
Alternatively, following the work in [26, 28], it is possible to recast system
(8.46) as a non-conservative system in the form:

∂Ŵ
∂t

+ ∂F̂1(Ŵ)
∂x

+ ∂F̂2(Ŵ)
∂y

= B̂1(Ŵ)∂Ŵ
∂x

+ B̂2(Ŵ)∂Ŵ
∂y

(8.61)

where
Ŵ = ( h, hu, hv, H )T

F̂1(Ŵ) = ( hu, hu2 + 1
2gh

2, huv, −ξQ1 )T

F̂2(Ŵ) = ( hv, hvu, hv2 + 1
2gh

2, −ξQ2 )T
(8.62)

and

B̂1(Ŵ) =


0 0 0 0
0 0 0 gh
0 0 0 0
0 0 0 0

 B̂2(Ŵ) =


0 0 0 0
0 0 0 0
0 0 0 gh
0 0 0 0

 (8.63)

Similarly to the 1D case, system (8.61)-(8.62) can be recast in the following
form:

∂Ŵ
∂t

+ Â1(Ŵ)∂Ŵ
∂x

+ Â2(Ŵ)∂Ŵ
∂y

= 0 (8.64)

where
Âk(Ŵ) = ∂F̂k(Ŵ)

∂Ŵ
− B̂k(Ŵ) k = 1, 2 (8.65)

Note that the matrices Âk are the sum of a conservative term, the Jacobian
of F̂k(Ŵ), and a non conservative one, B̂k(Ŵ), which takes into account the
spatial variation of the bed.
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As for the previous cases, it is sufficient to restrict our attention to the
matrix Â1 whose expression is as follows:

Â1 =


0 1 0 0

c2 − u2 2u 0 −c2

−uv v u 0
−ud̂2 − vd̂3 d̂2 d̂3 0

 (8.66)

where

d̂2
.= −ξAg

(
3u2 + v2)
h

= −ξ ∂Q1
∂hu

, d̂3
.= −ξ 2Aguv

h
= −ξ ∂Q1

∂hv
(8.67)

The right eigenvector matrix R̂ of Â1(Ŵ) can be computed as:

R̂ =


1 1 1 −2ξAgv
λ̂1 λ̂2 λ̂3 −2ξAguv
v v v 1− 2ξAgv2

1− β̂2
1
c2 1− β̂2

2
c2 1− β̂2

3
c2 −2ξAgv

 (8.68)

where β̂i = λ̂i − u and λ̂i are the eigenvalues of Â1. The fourth eigenvalue
λ̂4 is:

λ̂4 = u (8.69)

while the remaining eigenvalues are the solution of:

λ̂3 − 2uλ̂2 +
(
u2 − gh

(
1− d̂2

))
λ̂− ghud̂2 = 0 (8.70)

which can be expressed as:

λ̂1 = 2
√
−L̂ cos

(
θ̂

3

)
+2

3u

λ̂2 = 2
√
−L̂ cos

(
θ̂ + 2π

3

)
+2

3u

λ̂3 = 2
√
−L̂ cos

(
θ̂ + 4π

3

)
+2

3u

where



M̂ = u

54
(
9gh

(
2 + d̂2

)
− u2

)
L̂ = −1

9
(
u2 + 3gh

(
1− d̂2

))
cos θ̂ = M̂√

−L̂3

(8.71)
Again note that despite the formal analogy of (8.70) and (8.34), the two
polynomials differs since d̂2 6= d̂.
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8.3.3 2D physical-variable based formulation
Finally, a formulation based on the physical variables h, u, v, Z is presented.
The aforementioned formulation is based on the approach described in [5].
Considering a generic control volume V and the normal vector n to the ex-
ternal surface S of V, system (8.46) can be recast in the following differential
form [5]: 

∂h

∂t
+ ∂huη

∂η
= 0

∂huη
∂t

+ ∂

∂η

(
hu2

η + 1
2gh

2
)

= −gh∂Z
∂η

∂huτ
∂t

+ ∂ (huηuτ )
∂η

= 0

∂Z

∂t
+ ∂

∂η

(
ξAguη

(
u2
η + u2

τ

))
= 0

(8.72)

where uη and uτ are, respectively, the normal and tangential components of
the velocity, i.e.: {

uη = nxu+ nyv

uτ = −nyu+ nxv
(8.73)

Note in particular that when n is coincident with the x axis, the Jacobian
of (8.72) is coincident with Â1 in (8.66) (taking into account the change of
variables from Z to H). System (8.72) can be reformulated by using the
physical variables as follows:

∂h

∂t
+ uη

∂h

∂η
+ h

∂uη
∂η

= 0

∂uη
∂t

+ uη
∂uη
∂η

+ g
∂h

∂η
+ g

∂Z

∂η
= 0

∂uτ
∂t

+ uη
∂uτ
∂η

= 0

∂Z

∂t
+ dη

∂uη
∂η

+ dτ
∂uτ
∂η

= 0

where

 dη
.=ξAg

(
3u2

η + u2
τ

)
dτ

.=ξ2Aguηuτ

(8.74)
or, in vector form, as:

∂U
∂t

+ Aη (U) ∂U
∂η

= 0 (8.75)

with

U =


h
uη
uτ
Z

 , Aη =


uη h 0 0
g uη 0 g
0 0 uη 0
0 dη dτ 0

 (8.76)
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Similarly to the previously described case, the eigenvalues and eigenvectors
of matrix Aη can computed as follows:

Ř =


1 1 1 0
β̌1 β̌2 β̌3 0
0 0 0 1

β̌2
1 − c2

c2
β̌2

2 − c2

c2
β̌2

3 − c2

c2 2ξAguτ

 (8.77)

where
β̌i = λ̌i − uη (8.78)

The fourth eigenvalue is found to be:

λ̌4 = uη (8.79)

while the other ones are the solution of the third order polynomial:

λ̌3 − 2uλ̌2 +
(
u2 − g (h+ dη)

)
λ̌+ gudη = 0 (8.80)

which, provided h > 0, and can be expressed as:

λ̌1 = 2
√
−Ľ cos

(
θ̌

3

)
+2

3u

λ̌2 = 2
√
−Ľ cos

(
θ̌ + 2π

3

)
+2

3u

λ̌3 = 2
√
−Ľ cos

(
θ̌ + 4π

3

)
+2

3u

where



M̌ = u

54
(
9g (2h− d)− 2u2

)
Ľ = −1

9
(
u2 + 3g (h+ d)

)
cos θ̌ = M̌√

−Ľ3

(8.81)





Chapter 9
Numerical Methods for Sediment Transport

Problems

In this chapter a finite-volume discretization of the physical models presented
in Chap. 8 is described. Two different explicit numerical schemes, namely the
SRNH scheme and the Modified Roe one (MR in the following) are consid-
ered. The explicit SRNH scheme is a predictor -corrector method developed
by Benkhaldoun et al. in a series of paper [5–9, 96]. Conversely the MR ex-
plicit scheme, which has been developed by Castro et al. (see e.g. [26–29,83]),
is a Roe scheme modified in order to deal with non conservative systems of
equations.

In this work the implicit counterpart of the aforementioned explicit nu-
merical schemes is proposed. In particular the implicit numerical schemes
are generated through the use of the automatic differentiation tool TAPE-
NADE [59]. This chapter is organised as follows: first some general definitions
for the considered finite-volume discretization are provided in Sec. 9.1. Then,
the numerical formulation of the explicit numerical methods is presented in
Sec. 9.2. Finally, at the end of this chapter the generation of the implicit
schemes starting from their explicit counterpart is addressed in Sec. 9.3. As
previously stated, for sediment transport problems the 2D case cannot be
reformulated as a suitable 1D system including a passive scalar equation.
Thus, in this chapter the 2D numerical discretization of the aforementioned
numerical schemes is described, skipping the 1D case. However, once the 2D
numerical methods are defined, the 1D formulations can easily be recovered
by simply setting to zero the velocity component along the y-axis and all the
derivatives in the y direction.
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9.1 General definitions for the considered finite-volume
formulation

The considered space discretization is based on a finite-volume approach.
At a preliminary stage, the considered 2D computational domain V ∈ R2 is
approximated by means of a polygonal domain Vpol which, in turn, is divided
into Nt triangles having vertexes Pi, with i ∈ I := {1, . . . , Nc}. Let Th, with
h ∈ H := {1, . . . , Nt}, denotes the hth-triangle: the ith finite-volume cell Vi,
associated with Pi, is given by:

Vi =
⋃

h∈t(i)
V

(h)
i

where:

- t(i) is the set of indexes marking those triangles which share Pi as a
vertex;

- V (h)
r represents the subset of Th which is defined by further dividing
Th into six sub-triangles by means of its medians and subsequently
considering those two sub-triangles which share Pr as a vertex.

Clearly, this finite-volume discretisation is the 2D counterpart of the 3D case
described in Chap. 5.

The following notation is considered: given a finite volume Vi, |Vi| is its
area and Gi is its centre of mass. N(i) is the set of indexes correspond-
ing to the neighbouring cells of the ith-cell, Bi = N(i) ∪ {i}. Furthermore
Bi =

⋃
j∈Bi

Bj is the set of indexes marking the ith-cell, its neighbours and the

neighbours of the neighbours.
Γij,1 and Γij,2 are the two segments of the common interface between cell

Vi and Vj while |Γij,1| and |Γij,2| are their length (see figure 9.1). The normal
unit vector to Γij,1 is nij,1 = (nx,ij,1, ny,ij,1) and a similar definition holds for
nij,2. The average normal vector for the interface between the ith and jth-cell
is defined as follows:

|Γij |nij = |Γij,1|nij,1 + |Γij,2|nij,2

where nij is the normal unit vector and |Γij | is the interface length. Finally
Wn

i is the average value of the solution W in the ith cell at time tn:

Wn
i '

1
|Vi|

∫
Vi

W(x, tn)dV (9.1)
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V
i

V
j

Γ
ij,1

Γ
ij,2

Figure 9.1: Generation of the dual Mesh.

9.2 Explicit time advancing
In this section the explicit formulations of the SNRH and MR numerical
schemes are presented. For both numerical methods first the 1st-order for-
mulation is described then the 2nd-order extensions are discussed. The main
features of the schemes are briefly outlined without any proof. For additional
details we refer to the references in the bibliography (see i.e. [5–8]).
9.2.1 SRNH Numerical Method
The SRNH numerical scheme is a numerical method developed and tested
in several papers, see [6, 8] among others. Note that the 2D formulation
presented in this work is slightly different from the original formulation in [8]:
in the original paper the spatial discretization for the system of equations of
the sediment transport problem is based on the formulation (8.47)-(8.48). In
this study we considered the same numerical method based on a different
form of the system of equations, namely (8.54)-(8.55), i.e. the formulation
which avoids the presence of the singularity in the Jacobian matrix. This
approach has been developed and tested in the 1D case in [9] but, at least in
the author knowledge, the 2D extension has never been studied. Integrating
(8.54) over a control volume Vi the resulting system of equations is:

∂Wi

∂t
= − 1
|Vi|

∑
j∈N(i)

∫
Γij

F̃(W,n)dσ + 1
|Vi|

∫
Vi

S̃(W)dV (9.2)

where
F̃(W,n) .= nxF̃1(W) + nyF̃2(W) (9.3)
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To discretize (9.2) it is necessary to define a numerical approximation for
the flux function F̃ as well as for the source term S̃. The SRNH scheme [8]
is composed by a predictor and a corrector stage: in the predictor stage an
averaged state Wn

ij is computed, then this predicted state is used in the
corrector stage to update the solution. In particular in the SRNH scheme
the flux at the interface Γij is approximated by the analytical flux function
computed using the predicted state Wn

ij :∫
Γij

F̃(W,n, tn)dσ ' F̃(Wn
ij ,nij)|Γij | (9.4)

The predictor stage
The first step is based on primitive variables and, in particular, on the homo-
geneous formulation (8.75)-(8.76). Let us introduce the function U (UL,UR)
which, given two generic states UL and UR, returns a Roe averaged state as
follows:

U (UL,UR) =


hLR
uη,LR
uτ,LR
ZLR

 where



hLR = hL + hR
2

uη,LR = uη,L
√
hL + uη,R

√
hR√

hL +
√
hR

uτ,LR = uτ,L
√
hL + uτ,R

√
hR√

hL +
√
hR

ZLR = ZL + ZR
2

(9.5)
Furthermore, let us define the sign matrix sgn [Aη(U)] as

sgn [Aη(U)] = Ř(U)Λsgn(U)Ř−1(U) (9.6)

where the elements of the diagonal matrix Λsgn(U) are the sign function of
the eigenvalues of Aη(U) and R(U) is the corresponding right-eigenvector
matrix defined in (8.77). With these definitions, the predictor step of the
SRNH scheme is computed as follows:

Un
ij = 1

2
(
Un
i + Un

j

)
− 1

2sgn
[
Aη(U

n
ij)
] (

Un
j −Un

i

)
(9.7)

where Un
ij = U

(
Un
i ,Un

j

)
. Once Un

ij is available, the state Wn
ij appearing in

(9.4) is simply Un
ij expressed in conservative variables, that is:

Wn
ij =

(
hnij , h

n
ij

(
nx,iju

n
η,ij − ny,ijunτ,ij

)
, hnij

(
ny,iju

n
η,ij + nx,iju

n
τ,ij

)
, Znij

)T
(9.8)
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The source term
Finally, in order to complete the spatial discretization of (9.2), it is necessary
to define an approximation of the source term such that:

1
|Vi|

∫
Vi

S̃(W, tn)dV ' S̃ni (9.9)

In [8], starting from the system (8.47)-(8.48) the discretization of the source
term is defined so that the resulting numerical scheme is well-balanced and
satisfy the C-property [10]. In the same spirit, let us define Zx,i and Zy,i as
follows:

Zx,i = 1
2

∑
j∈N(i)

(Zij)2 nx,ij |Γij |∑
j∈N(i)

Zijnx,ij |Γij |
, Zy,i = 1

2

∑
j∈N(i)

(Zij)2 ny,ij |Γij |∑
j∈N(i)

Zijny,ij |Γij |
(9.10)

Applying the same approach of [8] to the system (8.54)-(8.55) and, in partic-
ular by exchanging the roles of h and Z in the proof in the aforementioned
work, the following discretization of the source term defines a well-balanced
scheme:

S̃ni = S̃i
(
{Wn

ij}j∈N(i)
)

where

S̃i
(
{Wij}j∈N(i)

)
=

0, gZx,i
∑

j∈N(i)
hijnx,ij |Γij |,

gZy,i
∑

j∈N(i)
hijny,ij |Γij |, 0

T (9.11)

The complete discrete formulation
Once a numerical discretization for the flux function and the source term is
defined, the following semi-discrete form of the system (9.2) is obtained by
injecting (9.4) and (9.9) in (9.2):

∂Wi

∂t
= RHS1

(
{Wn

j }j∈Bi

)
(9.12)

where

RHS1
(
{Wn

j }j∈Bi

)
= − 1
|Vi|

∑
j∈N(i)

F̃(Wn
ij ,nij)|Γij |+ S̃ni (9.13)
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and Wn
ij and S̃ni are defined by (9.8) and (9.11), respectively. Concerning

the time discretization, an explicit first-order Euler scheme is considered as
in [8]. Thus, the resulting numerical scheme can be expressed as:

Wn+1
i = Wn

i + ∆tnRHS1
(
{Wn

j }j∈Bi

)
(9.14)

Second order extension
The extension to second-order accuracy in space can be achieved by using
a classical MUSCL technique [115], in which the flux function is computed
by using the extrapolated variable values at the cell interface. First, at each
interface Γij , the extrapolated values of the variables are computed:

Wn,−
ij = Wn

i + 1
2∇Wi ·dij , Wn,+

ij = Wn
j −

1
2∇Wj ·dij (9.15)

where dij is the vector joining the node i and the node j and ∇Wi is an
approximation of the cell gradient. More specifically, the 2D counterpart of
the approach described in Sec. 5.4 is used.
First, a linear approximation of the gradient in each triangle Tj is considered.
Defining tn(j, k), k = 1, 2, 3 the indexes of the nodes belonging to the triangle
Tj , this linear approximation is given by:

∇W|Tj
=

3∑
k=1

Wtn(j,k)∇µkj (9.16)

where µkj is the barycentric coordinates associated with the kth-vertex. Then
a “centred” approximation of the gradient in the ith cell is introduced as
follows:

∇Wc
i '

∑
j∈t(i)

|Tj |∇W|Tj∑
j∈t(i)

|Tj |
(9.17)

where |Ti| is the area of the ith tetrahedron. Once ∇Wc
i is available the

terms ∇Wi ·dij and ∇Wj ·dij in (9.15) are computed as follows:{
∇Wi ·dij = minmod{Wj −Wi, 2∇Wc

i ·dij − (Wj −Wi)}
∇Wj ·dij = minmod{Wj −Wi, 2∇Wc

j ·dij − (Wj −Wi)}
(9.18)

where minmod{a, b} is defined in (5.32).
The 2nd-order accuracy in space is then achieved by computing the flux func-
tion and the source term using the extrapolated values (9.15), in analogy with
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the first-order scheme:

Un,±
ij = 1

2
(
Un,−
ij + Un,+

ij

)
−1

2sgn
[
Aη(U

n,±
ij )

] (
Un,+
ij −Un,−

ij

)
RHS2

(
{Wn

j }j∈Bi

)
= − 1

|Vi|
∑

j∈N(i)
F̃(Wn,±

ij ,nij)|Γij |+ S̃n,±i

(9.19)

where S̃n,±i = S̃i
(
{Wn,±

ij }j∈N(i)
)

is the source term computed using the

extrapolated states (9.15) and Un,±
ij = U

(
Un,−
ij ,Un,+

ij

)
is the predicted state

computed using the reconstructed states expressed in physical variables Un,−
ij

and Un,+
ij .

It is worth notice the difference between the equations in (9.19) and (9.13).
The set of indexes j from which the solution Wi is dependent (the stencil)
is larger for the 2nd-order accurate flux function than for the first-order one.
This is a well known feature of a second-order scheme with MUSCL recon-
struction and in section 9.3 we discuss its consequences for the second-order
implicit scheme. Using (9.19), the semi-discrete form of (9.2) becomes

∂Wi

∂t
= RHS2

(
{Wn

j }j∈Bi

)
(9.20)

Finally, the second-order accuracy in time can be achieved through a two-step
Runge-Kutta scheme for time advancing:

Wn+1/2
i = Wn

i + ∆tnRHS2
(
{Wn

j }j∈Bi

)
Wn+1

i = Wn+1/2
i + Wn

i

2 + 1
2∆tnRHS2

(
{Wn+1/2

j }j∈Bi

) (9.21)

9.2.2 Modified Roe Numerical Method
The following numerical method has been proposed by Castro et al. in a series
of papers [26–28]. The Modified Roe scheme is based on the non conservative
formulation (8.64) which, for the sake of clarity is recalled here:

∂Ŵ
∂t

+ Â1(Ŵ)∂Ŵ
∂x

+ Â2(Ŵ)∂Ŵ
∂y

= 0 (9.22)

where Âk(k = 1, 2) are defined by (8.65).
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A Roe-like numerical flux function
The MR numerical scheme is based on a Roe-like numerical flux function.
First of all, let us introduce the Roe averages required for the definition of
the MR scheme. Given two generic states ŴL and ŴR, it is possible to
define the following Roe averages:

ĥLR = ĥL + ĥR
2

ûLR =
ûL

√
ĥL + ûR

√
ĥR√

ĥL +
√
ĥR

v̂LR =
v̂L

√
ĥL + v̂R

√
ĥR√

ĥL +
√
ĥR

and



ĉLR =
√
gĥLR

û2
LR =

û2
L

√
ĥR + û2

R

√
ĥL√

ĥL +
√
ĥR

v̂2
LR =

v̂2
L

√
ĥR + v̂2

R

√
ĥL√

ĥL +
√
ĥR

(9.23)

Notice that û2
LR is not the square of ûLR and, thus, û2

LR 6= û2
LR.

Using (9.23), in [28] a Roe-like matrix Â
(
ŴL,ŴR, nLR

)
is defined as

follows:
Â
(
ŴL,ŴR, nLR

)
= nx,LRÂ1,LR + ny,LRÂ2,LR (9.24)

in which Â1,LR is a Roe-like matrix derived from Â1 given by the following
expression:

Â1,LR =


0 1 0 0

ĉ2
LR − û2

LR 2ûLR 0 −ĉ2
LR

−ûLRv̂LR v̂LR ûLR 0

−ûLR f̂1,LR − v̂LR ĝ1,LR f̂1,LR ĝ1,LR 0

 (9.25)

with 
f̂1,LR

.= −ξAg
û2
L + ûLûR + û2

R + v̂2
LR√

ĥL

√
ĥR

ĝ1,LR
.= −ξAg

ûLR (v̂R + v̂L)√
ĥL

√
ĥR

(9.26)

Similarly, the definition of Â2,LR is as follows:

Â2,LR =


0 0 1 0

−ûLRv̂LR v̂LR ûLR 0
ĉ2
LR − v̂2

LR 0 2v̂LR −ĉ2
LR

−ûLR f̂2,LR − v̂LR ĝ2,LR f̂2,LR ĝ2,LR 0

 (9.27)
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where 

f̂2,LR
.= −ξAg

v̂LR (ûR + ûL)√
ĥL

√
ĥR

ĝ2,LR
.= −ξAg

v̂2
L + v̂Lv̂R + v̂2

R + û2
LR√

ĥL

√
ĥR

(9.28)

Finally, let us introduce F̂n and
∣∣∣Â∣∣∣ as follows:

F̂n(Ŵ) .= nxF̂1(Ŵ) + nyF̂2(Ŵ) (9.29)

and ∣∣∣Â∣∣∣ = R̂ |Λ| R̂−1 (9.30)

where |Λ| is the diagonal matrix whose elements are the absolute values of
the eigenvalues of Â.

By using the definitions (9.23)-(9.30), in [26, 28] the following Roe-like
numerical flux function F̂(Ŵn

j ,Ŵn
i ,nij) is introduced:

F̂(Ŵn
i ,Ŵn

j ,nij) = 1
2
(
F̂nij (Ŵi) + F̂nij (Ŵj)

)
− 1

2 |Â|(Ŵ
n
j ,Ŵn

i ,nij)
(
Ŵn

j − Ŵn
i

)
(9.31)

The complete discrete formulation

Once the Roe-like numerical flux function F̂ is introduced, in [28] a Roe-type
scheme for the non conservative system (9.22) is derived. In the particular
the semi-discrete formulation of the aforementioned system is:

∂Ŵn
i

∂t
= R̂HS1

(
{Ŵn

j }j∈Bi

)
(9.32)

where

R̂HS1
(
{Ŵn

j }j∈Bi

)
= − 1
|Vi|

∑
j∈N(i)

|Γij |
(
F̂(Ŵn

i ,Ŵn
j ,nij)

−1
2B̂ij

(
Ŵn

j − Ŵn
i

))
(9.33)

and B̂ij = B̂
(
Ŵi,Ŵj , nij

)
is defined as follows:

B̂ij =


0 0 0 0
0 0 0 gĥijnx,ij
0 0 0 gĥijny,ij
0 0 0 0

 (9.34)
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Finally, to obtain an explicit scheme first order accurate in time, the time-
discretization of the scheme can be carried out using an explicit Euler scheme
so that the resulting numerical method is:

Wn+1
i = Wn

i + ∆tnR̂HS1
(
{Wn

j }j∈Bi

)
(9.35)

Second-order extension
The formulation of the second-order Modified Roe scheme follows a different
approach from the one of the SRNH scheme. First, a reconstruction operator
Pi(x) is defined at each cell. This reconstruction operator depends on the
values of the solution in the cell Vi and in its neighbouring cells, that is:

Pi(x) = Pi(x, {Ŵj}j∈Bi) (9.36)

Note that, for the sake of simplicity, the specific formulation of the reconstruc-
tion operator used in this work will be defined in the next (see (9.43)-(9.48)).
Nevertheless, once (9.36) is defined, it is possible to extend the Modified Roe
scheme to the second-order accuracy. The semi-discrete formulation of (9.22)
is then defined as:

∂Ŵ
∂t

=− 1
|Vi|

∑
j∈N(i)

∫
Γij

(
F̂
(
Ŵ−

ij(σ),Ŵ+
ij(σ),nij

)
−1

2B̂ij(σ)
(
Ŵ+

ij(σ)− Ŵ−
ij(σ)

))
dσ

− 1
|Vi|

∫
Vi

(
B̂1(Pi(x))∂Pi

∂x
(x) + B̂2(Pi(x))∂Pi

∂y
(x)
)

dV

(9.37)

where σ is a point of the interface Γij , Ŵ−
ij(σ) = Pi(σ) and Ŵ+

ij(σ) = Pj(σ).
Even if it does not clearly appear, the right-hand-side of (9.37) is time-
dependent. Indeed, due to (9.36), Pi(x) is a function of the space but also
of the solution W(x, t). Let us remark a key difference between the SRNH
scheme and the Modified Roe one. In the SRNH scheme the second-order
extension is dependent only from the extrapolated values of the solution
at the cell interfaces. Conversely, in the Modified Roe scheme, due to the
non-conservative formulation, the second-order scheme is also function of the
extrapolated values of the solution in the interior of the cells.

The integrals in (9.37) are numerically approximated and, in order to
preserve the second-order spatial accuracy of the scheme the order of the
quadrature formula must be higher than that of the reconstruction operator.
In [28] it has been shown that the third-order formula for the line integrals
and the barycentre quadrature formula for the surface integrals satisfy both
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criteria. As a consequence it is possible to approximate the line integrals over
Γij as:∫

Γij

(
F̂
(
Ŵ−

ij(σ),Ŵ+
ij(σ),nij

)
− 1

2B̂ij(σ)
(
Ŵ+

ij(σ)− Ŵ−
ij(σ)

))
dσ =

2∑
l=1

∫
Γij,l

(
F̂
(
Ŵ−

ij(σ),Ŵ+
ij(σ),nij

)
− 1

2B̂ij(σ)
(
Ŵ+

ij(σ)− Ŵ−
ij(σ)

))
dσ '

2∑
l=1
|Γij,l|

2∑
m=1

wlm
(
F̂
(
Ŵ−

ij,lm,Ŵ
+
ij,lm,nij,l

)
− 1

2B̂ij,lm

(
Ŵ+

ij,lm − Ŵ−
ij,lm

))
(9.38)

where Ŵ−
ij,lm = Pi(σlm), Ŵ+

ij,lm = Pj(σlm) and wlm and σlm are respectively,
the weights and the points of the quadrature rule. For the normalised domain
of integration [−1, 1], the corresponding weights and points of the quadrature
rule, σ̄m and w̄m, respectively, are reported in Tab. 9.1. Thus, once σ̄m and
w̄m are available, σlm and wlm are simply obtained by applying the linear
transformation which takes [−1, 1] into Γij,l.

m 1 2
σ̄m −1/

√
3 1/

√
3

w̄m 1 1

Table 9.1: Weights and nodes of the quadrature rule for the normalised do-
main of integration [−1, 1].

Similarly, for the volume integral the barycentre quadrature formula reads
as follows:∫

Vi

(
B̂1(Pi(x))∂Pi

∂x
(x) + B̂2(Pi(x))∂Pi

∂y
(x)
)

dV '

|Vi|
(

B̂1(Pi(Gi))
∂Pi
∂x

(Gi) + B̂2(Pi(Gi))
∂Pi
∂y

(Gi)
)

(9.39)

where we recall that Gi is the centroid of the ith cell.
By injecting (9.38) and (9.39) in (9.37), the semi-discrete expression of

the second-order Modified Roe scheme is:

∂Ŵi

∂t
= R̂HS2

(
{Ŵj}j∈Bi

)
(9.40)
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where R̂HS2
(
{Ŵj}j∈Bi

)
is defined as follows:

R̂HS2
(
{Ŵj}j∈Bi

)
= B̂1(Pi(Gi))

∂Pi
∂x

(Gi) + B̂2(Pi(Gi))
∂Pi
∂y

(Gi)

− 1
|Vi|

∑
j∈N(i)

2∑
l=1
|Γij,l|

2∑
m=1

wlm
(
F̂
(
Ŵ−

ij,lm,Ŵ
+
ij,lm,nij,l

)
−1

2B̂ij,lm

(
Ŵ+

ij,lm − Ŵ−
ij,lm

))
(9.41)

Note that the dependency from j ∈ Bi in (9.40) results from the reconstruc-
tion operator and, more specifically, from Ŵ−

ij,lm and Ŵ+
ij,lm. To conclude,

in order to obtain an explicit scheme second-order accurate in time, the time
discretization can be carried out using a second-order TVD Runge-Kutta
method [55]. The final expression of the second order numerical scheme is:

Ŵn+1/2
i = Ŵn

i + ∆tnR̂HS2
(
{Ŵn

j }j∈Bi

)
Ŵn+1

i = Ŵn+1/2
i + Ŵn

i

2 + 1
2∆tnR̂HS2

(
{Ŵn+1/2

j }j∈Bi

) (9.42)

Gradient approximation The numerical scheme (9.42) is completely defined
once a suitable formulation for Pi is given. In particular in this work we
consider a MUSCL-like reconstruction operator which at time tn can be ex-
pressed as:

Pi(x, {Ŵn
j }j∈Bi) = Ŵn

i + ∇̂Ŵn
i (x−Gi) (9.43)

where ∇̂Ŵn
i is an approximation of the gradient in the ith-cell, possibly

taking into account flux-limiters. The same technique described in [28] is
considered for the computation of ∇̂Ŵn

i . First, a linear approximation of
the gradient in each triangle Tj is considered: defining tn(j, k), k = 1, 2, 3 the
indexes of the nodes belonging to the triangle Tj , this linear approximation
is given by:

∇̂Ŵ|Tj
=

3∑
k=1

Ŵtn(j,k)∇λkj (9.44)

where λkj is the barycentric coordinates associated with the kth-vertex. Once

∇̂Ŵ|Tj
is available, a first-order approximation of ∇̂Ŵi is the following:

∇̂Ŵc
i '

∑
j∈t(i)

|Tj |∇̂Ŵ|Tj∑
j∈t(i)

|Tj |
(9.45)
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The proof that (9.45) is a first-order approximation of the gradient of Ŵ for
regular solutions can be found in [28].

A common characteristic of high-order methods for hyperbolic systems
is to compute unphysical oscillations near discontinuities. A possible way to
prevent the generation of those oscillations can be to introduce slope limiters
in the reconstructor operator (9.43). More precisely, as in [28], the following
approximate gradient is defined through its lth-component:

∇̂Ŵi,l = ϕ̂i,l∇̂Ŵc
i,l (9.46)

where ϕ̂i,l is the slope limiter function associated with ∇̂Ŵc
i,l, defined as:

ϕ̂i,l = min
j∈N(i)

{max{0,min{rij,l, 1}}}

rij,l =



Ŵmax
i,l − Ŵi,l

Ŵ ∗ij,l − Ŵi,l

if Ŵ ∗ij,l − Ŵi,l > 0

Ŵmin
i,l − Ŵi,l

Ŵ ∗ij,l − Ŵi,l

if Ŵ ∗ij,l − Ŵi,l < 0

1 if Ŵ ∗ij,l

(9.47)

where
Ŵmin
i,l = min

j∈Bi

{Ŵi,l}, Ŵmax
i,l = max

j∈Bi

{Ŵi,l}

and
Ŵ ∗ij = Ŵij + ∇̂Ŵc

i (cij −Gi) (9.48)

cij being the middle point of the segment connecting the ith and jth nodes.

9.3 Implicit time advancing
In this section the issue of generating an implicit scheme, starting from its
explicit counterpart, is addressed. Initially only first-order numerical schemes
are considered, then the second-order extensions are discussed.
9.3.1 First-order schemes
Generally speaking, the implicit counterpart of a first order explicit Euler
method is obtained by considering the right-hand-side term as a function of
the solution at time n + 1 instead of n. Hence, a fully implicit first-order
version of the schemes in equations (9.14) and (9.35) can be obtained by
using the following backward Euler method: Wn+1

i −∆tnRHS1
(
{Wn+1

j }j∈Bi

)
= Wn

i

Ŵn+1
i −∆tnR̂HS1

(
{Ŵn+1

j }j∈Bi

)
= Ŵn

i

(9.49)
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However, from a practical point of view this would require the solution of a
large non-linear system of equations at each time step. As already pointed
out in Part. I, the computational cost for this operation is in general not af-
fordable in practical applications and, in general, significantly overcomes any
advantage that an implicit scheme could have with respect to its explicit coun-
terpart. A common technique to overcome this difficulty is to linearise the
numerical scheme, that is to find an approximation of RHS1

(
{Wn+1

j }j∈Bi

)
or R̂HS1

(
{Ŵn+1

j }j∈Bi

)
in the form:

RHS1
(
{Wn+1

j }j∈Bi

)
' RHS1

(
{Wn

j }j∈Bi

)
+
∑
j∈Bi

Dij∆nWj

R̂HS1
(
{Ŵn+1

j }j∈Bi

)
' R̂HS1

(
{Ŵn

j }j∈Bi

)
+
∑
j∈Bi

D̂ij∆nŴj

(9.50)

where ∆n( · ) = ( · )n+1 − ( · )n and Dij and D̂ij are matrices depending on
the solution in the ith and jth cells. Using this approximation, the following
linear system must be solved at each time step for the SRNH scheme:

∆nWi

∆tn −
∑
j∈Bi

Dij∆nWj = RHS1
(
{Wn

j }j∈Bi

)
(9.51)

and similarly for the Modified Roe scheme:

∆nŴi

∆tn −
∑
j∈Bi

D̂ij∆nŴj = R̂HS1
(
{Ŵn

j }j∈Bi

)
(9.52)

The implicit linearised scheme is completely defined once a suitable definition
for the matrices Dij is given. If the right hand side is differentiable, a common
choice is to use the Jacobian matrices, hence:

Dij '
∂RHS1 ({Wn

l }l∈Bi
)

∂Wn
j

D̂ij '
∂R̂HS1

(
{Ŵn

l }l∈Bi

)
∂Ŵn

j

(9.53)

Nevertheless, it is not always possible nor convenient to exactly compute the
Jacobian matrices. In fact, it is not unusual to have some lack of differen-
tiability of the numerical flux functions or in the source term. Furthermore
in the particular case of the SRNH scheme (9.14) the difficulty in using lin-
earization (9.53) is increased by the fact that the scheme is composed by a
predictor and a corrector stage. This problem has been solved herein through
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the use of the automatic differentiation software Tapenade [59]. The opera-
tional principle of an automatic differentiation software is as follows: given
the source code of a routine which computes the function y = F (x), the au-
tomatic differentiation software generates a new source code which compute
the analytical derivative of the original program. In practise, each time the
original program performs some operation, the differentiated program per-
forms additional operations dealing with the differential values. For example,
if the original program, at some time executes the following instruction on
variables a, b, c:

a = b · c (9.54)

then the differentiated program computes also the differentials da, db, dc of
these variable [59]:

da = db · c+ b · dc (9.55)

Through an automatic differentiation software it is possible to quickly im-
plement an implicit linearised scheme of the form (9.51) or (9.52), once a
routine which computes the explicit flux function is available. As a conse-
quence using an automatic differentiation tool, starting from a first-order
explicit method, it is possible to automatically compute the matrices Dij (or
D̂ij) and then implement the linearised implicit methods (9.51) and (9.52)
without additional modifications.
9.3.2 Second-order schemes
A second-order implicit scheme can be obtained from its explicit counterpart
by using the same approach as described for the first-order schemes in section
9.3.1. Therefore the second-order implicit SRNH scheme would be:

Wn+1/2
i −∆tnRHS2

(
{Wn+1/2

j }j∈Bi

)
= Wn

i

Wn+1
i − 1

2∆tnRHS2
(
{Wn+1

j }j∈Bi

)
= Wn+1/2

i + Wn
i

2

(9.56)

and similarly for the Modified Roe scheme:
Ŵn+1/2

i −∆tnR̂HS2
(
{Ŵn+1/2

j }j∈Bi

)
= Ŵn

i

Ŵn+1
i − 1

2∆tnR̂HS2
(
{Ŵn+1

j }j∈Bi

)
= Ŵn+1/2

i + Ŵn
i

2

(9.57)

The application of this method would require the solution of two non lin-
ear systems of equations at each time step, thus dramatically increasing the
computational costs with respect to the explicit version. An alternative ap-
proach, generally more efficient in terms of computational costs, is to use a
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second-order backward differentiation formula in time:
(1 + 2τ)Wn+1

i − (1 + τ)2Wn
i + τ2Wn−1

i

∆nt (1 + τ) − RHS2
(
{Wn+1

j }j∈Bi

)
= 0

(1 + 2τ)Ŵn+1
i − (1 + τ)2Ŵn

i + τ2Ŵn−1
i

∆nt (1 + τ) − R̂HS2
(
{Ŵn+1

j }j∈Bi

)
= 0

(9.58)

where τ = ∆nt

∆n−1t
.

Similarly to the first-order case, a linearization of RHS2
(
{Wn+1

j }j∈Bi

)
and R̂HS2

(
{Ŵn+1

j }j∈Bi

)
must be carried out in order to avoid the solution

of a nonlinear system at each time step. Clearly, the same approach as for
the first-order scheme could be considered, that is to find an approximation
of RHS2

(
{Wn+1

j }j∈Bi

)
in the form:



RHS2
(
{Wn+1

j }j∈Bi

)
' RHS2

(
{Wn

j }j∈Bi

)
+
∑
j∈Bi

D2,ij∆nWj

R̂HS2
(
{Ŵn+1

j }j∈Bi

)
' R̂HS2

(
{Ŵn

j }j∈Bi

)
+
∑
j∈Bi

D̂2,ij∆nŴj

(9.59)

However, as discussed in Part. I, the linearization for the second-order accu-
rate fluxes and the solution of the resulting linear system implies significant
computational costs and memory requirements. This is a consequence of the
more complex expression of second-order schemes with respect to their first-
order counterparts (compare (9.13) with (9.19) and (9.33) with (9.42) and,
in particular, of the larger stencil of the second order flux function (i. e.
considering an uniform triangular grid the set Bi contains 7 nodes while 19
nodes are in Bi). In order to reduce the computational costs, an alternative
approach is to use a defect-correction technique [81], as done in the first part
of the thesis (see Chap. 3). The defect-correction iterations write as:

W0 = Wn

Lsi∆sWi −
∑

j∈N(i)
Dsij∆sWj = Csi s = 0, · · · , r − 1

Wn+1 =Wr

(9.60)
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in which:

Lsi = (1 + 2τ)
∆nt (1 + τ) I −D

s
ii

Dsij = Dij ({Ws
l }l∈Bi

)

Csi = −
(

(1 + 2τ)Ws
i − (1 + τ)2Wn

i + τ2Wn−1
i

∆nt (1 + τ)

)
+ RHS2

(
{Ws

j }j∈Bi

)
(9.61)

Dij being the generic matrices of the approximation (9.50); r is typically
chosen equal to 2. Indeed, it can be shown [81, 103] that only one defect-
correction iteration is theoretically needed to reach a second-order accu-
racy, while few additional iterations (one or two) can improve the robust-
ness. An expression similar to (9.60)-(9.61), omitted for the sake of brevity,
can be derived for the Modified Roe scheme by simply considering Ŵ and
R̂HS2

(
{Ŵj}j∈Bi

)
instead of W and RHS2

(
{Wj}j∈Bi

)
.





Chapter 10
Numerical Simulations for 1D Sediment

Transport Problems

In this chapter a 1D numerical test-case is considered in order to compare the
different numerical approaches explicit or implicit, as well as 1st or 2nd-order
accurate, described in Chap. 9. The structure of this chapter is as follows:
first the set-up of the considered benchmark is described in Sec. 10.1, then
the numerical experiments corresponding to different speeds of interaction
between the flow and the bed are shown in Secs. 10.2-10.5.

10.1 1D numerical experiments
The proposed test-case corresponds to a standard problem already considered
in several papers (see e.g. [8, 26]). It is a sediment transport problem in a
channel of length l = 1000 m with a non constant bottom profile. The initial
bottom topography is given by a hump shape function, that is:

Z(0, x) =

 0.1 + sin2
((x− 300)π

200

)
if 300 ≤ x ≤ 500

0.1 elsewhere
h(0, x) = 10− Z(0, x)
u(0, x) = 10

h(0, x)

(10.1)

in which all the variables are in SI units.
Two different uniform grids are considered for the discretization of the

computational domain: a coarse grid, GR1, which is composed by 100 cells
and a refined one, GR2, composed by 250 cells. The results computed by first
and second-order schemes, both explicit and implicit, are compared in terms
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of accuracy and computational costs. Four sets of simulations have been car-
ried out, characterised by Ag equal to 0.001, 0.01, 0.1 and 1 respectively, Ag
being the free parameter in the Grass model (8.11). Each value of the param-
eter Ag corresponds to a specific speed of interaction between the flow and
the bedload and, as a consequence, to a specific time scale for the evolution
of the bottom topography. The first value corresponds to a weak interaction
between the flow and the bedload, the last to a strong one, while the other
values to intermediate conditions. Therefore, in order to observe significant
variations of the bed profile, the simulations corresponding to small values of
Ag are advanced in time for longer periods, as shown in table 10.1. Note, in

Ag 1 0.1 0.01 0.001
Simulation time 700 7000 50000 500000

Table 10.1: Final simulation time (seconds) for the considered values of Ag.

particular, that in the case of weak interaction between the bed and the flow
(Ag = 0.001) a stiff problem is obtained, since the characteristics time scales
for the evolution of the bed and of the flow are different. The CFL number
used in the following simulations is defined as follows:

CFL = λmax∆t
∆x where λmax = max

i,j,l
λlij (10.2)

and λlij is the lth-eigenvalue of the matrix Â
(
Ŵi,Ŵj , nij

)
in (9.24) or of

the matrix Aη(U
n
ij) in (9.7) for, respectively, the MR scheme and the SRNH

scheme. All the results and CPU times shown in the following are at the final
instant of each simulation. All the simulations have been carried out on a 3
GHz Intel Pentium 4 processor with 2Gb RAM.

10.2 Slow speed of interaction between bedload and
water flow

The first test-case is characterised by a slow speed of interaction between
the bedload and the water flow, corresponding to the case Ag = 0.001 in
Tab. 10.1. Figure 10.1 shows a comparison of the results obtained by means
of the explicit version of the SRNH scheme at CFL= 0.8 with those of the
implicit one at CFL= 1000, both for 1st and 2nd-order accuracy. Figure
10.2 shows the same comparison for the MR scheme. In both cases, there
is practically no difference between the solutions obtained with the implicit
and explicit version of the schemes, while the results obtained at 1st-order
of accuracy significantly differ from the 2nd-order ones. Also note that the
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results shown in figure 10.1 and 10.2 for the second-order implicit scheme
are obtained by using only one iteration of the Defect Correction method.
Furthermore, note the similarity between the solutions computed by the
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Figure 10.1: Bottom height results computed by the SRNH scheme and Ag =
10−3: comparison between explicit and implicit, 1st and 2nd-
order formulations.
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Figure 10.2: Bottom height results computed by the MR scheme and Ag =
10−3: comparison between explicit and implicit, 1st and 2nd-
order formulations.

SRNH and the MR schemes. As for the efficiency, both the SRNH and the
MR implicit scheme seem to be unconditionally stable: the CFL has been
increased up to 105 while obtaining stable solutions. However, the accuracy
of the results obviously decreases if the time step is too large. As it is shown
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in figures 10.3 and 10.4, in this case the quality of the results computed by
the implicit schemes is not significantly deteriorated up to a CFL number of
1000. Increasing the CFL above 1000 significantly reduces the accuracy of
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Figure 10.3: Bottom height obtained with the SRNH implicit scheme at dif-
ferent values of CFL, Ag = 10−3, 250 Cells.
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Figure 10.4: Bottom height obtained with the MR implicit scheme at different
values of CFL, Ag = 10−3, 250 Cells.

the implicit schemes and, in the specific case of the second-order scheme, can
introduce unphysical oscillations, as shown in figures 10.3 and 10.4. These
oscillations can be eliminated or at least largely reduced by increasing the
number of Defect Correction iterations, as shown in figure 10.5. Two Defect
Correction iterations not only eliminate the oscillations but they also increase
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Figure 10.5: Effect of the number of Defect Correction iterations on the re-
fined grid using a CFL value of 104: Ag = 10−3.

the accuracy of the numerical method and an additional iteration leads to a
further slight improvement. For all the simulations considered in this work,
no additional accuracy improvement was observed by considering a number
of Defect Correction larger than 3. For both the SRNH scheme and the MR
one, the results computed using 3 Defect Correction iterations and CFL=104

are equivalent, in terms of accuracy, to those computed using 1 DeC iteration
at CFL= 103.

MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

Explicit 1st order, CFL= 0.8 57.0s 355.6s 165.6s 1025s
Explicit 2nd order, CFL= 0.8 136.7s 852.2s 247.2s 1537s
Implicit 1st order, CFL= 103 0.3s 2.0s 0.4s 2.6s

Implicit 2nd order, CFL= 103, 1 DeC 0.3s 2.1s 0.5s 3.0s
Implicit 2nd order, CFL= 104, 3 DeC 0.1s 0.6s 0.1s 0.8s

Table 10.2: CPU time required (seconds), case Ag = 10−3.

As for the computational costs, table 10.2 shows that already at CFL=
1000 the gain in CPU time obtained with the implicit scheme is large, for
both the SRNH and MR schemes at both 1st and 2nd-order of accuracy. The
CPU gain obtained with the implicit scheme is significantly larger for 2nd-
order accuracy. Indeed, when the implicit formulation is used, there are not
significant differences, in terms of CPU time, between the 1st and 2nd-order
simulations. Instead in the explicit case an important computational cost
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increase is observed to reach 2nd-order accuracy: the second-order approach
is about 1.5 times more expensive than the first-order approach for the SRNH
scheme and about 2.4 times for the MR one. As a consequence, already at
CFL= 1000 using 1 DeC iteration the 2nd-order implicit approach is more
than 400 times faster than the explicit one, for both the MR and SRNH
schemes. The CPU gain of the 2nd-order implicit approach can be further
increased considering 3 DeC iterations and CFL= 104. However using more
than one DeC iteration increases the memory requirement of the numerical
method and the complexity of the algorithm. In the case of slow speed of
interaction the gain in CPU time using 1 DeC iteration is remarkable so the
use of 3 DeC iterations is probably not necessary. However in the following
it will be shown that there are conditions in which using 3 DeC iterations
can be useful.

Furthermore, comparing the two different numerical schemes, the numer-
ical formulation based on the modified Roe scheme seems to be more robust
than the SRNH one (see in particular the second-order results in Figs. 10.3-
10.5). Moreover the MR formulation is also less demanding from a compu-
tational point of view even if, as shown in Tab. 10.2, the differences between
the implicit formulations are reduced.

10.3 Slow/Intermediate speed of interaction between
bedload and water flow

The increase of the Ag value allows problems with faster speed of interaction
between the bedload and the water flow to be considered. A first intermediate
case has been performed by taking Ag = 10−2. Also in this case, the implicit
schemes seem to be unconditionally stable: the CFL has been increased up
to 104 and the simulations remained stable (with the aforementioned CFL
number only 6 iterations are required on the coarse grid to complete the
tests). Nevertheless, as shown in figures 10.6 and 10.7, the upper bound for
the CFL number of the 1st and 2nd-order implicit approaches is reduced of
one order of magnitude, with respect to the previous test-case, for both the
SRNH scheme and the MR one.

Figures 10.8 and 10.9 show a comparison of the results obtained by means
of the explicit versions of the SRNH and MR schemes at CFL= 0.8 with those
of the respective implicit versions at CFL= 100, both for 1st and 2nd-order
accuracy for the case Ag = 10−2. Considerations similar to the slow speed of
interaction case are still valid for this intermediate speed of interaction: there
is practically no difference between the solutions obtained with the implicit
and explicit schemes, while the results obtained at 1st-order of accuracy sig-
nificantly differ from the 2nd-order ones. Similarly to the case Ag = 10−3, an
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Figure 10.6: Bottom height obtained with the SRNH implicit scheme at dif-
ferent values of CFL, Ag = 10−2, 250 Cells.
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Figure 10.7: Bottom height obtained with the MR implicit scheme at different
values of CFL, Ag = 10−2, 250 Cells.

increase of the CFL number above those values can induce unphysical oscil-
lations in the solutions computed by the second-order implicit scheme: these
oscillations can be reduced with additional Defect Correction iterations, thus
increasing the accuracy. As in the weak interaction case, the results com-
puted using 1 Defect Correction iteration and CFL= 100 are equivalent to
the result using CFL= 1000 and 3 DeC iterations. As for computational
costs, table 10.3 shows that also when considering an intermediate speed of
interaction between the bedload and the water flow, in spite of the lower
upper bound on the CFL number, there is a gain in CPU time obtained
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Figure 10.8: Bottom height results computed by the SRNH scheme and Ag =
10−2: comparison between explicit and implicit, 1st and 2nd-
order formulations.
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Figure 10.9: Bottom height results computed by the MR scheme and Ag =
10−2: comparison between explicit and implicit, 1st and 2nd-
order formulations.

with the implicit scheme, both at 1st and 2nd-order of accuracy. Even if the
CPU time gain is not as large as the one in the previous case, the 2nd-order
implicit approach is still more than 40 times faster than the explicit one and
more than 100 hundred time faster when 3 DeC iterations and CFL= 1000
are considered.
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MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

Explicit 1st order, CFL= 0.8 5.8s 35.7s 16.7s 103.3s
Explicit 2nd order, CFL= 0.8 13.6s 85.6s 24.8s 153.7s
Implicit 1st order, CFL= 102 0.3s 2.0s 0.4s 2.6s

Implicit 2nd order, CFL= 102, 1 DeC 0.3s 2.1s 0.5s 3.0s
Implicit 2nd order, CFL= 103, 3 DeC 0.1s 0.6s 0.1s 0.8s

Table 10.3: CPU time required (seconds), case Ag = 10−2.

10.4 Intermediate/Fast speed of interaction between
bedload and water flow

This case corresponds to Ag = 10−1. The conclusions drawn for the previous
case hold also for this case: the results obtained through the SRNH and
the MR schemes are practically the same. The implicit schemes at CFL
= 10 and the explicit scheme at CFL=0.8 give similar results, as shown in
figures 10.10 and 10.11, and the implicit schemes seem to be unconditionally
stable. However, in order to prevent loss in accuracy, in this case a further
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Figure 10.10: Bottom height results computed by the SRNH scheme and
Ag = 10−1: comparison between explicit and implicit, 1st and
2nd-order formulations.

reduction of the maximum time step must be considered. Fig. 10.12 shows
that the upper limit for the CFL number must be set to 10 in this case.
Notwithstanding this lower limitation, the implicit scheme, both for SRNH
and the MR scheme, is still preferable in terms of CPU time, even if the gain
is reduced with respect to the previous cases, as shown in table 10.4. In this
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Figure 10.11: Bottom height results computed by the MR scheme and Ag =
10−1: comparison between explicit and implicit, 1st and 2nd-
order formulations.
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Figure 10.12: Bottom height obtained with the implicit scheme at different
values of CFL, Ag = 10−1, 250 Cells.

case the 2nd-order implicit approach with 1 DeC iteration is roughly 4 times
faster than its explicit counterpart. As a consequence, for this value of Ag
it could be interesting to use 3 DeC iterations with a consequent CPU time
gain of about 12 times for both the MR and SRNH schemes.



10.5 Fast speed of interaction 169

MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

Explicit 1st order, CFL= 0.8 0.8s 5.1s 2.4s 14.6s
Explicit 2nd order, CFL= 0.8 2.0s 12.1s 3.6s 21.8s
Implicit 1st order, CFL= 101 0.5s 2.9s 0.6s 3.7s

Implicit 2nd order, CFL= 101, 1 DeC 0.5s 3.0s 0.7s 4.2s
Implicit 2nd order, CFL= 102, 3 DeC 0.1s 0.9s 0.2s 1.1s

Table 10.4: CPU time required (seconds), case Ag = 10−1.

10.5 Fast speed of interaction between bedload and
water flow

The fast speed of interaction case, Ag = 1 is considered in this section.
Figures 10.13 and 10.14 show a comparison of the results obtained by means
of the explicit versions of the SRNH and MR schemes at CFL= 0.8 with those
of the implicit versions at CFL= 1, both for 1st and 2nd-order accuracy. As for
the previous case there is no difference between the solutions obtained with
the implicit and explicit schemes. In this case of fast interaction between
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Figure 10.13: Bottom height results computed by the SRNH scheme and
Ag = 10−0: comparison between explicit and implicit, 1st and
2nd-order formulations.

bedload and water flow, the quality of the results for the implicit schemes
imposes a maximum CFL number equal to 1, although the implicit schemes
seem again to be unconditionally stable. As a consequence, as it is shown in
table 10.5, in this test case the computational cost of the first-order implicit
approach is larger than for the explicit one. Also the 2nd-order implicit
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Figure 10.14: Bottom height results computed by the MR scheme and Ag =
10−0: comparison between explicit and implicit, 1st and 2nd-
order formulations.

method with 1 DeC iteration is more expensive than its explicit counterpart.
Nevertheless, as previously pointed out, if 3 DeC iterations are considered,

MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

Explicit 1st order, CFL= 0.8 0.1s 0.6s 0.3s 1.8s
Explicit 2nd order, CFL= 0.8 0.2s 1.4s 0.4s 2.6s
Implicit 1st order, CFL= 100 0.6s 3.6s 0.7s 4.4s

Implicit 2nd order, CFL= 100, 1 DeC 0.6s 3.6s 0.8s 5.2s
Implicit 2nd order, CFL= 101, 3 DeC 0.2s 1.0s 0.2s 1.3s

Table 10.5: CPU time required (seconds), case Ag = 1.

the second-order implicit schemes compute accurate results also for larger
CFL values, namely CFL=10 for this case. Thus, by using 3 DeC iterations,
it is possible to obtain a second-order implicit approach more efficient than
the explicit one also for the case Ag = 1. The only case in which the implicit
approach seems to be more efficient than the explicit scheme seems to be the
second-order method with 3 DeC iterations. For this speed of interaction the
use of multiple DeC iterations seems to be mandatory. However, since the
CPU time needed for the entire simulation is very small, to really quantify
the gain for this case, more demanding cases are required.

Summarising, for the considered 1D case, the implicit time advancing
seems to be unconditionally stable in all the considered cases, the CFL limi-
tation to avoid loss of accuracy is roughly inversely proportional to Ag and,
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in presence of unphysical oscillations, increasing the number of Defect Cor-
rection iterations can significantly increase the accuracy. The implicit time
advancing is computationally efficient even using only one DeC iteration for
slow and intermediate speeds of interaction. For fast speed of interaction 3
DeC iterations are required, as shown in Figs. 10.15 and 10.16.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

A
g

T
im

p
/T

e
x
p

 

 

SNRH GR1
SNRH GR2
MR GR1
MR GR2

Figure 10.15: Ratio between the implicit computational time and the explicit
one as a function of Ag for the first-order approaches.
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Figure 10.16: Ratio between the implicit computational time and the explicit
one as a function of Ag for the second-order approaches.





Chapter 11
Numerical Simulations for 2D Sediment

Transport Problems

In this chapter a 2D numerical benchmark is considered in order to validate
the methodology proposed in section 9.3 to develop an implicit scheme start-
ing from its explicit counterpart. Considering the results obtained for the
1D simulations in Chap. 10, in the 2D case only two working conditions are
considered, namely the fast and the slow speeds of interaction, which are
the most favourable working conditions for the explicit and implicit time-
advancing approaches, respectively. The organisation of this chapter is as
follows: first the set-up of the considered benchmark is described in Sec. 11.1,
then the numerical experiments corresponding to a fast interaction between
the bed and the flow are shown in Sec. 11.2 and finally in Sec. 11.3 the results
obtained for the slow interaction case are presented.

11.1 2D Numerical Experiments
The 2D test-case considered herein is a well-known benchmark test, adopted
in several papers (e.g. [8, 28]) and it is the 2D generalisation of the 1D test-
case described in section 10.1. It is a sediment transport problem in a square
domain Ω of dimensions 1000 × 1000 m2 with a non constant bottom relief.
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The initial bottom topography is defined as follows:

Z(0, x) =

 sin2
((x− 300)π

200

)
sin2

((y − 400)π
200

)
if (x, y) ∈ Qh

0 elsewhere
h(0, x, y) = 10− Z(0, x, y)

u(0, x, y) = 10
h(0, x, y)

v(0, x, y) = 0
(11.1)

in which all the variables are in SI units and Qh = [300, 500] × [400, 600].
Dirichlet boundary conditions are imposed at the inlet, while at the outlet
characteristic based conditions are used. Finally, free-slip is imposed on the
lateral boundaries. The spatial discretization of the computational domain
has been carried out by using two different grids. Both of them are sym-
metric with respect to the axis y = 500 m and are composed by uniform-size
triangular elements. The main characteristics of the coarse (GR1) and of the
refined (GR2) grid are reported in Tab. 11.1 where lm denotes the charac-
teristic length of the elements. As previously pointed out, for the 2D case

Nodes Elements lm
GR1 2901 5600 20
GR2 11425 22448 10

Table 11.1: Main characteristics of the grids used in the simulations.

two different values of the parameter Ag are considered, namely the slow
interaction case, Ag = 0.001 and the fast one, Ag = 1, corresponding to the
most favourable condition for the implicit time-advancing and the explicit
one, respectively. Since different values of the parameter Ag corresponds to
different time scales for the evolution of the bottom topography, different
time intervals have been simulated for the two considered cases. In partic-
ular for the case Ag = 1 the total simulation time is 500 seconds while for
the case Ag = 0.001 is 100 hours (360000 seconds). All the results and CPU
times shown in the following are at the final instant of each simulation and
they have been obtained on a 3 GHz Intel Pentium 4 processor with 2Gb
RAM.
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11.2 Fast speed of interaction between the bedload
and water flow

For the fast speed of interaction, Ag = 1 in terms of accuracy the results
essentially confirm the analysis of the 1D case. For this value of Ag, to avoid
loss of accuracy the CFL number of the implicit scheme must be lowered
down to 1. As an example figure 11.1 shows a comparison between the ex-

(a) Explicit CFL= 0.8 (b) Implicit, CFL= 1, DeC 1

(c) Implicit, CFL= 10, DeC 1 (d) Implicit, CFL= 100, DeC 1

Figure 11.1: Grid GR1, Ag = 1: comparison of the results for the bed profile
of the 2nd-order MR scheme.

plicit and implicit approaches at different CFL values for the MR scheme.
On the other hand, as for the 1D case, by increasing the number of DeC it-
erations, it is possible to increase the maximum CFL value by a factor 10 for
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the second-order implicit approach without loosing in accuracy, as shown in
figure 11.2. To be more quantitative, in Fig. 11.3 a comparison of the results

(a) Explicit CFL= 0.8 (b) Implicit, CFL= 10, 3 DeC

Figure 11.2: Grid GR2, Ag = 1: comparison of the results for the bed profile
of the 2nd-order SRNH scheme.

obtained with several versions of the MR scheme along the symmetry line
y = 500 m is shown. In particular, Fig. 11.3a shows a comparison between
the explicit and implicit time advancing, both at first and second-order of
accuracy for the bottom profile on the grid GR2. It is possible to notice
that, as in the 1D case, there is a significant difference between the first and
second-order of accuracy while the results of the explicit and implicit ap-
proaches are hardly distinguishable. Fig. 11.3b shows the same comparison
for the variable h + Z. The correct reproduction of this variable is rather
critical and, while in the first-order solutions no oscillations have been found,
in the second-order computations they are present. The magnitude of these
oscillations is small and compared to the absolute value of the variation of Z
or h is less than 10−3. Furthermore, these oscillations are not introduced by
the proposed implicit time advancing technique since they are present also
in the second-order explicit method. It is also interesting to notice that in
the regions of nearly constant Z the second-order implicit approach presents
smaller variations in h+Z. Figs. 11.3c and 11.3d show instead the comparison
between the second-order implicit scheme at CFL =1 with one DeC iteration
and the same scheme at CFL =10 with three DeC iterations. As previously
pointed out, both for GR1 and GR2 the same results have been obtained by
using a value of the CFL number ten times larger and three DeC iterations.
Interestingly enough this is true both for the variable Z and for h+ Z. The
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Figure 11.3: Ag = 1: Comparison of the results for the bed profile for the
MR scheme at y = 500 m.

same comparisons are visualised in Fig. 11.4 for the SNRH scheme: the same
conclusions hold true also for this scheme with the only exception of the vari-
able h+Z for which the second-order implicit scheme is more oscillating than
the explicit one, see Fig. 11.4b. Considering the stability of the numerical
method, we found that using CFL= 102 the SRNH scheme is unstable on the
refined grid. It is possible that this stability limitation is the consequence of
a non-optimal choice for the solver of the linear system associated with the
implicit approach. However, since for such a high CFL number, the quality
of the results is anyway highly decreased this possibility has not been inves-
tigated. A new feature deserving attention is indeed the effect on the results
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Figure 11.4: Ag = 1: Comparison of the results for the bed profile for the
SRNH scheme at y = 500 m.

of the solution of the linear system associated with the implicit scheme. In
the 1D case the linear system was solved using a direct method thus, except
for roundoff errors, the exact solution was computed. Instead, for the 2D
case, the linear system associated with the implicit scheme is solved using an
iterative GMRES method. This iterative solver naturally introduces an ad-
ditional approximation, since it is necessary to define a convergence criterion
to terminate the iteration loop. In this work the iterative solver is stopped
when the residual of the linear system is below a fixed fraction of the initial
residual, that is:

res ≤ res0 ∗ Tol
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(a) Explicit (b) Implicit Tol = 10−6, DeC 1

(c) Implicit Tol = 10−8, DeC 1 (d) Implicit Tol = 10−4, DeC 3

Figure 11.5: Grid GR1, CFL= 1: comparison of the effect of the value of Tol
and of the number of DeC iterations for the SRNH scheme on
the bed profile.

Clearly, the smaller is Tol, the smaller is the influence of the error in the solu-
tion of the linear system on the results. However, exceedingly decreasing Tol
can abruptly increase the computational costs. Whatever is the CFL number,
for the Modified Roe scheme we found that a reasonable value is Tol = 10−4.
The behaviour of the SRNH scheme is different: for the first order SRNH set-
ting Tol = 10−6 is enough to preserve the accuracy of the method. Instead
the second-order scheme requires a different approach: using Tol = 10−6

the solution computed by the implicit scheme is not completely similar to
the explicit one. Lowering Tol below 10−6 could introduce roundoff errors,
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contaminating the solution. Under these circumstances, it is interesting to
compare the effect of the value Tol against the one of the number of Defect
Correction iterations. Figure 11.5 shows that the increase of the number of
DeC iterations has a more pronounced effect than decreasing Tol.

The CPU times for all the considered schemes and grids are reported in
Tab. 11.2. An interesting feature of the 2D case is that, also for the fast
interaction speed, the MR scheme at CFL= 10 with 3 DeC iterations is com-
putationally more efficient than its explicit counterpart. This is not true
for the SRNH scheme, as shown in table 11.2. The origin of this different
behaviour is related to the different formulations of the two numerical meth-
ods: the second-order extension of the MR scheme is more computationally
demanding that the SRNH one (see equation (9.38)) and, as a consequence,
a Defect Correction approach is more efficient in this case. Also, the solution
of the linear linear system associated to the implicit SRNH scheme seems to
be more demanding than the MR one and this increases the computational
time in the implicit case.

MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

Explicit 1st order, CFL= 0.8 16.1s 130.4s 21.0s 169.7s
Explicit 2nd order, CFL= 0.8 140.4s 1137s 52.4s 409.9s
Implicit 1st order, CFL= 1 197.0s 1560s 191.5s 1541s

Implicit 2nd order, CFL= 1, 1 DeC 239.0s 1919s 198.7s 1582s
Implicit 2nd order, CFL= 10, 3 DeC 84.3s 689.0s 74.5s 606.8s

Table 11.2: CPU time required (seconds), case Ag = 1.

11.3 Slow speed of interaction between the bedload
and water flow

For the slow speed of interaction, the results of the 2D computations essen-
tially confirm the analysis of the 1D case. Both for the SRNH and for the MR
scheme there is practically no difference between the solutions obtained with
the implicit schemes at CFL= 1000 and explicit ones at CFL= 0.8, while
the solutions computed using 1st-order of accuracy significantly differ from
the 2nd-order ones as shown in figures 11.6 and 11.7. Again, by increasing
the number of DeC iterations for the second-order scheme, an increase of
the CFL number limit without losing accuracy can be obtained, as shown in
figure 11.8. Also for this case a more quantitative analysis of the results
has been carried out. Fig. 11.9 shows a comparison for the MR scheme: the
results of the explicit and implicit formulation are practically superimposed
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(a) 1st-order Explicit CFL=0.8 (b) 1st-order Implicit CFL=1000

(c) 2nd-order Explicit CFL=0.8 (d) 2nd-order Implicit CFL=1000

Figure 11.6: Grid GR2, Ag = 10−3: comparison of the results of the bed
profile of the explicit and implicit MR scheme.

for both Z and h+ Z. Furthermore, also for the 2D case with Ag = 10−3 it
is possible to increase the CFL number of one order of magnitude, namely
from 103 to 104, without loosing in accuracy, by using 3 DeC iterations in
place of one, as shown in Figs.11.9c and 11.9d. The results obtained by
using the SRNH implicit scheme, shown in Fig.11.10 globally confirm this
analysis. The only noticeable difference is the fact that the second-order im-
plicit scheme computes slightly larger oscillations than the explicit one in the
solution for the variable h+ Z, as shown in Fig.11.10b.

As for the fast speed of interaction case, the MR implicit scheme seems to
be unconditionally stable while the SRNH implicit scheme is unstable using
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(a) 1st-order Explicit CFL=0.8 (b) 1st-order Implicit CFL=1000

(c) 2nd-order Explicit CFL=0.8 (d) 2nd-order Implicit CFL=1000

Figure 11.7: Grid GR1, Ag = 10−3: comparison of the results of the bed
profile of the explicit and implicit SRNH scheme.

a CFL number of 105 on the grid GR2.
Finally, as for the computational costs, for both the SRNH and MR

schemes, already at CFL= 1000 the gain in CPU time obtained with the
implicit scheme is large, both at 1st and 2nd-order of accuracy as shown in
table 11.3. Increasing the number of DeC iterations together with the CFL
number can further decrease the computational cost of the second-order im-
plicit scheme. As previously pointed out, in the 2D case the explicit second-
order extension of the MR scheme is more computationally demanding than
the SRNH one (see Tabs. 11.2 and 11.3). On the contrary, when the implicit
formulation is considered, this analysis is more complex. Indeed, while the
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(a) CFL= 103 with 1 DeC iteration (b) CFL= 104 with 3 DeC itera-
tion

Figure 11.8: Grid GR1, Ag = 10−3: comparison of the results for the bed
profile of the 2nd-order implicit MR scheme.

SRNH scheme is still more efficient for the case Ag = 1, in the case of a
slow speed of interaction the MR scheme is roughly two times faster than the
SRNH one, or even three time faster if the grid G2 and 3 DeC iterations are
considered.

MR scheme SRNH scheme
Method GR1 GR2 GR1 GR2

1st-Explicit CFL= 0.8 9497s 78073s 12824s 103238s
2nd-Explicit CFL= 0.8 82993s 670770s 30996s 247215s
1st-Implicit CFL= 103 199.8s 2134s 323.6s 4336s

2nd-Implicit CFL= 103, 1 DeC 293.7s 2776s 481.5s 8537s
2nd-Implicit CFL= 104, 3 DeC 136.4s 1625s 265.9s 4866s

Table 11.3: CPU time required (seconds), case Ag = 10−3.

This behaviour is the consequence of the interaction of at least three main
factors: the time required to compute the explicit fluxes which constitutes
the right-hand side of the linear system which must be solved at each time
step, the time required to assembly the matrix associated with the linear
system and the time required to solve the linear system. Unfortunately in the
output of our simulations only the total simulations time has been recorded
thus no exact figures are available for the aforementioned quantities. That
notwithstanding, it still possible to give some reasonable estimation.

First, let us consider the time required to compute the explicit fluxes: in
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Figure 11.9: Ag = 10−3: Comparison of the results for the bed profile for the
MR scheme at y = 500 m.

the explicit numerical approaches, once the fluxes have been computed the
time required to update the solution is without doubt negligible. Thereby
the time required to run the explicit simulations can be safely ascribed to
the computation of the fluxes and of the source term. Thus, by considering
Tabs.11.2 and 11.3 it clearly appears that the time required to compute
the first-order explicit fluxes is roughly the same for the SRNH and the MR
schemes, the latter being 1.3 times cheaper. On the contrary the computation
of the second-order explicit MR fluxes is roughly 2.7 times more demanding
than the SRNH ones.

Estimating the time needed to assembly the matrix of the linear system
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Figure 11.10: Ag = 1: Comparison of the results for the bed profile for the
SRNH scheme at y = 500 m.

is more difficult. However, due to the considered DeC technique associated
to the automatic differentiation procedure, this time should be roughly pro-
portional to the one needed for the computation of first-order fluxes. Thus,
in view of the previous considerations, it should be similar between the MR
and the SRNH schemes, with the former one slightly cheaper.

Finally, the time required for the solution of the linear system must be
defined. Even in this case no exact figures are available. Nevertheless, in
Sec. 11.3 it has been pointed out that the linear system associated with the
SRNH scheme seems to stiffer than the one associated with the MR scheme,
thus requiring stronger convergence criterion and, as a consequence, more



11.3 Slow speed of interaction 186

iteration to compute the solution. Therefore it is reasonable to consider that
the stiffer is the problem, the longer will take to solve the linear system. Since
both decreasing Ag and refining the grid increase the stiffness of the linear
system to be solved, it follows that for the SRNH scheme the case Ag = 1 on
the coarse grid is the most favourable among those considered in this work
and, conversely, Ag = 10−3 on the refined grid is the worst.

These considerations give further insight for the determination of which
approach is the most efficient. The DeC implicit approach is preferable when
computationally expensive explicit methods are considered, in particular if
the computational cost greatly varies between first and second-order of accu-
racy. On the contrary, the comparison between different numerical schemes
should take into account others factors and, in particular, when stiff problem
are considered the time required to solve the linear system is of the greatest
importance.



Chapter 12
Concluding Remarks

In this work different numerical methods for the simulation of barotropic
flows in complex geometries have been presented. Two main applications,
which are characterised by possible problem stiffness and for which barotro-
pic models can be used, have been considered, namely cavitating flows and
sediment transport problems.

12.1 Cavitating Flows
In the present study, a numerical formulation is proposed for the simulation
of 3D viscous cavitating flows, which combines good properties of accuracy,
robustness and efficiency.

For the particular application to cavitating flows, in the non-cavitating
regions, a weakly-compressible liquid at constant temperature is considered,
while for the cavitating regime, the homogeneous-flow model explicitly ac-
counting for thermal cavitation effects and for the concentration of the active
cavitation nuclei in the pure liquid is adopted. This chosen homogeneous-flow
cavitation model leads to a complex barotropic state equation and, as a con-
sequence, the numerical schemes have been developed for generic barotropic
flows. However, the simulation of cavitating flows, in particular for the cho-
sen cavitation model, in which huge variations of flow quantities are present
and nearly-incompressible zones coexist with highly-supersonic regions, leads
to specific numerical difficulties from a view point of both accuracy and effi-
ciency.

Our starting point was a numerical solver for 3D inviscid barotropic flows
introduced in previous works [16, 103, 104]. The numerical scheme was first-
order accurate both in space and time.

As for physical modelling, viscous terms and the standard k−ε RANS tur-
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bulence model have been added in the present work. The present numerical
approach is based on finite-volume and finite-element discretizations for the
convective and the viscous terms respectively. Compressible flows are con-
sidered and approximate Riemann solvers are used to compute the numerical
fluxes involved in the finite-volume discretisation of the convective fluxes.
Suitable preconditioning is used to avoid accuracy problems in the low-Mach
regime, while maintaining time consistency. Time advancing is carried out
through a linearised implicit approach. However, in previous works it was
found that the use of an implicit time advancing is not a sufficient guaran-
tee when cavitation occurs; indeed, severe CFL limitations were observed
for a linearised implicit formulation based on the Roe scheme [14, 102, 104].
Two new ingredients have been introduced here. Starting from the Rusanov
scheme, which is a simple averaged-state approximate Riemann solver known
for its reliability and robustness, a low-diffusive HLL numerical flux is pro-
posed. The latter one is obtained by introducing an anti-diffusive term in
the Rusanov flux in order to deal with its excessive diffusivity in presence
of contact discontinuities. Thanks to the particular features of the Riemann
problem for cavitating flows, the simple structure of the Rusanov scheme
could be maintained in the LD-HLL one. A suitable preconditioning for the
low-Mach regime has also been defined. Second, two different time linearisa-
tions are considered for the LD-HLL flux; a classical one in which the upwind
part of the flux function is partially frozen in the time differentiation, and
a more complete one which takes into account, at least in an approximate
way, the neglected term. Finally, second-order accuracy is obtained through
a MUSCL reconstruction for space accuracy and a second-order backward
differentiation formula for time advancing associated with defect-correction
iterations.

The proposed numerical ingredients have been validated through various
test-cases, both 1D and 3D, which cover a large range of flow features and
for which analytical solution or experimental results are available. Three
different numerical flux functions adapted to barotropic flows, the Roe, Ru-
sanov and LD-HLL ones, are compared, by including first and second-order
accurate formulations and the two kinds of linearisation for the HLL-like
schemes. The capability to obtain accurate solutions for contact disconti-
nuities and viscous flows has been investigated by considering a Riemann
problem as well as the Blasius boundary layer over a flat plate. These test-
cases show that the anti-diffusive term introduced in the LD-HLL scheme
is able to counteract the accuracy problem in presence of contact disconti-
nuity with results very similar to the ones of the Roe scheme and in good
accordance with theoretical solutions. Therefore, this scheme appears to be



12.1 Cavitating Flows 189

suitable for the simulation of flows characterised by the presence of contact
discontinuities, and, in particular, of viscous flows.

A second set of test-cases has also been considered in order to assess the
accuracy, robustness and efficiency of the different numerical formulations in
cavitating conditions. It includes a quasi-1D cavitating flow in a convergent-
divergent nozzle as well as the flow around a hydrofoil mounted in a tunnel,
both in cavitating and non-cavitating conditions. It clearly follows from these
numerical experiments that the use of the more complete linearisation is es-
sential for efficiency in presence of cavitation. Indeed, very strong stability
limitations appear when cavitation occurs, this for the Roe linearised implicit
formulation as well as for the LD-HLL implicit approach using the classical
linearisation. An increase of five and four orders of magnitude (for 1D and
2D flows respectively) is obtained, in terms of CFL number, when the more
complete linearisation for the LD-HLL scheme is used. Significant improve-
ments have been observed by considering the second-order accurate version of
the LD-HLL with a behaviour much closer to experimental data and physical
expectations. Thus, it emerges that the second-order preconditioned implicit
LD-HLL approach associated with the more complete linearisation appears
an adequate formulation for viscous flows in cavitating conditions.

Furthermore, the implementation of the standard k − ε model has been
validated for the turbulent flow over a flat plate at zero angle of attack.

Finally, applications to real 3D configurations have been carried out by
considering the viscous flow in a three blade axial inducer, for which experi-
mental data are available. Different working conditions have been reproduced
by varying the flow rates and the cavitation number. A first set of simula-
tions have been carried out in non cavitating conditions, without turbulence
model. In non-cavitating conditions the simulations associated with high flow
rates give a satisfactory agreement with the experiments while for lower flow
rates the accuracy of the solution decreases. These discrepancies are related
with the presence of a large backflow flow. In particular, a very fine grid res-
olution is needed near the blade tip to capture the steep variation of the flow
velocity in this zone. Furthermore, for low flow rates, the backflow extends
to the inlet of the computational domain, and thus, spurious effects could
be present on the solution. Based on these considerations, two additional
simulations have been carried out; in the first one the same grid resolution
is used but the inlet of the computational domain is moved upstream, while
in the second one the computational domain is the shorter one but a more
refined grid is used. Both the increase of the computational domain axial
length and the grid refinement lead to a reduction of the discrepancy in the
pressure-jump prediction with respect to the experimental value, with grid
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refinement having a larger impact on the accuracy of the numerical results.
Nonetheless, the error made in the numerical predictions remains significant
also on the more refined grid. A further possible explanation of this dis-
agreement is that the effects of turbulence are probably more important at
low discharge rates when a strong backflow is present. In order to assess this
point a RANS simulation was also carried for the lowest flow rate. The intro-
duction of turbulence has been found to significantly improve the agreement
with the experiments. As expected the effects of turbulence are particularly
important near the gap between the blades and the external case and this
strongly affects the backflow and, thus, the pressure jump. This also explains
why for larger flow rates, for which the backflow is less important, the effects
of turbulence are not so strong and a good agreement with experimental data
can be obtained also in laminar simulations.

In addition, cavitating cases have also been considered. Note that only
the most robust and efficient numerical formulation considered herein, i.e.
the preconditioned linearised LD-HLL approach associated with the complete
linearisation, is able to deal with 3D cavitating flows in the inducer. Indeed,
considering the CFL number, the results found in the preliminary test-cases,
i.e. cavitating flow over a NACA 0015 hydrofoil, have been confirmed, since
the scheme is stable with values of the CFL number up 500.

The first simulation carried out in cavitating conditions showed some dis-
crepancies with experimental data and, in particular, an underestimation of
the cavitation zone extension. In order to investigate this issue, two addi-
tional simulations on the more refined grid have been considered, for two
different cavitation numbers. The predictions of the pressure jump obtained
in these simulations are in good accordance with the experimental values,
showing the positive effect of grid refinement also in cavitating conditions.

Finally, a preliminary analysis aimed at investigating whether flow in-
stabilities, related to cavitation and detected in the experiments, has been
carried out for the cavitating-flow simulation on the most refined grid by
visualising the time behaviour of the cavitating regions over the three blade
and through spectral analysis of pressure times signals recorded at different
axial locations over the external case. Traces of asymmetric and surge insta-
bilities, also detected in experiments for the considered values of discharge
and cavitation number, have been found in the simulations, showing that the
developed numerical approach is able to at least qualitatively capture these
instabilities. Nonetheless, we would like to stress that this type of analysis
is difficult to be carried out numerically since it requires the simulation of
large time intervals, especially to characterise low-frequency instabilities as
surge; since the discretisation of complex 3D domains also implies a large



12.2 Sediment transport problems 191

number of nodes, all this leads to highly demanding simulations both as re-
gards CPU times and memory requirements. On the other hand, numerical
simulations can furnish details on the flow dynamics that are difficult or even
impossible to be obtained in experiments and, thus, can be a complementary
tool to experimental analysis in the characterisation and even in the design
of turbopump inducers.

12.2 Sediment transport problems
The main focus of the present work was on the comparison between implicit
and explicit schemes for the simulation of sediment transport problems, in
terms of accuracy and computational requirements. The problem is modeled
through the shallow-water equations coupled with the Exner equation to
describe the time evolution of the bed profile. The Grass model is used for
the sediment transport.

We started from two finite-volume discretisation schemes previously pro-
posed in the literature, combined with explicit time advancing, namely the
SRNH solver [5, 6, 8] and a modified Roe scheme [26–28]. The implicit lin-
earised versions of these schemes have been generated starting from their ex-
plicit counterpart by using an automatic differentiation tool, Tapenade [59],
to compute the flux Jacobians. In the context of the Shallow-Water model
1D and 2D test cases have been considered, characterised by different rates
of interaction between the bed and the water flow. In the 1D simulations, for
both the SRNH and MR schemes, the implicit method was found to run with
a virtually unlimited CFL number without stability problems. However, to
avoid loss of accuracy, the CFL number of the implicit scheme must be re-
duced to a value roughly inversely proportional to the constant determining
the velocity of the interaction between the flow and the bed-load. Only one
DeC iteration seems to be enough to preserve the accuracy of the second-
order implicit scheme even if increasing the number of DeC iterations can
increases the maximum CFL number allowable. In the 1D case the implicit
code has been found to be computationally more efficient than the explicit
one for all the considered rates of interactions between the bed and the flow.
The 2D tests globally confirm these results, but the influence of the number of
Defect Correction iterations seems to be more pronounced, in particular for
the SRNH scheme. Furthermore, it was found that for fast bed load/water
interaction only the MR implicit scheme can be competitive with its explicit
counterpart. As a consequence, the proposed methodology, implicit time
advancing and Defect Correction technique, seems to be particularly suit-
able for slow and intermediate speeds of interaction and for computationally
expensive explicit methods. Also, since the CFL number is limited by the
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speed of interaction, another field deserving attention is the application of
the considered methodology to more complex models for the evolution of the
bed.

As a concluding remark it may be worth emphasising that the proposed
numerical methodologies are rather general and, thus, there is room for fur-
ther improvements. As far as cavitating flows are concerned, it could be
interesting to further study the influence of the turbulence model on the nu-
merical results and to take into consideration the possibility of implementing
different turbulence models which explicitly take into account the physical
effects of rotation and cavitation. Furthermore, a systematic study of the
instabilities related to the cavitation, also considering lower values of the
cavitation number, could be interesting.

Switching to sediment transport problems, it turns out that the implicit
time advancing is particularly interesting when the problem is stiff, that
is when the difference in the characteristic time scales of the problems is
more than one order of magnitude. Thus, it could be interesting to consider
more complex models for sediment transport than the Grass one or problems
involving less regular solutions (i.e. problems with discontinuities). Further-
more, as a natural development, the proposed methodology could be applied
in the future to realistic problems, i.e. to the simulation of coastal zones or
river flows.



Part III
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Appendix A
Solution of the Riemann problem for a

convex barotropic state law

Let us consider the following Riemann problem:

∂W

∂t
(x, t) + ∂F

∂x
(x, t) = 0 in R×]0,∞[

W (x, 0) =


WL if x < 0

WR if x > 0

(A.1)

with W = (ρ, ρu, ρξ)T and F =
(
ρu, ρu2 + p, ρuξ

)T .
This system of partial differential equations is supposed to be closed by

a convex barotropic equation of state. In this case, the convexity condition
implies that the second derivative of the pressure with respect to the inverse
of the density be strictly positive and therefore can be expressed as follows:

a

ρ
+ da

dρ
> 0. (A.2)

It has been shown in [102] that, in this case, the involved waves are
either genuinely non-linear or linearly-degenerate and, consequently, a local
Riemann solution can be constructed simply through the juxtaposition of
basic wave solutions (i.e. rarefactions, shocks and contact discontinuities). A
constructive procedure to solve the Riemann problem (A.1), associated with
a generic but convex barotropic equation of state, is then proposed. The
construction of the resulting solution is recalled below; we refer to [102] for
a detailed derivation.

The solution of the Riemann problem (A.1) consists of four states, WL,
W ?
L, W ?

R and WR separated by three waves: the 1-wave and 3-wave can be
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Figure A.1: Schematic representation of the solution of the Riemann problem
(A.1) for the particular case in which the 1-wave is a rarefaction
and the 3-wave is a shock.

either a shock or a rarefaction while the 2-wave is a contact discontinuity.
Fig. A.1 shows a sketch of the solution structure for a case in which all
types of waves are involved. The states WL and WR are given by the initial
condition of the Riemann problem while the intermediate states, W ?

L and
W ?
R, have the following expression:

W ?
S = (ρ?, ρ?u?, ρ?ξS)T for S ∈ {L,R}.

The solution is completely determined by ρ? and u?, i.e. the values of the
intermediate density and velocity (which determine the nature and the posi-
tion of the different waves); the corresponding solution region is commonly
called “star” region. In [103], it is proposed to firstly define ρ? by solving the
following non linear equation:

gL(ρ) + gR(ρ) + uR − uL = 0 (A.3)

the functions gL and gR being expressed as

gS(ρ) = I[ρ≤ρS ](ρ)ψ(ρS , ρ)− I[ρ>ρS ](ρ)ϕ(ρS , ρ) for S ∈ {L,R}

in which I represents the characteristic function while ψ and ϕ are defined
as follows for any ρ1, ρ2 > 0 :

ϕ(ρ1, ρ2) = −
((p(ρ2)− p(ρ1)) (ρ2 − ρ1)

ρ1 ρ2

) 1
2
, ψ(ρ1, ρ2) =

∫ ρ2

ρ1

a(r)
r

dr.



197

Then, u? can be obtained directly from ρ? using either the left or the
right initial state through the following relation:

u? = uS − gS(ρ?) for S ∈ {L,R}. (A.4)

The knowledge of u? allows to completely define the 2-contact disconti-
nuity since its speed σ2 is simply equal to u? (i.e. the contact discontinuity
between W ?

L and W ?
R is located on the line x/t = u?).

Note that the exact Riemann solution cannot be achieved, in general, in a
completely analytical way (indeed it also depends of the particular state law)
and therefore a numerical procedure is needed to solve the non-linear equation
(A.3). Let us consider the interval [ρmin, ρsup[ in which the barotropic state
law can be adequately used (ρmin > 0 while ρsup can be +∞). The existence
and the uniqueness of ρ? in [ρmin, ρsup[ is ensured if and only if the initial
velocity variation verifies:∑

S∈{L,R}
ϕ (ρsup, ρS) < uR − uL ≤

∑
S∈{L,R}

ψ(ρmin, ρS). (A.5)

While verifying the condition above, the wave structure of the Riemann
problem solution changes as uR−uL varies from the two extreme values. More
precisely, the following three different cases can be identified, in which ρm and
ρM are defined by ρM = max(ρL, ρR) and ρm = min(ρL, ρR), respectively:

• uR − uL < ϕ(ρm, ρM ): in this case ρM < ρ? < ρsup and both the
1−wave and the 3−wave are shocks;

• ϕ(ρm, ρM ) ≤ uR − uL < ψ(ρm, ρM ): in this case, ρm < ρ? ≤ ρM ; there
is a shock between ρ? and ρm, and a rarefaction between ρ? and ρM ;

• uR− uL ≥ ψ(ρm, ρM ): then ρmin ≤ ρ? ≤ ρm and both the 1−wave and
the 3−wave are rarefactions.

The location of the rarefaction waves are defined as follows:

1− rarefaction : λ1 (ρL, uL) ≤ x
t ≤ λ1 (ρ?,u?)

3− rarefaction : λ3 (ρ?, u?) ≤
x
t ≤ λ3 (ρR,uR)

with λk (ρ, u) = u + (k − 2) a(ρ) for k ∈ {1, 3}. Moreover, the speed σk of
the k-shock (which completely determines its position) can be expressed as
follows:

for k ∈ {1, 3} σk = uSk
+ (k − 2)

(
ρ?
ρSk

p(ρSk
)− p(ρ?)

ρSk
− ρ?

) 1
2



198

where the notation S1 = L and S3 = R is understood. The expression at
hand can easily be prolonged by continuity at ρSk

= ρ? [103]; however, only
a simplified representation is reported here for ease of discussion.

The solution for ξ depends on the location of the contact discontinuity
and thus on ρ? and u? but, in turns, it does not affect the solution for ρ and u.
This point, which is due to the decoupling between the passive scalar and the
underlying 1D flow field permits to straightforwardly extend the structure of
the considered solution to the case of an arbitrary number m > 1 of passive
scalars.



Appendix B
The alternative formulation of the Roe

scheme for barotropic flows

In this appendix, the proof that the Roe scheme for barotropic state law,
as defined in [102, 103] can be also rewritten in the context of the unified
Godunov-type schemes as presented in [84], is proposed. More precisely, it
is derived the proof that the numerical flux function defined by (3.17)-(3.59)
coincides with the one obtained from (3.65) and (3.69).

Let us explicitly write the matrix |J̃ |, J̃ being the Roe matrix defined in
Sec. 3.5.1:

|J̃ | =



|λ̃1|λ̃2 − λ̃1|λ̃2|
λ̃2 − λ̃1

|λ̃2| − |λ̃1|
λ̃2 − λ̃1

0

λ̃2λ̃1
(
|λ̃1| − |λ̃2|

)
λ̃2 − λ̃1

|λ̃2|λ̃2 − |λ̃1|λ̃1

λ̃2 − λ̃1
0

ξ̃lr
(
|λ̃1|λ̃2 − λ̃1|λ̃2| − |λ̃3|

(
λ̃2 − λ̃1

))
λ̃2 − λ̃1

ξ̃lr
(
|λ̃2| − |λ̃1|

)
λ̃2 − λ̃1

|λ̃3|


(B.1)

where we recall that λ̃h are the eigenvalues of J̃ :

λ̃1 = ũlr + ãlr , λ̃2 = ũlr − ãlr and λ̃3 = ũlr (B.2)

and rh are the corresponding right eigenvectors:

r1 =

 1
λ̃1
ξ̃lr

 , r2 =

 1
λ̃2
ξ̃lr

 , r3 =

 0
0
1

 (B.3)
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Besides, the Roe average for the speed of sound ãlr is defined by (3.60),
while for the velocity and the passive scalar, the Roe average is obtained
substituting φ by respectively u or ξ in the following relation:

φ̃lr =
√
ρlφl +√ρrφr√
ρl +√ρr

(B.4)

Let us recall, here, two useful properties of the Roe averages which have been
intensively used for the proof. Let ψ and ϕ be any variable such that their
Roe average can be expressed as in (B.4), i.e. here, whichever between u and
ξ, not necessarily different:

ρrψr − ρlψl = ρ̃lr∆lrψ + ψ̃lr∆lrρ (B.5)
ρrψrϕr − ρlψlϕl = ρ̃lrψ̃lr∆lrϕ+ ρ̃lrϕ̃lr∆lrψ + ϕ̃lrψ̃lr∆lrρ (B.6)

where ∆lr( · ) = ( · )r− ( · )l and ρ̃lr is the Roe average for the density defined
as:

ρ̃lr = √ρlρr (B.7)

Finally, let us recall that from the knowledge of the right eigenvectors rp the
coefficients αp of Wr −Wl in the basis (r1, r2, r3) can be also calculated.
More precisely: 

α1 = 1
2

(
∆lrρ+ ρ̃lr∆lru

ãlr

)

α2 = 1
2

(
∆lrρ− ρ̃lr∆lru

ãlr

)

α3 = ρ̃lr∆lrξ

(B.8)

The proof is split into two different cases, i.e. considering either supersonic
or subsonic interfaces.

B.1 Supersonic interface
Since the speed of sound is always positive, the eigenvalues of the Roe scheme
always satisfy :

λ̃1 > λ̃3 > λ̃2

It is possible to refer to the interface as supersonic when all the eigenvalues
have the same sign, that is:

λ̃1 > λ̃3 > λ̃2 > 0 or 0 > λ̃1 > λ̃3 > λ̃2 (B.9)
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If all the eigenvalues are positive then |J̃ | and J̃ coincide, and thus, using
the third property of the Roe matrix the classical expression (3.17) of the
Roe scheme reduces to Φ(Wl,Wr) = F (Wl). On the other hand, if all the
Roe matrix eigenvalues are positive, from (3.69) it follows that b+ = λ̃1 and
b− = 0, and, as a consequence (3.65) associated with (3.69) also reduces to
Φ(Wl,Wr) = F (Wl). The equivalence of the two formulation in the case of
all negative eigenvalues follows similarly and this concludes the proof for a
supersonic interface.

B.2 Subsonic interface
The flow is subsonic at the interface when

λ̃1 > 0 and 0 > λ̃2 (B.10)

while λ̃3 can assume whichever sign. In this case, the matrix |J̃ | in (B.1) can
be rewritten as:

|J̃ lr| =



ã2
lr − ũ2

lr

ãlr

ũlr
ãlr

0

(
ã2
lr − ũ2

lr

) ũlr
ãlr

ã2
lr + ũ2

lr

ãlr
0

ξ̃lr

(
ã2
lr − ũ2

lr

ãlr
− |ũlr|

)
ξ̃lr
ũlr
ãlr

|ũlr|


(B.11)

Then, substituting (B.11) in (3.17) it is possible to write the three compo-
nents of the Roe numerical flux function as follows:

Φlr,1 = ρlul + ρrur
2 + ã2

lr − ũ2
lr

2ãlr
(ρl − ρr) + ũlr

2ãlr
(ρlul − ρrur) (B.12a)

Φlr,2 = ρlu
2
l + pl + ρru

2
r + pr

2 +
(
ã2
lr − ũ2

lr

2

)
ũlr
ãlr

(ρl − ρr)

+ ã2
lr + ũ2

lr

2ãlr
(ρlul − ρrur) (B.12b)

Φlr,3 = ρlulξl + ρrurξr
2 + ξ̃lr

2

(
ã2
lr − ũ2

lr

ãlr
− |ũlr|

)
(ρl − ρr)

+ ξ̃lrũlr
2ãlr

(ρlul − ρrur) + |ũlr|2 (ρlξl − ρrξr) (B.12c)
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Let us, now, consider ϕ the numerical flux function defined by (3.65) with
b+, b− and δ̃ obtained from (3.69). In the subsonic case, i.e. when (B.10) is
satisfied, ϕ can be expressed as:

ϕl,r = (ũlr + ãlr)F (Wl)− (ũlr − ãlr)F (Wr)
2ãlr

+ ũ2
lr − ã2

lr

2ãlr
(Wr −Wl)−

ρ̃lr
2

ũ2
lr − ã2

lr

|ũlr|+ ãlr
(ξr − ξl) r3 (B.13)

The first component of (B.13) can be written as:

ϕlr,1 = ãlr (ρlul + ρrur) + ũlr (ρlul − ρrur)
2ãlr

+ ã2
lr − ũ2

lr

2ãlr
(ρl − ρr) (B.14)

and, after simplification, this equation is the same as (B.12a).
To show that (B.12b) is equivalent to the second component of (B.13) it is
necessary to recall that from the definition of ãlr:

pl − pr = ã2
lr (ρl − ρr) (B.15)

and to use the equality:

ρlu
2
l − ρru2

r = ũlr (2 (ρlul − ρrur)− ũlr (ρl − ρr)) (B.16)

which follows from (B.5) and (B.6). Then, the second component of (B.13)
can be recasted as

ϕlr,2 =
(
ρlu

2
l + pl + ρru

2
r + pr

)
2 + ũlr

(
ρlu

2
l − ρru2

r

)
2ãlr

+ ũlr (pl − pr)
2ãlr

+ ã2
lr − ũ2

lr

2ãlr
(ρlul − ρrur)

(B.17)

and substituting (B.15) and (B.16) into (B.17), equation (B.12b) is recovered.
For the last component of (B.13) an additional equation is needed:

ũ2
lr − ã2

lr = (|ũlr|+ ãlr) (|ũlr| − ãlr) (B.18)

Using (B.5) and (B.18), the third component of (B.13) can be recasted as

ϕlr,3 = (ρlulξl + ρrurξr)
2 + ũlr (ρlulξl − ρrurξr)

2ãlr
+ ã2

lr − ũ2
lr

2ãlr
(ρlξl − ρrξr)

− |ũlr| − ãlr2
(
ρrξr − ρlξl − ξ̃lr (ρr − ρl)

)
(B.19)
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Substituting (B.6) and collecting the terms with common factors in (B.19)
the result is:

ϕlr,3 = (ρlulξl + ρrurξr)
2 +

ũlr
(
ũlr (ρlξl − ρrξr) + ρ̃lr ξ̃lr (ul − ur)

)
2ãlr

− |ũlr|
ãlr

|ũlr| − ãlr
2 (ρlξl − ρrξr) + ξ̃lr

|ũlr| − ãlr
2 (ρr − ρl) (B.20)

Using (B.5) for the term ρ̃lr (ul − ur) and collecting the terms with common
factors:

ϕlr,3 = (ρlulξl + ρrurξr)
2 + |ũlr|2 (ρlξl − ρrξr) + ξ̃lr

2
ũlr
ãlr

(ρlul − ρrur)

− ξ̃lr
2
ũlr
ãlr

(ũlr (ρl − ρr)) + ξ̃lr
|ũlr| − ãlr

2 (ρr − ρl) (B.21)

Finally collecting the terms with common factors in (B.21), (B.12c) is recov-
ered and the proof is completed.





Appendix C
Low Mach Number asymptotic study

C.1 The continuous case
Let us, first, recall the principal result concerning the asymptotic behaviour
of the continuous equations for a barotropic case (see [102] for details).

Considering an asymptotic expansion in power of M? inside the non-
dimensional 1-D Euler equations associated by a barotropic state law, the
following expression can be obtained for the momentum equation:

1
M2
?

∂p0
∂x

+ 1
M?

∂p1
∂x

+
(
∂ρ0u0
∂t

+ ∂p2
∂x

+ ρ0u
2
0

)
+M?(· · · ) = 0

Thus, in order to solve this equation in the limit M? → 0, the following
conditions should be satisfied:

∂p0
∂x

= ∂p1
∂x

= 0 (C.1)

Consequently, when M? → 0 the pressure field solution is of the form:

p(x, t) = p0(t) +M? p1(t) +M2
? p̂2(x, t) (C.2)

Note that a similar behaviour for the pressure has been also observed in the
case of a perfect-gas state law (see [57]).

C.2 The semi-discrete case
We carry out, now, an analysis of the semi-discrete governing equation in a
general form when the Mach number tends to zero, when the following family
of flux functions is considered:

Φij = F (Wi) + F (Wj)
2 − 1

2 Hij ∆ijW (C.3)
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where

∆ijW =
(

ρj − ρi
ρjuj − ρiui

)
and Hij =

(
h11,ij h12,ij
h21,ij h22,ij

)
(C.4)

Hij is a general upwind matrix.
Note that only the mass and momentum balances are considered here;

anyway this study is also valid if a passive scalar equation is present, since
this equation is decoupled from the previous ones.

Since it is possible to operate on the upwind term without affecting the
consistency in time (see [57]) we want to identify a family of Hij matrix that
shows the correct asymptotic behaviour in the low Mach number limit.
Defining

ρ̄ij
.= ρj + ρi

2 ūij
.= uj + ui

2
then the following equality holds true:

ρjuj − ρiui = ρ̄ij (uj − ui) + ūij (ρj − ρi) (C.5)

Introducing the average numerical sound speed:

ā2
ij
.= pj − pi
ρj − ρi

it is possible to recast (C.3) as

Φij = F (Wi) + F (Wj)
2 − 1

2 Hij


pj − pi
ā2
ij

ρ̄ij (uj − ui) + ūij (pj − pi)
ā2
ij

 (C.6)

First of all we adimensionalise the semi-discrete equations:

δi
dWi

dt + Φi(i+1) − Φ(i−1)i = 0 (C.7)

To the purpose, we introduce the following reference quantities: δ? (an arbi-
trary length scale), ρ? = max

x
ρ(x, 0), u? = max

x
u(x, 0) and a2

? = max
x

a2(x, 0).
Then, a reference Mach number may be defined as: M? = u?/a? where
a? =

√
a2
?. By exploiting these quantities, we define the non-dimensional vari-

ables as: x′ = x/δ? ρ
′ = ρ/ρ?, u′ = u/u?, t′ = tu?/δ? and p′ = p/(ρ?a2

?). Sub-
stituting the non dimensional variables in (C.7) the following non-dimensional
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equations are obtained (the prime is dropped for the sake of clarity):

2δi
dρi
dt = (ρi−1ui−1 − ρi+1ui+1)

− 1
u?

(
h11,i(i+1)∆i(i+1)p

ā2
i(i+1)

−
h11,(i−1)i∆(i−1)ip

ā2
(i−1)i

)

− h12,i(i+1)

(
ρ̄i(i+1) (ui+1 − ui) +

ūi(i+1) (pi+1 − pi)
ā2
i(i+1)

)

+ h12,(i−1)i

(
ρ̄(i−1)i (ui − ui−1) +

ū(i−1)i (pi − pi−1)
ā2

(i−1)i

)
(C.8)

2δi
dρiui

dt =
(
ρi−1u

2
i−1 − ρi+1u

2
i+1
)

+ 1
M2
?

(pi−1 − pi+1)

− 1
u2
?

(
h21,i(i+1)∆i(i+1)p

ā2
i(i+1)

−
h21,(i−1)i∆(i−1)ip

ā2
(i−1)i

)

−
h22,i(i+1)

u?

(
ρ̄i(i+1) (ui+1 − ui) +

ūi(i+1) (pi+1 − pi)
ā2
i(i+1)

)

+
h22,(i−1)i

u?

(
ρ̄(i−1)i (ui − ui−1) +

ū(i−1)i (pi − pi−1)
ā2

(i−1)i

)
(C.9)

We look for semi-discrete solutions to equations (C.9) and (C.8) as an asymp-
totic expansion in power of M?:

ρi(t) = ρ0i(t) +M? ρ1i(t) +M2
? ρ2i(t) + · · ·

ui(t) = u0i(t) +M? u1i(t) +M2
? u2i(t) + · · ·

pi(t) = p0i(t) +M? p1i(t) +M2
? p2i(t) + · · ·

(C.10)

Note 1 The power expansion (C.10) is applied to ūij, ρ̄ij and āij as well.
Let us consider, as an example, the expansion of āij. āij is always strictly
positive. Hence,

ā0ij = āij |M?=0 > 0

and ā−1
ij may be expanded as follows:

1
āij

= 1
ā0ij

(
1 +M?

ā1ij
ā0ij

+ · · ·
)−1

= 1
ā0ij

(
1−M?

ā1ij
ā0ij

+ · · ·
)

More precisely, ā0ij can be explicitly written as follows:
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• if ∆ijρ = 0 then ρi = ρj = ρ̄ and āij = a(ρ̄):

āij = a(ρ̄0) + da

dρ
(ρ̄0)ρ̄1M? + · · ·

Clearly, ā0ij = a(ρ̄0);

• if ∆ijρ 6= 0 then, by definition: ∆ijρā2
ij = ∆ijp; if we consider only

the terms of order zero in the expansion in power of M∗, we obtain:
∆ijρ0ā

2
0ij = ∆ijp0. Since, as previously pointed out, ā2

0ij > 0, the
following equivalence holds:

∀i, j ∆ijρ0 = 0 ⇔ ∆ijp0 = 0

– if ∆ijρ0 6= 0, and, thus, ∆ijp0 6= 0, then:

āij =
(

∆ijp

∆ijρ

) 1
2

=
(

∆ijp0
∆ijρ0

) 1
2

(
1 + ∆ijp1

∆ijp0
M? + · · ·

) 1
2

(
1 + ∆ijρ1

∆ijρ0
M? + · · ·

) 1
2

=
(

∆ijp0
∆ijρ0

) 1
2

+ 1
2

(
∆ijp0
∆ijρ0

) 1
2
(

∆ijp1
∆ijp0

− ∆ijρ1
∆ijρ0

)
M? + · · ·

In this case ā0ij =
(

∆ijp0
∆ijρ0

) 1
2

;

– if ∆ijρ0 = 0 and, thus ∆ijp0 = 0, then, by exploiting the same
kind of linearization as above:

ā0ij =
(

∆ijps
∆ijρs

) 1
2

where s is the first integer such that ∆ijρs 6= 0.

As for the continuous case, once the expansions have been introduced into
equations (C.9) and (C.8), all the terms associated with M−k? (k > 0) must
be set to zero in order to find the asymptotic solution. At this point it is
necessary to identify one or more families of matrix Hij that allows to recover
the correct asymptotic solution, i.e. a pressure solution having a asymptotic
behaviour compatible with the one obtained in the continuous case, i.e. as
in (C.2).
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C.3 A first family of matrix
A first class of suitable matrices can be defined by imposing:

h11 = c11
a?
Mk
?

with k ≥ 1 (C.11)

h12 = c12M
k
? with k ≥ 0 (C.12)

h21 = c21 a?
2Mk

? with k ≥ 0 (C.13)

h22 = c22 a?M
k
? with k ≥ 1 (C.14)

where c11, c12, c21 and c22 do not depend on M?. Note that (C.11) imposes a
lower bound while the other three conditions are relative to upper bounds.

Let us first consider the mass equation, if (C.12) is verified for h12 then
only the second term in the right hand side of (C.8) can have a wrong asymp-
totic behaviour. Then, if now (C.11) is also verified the following conditions
have to be imposed to set to zero the term of order M−k? ( k ≥ 2):

c11,i
∆i(i+1)p0
ā2

0,i(i+1)
− c11,i−1

∆(i−1)ip0
ā2

0,(i−1)i
= 0 (C.15)

Moreover, if (C.15) holds, then to set to zero the term of order M−k+1
? it is

sufficient to have:

c11,i
∆i(i+1)p1
ā2

0,i(i+1)
− c11,i−1

∆(i−1)ip1
ā2

0,(i−1)i
= 0 (C.16)

Let us now consider the semi-discrete momentum equation. If h22 satisfies
(C.14) the last two terms of the right hand side of (C.9) do not have wrong
asymptotic behaviour. Let us look at the third term of the right hand side
of (C.9) when (C.13) holds; in the worst case, i.e. when h21 = c21 a?

2, the
following terms of order M−2

? and M−1
? should be taken into account:

1. for order M−2
? :

c21,i
∆i(i+1)p0
ā2

0,i(i+1)
− c21,i−1

∆(i−1)ip0
ā2

0,(i−1)i
(C.17)

2. for order M−1
? :

c21,i
∆i(i+1)p1
ā2

0,i(i+1)
− c21,i−1

∆(i−1)ip1
ā2

0,(i−1)i
(C.18)
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The terms defined in (C.17) and (C.18) are similar to the ones which appear
in (C.15)-(C.16). If for some θ independent of the index i, we have:

c21,i = θ c11,i ∀i (C.19)

then from the previous conditions (C.15)-(C.16), (C.17) and (C.18) are equal
to zero. Consequently, the only conditions from the momentum equation are
coming from the second term in the right hand side of (C.9), which has terms
of order M−2

? and in M−1
? . Nevertheless, these terms can be set to zero by

imposing:

1. for order M−2
? :

∆i(i+1)p0 + ∆(i−1)ip0 = 0 (C.20)

2. for order M−1
? :

∆i(i+1)p1 + ∆(i−1)ip1 = 0 (C.21)

Equations (C.15) and (C.20) constitute a homogeneous system of two
equations for the two unknowns ∆(i−1)ip0 and ∆i(i+1)p0, which is also linearly
independent if

c11,i
ā2

0,i(i+1)
+ c11,i−1
ā2

0,(i−1)i
6= 0 ∀i (C.22)

Note that this condition is not hard to satisfy: for instance, it is sufficient
that the c11,i are all different from zero and of the same sign. If (C.22) holds
then

∆ijp0 = 0 ∀(i, j) (C.23)

Therefore p0i is independent of the index i: p0i(t) = p0(t).
Furthermore, if (C.22) holds then we also have that (C.16) and (C.21)

constitute a system of two homogeneous linearly independent equations for
the two unknowns ∆(i−1)ip1 and ∆i(i+1)p1. As a consequence the only solu-
tion is:

∆ijp1 = 0 ∀(i, j) (C.24)

Therefore p1i is independent of the index i: p1i(t) = p1(t).
As a conclusion, if (C.11) to (C.14) hold true (with also the conditions

on the coefficients (C.19)-(C.22)), when M? → 0 the pressure solution to
equations (C.8) and (C.9) is of the form:

pi(t) = p0(t) +M? p1(t) +M2
? p̂2i(t) (C.25)

thus recovering, from a qualitative point of view, a behaviour which is similar
to that of the continuous case (see (C.2). (C.16) holds true and h21 satisfies
the third equation of system (C.11)-(C.14). To prove this statement it is
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sufficient to use an argument similar to that used to show that h21 has no
effect on the terms associated with M−2

? . valid: if h12 is larger than M0
? or

h12 is larger than a?M? then in (C.15), (C.16) and (C.21) terms associated
with ∆i(i+1)u and ∆(i−1)iu would appear and (C.25) would be false.
C.3.1 The Rusanov case
The Rusanov upwind matrix is a diagonal matrix with diagonal elements of
the form:

λ = u+ a

as a consequence we have: 
h11 ∝ a?
h12 = 0
h21 = 0
h22 ∝ a?

(C.26)

(C.12)-(C.13) are verified but h11 is too small and h22
1 is too large. It can

be easily checked by direct substitution that with this matrix the asymptotic
solution permits pressure oscillation larger than those in the continuous case.
It is necessary to modify the Rusanov upwind matrix, in particular it is
sufficient to consider:

h11,p = h11 · f(M)

h22,p = h22 · g(M)

with
lim
M→0

f(M) ∝M−1

and
lim
M→0

g(M) ∝M1

Using h11,p and h22,p instead of h11 and h22 makes the Rusanov matrix to
satisfy (C.11) to (C.14) and then the correct behaviour of the asymptotic
solution is recovered.

C.4 A wider class of matrix
It is possible to define a wider class of matrix, relaxing the first equation of
system (C.11). If we consider

h11 = c11 a?M
k
? with k = 0 (C.27)

1This term is the main responsible for the generation of spurious pressure oscillations



C.4 A wider class of matrix 212

then, substituting in (C.8) and (C.9) and following the steps of section (C.3)
we obtain:

∆ijp0 = 0 ∀(i, j) (C.28)

p1,(i−1) = p1,(i+1) ∀i (C.29)

Equation (C.29) is an approximation of ∂p1(x,t)
∂x = 0. This condition is some-

times considered sufficient especially when the numerical scheme is used with
unstructured meshes [79].



Appendix D
Algorithm to compute the steady solution

for the nozzle

In this chapter we study the problem of a barotropic flow in a nozzle in the one
dimensional case. In this study we are not concerned with the assumptions
used to transform the Navier-Stokes equations in the 1D nozzle problem.
Thus, for the sake of simplicity, we state that we want to solve the following
set of equations:

∂

∂t

∫ β

α
Aρ dx+ ρuA|β − ρuA|α = 0

∂

∂t

∫ β

α
Aρudx+ ρu2A|β − ρu2A|α = −pA|β + pA|α + p(A(β)−A(α))

p = p(ρ)
(D.1)

In this system of equation α and β are two generic points on the x-axis, p, ρ
and u are unknown functions of space and time, while A is a known function
depending only on the space variable1. Hence, we can write:

p = p(x, t) ρ = ρ(x, t) u = u(x, t) A = A(x)

Finally p is the space average of p over the interval [α, β] and the system
is closed with a barotropic state law p = p(ρ). In a general context, it is
not possible to substitute p with ρ in the first two equations of system (D.1)
because the state law is seldom in explicit form.
At this point of the study we are interested in a steady solution when A ∈ C1,

1The area of the duct for our problem
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then system (D.1) can be reduced to:

ρuA|β − ρuA|α = 0

ρu2A|β − ρu2A|α = −pA|β + pA|α + p(A(β)−A(α))

p = p(ρ)

(D.2)

Since α and β are arbitrary, the first equation of system (D.2) can be recasted
as

ρuA = constant .= Ṁ

and consequently (D.2) can be rewritten as:

ρuA = Ṁ

Ṁ(u|β − u|α) = −pA|β + pA|α + p(A(β)−A(α))

p = p(ρ)

(D.3)

Then an explicit algorithm to compute the analytical solution

ρ = ρ(A(x)) u = u(A(x))

is achievable under the hypothesis that ρ and u are piecewise differentiable
functions, with the possibility to have a finite number of discontinuous points
2.

D.1 Equations for a discontinuity
Let suppose that x̄ is a point of discontinuity, then system (D.3) can be
recasted as 

ρu|x̄− = ρu|x̄+

(p+ ρu2)|x̄− = (p+ ρu2)|x̄+

p = p(ρ)

(D.4)

Thus, in presence of a discontinuity, we obtain the well known Rankine-
Hugoniot equations for a normal shock.

2Many situations of practical interest satisfy this requirement so it is not a strong
restriction
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D.2 Analytical solutions in absence of discontinuity
If we look for solutions that are piecewise differentiable, it is possible to write
system (D.3) as:

∫ β

α

∂ρuA

∂x
dx = 0

∫ β

α

∂ρu2A

∂x
dx = −

∫ β

α

∂pA

∂x
dx+

∫ β

α
p
∂A

∂x
dx

p = p(ρ)

(D.5)

These relations are independent from the particular choice of the interval
[α, β] so the result is: 

∂ρuA

∂x
= 0

∂ρu2A

∂x
= −A∂p

∂x

p = p(ρ)

(D.6)

Substituting the first equation in the second:

Ṁ
A

∂u

∂x
= −∂p

∂x
(D.7)

and using the equality

u = Ṁ
ρA

it is possible to derive the following ordinary differential equation for density:

Ṁ2

ρ3A3
∂ρA

∂x
= 1
ρ

∂p

∂x
(D.8)

If we integrate over interval [α, β], we obtain:

Ṁ2

2

( 1
ρ2(α)A2(α) −

1
ρ2(β)A2(β)

)
=
∫ ρ(β)

ρ(α)

a2

ρ
dρ (D.9)

where, due to the barotropic closure of the system a2, defined as dp
dρ , is a

function of ρ only. Finally, thanks to the additive property of integrals, it is
possible to rewrite (D.9) as follows:

Ṁ2

2
1

ρ2(α)A2(α) +
∫ ρ(α)

ρ(γ)

a2

ρ
dρ = Ṁ

2

2
1

ρ2(β)A2(β) +
∫ ρ(β)

ρ(γ)

a2

ρ
dρ (D.10)
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where γ is an arbitrary point. Now we can define the function:

K(ρ,A) .= Ṁ
2

2
1

ρ2A2 +
∫ ρ

ρ̄

a2(χ)
χ

dχ

With this notation the solution of (D.5) must satisfy:

K(ρ,A) = K0 (D.11)

where K0 is a constant that can be defined using the boundary conditions.
D.2.1 Properties of the solution
The definition of K is a compact notation to define the relation that a solution
to problem (D.6) must satisfy. However, yet we have no information on the
existence and uniqueness of the solution. Before answering these questions
we have to show the main features of the function K. The first step is to take
the derivative of K respect to ρ:

∂K
∂ρ

= a2

ρ
− u2

ρ
= a2

ρ
(1−M2) (D.12)

Since a2

ρ is always positive the sign of ∂K
∂ρ depends only on M , the Mach

number.
It can be easily shown that ∂K

∂A is always negative, thus, we have proved that,
as in the case of perfect gas, area variations have opposite effects on subsonic
and supersonic flows. Indeed, let us assume that ρ1 and ρ2 solve equation
(D.12) for A1 and A2. If A1 > A2 then K0 = K(ρ1, A1) < K(ρ1, A2) : due
to equation (D.12) if M < 1 then ρ2 must be lower than ρ1, while if M > 1
then ρ1 must be lower than ρ2.

D.3 Solution in the presence of shocks
It is worth pointing out that only the second equation in system (D.4) is
important. Indeed through a discontinuity we have A+ = A− = A(x) thus, if
ρ+, u+ and ρ−, u− are the C1 solutions on the two sides of the discontinuity,
due to the first equation in (D.3), they satisfy also the first in (D.4). The
second of (D.4) can be recasted as follow

(p+ Ṁ
2

ρA2 )|x̄− = (p+ Ṁ
2

ρA2 )|x̄+ (D.13)

This equation is function only of ρ+ and ρ−.
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D.4 Algorithm for the computation of the solution
It is important to analyse the derivative of the Mach number with respect to
density:

∂M

∂ρ
= − Ṁ

Aρ2a2 ·
∂ρa

∂ρ
(D.14)

If:
∂ρa

∂ρ
> 0 ∀ρ (D.15)

then it is possible to write an algorithm to compute the solution of problem
(D.3) when a finite number of discontinuities is present. Indeed from (D.12)
we have that:

∂K
∂ρ

= 0⇐⇒M = 1 (D.16)

On another hand, assuming that (D.15) is satisfied and considering Ṁ > 0,
i.e. u > 0 (note that this assumption can be made without loosing generality),
from (D.14) M is a strictly decreasing function of ρ. Consequently, for each
possible valueM? ofM there is only one value ρ? of ρ such thatM(ρ?) = M?.
In particular, from (D.16), there is only one density value ρ̂ which makes ∂K

∂ρ

vanishing. Note that ρ̂ should depend on the area A. Furthermore forM < 1,
i.e. ρ > ρ̂, we have from (D.12) that ∂K

∂ρ > 0 while for M > 1, i.e. ρ < ρ̂, we
have ∂K

∂ρ < 0. Thus ρ̂ is a minimum for K that is

K(ρ̂, A) < K(ρ,A) ∀ρ 6= ρ̂

As a consequence we have three different situations:
K(ρ̂(A), A) > K0 0 solutions
K(ρ̂(A), A) = K0 1 solutions
K(ρ̂(A), A) < K0 1 or 2 solutions

(D.17)

Even if there are two solutions of equation (D.11), one being always sub-
sonic and the other supersonic, only one of them satisfies the hypothesis that
the solution is C1 from which (D.11) is derived. Thus, equation (D.17) an-
swers the questions of existence and unicity of the solution when there are
no discontinuities. For the sake of simplicity, assume that there is only one
discontinuity. Then the solution consists of two smooth regions, with con-
stants K0 and K1

3, divided by a shock. In the two smooth regions (D.17)
holds true, while at interface (D.13) must be considered. Defining:

S(ρ,A) .= p(ρ) + Ṁ
2

ρA2

3It can be easily checked that K0 6= K1 must be true to have a discontinuity



D.4 Algorithm for the computation of the solution 218

it can be easily obtained that:

∂S(ρ,A)
∂ρ

= a2
(
1−M2

)
(D.18)

It is possible to recast equation (D.13) as:

S(ρ+, A) = S(ρ−, A)

and, due to (D.18), this equation can have one or two solutions. The solution

ρ+ = ρ−

is always possible and is not a discontinuity: if this is the unique solution, then
it is impossible to have discontinuities. When another solution is possible, the
couple ρ+ and ρ− are the solution in presence of a discontinuity for a given
area of the nozzle. It is worth noting that one between the + and − state
is always supersonic and the other subsonic. Even if we have not introduced
any entropy inequality, due to the physical meaning of the problem that we
are studying, only compression shock wave (transition from supersonic to
subsonic) will be considered acceptable. In order to define the position of the
shock we have to find Â that solve the system:

K(ρ+, Â) = K0
K(ρ−, Â) = K1
S(ρ+, Â) = S(ρ−, Â)

(D.19)

D.4.1 Algorithm to compute the solution, with one discontinuity
The solution described in the previous sections can be computed using the
following steps:

1. Choose a particular value of A, A?

2. Compute ρ̂(A?)

3. Compute K(ρ̂(A?), A?) and check the existence of the solution both for
K0 and K1

4. If the solution exist, solve K(ρ0, A
?) = K0 and K(ρ1, A

?) = K1

5. Finally check if system (D.19) holds true with ρ0, ρ1 and A? to find the
position of the discontinuity.

This algorithm works if a discontinuity is present, however it is possible to
take into account the presence of more discontinuities.
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