
Towards the Systematic Analysis of Non-Functional
Properties in Model-Based Engineering for Real-Time

Embedded Systems

Guillaume Braua,b, Jérôme Huguesb, Nicolas Naveta

aUniversity of Luxembourg, CSC Research Unit,
6 rue R. Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg.

{guillaume.brau, nicolas.navet}@uni.lu
bUniversité Fédérale Toulouse Midi-Pyrénées, ISAE-SUPAERO,

10 avenue E. Belin, 31055 Toulouse, France.
jerome.hugues@isae-supaero.fr

Abstract

The real-time scheduling theory provides analytical methods to assess the temporal pre-
dictability of embedded systems. Nevertheless, their use is limited in a Model-Based
Systems Engineering approach. In fact, the large number of applicability conditions
makes the use of real-time scheduling analysis tedious and error-prone. Key issues are
left to the engineers: when to apply a real-time scheduling analysis? What to do with the
analysis results? This article presents an approach to systematize and then automate the
analysis of non-functional properties in Model-Based Systems Engineering. First, precon-
ditions and postconditions define the applicability of an analysis. In addition, contracts
specify the analysis interfaces, thereby enabling to reason about the analysis process.
We present a proof-of-concept implementation of our approach using a combination of
constraint languages (REAL for run-time analysis) and specification languages (Alloy
for describing interfaces and reasoning about them). This approach is experimented
on architectural models written with the Architecture Analysis and Design Language
(AADL).

Keywords: Model-Based Systems Engineering; Non-Functional Properties; Analysis;
Contracts; Real-Time Scheduling; Architecture Description Languages

1. Introduction

Context. Embedded systems have become an integral part of our daily life. We can found
them in cars, aircrafts, trains, robots, healthcare equipments, mobile phones, consumer
electronics, etc. In particular, a major issue related to embedded systems is to fulfill
the non-functional requirements dictated by their environment, expressed for example in
terms of timing, dependability, security, or other performance criteria. In safety-critical
applications for instance (e.g. in an airplane), missing a non-functional requirement can
have severe consequences, e.g. loss of life, personal injury, equipment damage, environ-
mental disaster, etc.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147015106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Model-Based Systems Engineering (MBSE) makes it possible to deal with critical
design constraints, especially real-time constraints. An MBSE approach uses domain-
specific models as first-class artifacts to design and then develop the system. The non-
functional properties of the system are to be analyzed from these models throughout the
design process, e.g. by model checking, simulation or with other analytical methods; and
the analysis results must be taken into account in the design process.

Thus, an important challenge is to provide: (1) tools that implement both modeling
languages and analysis engines; (2) engineering support for developers to use models and
analyses.

Problem. Modeling and analysis features are usually provided as part of distinct tools:
(1) languages such as AADL [1], EAST-ADL combined with AUTOSAR [2, 3], or SysML
and MARTE UML profiles [4, 5] provide standardized notations to model a system;(2)
analytical frameworks for Verification & Validation activities including real-time schedul-
ing tools [6, 7], model checkers [8, 9], etc. enable to analyze the diverse non-functional
properties of embedded systems.

An approach commonly used to connect the toolsets is to translate a model used for
design into a model used for analysis, as represented in Figure 1. In that context, one
can either implement a comprehensive model transformation (e.g. metamodeling with
the MOF standard in the Eclipse Modeling Framework [10, 11], transformation with a
dedicated language such as ATL [12]); or more often relies on an ad hoc transformation
chain to deal with the design and analysis models within the different tools. Yet, we note
several limitations with this approach:

• downstream, it does not address the validity of the transformation: is the analysis
applicable on the design model which is considered? If not, is it relevant to apply
the transformation?

• upstream, the analysis result is not handled: what is the meaning of the analysis
result? How to take the analysis result into account in the design process?

Therefore, a more systematic approach is necessary so as to manage analysis activities
at design time. This approach must be supported by MBSE tools alongside modeling
languages and analysis engines.

Design
Model

Analysis
Model

Analysis
transfor-
mation

inputs result?

applicability?

Figure 1: Analysis based on a transformation process. Design and analysis features are part of distinct
tools, highlighted in white and red shapes: (1) a model used for design in a first tool is translated into a
model used for analysis in a third-party tool; (2) the analysis in the third-party tool is then applied on
its own model.

2

Contribution. In this article, we aim at systematizing and automating the analysis of
non-functional properties of embedded systems at design time.

The preconditions are the properties to be true in an input model prior to execute
an analysis. The postconditions are the properties guaranteed on the model after the
analysis execution. With preconditions and postconditions satisfied, an analysis is com-
plete and sound. Concretely, a full analysis, including preconditions and postconditions,
can be implemented by means of constraint languages, e.g. OCL on UML models [13] or
REAL with AADL [14].

Then, we use contracts to automate the analysis process. A contract completely de-
fines the interfaces of an analysis in terms of processed data and properties. Inputs/Out-
puts (I/O) describe input and output data. Assumptions/Guarantees (A/G) describe
input and output properties. Specific methods can then be used to automatically reason
about these interfaces, and answer complex questions about the analysis process such as:
which analysis can be applied on a given model? Which are the analyses that meet a
given goal? Are there analyses to be combined? Are there interferences between analy-
ses? In practice, contracts can be defined with the help of a specification language such
as Alloy [15], and evaluated through associated SAT solvers.

We present and experiment these concepts on an aerospace case study: the Paparazzi
Unmanned Aerial Vehicle [16]. The experimental results presented in this paper can be
reproduced from our tool prototype and AADL models available online1.

Work hypotheses. The two following hypotheses fix the limits of our contributions. These
hypotheses may be relaxed in future works as discussed at the end of this article:

Design through architectural description languages. We focus on early de-
sign phases, especially the architectural design stage supported through Architecture
Description Languages [17]. The models mentioned in this paper are written with the
Architecture Analysis and Design Language (AADL) [18] and are part of the AADLib
project [19], our library of reusable AADL models accessible online.

Real-time properties. We concentrate on real-time properties. We focus on a
particular kind of analytical methods called real-time scheduling analyses [20].

Structure of the paper. The paper is organized as follows. Section 2 provides a general
overview on architecture descriptions languages and discusses related works. Section 3
deals with the semantics of an analysis. We introduce contracts in section 4. Section 5
discusses potential extensions of our approach. We finally conclude in section 6.

2. Background and related works

Model-Based Systems Engineering is a paradigm that focuses on models in the engi-
neering of complex systems. In a MBSE approach, activities such as specification, design,
implementation, integration and verification systematically involve domain-specific mod-
els [21].

1The tool with the models can be found on the git repository https://github.com/gbra/maiwen,
december 2017

3

https://github.com/gbra/maiwen

2.1. Background: modeling and analysis of real-time architectures

In an architecture-centric MBSE approach in particular (for example, see [18]), the
design process is based on an architecture description with the help of an Architecture
Description Language (ADL). ADLs enable to model and analyze the architecture of a
system, i.e. the components that comprise a system and their interconnection structure.

Architectural modeling. The Architecture Analysis and Design Language, or AADL for
short, is a standardized language to describe the architecture of real-time embedded
systems [1, 18]. A model with AADL represents a system architecture made up of a
combination of hardware and software components. Components are precisely defined
with their non-functional properties (e.g. task execution times, memory footprint) and
possible implementations (e.g. tasks with a behavioral specification or the actual source
code). Interconnection schemes such as descriptions of data flow or communication pro-
tocols are also provided. MARTE (Modeling and Analysis of Real-Time and Embedded
Systems) [4] and EAST-ADL (Electronics Architecture and Software Technology - Ar-
chitecture Description Language) [2] are ADLs providing concepts similar to AADL.
MARTE is a UML profile to bring real-time concepts to the designer. EAST-ADL is
used for automotive needs and complies with the AUTOSAR architecture [3]. See [22]
for a more precise comparison of these languages.

Synchronous models provide an intermediate level of abstraction between programs
and the high-level architectural models discussed previously. Unlike high-level ADLs,
models with synchronous languages like LUSTRE [23], SIGNAL [24], Esterel [25] or
Prelude [26] have a formal execution semantics. The synchronous approach is based on
strong mathematical foundations and is suitable for the formal design and verification
of reactive systems, e.g. see [27, 28]. Works like [29, 30, 31] show overlaps between
high-level ADLs and synchronous ADLs. For instance, the authors in [29] translate a
subpart of an AADL model into a LUSTRE program; and evaluate AADL models with
tools available for synchronous programs.

Analysis of real-time properties. The real-time properties of a system can be analyzed
from an architectural description of the system. For instance, AADL models can be
analyzed with a large set of analysis theories and tools2: real-time scheduling theory
with Cheddar [6] and MAST [7]; real-time process algebra [32]; real-time calculus [33];
network calculus [34]; model checking based on Petri Nets [35, 36] or RT-Maude [37] for
behavioral analysis; etc.

The analysis of an architecture model is usually based on a model transformation
process that translates the architectural model into a tool-specific model used for analysis:
transformations have been implemented to translate AADL models into Cheddar ADL
and MAST models with the OCARINA tool suite [38]; transformation chains exist to
connect AADL models to UPPAAL [39], TINA [36, 40] or CADP model checkers [41];
etc. A more exhaustive list of analysis tools and transformations applicable to AADL
models is available in [42].

2An updated list of tools, projects and papers is available at http://www.aadl.info.

4

http://www.aadl.info

Work positioning. Architecture Description Languages enable to describe a system archi-
tecture, whereas analysis engines (via model transformations) make it possible to analyze
the various non-functional properties of a system. However, no support is provided to
use these tools and answer the following kind of questions: which analysis can be applied
on a given model? Which are the analyses that meet a given goal? Are there analyses to
be combined? Are there interferences between the analyses? Hence, dedicated solutions
must be provided to systematize the analysis of architectural models.

2.2. Related works: systematizing the analysis of architectural models

We can mention several initiatives that preceded our works. We distinguish between
ad hoc approaches aiming at automating the selection of real-time scheduling analyses
and more general analysis integration approaches based on contracts.

Automatic selection of real-time scheduling analyses. Selecting the analysis that can be
applied on an architecture model is a complex task. For instance, Plantec et al. [43] aim
at automatically choosing real-time schedulability tests based on architecture models.
For this purpose, the authors define the relationships between architectural models and
schedulability tests by way of architectural design patterns [44]. They also propose their
own algorithms to select the schedulability tests in the Cheddar tool [45]. Ouhammou
et al. [46] follows a similar path: they formalize the assumptions associated to schedu-
lability tests through the notion of real-time context. The decision is made via a set of
OCL invariants to be checked on the real-time oriented language MoSaRT. We note that
the two approaches are limited to specific ADLs and tools (Cheddar and MoSaRT). It is
hence necessary to redefine architectural design patterns (or real-time contexts) for every
ADL, e.g. Gaudel et al. [47] redefined architectural design patterns for AADL models
through AADL subsets.

Analysis tools integration. Ruchkin et al. [48] deal with the integration of “Cyber-
Physical Analyses” in the AADL tool environment OSATE [49]. They acknowledge that
properties of AADL models can be computed by tools coming from different scientific
domains (e.g. real-time scheduling, power consumption, safety or security). They hence
use the contract formalism [50, 51] to represent the interactions between analysis tools
and avoid the execution of conflicting tools (i.e. to not invalide the properties computed
by a tool with another tool). This is made possible with a language to specify contracts
(being part of AADL) and a verification engine based on a combination of SMT solv-
ing and model checking. They detail an implementation of this approach through the
ACTIVE tool, dedicated to AADL, in [52].

Work positioning. The approach presented in this paper builds on these works, but seeks
more generality and is implemented differently.

Gaudel et al. [45] and Ouhammou et al. [46] focus on a particular problem which is
to automatically select and apply real-time schedulability tests; and each one proposes
a different approach (i.e. enforcing design patterns or real-time contexts), implemented
in a specific analysis tool (i.e. Cheddar or MoSaRT), to resolve this problem. On the
contrary, in section 3, we emphasize on the definition of the semantics of an analysis
in general, and show that an analysis can be made equivalent to a Floyd-Hoare triple.
Hence, a full analysis, including preconditions and postconditions, can be implemented

5

via a constraint language, e.g. REAL to express real-time scheduling analyses. In future
works, this general formalism will be investigated to express other kinds of analyses (e.g.
behavioral, dependability, security, etc.).

Then, in section 4, we use contracts to provide greater decision support. Contracts
have been investigated by Ruchkin et al. [48, 52] in a context similar to ours. However,
we go further in several aspects. First of all, we note that the contracts in [48] are tied to
AADL (contracts are to be defined in terms of AADL types and through an AADL sub-
language annex), while on the contrary our contracts are independent of any modeling
language and extensible (defined through the Alloy specification language, independent
of the AADL type system). Secondly, the ACTIVE tool [52] provides only behavioral
verification with model checking, whereas we focus on the analysis of real-time properties
using the real-time scheduling theory. Last but not least, Ruchkin et al. concentrated
especially on the run-time verification of assumptions/guarantees formulas against an
AADL model through heavyweight and domain-specific verification engines (i.e. SMT
solving in Z3 or model checking with Spin/Promela). In contrast, we focus on interface
reasoning in terms of both data (inputs/outputs) and properties (assumptions/guaran-
tees) in Alloy.

3. Defining the analysis execution

This section aims to formalize the analysis execution. As an introductory example,
we explain the difficulty to apply real-time scheduling analyses on architectural models
representing an unmanned aerial vehicle. We then propose a general formalism to define
the semantics of an analysis, and instantiate it to a simple real-time scheduling analysis.
We finally present an implementation of this formalism with the help of the REAL
constraint language.

3.1. Case study : real-time scheduling analysis of an unmanned aerial vehicle

As a case study, we consider the timing analysis of an unmanned aerial vehicle. We
briefly introduce the task model used in the software architecture written in AADL and
the real-time scheduling problem. We then present schedulability tests used for timing
analysis and the difficulty to apply them on architectural models.

Paparazzi UAV. Paparazzi UAV (Unmanned Aerial Vehicle) is an open-source drone
project [16, 53]. The Paparazzi system consists of an airborne system with hardware and
autopilot software and a ground control station. The subsystems communicate with each
other via a radio link. In the following we focus on the real-time scheduling analysis of
the autopilot software architecture.

Real-time task model. Real-time tasks are the basic entities of a real-time system such
as the Paparazzi UAV. A task is a logical unit of computation in a processor, that is
a set of program instructions that are to be executed by a processor. A task τi ∈ T
(card(T) = n, i, n ∈ N) can have several characteristics, e.g. in the context of the
seminal works of Liu and Layland [54] the tasks are periodic. A periodic task τi consists
of an infinite sequence of jobs τi,j (j ∈ N). A task can admit an offset Oi that is the
amount of time for the first release of the task. This implies that the jth job of a task is
released at time ri,j = Oi +(j−1) ·Ti where Ti is the task period. Each job consumes an

6

amount of processor time Ci called execution time. Finally, a task has a relative deadline
Di, or an absolute deadline expressed on the jth job of the task: di,j = ri,j +Di. Figure 2
represents a periodic task execution with usual parameters as a Gantt diagram.

ri,j

τi,j

si,j ei,j di,j

Di

Ri,j

Ci

ri,j+1

τi,j+1

si,j+1 ei,j+1 di,j+1

Di

Ri,j+1

Ci

Ti

Figure 2: Usual representation of a real-time task with a Gantt diagram. For a task τi: Ti the period,
Ci the execution time and Di the relative deadline. τi,j denotes the jth job of a task i: ri,j is the release
time, si,j the start time, ei,j the completion time, di,j the absolute deadline. A system is schedulable if
∀τi ∈ T , all the response times Ri,j respect Ri,j ≤ Di.

Figure 3 presents an overview of the autopilot software architecture in the AADL
graphical syntax (we have updated, corrected and extended the AADL models initially
proposed in [55, 56]). The autopilot process consists of 12 tasks (dashed shapes) that
use a data (plain rectangle), functioning in three possible modes (hexagons). Listing 1
describes a task implementation in the AADL textual syntax. A task implementation de-
fines important task parameters enumerated above (Period, Compute Execution Time,
etc.) and refers to the actual source code (Source Text and Compute Entrypoint Source Text).

Real-time scheduling. Real-time scheduling is the problem of coming up with an ex-
ecution order (i.e. a schedule) that meets the timing constraints, usually the deadline
constraints. In the case of on-line scheduling, a scheduling algorithm decides the schedul-
ing of a set of tasks T = {τ1, τ2, . . . , τn} on a set of processor X = {x1, x2, . . . , xm} and,
possibly, a set of shared resources U = {U1, U2, . . . , Us}. For example, fixed-priority
scheduling according to the Rate Monotonic (RM) priority assignment policy is char-
acterized by preemption (i.e. it is able to suspend a task execution to execute one or
several other tasks, and then resume the execution of the first task), periodic tasks, im-
plicit deadlines (Di = Ti) and fixed-priority scheduling according to the rule “the smaller
the period, the higher the priority”.

How to apply real-time scheduling analyses on architectural models? Scheduling analysis
aims to determine whether the scheduling algorithm will produce a schedule that will
meet the timing constraints at run-time. Since the origins of the real-time scheduling
theory in the 1970s, the research community has provided a multiplicity of real-time
scheduling analyses, targeting many task models or evaluating different performance
metrics from these models.

For instance, Liu and Layland [54] proposed a schedulability test that is based on the
analysis of the processor utilization factor U which is the fraction of processor time used
by the tasks. They have shown that a set of n periodic tasks is schedulable with the RM

7

Figure 3: Architecture of the Paparazzi UAV autopilot software in AADL. The overall autopilot process
consists of 12 tasks (dashed shapes) that use a data (plain rectangle), functioning in three possible
modes (hexagons). One problem is to determine which real-time scheduling analysis can be applied on
this model.

1 −− Thread implementation in s t an t i a t ed as Alt Ctr l Th
2

3 thread implementation a l t i t u d e c o n t r o l t a s k . Impl
4 properties
5 Dispatch Protoco l=> Per i od i c ;
6 Dispatch Of f s e t => 0 ms ;
7 Period => 250 ms ;
8 Compute Execution Time => 1478 us . . 1660 us ;
9 Source Text => (” au t op i l o t /main . c ”) ;

10 Compute Entrypoint Source Text =>”a l t i t u d e c o n t r o l t a s k ” ;
11 end a l t i t u d e c o n t r o l t a s k . Impl ;

Listing 1: Example of task implementation through an AADL thread. A thread implementation defines
important parameters such as the period or the execution time and refers to the actual source code.

8

policy if:

U ≤ n(2
1
n − 1) with U =

n∑
i=1

Ci

Ti
(LL-test)

The LL-test is a proved sufficient condition for the scheduling of a set of periodic tasks
under Rate Monotonic and all the tasks have no offsets, the deadlines are equal to
the periods and the tasks are independent (that is to say, have no shared resources or
precedence constraints).

Later developments have improved or proposed new schedulability tests, relaxed the
assumptions, or considered new task models. For instance, Sha et al. [57] deal with
real-time tasks with shared resources where access to the resources is managed with a
concurrency control protocol. They have shown that a set of n periodic tasks using the
Priority Ceiling Protocol is schedulable with Rate Monotonic if the following inequation
is true:

C1

T1
+ . . .+

Cn

Tn
+max

(
B1

T1
, . . . ,

Bn−1

Tn−1

)
≤ n(2

1
n − 1) (SRL-test)

In the inequation above, Bi denotes the worst-case blocking time for a task τi, that
is the time that this task can be blocked by all the lower-priority tasks that can access
a shared resource.

Another approach is to calculate the worst-case response time Ri of each task. The set
of tasks is schedulable according to a given scheduling algorithm if and only if the worst-
case response time of each task is less than, or equal to, its deadline. For example, [58]
deals with the response time analysis of a set of tasks scheduled under Rate Monotonic.

There exists plenty of other schedulability tests. To give an idea, 200+ articles are
cited by Sha et al. [20] about the advances in real-time modeling and associated anal-
yses. In another survey, Davis et al. [59] examine the schedulability tests available for
multiprocessor architectures and list about 120 different works.

Hence, applying the right real-time scheduling analysis on the right architectural
model (for example, the AADL model in Figure 3) is a tedious and error-prone task.
The problem for the designer is first to define the conditions under which an analysis can
be applied (e.g. assumptions on the system model) and then to state whether the input
model complies with these conditions or not (e.g. by analyzing the values of the AADL
properties, the connections between the components, etc.). In addition, one must be
able to qualify the analysis result: which result is provided? For example, is the analysis
result about the processor utilization factor or the worst-case response time? How to
conclude about the schedulability status from this result? In the next subsections, we
propose solutions to address this problem:

• by fully defining an analysis with pre and postconditions in subsection 3.2,

• by exploring implementation means in subsection 3.3 and subsection 3.4.

3.2. Semantics of an analysis

An elementary model-based analysis process consists of the computation chain shown
in Figure 4:

9

Ê the analysis inputs data from a model,

Ë the analysis program processes the data,

Ì the analysis outputs data about the model (i.e. analysis results).

Model Analysis Result

A{P} {Q}

input data output data

is about

Ê
Ë

Ì

Figure 4: Formalization of the semantics of an analysis with a Hoare triple: {P} A {Q}. Precondi-
tions P express the properties to hold true on an input model to successfully execute an analysis A.
Postconditions Q are the properties guaranteed on the model after execution of the analysis.

Thus, we propose to define the semantics of an analysis with a Hoare-like triple
{P} A {Q} [60]:

• P is an assertion expressed on input data called the precondition of A,

• A is an analysis program to compute output data from input data,

• Q is an assertion expressed on output data called the postcondition of A.

Preconditions express the properties that the model must satisfy prior to execute an
analysis. Postconditions express the properties that the analysis guarantees in return.
For example, assertions can be expressed with first-order logic formulas and checked
through a relevant verification engine.

Example: semantics of the test of Liu and Layland. Let us consider a simple input
data model that can be used for real-time scheduling analysis, consisting of the tuple
(T , G, X , S):

• T is the set of task, with each τi ∈ T is a tuple (Ti, Ci, Di, Oi) (respectively: the
period, the execution time, the deadline and the offset),

• G is the graph (V,E) giving the dependencies between the tasks,

– V are vertices, each vertex is a task of the model V ⊆ T ,

– E ∈ V × V are edges and represent dependencies between tasks,

• X = {x1, x2, . . . , xm} is the set of processors. Each xi ∈ X can be defined by a
boolean value preempt ∈ {true, false},

• S is the scheduling algorithm, S ∈ {FP,RM,DM, . . .} where FP=Fixed Priority,
RM=Rate Monotonic, DM=Deadline Monotonic, etc.

10

Liu and Layland defines up to 10 assumptions on the task model to analyze with
their schedulability test [54]:

• mono-processor (p1): there is just one processor,

• preemption (p2): all the tasks are fully preemptive,

• periodic tasks (p3): all the tasks are periodic,

• implicit deadlines (p4): all the tasks have a deadline equal to their period,

• independent tasks (p5): all the tasks are independent, that is, have no shared
resources or precedence constraints,

• bounded execution times (p6): all the tasks have a fixed execution time, or at
least a fixed upper bound on their execution time, which is no greater than their
period,

• no jitter (p7): all the tasks are released exactly at the beginning of periods,

• no self-suspension (p8): no task may voluntarily suspend itself,

• no overheads (p9): all overheads (i.e. extra delays, in particular the delays due
to scheduling and context switching) are assumed to be null,

• fixed priority (p10): all the tasks have a priority that is constant over time.

According to the input model defined previously and the assumptions given above,
we can define the preconditions with predicates in First-Order Logic:

PLL−test = {p1 ∧ . . . ∧ p10}

with

• p1 := {X | card(X) = 1}

• p2 := {∀xi ∈ X | preempt = true}

• p3 := {∀τi ∈ T | Ti 6= ∅}

• p4 := {∀τi ∈ T | Ti = Di}

• p5 := {G | card(V) = 0}

• p6 := {∀τi ∈ T | Ci ≤ Ti}

• p10 := {S | S = RM ∨ S = FP}

• p7, p8 and p9 are axioms, alternatively the data model could be extended with
any suitable data structure onto which those predicates could be expressed (for
example a graph explaining the task behaviors or a property variable associated
with a processor as done for p2).

11

Provided the respect of the preconditions, the schedulability test by Liu and Layland
computes the processor utilization factor U (see LL-test). According to the LL-test, there
is only one postcondition that determines the schedulability of the task set: QLL−test =
{q1} with

• q1 := {U | U ≤ card(X)(2
1

card(X) − 1)}

The next subsections presents a practical implementation of this formalism.

3.3. Analysis execution

In the previous section, we showed that an analysis can be made equivalent to a Hoare
triple. In particular, the preconditions are the properties to be true in an input model
to successfully execute an analysis. The postconditions are the properties guaranteed on
the model after the analysis execution. At run-time, we hence evaluate the preconditions
prior to execute the analysis, and check the postconditions at the end of the analysis
execution.

Figure 5 explains the analysis process in greater detail with a Process Flow Diagram.
At the very beginning, we verify the analysis preconditions on the model (1). If the
model fulfills the preconditions then we can carry out the analysis (2a). Otherwise, the
process terminates (2b). Lastly, we check the analysis postconditions (3). The process
ends whether the postconditions are confirmed or not.

In the next section, we show that a complete analysis, including preconditions and
postconditions, can be implemented via a constraint language. As an example, we use a
constraint language named REAL for the timing analysis of the Paparazzi UAV autopilot
software architecture written in AADL.

3.4. An example of implementation with the REAL constraint language

REAL at a glance. In former works, Gilles et al. [14] proposed REAL (Requirements
Enforcement and Analysis Language) to express and verify constraints on AADL models.
It has been designed as an AADL annex language and works with its own checker.

REAL considers theorems as basic execution units. A theorem expresses one or
more constraints to be checked on an AADL model based on model queries and analysis
capabilities. REAL provides key features for our application:

• it makes it possible to manipulate the elements of an AADL instance model as
sets (thread set, bus set, memory set, etc.) with getters for their properties
(get property value),

• it enables arithmetics operations with classical operators (+, −, ×, etc.) and high-
level functions (cardinal, min, max, etc.),

• it provides a syntax for predicate calculus with quantifiers (∀, ∃), logical operators
(¬, ∧, ∨, etc.) and predicate functions (is subcomponent of, is bound to, etc.).

12

Checking analysis

preconditions

Process starts

Are

the preconditions

met?

NO

YES

Process ends

Checking analysis

postconditions

Analysis

execution

(1)

(2a)

(3)

(2b)

analysis

preconditions

Model

(input

data)

starts

preconditions

YES

ends

analysis

postconditions

Analysis

execution

Result

(output

data)

Figure 5: Process Flowchart describing the analysis execution which depends on the verification of
analysis preconditions. The analysis result is checked at the end of the analysis execution.

13

Preconditions of the test of Liu and Layland. In Listing 2, the periodic tasks theorem
implements the precondition p3=“all the tasks are periodic”. The translation of the predi-
cate is straightforward: we check that the Period property is provided (property exists

predicate function) for each element in the task set (i.e. the thread set in the AADL
instance model).

The theorems needed to express the mono-processor (p1), preemption (p2), im-
plicit deadlines (p4), bounded execution times (p6), and fixed priority (p10)
preconditions are of similar complexity.

1 −− This theorem checks tha t a l l t a sks are per iod ic by checking by a period i s
def ined for each task

2 theorem p e r i o d i c t a s k s
3 foreach t in Thread Set do
4 check (p r op e r t y e x i s t s (t , ‘ ‘ Period ’ ’)) ;
5 end p e r i o d i c t a s k s ;

Listing 2: An example of REAL theorem. A REAL theorem expresses constraints on a AADL model.
The simple theorem here is used to check that the threads described in the model are periodic.

Listing 3 provides the theorem for the precondition p5=“all the tasks are inde-
pendent”. The independent tasks theorem requires that two sub-theorems are true:
no task precedences and no shared data.

The first sub-theorem assumes that a task precedence involves a connection between
two AADL threads (Is Connected To (t2, t1) with t1 and t2 are elements in the
thread set) and checks that the number of precedences is null (cardinal (task precedence)

= 0).
In the second sub-theorem, we assume that a shared data situation occurs when at

least two AADL threads access a same AADL data (Is Accessing To (t,d) with d in

Data Set and t in Threads Set). We thus check that at most one thread accesses each
data (Cardinal (accessor threads) <= 1).

Analysis and postconditions. Listing 4 shows the full implementation of the Liu and
Layland’s schedulability test with REAL theorems where the topmost theorem ll test

implements the actual schedulability test.
In this theorem, we first evaluate the preconditions under which the analysis is ap-

plicable (requires keyword at line 6). The preconditions are listed in the ll context

sub-theorem (lines 19 to 23) and fully defined in other sub-theorems (e.g. we presented
the periodic tasks and independent tasks theorems in the previous paragraphs, see
Listings 2 and 3). If the preconditions are met, then the test can be executed (the
requires command at line 6 aborts the main theorem if any predicate is false).

The analysis then executes (compute keyword at line 10). We calculate the processor
utilization factor (var U, line 10) via the processor utilization factor sub-theorem
(lines 30 to 34). This sub-theorem needs the set of threads, previously retrieved from
the AADL model at lines 9.

Lastly, we evaluate the postcondition (check keyword at line 12). We check that the
processor utilization factor is under the acceptable limit. If the test succeeds, then the
task set represented in the AADL model is schedulable.

14

1 −− independent tasks : t h i s theorem checks tha t tasks are mutual ly independent ,
i . e .

2 −− (1) tasks have no precedence r e l a t i on sh i p s
3 −− (2) tasks do not share (access) a same resource and
4

5 theorem i ndependent tasks
6 foreach e in Loca l Se t do −− the se t passed as a theorem argument (none)
7 requires (no ta sk s p r e c edence s and no shared data) ;
8 check (1=1) ;
9 end i ndependent tasks ;

10

11 −− subtheorem to check task precedences
12 theorem no ta sk s p r e c edence s
13 foreach t1 in Thread Set do
14 ta sk precedence := { t2 in Thread Set | Is Connected To (t2 , t1) } ;
15 check (Cardinal (ta sk precedence) = 0) ;
16 end no ta sk s p r e c edence s ;
17

18 −− subtheorem to check shared data
19 theorem no shared data
20 foreach d in Data Set do
21 a c c e s s o r t h r e ad s := { t in Thread Set | I s Acce s s ing To (t , d) } ;
22 check (Cardinal (a c c e s s o r t h r e ad s) <= 1) ;
23 end no shared data ;

Listing 3: Independent tasks theorem. The theorem on top checks that the threads in the AADL model
are independent: (1) a task cannot precede another, i.e. in AADL a thread cannot be connected to
another one (second theorem); (2) the threads cannot share data with each other (third theorem).

3.5. Summary

In this section, we formalized the analysis execution. We showed that an analysis
can be made equivalent to a Hoare triple {P} A {Q}. The preconditions P express the
properties that the model must satisfy prior to execute an analysis. The postconditions
Q express the properties that the analysis guarantees in return. Hence, a full analysis
requires to first validate the preconditions, secondly execute the analysis, and lastly check
the postconditions. We presented an implementation of this approach using the REAL
constraint language that works with AADL. Let us note that a similar experiment could
be performed with OCL on UML-based models. This approach has been applied for the
real-time scheduling analysis of a real system, the Paparazzi UAV.

The next section extends this work through the notion of contract to provide greater
automation of the analysis process.

4. Managing the analysis process

Preconditions and postconditions discussed in the previous section define the analysis
execution. Yet, except ensuring the applicability of an analysis, this does not provide
more automation support: e.g. which analysis can be applied on a given model? Which
are the analyses that meet a given goal? Are there analyses to be combined? Are there
interferences between analyses?

In this section, we firstly explain that analyses are an integral part of Model-Based
Systems Engineering approaches, supported for instance via the AADL language. We
then present contracts to define the interfaces of an analysis, and contract reasoning to
manage the analysis process. We present an implementation of this approach using Alloy.

15

1 −− l l t e s t : t h i s main theorem implements a s c h e du l a b i l i t y t e s t by Liu and
Layland

2

3 theorem l l t e s t
4 foreach e in Proce s so r Se t do
5 −− v e r i f i c a t i o n of the ana ly s i s precondi t ions
6 requires (l l c o n t e x t) ;
7 −− ana ly s i s computation
8 Proc Set (e) := {x in Proce s s Se t | Is Bound To (x , e) } ;
9 Threads := {x in Thread Set | Is Subcomponent Of (x , Proc Set) } ;

10 var U := compute p r o c e s s o r u t i l i z a t i o n f a c t o r (Threads) ;
11 −− v e r i f i c a t i o n of the ana ly s i s pos tcondi t ion
12 check (U <= (Cardinal (Threads) ∗ (2 ∗∗ (1 / Cardinal (Threads))) −1)) ;
13 end l l t e s t ;
14

15 −− subtheorem : v e r i f i c a t i o n of the t e s t assumptions
16

17 theorem l l c o n t e x t
18 foreach t in Thread Set do
19 requires (mono processor
20 and preemption and p e r i o d i c t a s k s
21 and imp l i c i t d e a d l i n e s and i ndependent tasks
22 and bounded execut ion t imes and f i x e d p r i o r i t y) ;
23 check (1=1) ;
24 end l l c o n t e x t ;
25

26 −− subtheorem : computation of the processor u t i l i z a t i o n fac tor
27

28 theorem p r o c e s s o r u t i l i z a t i o n f a c t o r
29 foreach e in Loca l Se t do −− the se t passed as a theorem argument (a

subse t of Thread Set)
30 var Period := ge t p rope r ty va lu e (e , ‘ ‘ per iod ’ ’) ;
31 var WCET := l a s t (g e t p r ope r ty va lu e (e , ‘ ‘ compute execut ion t ime ’ ’)) ;
32 var U := WCET/Period ;
33 return (MSum (U)) ;
34 end p r o c e s s o r u t i l i z a t i o n f a c t o r ;

Listing 4: A complete schedulability test implemented in REAL. The analysis starts in the theorem
on top. At line 6, the preconditions are verified by calling the second theorem. If all the assumptions
associated to the test are true, then the processor utilization factor is calculated by calling the third
theorem at line 10. The postconditions are finally checked at line 12.

16

4.1. Motivating context: analysis in a MBSE process supported by AADL

Architecture Description Languages provide a support for the Model-Based Engineer-
ing of real-time embedded systems. Figure 6 depicts an advanced design process based
on AADL modeling and systematic analysis of the AADL models:

1. the AADL model is the centerpiece of the process. The AADL model represents the
top-level architecture of the system. It describes the static software architecture
and the computer platform architecture with behavioral descriptions in a single
model,

2. analyses are carried out on the AADL model to provide feedback about the system
design, e.g. to assess the processor workload or analyze the schedulability of the
task set,

3. the system is progressively defined and validated via the successive modeling and
analysis steps. The end product files (executable files, configuration files, etc.) can
be fully or partially generated from high-level models.

captures

input - real-time

Specifications
document

- functional
- non-functional

Additional
extend

AnalysesAADL Model

System

Binaries,
configs, etc.

feedbacks (results)

generation

input - real-time
- safety
- etc.

- validation
- correction
- refinement
- etc.

Additional
models

- programs
- annexes
- etc.

extend

Figure 6: Model-Based Engineering process supported by AADL. The AADL model represents the
system architecture with functional and non-functional requirements. Analyses are conducted from
AADL analytical representations, e.g. to assess real-time or safety quality attributes. Finally, the end
product files such as the runnables can be generated.

How to manage the analysis process? We note that, apart from high-level principles and
abstract guidelines, MBSE tools such as OSATE (Open Source AADL Tool Environ-
ment) [49] provide little support to carry out the modeling and analysis steps.

Let us discuss a simple design flow represented with a directed graph in Figure 7.
The vertices represent the modeling and analysis activities, whereas the directed edges
represent the transitions between the activities:

• the designer starts by modeling the system with AADL (M vertex),

17

• the designer can apply an analysis (ll test vertex) to determine the schedulability
of the task set. To apply this schedulability test, the designer must check that
the analysis preconditions are true (ll context vertex) and compute the processor
utilization factor used by this analysis (comp U vertex),

• if the schedulability test succeeds, the model is validated (G vertex), if not the
model is to be corrected (M ′ vertex).

From Figure 7, we observe that the analysis process comprises several elements: (1)
models that must be analyzed (M , M ′); (2) goals that are the properties to be assessed
on those models (G); (3) analyses that can be applied on these model to meet the goals
(ll context, comp U , ll test). Hence, the problem for the designer is to decide the sound
analysis process to apply in presence of multiple models, analyses and goals: given a
model and a set of analyses, which is the analysis process that meets the goals?

M

comp Ull context

...
ll test

G M ′

...

initial AADL
model

compute the processor
utilization factor (U)

check that U is under
the acceptable limit

the task set
is schedulable

check the preconditions

corrected
AADL model

what is the processor

utilization factor?

are the preconditions to

apply the test true?

is the task set schedulable?

yes

no

yes no

+ correction

Figure 7: An example of design flow. The design flow involves modeling and analysis steps (represented
in red and white shapes respectively) to achieve a goal (green shape). Vertically: one must execute
several analyses in a precise order to determine whether the task set represented in the initial AADL
model is schedulable or not. If not the model must be corrected.

We must adopt a more systematic view to define and automatically compute analysis
18

features, e.g. interfaces and properties, during the design process. We present our
solutions in the next subsections:

• we first present contracts in subsection 4.2,

• we then explain how contracts can be used to automate the analysis process in
subsections 4.3, 4.4 and 4.5.

4.2. Contracts

We first remind the reader of the notion of contract which has been formerly intro-
duced in [61]. A contract K = (I,O,A,G), represented in Figure 8, formally defines the
interfaces of a model, an analysis or a goal (hereinafter referred to as the ‘element’) in
terms of data and properties:

• I are inputs: the data required by the element,

• O are outputs: the data provided by the element,

• A are assumptions: the properties required by the element,

• G are guarantees: the properties provided by the element.

Notice that the properties relate to preconditions and postconditions introduced in
section 3, whereas the data are the data from which these properties are computed.

K{I} {O}

{A}

{G}

“inputs” “outputs”

“assumptions”

“guarantees”

Figure 8: Representation of a contract. A contract formally defines the interfaces of a model, an analysis
or a goal in terms of required and provided data and properties. It specifies the data through inputs
and outputs, and properties via assumptions and guarantees.

For example, the contract for the Liu and Layland’s schedulability test (involving
computation of the processor utilization factor) can be defined as follows: KLL−test =
(I,O,A,G) with

• I = {Per,Exec,Sched, . . .}. The analysis inputs data from the model such as the
task periods (Per), execution times (Exec) or scheduling policy (Sched).

19

• O = {U}. The analysis computes (outputs) data about the model: the processor
utilization factor (U),

• A = “Liu and Layland’s assumptions” = {perTasks,boundedExec,fixedPrio, . . .}.
The analysis requires several properties to be true: tasks must be periodic (perTasks),
tasks have fixed or upper bounded execution times (boundedExec), etc.

• G = {isSched}. The analysis provides a guarantee on the model: the set of tasks
is schedulable or not (isSched).

In the next subsections, we explain how contracts can be used to automatically carry
out the analysis process.

4.3. Contract-driven analysis process

We propose the approach represented with a Process Flow Diagram in Figure 9. Our
approach relies on contracts to set up the analysis paths to be executed in order to reach
goals from an input model. The approach consists of 3 main steps.

At first, contracts must be defined for the design elements (i.e. models, analyses
and goals). Contracts specify the interfaces of an element with first-order logic formulas
from both the data (inputs/outputs) and properties (assumptions/guarantees) points of
view. Subsequently, contracts are evaluated, which translates into the problem of the
satisfiability of contract formulas. A satisfiable interpretation of the contracts defines an
analysis graph compliant with a model and a goal. Lastly, we can execute the analysis
graph, i.e. we visit the graph and execute the analyses.

In the following, Subsection 4.4 presents an implementation of contracts definition
and their evaluation using Alloy. Subsection 4.5 introduces the execution engine.

4.4. An example of implementation in Alloy

We implement contracts definition and their evaluation in Figure 9 by using the Alloy
specification language.

Alloy at a glance. Alloy is a language for expressing complex structural constraints com-
pleted with a tool for analyzing them [15]. It provides key advantages for our application:

• Alloy is a formal language with abstract and analytical notations that we use to
specify contracts,

• Alloy provides tool support to analyze an Alloy specification. We use the Alloy
analyzer to evaluate the contracts.

Contracts definition. Alloy is based on a specification that contains signatures. Signa-
tures may have fields to define relationships with other signatures. In addition, facts
express constraints on the signatures and fields. We define contracts with Alloy in two
parts:

• a basic signature specifies the structure of a contract: fields are not only used to
represent the contract interfaces (inputs, outputs, assumptions and guarantees)
but also dependencies with other contracts (nextHoriz and nextVertical). List-
ing 5 provides the contract structure in the Alloy syntax,

20

Contracts

definition
Analyses

Process starts

Contracts

evaluation

Models +

Goals

Analysis

graph

Contracts

Process ends

Analysis graph

execution

evaluation

Results

Goals graph

Figure 9: Process Flowchart for contract-driven analysis. The analysis process is executed according to
the definition and evaluation of contracts.

21

• signature facts specify the concrete constraints about a contract instance. For
example, Listing 6 shows an instance of contract called ll test that specifies the
interfaces of the schedulability test proposed by Liu and Layland [54] which is
explained briefly in subsection 3.1 (see Eq. LL-test). This contract specifies the
inputs, outputs, assumptions and guarantees of the analysis. For example,
this analysis requires a precise hierarchy of components in input: a system with
processors and threads, with periods defined for the threads, execution times, etc.

1 /∗Basic s ignatures manipulated in Al loy s p e c i f i c a t i on ∗/
2

3 /∗Def in i t ion of Data and Propert ies s i gnatures ∗/
4 abstract sig Data {}
5 abstract sig Property {}
6

7 /∗Def in i t ion of the s t ruc ture of a contract ∗/
8 abstract sig Contract{
9 // in t e r f a c e s

10 input : set Data , // required−provided data
11 output : set Data ,
12 assumption : set Property , // required−provided proper t i e s
13 guarantee : set Property ,
14 // r e l a t i on sh i p s with other contracts
15 nextHoriz : set Contract , // output−>input
16 nex tVe r t i c a l : set Contract // guarantee−>assumption
17 }

Listing 5: Basic signatures of the Alloy specification. Signatures in Alloy describe the entities to reason
about. Here, the contract signature specifies the structure of a contract: fields are not only used to
represent the contract interfaces (input, output, assumption and guarantee) but also dependencies
with other contracts (nextHoriz and nextVertical).

The Alloy specification is completed in Listing 7 with VerticalPrecedence and
HorizontalPrecedence facts. They define the logical conditions under which the nextHoriz
and nextVertical relationships hold between two contracts.

Contracts evaluation. The Alloy analyzer provides full and automatic analysis of an Alloy
specification. The Alloy analyzer is a model finder: it searches a model that satisfies the
logical formula generated from the Alloy specification. If there is a solution that makes
the formula true, Alloy will find it. Alloy offers several SAT solvers for this purpose.

For example, Figure 10 shows a solution as visualized in the Alloy environment for
the Paparazzi UAV case study. The Alloy visualizer represents the dependencies between
models, analyses and goals as a graph. In this example, the graph exhibits the analysis
paths that are to be executed to conclude about the schedulability of the Paparazzi UAV
autopilot software modeled in AADL.

We do not present each element of the analysis graph in detail but summarize the
information provided to the designer:

1. the Alloy analyzer finds the analyses which are directly applicable on the input
AADL model, i.e. 6 analyses are connected to the aadl model vertex,

2. it also finds all the dependencies between the analyses, i.e. 9 dependencies are
represented by edges between analyses,

3. it finally identifies the analyses to reach the goal, i.e. 3 analyses are connected to
the is schedulable vertex.

22

1 /∗ A data s t ruc ture in an AADL model ∗/
2 abstract sig Component extends Data {
3 subcomponents : set Component ,
4 type : lone ID ,
5 p r op e r t i e s : set ID
6 }
7

8 /∗ An ana ly s i s contract tha t uses the component data s t ruc ture ∗/
9 one sig l l t e s t extends Contract{

10 }{
11 // s p e c i f i c a t i on of input data s t ruc ture
12 input={S : Component |
13 S . type=system and (
14 some sub : S . subcomponents | sub . type =proce s s o r and (

s ch edu l i n g p r o t o c o l+preempt ive schedu l e r) in sub .
p r op e r t i e s) and (

15 some sub : S . subcomponents | sub . type=proce s s and
16 thread in sub . subcomponents . type and
17 (l e t th=sub . subcomponents & thread . ˜ type |
18 (d i s pa t ch p r o t o c o l +per iod +compute execut ion t ime

+p r i o r i t y+dead l ine) in th . p r op e r t i e s
19)
20)
21 }
22 // s p e c i f i c a t i on of output data s t ruc ture
23 //assumptions and guarantees
24 [. . .]
25 }

Listing 6: Specification of an analysis contract. Input/output fields are defined with respect to the
Component data structure used for AADL modeling. Here, the analysis expects a precise hierarchy of
components which consists of a system with processors and threads, with periods defined for the threads,
execution times, etc.

1 /∗ Predicate spec i f y ing contract inter−dependencies ∗/
2

3 //between inputs /outputs
4 fact Hor izonta lPrecedence {
5 a l l c cu r r en t : Contract |
6 c cu r r en t . nextHoriz={c next : Contract |
7 (c cu r r en t . output & c next . input != none) and
8 (a l l a : c cu r r en t . assumption | a in Contract . guarantee) and
9 (a l l a : c next . assumption | a in Contract . guarantee)

10 }
11

12 //between assumptions/guarantees
13 fact Vert i ca lPrecedence {
14 a l l c cu r r en t : Contract |
15 c cu r r en t . n ex tVe r t i c a l={c next : Contract |
16 (c cu r r en t . guarantee & c next . assumption != none)
17 }

Listing 7: Additional constraints on signatures and fields expressed with facts. Here, the inter-
dependencies between inputs/outputs and assumptions/guarantees fields of contracts are defined by
HorizontalPrecedence and VerticalPrecedence facts respectively

23

Figure 10: Visualization of a solution found by the Alloy analyzer for contracts specified in Alloy
(Paparazzi UAV case study). Here, the structure represents inter-dependencies and precedence order
between the models, analyses and goals involved in the analysis process. The solution returned by Alloy
can directly be used to execute the analyses.

Next, we can use the graph found by Alloy to execute the analyses. We discuss this
process in detail in subsection 4.5.

Performance of Alloy. We evaluated the strengths and shortcomings of an implemen-
tation relying on Alloy. We experimented the performance of Alloy on various AADL
models (the models are part of the AADLib project accessible online [19]):

• M1 : a multitasked real-time system implementing the ravenscar profile,

• M2 : a simple distributed real-time system,

• M3 : the mars pathfinder system,

• M4 : a simplified on-board satellite system,

• M5 : a Flight Management System (FMS),

• M6 : the Paparazzi unmanned aerial vehicle.

A major benefit of Alloy is that if a solution exists within the user-specified bounds,
it will always be found. Furthermore, the Alloy analyzer is able to find all the solutions
in the resolution scope. Concerning experimentations on the case studies, we were able
to find solutions for models of realistic complexity in a reasonable time, i.e. processing
times ranged from a few milliseconds for the simplest model to less than 3 minutes for
the most complex case which consists of 5 AADL models, for a total of 125 components
and 329 non-functional properties to handle at once. As disadvantages, the use of Alloy
requires a minimal expertise to define the contracts and, possibly, adjust manually the
resolution scope of the SAT solver. More exhaustive experimental results are presented
in [61].

24

4.5. Analysis graph execution

We can finally use the graph found by Alloy to execute the analyses in a sound order.

Visiting strategy. We could visit the analysis graph in many ways. In particular, the
chosen strategy must fulfill two constraints:

1. the graph must be visited in such a way that the data and the properties used by
an analysis are computed beforehand,

2. the analyses for which the assumptions are not validated must not be executed;
more widely, the analysis paths that include analyses for which the preconditions
are no met must be aborted.

We fulfill these requirements in two steps:

1. using a Breadth First Search (BFS) algorithm to enforce the precedences between
the analyses,

2. by computing the properties in their priority order, i.e. before executing the sub-
sequent analysis. When a precondition is not met, the subsequent analysis path is
removed from the execution stack.

According to this policy, the analysis graph found by Alloy for the Paparazzi UAV
case study (Figure 10, reproduced in Figure 11) is visited in the following order:

aadl model -> lss sporadic context -> ll context ->

periodic npfp context -> lss sporadic test -> ll test ->

rts periodic npfp -> isSched.

This execution stack enables to compute the data and the properties in a correct order.
In addition, if a property (represented with red arrows in Figure 11) is not satisfied the
subsequent elements are removed from the execution stack. For instance, if the property
computed by the ll context analysis is false then the subsequent ll test analysis
will not be executed. Notice that discarding a path does not prevent from reaching
the goal isSched if a correct alternative path exists: for example, one can execute
the periodic npfp context -> rts periodic npfp analysis path if the ll context ->

ll test path fails.

Execution of the Paparazzi UAV analysis graph. Let us consider task sets represented
in AADL models at different design stages of the Paparazzi UAV autopilot software
(the complete models can be found in [19]). These task sets have the following main
characteristics:

• Step 1: the AADL model describes periodic, non-preemptive tasks and task
scheduling is done according to a Fixed Priority scheduling algorithm,

• Step 2: we now rather consider preemptive tasks, still periodic and scheduled
according to a Fixed Priority algorithm,

• Step 3: we model the system more accurately and consider a mixture of periodic
and aperiodic tasks, with preemptive and Fixed Priority scheduling. Aperiodic
tasks are scheduled through a Sporadic Server [62].

25

Figure 11 represents the analysis paths executed at each different step. The analysis
paths shown with plain-blue arrows comprise the analyses used to verify the schedula-
bility of the task set from the AADL model: ll test is a schedulability test contributed
by Liu and Layland [54] (see subsection 3.1), lss sporadic test is another schedulability
test by Lehoczky [63], rts periodic npfp is a schedulability test based on response time
analysis [64]. Sub-paths shown with dashed-red arrows include analyses (i.e. ll context,
lss sporadic context and periodic npfp context analyses) needed to verify the precon-
ditions of the diverse schedulability tests. Table 1 summarizes the preconditions of the
schedulability tests.

Step 1 Step 2Step 3

Figure 11: Analysis paths executed at different design stages of the Paparazzi UAV autopilot software.
The analysis paths shown with plain-blue arrows comprise the analyses used to verify the schedulability
of the task set at each stage. Sub-paths shown with dashed-red arrows include analyses in order to verify
the preconditions of the diverse schedulability tests.

For example at step 3, we firstly check the preconditions of the schedulability tests via
the lss sporadic context, ll context and periodic npfp context analyses. The properties
computed by the ll context and periodic npfp context analyses are false because the
tasks are not periodic (see Table 1). Therefore, the preconditions of the ll test and
the rts periodic npfp analysis are not fulfilled, meaning that these analyses cannot be
executed. Alternatively, we can use the lss sporadic test as the properties computed by
the lss sporadic context analysis are true.

The lss sporadic test computes the amount of processor time that is used by the
set of tasks. In this case, the processor utilization factor encompasses two dimensions:
the fraction of processor time consumed by the periodic tasks Up and the fraction of
processor time used by the sporadic server Us. Lehoczky [63] proved there is a limit not
to be exceeded to ensure schedulability:

Up ≤ ln
2

Us + 1
(LSS-test)

According to the result of the lss sporadic test computed from task parameters de-
scribed in the AADL model this threshold is respected (Listing 8), meaning that the

26

hhhhhhhhhhhhhhhPrecondition
Analysis ll test

([54])
lss sporadic test

([63])
rts periodic npfp

([64])

mono-processor 3 3 3
preemption 3 3 7
fixed priority 3 3 3
periodic tasks 3 3 3
aperiodic tasks 7 31 7
jitters 7 7 ∅
implicit deadlines 3 3 ∅
bounded execution times 3 3 3
dependent tasks 7 7 7
self-suspension 7 7 7
overhead 7 7 7

1 aperiodic tasks must be scheduled via a Sporadic Server.

Table 1: Analysis preconditions for the Paparazzi case study. 3: the predicate must be true. 7: the
predicate must be false. ∅: no restriction.

system is schedulable under a Fixed Priority scheduling algorithm (priority assignment
is done according to the Rate Monotonic policy).

$ python main . py
[. . .]
Execute l s s s p o r a d i c t e s t . . .
l s s s p o r a d i c t e s t i s s a t i s f i e d , U i s 0 .673264 <= 0.676408064556 −> the ta sks set

i s s chedu lab l e !

Listing 8: Result of the lss sporadic test computed via our command-line tool for task parameters
described in the AADL model.

The analysis process at steps 1 and 2 applies the same strategy as step 3 but it
executes different analysis paths, as represented in Figure 11. Indeed, the input model
represents different task sets: non-preemptive scheduler and periodic tasks at step 1,
preemptive scheduler and periodic tasks at step 2. The complete experimental results
for the Paparazzi UAV case study can be found in [65].

4.6. Summary

This section presented a proposal to automate the analysis process. We firstly pre-
sented contracts to define the interfaces of an analysis in terms of data (inputs/outputs)
and properties (assumptions/guarantees). Then, we used SAT resolution methods to
reason about these interfaces. In particular, we were able to find: (1) the analyses that
were applicable on a model; (2) the analyses that met a given goal; (3) the data depen-
dencies that exhibited analysis paths. We showed that a specification language such as
Alloy could be used to support both the contracts definition and their evaluation with
associated SAT solvers. We also presented an execution of the graph found by Alloy for
the Paparazzi UAV modeled in AADL.

27

5. Discussion

In this article, we proposed solutions to systematize the analysis of non-functional
properties at design time and discussed our practical experience in applying them on a
real system, the Paparazzi UAV. This section discusses some potential extensions of our
approach.

Relaxing the initial work hypotheses. We believe that the concepts presented in this paper
provide enough generality to address many kinds of models and analyses, not only real-
time scheduling analysis of architectural models but also behavioral analysis based on
Petri Nets, dependability analysis such as Failure Modes and Effects Analysis (FMEA),
and so forth. An extension of our approach will require: (1) new accessors to address
various kinds of models (architectural, behavioral, etc.); (2) enriched contract interfaces
to express and evaluate new types of analysis interfaces, i.e. all types of data and prop-
erties that can be computed by analyses. Accessors towards other architectural models
have already been implemented for the implementation-oriented language CPAL [66, 65]
and we plan to implement them for other languages (e.g. UML-based languages SysML
and MARTE, synchronous dataflow languages).

Additional contract strategies. Another extension will be to enrich contracts with quality
metrics (e.g. computing time, precision of the result). This will allow to handle the
analysis dynamics more precisely: coarse-grained but fast analyses can be used during
the early design stages, e.g. for prototyping; in-depth and costly analyses are more
relevant at the last stages of the design process (before the implementation phase). We
note that the evaluation of the quality metrics adds little algorithmic complexity as it
can be performed on a weighted analysis graph, e.g. by looking for the shortest analysis
paths. Another advanced contract strategy will be to deal with analysis loops that occur
when a data or property required by an analysis is computed by another analysis from
a result of the first analysis. We will not need to modify contracts but to extend the
visitor to execute such analysis loops.

Providing user feedback. The concepts presented in this paper will help provide informa-
tion about the analysis process to the designer. We envision three main types of feedback
in addition to the raw analysis results:

• analysis solutions: the tool indicates the analyses that are applicable on a model,
the analyses that fulfill some of the goals, shows possible analysis combinations,
shows all analysis paths or only optimal analysis paths according to quality metrics
(e.g. complexity, speed, precision), . . .

• advanced analysis results: the tool explains analysis results, suggests corrections
to be made on a model, provides automatic integration of results in models, . . .

• debugging: the tool points out missing data to apply an analysis, provides a trace of
the analysis process, indicates which part of the analysis process is to be re-executed
when a model is modified, . . .

28

6. Conclusion

In this article, we presented solutions to systematize and then automate the analysis
of non-functional properties of embedded systems at design time.

Our motivation comes from the observation that: (1) Model-Based Systems Engi-
neering can be used to design and develop embedded systems; (2) there are numerous
modeling formalisms and analysis techniques to assess the quality of a system (e.g. real-
time scheduling theory, model checking, etc.); (3) the modeling and analysis techniques
remain poorly coupled together, in theory and in practice.

We thus proposed solutions to bridge modeling and analysis efforts. First, we for-
malized the analysis execution. We showed that an analysis is basically a program with
preconditions and postconditions. The preconditions are the properties to be true in an
input model prior to execute an analysis. The postconditions are the properties guaran-
teed on the model after the analysis execution. With preconditions and postconditions
satisfied, an analysis is complete and sound. Secondly, contracts formally define the in-
terfaces of an analysis in terms of processed data and properties, thereby enabling to
automatically reason about the analysis process. In particular, we are able to find: (1)
the analyses that are applicable on a model; (2) the analyses that meet a given goal; (3)
the data dependencies that exhibit analysis paths.

We presented an implementation of our approach using a combination of constraint
languages (REAL for run-time analysis) and specification languages (Alloy for describing
interfaces and reasoning about them). We validated this approach for the real-time
scheduling analysis of an existing embedded system: the Paparazzi UAV designed with
the Architecture Analysis and Design Language.

Future works will apply the approach presented in this article to other modeling
and analysis domains (e.g. behavioral or dependability), investigate advanced contract
strategies and how to provide rich analysis feedback to the designer.

References

[1] SAE International, Architecture Analysis and Design Language (AADL) AS-5506A, 2009.
[2] P. Cuenot, P. Frey, R. Johansson, H. Lonn, Y. Papadopoulos, M.-O. Reiser, A. Sandberg, D. Servat,

R. Tavakoli Kolagari, M. Torngren, M. Weber, The EAST-ADL Architecture Description Language
for Automotive Embedded Software, in: Model-Based Engineering of Embedded Real-Time Sys-
tems, Springer, ISBN 9783642162763, 297–307, 2011.

[3] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L. Maté, K. Nishikawa,
T. Scharnhorst, AUTomotive Open System ARchitecture - An Industry-Wide Initiative to Manage
the Complexity of Emerging Automotive E/E-Architectures, Convergence International Congress
& Exposition On Transportation Electronics (2004) 325–332.

[4] B. Selic, S. Gerard, Modeling and Analysis of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems, The MK/OMG Press, Morgan Kaufmann, ISBN
0124166199, 9780124166196, 2013.

[5] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Analysis, Design, The MK/OMG
Press, Morgan Kaufmann, ISBN 0123742749, 9780123742742, 2008.

[6] F. Singhoff, J. Legrand, L. Nana, L. Marcé, Cheddar: a flexible real time scheduling framework, in:
ACM SIGAda Ada Letters, vol. 24, ACM, 1–8, software available at http://beru.univ-brest.fr/

~singhoff/cheddar/, 2004.
[7] M. González Harbour, J. G. Garćıa, J. P. Gutiérrez, J. D. Moyano, Mast: Modeling and analysis

suite for real time applications, in: 13th Euromicro Conference on Real-Time Systems (ECRTS),
IEEE, 125–134, software available at http://mast.unican.es/, 2001.

[8] K. G. Larsen, P. Pettersson, W. Yi, UPPAAL in a nutshell, International Journal on Software Tools
for Technology Transfer (STTT) 1 (1) (1997) 134–152.

29

http://beru.univ-brest.fr/~singhoff/cheddar/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://mast.unican.es/

[9] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2010: A toolbox for the construction and
analysis of distributed processes, in: Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 372–387, 2011.

[10] Object Management Group (OMG), Meta Object Facility (MOF) Core Specification Version 2.5,
2015.

[11] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse modeling framework, Addison-
Wesley, ISBN 0321331885, 9780321331885, 2008.

[12] F. Jouault, I. Kurtev, Transforming models with ATL, in: Workshop on Model Transformations in
Practice (MTiP), 2005.

[13] J. B. Warmer, A. G. Kleppe, The object constraint language: getting your models ready for MDA,
Addison-Wesley, ISBN 0321179366, 9780321179364, 2003.

[14] O. Gilles, J. Hugues, Expressing and enforcing user-defined constraints of AADL models, in: 5th
UML and AADL Workshop (UML and AADL 2010), 2010.

[15] D. Jackson, Software Abstractions: logic, language, and analysis, MIT press, ISBN 0262017156 ,
9780262017152, 2012.

[16] P. Brisset, A. Drouin, M. Gorraz, P.-S. Huard, J. Tyler, The paparazzi solution, in: 2nd US-
European Competition and Workshop on Micro Air Vehicles (MAV), 2006.

[17] P. C. Clements, A survey of architecture description languages, in: Proceedings of the 8th interna-
tional workshop on software specification and design, IEEE Computer Society, 16, 1996.

[18] P. H. Feiler, D. P. Gluch, Model-Based Engineering with AADL: An Introduction to the SAE Ar-
chitecture Analysis & Design Language, Addison-Wesley, ISBN 0321888944, 9780321888945, 2012.

[19] Open AADL/AADLib – Library of reusable AADL Models, http://www.openaadl.org/aadlib.

html, (accessed January, 2017).
[20] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo,

J. Lehoczky, A. K. Mok, Real time scheduling theory: A historical perspective, Real-Time Systems
28 (2-3) (2004) 101–155.

[21] J. A. Estefan, Survey of Model-Based Systems Engineering (MBSE) Methodologies, Tech. Rep.,
INCOSE MBSE Initiative, 2007.

[22] J. Hugues, G. Brau, Analysis as a First-Class Citizen: An Application to Architecture Description
Languages, in: IEEE 17th International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 214–221, 2014.

[23] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow programming language
LUSTRE, in: Proceedings of the IEEE, vol. 79, IEEE, 1305–1320, 1991.

[24] A. Benveniste, P. Le Guernic, C. Jacquemot, Synchronous programming with events and relations:
the SIGNAL language and its semantics, Science of Computer Programming 16 (2) (1991) 103–149.

[25] G. Berry, G. Gonthier, The Esterel synchronous programming language: Design, semantics, imple-
mentation, Science of Computer Programming 19 (2) (1992) 87–152.

[26] J. Forget, A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Con-
straints, Ph.D. thesis, Université de Toulouse, 2009.

[27] P. Le Guernic, J.-P. Talpin, J.-C. Le Lann, Polychrony for system design, Journal of Circuits,
Systems, and Computers 12 (03) (2003) 261–303.

[28] G. Berry, SCADE: Synchronous design and validation of embedded control software, in: Next
Generation Design and Verification Methodologies for Distributed Embedded Control Systems,
Springer, 19–33, 2007.

[29] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, D. Lesens, Virtual execution of AADL models via
a translation into synchronous programs, in: 7th International Conference on Embedded Software
(EMSOFT), ACM, 134–143, 2007.

[30] Y. Ma, H. Yu, T. Gautier, P. L. Guernic, J. Talpin, L. Besnard, M. Heitz, Toward polychronous
analysis and validation for timed software architectures in AADL, in: Design, Automation and Test
in Europe (DATE), 1173–1178, 2013.

[31] Z. Yang, K. Hu, J.-P. Bodeveix, L. Pi, D. Ma, J.-P. Talpin, Two Formal Semantics of a Subset
of the AADL, in: 16th International Conference on Engineering of Complex Computer Systems
(ICECCS), IEEE, 344–349, 2011.

[32] O. Sokolsky, I. Lee, D. Clarke, Schedulability Analysis of AADL Models, in: 20th International
Parallel & Distributed Processing Symposium (IPDPS), IEEE, 2006.

[33] O. Sokolsky, A. Chernoguzov, Analysis of AADL Models Using Real-Time Calculus with Applica-
tions to Wireless Architectures, Tech. Rep. No. MS-CIS-08-25., University of Pennsylvania Depart-
ment of Computer and Information Science, 2008.

[34] M.-Y. Nam, K. Kang, R. Pellizzoni, K.-J. Park, J.-E. Kim, L. Sha, Modeling Towards Incremental

30

http://www.openaadl.org/aadlib.html
http://www.openaadl.org/aadlib.html

Early Analyzability of Networked Avionics Systems Using Virtual Integration, ACM Transactions
on Embedded Computing Systems (TECS) 11 (4) (2013) 81:1–81:23.

[35] X. Renault, F. Kordon, J. Hugues, Adapting models to model checkers, a case study: Analysing
AADL using time or colored petri nets, in: 20th International Symposium on Rapid System Pro-
totyping (RSP), IEEE, 26–33, 2009.

[36] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, F. Vernadat, Formal verification
of AADL specifications in the Topcased environment, in: 14th International Conference on Reliable
Software Technologies Ada-Europe, Springer, 207–221, 2009.

[37] P. C. Ölveczky, A. Boronat, J. Meseguer, Formal semantics and analysis of behavioral AADL models
in Real-Time Maude, in: Formal Techniques for Distributed Systems, Springer, 47–62, 2010.

[38] J. Hugues, B. Zalila, L. Pautet, F. Kordon, From the prototype to the final embedded system using
the Ocarina AADL tool suite, ACM Transactions on Embedded Computing Systems (TECS) 7 (4)
(2008) 42:1–42:25.

[39] A. Johnsen, K. Lundqvist, P. Pettersson, O. Jaradat, Automated verification of AADL-specifications
using UPPAAL, in: 14th International Symposium on High-Assurance Systems Engineering
(HASE), IEEE, 130–138, 2012.

[40] J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, Z. Yang, Towards a verified transformation
from AADL to the formal component-based language FIACRE, Science of Computer Programming
106 (2015) 30–53.

[41] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, From AADL Model to LNT Specification, in: 20th
International Conference on Reliable Software Technologies Ada-Europe, Springer, 146–161, 2015.

[42] B. Xu, M. Lu, A Survey On Verification And Analysis Of Non-Functional Properties Of AADL
Model Based On Model Transformation, in: 5th International Conference on Education, Manage-
ment, Information and Medicine (EMIM), Atlantis Press, 2015.

[43] A. Plantec, F. Singhoff, P. Dissaux, J. Legrand, Enforcing applicability of real-time scheduling
theory feasibility tests with the use of design-patterns, in: Leveraging Applications of Formal
Methods, Verification, and Validation, Springer, 4–17, 2010.

[44] P. Dissaux, F. Singhoff, Stood and cheddar: AADL as a pivot language for analysing performances of
real time architectures, in: 4th European Congress on Embedded Real Time Software and Systems
(ERTS), 21, 2008.

[45] V. Gaudel, F. Singhoff, A. Plantec, S. Rubini, P. Dissaux, J. Legrand, An Ada Design Pattern
Recognition Tool for AADL Performance Analysis, in: Annual International Conference on Special
Interest Group on the Ada Programming Language (SIGAda), ACM, 61–68, 2011.

[46] Y. Ouhammou, E. Grolleau, P. Richard, M. Richard, Reducing the Gap Between Design and
Scheduling, in: 20th International Conference on Real-Time and Network Systems (RTNS), ACM,
21–30, 2012.

[47] V. Gaudel, A. Plantec, F. Singhoff, J. Hugues, P. Dissaux, J. Legrand, Enforcing Software Engi-
neering Tools Interoperability: An Example with AADL Subsets, in: International Symposium on
Rapid System Prototyping (RSP), IEEE, 2013.

[48] I. Ruchkin, D. De Niz, S. Chaki, D. Garlan, Contract-based integration of cyber-physical analyses,
in: 14th International Conference on Embedded Software (EMSOFT), ACM, 23, 2014.

[49] Software Engineering Institute, OSATE2 : An open-source tool platform for AADLv2, https:

//wiki.sei.cmu.edu/aadl/index.php/Osate_2, 2016.
[50] B. Meyer, Applying “Design by Contract”, Computer 25 (10) (1992) 40–51.
[51] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, C. Sofronis, Multiple viewpoint

contract-based specification and design, in: Formal Methods for Components and Objects, Springer,
200–225, 2007.

[52] I. Ruchkin, D. De Niz, S. Chaki, D. Garlan, ACTIVE: A Tool for Integrating Analysis Contracts, in:
5th Analytic Virtual Integration of Cyber-Physical Systems Workshop (AVICPS), LiU Electronic
Press, 2014.

[53] Paparazzi - The Free Autopilot, http://wiki.paparazziuav.org/wiki/Main_Page, (accessed Jan-
uary, 2017).

[54] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment, Journal of the ACM (JACM) 20 (1) (1973) 46–61.

[55] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, M. De Michiel, Papabench: a free real-time bench-
mark, in: 6th International Workshop on Worst-Case Execution Time Analysis (WCET), 2006.

[56] Institut de Recherche en Informatique de Toulouse (TRACES team), PapaBench, https://www.

irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97, (accessed January, 2017).
[57] L. Sha, R. Rajkumar, J. P. Lehoczky, Priority inheritance protocols: An approach to real-time

31

https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
http://wiki.paparazziuav.org/wiki/Main_Page
https://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
https://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97

synchronization, IEEE Transactions on Computers (TC) 39 (9) (1990) 1175–1185.
[58] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. J. Wellings, Applying new scheduling theory

to static priority pre-emptive scheduling, Software Engineering Journal 8 (5) (1993) 284–292.
[59] R. I. Davis, A. Burns, A survey of hard real-time scheduling for multiprocessor systems, ACM

Computing Surveys (CSUR) 43 (4) (2011) 35.
[60] C. A. R. Hoare, An axiomatic basis for computer programming, Communications of the ACM

12 (10) (1969) 576–580.
[61] G. Brau, J. Hugues, N. Navet, A Contract-based approach for Goal-Driven Analysis, in: 18th In-

ternational Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), IEEE, 2015.

[62] B. Sprunt, L. Sha, J. Lehoczky, Aperiodic task scheduling for hard-real-time systems, Real-Time
Systems 1 (1) (1989) 27–60.

[63] J. P. Lehoczky, Enhanced aperiodic responsiveness in hard real-time environments, in: Proceedings
of the IEEE Symposium on Real-Time Systems, 261–270, 1987.

[64] J. Migge, Scheduling of recurrent tasks on one processor : a trajectory based model, Ph.D. thesis,
Université de Nice, 1999.

[65] G. Brau, Integration of the Analysis of Non-Functional Properties in Model-Driven Engineering for
Embedded Systems, Ph.D. thesis, University of Luxembourg, 2017.

[66] N. Navet, L. Fejoz, L. Havet, S. Altmeyer, Lean Model-Driven Development through Model-
Interpretation: the CPAL design flow, in: Embedded Real-Time Software and Systems (ERTS),
2016.

32

	Introduction
	Background and related works
	Background: modeling and analysis of real-time architectures
	Related works: systematizing the analysis of architectural models

	Defining the analysis execution
	Case study : real-time scheduling analysis of an unmanned aerial vehicle
	Semantics of an analysis
	Analysis execution
	An example of implementation with the REAL constraint language
	Summary

	Managing the analysis process
	Motivating context: analysis in a MBSE process supported by AADL
	Contracts
	Contract-driven analysis process
	An example of implementation in Alloy
	Analysis graph execution
	Summary

	Discussion
	Conclusion

