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La sindrome di G/BBB Opitz (OS) è un disordine genetico caratterizzato da difetti a carico 

della midline durante lo sviluppo. I pazienti maschi con la forma X-linked della sindrome di 

Opitz, causata da mutazione del gene MID1 con conseguente perdita di funzione, mostra un’alta 

variabilità nei sintomi clinici. MID1 codifica un’ubiquitina ligasi che controlla la fosfatasi 2A, 

ma il suo ruolo nella patogenesi di questa malattia è ancora poco chiaro. In questa tesi, descrivo 

una linea di topo in cui l’ortologo del gene umano MID1 non è funzionante. I topi knock out 

Mid1 mostrano un difetto anatomico del cervello presente anche nei pazienti, come l’ipoplasia 

della porzione anteriore del cervelletto e cioè del verme. Abbiamo osservato che la presenza di 

questo  difetto  è  correlata  con  la  coordinazione  motoria  e  i  deficit  nell’apprendimento 

procedurale e non associativo. Il difetto è limitato alla parte anteriore dei lobi del cervelletto, e 

in particolare la regione durante lo sviluppo cerebellare adiacente al midbrain dorsale. Analisi 

durante  la  gestazione  rivela  che  la  mancanza  di  Mid1  causa  l’accorciamento  della  parte 

posteriore del midbrain dorsale; la rostralizzazione del boundary midbrain/cervelletto;  la down 

regolazione di Fgf 17 che è un fattore chiave nello sviluppo di questa regione. La mancanza di 

Mid1 causa una mis-specificazione del boundary tra midbrain/cerebellum che comporta quindi 

un anormale sviluppo della parte anteriore dei lobi del cervelletto.  Questo animale modello 

rappresenta uno strumento per lo studio in vivo del ruolo fisiologico e patologico del gene Mid1 

ed infine un sistema per analizzare lo sviluppo e la funzione del dominio anteriore cerebellare.
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Opitz G/BBB Syndrome (OS) is  a genetic disorder characterized by midline developmental 

defects. Male patients with the X-linked form of OS, caused by loss-of-function mutations in 

the MID1 gene, show high variability of the clinical signs.  MID1 encodes an ubiquitin ligase 

that controls Phosphatase 2A but its role in the pathogenesis of the disease is still unclear. Here 

I report a mouse line carrying a non-functional ortholog of the human MID1 gene, Mid1. Mid1 

null mice show the brain anatomical defect observed in patients, i.e. hypoplasia of the anterior 

portion  of  the  medial  cerebellum,  the  vermis.  We  found  that  the  presence  of  this  defect 

correlates with motor coordination, procedural and non-associative learning impairments. The 

defect  is  limited  to  the  most  anterior  lobes  of  the  vermis,  the  region  of  the  developing 

cerebellum adjacent to the dorsal midbrain. Analyses at mid-gestation reveal that lack of Mid1 

causes  the  shortening  of  the  posterior  dorsal  midbrain;  the  rostralization  of  the 

midbrain/cerebellum boundary; and the down-regulation of a key player in the development of 

this region,  Fgf17. Thus, lack of  Mid1 causes a mis-specification of the midbrain/cerebellar 

boundary that results in an abnormal development of the most anterior cerebellar lobes. This 

animal model provides a tool for further  in vivo studies of the physiological and pathological 

role of the  Mid1 gene and a system to investigate the development and function of anterior 

cerebellar domains. 

8
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2.1 Opitz G/BBB syndrome

Opitz G/BBB syndrome (OS) is a congenital anomaly disorder characterized by developmental 

defects of midline structures (Opitz, 1987). OS patients present hypertelorism, hypospadias and 

laryngo-tracheo-esophageal anomalies (Fig. 1). They may also have cleft of lip and palate, heart 

defects, and anal anomalies (Robin et al., 1996). 

Opitz syndrome is genetically heterogeneous presenting with an autosomal dominant and an X-

linked form (Robin et al 1995). The two forms cannot be differentiated on the basis of the 

clinical phenotype and in both the phenotype is more complex and more severe in male than in 

female patients (Robin et al 1996).

The autosomal dominant form is linked to a large region in 22q11.2 but the gene (or the genes) 

responsible has not yet been identified (Robin et al 1995).

Conversely, the gene implicated in the X-linked form of OS, MID1 (MIM# 300552), has been 

identified on the short arm of the X chromosome (Xp22.3) (Quaderi et al., 1997). In male OS 

patients, mutations have been found scattered throughout the entire length of the MID1 gene, 

suggesting a loss of function mechanism as the basis of this developmental phenotype. 

In the X-linked OS form male patients manifest the clinical signs with variable expressivity 

whereas female carriers only show hypertelorism (Robin et al., 1995). A high percentage of X-

linked OS patients present mental retardation and developmental delay and approximately one 10



third of the patients subjected to MRI show anatomical brain abnormalities that mainly consist 

of hypoplasia of the anterior cerebellar vermis (Fontanella et al., 2008). 
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Fig. 1 - Opitz Syndrome in two patients in the same family. Hypertelorism, laryngo-tracheo-esophageal 

anomalies and cleft of lip and palate are typically of this syndrome (from Fontanella et al., Hum Mutat  

29:584-59).

2.2 Diagnosis/testing of Opitz Syndrome

The  diagnosis  of  X-linked  Opitz  G/BBB  syndrome  is  established  most  often  by  clinical 

findings. MID1 is the only gene currently known to be associated with X-linked Opitz G/BBB 

syndrome.  Sequence  analysis of  the  coding  exons and  intron-exon boundaries  or  mutation 

scanning using various techniques detects  deletions,  insertions, and missense, nonsense, and 

splice site mutations in 15%-45% of males with clinically diagnosed Opitz G/BBB syndrome. 

The cohorts tested for  MID1 mutations often include  simplex cases (i.e., individuals with no 

family history of Opitz G/BBB syndrome), who therefore cannot be determined to have either 

the X-linked form or the autosomal dominant form. The detection rate is higher in individuals 

with clear X-linked inheritance. The prevalence of X-linked Opitz G/BBB syndrome ranges 

from one in 50,000 to one in 100,000 males.

2.3 Management
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Treatment of manifestations: management of anomalies by a multidisciplinary team; surgical 

treatment of medically significant laryngo-tracheo-esophageal malformations; tracheostomy as 

needed; standard surgical management of hypospadias, cleft lip/palate, imperforate anus, heart 

defects; speech therapy; neuropsychological and educational support.  Prevention of secondary 

complications: antireflux measurements to minimize risk of aspiration.  Surveillance: based on 

the type of malformations present; regular monitoring of hearing for those with cleft lip/palate.

2.4 Genetic counseling

 X-linked Opitz G/BBB syndrome is inherited in an X-linked manner. In a family with more 

than one affected individual, the mother of an affected male is an obligate carrier. If the mother 

of  a  proband is  a  carrier,  the  chance  of  transmitting  the  disease-causing  mutation in  each 

pregnancy is 50%. Male offspring who inherit the mutation will be affected; female offspring 

who inherit the mutation will be carriers and will usually not be affected. Mildly affected males 

who have children will pass the disease-causing mutation to all of their daughters and none of 

their sons. 

2.5 Clinical Diagnosis

The manifestations of X-linked Opitz G/BBB syndrome can be divided into major and minor 

findings based on frequency of occurrence. The findings show variable expressivity in affected 

individuals, even within the same family. The minimum requirements for the diagnosis of X-

linked Opitz G/BBB syndrome are the presence of ocular hypertelorism at least one of the other 

13

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=variable-expressivity
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=disease-causing-mutation
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=carrier
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=mutation
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=mutation
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=disease-causing-mutation
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=carrier
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=proband
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=obligate-carrier
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=glossary&rendertype=def-item&id=affected


two major findings consistent with X-linked inheritance (Robin et al., 1996, De Falco et al., 

2003).

Major findings

% Ocular hypertelorism and/or telecanthus (found in 100% of affected individuals) 

% All  degrees  of  hypospadias  that,  in  the  most  severe  form,  can  be  associated  with  renal 

malformations (90%) 

% Laryngo-tracheo-esophageal abnormalities, primarily laryngeal cleft, resulting in swallowing 

difficulties and respiratory dysfunction (70%) 

Minor findings (found in <50% of individuals)

% Mental retardation and developmental delay 

% Cleft lip and/or palate 

% Congenital   heart defects such as ventricular septal defect (VSD) or atrial septal defect (ASD), 

persistent left superior vena cava, patent ductus arteriosus 

% Imperforate or ectopic anus 

% Midline defects of the brain, such as agenesis of the corpus callosum and cerebellar vermis 

agenesis or hypoplasia observed by magnetic resonance imaging (MRI) 

2.6 Genotype-Phenotype Correlations 14
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Missense, nonsense, splice site, and frameshift mutations, insertions, and deletions all result in 

the same variable  phenotype (Gaudenz et  al.,  1998,  Cox et  al  2000, De Falco et  al.,  2003, 

Winter et al., 2003, Pinson et al., 2004). The only exception is the observation of cerebellar 

anomalies  in  a  high  proportion  (4/5)  of  individuals  with  R495X, the  only recurrent  MID1 

mutation (Cox et al., 2000, De Falco et al., 2003, Pinson et al., 2004) and with the recently 

proposed correlation of a mild phenotype associated with mutations in the fibronectin type III 

domain of the protein (Mnayer et al., 2006).  Opitz G/BBB syndrome was first reported as two 

separate entities, BBB syndrome (Opitz, Summitt et al., 1969) and G syndrome (Opitz, Frias et 

al., 1969). Subsequently, it has become apparent that the two syndromes identified in 1969 are 

in fact a single entity, now named Opitz G/BBB syndrome.

2.7 MID1

The gene  responsible  for  the  X-linked form of  OS is  MID1  (Quaderi  et  al.,  1997).  MID1 

encodes an ubiquitin ligase that belongs to the Tripartite Motif (TRIM) family (Fig. 2). Indeed, 

MID1 is composed of a RING domain, two B-Box domains and a Coiled-Coil region (Tripartite 

Motif) and a subsequent FNIII and SPRY domains (Meroni and Diez-Roux, 2005). MID1 is 

associated with the microtubules (MT) and regulates the level of MT-associated Phosphatase 2A 

(PP2A) by binding alpha4 (Cainarca et  al.,  1999;  Schweiger  et  al.,  1999;  Liu et  al.,  2001; 15
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Trockenbacher  et  al.,  2001).  Recent  data  indicate  that  MID1 is  involved in  TNFα-induced 

p38MAPK-mediated apoptosis through the interaction with the alpha4/PP2A complex (Prickett 

and Brautigan, 2007). Mid1 expression during development was investigated in mouse, chicken 

and human.  Mid1 is almost ubiquitously expressed at early embryonic stages becoming more 

restricted to the tissues involved in the disease during organogenesis (Dal Zotto et al., 1998; 

Richman et al., 2002; Pinson et al., 2004). In early chick development, Mid1 is also expressed 

on the right side ectoderm of the Hensen’s node (Granata  and Quaderi,  2003).  Despite  the 

biochemical and expression data, the role of MID1 in development and in the pathogenesis of 

OS  is  still  obscure.  The  mutations  found  in  OS  patients  indicate  loss  of  function  as  the 

mechanism underlying the disease.

Fig.2 - MID1structure composed of a RING domain,  two B-Box domains and a Coiled-Coil  region 
(Tripartite Motif) and a subsequent FNIII and SPRY domains

                         

2.8 The cerebellum

Although it represents only 10% of the total brain volume — hence the Latin name meaning 

‘little brain’— the mature cerebellum contains more than half of our neurons. It is therefore no 
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surprise that the cerebellum has a central role in our daily living. The cerebellum acts as a 

coordination centre, using sensory inputs from the periphery to fine-tune our movement and 

balance. Sensory information about movement and the position of body parts is sent to the so-

called  ‘pre-cerebellar  system’,  a  group  of  nuclei  in  the  brainstem. These  nuclei,  with  the 

exception of the inferior olivary nucleus, in turn project to granule neurons, which communicate 

with the Purkinje cells  of the cerebellum. The axons of the inferior olivary nucleus project 

directly to Purkinje cells. Granule neurons are glutamate- releasing, excitatory neurons, whereas 

Purkinje cells are inhibitory, using GABA (γ-aminobutyric acid) as their transmitter. There are 

three additional classes of cerebellar neuron: GOLGI cells, which contain GABA and glycine, 

and provide feedback inhibition to granule neurons, and the GABA-releasing STELLATE and 

BASKET cells, which modulate Purkinje cell output. The Purkinje neurons provide the primary 

output from the cerebellar cortex, projecting to the deep cerebellar nuclei. The neurons of the 

deep cerebellar nuclei finally project to the cerebral cortex, mediating the fine control of motor 

movements and balance. In addition to coordinating motion, the cerebellum has been implicated 

in motor learning and higher cognitive functions, but the circuitry involved in these activities is 

not yet understood. 

Although the cerebellum is one of the first structures of the brain to differentiate, it achieves its 

mature configuration only many months after birth. This protracted development renders the 

cerebellum one of the more accessible brain structures to study. 

2.9 Cerebellar development
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The cerebellum develops from the dorsal region of the posterior neural tube. The embryonic 

cerebellum begins as little more than symmetric bulges into the early fourth ventricle: cerebellar 

hemispheres arise as mere buds from laminae on either side of the rhombencephalic midline, 

and the most rostral  segment of the metencephalon produces outgrowths that form the first 

elements of the cerebellum. These lateral elements develop towards the midline and fuse in a 

rostral to caudal direction. As the primitive hemispheres come into contact with each other, they 

form first  the  superior and  then  the  inferior  vermis.  The  lateral  elements  from this  fusion 

develop into the cerebellar hemispheres (Fig.3). 

Cells in the cerebellum arise from two different germinal matrices. From the ventricular zone, 

cells  radiate  laterally and  evolve  into  the  deep  cerebellar  nuclei  and  Purkinje cells  of  the 

cerebellar cortex. The first cells to be born become the deep cerebellar nuclei at about week 

eight in human embryogenesis. At week nine, the ventricular zone begins to produce cells that 

will  eventually  form  the Purkinje  neurons.  By  24  weeks,  these  proto-Purkinje  cells  send 

dendrites to the parallel  fibers of the granule neurons. The full  number of Purkinje cells  is 

present  early  on,  but  their  mature  monolayer  forms  some time  between  16  and  28  weeks 

postnatal.

Purkinje cells continue their maturation after birth, projecting to the deep cerebellar nuclei and 

refining the input they receive from the climbing fibers of inferior olivary neurons 

From the ventricular zone, a third population of neurons is born after the formation of Purkinje 

cells. These neurons include the stellate, basket and Golgi interneurons that can be found in the 

molecular layer. 

These  three  kinds  of  neurons  have  a  modulatory  action on  the  Purkinje  cells  and  granule 

neurons. 18



Unlike  most  of  the  cell  types  of  the  cerebellum,  which are  born  at  the  ventricular  zone, 

cerebellar  granule neurons come from a specialized germinal matrix called the rhombic lip. 

Migration of these primitive cells over the surface of the cerebellum starts as early as week 11 

in humans; neuronal elements are present in the external granular layer (EGL) by week 27 (Fig. 

4). Around birth, the granule neurons start they inward migration through the PC to find their 

final location in the internal granule layer (IGL). In the meanwhile, the smooth surface of the 

cerebellum starts the process of foliation, a series of remodelling steps that confer the final 

species/specific  lobular architecture (Wang and Zoghbi,  2001; Chizhikov and Millen,  2003; 

Sillitoe and Joyner, 2007).  

                                      

Fig. 3 - Cerebellum structure with central vermis and two lateral hemispheres with the typical lobular 
architecture.
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Fig. 4 - Schematic diagram of the developing cerebellum from E=9.5 to P15 demonstrating the extensive 

neuronal migrations that are required to achieve the final laminar structure of the adult cerebellum. In all 

diagrams ventricular zone (VZ) is yellow, Purkinje cell layer (PC) is white, external (EGL) and internal 

(IGL) granule cell layers are blue, and molecular layer (ML) is brown. Purkinje cells are red, granule 

cells are black and cells of deep cerebellar nuclei (DCN) are pink. The arrows show the directions of the 

cellular migration. 

2.10 Genes in the developing cerebellar primordium 

The  neural  tube  can  be  thought  of  as  comprising  four different  regions  during  early 

development. The most anterior portion of the neural tube, the prosencephalon, gives rise to the 20



forebrain. The mesencephalon, just caudal to the prosencephalon, gives rise to the midbrain, 

whereas hindbrain regions evolve from the metencephalon and myelencephalon. 

The proper patterning of the mesencephalon and the metencephalon is dependent on molecular 

signals released from the ISTHMUS organizer (IO), which is located just caudal to the junction 

of these two regions. Morphologically, this region is marked by a sharp bend of the neural tube. 

It has been shown in various mouse mutants, as well as in transplant experiments, that the IO is 

necessary and sufficient for patterning the mid- hindbrain region from the neural tube. The IO 

is, in turn, set up by the expression of a complex array of genes. Two, in particular, are central 

to its development: Otx2, one of the mouse homologues of the Drosophila gene orthodenticle, 

and Gbx2, a homologue of the Drosophila gene unplugged. At embryonic day (E) 7.75, Otx2 is 

expressed  in  the  mesencephalon,  with  a  posterior  boundary  at  the  rostral  metencephalon, 

whereas Gbx2  expression  in  the  metencephalon  is  bounded anteriorly  by  the  caudal 

mesencephalon  (Ang et al.,  1996; Wassaman et al., 1997). The sharp boundary  between the 

expression domains of these two genes reflects their reciprocal repression (Broccoli et al., 1999; 

Millet et al., 1999). In addition to helping form the IO molecularly, Gbx2and Otx2 also regulate 

the expression of Fgf8 (fibroblast growth factor 8); Otx2 negatively regulates Fgf8 expression, 

whereas Gbx2 maintains it  (Broccoli et al., 1999; Millet et al., 1999; Martinez et al., 1999). 

Fgf8 is involved in regulating the various genes expressed in the mid- and hindbrain regions. 

Mutant mice with a reduced level of Fgf8 expression have a severe patterning defect of the 

mid-/hindbrain region, which usually affects the cerebellum  (Meyers et al.,  1998). Fgf8 is a 

diffusible  factor  that  exerts  its  action  partially  by  inducing  the  expression  of  wingless-

homologue 1 (Wnt1) through Lim homeobox 1b (Lmx1b)  (Reifers et al., 1998; Adams et al., 21



2000). Wnt1, in turn, maintains the expression of Engrailed (En1)  (McMahon et  al.,  1992), 

which then positively regulates Fgf8 expression, completing the feedback regulatory loop.

Although the cross-regulation between Wnt1,  En1 and Fgf8 is  beginning to  be understood, 

several other genes that are not part of this pathway are also important in patterning of the 

mid-/hindbrain region. The paired box genes Pax2 and Pax5 are expressed in the mid-/hind- 

brain region. Pax2-null mice never develop a cerebellum or posterior mesencephalon (Favor et 

al., 1996). Although Pax5 mutants have only a mild phenotype in the mid-/hind- brain region, 

mice  with  a  Pax5  mutation  against  a  Pax2  sensitized  background  lack  a  cerebellum  and 

posterior midbrain  (Urbanek  et  al.,  1997). Pax2  and  Pax5  might  also  be  involved  in  the 

regulation of En1, Wnt1 and other patterning genes, and together constitute another positive 

regulatory loop (Broccoli et al., 1999). 

The Hox gene family, which has an active role in patterning the hindbrain, seems to help to 

restrict the development of metencephalon structures into the myelencephalon. For example, 

Hoxa2 (homeobox A2), the most anteriorly expressed Hox gene, probably marks the caudal 

limit of the cerebellar anlage at rhombomere 1.

Bone morphogenetic proteins (Bmps) and sonic hedgehog (Shh) govern neuronal fates in the 

spinal cord; they have also been implicated in dorso-ventral patterning of the mid-/hindbrain 

region.  Bmps  can  induce the  cerebellar  granule  neuron  marker  mouseatonal homologue  1 

(Math1) when expressed in the ventral neural tube of the region (Alder et al., 1999), and ectopic 

expression of SHH in the chick dorsal neural tube leads to ventralization of the neural tube and 

disruption of the mid-/hind- brain region (Zhang et al., 2000). Cerebellar development is also 

affected by ectopic expression of Shh, which leads to defects of the midline of the neural tube 

(Zhang et al., 2000). In sum, the reciprocal repression of Otx2 and Gbx2 forms the IO, which in 22



turn uses Fgf8 and En1 to pattern the prospective mid-/hindbrain region. Cells from both the 

mesencephalon and the metencephalon give rise to cerebellar tissues. 

2.11 Cellular component

Purkinje  cells -  These  cells are  some  of  the  largest  neurons in  the  human  brain,  with  an 

intricately  elaborate  dendritic arbor,  characterized  by  a  large  number  of  dendritic  spines. 

Purkinje cells are found within the Purkinje layer in the cerebellum. Purkinje cells are aligned 

like  dominos stacked one in front of the other. Their large dendritic arbors form nearly  two-

dimensional layers through which  parallel fibers from the deeper-layers pass. These parallel 

fibers make relatively weaker excitatory (glutamatergic) synapses to spines in the Purkinje cell 

dendrite, whereas  climbing fibers originating from the inferior olivary nucleus in the medulla 

provide very powerful excitatory input to the proximal dendrites and cell soma. Parallel fibers 

pass  orthogonally through the Purkinje neuron's dendritic arbor, with up to 200,000 parallel 

fibers forming a  Granule-cell-Purkinje-cell synapse with a single Purkinje cell (Llinas et al., 

2004). Each Purkinje cell receives a synapse from only a single climbing fiber. Both basket and 

stellate cells (found in the cerebellar molecular layer) provide inhibitory (GABAergic) input to 

the Purkinje cell,  with basket cells synapsing on the Purkinje cell  axon initial  segment and 

stellate cells onto the dendrites.

Purkinje cells send inhibitory projections to the deep cerebellar nuclei, and constitute the sole 

output of all motor coordination in the cerebellar cortex.

Granule cells -  Cerebellar  granule cells, in contrast to Purkinje cells, are among the smallest 

neurons in the brain. They are also easily the most numerous neurons in the brain: In humans, 23
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estimates of their total number average around 50 billion, which means that about 3/4 of the 

brain's neurons are cerebellar granule cells. Their cell bodies are packed into a thick layer at the 

bottom of the cerebellar cortex. A granule cell emits only four to five dendrites, each of which 

ends in an enlargement called a  dendritic claw  (Llinas et al., 2004). These enlargements are 

sites of excitatory input from mossy fibers and inhibitory input from Golgi cells.

The thin, unmyelinated axons of granule cells rise vertically to the upper (molecular) layer of 

the cortex, where they split in two, with each branch traveling horizontally to form a parallel 

fiber; the splitting of the vertical branch into two horizontal branches gives rise to a distinctive 

"T" shape. A parallel fiber runs for an average of 3 mm in each direction from the split, for a 

total length of about 6 mm (about 1/10 of the total width of the cortical layer). As they run 

along, the parallel fibers pass through the dendritic trees of Purkinje cells, contacting one of 

every 3–5 that they pass, making a total  of 80–100 synaptic connections with Purkinje cell 

dendritic  spines.  Granule  cells  use  glutamate as  their  neurotransmitter,  and  therefore  exert 

excitatory effects on their targets.

Mossy fibers -  Mossy fibers enter the granular layer from their points of origin, many arising 

from the  pontine  nuclei,  others  from the  spinal  cord,  vestibular  nuclei,  etc.  In  the  human 

cerebellum, the total number of mossy fibers has been estimated at about 200 million (Llinas et 

al., 2004). These fibers form excitatory synapses with the granule cells and the cells of the deep 

cerebellar nuclei. Within the granular layer, a mossy fiber generates a series of enlargements 

called rosettes. The contacts between mossy fibers and granule cell dendrites take place within 

structures called glomeruli. Each glomerulus has a mossy fiber rosette at its center, and up to 20 

granule cell dendritic claws contacting it. Terminals from Golgi cells infiltrate the structure and 

make inhibitory synapses onto the granule cell dendrites. The entire assemblage is surrounded 24
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by a sheath of glial cells. Each mossy fiber sends collateral branches to several cerebellar folia, 

generating a total of 20–30 rosettes; thus a single mossy fiber makes contact with an estimated 

400–600 granule cells. 

Climbing fibers - Purkinje cells also receive input from the inferior olivary nucleus (IO) on the 

contra lateral side of the brainstem, via  climbing fibers. Although the IO lies in the medulla 

oblongata, and receives input from the spinal cord, brainstem, and cerebral cortex, its output 

goes entirely to the cerebellum. A climbing fiber gives off collaterals to the deep cerebellar 

nuclei before entering the cerebellar cortex, where it splits into about 10 terminal branches, 

each of which innervates a single Purkinje cell. In striking contrast to the 100,000-plus inputs 

from parallel fibers, each Purkinje cell receives input from exactly one climbing fiber; but this 

single fiber "climbs" the dendrites of the Purkinje cell, winding around them and making a total 

of up to 300 synapses as it goes (Llinas et al., 2004). The net input is so strong that a single 

action potential from a climbing fiber is capable of producing an extended complex spike in the 

Purkinje cell: a burst of several spikes in a row, with diminishing amplitude, followed by a 

pause during which activity is suppressed. The climbing fiber synapses cover the cell body and 

proximal dendrites; this zone is devoid of parallel fiber inputs. 

Climbing fibers fire at low rates, but a single climbing fiber action potential induces a burst of 

several  action  potentials  in  a  target  Purkinje  cell  (a  complex  spike).  The  contrast  between 

parallel  fiber  and climbing fiber  inputs  to  Purkinje  cells  (over  100,000 of  one type versus 

exactly one of the other type) is perhaps the most provocative feature of cerebellar anatomy, 

and has motivated much of the theorizing. In fact, the function of climbing fibers is the most 

controversial topic concerning the cerebellum. There are two schools of thought, one following 25
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Marr and Albus in holding that climbing fiber input serves primarily as a teaching signal, the 

other holding that  its  function is  to  shape cerebellar  output  directly.  Both views have been 

defended in great length in numerous publications. In the words of one review, "In trying to 

synthesize the various hypotheses on the function of the climbing fibers, one has the sense of 

looking at a drawing by Escher. Each point of view seems to account for a certain collection of 

findings, but when one attempts to put the different views together, a coherent picture of what 

the climbing fibers are doing does not appear. For the majority of researchers, the climbing 

fibers signal errors in motor performance, either in the usual manner of discharge frequency 

modulation or as a single announcement of an 'unexpected event'. For other investigators, the 

message lies  in  the degree of  ensemble  synchrony and rhythmicity among a population  of 

climbing fibers. 

Deep nuclei - Cross-section of human cerebellum, showing the dentate nucleus, as well as the 

pons and inferior olivary nucleus. The deep nuclei of the cerebellum are clusters of gray matter 

lying within the white matter at the core of the cerebellum. They are, with the minor exception 

of the nearby vestibular nuclei, the sole sources of output from the cerebellum. These nuclei 

receive collateral projections from mossy fibers and climbing fibers, as well as inhibitory input 

from the Purkinje cells of the cerebellar  cortex.  The three nuclei  (dentate,  interpositus,  and 

fastigial) each communicate with different parts of the brain and cerebellar cortex. The fastigial 

and interpositus nuclei belong to the spinocerebellum. The dentate nucleus, which in mammals 

is  much  larger  than  the  others,  is  formed  as  a  thin,  convoluted  layer  of  gray  matter,  and 

communicates exclusively with the lateral parts of the cerebellar cortex. The flocculonodular 

lobe is the only part of the cerebellar cortex that does not project to the deep nuclei — its output 

goes to the vestibular nuclei instead (Llinas et al., 2004).26
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The majority of neurons in the deep nuclei has large cell bodies and spherical dendritic trees 

with a radius of about 400 μm, and use glutamate as their neurotransmitter. These cells project 

to a variety of targets outside the cerebellum. Intermixed with them is a lesser number of small 

cells,  which  use  GABA as  neurotransmitter  and  project  exclusively  to  the  inferior  olivary 

nucleus,  the  source  of  climbing  fibers.  Thus,  the  nucleo-olivary  projection  provides  an 

inhibitory feedback to match the excitatory projection of climbing fibers to the nuclei. There is 

evidence that each small cluster of nuclear cells projects to the same cluster of olivary cells that 

send climbing fibers to it; there is strong and matching topography in both directions. 

When a Purkinje cell axon enters one of the deep nuclei, it branches to make contact with both 

large and small nuclear cells, but the total number of cells contacted is only about 35 (in cats).
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2.12 History

The distinctive appearance of the cerebellum caused even the earliest anatomists to recognize it. 

Aristotle and Galen, however, did not consider it  truly part of the brain: They called it the 

parencephalon ("same-as-brain"), as opposed to the encephalon or brain proper. Galen was the 

first to give an extensive description, noting that the cerebellar tissue seemed more solid than 

the rest of the brain he speculated that its function is to strengthen the motor nerves. 

Further significant developments did not come until the Renaissance.  Vesalius discussed the 

cerebellum briefly, and the anatomy was described more thoroughly by Thomas Willis in 1664. 

More anatomical work was done during the 18th century, but it was not until early in the 19th 

century that the first insights into the function of the cerebellum were obtained. Luigi Rolando 

in 1809 established the key insight that damage to the cerebellum results in motor disturbances. 

Jean Pierre Flourens in the first half of the 19th century carried out detailed experimental work, 

which  revealed  that  animals  with  cerebellar  damage  can  still  move,  but  with  a  loss  of 

coordination (strange movements, awkward gait,  and muscular weakness), and that recovery 

after the lesion can be nearly complete unless the lesion is very extensive. By the dawn of the 

20th century,  it  was widely accepted that the primary function of the cerebellum relates to 

motor control; the first half of the 20th century produced several detailed descriptions of the 

clinical symptoms associated with cerebellar disease in humans. 
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3.1 Animals

All mouse were housed and handled in accordance with guidelines of the Institutional Animal 

Care and Use Committee, Cardarelli Hospital, Naples, Italy. Mid1-/+  heterozygous females were 

generated by mating the male chimeras obtained upon injection of a  Mid1-/Y ES clone with 

C57BL/6 females. Mid1-/Y mice and their Mid1+/Y control littermates were generated by mating 

heterozygous female with wild-type males. Mice were bred for 10 generations with C57BL/6 

mice to generate and analyze the mutant mice in a pure genetic background.  

3.2 Tissue preparation 

Mice  were  anesthetized  and  perfused  transcardially  with  4% paraformaldehyde.  Adult  and 

postnatal brains were harvested and processed using standard procedures either for embedding 

in OCT and cryosectioning (20 µm) or agarose embedding and vibratome sectioning (50 µm). 

For  time-pregnant  mice,  the  day  of  the  vaginal  plug  was  designated  E0.5.  Embryos  were 

collected, fixed in 4% paraformaldehyde, embedded in OCT and cryosectioned (20 µm). 

3.3 RNA in situ hybridization (ISH)  

Digoxigenin-labeled anti-sense riboprobes were generated for  Pax2,  Otx2,  En1 (V. Broccoli, 

DiBIT Milan, Italy),  Fgf17 (D. Ornitz, Washington University School of Medicine, St. Louis, 

Missouri) and ISH performed on cryosections (Surace et al., 2000).  The sections were treated 

in RIPA buffer (Igepal 1%, NaCl 150mM, Na deoxycholate 0.5%, SDS 0.1%, EDTA 1mM and 30



Tris PH=8.0 50mM) and after fixed in 4% paraformaldeyde at room temperature for 15 min. 

The sections were washed in Pbs 1X and treated with Triethenolammine and Acetic Acid for 15 

min,  and  Prehybridized  for  1  hour  at  room temperature  with 300  µl  of  Hybridation  buffer 

(Formammide 50%, SSC 5X, Denhardts 5X, Herring sperm DNA 500 µg/ml and Yeast RNA 

250 µg/ml) for each slides. The Hybridation with the probe was performed O.N. in a humidified 

chamber at 70 C. The second day the sections were washed in MABT (Maleic Acid 100mM 

pH=7.5, NaCl 150mM and Tween-20 0.1%) and blocked in a buffer composed by MABT and 

10% sheep serum for 1 hour at room temperature. The slides were incubated with anti-DIG 

antibody diluited 1: 2000 O.N. at 4 C. The third day the sections were washed in a buffer (Tris 

PH=9.5  100mM,  MgCl2  50ml,  NaCl  100mM  and  Tween-20  0.1%)  for  30  min.  at  room 

temperature and developed in the dark with NBT – BCIP Sigma.

3.4 Immunohistochemistry and Histology

Immunohistochemistry was performed using standard protocols.

Anti-Calbindin antibody: sections were washed in  Phosphatebufferedsaline (PBS 1X) buffer 

(10Mm Tris-HCl, 200mM NaCl, 0.05% NP 40, 0.05% TWEEN 20) and treated in ethanol and 

hydrogen  peroxide.  The  cryosections  were  blocked  with  a  blocking  solution  composed  of 

PBS1X and 20% NBS (Normal Bovine Serum) for 30min at room temperature and incubated 

with anti-Calbindin (Swant, Bellinzona, Switzerland; 1:20,000 on postnatal vibratome sections; 

1:2,000 on embryo cryosections) over night at 4 C. The second day the antibody was detected 

detected using anti-rabbit  biotinylated secondary antibody (1:200)  and the ABC kit  (Vector 

Laboratories). 31



Anti-Ki67 antibody: Cryosections were washed in  Phosphatebufferedsaline (PBS 1X) buffer 

(Tris-HCl 10mM, NaCl 200mM, NP 40 0.05%, TWEEN 20 0.05%) then treated in citric buffer. 

After a brief wash in PBS 1X the sections were blocked in a standard blocking solution for 1 

hour at room temperature and incubated with anti-Ki67 (DakoCytomation monoclonal rat anti-

mouse, Clone TEC-3 cod. M7249)  over night at 4 C.

The second day, the slides were treated with PBS 1X and hydrogen peroxide and detected using 

anti-rat biotinylated secondary antibody (1: 200) and the ABC kit (Vector Laboratories).

Anti-phopspho Histone  H3: Crosections  were washed in  Phosphatebufferedsaline  (PBS 1X) 

buffer  (Tris-HCl  10mM,  NaCl  200mM,  NP 40  0.05%,  TWEEN  20  0.05%)  and  blocked 

(blocking solution composed of Phosphate buffer 0.1M, DMSO 1%, Calf Serum 5%, Triton 

0.05%) for 1h at room temperature. The sections were incubated over night at 4C with Anti-

phospho Histone H3 (1: 100).  The second day the antibody was detected detected using anti-

rabbit biotinylated secondary antibody (1:200) and the ABC kit (Vector Laboratories). 

3.5 Nissl Staining

Brain sections were fixed in 4% paraformaldehyde,  then washed in Phosphatebufferedsaline 

(PBS 1X)  buffer  (10Mm Tris-HCl,  200mM NaCl,  0.05% NP 40,  0.05% TWEEN 20)  and 

stained with Nissl Solution for 7 min at room temperature. Cryosections were dried in ethanol, 

fixed in xylene, and mounted with the EUKITT mounting kit (O. Kindler GmbH & CO).

3.6 Hematoxilin and Eosin Staining (H&E)

Embryos and various tissues were collected at different age. Samples were cryosectioned at 10- 

to 20- μm thickness.32



Cryosections of tissues were fixed in 4% PFA, then washed in Phosphatebufferedsaline (PBS 

1X) buffer (10Mm Tris-HCl, 200mM NaCl, 0.05% NP 40, 0.05% TWEEN 20) and stained in 

haematoxylin for 4 minutes and in eosin for 6 minutes. Cryosections were dried in ethanol, 

fixed in xylene, and mounted with the EUKITT mounting kit (O. Kindler GmbH & CO).

3.7 Masson’s Trichrome Staining

Cryosections of various tissues were fixed in Bouin’s Solution at 56° C for 15 min, cooled and 

washed in running tap water to remove the yellow color from the section. They were stained in 

Working Weigert’s Iron Haematoxylin Solution for 5 min, washed in running tap water for 5 

min and stained in Biebrich Scarlet- Acid Fucsin for 5 minutes, then rinsed in deionised water, 

placed in Working Phosphotungstic\Phosphomolybdic acid solution for 5 minutes, stained in 

Aniline Blue solution for 5 minutes and in acid acetic 1% for 2 minutes.

3.8 Statistical analysis

One-way ANOVA with a between group factor genetic (2 levels: wild-type, Mid1-/Y) was used 

to analyze the data  of the walking wire and the hanging wire tasks.  Two-way ANOVA for 

repeated measures with a between group factor genetic (2 levels: wild-type, Mid1-/Y) and testing 

days or training trials as repeated measures for horizontal activity (6 levels: T1-T6), latency to 

fall  off  the  rod  (5  levels:  D1-D5),  percentage  of  startle  amplitude  (3  levels:  D1-D3),  and 

percentage of correct response in the cross maze tasks (5 levels: D1-D5).  Duncan post hoc test 

was  used  when  appropriate.  Statistical  significance  was  set  at  p<  0.05.  IC  length  was 

determined  using  photos  of  sagittal  sections  in  ImageJ  and  evaluated  by  Student’s  t-test 

analysis. 33
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4.1 Mid1-/Y mice show cerebellar defects  

To study Mid1 function in vivo, in the laboratory a mouse line carrying a non-functional Mid1 

gene by disruption of the first ATG-containing exon was generated. The replacement targeting 

vector used contained 6 kb of 5’ and 4.5 kb of 3’ homologous genomic sequences flanking the 

neoR cassette to allow homologous recombination, and a DTA cassette for negative selection of 

ES cells (Fig. 5a). 

Southern blot analysis of DNA from a wild-type and the correct  Mid1 recombinant ES clone 

was performed and showed the band of the expected reduced the size in Mid1 gene male mutant 

mice (Fig. 5b). 

The  correct  recombinant  clone  was  injected  into  C57BL/6  blastocysts.  The  resulting  male 

chimeras were then mated to C57BL/6 females to obtain Mid1-/+ heterozygous females upon 

germline  transmission.  The  C57BL/6  mice  have  been  used  for  next  generations  to  obtain 

animals in pure C57BL/6 background.

Northern blot analysis on total RNA extracted from E11.5 Mid1+/Y and Mid1-/Y embryos using a 

Mid1 probe spanning exon 1-5 was performed and Mid1 expression was observed only in wild-

type animals. Expression of the Gapdh gene was used as control (Fig. 5c).
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 RT-PCR analysis of RNA from tissues (heart, kidney, and liver) of Mid1+/Y and Mid1-/Y adult 

mice show the complete absence of the Mid1 transcript in male mutant mice (Fig. 5d) In this 

case the expression of the nucleolin gene was used as control. 

Consistently, immunoblot analysis with a specific antibody shows the complete absence of the 

Mid1 protein in  Mid1-/Y lysates.  Immunoblot analysis of adult brain lysates (50 µg) using a 

Mid1 antibody (abcam ab70770) shows that the 70-75 kDa expected band is observed only in 

wild-type mice and is absent in two different Mid1-/Y mice (Fig. 5e). 

Fig. 5 - Generation of a Mid1-/Y mouse line by targeted recombination. A) Schematic representation of 
the replacement strategy with the wild-type  Mid1 locus, the targeting vector,  and the resulting non-
functional  Mid1 allele by disruption of the first ATG containing exon. The gene targeting vector was 
constructed by replacing a fragment containing the first coding exon of mouse Mid1 with the selectable 
neomycin resistance gene flanked by two lox sites.  B) Southern blot analysis of DNA from a wild-type 
and the correct Mid1 recombinant ES clone. Sizes of the wild-type and the targeted allele are indicated. 
C)  Northern  blot  analysis  on  total  RNA extracted  from E11.5  Mid1+/Y and  Mid1-/Y embryos  Mid1 
expression is observed only in wild-type animals. Expression of the Gapdh gene is shown as control. D) 
RT-PCR analysis of RNA form tissues (heart, kidney, and liver) of Mid1+/Y and Mid1-/Y adult mice. Mid1 
expression is observed only in wild-type animals. Expression of the nucleolin gene is shown as control. 
E) Immunoblot analysis of adult brain lysates (50 µg) using a Mid1 antibody (abcam ab70770) shows 
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that the 70-75 kDa expected band is observed only in wild-type mice and is absent in two different 
Mid1-/Y mice. SNAP25 antibody was used as protein loading control. 

Like in human,  Mid1 is transcribed from the X chromosome, although in mouse it spans the 

pseudoautosomal boundary (Palmer et al., 1997).

Mid1-/Y males and Mid1-/- females were indistinguishable from their wild-type and heterozygous 

littermates. We focused on male Mid1-/Y as null mutants using Mid1+/Y littermates as wild-type 

controls. 

Direct  observation  of  whole  mount  adult  brains  suggested  a  somewhat  abnormal 

midbrain/cerebellum  junction  region  in  Mid1-/Y mice.  Histological  analyses  confirmed  the 

presence of a malformed anterior cerebellum. Nissl staining of sagittal  sections through the 

vermis  showed hypoplasia  and  abnormalities  of  lobes  I,  II,  and  III.  The  defect  is  present, 

although with a certain degree of variability, in all the Mid1-/Y mice analyzed (n=9) and in none 

of their wild-type littermates (n=7). In all null mice, lobe I, which is poorly pronounced in the 

C57/B6 mouse strain, is totally missing and lobe II is not completely formed. In many cases, the 
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third  lobe  is  also  abnormal  in  shape  (Fig.  6a-b).  Sagittal  sections  through  the  lateral 

hemispheres showed normal foliation (Fig. 6c-d) 

                 

Fig.6 -  Abnormal cerebellum in Mid1-/Y mice. Sagittal sections through the cerebellar vermis (A, B) and 
hemisphere (C,  D)  of  adult  wild-type and null  mice stained with Nissl.  Anterior  is  to the left.  The 
numbers of the vermal and names of lateral lobes are indicated. The arrow in B indicates the anterobasal 
defect in Mid1-/Y mice.

 To investigate the layer organization of the Mid1-/Y adult cerebellar cortex, we analyzed the two 

main neuronal populations of the cerebellum, Purkinje cells (PCs) and granule neurons. The 

Mid1-/Y general cerebellar cortex layer architecture is normal, with PCs disposed in monolayer 

and their dendritic arbors directed towards the external surface to define the molecular layer 

(ML) and with the internal granule cell layer (IGL) positioned just inside the PC monolayer. 38



Although  abnormal  in  shape,  even  the  anterior  vermal  lobes  maintain  the  correct  layer 

organization and thickness (Fig. 7a-d). The shape of the anterior lobes varies among mutant 

animals and, as shown in the coronal section through the anterior part of the cerebellum, the 

defect is not uniform along the medio-lateral axis where the presence of intermingled lobes and 

layers is observed (Fig. 7e-h). The coronal sections confirm the normal structure of lobe IV and 

of the hemispheres (Fig. 7-e-h)                                    
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Fig.7 -  Normal molecular layer (ML) and internal granule layer (IGL) organization in  Mid1-/Y adult 
mice.  Sagittal  sections  through  the  vermis  (A-D)  and  coronal  sections  at  the  level  of  the  anterior 
cerebellum (E-H). The insets show magnification of the indicated areas. In null mice, PCs and their 
dendrites form a normal ML (detected by anti- Calbindin) and granule cells form a normal IGL (detected 
by anti-NeuN). Numbers of the vermal lobes are indicated in E; h, hemisphere. The arrows indicate the 
defect in Mid1-/Y brains.  
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4.2 Cerebellar defects in Mid1-/Y originate prenatally 

The development of the cerebellum is a long process that in the mouse begins as early as E9.5 

and is completed by the second postnatal week (Chizhikov and Millen, 2003). Foliation begins 

around birth and reaches the definitive strain-specific architecture by postnatal day 15 (P15) 

(Sillitoe and Joyner, 2007). We analyzed sagittal sections of cerebella at P0, P2, and P7 (Fig. 8). 

                                

Fig. 8- .The anterobasal lobe defect in  Mid1-/Y mice is detected at birth. Sagittal sections through the 
vermis at birth (A, B), P2 (C, D), and P7 (E, F) stained with Nissl. The granule cells at P0 and P2 are 
still superficial and form the EGL while at P7 they are starting to migrate inwards to eventually form the 
IGL.  The 4 principal  fissures  (pc,  preculminate;  pr,  primary;  sec,  secondary;  pl,  posterolateral)  are 
normally formed in P0 and P2 Mid1-/Y mice. The cardinal lobes generated by the principal fissures are 41



correctly formed with the exception of the anterobasal lobe,  rostral to the preculminate fissure,  that 
shows the defect (ab, anterobasal; ad, anterodorsal; c, central; p, posterior; I, inferior). The development 
of  the other cardinal  lobes into the definitive foliation proceeds normally from P0 through P7. The 
asterisks indicate the principal fissures. The arrows indicate the defect. 
At P0 and P2 the correct formation of the 4 principal fissures was observed in both wild-type 

and null mice (Fig. 8a-d). The principal fissures determine the anchor points for the formation 

of the 5 cardinal lobes. The anterobasal cardinal lobe, which gives rise to the definitive lobes I, 

II,  and  III,  is  limited  caudally by the  preculminate  fissure  and rostrally by the  isthmus;  it 

appeared abnormal already in P0 and P2 Mid1-/Y cerebella as shown by the upturning external 

granule layer (EGL) in the most anterior part and by a more profound fissure delimiting future 

lobes II and III (Fig. 8a-d). Consistent with the normal layer organization observed in adult 

mice, the granule cells at P0 form the EGL and progressively start their inward migration in 

both genotypes at P2 and P7 (Fig. 8c-f). 

Thus, Mid1-/Y mice present developmental defects resulting in the postnatal abnormal formation 

of the anterobasal cerebellar vermis. 

4.3 Mid1-/Y vermal defect is caused by an incorrect definition of the tectum-

cerebellum boundary 

The  defect  is  present  as  early  as  the  formation  of  the  primitive  fissures  around  birth,  we 

therefore analyzed the developing vermis prior to that stage. At embryonic day 17.5 (E17.5) the 

surface of the cerebellum is smooth and the mutant is almost indistinguishable from the wild-

type. Disordered PCs are still disposed in multilayers underneath the EGL in both genotypes 

(Fig. 9). However, in the most anterior  Mid1-/Y cerebellum some PCs are present in ectopic 

position within the isthmic region heading towards the tectum (Fig. 9a-b). 
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Fig.9  -  Inaccurate  definition  of  the  dorsal  midbrain/cerebellum  boundary  in  Mid1-/Y mice. 
Immunohistochemistry with anti-Calbindin (A, B) and RNA in situ hybridization (En1) followed by 
anti-Calbindin  (C-D’)  on medial  sagittal  sections  of  E17.5 brains.  C’ and D’,  magnification of  the 
delimited areas. IC, inferior colliculus; Cb, cerebellum; Is, isthmus; the arrows indicate ectopic PCs in 
Mid1-/Y embryos. 
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Analysis  of  the  expression  of Engrailed  1 (En1),  a  gene  expressed  in  the  tectum and  the 

cerebellum, showed that PCs migration in ectopic position coincides with a premature halt of 

the anterior EGL. The strong  En1 expression in the inferior colliculus (IC) also highlights a 

more rostral IC/ cerebellar boundary and a slightly enlarged isthmic region in Mid1-/Y embryos 

(Fig. 9c-d). These results suggest that the abnormal foliation presented by Mid1-/Y mice might 

not be the result of a fissure formation anomaly, rather, the consequence of a poor definition of 

the boundary between the posterior tectum, i. e. the inferior colliculus, and the most anterior 

part  of  the  medial  cerebellum.  At  mid-gestation,  Mid1 expression  is  observed  in  the 

proliferative compartments of both dorsal midbrain and in the cerebellum anlage (Fig.10). By 

E13.5-E14.5 strong and specific expression in the tectum with a sharp caudal limit at the dorsal 

midbrain/hindbrain boundary (MHB) is observed (Dal Zotto et al., 1998). We analyzed markers 

expressed at the dorsal MHB at these stages (Wang and Zoghbi, 2001). We found no overt 

differences in the expression of several markers (e.g.  Gbx2, Math1,  En1, En2, Gli3) although 

they all suggested a mis-positioning of the boundary (Fig. 11). 
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                         Fig. 10 - Expression of Mid1 in the dorsal midbrain and cerebellar region at 
                         E11.5, E12.5, and E13.5 as indicated; the line indicates the border between the 
                         dorsal midbrain (m) and hindbrain (h)
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Fig.11 - In-situ Hybridisation of Otx2, Gbx2, En1 and Gli3 in WT and Mid1 null mice.
No differences are detected in the expression level, although they suggested a mis-positioning of the 
boundary (E=14.5).

This observation was further confirmed by the expression patterns of Pax2 (at this stage limited 

to the cerebellum) and Otx2 (expressed in the dorsal midbrain) that show a more rostral position 46



of the midbrain/cerebellum boundary in Mid1-/Y embryos resulting in a shorter lower portion of 

the IC (Fig. 12a-b). We measured the length of the IC, i.e. the distance between the posterior 

Otx2 expression limit and the IC physical bending on the ventricular side (asterisk in Fig. 12b), 

in  Mid1-/Y   (n=4)  and  Mid1+/Y (n=4)  E14.5  embryos  at  three  medio-lateral  positions  of  the 

presumptive vermal region. As shown in the graph, the null mice have a shorter IC with the 

difference more pronounced in the lateral sections of the vermis (Fig. 12c).
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Fig.12  -  Reduced IC length  and  rostralization of  midbrain/cerebellar  boundary in Mid1-/Y embryos. 
Overlay of images of adjacent E14.5 sagittal sections hybridized with Pax2 (green) and Otx2 (purple) 
(A, B). The arrow indicates the mis-positioning of the isthmus (B). (C) E14.5 IC length (mm) in wild-
type (n=4) and null (n=4) mice. The length is the ventricular side distance between the two physical 
bending, indicated with the arrow and the asterisk in B, at three different positions of the vermal region: 
M, medial; M/L, medio-lateral (about 120 µm from the midline); L, lateral (about 240 µm from the 
midline). T test, **P =0.0042.  

 Although there is  a  trend towards  a  shorter  IC, we do not observe statistically significant 

differences at E13.5. We tested programmed cell death occurrence in the IC at E12.5 - E14.5. 

Few cells are undergoing apoptosis in this region at these stages and they are not increased in 

null embryos. Similarly, we did not find overt differences in the proliferation of the IC using the 

anti-Ki67 antibody. Whatever the mechanism, the net effect of a shorter IC is a more anterior 

position of the dorsal midbrain/hindbrain boundary.  

4.4 Fgf17 down-regulation in Mid1-/Y midbrain-hindbrain boundary 

Fibroblast growth factors (Fgfs) are key molecules in the establishment and development of the 

dorsal midbrain-cerbellum border. Early in development Fgf8 is the main player in the isthmic 

organizer  (IO),  the signaling center  that  coordinates the patterning of the cerebellum at the 

mesencephalon/rhombomere 1 (mes/r1) boundary (Liu et al., 1999; Martinez et al., 1999). At 

mid-gestation, Fgf8 is involved in the proper A-P development of the mes/r1 region (Partanen, 

2007). We analyzed Fgf8 at E10.5 and E12.5 and did not find alteration of its expression in null 

mice. Another member of the Fgf8 subfamily, Fgf17, is expressed at the mes/r1 boundary but, 

differently from Fgf8, its expression extends temporally and from E13.5 to E14.5 Fgf17 is the 

only Fgf expressed in this region (Xu et al., 2000). At E12.5 we did not observe changes in the 

expression of Fgf17. However, at E13.5 we began to observe a decrease in the Fgf17 expression 48



domain in  Mid1-/Y mice in both medial and medio- lateral sagittal sections (Fig. 13a-d). The 

down-regulation  of  Fgf17 is  striking  at  E14.5.  At  this  stage in  the mutant  embryos,  Fgf17 

expression domain is  maintained at  the border  between the IC and the cerebellar  plate  but 

heavily restricted along the antero-posterior axis (Fig. 13e-h). Analysis of coronal sections at 

the same stage confirmed the strong reduction of Fgf17 signal (Fig. 13i-l). 
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Fig.13 -  Fgf17 is down-regulated in  Mid1-/Y embryos. RNA in situ hybridization of  Fgf17 on E13.5 
sagittal section at (A, B, medial; C, D, medio-lateral); on E14.5 sagittal sections (E, F, medial; G, H, 
medio-lateral); and on E14.5 coronal sections (I, J, rostral; K, L, caudal). Down-regulation of Fgf17 in 
Mid1-/Y embryos starts at E13.5 and is more evident at E14.5 especially in the next to the midline region 50



along the medio-lateral axis and in the cerebellum along the antero-posterior axis. The line indicates the 
isthmus; m, midbrain; h, hindbrain. 
Taken together, these data indicate that Mid1 is important for the determination of the boundary 

between the tectum and the cerebellum and for the expression of a key regulator of this region, 

Fgf17. 

4.5 Mid1-/Y mice have motor coordination and motor learning impairment  

Our collaborator investigated whether the abnormalities observed in  Mid1-/Y mice correlates 

with  cerebellum dependent  behavioural  functions.  To  test  motor  coordination,  he  used  the 

walking and the hanging wire tasks (Joyal et al., 1996). He found that Mid1-/Y mice made more 

false steps walking on the inclined wire (wild-type: 5.5 ± 0.97 versus  Mid1-/Y: 9.077 ± 0.92; 

F1/26=7.181; p=0.01) and were also impaired in hanging on the wire compared to wild-type 

animals (latency to fall  off  the grid for wild-type: 61 ± 4.9 sec;  for  Mid1-/Y:  42 ± 5.7 sec; 

F1/25=6.07; p=0.02). These effects were not due to muscular or primary sensorial deficits, since 

Mid1-/Y mice were not impaired in any of these tasks.

He tested  motor  learning  in  the  classic  rotarod  task.  Although both groups  improved their 

performance across days, Mid1-/Y mice showed delayed motor learning (Fig. 14a). The observed 

impairment  is  not simply due to  general  hypo-activity since  Mid1-/Y mice were hyperactive 

when compared to their wild-type littermates. 

He also tested long-term habituation of the acoustic startle response, a form of non- associative 

learning selectively mediated by the cerebellar vermis and occurring when repeated exposure to 

an acoustic stimulus across days induces habituation of the startle response (Leaton and Supple, 

1986). Whereas in the wild-type group the percentage of mean startle amplitude significantly 51



decreased from day 1 to day 3, no significant changes across days were observed in  Mid1-/Y 

mice (Fig. 14b). Indeed, the percentage of startle response between the two groups significantly 

differed on the third day. Thus, Mid1-/Y vermal defect correlates with impairment in long-term 

habituation of acoustic startle.  

The cerebellum has been also involved in other cognitive processes such as spatial learning, in 

particular in its egocentric form (Molinari et al., 1997; Petrosini et al., 1998). Our collaborator 

tested Mid1-/Y mice in the egocentric version of the cross maze task: food deprived animals are 

challenged to find food in a T-shaped maze in the absence of visual cues (Rinaldi et al., 2008). 

Mid1-/Y mice, as their wild-type littermates increased the percentage of correct responses across 

days (Fig. 14c). However, the percentage of correct responses in the two groups differs on the 

fourth and fifth training day, suggesting a delayed learning curve of Mid1-/Y animals. As control, 

he subjected different groups of animals to the allocentric version of the cross maze task, which 

has  identical  motor  and  motivational  demand,  but  it  is  based  on  explicit  learning  and  is 

dependent on the integrity of medial temporal lobe regions (Burguiere et al., 2005). Allocentric 

spatial learning requires the animal to form a cognitive map of the environment and learn the 

position of the food relatively to visual cues. The performance of  Mid1-/Y mice in this non-

procedural version of the cross-maze task was undistinguishable from wild-type animals (Fig. 

14d). 

Consistently,  Mid1-/Y mice were not impaired in a medial  temporal lobe dependent learning 

task, the passive avoidance.  These results clearly prove that learning impairment of  Mid1-/Y 

mice  is  not  secondary  to  aspecific  motor,  sensorial,  learning,  memory  or  motivational 

impairments and well correlate with a vermal defect.  
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Together,  these results demonstrate that  Mid1 is important for the specification of the most 

anterior medial part of the cerebellum and that, compatibly with a cerebellar defect, its deletion 
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specifically  affects  motor  coordination  and  non-associative  and  procedural  lea
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Fig.14 -  Mid1 mice show motor coordination and learning impairments. (A)  Mid1mice demonstrate a 
worse performance in the rotarod task, showing a deficit in motor learning acquisition (F1/48=5.042; 
p=0.02); (B) Control mice (p=0.008), but not  Mid1-/Y mice, reduce the percentage of startle amplitude 
across days in the long-term habituation of acoustic startle task; the null mice do not habituate to the 
stimulus; the startle response between the two groups significantly differ on the third day (p=0.02); (C-
D) Mid1-/Y mice recorded fewer correct responses in the egocentric spatial version of the cross-maze task 
(E) on the fourth (p=0.01) and on the fifth day (p=0.06), but not in the allocentric one (F).  
*p< 0.05 Mid1-/Y versus wild-type. 
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4.6 Mid1-/Y null mice do not show any anatomical defects in other organs

In Opitz Syndrome patients not only cerebellar hypoplasia but also defects in other systems 

situated along the midline can be present. We have therefore investigated with hematoxilin-

eosin staining and Masson’s trichrome staining also the developing heart, palate, oesophagus 

and the urogenital tract that are often affected in this disorder. We have analysed the animals at 

different stages and in particular at E14.5, E16.5, E17.5, P0, P2 and adulthood. We did not find 

any differences between the control mice and the Mid1 null  mice.  In particular  we stained 

paraffin sections of developing heart of WT and MID1 null mice with Masson Trichrome, but 

we  did  not  find  the  presence  of  fibrosis  or  necrosis  in  the  heart  muscle  and  a  normal 

morphology of the vases was present. Also the palate, esofagus and the urogenital tract were 

analyzed and the structures and the ducts were normal in size and morphology (Fig. 15)
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Fig. 15 - Normal development of non-neural midline structures in Mid1-/Y mice. 
Representative images of H&E stained coronal E14.5 (A-D), transversal E15.5 (E and F), and frontal 
E18.5 (G and H) sections showing no detectable defects at the level of esophagous and trachea (A and 
B);  in  palatal  closure  (C and D);  in the  phallic  part  of  the  urethra  and the  urogenital  sinus (future 
bladder)  (E and F)  and in the heart,  where no major  ventricular  and atrial  septal  defects,  the  most 
frequent OS cardiac abnormalities, are detected (G and H). e, esophagous; tr, trachea; ps, palatal shelf; t, 
tongue;  p,  phallic  part  of  urethra;  us,  urogenital  sinus;  Ra,  right  atrium;  La,  left  atrium;  Rv,  right 
ventriculum; Lv, left ventriculum.

57



                                                        

                                                  

                                                                       6. DISCUSSION
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Here, we report the generation and characterization of a mouse line null for Mid1, the ortholog 

of the X-linked Opitz Syndrome gene,  MID1. Like in human, the murine gene is transcribed 

from the X-chromosome and the hemizygous  Mid1-/Y mice show a developmental phenotype, 

i.e. hypoplasia of the anterior region of the medial portion of the cerebellum, the vermis.  

This mouse model perfectly recapitulates the anatomical central nervous system (CNS) defect 

observed  in  OS  male  patients  with  MID1 mutations,  i.e.  cerebellar  vermis  hypoplasia 

(Fontanella  et  al.,  2008).  Like  many other  clinical  manifestations  of  OS,  brain  anatomical 

defects show variable expressivity and are not present in all patients. Indeed, there are cohorts 

with mild clinical presentations and in which brain defects were not observed (So et al., 2005). 

However, we recently reviewed the reports of OS patients with assessed MID1 mutations and 

found that  more than one third of the patients  subjected to MRI examination exhibit  brain 

abnormalities.  Moreover,  the  common brain defect  in  OS patients  with  MID1 mutations  is 

hypoplasia of the cerebellar vermis (Cox et al., 2000; De Falco et al., 2003; Pinson et al., 2004; 

Fontanella et al., 2008). As part of the neurological involvement, OS patients often also present 

intellectual impairment and psychomotor and speech delays. We found that lack of the murine 

Mid1 gene  results  in  motor  coordination  defects  as  well  as  motor,  non-associative,  and 

procedural  learning  impairments  that  may  correlate  with  the  developmental  delays  of  OS 

patients. The cerebellum, traditionally associated with pure motor coordination functions, in the 

last  decades  has been linked more and more to  cognitive responses  (Molinari  et  al.,  1997; 

Petrosini  et  al.,  1998;  Tavano et  al.,  2007).  These  studies  mainly rely on  individuals  with 59



specific cerebellar lesions either as consequence of tumour surgery in human or experimentally 

induced in animal models. Consistent with behavioural data obtained upon selective lesion of 

the vermis, Mid1-/Y mice show hyperactivity, balance and motor coordination defects, motor and 

procedural learning deficits and lack of long-term habituation to acoustic startle (Leaton and 

Supple, 1986; Joyal et al., 1996; Molinari et al., 1997; Bobee et al., 2000; Callu et al., 2007). In 

the  case  of  spatial  egocentric  learning,  a  major  involvement  of  the  hemispheres  has  been 

reported (Gaytan-Tocaven and Olvera-Cortes, 2004), however, our data suggest that the vermis 

may also contribute to this task. Together,  behavioural deficits in  Mid1-/Y mice qualitatively 

recapitulate those observed after selective lesions of the cerebellar vermis. Few animal models 

with  specific  defects  in  the  anterobasal  vermis  are  reported  and  much  still  needs  to  be 

unravelled of the function and connectivity of this portion of the cerebellum. This animal model 

will  be  useful  to  further  dissect  the  function  of  the  different  domains  of  the  vermis.   As 

mentioned, in addition to the CNS defect OS patients show craniofacial, tracheo-esophageal, 

cardiac and urogenital midline abnormalities that are not present in Mid1 knock- out mice. In 

fact,  the  Mid1-/Y mice  have  a  normal  life  span,  they  are  fertile  and  born  at  the  expected 

Mendelian  ratio  indicating  that  life-threatening  defects  such  as  laryngo-tracheo-esophageal 

(LTE) abnormalities, cleft palate, and major cardiac defects are not present in this mouse model. 

Moreover, histological analyses during prenatal development confirmed that: a) the LTE region 

and the palate develop normally; b) no signs of hypospadias are observed, being the urethra 

well canalized in the phallic portion in E15.5 embryos; and c) the major cardiac abnormalities 

presented by OS patients (ventricular and atrial septal defects) are not observed in E18.5 mice. 

Although we cannot exclude that subtle defects of midline structures might be present in the 

Mid1-/Y mice it is a fact that manifest abnormalities, other than the cerebellar defect, are not 60



present. The discrepancy between the human and the murine phenotype might be explained by 

the influence of the genetic background or by evolutionary developmental differences between 

the two species that may translate in different expressivity of the clinical signs. Indeed, Mid1 

loss of function results in complete penetrance of developmental defects in both species while 

the expressivity of the midline defects is different, i.e. all the Mid1-/Y mice show the cerebellar 

defect and all OS patients with MID1 mutations show several midline signs, among which the 

cerebellar defect, with variable expressivity. The presence of a partially redundant gene that in 

the mouse is able to compensate the absence of Mid1 in non-neural compartments may underlie 

these differences. Natural candidate for this role is the close homolog of Mid1, Mid2 (Buchner 

et al., 1999). Mid2 belongs to the same family and interacts with Mid1 (Short et al., 2002). 

Functional redundancy between Mid1 and Mid2 has been demonstrated in chick. In fact, the 

effect of the down-regulation of a cascade of genes in the Hensen’s node in chick embryos 

exerted by an anti-Mid1/2 morpholino can be rescued by the expression of either of the two 

genes (Granata et al., 2005). The expression of Mid2 in Mid1-/Y embryos observed by both RNA 

in situ hybridization and real time PCR is not altered (data not shown) but redundancy may act 

through different mechanisms. Mid1/2 functional cooperation is an interesting issue to address 

also in the perspective of better understanding the high variability of the clinical manifestations 

in OS patients even carrying the same MID1 mutation. 

We demonstrated that lack of Mid1 causes the abnormal development of the lobes that derive 

from the anterobasal cardinal lobe, the most anterior part of the developing vermis adjacent to 

the  tectum.  Absence  of  Mid1 causes  a  shortening  of  the  E14.5  IC  lower  region  with  a 

consequent  rostralization  of  the  dorsal  isthmus,  the  region  at  the  boundary  between  the 61



midbrain and hindbrain. This rostralization is concomitant with reduction in Fgf17 expression. 

As said, Fgf17 is a member of the subfamily of Fgfs expressed in the mes/rh1 boundary (Fgf8, 

17, and 18) and is the only one expressed in this region from E13.5 to E14.5 when the other two 

have already been switched off (Xu et al., 1999; Xu et al., 2000). 

Consistent with our data,  the complete lack of  Fgf17 leads to malformation of the anterior 

vermis caused by an anticipated rostral differentiation of PCs (Xu et al., 2000). Moreover, in 

Fgf17 null  brains  the  inferior  colliculus  is  highly  hypoplastic  (Xu  et  al.,  2000).  The  IC 

phenotype in Mid1-/Y mice is milder than in the Fgf17 mutant. This is very likely due to the fact 

that we do not have complete loss of Fgf17 expression but a strong reduction limited to a short 

window of time. On the contrary, the cerebellar phenotype appears more severe in the Mid1-/Y 

than  in  the  Fgf17-/- mice  suggesting  that  Fgf signaling  might  not  be  the  only  mechanism 

implicated. However, we observed the presence of ectopic PCs in very rostral cerebellar/isthmic 

position consistent with the premature differentiation of PCs in the rostro-medial part of the 

cerebellar plate proposed for the Fgf17-/- mice. Although we still do not know if the reduction of 

Fgf17 is caused by a transcriptional mechanism or by the absence of the midbrain/hindbrain 

boundary cells deputed to express it, the regulation of a member of the Fgf family by Mid1 is 

not  unprecedent.  Indeed,  data  in  chick  embryos  indicated  a  positive  downstream effect  of 

Mid1/2 on the expression of Fgf8 in the ectoderm of the Hensen’s node (Granata and Quaderi, 

2003). 

What  is  the  mechanism through  which  Mid1 absence  causes  shortening  of  the  IC,  down-

regulation  of  Fgf17 and  defects  in  the  development  of  the  anterobasal  lobe  is  still  to  be 

determined.  Major  changes  in  proliferation  and  apoptosis  do  not  seem to  account  for  the 

reduction  of  the  IC and rostralization  of  the  isthmus,  at  least  at  E12.5  – 13.5  stages.  The 62



cerebellum, the tectum and the isthmic region are also affected in other mouse knock-out lines 

among which are the series of Gli3 mutants (Blaess et al., 2008). 

Interestingly,  Gli3 is expressed, like  Mid1, in the dorsal tectum at mid-gestation and  GLI3 is 

implicated  in  three  human  pathological  conditions  sharing  common  features  with  Opitz 

Syndrome  (Biesecker,  2006).  A fascinating  hypothesis  is  that  Mid1  might  modulate  Gli3 

activity in  the  midbrain/cerebellar  region  by controlling  PP2A levels  (Krauss  et  al.,  2008). 

Through this or other mechanisms, Mid1 may influence the migration, adhesion, or identity of 

the population of dorsal midbrain/hindbrain boundary cells that are crucial for the maintenance 

of the proper lineage separation between the two structures (Broccoli et al., 1999; Kala et al., 

2008). 

This  mouse  model  will  be  crucial  to  determine  the  pathogenetic  mechanisms  and  the 

physiological function of Mid1 during development, mechanisms that can be studied exploiting 

the cerebellar defect as a system but that can be relevant also in the occurrence of the other 

clinical  manifestations of OS as well as in other human congenital  disorders presenting the 

same signs. 
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