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Reviving the Two-state Markov Chain Approach
Andrzej Mizera, Jun Pang, and Qixia Yuan

Abstract—Probabilistic Boolean networks (PBNs) is a well-established computational framework for modelling biological systems. The
steady-state dynamics of PBNs is of crucial importance in the study of such systems. However, for large PBNs, which often arise in
systems biology, obtaining the steady-state distribution poses a significant challenge. In this paper, we revive the two-state Markov
chain approach to solve this problem. This paper contributes in three aspects. First, we identify a problem of generating biased results
with the approach and we propose a few heuristics to avoid such a pitfall. Secondly, we conduct an extensive experimental comparison
of the extended two-state Markov chain approach and another approach based on the Skart method. We analyse the results with
machine learning techniques and we show that statistically the two-state Markov chain approach has a better performance. Finally, we
demonstrate the potential of the extended two-state Markov chain approach on a case study of a large PBN model of apoptosis in
hepatocytes.

Index Terms—Probabilistic Boolean networks, Markov chains, steady-state analysis, approximation.
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1 INTRODUCTION

C OMPUTATIONAL modelling plays a prominent role in pro-
viding a system-level understanding of processes that take

place in a living cell. However, it faces significant challenges when
modelling realistic biological systems due to the size of the state-
space that needs to be considered. Hence, profound understanding
of biological processes asks for the development of new methods
that would provide means for formal analysis and reasoning about
large systems.

We focus on the steady-state dynamics of biological processes
modelled as discrete-time Markov chains (DTMCs). This is the
case, for example, when the biological system under study is cast
into the mathematical/computational framework of probabilistic
Boolean networks (PBNs) [1], [2], [3]. In these or other discrete-
time models, e.g., dynamic Bayesian networks, the real (consid-
ered as continuous) time is not modelled. Instead, the evolution of
the system is abstracted as a sequence of consecutive events. These
coarse-grained models have been successfully applied in many
systems biology studies and proved their predictive power [4]. In
fact, for the study of large regulatory systems they remain the
only reasonable solution. Extrapolating the ordinary differential
equations model of a single elementary building block of the
network (e.g., a gene) to the whole large system would result
in a prohibitively complex model. Moving towards a higher-level
description by ignoring the molecular details allows to grasp
the system-level behaviour of the network [5]. In consequence,
these coarse-grained formalisms are broadly applied in systems
biology. One of the key aspects in the analysis of such dynamic
systems is the comprehension of their steady-state (long-run)
behaviour. For example, cellular phenotypes were hypothesised
to be characterised by a collection of sets of states, referred to as
attractors, that the system reaches and in which it remains forever
in a long run. Another complementary conjecture is that attractors
correspond to functional cellular states such as proliferation,
apoptosis, or differentiation [6]. These interpretations may cast
new light on the understanding of cellular homeostasis and cancer
progression [1]. In this work, we focus on the computation of
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steady-state probabilities which are crucial for the determination
of long-run influences and sensitivities. These are measures that
quantify the impact of genes on other genes and that enable the
identification of elements with highest impact.

So far the huge-state space, which often characterises dy-
namical models of biological systems, tempers the application
of the above mentioned techniques in the analysis of realistic
biological systems. In fact, approximations with the use of Markov
chain Monte Carlo (MCMC) techniques are the only viable
solution to this problem [7]. However, due to the difficulties
with the assessment of the convergence rate to the steady-state
distribution (see, e.g., [8]), certain care is required when applying
these methods in practice. A number of statistical methods exist
which allow to empirically determine when the simulation can
be stopped, with the Skart method [9] considered to be the state-
of-the-art technique. In this study, we focus on another method,
i.e., the two-state Markov chain approach. It was introduced in
1992 by Raftery and Lewis, and Shmulevich et al. [7] proposed
its application to the analysis of PBNs in 2003. However, to the
best of our knowledge, since then it has not been widely applied
for the analysis of large PBNs. In this paper, we aim to revive
it by demonstrating its usefulness for approximating steady-state
probabilities of large PBNs, which often arise in systems biology
as computational models of cellular gene regulatory networks.

This paper contributes in three aspects. First, we identify
a problem of generating biased results by the original two-state
Markov chain approach, due to the size of the initial sample with
which the approach needs to start. We propose three heuristics
for the approach to avoid some unfortunate initialisations. Sec-
ondly, we perform an extensive evaluation and comparison of
the extended two-state Markov chain approach with the state-of-
the-art Skart method on a large number of randomly generated
PBNs. We apply techniques originating from machine learning
to analyse the obtained results. We show that in the context
of gene regulatory networks modelled with PBNs, actually the
two-state Markov chain approach seems to perform better than
the Skart method in most cases in terms of computational cost.
Thirdly, we demonstrate the potential of the two-state Markov
chain approach on a study of a large, 91-node PBN model of
apoptosis in hepatocytes. In particular, we show that the two-state
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Markov chain approach facilitates the quantification of both the
steady-state influences of genes on their target genes and long-run
sensitivities in large networks.

2 PRELIMINARIES

2.1 Finite discrete-time Markov chains (DTMCs)

Let S be a finite set of states. A (first-order) DTMC is an S-
valued stochastic process {Xt}t∈N with the property that the
next state is independent of the past states given the present
state. Formally, P(Xt+1 = st+1 |Xt = st ,Xt−1 = st−1, . . . ,X0 = s0) =
P(Xt+1 = st+1 |Xt = st) for all st+1,st , . . . ,s0 ∈ S. Here, we consider
time-homogenous Markov chains, i.e., chains where P(Xt+1 =
s′ |Xt = s), denoted Ps,s′ , is independent of t for any states
s,s′ ∈ S. The transition matrix P = (Ps,s′)s,s′∈S satisfies Ps,s′ > 0
and ∑s′∈S Ps,s′ = 1 for all s ∈ S. We denote by π a probability
distribution on S. If π = π P, then π is a stationary distribution of
the DTMC (also referred to as the invariant distribution). A path
of length n is a sequence s1→ s2→ ·· · → sn such that Psi,si+1 > 0
and si ∈ S for i ∈ {1,2, . . . ,n}. State q ∈ S is reachable from state
p ∈ S if there exists a path such that s1 = p and sn = q. A DTMC
is irreducible if any two states are reachable from each other. The
period of a state is defined as the greatest common divisor of the
lengths of all paths that start and end in the state. A DTMC is
aperiodic if all states in S are of period 1. A finite state DTMC
is called ergodic if it is irreducible and aperiodic. By the famous
ergodic theorem for DTMCs [10], an ergodic chain has a unique
stationary distribution being its limiting distribution (also referred
to as the steady-state distribution) given by limn→∞ π0 Pn, where
π0 is any initial probability distribution on S. In consequence, the
limiting distribution for an ergodic chain is independent of the
choice of π0. The steady-state distribution can be estimated from
any initial distribution by iteratively multiplying it by P.

The evolution of a first-order DTMC can be described
by a stochastic recurrence sequence Xt+1 = φ(Xt ,Ut+1), where
{Ut}t∈N is an independent sequence of uniformly distributed
real random variables over [0,1] and the transition function
φ : S× [0,1]→ S satisfies the property that P(φ(s,U) = s′) = Ps,s′

for any states s,s′ ∈ S and for any U , a real random variable
uniformly distributed over [0,1]. When S is partially ordered and
the transition function φ(·,u) is monotonic, then the chain is said
to be monotone ( [11]).

2.2 Probabilistic Boolean networks (PBNs)

A PBN G(V,F ) consists of a set of binary-valued nodes (also
referred to as genes) V = {v1,v2, . . . ,vn} and a list of sets
F = (F1,F2, . . . ,Fn). For each i ∈ {1,2, . . . ,n} the set Fi =

{ f (i)1 , f (i)2 , . . . , f (i)l(i)} is a collection of predictor functions for node
vi, where l(i) is the number of predictor functions for vi. Each
f (i)j ∈ Fi is a Boolean function defined with respect to a subset
of nodes referred to as parent nodes of vi. There is a prob-
ability distribution on each Fi ∈ F : c(i)j is the probability of

selecting f (i)j ∈ Fi as the next predictor for vi and it holds that

∑
l(i)
j=1 c(i)j = 1. We denote by vi(t) the value of node vi at time

point t ∈ N. The state space of the PBN is S = {0,1}n and it
is of size 2n. The state of the PBN at time t is determined
by s(t) = (v1(t),v2(t), . . . ,vn(t)). The dynamics of the PBN is
given by the sequence (s(t))∞

t=0. We consider here independent
PBNs where predictor functions for different nodes are selected

independently of each other. The transition from s(t) to s(t + 1)
is conducted by randomly selecting a predictor function for each
node vi from Fi and by synchronously updating the node values
in accordance with the selected functions. There are N = ∏

n
i=1 l(i)

different ways in which the predictors can be selected for all n
nodes. These combinations are referred to as realisations of the
PBN and are represented as n-dimensional function vectors fk =

( f (1)k1
, f (2)k2

, . . . , f (n)kn
) ∈ F1×F2× . . .×Fn, where k ∈ {1,2, . . . ,N}

and ki ∈ {1,2, . . . , l(i)}. A realization selected at time t is referred
to as Ft . Due to independence, P(fk) = P(Ft = fk) = ∏

n
i=1 c(i)ki

.
In PBNs with perturbations, a perturbation parameter p ∈

(0,1) is introduced to sample the perturbation vector γ(t) =
(γ1(t),γ2(t), . . . ,γn(t)), where γi(t) ∈ {0,1} and P(γi(t) = 1) = p
for all t and i ∈ {1,2, . . . ,n}. Perturbations provide an alterna-
tive way to regulate the dynamics of a PBN: the next state is
determined as s(t + 1) = Ft(s(t)) if γ(t) = 0 and as s(t + 1) =
s(t)⊕γ(t) otherwise, where ⊕ is the exclusive or operator for
vectors. The perturbations, by the latter update formula, allow the
system to move from any state to any other state in one single
transition, hence render the underlying Markov chain irreducible
and aperiodic. Therefore, the dynamics of a PBN with pertur-
bations can be viewed as an ergodic DTMC [2]. The transition
matrix is given by Ps,s′ = (1− p)n

∑
N
k=11[fk(s)=s′]P(fk) + (1−

(1− p)n)pη(s,s′)(1− p)n−η(s,s′), where 1 is the indicator function
and η(s,s′) is the Hamming distance between states s,s′ ∈ S.
According to the ergodic theory, adding perturbations to any PBN
assures the long-run dynamics of the resulting PBN is governed by
a unique limiting distribution, convergence to which is indepen-
dent of the choice of the initial state. However, the perturbation
probability value should be chosen carefully, not to dilute the
behaviour of the original PBN. In this way the ‘mathematical
trick’, although introduces some noise to the original system,
allows to significantly simplify the analysis of the steady-state
behaviour.

The density of a PBN is measured with its function number
and parent nodes number. For a PBN G, its density is defined as
D(G) = 1

n ∑
NF
i=1 ω(i), where n is the number of nodes in G, NF

is the total number of predictor functions in G, and ω(i) is the
number of parent nodes for the ith predictor function.

Within the framework of PBNs the concept of influences is
defined; it formalizes the impact of parents nodes on a target node
and enables its quantification ( [12]). The concept is based on the
notion of a partial derivative of a Boolean function f with respect
to variable x j (1≤ j ≤ n):

∂ f (x)
∂x j

= f (x( j,0))⊕ f (x( j,1)),

where ⊕ is addition modulo 2 (exclusive OR) and for l ∈ {0,1}

x( j,l) = (x1,x2, . . . ,x j−1, l,x j+1, . . . ,xn).

The influence of node x j on function f is the expected value of the
partial derivative with respect to the probability distribution D(x):

I j( f ) = ED

[
∂ f (x)
∂x j

]
= P

{
∂ f (x)
∂x j

= 1
}
= P{ f (x( j,0)) 6= f (x( j,1))}.

Let now Fi be the set of predictors for xi with corresponding
probabilities c(i)j for j = 1, . . . , l(i) and let Ik( f (i)j ) be the influence
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of node xk on the predictor function f (i)j . Then, the influence of
node xk on node xi is defined as:

Ik(xi) =
l(i)

∑
j=1

Ik( f (i)j ) · c(i)j .

The long-term influences are the influences computed when the
distribution D(x) is the stead-state distribution of the PBN.

We define and consider in this study two types of long-run
sensitivities.

Definition 2.1. The long-run sensitivity with respect to selection
probability perturbation is defined as

sc[c
(i)
j = p] = ‖π̃[c(i)j = p]−π‖l ,

where ‖ · ‖l denotes the l-norm, π is the steady-state distribution
of the original PBN, p ∈ [0,1] is the new value for c(i)j , and

π̃[c(i)j = p] is the steady-state probability distribution of the PBN
perturbed as follows. The jth selection probability for node xi

is replaced with c̃(i)j = p and all c(i)k selection probabilities for
k ∈ I− j = {1,2, . . . , j−1, j+1, . . . , l(i)} are replaced with

c̃(i)k = c(i)k +(c(i)j − p) · c(i)k

∑l∈I− j c(i)l

,

The remaining selection probabilities of the original PBN are
unchanged.

Definition 2.2. The long-run sensitivity with respect to permanent
on/off perturbations of a node xi as

sg[xi] = max{‖π̃[xi ≡ 0]−π‖l ,‖π̃[xi ≡ 1]−π‖l},

where π , π̃[xi ≡ 0], and π̃[xi ≡ 1] are the steady-state probability
distributions of the original PBN, of the original PBN with all
f (i) ∈ Fi replaced by f̃ (i) ≡ 0, and all f (i) ∈ Fi replaced by f̃ (i) ≡ 1,
respectively.

Notice that the definition of long-run sensitivity with respect to
permanent on/off perturbations is similar but not equivalent to the
definition of long-run sensitivity with respect to 1-gene function
perturbation of [12].

2.3 The Two-state Markov Chain Approach

The two-state Markov chain approach [13] is a method for estimat-
ing the steady-state probability of a subset of states of a DTMC.
In this approach the state space of an arbitrary DTMC is split into
two disjoint sets, referred to as meta states. One of the meta states,
numbered 1, is the subset of interest and the other, numbered 0,
is its complement. The steady-state probability of meta state 1,
denoted π1, can be estimated by performing simulations of the
original Markov chain. For this purpose a two-state Markov chain
abstraction of the original DTMC is considered. Let {Zt}t>0 be
a family of binary random variables, where Zt is the number of
the meta state the original Markov chain is in at time t. {Zt}t>0 is
a binary (0-1) stochastic process, but in general it is not a Markov
chain. However, as argued in [13], a reasonable assumption is that
the dependency in {Zt}t>0 falls off rapidly with lag. Therefore,
a new process {Z(k)

t }t>0, where Z(k)
t = Z1+(t−1)k, will be approxi-

mately a first-order Markov chain for k large enough. A procedure
for determining appropriate k is given in [13]. The first-order
chain consists of the two meta states with transition probabilities

B
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(a) Original DTMC

0 1
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(b) Two-state DTMC

Fig. 1: Conceptual illustration of the idea of the two-state Markov
chain construction. (a) The state space of the original discrete-
time Markov chain is split into two meta states: states A and B
form meta state 0, while states D, C, and E form meta state 1.
The split of the state space into meta states is marked with dashed
ellipses. (b) Projecting the behaviour of the original chain on the
two meta states results in a binary (0-1) stochastic process. After
potential subsampling, it can be approximated as a first-order, two-
state Markov chain with the transition probabilities α and β set
appropriately.

α and β between them. See Figure 1 for an illustration of the
construction of this abstraction.

The steady-state probability estimate π̂1 is computed from
a simulated trajectory of the original DTMC. The key point is to
determine the optimal length of the trajectory. Two requirements
are imposed. First, the abstraction of the DTMC, i.e., the two-
state Markov chain, should converge close to its steady-state
distribution π = [π0 π1]. Formally, t satisfying |P[Z(k)

t = i |Z(k)
0 =

j]− πi| < ε for a given ε > 0 and all i, j ∈ {0,1} needs to be
determined. t is the so-called ‘burn-in’ period and determines the
part of the trajectory of the two-state Markov chain that needs
to be discarded. Second, the estimate π̂1 is required to satisfy
P[π1−r 6 π̂1 6 π1+r]> s, where r is the required precision and s
is a specified confidence level. This condition is used to determine
the length of the second part of the trajectory used to compute π̂1,
i.e., the sample size. Now, the total required trajectory length of
the original DTMC is then given by M+N, where M = 1+(t−1)k
and N = 1+(dn(α,β )e−1)k, where t = dm(α,β )e. The functions
m and n depend on the transitions probabilities α and β and are
given by

m(α,β ) =
log
(

ε(α+β )
max(α,β )

)
log(|1−α−β |)

and

n(α,β ) =
αβ (2−α−β )

(α +β )3

(
Φ−1( 1

2 (1+ s))
)2

r2 ,

where Φ−1 is the inverse of the standard normal cumulative
distribution function. For the completeness of the presentation,
the detailed derivations of the expressions for m and n are given
in the Appendices A and B.

Since α and β are unknown, they need to be estimated. This
is achieved iteratively in the two-state Markov chain approach
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of [13]. It starts with sampling an arbitrary initial length trajectory,
which is then used for estimating the values of α and β . M and
N are calculated based on these estimates. Next, the trajectory
is extended to reach the required length, and α and β values
are re-estimated. The new estimates are used to re-calculate M
and N. This process is iterated until M +N is smaller than the
current trajectory length. Finally, the resulting trajectory is used to
estimate the steady-state probability of meta state 1. For more
details, see [13]. Notice however the small oversights in the
formulas for m (absolute value missing in the denominator) and n
(the inverse of Φ should be used) therein.

3 TWO-STATE MARKOV CHAIN APPROACH: THE
INITIALISATION PROBLEM

Shmulevich et al. [7] proposed to use the two-state Markov chain
approach for analysing the steady-state dynamics of PBNs in 2003.
However, since then it has not been widely applied. We aim to
revive the two-state Markov chain approach by demonstrating its
usefulness for approximating steady-state probabilities of large
PBNs. In this section, we first identify an initialisation problem
of the original approach due to the size of the initial sample, this
particular problem can lead to biased results. We then propose
three heuristics to extend the approach for avoiding unfortunate
initialisations.

Given good estimates of α and β , the theory of the two-
state Markov chain approach presented above guarantees that
the obtained value satisfies the imposed precision requirements.
However, the method starts with generating a trajectory of
the original DTMC of an arbitrarily chosen initial length, i.e.,
M0 +N0 = 1+(m0− 1)k+ 1+(n0− 1)k, where m0 is the ‘burn-
in’ period and n0 is the sample size of the two-state Markov chain
abstraction. An unfortunate choice may lead to initial estimates of
α and β that are biased and result in the new values of M and
N such that M +N is either smaller or not much larger than the
initial M0+N0. In the former case the algorithm stops immediately
with the biased values for α , β and, more importantly, with
an estimate for the steady-state probability that does not satisfy
the precision requirements. The second case may lead to the same
problem. As an illustration we considered a two-state Markov
chain with α = 24

11873 (0.0020214) and β = 24
25 (0.96). The steady-

state probability distribution was [0.997899 0.002101]. With k = 1,
ε = 10−6, r = 10−3, s = 0.95, m0 = 5, and n0 = 1,920 the first
estimated values for α and β were 1

1918 (0.0005214) and 1,
respectively. This subsequently led to M = 2 and N = 1,999,
resulting in a request for the extension of the trajectory by 76.
After the extension, the new estimates for α and β were 1

1997
and 1, respectively. These estimates gave M = 2, N = 1,920,
and the algorithm stopped. The estimated steady-state probability
distribution was [0.99950 0.00050], which was outside the pre-
specified precision interval given by r. Independent 104 runs
resulted in estimates of the steady-state probabilities that were
outside the pre-specified precision interval 10% of times. Given
the rather large number of repetitions, it can be concluded that the
specified 95% confidence interval was not reached.

The reason for the biased result is the unfortunate initial value
for n0 and the fact that the real value of α is small. In the
initialisation phase the value of α is underestimated and dn(α,β )e
calculated based on the estimated values of α and β is almost the
same as n0. Hence, subsequent extension of the trajectory does not

provide any improvement to the underestimated value of α since
the elongation is too short.

To identify and avoid some of such pitfalls, we consider
a number of cases and formulate some of the conditions in which
the algorithm may fail to achieve the specified precision. To start,
let n0 be the initial size of the sample used for initial estimation
of α and β . Neither α nor β is zero. It might be the case that the
initial sample size is not big enough to provide non-zero estimates
for both α and β . If this is the case, n0 is doubled and the trajectory
is elongated to collect a sample of required size. This is repeated
iteratively until non-zero estimates for α and β are obtained. In
the continuation we assume that n0 provides non-zero estimates
for both α and β . Then, the smallest possible estimates for both
α and β are greater than 1

n0
.

For a moment, let us set an upper bound value for n0 to be
104. For most cases this boundary value is reasonable. Notice
however that this is the case only if the real values of α and β

are larger than 10−4. In general, the selection of a proper value
for n0 heavily depends on the real values of α and β , which are
unknown a priori. From what was stated above, it follows that both
first estimates for α and β are greater than 10−4. The following
cases are possible.
(1) If both α and β are small, e.g., less than 0.1, then we have
that 10−4 < α,β < 0.1 and n(α,β ) > 72,765 as can be seen by
investigating the n(·, ·) function. In this case the sample size is
increased more than 7-fold which is reasonable since the two-state
Markov chain seems to be bad-mixing by the first estimates of the
values for α and β and the algorithm asks for a significant increase
of the sample size. We therefore conclude that the bad-mixing case
is properly handled by the algorithm.
(2) Both first estimates of α and β are close to 1. If α,β ∈
[0.7,0.98], the value of n(α,β ) is larger than 19,000. If both
α,β > 0.98, then the size of the sample drops, but in this case
the Markov chain is highly well-mixing and short trajectories are
expected to provide good estimates.
(3) The situation is somewhat different if one of the parameters is
estimated to be small and the other is close to 1 as in the example
described above. The extension to the trajectory is too small to
significantly change the estimated value of the small parameter
and the algorithm halts.
Considering the above cases leads us to the observation that the
following situation needs to be treated with care: The estimated
value for one of the parameters is close to 1

n0
, the value of the

second parameter is close to 1, and n(α,β ) is either smaller or
not significantly larger than n0.

First approach: pitfall avoidance. To avoid this situation, we
determine n0 which in principle could lead to inaccurate initial
estimates of α or β and such that the next sample size given by
dn(α,β )e would practically not allow for an improvement of the
estimates. As stated above, the ‘critical’ situation may take place
when one of the parameters is estimated to be very small, i.e., close
to 1

n0
, and the increase in the sample size is not significant enough

to improve the estimate. If the initial estimate is very small, the
real value is most probably also small, but the estimate is not
accurate. If the value is underestimated to the lowest possible
value, i.e., 1

n0
, on average the improvement can take place only

if the sample size is increased at least by n0. Therefore, with
the trade-off between the accuracy and efficiency of the method
in mind, we propose the sample size to be increased at least by
n0. Then the ‘critical’ situation condition is n(α,β ) < 2n0. By
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analysing the function n(·, ·) as described in details in Appendix D,
we can determine the values of n0 that are ‘safe’, i.e., which do
not satisfy the ‘critical’ condition. We present them in Table 1 for
a number of values for r and s.

Second approach: controlled initial estimation of α and β .
The formula for n is asymptotically valid provided that the values
for α and β are known. However, these values are not known a
priori and they need to be estimated. Unfortunately, the original
approach does not provide any control over the quality of the initial
estimate of the values of these parameters. In certain situation, e.g.,
as in the case discussed above, the lack of such control mechanism
may lead to results with worse statistical confidence level than
the specified one given by s. In the discussed example s = 95%,
but this value was not reached in the performed experiment. In
order to address this problem, we propose to extend the initial
phase of the two-state approach algorithm in the following way.
The algorithm samples a trajectory of the original DTMC and
estimates the values of α and β . We denote the estimates as α̂

and β̂ , respectively. Next, the algorithm computes the sample size
required to reach the s confidence level that the true value of
min(α,β ) is within a certain interval. For definiteness, we assume
from now on that α̂ < β̂ , which suggests that min(α,β ) = α .
During the execution of the procedure outlined in the following
the inequality may be inverted. If this is the case, the algorithm
makes corresponding change in the consideration of α and β .

The aim is to have a good estimate for α . Notice that the
smallest possible initial value of α̂ isgreater than 1

n0
. We refer

to 1
n0

as the resolution of estimation. Given the resolution, one
cannot distinguish between values of α in the interval (α̂− 1

n0
, α̂+

1
n0
). In consequence, if α ∈ (α̂ − 1

n0
, α̂ + 1

n0
), then the estimated

value α̂ should be considered as optimal. Hence, one could use
this interval as the one which should contain the real value with
specified confidence level. Nevertheless, although the choice of
this interval usually leads to very good results, as experimentally
verified, the results are obtained at the cost of large samples which
make the algorithm stop immediately after the initialisation phase.
Consequently, the computational burden is larger than would be
required by the original algorithm to reach the desired precision
specified by r and s parameters in most cases. In order to reduce
this unnecessary overhead, we consider the interval (α̂ − α̂

2 , α̂ +
α̂

2 ), which is wider than the previous one whenever α̂ > 1
n0

and
leads to smaller sample sizes.

The two-state Markov chain consists of two states 0 and 1,
i.e., the two meta states of the original DTMC. We set α as the
probability of making the transition from state 0 to state 1 (denoted
as 0→ 1). The estimate α̂ is computed as the ratio of the number of
transitions from state 0 to state 1 to the number of transition from
state 0. Let n0,α be the number of transitions in the sample starting
from state 0. Let Xi, i= 1,2, . . . ,n0,α , be a random variable defined
as follows: Xi is 1 if ith transition from meta-state 0 is 0→ 1 and
0 otherwise.

Notice that state 0 is an accessible atom in the terminology of
the theory of Markov chains, i.e., the Markov chain regenerates
after entering state 0, and hence the random variables Xi, i =
1,2, . . . ,n0,α , are independent. They are Bernoulli distributed with
parameter α . The unbiased estimate of the population variance
from the sample, denoted σ̂2, is given by σ̂2 = α̂ · (1− α̂) · n0,α

n0,α−1 .
Due to independence, σ̂2 is also the asymptotic variance and,
in consequence, the sample size that provides the specified con-
fidence level for the estimate of the value of α is given by

nα,s(α̂,n0,α) = α̂ · (1− α̂) · n0,α
n0,α−1 ·

(
Φ−1( 1

2 (1+s))
α̂/2

)2

. The Markov

chain is in state 0 with steady-state probability β

α+β
. Then, given

that the chain reached the steady-state distribution, the expected
number of regenerations in a sample of size n is given by n·β

α+β
.

Therefore, the sample size used to estimate the value of α with the
specified confidence level s is given by nα = α+β

β
· nα,s(α̂,n0,α).

As the real values of α and β are unknown, the estimated values
α̂ and β̂ can be used in the above formula. If the computed nα is
bigger than the current number of transitions n0,α , we extend the
trajectory to reach nα transitions from 0 to 1 and re-estimate the
values for α and β using the extended trajectory. We repeat this
process until the computed nα value is smaller than the number of
transitions used to estimate α . In this way, good initial estimates
for α and β are obtained and the original two-state Markov chain
approach using the formula for n(α,β ) is run.
Third approach: simple heuristics. When performing the initial
estimation of α and β , we require both the count of transitions
from state 0 to state 1 and the count of transitions from meta-
state 1 to state 0 be at least 3. If this condition is not satisfied,
we proceed by doubling the length of the trajectory. In this way
the problem of reaching the resolution boundary is avoided. Our
experiments showed that this simple approach in many cases led
to good initial estimates of the α and β probabilities.
Discussions. The first approach provides us with safe initial
starting points. As can be seen in Table 1, there might however
be no safe starting point in certain conditions. Nevertheless, the
first approach can be used in the initialisation phase of the other
two approaches. The second approach introduces a new iteration
process to provide a good estimate of α or β . The third one
modifies the two-state Markov chain approach by adding only one
extra restriction and therefore is the most simple one. We have
verified with experiments that the last two approaches have the
potential to make the two-state Markov chain approach meet the
predefined precision requirement even in the case of an unlucky
initial sample size. As a small example, we show in Table 2 the
results for verifying two PBNs each of eight nodes. For each of
the PBNs, we compute the steady-state probability for one subset
of states using three different approaches: 1) the original two-
state Markov chain approach (columns ‘Original’), the proposed
second approach (columns ‘2nd’) and the proposed third approach
(columns ‘3rd’). The precision and confidence level are set to
0.001 and 0.95 respectively. We repeat the computation for 1000
times and count the percentage of times that the calculated result
is within the precision requirement (shown in columns labelled
‘Computed confidence level’). As can be seen in Table 2, the orig-
inal two-state Markov chain approach fails to meet the confidence
level requirement while the both proposed approaches can meet
the requirement. Due to its simplicity, we use the third approach
in the remaining of the paper.

4 EVALUATION

In this section, we focus on verifying the performance of the
two-state Markov chain approach with another related method
called the Skart method [9]. We use the tool ASSA-PBN [14],
[15] as the platform for this verification. ASSA-PBN is a tool
specially designed for steady-state analysis of large PBNs; it
includes the two-state Markov chain approach with the simple
heuristics presented in Section 3 and the Skart method. For the
steady-state analysis of large PBNs, applications of these two



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 1: Ranges of integer values for n0 that do not satisfy the ‘critical’ condition n(α,β )< 2n0 for the given values of r and s.

r 0.01 0.001 0.0001
s 0.9 0.95 0.975 0.9 0.95 0.975 0.9 0.95 0.975

n0 ∈ /0 [2,136] /0 [2,1161] [2,1383] [2,1582] [2,11628] [2,13857] [2,15847]

TABLE 2: Performance of the second and third approaches.

Model Computed confidence level Average sample size
Original 2nd 3rd Original 2nd 3rd

PBN 1 88.3 96.7 95.5 9265 9040 9418
PBN 2 87.8 99.3 96.5 7731 13635 8201

methods necessitate generation of trajectories of significant length.
To make this efficient, we applied the alias method [16] to sample
the consecutive trajectory state. This enables ASSA-PBN, e.g, to
simulate 12,580 steps within 1s for a 2,000 nodes PBN, which is
hundreds of times faster than the related tool optPBN [17].

In Section 4.1, we briefly describe the Skart method. We
present an empirical comparison of the performance of these two
methods in Section 4.2.

4.1 The Skart Method

We choose the Skart method [9] as a reference for the evaluation
of the performance of the two-state Markov chain approach. The
Skart method is a successor of ASAP3, WASSP, and SBatch
methods, which are all based on the idea of batch means [9]. It
is a procedure for on-the-fly statistical analysis of the simulation
output, asymptotically generated in accordance with a steady-state
distribution. Usually it requires an initial sample of size smaller
than other established simulation analysis procedures [9]. Briefly,
the algorithm partitions a long simulation trajectory into batches,
for each batch computes a mean and constructs an interval estimate
using the batch means. Further, the interval estimate is used by
Skart to decide whether a steady state distribution is reached or
more samples are required. For a more detailed description of this
method, see [9].

The Skart method differs in three key points with the two-state
Markov chain approach. First, it specifies the initial trajectory
length to be at least 1,280, while for the two-state Markov
chain approach this information is not provided. This difference,
however, does not change the fact that the two methods can
provide the same accuracy guarantee providing that the unlucky
choice of the initial trajectory length of the two-state Markov chain
approach is fixed as mentioned in the previous section. Second,
the Skart method applies the student distribution for skewness
adjustment while the two-state approach makes use of the normal
distribution for confidence interval calculations. Thirdly, the two-
state Markov chain approach does not require to keep track of
the simulated trajectories; instead, the statistics (e.g., the α and β

as in Figure 1) of the trajectories are enough. the Skart method,
however, requires to keep track of the simulated trajectories, which
consumes a large memory in the cases of large size trajectories.

4.2 Performance evaluation

To compare the performance of the two methods, we randomly
generated 882 different PBNs using ASSA-PBN. ASSA-PBN
can randomly generate a PBN which satisfies structure require-
ments given in the form of five input parameters: the node number,
the minimum and the maximum number of predictor functions per

node, finally the minimum and maximum number of parent nodes
for a predictor function. We generated PBNs with node numbers
from {15,30,80,100,150,200,300,400,500,1000,2000}. We as-
signed the obtained PBNs into three different classes with respect
to the density measure D : dense models with density 150–300,
sparse models with density around 10, and in-between models
with density 50–100. The two-state Markov chain approach and
the Skart method were tested on these PBNs with precision r set to
the values in {10−2,5× 10−3,10−3,5× 10−4,10−4,5× 10−5,1×
10−5,5× 10−6,1× 10−6}. We set ε to 10−10 for the two-state
Markov chain approach and s to 0.95 for both methods.

The experiments were performed on a HPC cluster, with CPU
speed ranging between 2.2GHz and 3.07GHz. ASSA-PBN is
implemented in Java and the initial and maximum Java virtual
machine heap size were set to 503MB and 7.86GB, respectively.
We collected 5596 valid (precision being smaller than probability)
results with the information on the PBN node number, its density
class, the precision value, the estimated steady-state probabili-
ties computed by the two methods, and their CPU time costs.
The steady-state probabilities computed by the two methods are
comparable in all the cases (data not shown in the paper). For
each experimental result i, we compare the time costs of the two
methods. Let tTS(i) and tSkart(i) be the time cost for the two-state
Markov chain approach and the Skart method, respectively. We
say that the two-state Markov chain approach is by k per cent
faster than the Skart method if (tSkart(i)−tTS(i))

tSkart(i)
> k

100 . The definition
for the Skart method to be faster than the two-state Markov chain
approach is symmetric. In Table 3 we show the percentage of
cases in which the two-state approach was by k per cent faster
than Skart and vice versa for different k. In general, in nearly 70%
of the results, the two-state Markov chain approach was faster
than the Skart method. The number of cases the two-state Markov
chain approach was faster than the Skart method is also larger than
in the opposite case.

Next, we analyse the results with a machine learning tech-
nique, i.e., logistic regression, in MATLAB. We use the node
number, the precision, and the density class as features. We label
each result as 1 if the two-state Markov chain approach is by
k per cent faster than the Skart method and as 0 otherwise. We
plot the receiver operating characteristic (ROC) curve, which is
commonly used to illustrate the performance of a binary classifier
against varying discrimination threshold and we give the computed
area under the curve (AUC) for different k in Figure 2a. When
k > 15, the AUC value is over 0.7, which means that the prediction
is very good. In another word, for a given PBN and precision
requirement, we are able to predict whether the two-state Markov
chain approach will be by 15 per cent faster than the Skart method
in a very high accuracy rate.

We show in Table 4 (left part) the regression coefficient
estimates of the three features. Clearly, the precision plays an
important role in the prediction since the absolute value is always
the largest. We further analyse how the performance of the two
methods change with precision and show in Table 5 the percentage
of cases that the two-state Markov chain approach is faster than
the Skart method with respect to different precisions. The two-
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TABLE 3: Performance comparison of the Skart and the two-state MC methods.

k 0 5 10 15 20 25 30
tTS ≤ tSkart 69.03% 54.04% 40.06% 30.19% 25.24% 22.22% 20.18%
tSkart ≤ tTS 30.97% 19.32% 11.98% 8.27% 6.42% 5.39% 4.83%

TABLE 4: Logistic regression coefficient estimates for performance prediction.

tTS ≤ tSkart tSkart ≤ tTS
k 0 5 10 15 20 25 0 5 10 15 20 25

node number -0.17 -0.15 -0.09 -0.01 0.04 0.09 0.17 0.20 0.21 0.27 0.25 0.28
precision 0.34 0.49 0.68 0.84 0.93 0.92 -0.34 -0.09 0.16 0.38 0.45 0.48
density -0.15 -0.19 -0.29 -0.41 -0.52 -0.53 0.15 0.11 -0.04 -0.15 -0.27 -0.37

TABLE 5: Performance of the two methods with respect to different precisions.

precision 10−2 5×10−3 10−3 5×10−4 10−4 5×10−5 10−5 5×10−6 10−6

tTS ≤ tSkart 84% 76% 67% 64% 65% 59% 73% 75% 85%
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Fig. 2: Prediction on the performance of the the Skart and the
two-state MC methods.

state Markov chain approach has a larger chance to be faster
than the Skart method in all the studied precisions, especially
when the precision r is low (e.g., 10−2) or very high (e.g., equal to
or less than 10−5). Notably, the chance that the two-state Markov
chain approach is faster than the Skart method becomes very large
when the precision is very high. This is due to the fact that the

Skart method requires a large memory to keep track of the large
size trajectory when the precision is high. The CPU performance
drops when operating on a large memory; on the other hand, the
Skart method may run out of memory.

Moreover, we analyse the situation when the Skart method is
by k per cent faster than the two-state Markov chain approach.
This time it becomes difficult to make an accurate prediction as
the largest AUC is only about 0.72 for k = 20 (see Figure 2b).
Besides, the coefficient estimates in the right part of Table 4 also
vary a lot with k, and precision is not always the dominating factor.
The detailed experiment data can be obtained at http://satoss.uni.
lu/software/ASSA-PBN/benchmark/benchmark.xlsx.

From the above analysis, we conclude that the two-state
Markov chain approach outperforms the Skart method (state-of-
the-art) in analysing large PBNs, especially for computing steady-
state probabilities with very high precision.

5 A BIOLOGICAL CASE STUDY

In [18], a large-scale Boolean network of apoptosis (see Figure 3)
in hepatocytes was introduced, where the assigned Boolean in-
teractions for each molecule were derived from literature study.
In [17], the original multi-value Boolean model was cast into
the PBN framework: a binary PBN model, so-called ‘extended
apoptosis model’ which comprised 91 nodes (state-space of size
291) and 102 interactions was constructed. In this extended version
the possibility of activation of NF-κB through Caspase 8 (C8*),
as described in [17], was included. The model was fitted to
steady-state experimental data obtained in response to six different
stimulations of the input nodes, see [17] for details.

As can be seen from the wiring of the network, the activation
of complex2 (co2) by RIP-deubi can take place in two ways: 1) by
a positive feedback loop from activated C8* and P → tBid →
Bax→ smac→ RIP-deubi→ co2→ C8*-co2→ C8*, and 2) by
the positive signal from UV-B irradiation (input nodes UV(1) or
UV(2)) → Bax → smac → RIP-deubi → co2. The former to
be active requires the stimulation of the type 2 receptor (T2R).
The latter way requires complex1 (co1) to be active, which cannot
happen without the stimulation of the TNF receptor-1. Therefore,
RIP-deubi can activate co2 only in the condition of co-stimulation
by TNF and either UV(1) or UV(2). In consequence, it was
suggested in [17] that the interaction of activation of co2 via
RIP-deubi is not relevant and could be removed from the model
in the context of modelling primary hepatocyte. However, due
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Fig. 3: The wiring of the Boolean model of apoptosis.
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to the problem with efficient generation of very long trajectories
in optPBN toolbox, quantitative analysis was hindered and this
hypothesis could not be verified ( [17]).

In this work, we take up this challenge and we quantitatively
investigate the relevancy of the interaction of activation of co2
via RIP-deubi. We perform an extensive analysis in the context of
co-stimulation by TNF and either UV(1) or UV(2): we compute
long-term influences of parent nodes on the co2 node and the
long-run sensitivities with respect to various perturbations related
to specific predictor functions and their selection probabilities.
For this purpose we apply the two-state Markov chain approach as
implemented in our ASSA-PBN tool [15] to compute the relevant
steady-state probabilities for the best-fit models described in [17].
Due to the efficient implementation, the ASSA-PBN tool can
easily deal with trajectories of length exceeding 2× 109 for this
case study.

We consider 20 distinct parameter sets of [17] that resulted
in the best fit of the ‘extended apoptosis model’ to the steady-
state experimental data in six different stimulation conditions.
In [17], parameter estimation was performed with steady-state
measurements for the nodes apoptosis, C3ap17 or C3ap17 2
depending on the stimulation condition considered, and NF-κB.
The optimisation procedure used was Particle Swarm and fit score
function considered was the sum of squared errors of prediction
(SSE) and the sum was taken over the three nodes in the six
stimulation conditions. We took all the optimisation results from
the three independent parameter estimation runs of [17], each
containing 7500 parameter sets. We sorted them increasingly with
respect to the cost function value obtained during optimisation,
removed duplicates, and finally took the first 20 best-fit parameter
sets.

As mentioned above, we fix the experimental context to co-
stimulation of TNF and either UV(1) or UV(2). We note that
originally in [18] UV-B irradiation conditions were imposed via
a multi-value input node UV which could take on three values, i.e.,
0 (no irradiation), 1 (300J/m2 UV-B irradiation), and 2 (600J/m2

UV-B irradiation). In the model of [17], UV input node was refined
as UV(1) and UV(2) in order to cast the original model into the
binary PBN framework. Therefore, we consider in our study two
cases: 1) co-stimulation of TNF and UV(1) and 2) co-stimulation
of TNF and UV(2). Node co2 has two independent predictor
functions: co2 = co1 ∧ FADD or co2 = co1 ∧ FADD ∧ RIP-
deubi. The selection probabilities are denoted as c(co2)

1 and c(co2)
2 ,

respectively. Their values have been optimised in [17].
We start with computing the influences with respect to the

steady-state distribution, i.e., the long-term influences on co2 of
each of its parent nodes: RIP-deubi, co1, and FADD, in accordance
with the definition in Section 2.2. Notice that the computation of
the three influences requires several joint steady-state probabili-
ties to be estimated with the two-state Markov chain approach,
e.g., (co1=1,FADD=1,RIP-deubi=0) or (co1=1,FADD=0). Each
probability determines a specific split of the original Markov
chain. For example, in the case of the estimation of the joint
steady-state probability for (co1=1,FADD=0), the states of the
underlying Markov chain of the apoptosis PBN model in which
co1=1 and FADD=0 constitute meta state 1 and all the remaining
states form meta state 0. Therefore, the estimation of influences
is computationally demanding. The summarised results for the
20 parameter sets are presented for the co-stimulation of TNF
and UV(1) or TNF and UV(2) in Table 6. They are consistent
across the different parameter sets and clearly indicate that the

influence of RIP-deubi on co2 is small compared to the influence
of co1 or FADD on co2. However, the influence of RIP-deubi is
not negligible.

We take the analysis of the importance of the interaction
between RIP-deubi and co2 further and we compute various long-
run sensitivities with respect to selection probability perturbation.
In particular, we perturb the selection probability c(co2)

2 by ±5%,
i.e., we set the new value by multiplying the original value
by (1± 0.05), and compute in line with Definition 2.1 how
the joint steady-state distribution for (apoptosis,C3ap17,NFκB)
differs from the non-perturbed one with respect to the l1 norm,
i.e., || · ||1. We notice that the computation of the full steady-
state distribution for the considered PBN model of apoptosis is
practically intractable, i.e., it would require the estimation of 291

values. Therefore, we restrict the computations to the estimation of
eight joint steady-state probabilities for all possible combinations
of values for (apoptosis,C3ap17,NFκB), i.e., the experimentally
measured nodes. Each estimation is obtained by a separate run of
the two-state Markov chain approach with the split into meta states
determined by the considered probability as explained above in the
case of the computation of long-term influences. To compare the
estimated distributions we choose the l1 norm after [19], where
it is used in the computations of similar types of sensitivities for
PBNs to these defined in Section 2.2. Notice that the l1 norm of the
difference of two probability distributions on a finite sample space
is twice the total variation distance. The latter is a well-established
metric for measuring the distance between probability distribu-
tions defined as the maximum difference between the probabilities
assigned to a single event by the two distributions (see, e.g., [20]).
Additionally, we check the difference when c(co2)

2 is set to 0 (and,
in consequence, c(co2)

1 is set to 1). The obtained results for the
20 parameter sets in the conditions of co-stimulation of TNF and
UV(1) and co-stimulation of TNF and UV(2) are summarised
in Table 7. In all these cases, the sensitivities are very small.
Therefore, the system turns to be insensitive to small perturbations
of the value of c(co2)

2 . Also the complete removal of the second
predictor function for co2 does not cause any drastic changes in
the joint steady-state distribution for (apoptosis,C3ap17,NF-κB).

Finally, we compute the long-run sensitivity with respect to
permanent on/off perturbations of the node RIP-deubi in accor-
dance with Definition 2.2. As before, we consider the joint steady-
state distributions for (apoptosis,C3ap17,NF-κB) and we choose
the l1-norm. The results, given in Table 8, show that in both
variants of UV-B irradiation the sensitivities are not negligible
and the permanent on/off perturbations of RIP-deubi have impact
on the steady-state distribution.

To conclude, all the obtained results indicate that in the context
of co-stimulation of TNF and either UV(1) or UV(2) the interac-
tion between RIP-deubi and co2 plays a certain role. Although
the elimination of the interaction does not invoke significant
changes to the considered joint steady-state distribution, the long-
term influence of RIP-deubi on co2 is not negligible and may be
important for other nodes in the network.

6 DISCUSSION AND CONCLUSION

Most current tools for statistical model checking, a simulation-
based approach using hypothesis testing to infer whether
a stochastic system satisfies a property, are restricted for bounded
properties which can be checked on finite executions of the
system. Recently, both the Skart method [21] and the perfect
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TABLE 6: Long-term influences of RIP-duebi, co1, and FADD on co2 in the ‘extended apoptosis model’ in [17] under the co-stimulation
of both TNF and UV(1) or UV(2).

TNF and UV(1) TNF and UV(2)
IRIP-deubi Ico1 IFADD IRIP-deubi Ico1 IFADD

Best fit 0.2614 0.9981 0.9935 0.2615 0.9980 0.9936
Min 0.0000 0.9979 0.9935 0.0000 0.9979 0.9936
Max 0.3145 0.9988 0.9944 0.3146 0.9990 0.9947
Mean 0.2087 0.9982 0.9937 0.2088 0.9982 0.9938
Std 0.0735 0.0002 0.0002 0.0735 0.0002 0.0003

TABLE 7: Long-run sensitivities w.r.t selection probability perturbations.

TNF and UV(1) TNF and UV(2)
c(co2)

2 +5% −5% = 0 +5% −5% = 0
Best fit 0.0003 0.0002 0.0011 0.0002 0.0004 0.0011
Min 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002
Max 0.0008 0.0008 0.0014 0.0012 0.0007 0.0013
Mean 0.0005 0.0005 0.0009 0.0004 0.0004 0.0009
Std 0.0001 0.0001 0.0003 0.0002 0.0001 0.0003

TABLE 8: Long-run sensitivities w.r.t permanent on/off perturbations of RIP-deubi.

RIP-deubi f. pert. Best fit Min Max Mean Std
TNF & UV(1) 0.3075 0.0130 0.3595 0.2089 0.0823
TNF & UV(2) 0.3097 0.0105 0.3612 0.2105 0.0827

simulation algorithm [22] have been explored for statistical model
checking of steady state and unbounded until properties. The
perfect simulation algorithm for sampling the steady-state of an
ergodic DTMC is based on the indigenous idea of the backward
coupling scheme [11]. It allows to draw independent samples
which are distributed exactly in accordance with the steady-state
distribution of a DTMC. However, due to the nature of this
method, each state in the state space needs to be considered
at each step of the coupling scheme. If a DTMC is monotone,
then it is possible to sample from the steady-state distribution
by considering the maximal and minimal states only [11]. This
was exploited in [22] for model checking large queuing networks.
Unfortunately, it is not applicable to PBNs with perturbations. In
consequence, the perfect simulation algorithm is only suited for at
most medium-size PBNs and large-size PBNs are out of its scope.
Thus, we have only compared the performance of the two-state
Markov chain approach with the Skart method.

Moreover, in this study we have identified a problem of
generating biased results by the original two-state Markov chain
approach and have proposed three heuristics to avoid wrong
initialisation. Finally, we demonstrated the potential of the two-
state Markov chain approach on a study of a large, 91-node PBN
model of apoptosis in hepatocytes. The two-state Markov chain
approach facilitated the quantitative analysis of the large network
and the investigation of a previously formulated hypothesis re-
garding the relevance of the interaction of activation of co2 via
RIP-deubi. In the future, we aim to investigate the usage of the
discussed statistical methods for approximate steady-state analysis
in a research project on systems biology, where we will apply them
to develop new techniques for minimal structural interventions to
alter steady-state probabilities for large regulatory networks.

APPENDIX A
DERIVATION OF THE NUMBER OF “BURN-IN” ITERA-
TIONS

Let {Zt}t≥0 be a discrete-time two-state Markov chain as given
in Figure 1b. Zt has the value 0 or 1 if the system is in state
0 or state 1 at time n, respectively. The transition probabilities
satisfy 0 < α,β < 1 and the transition matrix for this chain has
the following form

P =

[
1−α α

β 1−β

]
.

Matrix P has two distinct eigenvalues: 1 and λ = (1−α − β ).
Notice that |λ |< 1.

The chain is ergodic and the unique steady-state distribution is
π = [π0 π1] = [ β

α+β

α

α+β
]. Let Eπ(Zt) denote the expected value of

Zt for any fixed t ≥ 0, with respect to the steady-state distribution
π . We have that Eπ(Zt) =

α

α+β
.

The m-step transition matrix can be written, as can be checked
by induction, in the form

Pm =

[
π0 π1
π0 π1

]
+

λ m

α +β
·
[

α −α

−β β

]
,

where λ is the second eigenvalue of P.
Suppose we require m to be such that the following condition

is satisfied [
|P[Zm = 0 |Z0 = j]−π0 |
|P[Zm = 1 |Z0 = j]−π1 |

]
<

[
ε

ε

]
(1)

for some ε > 0. If e0 = [1 0] and e1 = [0 1], then for j ∈ {0,1} we
have that[

P[Zm = 0 |Z0 = j]
P[Zm = 1 |Z0 = j]

]
= (e jPm)T = (Pm)T(e j)

T,
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where T is the transposition operator. For any vector v =
[v1 v2 . . . vn]

T ∈ Rn we use |v| to denote [|v1| |v2| . . . |vn|]T.
Therefore, condition (1) can be rewritten as∣∣∣∣∣(Pm)T(e j)

T−
[

π0
π1

]∣∣∣∣∣<
[

ε

ε

]
.

For j = 0 and j = 1 the above simplifies to∣∣∣∣∣ λ m

α +β
·
[

α

−α

]∣∣∣∣∣<
[

ε

ε

]
and

∣∣∣∣∣ λ m

α +β
·
[
−β

β

]∣∣∣∣∣<
[

ε

ε

]
,

respectively. Therefore, it is enough to consider the following two
inequalities ∣∣∣∣ λ mα

α +β

∣∣∣∣< ε and
∣∣∣∣ λ mβ

α +β

∣∣∣∣< ε,

which, since α,β > 0, can be rewritten as

|λ m|< ε(α +β )

α
and |λ m|< ε(α +β )

β
.

Equivalently, m has to satisfy

|λ m|< ε(α +β )

max(α,β )
.

By the fact that |λ m|= |λ |m this can be expressed as

|λ |m <
ε(α +β )

max(α,β )
.

Then, by taking the logarithm to base 10 on both sides1, we have
that

m · log(|λ |)< log
(

ε(α +β )

max(α,β )

)
and in consequence, since |λ |< 1 and log |λ |< 0,

m >
log
(

ε(α+β )
max(α,β )

)
log(|λ |) .

APPENDIX B
DERIVATION OF THE SAMPLE SIZE

By the Law of Large Numbers for irreducible positive recurrent
Markov chains Zn→ π1 a. s. with n→ ∞, where Zn =

1
n ∑

n
t=1 Zt .

Now, by a variant of the Central Limit Theorem for non-
independent random variables2, for n large, Zn is approximately
normally distributed with mean π1 = α

α+β
and asymptotic vari-

ance σ2
as =

1
n

αβ (2−α−β )
(α+β )3 , see Section C for the derivation of the

asymptotic variance. Let X be the standardised Zn, i.e.,

X =
Zn−π1

σas/
√

n
.

If follows that X is normally distributed with mean 0 and variance
1, i.e., X ∼ N(0,1).

Now, we require n to be such that the condition P[π1− r ≤
Zn ≤ π1 + r] = s is satisfied for some specified r and s. This
condition can be rewritten as

P[−r ≤ Zn−π1 ≤ r] = s,

1. In fact, by the formula for change of base for logarithms, the natural
logarithm (ln), the logarithm to base 2 (log2), or a logarithm to any other base
could be used to calculate m instead of log. Notice that m does not depend on
the choice of the base of the logarithm!

2. Notice that the random variables Zt , Zt+1 which values are consecutive
states of a trajectory are correlated and are not independent.

and further as

P[−r ·
√

n
σas
≤ Zn−π1

σas/
√

n
≤ r ·

√
n

σas
] = s,

which is
P[−r ·

√
n

σas
≤ X ≤ r ·

√
n

σas
] = s.

Since X ∼ N(0,1) and N(0,1) is symmetric around 0, it follows
that

P[0≤ X ≤ r ·
√

n
σas

] =
s
2

and
P[X ≤ r ·

√
n

σas
] =

1
2
+

s
2
=

1
2
(1+ s).

Let Φ(·) be the standard normal cumulative distribution function.
Then the above can be rewritten as

Φ(r ·
√

n
σas

) =
1
2
(1+ s).

Therefore, if we denote the inverse of the standard normal cumu-
lative distribution function with Φ−1(·), we have that

r ·
√

n
σas

= Φ
−1(

1
2
(1+ s)).

In consequence,

n =
σ2

as{
r

Φ−1( 1
2 (1+s))

}2 =

αβ (2−α−β )
(α+β )3{

r
Φ−1( 1

2 (1+s))

}2 .

APPENDIX C
DERIVATION OF THE ASYMPTOTIC VARIANCE

By the Central Limit Theorem for stationary stochastic processes3
√

n(Zn − π1)
d−→ N(0,σ2

as) as n→ ∞, where σ2
as is the so-called

asymptotic variance given by

σ
2
as = Varπ(Z j)+2

∞

∑
k=1

Covπ(Z j,Z j+k) (2)

and Varπ(·) and Covπ(·) denote the variance and covariance with
respect to the steady-state distribution π , respectively. We proceed
to calculate σ2

as. First, observe that Eπ(ZnZn+1) =
α

α+β
(1− β ):

ZnZn+1 6= 0 if and only if the chain is state 1 at time n and
remains in 1 at time n+ 1, i.e., Zn = Zn+1 = 1. The probability
of this event at steady state is α

α+β
(1−β ). Then, by the definition

of covariance, we have that the steady-state covariance between
consecutive random variables of the two-state Markov chain, i.e.,
Covπ(Zn,Zn+1) is

Covπ(Zn,Zn+1) = Eπ [(Zn−Eπ(Zn))(Zn+1−Eπ(Zn+1))]

= Eπ

[
(Zn−

α

α +β
)(Zn+1−

α

α +β
)

]
= Eπ

[
ZnZn+1−

α

α +β
(Zn +Zn+1)+

α2

(α +β )2

]
= Eπ(ZnZn+1)−

α

α +β
(Eπ(Zn)+Eπ(Zn+1))+

α2

(α +β )2

=
α(1−β )

α +β
−2

α2

(α +β )2 +
α2

(α +β )2

=
αβ (1−α−β )

(α +β )2 .

3. After discarding the ‘burn-in’ part of the trajectory, we can assume that
the Markov chain in a stationary stochastic process.
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Further, we have that Varπ(Zn) = π0 ·π1 =
αβ

(α+β )2 (variance of the
Bernoulli distribution) and it can be shown that Covπ(Zn,Zn+k) =
(1−α − β )k ·Varπ(Zn) for any k ≥ 1. Now, according to Equa-
tion (2), we have

σ
2
as = Varπ(X j)+2

∞

∑
k=1

Covπ(X j,X j+k)

=
αβ

(α +β )2 +2
∞

∑
k=1

(1−α−β )k · αβ

(α +β )2

=
αβ

(α +β )2 +
2αβ

(α +β )2 ·
∞

∑
k=1

(1−α−β )k

=
αβ

(α +β )2 +
2αβ

(α +β )2 ·
1−α−β

α +β

=
αβ (2−α−β )

(α +β )3 .

In consequence, Zn is approximately normally distributed with
mean α

α+β
and variance 1

n
αβ (2−α−β )

(α+β )3 .

APPENDIX D
‘PITFALL AVOIDANCE’ HEURISTIC METHOD: FOR-
MULA DERIVATIONS

We start with analysing the minimum values n(·, ·) can attain. The
function is considered on the domain D = (0,1]× (0,1] and, as
mentioned before, the estimated values of α and β are within
the range [ 1

n0
,1]. Computing the partial derivatives, equating them

to zero, and solving for α and β yields α = −β , which has no
solution in the considered domain. Hence, the function has neither
local minimum nor maximum on D. Let us fix β for a moment
and consider n(α,β ) as a function of α . We denote it as nβ (α).
By differentiating with respect to α , we obtain

∂

∂α
nβ (α) =

1
cr,s

β
(
α2−β 2−4α +2β

)
(α +β )4 ,

where

cr,s =
r2(

Φ−1
( 1

2 (1+ s)
))2 .

By equating to zero and solving for α we get two solutions:
α1 = 2−

√
β 2−2β +4 and α2 = 2+

√
β 2−2β +4. Since the

second solution is always greater than 1 on the (0,1] interval,
only the first solution is valid. The sign of the second derivative
of nβ (α) with respect to α at α1 is negative. This shows that
for any fixed β , nβ (α) grows on the interval [ 1

n0
,α1], attains its

maximum at α1 and decreases on the interval [α1,1]. Notice that
n is symmetric, i.e., n(α,β ) = n(β ,α). Thus the minimum value
n could attain for α and β estimated from a sample of size n0 is
given by min

(
n
(

1
n0
, 1

n0

)
,n
(

1
n0
,1
))

. After evaluating n we get

n
(

1
n0

,
1
n0

)
=

n0−1
4cr,s

and

n
(

1
n0

,1
)
=

(n0−1) ·n0

cr,s · (1+n0)3 .

Now, to avoid the situation where the initial estimates of α and β

lead to n(α,β )< 2n0, it is enough to make sure that given r and s

the following condition is satisfied: min(n( 1
n0
, 1

n0
),n( 1

n0
,1))> 2n0.

This can be rewritten as
(8cr,s−1)n0 +1≤ 0

2cr,s n3
0 +6cr,s n2

0 +(6cr,s−1)n0 +2cr,s +1≤ 0

Both inequalities can be solved analytically. Given that n0 > 0, the
solution of the first inequality is{

n0 ∈ [− 1
8·cr,s−1 ,∞) cr,s <

1
8

n0 ∈ /0 cr,s > 1
8 .

(3)

The solution of the second inequality is more complicated, but can
be easily obtained with computer algebra system software (e.g.,
MapleTM). In Table 1 we present some solutions for a number of
values for r and s.
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