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Abstract
The principle-based or axiomatic approach is a methodology to choose an

argumentation semantics for a particular application, and to guide the search
for new argumentation semantics. This article gives a complete classification
of the fifteen main alternatives for argumentation semantics using the twenty-
seven main principles discussed in the literature on abstract argumentation,
extending Baroni and Giacomin’s original classification with other semantics
and principles proposed in the literature. It also lays the foundations for a
study of representation and (im)possibility results for abstract argumentation,
and for a principle-based approach for extended argumentation such as bipo-
lar frameworks, preference-based frameworks, abstract dialectical frameworks,
weighted frameworks, and input/output frameworks.

1 The principle-based approach
A considerable number of semantics exists in the argumentation literature. Whereas
examining the behaviour of semantics on examples can certainly be insightful, a
need for more systematic study and comparison of semantics has arisen. Baroni
and Giacomin [2007] present a classification of argumentation semantics based on a
set of principles. In this article, we extend their analysis with other principles and
semantics proposed in the literature over the past decade.

The principle-based approach is a methodology that is also successfully applied in
many other scientific disciplines. It can be used once a unique universal method is re-
placed by a variety of alternative methods, for example, once a variety of modal logics
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is used to represent knowledge instead of unique first order logic. The principle-based
approach is also called the axiomatic approach, or the postulate based approach (for
example in AGM theory change by Alchourrón et al. [1985]).

Maybe the best known example of the principle-based approach is concerned
with the variety of voting rules, a core challenge in democratic societies, see, e.g.,
Tennenholtz and Zohar [2016]. It is difficult to find two countries that elect their
governments in the same way, or two committees that decide using exactly the same
procedure. Over the past two centuries many voting rules have been proposed, and
researchers were wondering how we can know that the currently considered set of
voting rules is sufficient or complete, and whether there is no better voting rule that
has not been discovered yet. Voting theory addresses what we call the choice and
search problems inherent to diversity:

Choice problem: If there are many voting rules, then how to choose one voting
rule from this set of alternatives in a particular situation?

Search problem: How to guide the search for new and hopefully better voting
rules?

In voting theory, the principle-based approach was introduced by Nobel prize
winner Kenneth Arrow. The principle-based approach classifies existing approaches
based on axiomatic principles, such that we can select a voting rule based on the set
of requirements in an area. Moreover, there may be sets of principles for which no
voting rule exist yet. Beyond voting theory, the principle-based approach has been
applied in a large variety of domains, including abstract argumentation.

Formal argumentation theory, following the methodology in non-monotonic logic,
logic programming and belief revision, defines a diversity of semantics. This imme-
diately raises the same questions that were raised before for voting rules, and in
many other areas. How do we know that the currently considered set of semantics
is sufficient or complete? May there be a better semantics that has not been discov-
ered yet? Moreover, the same choice and search problems of voting theory can be
identified for argumentation theory as well:

Choice problem: If there are many semantics, then how to choose one semantics
from this set of alternatives in a particular application?

Search problem: How to guide the search for new and hopefully better argumen-
tation semantics?

The principle-based approach again addresses both problems. For example, if one
needs to exclude the possibility of multiple extensions, one may choose the grounded
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or ideal semantics. If it is important that at least some extension is available, then
stable semantics should not be used. As another common example, consider the
admissibility principle that if an argument in an extension is attacked, then it is
defended against this attack by another argument in the extension. If one needs a
semantics that is admissible, then for example CF2 or stage2 cannot be chosen.

Principles have also been used to guide the search for new semantics. For ex-
ample, the principle of resolution was defined by Baroni and Giacomin [2007], well
before resolution based semantics were defined and studied by Baroni et al. [2011b].
Likewise it may be expected that the existing and new principles will guide the
further search for suitable argumentation semantics. For example, consider the
conflict-freeness principle that says that an extension does not contain arguments
attacking each other. All semantics studied in this article satisfy this property. If one
needs to define new argumentation semantics that are para-consistent in the sense
that its extensions are not necessarily conflict free [Arieli, 2015], then one can still
adopt other principles such as admissibility in the search for such para-consistent
semantics.

The principle-based approach consists of three steps.
The first step in the principle-based approach is to define a general function,

which will be the object of study. Kenneth Arrow defined social welfare functions
from preference profiles to aggregated preference orders. For abstract argumenta-
tion, the obvious candidate is a function from graphs to sets of sets of nodes of the
graph. Following Dung’s terminology, we call the nodes of the graph arguments,
we call sets of nodes extensions, we call the edges attacks, and we call the graphs
themselves argumentation frameworks. Moreover, we call the function an argumen-
tation semantics. Obviously nothing hinges on this terminology, and in principle the
developed theory could be used for other applications of graph theory as well.

We call this function from argumentation frameworks to sets of extensions a two
valued function, as a node is either in the extension, or not. Also multi valued
functions are commonly used, in particular three valued functions conventionally
called labelings. For three valued labelings, the values are usually called in, out
and undecided. Other more general functions have been considered in abstract
argumentation, for example in value based argumentation, bipolar argumentation,
abstract dialectical frameworks, input/output frameworks, ranked semantics, and
more. The principle-based approach can be applied to all of them, but in this article
we will not consider such generalisations.

The second step of the principle-based approach is to define the principles. The
central relation of the principle-based approach is the relation between semantics
and principles. In abstract argumentation a two valued relation is used, such that
every semantics either satisfies a given property or not. In this case, principles can

2737



van der Torre and Vesic

be defined also as sets of semantics, and they can be represented by a constraint on
the function from argumentation frameworks to sets of extensions. An alternative
approach used in some other areas gives a numerical value to represent to which
degree a semantics satisfies a principle.

The third step of the principle-based approach is to classify and study sets of
principles. For example, a set of principles may imply another one, or a set of
principles may be satisfiable in the sense that there is a semantics that satisfies all
of them. A particular useful challenge is to find a set of principles that characterises
a semantics, in the sense that the semantics is the only one that satisfies all the
principles. Such characterisations are sometimes called representation theorems.

The principles used in a search problem are typically desirable, and desirable
properties are sometimes called postulates. For the mathematical development of
a principle-based theory, it may be less relevant whether principles are desirable
or not.

Before we continue, we address two common misunderstandings about the
principle-based approach, which are sometimes put forward as objections against it.

The first point is that not every function from argumentation frameworks to
sets of extensions is an argumentation semantics. In other words, the objection is
sometimes raised against the axiomatic approach that it allows for counterintuitive
or even absurd argumentation semantics, just like the objection may be raised that
not every function from preference profile to candidates is a voting rule. However,
in the principle-based approach, such counterintuitive alternatives are excluded by
the principles, they are not excluded a priori.

It may be observed that in formal argumentation, this objection is not restricted
to principle-based abstract argumentation. A general framework for structured ar-
gumentation like ASPIC+ also allows for many counterintuitive or even absurd argu-
mentation theories. However, from the perspective of the principle-based approach,
the generality of the ASPIC+ approach can be used to study which combinations of
definitions lead to argumentation theories satisfying desired principles [Caminada,
forthcoming].

The second point is that a semantics is fundamentally different from a princi-
ple. In general a semantics is a function from argumentation frameworks to sets of
extensions, and principles can be defined as sets of such functions and represented
by a constraint on such functions. This misunderstanding arises because there are
examples where a property can be represented as a semantics. For example, the com-
pleteness principle may be defined to state that each extension is complete, and the
complete semantics may be defined such that the set of extensions of an argumenta-
tion framework are all its complete extensions. Likewise, some authors transform the
admissibility principle into a “semantics” that associates with a framework all the
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admissible extensions. In this article we do not consider an admissibility semantics
defined in this sense, only the admissibility principle.

Finally, we end this introduction with two methodological observations. First,
we note that both argumentation semantics and argumentation principles can be
organised and clustered in various ways. For example, sometimes a distinction is
made between the set of admissibility based semantics and the set of naive based se-
mantics, which are semantics satisfying the admissibility principle and the maximal
conflict free principle respectively. In this article we have organised the semantics
and principles in a way that seemed reasonable to us, but we did not use a system-
atic approach and we expect that some readers might have preferred an alternative
organisation.

Second, while writing the article, several readers and reviewers have suggested
additional semantics and principles to us. For example, we did not systematically
study all resolution based semantics. The reason is pragmatic: this article has
been growing while we were writing, and at some moment we needed to finish it.
Moreover, we excluded several semantics proposed in the literature, such as AD1,
AD2, CF1 introduced by Baroni et al. [2005], because they have not been further
discussed or applied in the formal argumentation literature. However, if some of
them will become more popular in the future, then the principle-based study in this
article has to be extended to them as well. Finally, dynamic principles are studied
by Baroni et al. [2014], Rienstra et al. [2015] and Baumann [forthcoming].

The layout of this article is as follows. Section 2 introduces the setting and
notation, Section 3 introduces the argumentation semantics we study in the rest of
the article, and Section 4 introduces the principles and presents the table detailing
which principles are satisfied by each semantics.

2 Setting and notations
The current section introduces the setting and notations.

Definition 2.1 (Argumentation framework, [Dung, 1995]). An argumentation
framework is a couple F = (A,R) where A is a finite set and R ⊆ A × A. The
elements of A are called arguments and R is called attack relation. We say that a
attacks b if (a, b) ∈ R; in that case we also write aRb. For a set S ⊆ A and an
argument a ∈ A, we say that S attacks a if there exists b ∈ S such that bRa; we say
that a attacks S if there exists b ∈ S such that aRb. We say that S attacks a set P
if there exist a ∈ S, b ∈ P such that a attacks b.

We define S+ = {a ∈ A | S attacks a} and S− = {a ∈ A | a attacks S}. More-
over, for an argument a, we define a+ = {b ∈ A | a attacks b} and
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a− = {b ∈ A | b attacks a}. We define S−out = {a ∈ A | a /∈ S and a attacks S}. The
set of all argumentation frameworks is denoted by AF .

We can observe that an argumentation framework is just a finite graph. In the
rest of the article, F = (A,R) stands for an argumentation framework.

Definition 2.2 (Projection, union, subset). For an argumentation framework
F = (A,R) and a set S ⊆ A, we define F ↓S= (S,R∩ (S × S)). Let F1 = (A1,R1)
and F2 = (A2,R2) be two argumentation frameworks. We define their union by
F1 ∪ F2 = (A1 ∪ A2,R1 ∪ R2). We write F1 ⊆ F2 if and only if A1 ⊆ A2 and
R1 ⊆ R2.

For a set S, we denote its powerset by 2S . Now we define the notion of semantics.
It is a function that, given an argumentation framework (A,R), returns a set of
subsets of A.

Definition 2.3 (Semantics). An extension-based semantics is a function σ such that
for every argumentation framework F = (A,R), we have σ(F) ∈ 22A. The elements
of σ(F) are called extensions.

Our definition requires a semantics to satisfy universal domain, i.e. to be defined
for every argumentation framework. We could give a more general definition, thus
allowing a semantics to be defined only for some argumentation frameworks. We do
not do that in order to simplify the setting, since all the semantics of interest for
our study are defined for all argumentation frameworks.

3 Semantics
This section introduces different argumentation semantics we study in the rest of
the article. Note that most of the properties from the literature, which we study in
Section 4, can appear in two variants: extension-based and labelling-based. In this
article, we present their versions for extension-based approach.

We start by introducing the notions of conflict-freeness and admissibility.

Definition 3.1 (Conflict-freeness, admissibility, strong admissibility). Let F =
(A,R) and S ⊆ A. Set S is conflict-free in F if and only if for every a, b ∈ S,
(a, b) /∈ R.

Argument a ∈ A is defended by set S if and only if for every b ∈ A such that
bRa there exists c ∈ S such that cRb. Argument a ∈ A is strongly defended by set
Sif and only if for every b ∈ A such that bRa there exists c ∈ S \ {a} such that
cRb and c is strongly defended by S \ {a}. S is admissible in F if and only if it is
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conflict-free and it defends all its arguments. S is strongly admissible in F if and
only if it is conflict-free and it strongly defends all its arguments.

Stable, complete, preferred and grounded semantics were introduced by Dung [1995]:

Definition 3.2 (Complete, stable, grounded, preferred semantics). Let F = (A,R)
and S ⊆ A.

• Set S is a complete extension of F if and only if it is conflict-free, it defends
all its arguments and it contains all the arguments it defends.

• Set S is a stable extension of F if and only if it is conflict-free and it attacks
all the arguments of A \ S.

• S is the grounded extension of F if and only if it is a minimal with respect to
set inclusion complete extension of F .

• S is a preferred extension of F if and only if it is a maximal with respect to
set inclusion admissible set of F .

Dung [1995] shows that each argumentation framework has a unique grounded
extension. Stable extensions do not always exist, i.e. there exist argumentation
frameworks whose set of stable extensions is empty. Semi-stable semantics [Verheij,
1996; Caminada, 2006b] guarantees that every argumentation framework has an
extension. Furthermore, semi-stable semantics coincides with stable semantics on
argumentation frameworks that have at least one stable extension.

Definition 3.3 (Semi-stable semantics). Let F = (A,R) and S ⊆ A. Set S is a
semi-stable extension of F if and only if it is a complete extension and S ∪ S+ is
maximal with respect to set inclusion among complete extensions, i.e. there exists
no complete extension S1 such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Ideal semantics [Dung et al., 2007] is an alternative to grounded semantics. Like
grounded semantics, ideal semantics always returns a unique extension, which is also
a complete extension [Dung et al., 2007]. From the definition of the grounded seman-
tics, we conclude that the ideal extension is a superset of the grounded extension.
Ideal semantics is thus less sceptical than grounded semantics.

Definition 3.4 (Ideal semantics). Let F = (A,R) and S ⊆ A. Set S is the ideal
extension of F if and only if it is a maximal with respect to set inclusion admissible
subset of every preferred extension.

We now introduce eager semantics [Caminada, 2007].
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Definition 3.5 (Eager semantics). Let F = (A,R) and S ⊆ A. Set S is the eager
extension of F if and only if it is the maximal with respect to set inclusion admissible
subset of every semi-stable extension.

Caminada [2007] shows that each argumentation framework has a unique eager
extension and that the eager extension is also a complete extension. Note that eager
semantics is similar to ideal semantics: the ideal extension is the unique biggest
admissible subset of every preferred extension; the eager extension is the unique
biggest admissible subset of each semi-stable extension. Since each semi-stable ex-
tension is a preferred extension [Caminada, 2006], the eager extension is a superset
of the ideal extension.

In our article, we want to conduct an exhaustive investigation of properties of
extension-based semantics. Thus, for the sake of completeness, we introduce even
the semantics that are not very commonly used or studied in the literature, like
stage semantics, naive semantics and prudent variants of grounded, complete, stable
and preferred semantics.

Stage semantics [Verheij, 1996] was defined in a slightly different setting than
ours; we provide an alternative but equivalent definition [Verheij, 1996; Baroni et
al., 2011a].

Definition 3.6 (Stage semantics). Let F = (A,R) and S ⊆ A. Set S is a stage
extension of F if and only if S is a conflict-free set and S ∪ S+ is maximal with
respect to set inclusion, i.e. S is conflict-free, and there exists no conflict-free set S1
such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Note the difference between semi-stable and stage semantics: semi-stable ex-
tension is a complete extension whereas stage extension is a conflict-free set; stage
extension is not necessarily an admissible set.

Definition 3.7 (Naive semantics). Let F = (A,R) and S ⊆ A. Set S is a naive
extension of F if and only if S is a maximal conflict-free set.

Prudent semantics [Coste-Marquis et al., 2005] is based on the idea that an
extension should not contain arguments a and b if a indirectly attacks b. An indirect
attack is an odd length attack chain.

Definition 3.8 (Indirect conflict). Let F = (A,R), S ⊆ A and a, b ∈ A. We say
that a indirectly attacks b if and only if there is an odd-length path from a to b with
respect to the attack relation. We say that S is without indirect conflicts and we
write wic(S) if and only if there exist no x, y ∈ S such that x indirectly attacks y.
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The semantics introduced by Dung (grounded, complete, stable, preferred) is
based on admissibility; prudent semantics is based on p-admissibility. Prudent se-
mantics is called grounded prudent, complete prudent, stable prudent and preferred
prudent by Coste-Marquis et al. [2005]. In order to make the names shorter, we call
them p-grounded, p-complete, p-stable and p-preferred.

Definition 3.9 (p-admissible sets). Let F = (A,R) and S ⊆ A. Set S is a p-
admissible set in F if and only if every a ∈ A is defended by S and S is without
indirect conflicts.

Definition 3.10 (p-complete semantics). Let F = (A,R) and S ⊆ A. Set S is a p-
complete extension in F if and only if S is a p-admissible set and for every argument
a ∈ A we have: if a defended by S and S ∪ {a} is without indirect conflicts, then
a ∈ S.

We now introduce p-characteristic function, which is needed to define p-grounded
semantics. Note that grounded semantics can be defined using characteristic func-
tion, but we preferred to provide an alternative equivalent definition.

Definition 3.11 (p-characteristic function). The p-characteristic function of an
argumentation framework F = (A,R) is defined as follows:

• CFpF : 2A → 2A

• CFpF (S) = {a ∈ A | S defends a and wic(S ∪ {a})}
Definition 3.12 (p-grounded semantics). Let F = (A,R). Let j be the lowest
integer such that

CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j times

(∅) . . .) = CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j+1 times

(∅) . . .) = S.

The p-grounded extension is the set S.

The p-grounded extension is a p-complete extension [Coste-Marquis et al., 2005].
Note that it is not the case in general that the p-grounded extension is included into
every p-preferred extension [Coste-Marquis et al., 2005].

Definition 3.13 (p-stable semantics). Let F = (A,R) and S ⊆ A. Set S is a
p-stable extension in F if and only if S is without indirect conflicts and S attacks
(in a direct way) each argument in A \ S.
Definition 3.14 (p-preferred semantics). Let F = (A,R) and S ⊆ A. Set S is a
p-preferred extension if and only if S is a maximal for set inclusion p-admissible set.
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Evert p-stable extension is a p-preferred extension [Coste-Marquis et al., 2005].
We now introduce CF2 semantics [Baroni et al., 2005]. For more explanations

and examples, the reader is referred to the original paper. The definition of this
semantics is complicated; we must introduce several auxiliary definitions in order to
present it.

Let us first introduce the notion of strongly connected component (SCC) intro-
duced by Baroni et al. [2005].

Definition 3.15 (Strongly Connected Component). Let F = (A,R). The binary
relation of path-equivalence between nodes, denoted as PEF ⊆ A×A, is defined as
follows:

• for every a ∈ A, (a, a) ∈ PEF

• given two distinct arguments a, b ∈ A, we say that (a, b) ∈ PEF if and only if
and only if there is a path from a to b and a path from b to a.

The strongly connected components of F are the equivalence classes of arguments
under the relation of path-equivalence. The set of strongly connected components is
denoted by SCCSF . Given an argument a ∈ A, notation SCCF (a) stands for the
strongly connected component that contains a.

In the particular case when the argumentation framework is empty, i.e.
F = (∅, ∅), we assume that SCCSF = {∅}. The choices in the antecedent strongly
connected components determine a partition of the nodes of S into three subsets:
defeated, provisionally defeated and undefeated. D stands for defeated, P for pro-
visionally defeated and U for undefeated.

Definition 3.16 (D,P,U [Baroni et al., 2005]). Given an argumentation
framework F = (A,R), a set E ⊆ A and a strongly connected component
S ∈ SCCSF , we define:

• DF (S, E) = {a ∈ S | (E ∩ S−out) attacks a}

• PF (S, E) = {a ∈ S | (E ∩ S−out) does not attack a and ∃b ∈ (S−out ∩ a−) such
that E does not attack b}

• UF (S, E) = S \ (DF (S, E) ∪DF (S, E))

We define UPF (S, E) = UF (S, E) ∪ PF (S, E).

Definition 3.17 (CF2 semantics). Let F = (A,R) and E ⊆ A. Set E is an exten-
sion of CF2 semantics if and only if
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• E is a naive extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a CF2 extension of F ↓UPF (S,E) otherwise

Observe that F ↓UPF (S,E)= {a ∈ S | there exists no b ∈ E \ S s.t. (b, a) ∈ R}.

We now introduce stage2 semantics [Dvorák and Gaggl, 2016].

Definition 3.18. Let F = (A,R) and E ⊆ A. Set E is a stage2 extension if and
only if

• E is a stage extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a stage2 extension of F ↓UPF (S,E) otherwise

Dvorák and Gaggl [2016] showed that every stage2 extension is a CF2 extension
and that every stable extension is a stage2 extension.

This ends the discussion on extension based semantics of abstract argumentaton.
There exist additional proposals for argumentation semantics in the literature, such
as for example resolution based semantics of Baroni et al. [2011b], but we do not
consider them in this article.

In this article, we focus on the extension-based approach, which means that each
semantics is defined by specifying the extensions it returns for a given argumentation
framework. There exists an alternative, labelling-based approach. Instead of calcu-
lating extensions, it provides labellings, one labelling being a function that attaches
to every argument a label in, out or undec (which stands for “undecided”).

Definition 3.19 (Labelling-based semantics). Let Λ = {in, out, undec}.
Let F = (A,R) be an argumentation framework. A labelling on F is a total function
Lab : A → Λ. A labelling-based semantics is a function λ defined for every element
of AF such that for every argumentation framework F , we have that λ(F) is a set
of labellings on F .

To illustrate, let us provide a labelling-based definition of complete semantics.

Definition 3.20 (Complete labelling). Let F = (A,R) and Lab a labelling on F .
We say that Lab is a complete labelling if and only if for every a ∈ A:

• if a is labelled in then all its attackers are labelled out

• if a is labelled out then none of its attackers is labelled in

• if a is labelled undec then not all its attackers are labelled out and none of its
attackers is labelled in.
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We denote by in(Lab) (resp. out(Lab), und(Lab)) the set of arguments labelled in
(resp. out, und).

For every F = (A,R), the set of complete extensions under σ is exactly the set
{in(Lab) | Lab is a complete labelling}.

Moreover, there exists a general way that allows to obtain a labelling-based
definition of a semantics given its extension-based definition, under the condition
that the semantics returns conflict-free sets.

Definition 3.21 (Extension to labelling). Given an extension E, labelling LabE is
defined as follows: LabE(a) = in if a ∈ E, LabE(a) = out if a ∈ E+, LabE(a) = und
otherwise. Then, given a semantics σ, we say that Lab is a σ labelling of F if and
only if there exists E ∈ σ(F) such that Lab = LabE .

Other ways to obtain a labelling from an extension are possible, for example we
could say that an argument is out if it is attacked by an argument in the extension,
or it attacks an argument in the extension. This would make the definition of out
more symmetric and more in line with naive based semantics. However, it seems
such alternatives have not been explored systematically in the literature. Moreover,
even if extension and labelling based semantics are inter-translatable, it may affect
other definitions such as equivalence of frameworks. Finally, using Definition 3.21,
every principle defined in terms of extension based semantics can be translated into
labelings and vice versa, though one of the definitions may be more compact or
intuitive than the other.

We saw an intuitive way to define complete labellings in Definition 3.20. Intu-
itive labelling-based definitions of other semantics also exist in the literature. For
example: a grounded labelling is a complete labelling such that the set of arguments
labelled in is minimal with respect to set inclusion among all complete labellings; a
stable labelling is a complete labelling such that the set of undecided arguments is
empty; a preferred labelling is a complete labelling such that the set of arguments
labelled in is maximal with respect to set inclusion among all complete labellings.
The reader interested in more details about the labelling-based approach is referred
to the paper by Baroni et al. [2011a].

4 List of Principles
This section presents the properties from the literature and reviews all the semantics
with respect to the properties.

Definition 4.1 (Isomorphic argumentation frameworks). Two argumentation
frameworks F1 = (A1,R1) and F2 = (A2,R2) are isomorphic if and only if there
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Defence Admiss. Strong
adm. Naivety Ind.

CF Reinst. Weak
reinst.

CF-
-reinst.

complete X X × × × X X X
grounded X X X × × X X X
preferred X X × × × X X X
stable X X × X × X X X
semi-stable X X × × × X X X
ideal X X × × × X X X
eager X X × × × X X X
p-complete X X × × X × × ×
p-grounded X X X × X × × ×
p-preferred X X × × X × × ×
p-stable X X × X X X X X
naive × × × X × × × X
CF2 × × × X × × X X
stage × × × X × × × X
stage2 × × × X × × X X

Table 1: Properties of semantics: basic properties, admissibility and reinstatement

exists a bijective function m : A1 → A2, such that (a, b) ∈ R1 if and only if
(m(a),m(b)) ∈ R2. This is denoted by F1

.=m F2.

The first property, called “language independence” by Baroni and Giacomin
[2007] is an obvious requirement for argumentation semantics. It is sometimes called
abstraction [Amgoud and Besnard, 2013; Bonzon et al., 2016a] or anonymity [Am-
goud et al., 2016].

Principle 1 (Language independence). A semantics σ satisfies the language inde-
pendence principle if and only if for every two argumentation frameworks F1 and
F2, if F1

.=m F2 then σ(F2) = {m(E) | E ∈ σ(F1)}.

It is immediate to see that all the semantics satisfy language independence, since
the definitions of semantics take into account only the topology of the graph, and
not the arguments’ names.

Conflict-freeness is one of the basic principles. Introduced by Dung [1995] and
stated as a principle by Baroni and Giacomin [2007], it is satisfied by all argumen-
tation semantics studied in this article. Note that one can define a non conflict-free
semantics [Arieli, 2015]. As another example of relaxing conflict-freeness consider
the work by Dunne et al. [2011], who introduce a framework where each attack is
associated a weight; given an inconsistency budget β, they accept to disregard the
set of attacks up to total weight of β.
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Principle 2 (Conflict-freeness). A semantics σ satisfies the conflict-freeness prin-
ciple if and only if for every argumentation framework F , for every E ∈ σ(F), E is
conflict-free set in F .

Defence is a well-known property introduced by Dung [1995].

Principle 3 (Defence). A semantics σ satisfies the defence principle if and only
if for every argumentation framework F , for every E ∈ σ(F), for every a ∈ E, E
defends a.

Baroni and Giacomin [2007] show that complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable satisfy defence and
that CF2 does not satisfy defence. Let us consider the four remaining semantics:
stage, stage2, eager and naive. The argumentation framework from Figure 1 shows
that stage, stage2 and naive semantics violate defence since they all return three
extensions: {a}, {b} and {c}. Eager semantics satisfies defence (this follows directly
from its definition).

a b

c

Figure 1: Stage, stage2, naive and CF2 semantics violate admissibility, defence and
reinstatement, since they return three extensions: {a}, {b} and {c}.

Baroni and Giacomin [2007] suppose that every extension is conflict-free. Thus
an extension defends all it arguments if and only if it is admissible. However, if
conflict-freeness is seen as an optional criterion, we can distinguish between the
principles of admissibility and defence.

Principle 4 (Admissibility). A semantics σ satisfies the admissibility principle if
and only if for every argumentation framework F , every E ∈ σ(F) is admissible
in F .

Observation 1. If a semantics σ satisfies admissibility it also satisfies conflict-
freeness and defence.
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We now study the notion of strong admissibility [Baroni and Giacomin, 2007].

Principle 5 (Strong admissibility). A semantics σ satisfies the strong admissibility
principle if and only if for every argumentation framework F , for every E ∈ σ(F) it
holds that a ∈ E implies that E strongly defends a.

Observation 2. If a semantics σ satisfies strong admissibility then it satisfies ad-
missibility.

To understand the notion of strong admissibility, consider the example from
Figure 2. Set {a, d} is admissible but is not strongly admissible. Informally speaking,
this is because a is defended by d whereas d is defended by a. The intuition behind
strong admissibility is that this kind of defence is not strong enough because it is
cyclic, i.e. arguments defend each other. However, argument e is not attacked, thus
{e} is strongly admissible. Furthermore, {e} strongly defends a, so {a, e} is strongly
admissible. Also, {a, e} strongly defends d. Thus {a, d, e} is strongly admissible.

a b e

cd

Figure 2: Set {a, d} is admissible but is not strongly admissible. Set {a, d, e} is
admissible and strongly admissible.

Baroni and Giacomin [2007] show that grounded and p-grounded semantics sat-
isfy strong admissibility and that complete, preferred, stable, semi-stable, ideal, p-
complete, p-preferred, p-stable and CF2 do not satisfy this principle. Let us consider
stage, stage2, eager and naive semantics. Since stage, stage2 and naive semantics
violate admissibility, they also violate strong admissibility. To see that eager seman-
tics violates strong admissibility too, consider the example from Figure 3, suggested
by Caminada [2007]. The eager extension is {b, d}; this set is not strongly admissible
since it does not strongly defend b.

Another principle, which we call naivety, says that every extension under seman-
tics σ is a naive extension.

Principle 6 (Naivety). A semantics σ satisfies the naivety principle if and only if
for every argumentation framework F , for every E ∈ σ(F), E is maximal for set
inclusion conflict-free set in F .
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a b c

d

e

Figure 3: Eager semantics violates strong admissibility because eager extension
{b, d} does not strongly defend b. The same example shows that eager semantics
violates directionality. Observe that U = {a, b} is an unattacked set. Denote the
whole framework by F = (A,R). The eager extension of F is the set {b, d} whereas
the eager extension of F ↓U is the empty set.

We see directly from the definitions of stable, stage, naive, p-stable and CF2
semantics that they satisfy naivety. Since every stage2 extension is also a CF2
extension [Dvorák and Gaggl, 2016], naivety is also satisfied by stage2 semantics. It
is easy to see that the other semantics violate this principle.

Coste-Marquis et al. [2005] introduced prudent semantics, which are based on
the notion of indirect conflict-freeness.

Principle 7 (Indirect conflict-freeness). A semantics σ satisfies the indirect conflict-
freeness principle if and only if for every argumentation framework F , for every
E ∈ σ(F), E is without indirect conflicts in F .

Observation 3. If a semantics σ satisfies indirect conflict-freeness then it satisfies
conflict-freeness.

By examining the definitions of prudent semantics, we see that they all sat-
isfy indirect conflict-freeness, since this concept is built in through the use of p-
admissibility and p-characteristic function.

The other semantics do not satisfy indirect conflict-freeness. To show this,
consider the argumentation framework depicted in Figure 4, suggested by [Coste-
Marquis et al., 2005]. All the semantics except prudent ones have an extension
containing both a and e. Hence, they violate indirect conflict-freeness since e indi-
rectly attacks a.

Defence says that an extension must defend all the arguments it contains. Re-
instatement can be seen as its counterpart, since it says that an extension must
contain all the arguments it defends. This principle was first studied in a systematic
way by Baroni and Giacomin [2007].
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a

b c

d

e

f

Figure 4: All semantics except prudent semantics violate indirect conflict-freeness.
They all yield an extension containing both a and e, even if e indirectly attacks a.

Principle 8 (Reinstatement). A semantics σ satisfies the reinstatement principle
if and only if for every argumentation framework F , for every E ∈ σ(F), for every
a ∈ A it holds that if E defends a then a ∈ E.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007]. To summarise, all the semantics they study
satisfy reinstatement except p-grounded, p-complete, p-preferred and CF2. Let us
consider eager, stage, stage2 and naive semantics.

Regarding eager semantics, suppose that E is an eager extension and that a is
defended by E . The eager extension is a complete extension [Caminada, 2007], and
complete semantics satisfies reinstatement. Thus, a ∈ E , which means that eager
semantics satisfies reinstatement.

Stage, stage2 and naive semantics violate reinstatement, as proved by [Dvorák
and Gaggl, 2016]. Another way to see this is to consider the counter-example from
Figure 1.

Baroni and Giacomin [2007] study another property called weak reinstatement.

Principle 9 (Weak reinstatement). A semantics σ satisfies the weak reinstatement
principle if and only if for every argumentation framework F , for every E ∈ σ(F) it
holds that

E strongly defends a implies a ∈ E .
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Observation 4. If a semantics σ satisfies reinstatement then it satisfies weak re-
instatement.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007]. From Observation 4 we conclude that eager
semantics satisfies weak reinstatement.

Stage and naive semantics violate weak reinstatement as can be seen from Figure
5. This was also shown by Dvorák and Gaggl [2016]. Namely, {b} is a stage and a
naive extension that strongly defends a but does not contain it. Stage2 semantics
does satisfy weak reinstatement [Dvorák and Gaggl, 2016].

a b c

Figure 5: Stage and naive semantics violate weak reinstatement, since E = {b} is an
extension that strongly defends a, but E does not contain a.

The reinstatement principle makes sure that as soon as an argument a is defended
by an extension E , a should belong to E—without specifying that a is not in conflict
with arguments of E . To take this into account, another principle was defined by
Baroni and Giacomin [2007].

Principle 10 (CF-reinstatement). A semantics σ satisfies the CF-reinstate-
ment principle if and only if for every argumentation framework F , for every E ∈
σ(F), for every a ∈ A it holds that if E defends a and E ∪ {a} is conflict-free then
a ∈ E.

Observation 5. If a semantics σ satisfies reinstatement then it satisfies CF-rein-
statement.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007].

If E is a naive extension and a an argument such that E defends a and E ∪ {a}
is conflict-free, then a ∈ E since E is a maximal conflict-free set. This means that
naive semantics satisfies CF-reinstatement.

Observation 5 implies that eager semantics satisfies CF-reinstatement.
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I-max. Allowing
abstention

Crash
resistance

Non-
-interference Direct. Weak-

-direct.
Semi-
-direct.

complete × X X X X X X
grounded X X X X X X X
preferred X × X X X X X
stable X × × × × X ×
semi-stable X × X X × × ×
ideal X X X X X X X
eager X X X X X X X
p-complete × X X X × × X
p-grounded X X X X X X X
p-preferred X × X X × × X
p-stable X × × × × X ×
naive X × X X × × X
CF2 X × X X X X X
stage X × X X × × ×
stage2 X × X X X X X

Table 2: Properties of semantics, part 2

Stage and stage2 semantics satisfy CF-reinstatement, as shown by Dvorák and
Gaggl [2016].

The next principle was first considered by Baroni and Giacomin [2007]. It says
that an extension cannot contain another extension.

Principle 11 (I-maximality). A semantics σ satisfies the I-maximality principle if
and only if for every argumentation framework F , for every E1, E2 ∈ σ(F), if E1 ⊆ E2
then E1 = E2.

I-maximality is trivially satisfied by single extension semantics. It is thus satisfied
by eager semantics. We see directly from the definitions of naive and stage semantics
that they satisfy I-maximality. Dvorák and Gaggl [2016] show that stage2 seman-
tics satisfies I-maximality. Baroni and Giacomin [2007] show that I-maximality is
satisfied by all other semantics except complete and p-complete semantics.

Baroni et al. [2011a] define a principle called rejection, which says that if an
argument a is labelled in and a attacks b, then b should be labelled out. If we use
the translation from extension to a labelling we mentioned in Definition 3.21, we see
that all the labellings satisfy this property. However, it would be possible to be more
general by defining a labelling-based semantics that does not satisfy this property.
Let us define a semantics σ that always returns a unique labelling such that an
argument is labelled in if it is not attacked, it is labelled undec if it is attacked by
exactly one argument and it is labelled out otherwise. Consider the example from
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Figure 5: argument a will be labelled in, argument b undec and argument c out,
which violates the rejection principle.

We next consider the allowing abstention principle [Baroni et al., 2011a].

Principle 12 (Allowing abstention). A semantics σ satisfies the allowing abstention
principle if and only if for every argumentation framework F , for every a ∈ A, if
there exist two extensions E1, E2 ∈ σ(F) such that a ∈ E1 and a ∈ E+

2 then there
exists an extension E3 ∈ σ(F) such that a /∈ (E3 ∪ E+

3 ).

Baroni et al. [2011a] show that complete semantics satisfies the previous principle
and that preferred, stable, semi-stable, stage and CF2 semantics falsify it. Observe
that unique status semantics trivially satisfy this principle. Allowing abstention is
thus satisfied by grounded, ideal, eager and p-grounded semantics.1

Let us now consider the remaining semantics, namely: naive, p-stable, p-
preferred, p-complete and stage2 semantics.

We first prove that p-complete semantics satisfies allowing abstention. We start
with a lemma.

Lemma 4.2. Let F = (A,R) be an argumentation framework, GEp its p-grounded
extension and E ⊆ A be a set that defends all its arguments. Then, E does not attack
GEp.

Proof. Let CFp be the p-characteristic function. Denote GEp0 = ∅, GEp1 = CFp(∅),
GEp2 = CFp(CFp(∅)), . . . and denote by GEp the p-grounded extension of F . Let E
be a set that defends all its arguments. By means of contradiction, suppose that
there exist x ∈ E , y ∈ GEp such that xRy. Let k ∈ N be the minimal number such
that y ∈ GEpk. From the definition of function CFp, there exists l < k such that
there exists y1 ∈ GEpl such that y1Rx. Since E defends all its arguments, there
exists x1 ∈ E such that x1Ry1. Again, there exists m < l such that there exists
y2 ∈ GEpm such that y2Rx1. By continuing this process, we conclude that there
exists ys ∈ GEp1 such that there exists xs ∈ E such that xSRys. This is impossible,
since the arguments of GEp1 are not attacked. Contradiction.

Proposition 4.3. p-complete semantics satisfies allowing abstention.

Proof. Let F = (A,R), let a, b ∈ A, let bRa and let E1 and E2 be p-complete
extensions such that a ∈ E1 and b ∈ E2. Denote by GEp the p-grounded extension
of F . Let us prove that a /∈ GEp and that GEp does not attack a. First, since bRa

1Note that Table 2 by Baroni et al. [2011a] specifies that grounded semantics does not satisfy
dilemma abstaining. The reason is that Baroni et al. consider the property as being “non-applicable”
to unique status semantics (personal communication, 2016).
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and b belongs to a p-complete extension (and every p-complete extension defends
all its arguments), Lemma 4.2 implies that a /∈ GEp. Let us now show that GEp
does not attack a. By means of contradiction, suppose the contrary. Let b ∈ GEp
be an argument such that bRa. Since a ∈ E1, and E1 defends all its arguments,
then there exists c ∈ E1 such that cRb. Contradiction with Lemma 4.2. Thus, it
must be that GEp does not attack a. It is known that the p-grounded extension is
a p-complete extension [Coste-Marquis et al., 2005]. Thus, we showed that there
exists a p-complete extension that neither contains nor attacks argument a.

To see why naive, p-stable, p-preferred and stage2 semantics violate allowing ab-
stention, consider the argumentation framework depicted in Figure 6. The principle
is violated since all those semantics return two extensions, {a} and {b}.

a b

Figure 6: Several semantics violate allowing abstention principle.

To define crash resistance [Caminada et al., 2012], we first need to introduce the
following two definitions.
Definition 4.4 (Disjoint argumentation frameworks). Two argumentation frame-
works F1 = (A1,R1) and F2 = (A2,R2) are disjoint if and only if A1 ∩ A2 = ∅.

A framework F? is contaminating if joining F? with an arbitrary disjoint frame-
work F results in a framework F ∪ F? having the same extensions as F?. The
intuition behind this definition is that F? contaminates every framework.
Definition 4.5 (Contaminating). An argumentation framework F? is contaminat-
ing for a semantics σ if and only if for every argumentation framework F disjoint
from F? it holds that σ(F? ∪ F) = σ(F?).

A semantics is crash resistant if and only if there are no contaminating frame-
works. The intuition behind this name is that a contaminating framework causes
the system to crash.
Principle 13 (Crash resistance). A semantics σ satisfies the crash resistance prin-
ciple if and only if there are no contaminating argumentation frameworks for σ.

Crash resistance forbids only the most extreme form of interferences between
disjoint subgraphs. A stronger property, non-interference, was defined by Caminada
et al. [2012]. We first need to define a notion of isolated set, i.e. a set that neither
attacks outside arguments nor is attacked by them.
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Definition 4.6 (Isolated set of arguments). Let F = (A,R) be an argumentation
framework. A set S ⊆ A is isolated in F if and only if

((S × (A \ S)) ∪ ((A \ S)× S)) ∩R = ∅.

A semantics satisfies non-interference principle if for every isolated set S, the in-
tersections of the extensions with set S coincide with the extensions of the restriction
of the framework on S.

Principle 14 (Non-interference). A semantics σ satisfies the non-interference prin-
ciple if and only if for every argumentation framework F , for every set of arguments
S isolated in F it holds that σ(F ↓S) = {E ∩ S | E ∈ σ(F)}.

The previous principle can be made even stronger by considering the case when
the set S is not attacked by the rest of the framework, but can attack the rest of
the framework. Let us formalize the notion of an unattacked set.

Definition 4.7 (Unattacked arguments). Given an argumentation framework F =
(A,R), a set U is unattacked if and only if there exists no a ∈ A \ U such that a
attacks U . The set of unattacked sets in F is denoted US(F).

We can now define the principle of directionality, introduced by Baroni and
Giacomin [2007].

Principle 15 (Directionality). A semantics σ satisfies the directionality principle
if and only if for every argumentation framework F , for every U ∈ US(F), it holds
that σ(F ↓U ) = {E ∩ U | E ∈ σ(F)}.

Baroni et al. [2011a] show the following dependencies between directionality,
interference and crash resistance.

Observation 6. Directionality implies non interference, and non interference im-
plies crash resistance.

Let us see which semantics satisfy directionality. Baroni and Giacomin [2007]
proved that complete, grounded, preferred, ideal, p-grounded and CF2 semantics
satisfy directionality. They also showed that stable, semi-stable, p-complete, p-stable
and p-preferred semantics violate this principle. Baroni et al. [2011a] show that stage
semantics does not satisfy directionality; however, Dvorák and Gaggl [2016] show
that stage2 semantics does satisfy directionality.

The only remaining semantics are eager and naive. The argumentation frame-
work from Figure 7 shows that naive semantics does not satisfy directionality. The
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a b

c

Figure 7: Naive semantics violates directionality and weak directionality. Denote
the whole framework by F = (A,R). Let U = {a, b}. Observe that {a, c} is a naive
extension of F but that {a} is not a naive extension of F ↓U .

argumentation framework from Figure 3 shows that eager semantics does not satisfy
directionality.

Let us now consider non-interference. Baroni et al. [2011a] showed that non-
interference is satisfied by complete, grounded, preferred, semi-stable, ideal, stage
and CF2 semantics. Eager semantics satisfies non-interference since it satisfies di-
rectionality. From the definition of non-interference we see that this principle is
satisfied by naive semantics. Since p-grounded semantics satisfies directionality, it
also satisfies non-interference.

Proposition 4.8. p-complete, p-preferred semantics satisfy non-interference.

Proof. We present the proof for p-complete semantics, the one for p-preferred se-
mantics is similar. Let F = (A,R) and A′ ⊆ A be an isolated set in F . Denote by
F ′ = (A′,R′) the restriction of F on A′. Let us first suppose that E is a complete
prudent extension of F . Denote E ′ = E ∩A′. We have icf(E ′). It is easy to see that
every α ∈ E ′ is defended by E ′ from all attacks from A′. Also, for an α ∈ A′ \ E ′, we
can easily see that either E ′∪{α} is not without indirect conflicts or α is attacked by
some argument and not defended by E ′. Suppose now that E ′ is a complete prudent
extension of F ′. Then E ′ is p-admissible in F , so there must be a complete prudent
extension E ′′ of F such that E ′ ⊆ E ′′.

Stage2 semantics satisfies non-interference since it satisfies directionality. Finally,
p-stable semantics violates non-interference. Indeed, as we will soon see, p-stable
semantics violates crash resistance. Since non-interference implies crash resistance,
we conclude that p-stable semantics violates non-interference.

Let us now consider crash resistance. Baroni et al. [2011a] showed that non-
interference is satisfied by complete, grounded, preferred, semi-stable, ideal, stage
and CF2 semantics. Eager, naive, p-grounded, p-complete, p-preferred and stage2
semantics satisfy crash resistance since they satisfy non-interference. To see that
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stable semantics and p-stable semantics violate crash resistance, consider the frame-
work F∗ = ({a}, {(a, a)}). We see that F∗ is contaminating for stable and p-stable
semantics. Thus, they both violate crash resistance.

Let us now consider two variants of directionality, called weak directionality and
semi-directionality suggested by M. Giacomin (personal communication, 2016).

Principle 16 (Weak directionality). A semantics σ satisfies the weak directionality
principle if and only if for every argumentation framework F , for every U ∈ US(F),
it holds that σ(F ↓U ) ⊇ {E ∩ U | E ∈ σ(F)}.

Principle 17 (Semi-directionality). A semantics σ satisfies the semi-
directionality principle if and only if for every argumentation framework F , for
every U ∈ US(F), it holds that σ(F ↓U ) ⊆ {E ∩ U | E ∈ σ(F)}.

Observation 7. A semantics σ satisfies directionality if and only if σ satisfies both
weak directionality and semi-directionality.

Thus, grounded, complete, preferred, ideal, eager, p-grounded, stage2 and CF2
semantics satisfy both weak directionality and semi-directionality. It is immediate
from the definition that stable semantics satisfies weak directionality. Since stable
semantics does not satisfy directionality, it does not satisfy semi-directionality.

a b c

d e f

Figure 8: Semi-stable and stage semantics violate weak directionality. Let U =
{d, e, f}. Set {b, d} is an extension of this argumentation framework, but {b} is not
an extension of the restriction of this framework on U .

Example from Figure 8 shows that semi-stable semantics does not satisfy weak
directionality. To see that semi-stable semantics does not satisfy semi-directionality,
consider the example from Figure 9, suggested by M. Giacomin. Stage semantics
violates weak directionality, the same counter-example as for semi-stable semantics
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a b c

Figure 9: Semi-stable and stage semantics violate semi-directionality. Let U =
{a, b}. Set {a} is an extension of the restriction of the framework on U , but there
is no extension E of the whole framework such that E ∩ U = {a}.

(Figure 8) can be used. Stage semantics also violates semi-directionality, and we
can again use the same counter-example as for semi-stable semantics (Figure 9).

Directly from the definition of naive semantics we see that it satisfies semi-
directionality. Since it does not satisfy directionality, we conclude from Observation
7 that it does not satisfy weak directionality.

Proposition 4.9. p-complete and p-preferred semantics satisfy semi-
directionality.

Proof. We present the proof for p-complete semantics, the proof for p-preferred
semantics is similar. Let F = (A,R) be an argumentation framework, U ⊆ A an
unattacked set and F ′ = F ↓U the restriction of F on U . Let E ′ be a p-complete
extension of F ′. Then E ′ is without indirect conflicts and is p-admissible in F ′. It
is immediate to see that E ′ is also p-admissible in F . It is clear that there exists no
x ∈ U \ E ′ such that x is defended by E ′ and E ′ ∪ {x} is without indirect conflicts.
Thus, there exists a (possibly empty) set E ⊂ (A\U) such that E∪E ′ is a p-complete
extension.

Since both p-complete and p-preferred semantics violate directionality, the previ-
ous proposition and Observation 7 imply that they both violate weak directionality.

Directly from the definition of p-stable semantics, we see that this semantics
satisfies weak directionality. From Observation 7 we conclude that it does not satisfy
semi-directionality.

We now consider the six properties related to skepticism and resolution adequacy
[Baroni and Giacomin, 2007].

The first definition says that a set of extensions Ext1 is more skeptical than Ext2
if the set of skeptically accepted arguments with respect to Ext1 is a subset of the
set of skeptically accepted arguments with respect to Ext2.
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Definition 4.10 (�E∩ ). Let Ext1 and Ext2 be two sets of sets of arguments. We say
that Ext1 �E∩ Ext2 if and only if

⋂

E1∈Ext1

E1 ⊆
⋂

E2∈Ext2

E2.

The previous definition compares only the intersections of extensions. A finer
criterion was introduced by Baroni et al. [2004].

Definition 4.11 (�EW ). Let Ext1 and Ext2 be two sets of sets of arguments. We
say that Ext1 �EW Ext2 if and only if

for every E2 ∈ Ext2, there exists E1 ∈ Ext1 such that E1 ⊆ E2.

Baroni and Giacomin [2007] refine the previous relation by introducing the fol-
lowing definition.

Definition 4.12 (�ES ). Let Ext1 and Ext2 be two sets of sets of arguments. We say
that Ext1 �ES Ext2 if and only if Ext1 �EW Ext2 and

for every E1 ∈ Ext1, there exists E2 ∈ Ext2 such that E1 ⊆ E2.

Letters W and S in the previous definitions stand for weak and strong. Baroni
and Giacomin [2007] showed that the three relations are reflexive and transitive and
that they are also in strict order of implication. Namely, given two sets of sets of
arguments Ext1 and Ext2, we have

Observation 8.
Ext1 �ES Ext2 implies Ext1 �EW Ext2

Ext1 �EW Ext2 implies Ext1 �E∩ Ext2

We now define a skepticism relation �A between argumentation frameworks. It
says that F1 �A F2 if F1 may have some symmetric attacks where F2 has a directed
attack.

Definition 4.13 (�A). Given an argumentation framework F = (A,R), the conflict
set is defined as CONF(F) = {(a, b) ∈ A × A | (a, b) ∈ R or (b, a) ∈ R}. Given two
argumentation frameworks F1 = (A1,R1) and F2 = (A2,R2), we say that F1 �A F2
if and only if CONF(F1) = CONF(F2) and R2 ⊆ R1.
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Observe that �A is a partial order, as it consists of an equality and a set inclusion
relation [Baroni and Giacomin, 2007]. Note that within the set of argumentation
frameworks comparable with a given argumentation framework F , there might be
several maximal elements with respect to �A, since there might be several ways to
replace all symmetric attacks by asymmetric ones.

We can now introduce the skepticism adequacy principle. Its idea is that if F is
more skeptical than F ′ then the set of extensions of F is more skeptical than that
of F ′.

Principle 18 (Skepticism adequacy). Given a skepticism relation ≺E between sets
of sets of arguments, a semantics σ satisfies the �E-skepticism adequacy principle
if and only if for every two argumentation frameworks F and F ′ such that F �A F ′
it holds that σ(F) �E σ(F ′).

For example if F consists of two arguments a and b attacking each other and F ′
has only an attack from a to b, then the intersection of the extensions of F (∅ for
all semantics) is a subset of extensions of F ′, typically {a}. Roughly speaking: the
more symmetric attacks we replace, the more we know, but we do not loose any
accepted arguments.

Observation 9.

• If σ satisfies �ES -sk. adequacy then it satisfies �EW -sk. adequacy

• If σ satisfies �EW -sk. adequacy then it satisfies �E∩ -sk. adequacy

Let us see which semantics satisfy skepticism adequacy. Baroni and Giacomin
[2007] proved all the results for grounded, complete, stable, preferred, semi-stable,
ideal, all four prudent and CF2 semantics.

Eager semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by the
example depicted in Figure 10. From Observation 9, we conclude that eager seman-
tics violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Naive semantics satisfies all three variants of skepticism adequacy since
CONF(F1) = CONF(F2) implies σ(F1) = σ(F2).

Stage semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by the
example from Figure 11. From Observation 9, we conclude that stage semantics
violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Finally, stage2 semantics does not satisfy �E∩ -skepticism adequacy, as illustrated
by the example from Figure 12. From Observation 9, we conclude that stage2
semantics violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Let us now consider resolution adequacy [Baroni and Giacomin, 2007].
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�E∩ -sk. ad. �EW -sk. ad. �ES -sk. ad. �E∩ -res. ad. �EW -res. ad. �ES -res. ad.
complete X X × × × ×
grounded X X X × × ×
preferred × × × X X X
stable X X × X X X
semi-stable × × × X X ×
ideal × × × × × ×
eager × × × × × ×
p-complete × × × × × ×
p-grounded × × × X × ×
p-preferred × × × × × ×
p-stable × × × X X ×
naive X X X X X X
CF2 X X × × × ×
stage × × × X X ×
stage2 × × × × × ×

Table 3: Properties of semantics, skepticism and resolution adequacy

a

b

c

d e

F1

a

b

c

d e

F2

Figure 10: Eager semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. The eager extension of F1 is {e} and the eager extension of F2 is ∅.
Thus the set of skeptically accepted arguments of F1 equals {e} is not a subset of
the set of skeptically accepted arguments of F2.

Definition 4.14 (RES). We denote by RES(F) the set of all argumentation frame-
works comparable with F and maximal with respect to �A.
Definition 4.15 (UR). Given an argumentation framework F and a semantics σ,
we define UR(F , σ) = ⋃

F ′∈RES(F) σ(F ′).

Principle 19 (Resolution adequacy, [Baroni and Giacomin, 2007]).
Given a skepticism relation �E between sets of sets of arguments, a semantics σ
satisfies the �E-resolution adequacy principle if and only if for every argumentation
framework F we have UR(F , σ) �E σ(F).
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a b c

F1

a b c

F2

Figure 11: Stage semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage extension {a} and framework F2 has
two stage extensions {a} and {b}. Thus the set of skeptically accepted arguments
of F1 equals {a} is not a subset of the set of skeptically accepted arguments of F2,
which is the empty set.

a

b

c

F1

a

b

c

F2

Figure 12: Stage2 semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage2 extension {a} and framework F2 has
three stage2 extensions {a}, {b} and {c}. Thus the set of skeptically accepted argu-
ments of F1 equals {a} is not a subset of the set of skeptically accepted arguments
of F2, which is the empty set.

We consider three variants of the resolution adequacy principle: �E∩ -resolution
adequacy, �EW -resolution adequacy and �ES -resolution adequacy.

Observation 10.

• If σ satisfies �ES -res. adequacy then it satisfies �EW -res. adequacy

• If σ satisfies �EW -res. adequacy then it satisfies �E∩ -res. adequacy

The results regarding grounded, complete, stable, preferred, semi-stable, ideal,
all four prudent and CF2 semantics were shown by Baroni and Giacomin [2007].
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Eager semantics violates �E∩ -resolution adequacy, as illustrated by the example
from Figure 13. Consequently, it does not satisfy the other two forms of resolution
adequacy. Consider naive semantics; from its definition we see that for every argu-

c

a

b

d

F

c

a

b

d

c

a

b

d

F1

F2

Figure 13: Eager semantics does not satisfy �E∩ -resolution adequacy. We have
RES(F) = {F1,F2}. Namely, the eager extension of F1 is {b, d} and the eager
extension of F2 is {a, d}. Since the eager extension of F is the empty set, and
{a, d} ∩ {b, d} = {d} 6⊆ ∅, the criterion is not satisfied.

mentation framework F , for every F ′ ∈ RES(F), we have σ(F) = σ(F ′). Thus,
naive semantics satisfies all three forms of resolution adequacy.

Proposition 4.16. Stage semantics satisfies �EW -resolution adequacy.

Proof. To show this, it is sufficient to show the following claim: for every argu-
mentation framework F = (A,R), for every stage extension E of F , there exists
F ′ ∈ RES(F) such that E is a stage extension of F ′. Let E be a stage extension
of F . Let F ′ = (A,R′) ∈ RES(F) be such that for every a, b ∈ A if a ∈ E then
(a, b) ∈ R′. (In other words, all attacks from E are preserved.) E is conflict-free
in F ′, and all the attacks from E are preserved. Observe that the set of conflict-free
sets of F and the set of conflict-free sets of F ′ coincide. Also, no conflict-free set
attacks more arguments in F ′ than it attacks in F . Thus, since E is a stage extension
in F , it is also a stage extension in F ′.

From the fact that for every argumentation framework F = (A,R), for every
stage extension E of F , there exists F ′ ∈ RES(F) such that E is a stage extension
of F ′, we conclude that stage semantics satisfies �EW -resolution adequacy.
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Since stage semantics satisfies �EW -resolution adequacy, then it satisfies
�E∩ -resolution adequacy. The example from Figure 14 shows that stage semantics
does not satisfy �ES -resolution adequacy.

a b c

d

e

F

a b c

d

e

F ′

Figure 14: Stage semantics does not satisfy �ES -resolution adequacy. We have
F ′ ∈ RES(F), set E ′ = {a, c} is a stage extension of F ′, but there exists no stage
extension E of F such that E ′ ⊆ E .

Stage2 semantics violates �E∩ -resolution adequacy, as illustrated by the example
from Figure 15. Consequently, it does not satisfy the other two forms of resolution
adequacy.

Succinctness Tightness Conflict-
-sensitiveness

Com-
-closure

SCC-
-recursiveness Cardinality

complete × × × X X 1+
grounded × X X X X 1
preferred × × X X X 1+
stable × X X X X 0+
semi-stable × × X X × 1+
ideal × X X X × 1
eager × X X X × 1+
p-complete × × × × × 1+
p-grounded × X X X × 1
p-preferred × X X X × 1+
p-stable × X X X × 0+
naive × X X X × 1+
CF2 X X X X X 1+
stage × X X X × 1+
stage2 X X X X X 1+

Table 4: Properties of semantics, part 4
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Figure 15: (Example provided by Wolfgang Dvorak, personal communication)
Stage2 semantics does not satisfy �E∩ -resolution adequacy. We have RES(F) =
{F1,F2}. Namely, the stage2 extensions of F are {a, e} and {b, e}, and the stage2
extension of F1 and F2 is {a, e}. Since {a, e} 6⊆ {a, e} ∩ {b, e} = {e}, the criterion
is not satisfied. The intuitive reason for the different behaviour from stage is that
resolutions can break up a SCC into several SCCS and arguments that are not in
the same SCC are not considered for range maximality.

Baroni et al. [2011b] introduce resolution-based family of semantics, which are
developed to satisfy the resolution properties.

Let us now consider the last group of properties listed in Table 4. We first
need to define the notion of strong equivalence [Oikarinen and Woltran, 2010]. Two
frameworks F1 and F2 are strongly equivalent if for every argumentation framework
F3, we have that F1 ∪ F3 has the same extensions as F2 ∪ F3.

Definition 4.17 (Strong equivalence). Two argumentation frameworks F1 and F2
are strongly equivalent with respect to semantics σ, in symbols F1 ≡σs F2 if and only
if for each argumentation framework F3, σ(F1 ∪ F3) = σ(F2 ∪ F3).

An attack is redundant in F if removing it does not change the extensions of
any F ′ that contains F .
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Definition 4.18 (Redundant attack). Let F = (A,R) be an argumentation frame-
work and σ and semantics. Attack (a, b) ∈ R is said to be redundant in F with
respect to σ if and only if for all argumentation frameworks F ′ such that F ⊆ F ′ we
have σ(F ′) = σ(F ′ \ (a, b)).

We can now define the succinctness principle [Gaggl and Woltran, 2013].

Principle 20 (Succinctness). A semantics σ satisfies the succinctness principle if
and only if no argumentation framework contains a redundant attack with respect
to σ.

Gaggl and Woltran [2013] show that a semantics σ satisfies succinctness if and
only if for every two argumentation frameworks F1 and F2 strong equivalence un-
der σ coincides with F1 = F2.

Only CF2 and stage2 semantics satisfy succinctness. Namely, Oikarinen and
Woltran [2010] showed that the notions of strong equivalence and syntactic equiva-
lence do not coincide under complete, grounded, preferred, stable, semi-stable and
ideal semantics. Gaggl and Woltran [2013] show that strong equivalence and syn-
tactic equivalence do not coincide under stage and naive semantics. They also show
that strong equivalence coincides with syntactic equivalence under CF2 semantics.
Dvorák and Gaggl [2016] show that the same is true under stage2 semantics, which
means that it also satisfies succinctness.

a b

c d

F1

a b

c d

F2

Figure 16: Several semantics violate succinctness

Consider eager semantics. Using Theorem 2 by Oikarinen and Woltran [2010],
we can see that F1 and F2 from Figure 16 are strongly equivalent under semi-stable
semantics. Since the eager semantics is uniquely determined by the set of semi-
stable extensions, this means that F1 and F2 are strongly equivalent under eager
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semantics. Hence, eager semantics does not satisfy succinctness. Let us now show
that all four prudent semantics violate succinctness.

Let F1 = (A,R1) and F2 = (A,R2) be the two argumentation frameworks from
Figure 16. Let F = (A′,R′) be an arbitrary argumentation framework. Denote
F ′1 = F1 ∪F and F ′2 = F2 ∪F . Let us prove that the sets without indirect conflicts
of F ′1 and F ′2 coincide. It is immediate that if E ⊆ A ∪A′ is not without indirect
conflicts in F ′2, it is also not without indirect conflicts in F ′1, since R2 ⊆ R1. Let
E ⊆ A∪A′ and let us prove that if E is not without indirect conflicts in F ′1 then it is
not without indirect conflicts in F ′2. Let {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R1∪R′
with n being even and x1, xn ∈ E . If {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R2 ∪ R′
then E clearly has an indirect conflict in F ′2. Otherwise, it must be that for some
i ∈ {1, . . . , n − 1} we have xi = a and xi+1 = b. Then {(x1, x2), . . . , (xi, c), (c, d),
(d, xi+1), . . . , (xn−1, xn)} ⊆ R2 ∪ R′, thus E is not without indirect conflicts in F ′2.
Hence, the sets without indirect conflicts of F ′1 and F ′2 coincide. It is immediate
to see that E ⊆ A ∪ A′ defends all it arguments in F ′1 if and only if it defends
all its arguments in F ′2. Thus, the sets of p-complete extensions of F ′1 and F ′2
coincide. Also, the p-grounded extension of F ′1 is exactly the p-grounded extension
of F ′2. Since every E without indirect conflicts attacks an argument x in F ′1 if and
only if E attacks x in F ′2, p-stable extensions of F ′1 and F ′2 coincide. Since the
sets without indirect conflicts coincide, then maximal sets without indirect conflict
coincide. Thus, p-preferred extensions of F ′1 and F ′2 coincide. We conclude that all
variants of prudent semantics violate succinctness.

The next principle we consider is tightness. Let us first define the notion of pairs.
A couple (a, b) is in Pairs if there is an extension containing both a and b.

Definition 4.19 (Pairs). Given a set of extensions S = {E1, . . . , En}, we define

Pairs(S) = {(a, b) | there exists Ei ∈ S such that {a, b} ⊆ Ei}.

Tightness was introduced by Dunne et al. [2015]. Roughly speaking, it says that
if argument a does not belong to extension E , then there must be argument b ∈ E
which is somehow incompatible with a.

Principle 21 (Tightness). A set of extensions S = {E1, . . . , En} is tight if and only
if for every extension Ei and for every a ∈ A that appears in at least one extension
from S it holds that if Ei∪{a} /∈ S then there exists b ∈ Ei such that (a, b) /∈ Pairs(S).

A semantics σ satisfies the tightness principle if and only if for every argumen-
tation framework F , σ(F) is tight.

Dunne et al. [2015] show that stable, stage and naive semantics satisfy tight-
ness. Example 4 from their paper shows an argumentation framework F such that

2768



The Principle-Based Approach to Abstract Argumentation Semantics

σ(F) = {E1, E2, E3} with E1 = {a, b}, E2 = {a, d, e}, E3 = {b, c, e}, under preferred
and semi-stable semantics. This example shows that those two semantics violate
tightness since {a, b, e} is not an extension.

Directly from the definition of tightness, we conclude that unique status seman-
tics satisfy this principle.

Observation 11. If σ is a semantics that returns exactly one extension for every
argumentation framework then σ satisfies tightness.

Hence, grounded, p-grounded, ideal and eager semantics satisfy tightness. The
example from Figure 17 shows that complete and p-complete semantics violate tight-
ness.

a c e

b x f d

y

Figure 17: Complete and p-complete semantics violate tightness. There are two
extensions E1 = {a, b}, E2 = {a, b, c, d}. Tightness is not satisfied since set E1 ∪ {c}
is not an extension.

From Proposition 1 by Dunne et al. [2015], we have that the set of naive ex-
tensions is tight for every argumentation framework. Note that when σ is naive
semantics and F an argumentation framework, all the elements of σ(F) are pairwise
incomparable with respect to ⊆ (i.e. for each S, S′, S ⊆ S′ implies S = S′). Hence,
we can apply Lemma 2 by Dunne et al. [2015] and obtain

Observation 12. If every extension under σ is a maximal conflict-free set, σ sat-
isfies tightness.

As an immediate consequence, p-stable, CF2 and stage2 semantics satisfy tight-
ness. We now show that p-preferred semantics also satisfies this principle.

Proposition 4.20. p-preferred semantics satisfies tightness.
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Proof. We use the proof by reductio ad absurdum. Let E be a p-preferred extension
and let a be a credulously accepted argument such that

for every b ∈ E there is a preferred p-extension E ′′ s.t. {a, b} ⊆ E ′′ (1)

By means of contradiction, let us suppose that E ′ = E ∪ {a} is not a p-preferred
extension. From (1), we conclude that E ′ is without indirect conflicts. Set E ′ is not
p-admissible, since that would mean that E is not a maximal p-admissible set. Since
E ′ is without indirect conflicts and E is p-admissible, there exists an argument b1
such that b1Ra and there is no b′ ∈ E ′ such that b′Rb1. Denote B1 = {b | bRa}.

Note that E 6= ∅, since E = ∅ would imply that there are no other p-preferred
extensions and, consequently, a would not be credulously accepted. Thus, E 6= ∅.
Let b ∈ E . From (1), there exists a p-preferred extension E1 such that b ∈ E1 and
a ∈ E1. Since a ∈ E1 then for every bi1 ∈ B1 there exists bi2 ∈ E1 such that bi2R.
Let B2 = {b′ ∈ E1 | there exists b′′ ∈ B1 s.t. b′Rb′′}. In words, B2 is the set of
arguments from E1 that attack B1 (they defend a from B1).

Let us show that E ∪B2 is without indirect conflicts. By means of contradiction,
suppose E indirectly attacks B2. Then E indirectly attacks a, contradiction. Suppose
now that B2 indirectly attacks E . Since E is p-admissible, then E attacks B2, and
thus (like in the previous case) E indirectly attacks a. Contradiction. So it must be
that E ∪ B2 is without indirect conflicts. Note also that since B2 ⊆ E1 and a ∈ E1,
we have that E2 = E ∪ {a} ∪B2 is without indirect conflicts.

Note that E2 is not p-admissible, since it is a strict superset of a p-preferred ex-
tension. Set E is p-admissible and B2 defends a so it must be that some argument(s)
of B2 are not defended by E2.

Let B3 = {b | bRB2}. It must be that B3 \ B2 6= ∅. Since B2 ⊆ E1, and E1 is
p-admissible, there exists B4 ⊆ E1 such that B4 defends B2. Let B4 = {b′ ∈ E1 |
there exists b′′ ∈ B3 such that b′Rb′′}.

Note that E4 = E ∪ {a} ∪ B2 ∪ B4 is without indirect conflicts. By using the
similar reasoning as in the case of E2, we conclude that E4 is not p-admissible. Let
B5 = {b | bRB4}. We have B5 \ (B1 ∪ B3) 6= ∅. By continuing this process, we
construct an infinite sequence of different arguments (b1, b3, . . . , bi+1, . . .) such that
b1 ∈ B1, b3 ∈ B3 \ B1, . . ., bi+1 ∈ Bi+1 \ (B1 ∪ . . . ∪ Bi−1), . . ., which is impossible,
since the set of arguments is finite.

We now study the notion of conflict-sensitiveness [Dunne et al., 2015]. Note that
an equivalent principle was called adm-closure in some papers.
Principle 22 (Conflict-sensitiveness). A set of extensions S = {E1, . . . , En} is
conflict-sensitive if and only if for every two extensions Ei, Ej such that Ei ∪ Ej /∈ S
it holds that there exist a, b ∈ Ei ∪ Ej such that (a, b) /∈ PairsS .
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A semantics σ satisfies the conflict-sensitiveness principle if and only if for every
argumentation framework F , σ(F) is conflict-sensitive.

This principle checks whether the fact that Ei ∪ Ej is not an extension is jus-
tified by existence of a ∈ Ei and b ∈ Ej that cannot be taken together. Dunne et
al. [2015] show that every tight set is also conflict-sensitive. Thus, grounded, stable,
ideal, stage, eager, naive, p-grounded, p-stable, p-preferred, stage2 and CF2 seman-
tics satisfy conflict-sensitiveness. Proposition 2 by Dunne et al. [2015] shows that
preferred and semi-stable semantics satisfy conflict-sensitiveness. Our example from
Figure 18 shows that complete and p-complete semantics violate this principle. As
for tightness, it does not seem that violating this principle is a necessarily a bad
thing. It can be rational to ask for both a and b in order to defend e. There is no
conflict between a and e, it is just that e needs to be defended from both c and d.

a c

x

e

b d

y

Figure 18: Complete and p-complete semantics violate conflict-sensitiveness. There
are four extensions E1 = ∅, E2 = {a}, E3 = {b}, E4 = {a, b, e}. Conflict-sensitiveness
is not satisfied since set {a, b} is not an extension.

Let us now turn to com-closure [Dunne et al., 2015]. To define this principle,
we first need to introduce the notion of completion set. Completion sets are the
smallest extensions that contain a given set.

Definition 4.21 (Completion set). Given a set of extensions S = {E1, . . . , En} and
a set of arguments E, set E ′ is a completion set of E in S if and only if E ′ is a
minimal for ⊆ set such that E ′ ∈ S and E ⊆ E ′.
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Roughly speaking, com-closure says that, given a set of extensions S, if for every
T ⊆ S each two arguments from sets of T appear in some extension of S, then T
can be extended to an extension in a unique way.

Principle 23 (Com-closure). A set of extensions S = {E1, . . . , En} is com-closed
if and only if for every T ⊆ S the following holds: if (a, b) ∈ PairsS for each
a, b ∈ ∪Ei∈T Ei, then ∪Ei∈T Ei has a unique completion set in S.

A semantics σ satisfies the com-closure principle if and only if for every argu-
mentation framework F , σ(F) is com-closed.

Dunne et al. [2015] show that each conflict-sensitive set of extensions is com-
closed. Thus, all the semantics that satisfy conflict-sensitiveness also satisfy com-
closure. Their Proposition 4 shows that complete semantics is com-closed. To see
that p-complete semantics does not satisfy com-closure, consider the graph from
Figure 19.

We now study the notion of SCC-recursiveness, which was introduced by Baroni
et al. [2005].

Principle 24 (SCC-recursiveness). A semantics σ satisfies the
SCC-recursiveness principle if and only if for every argumentation framework F =
(A,R) we have σ(F) = GF(F ,A), where for every F = (A,R) and for every set
C ⊆ A, the function GF(F , C) ⊆ 2A is defined as follows: for every E ⊆ A,
E ∈ GF(F , C) if and only if

• in case |SCCSF | = 1, E ∈ BFS(F , C),

• otherwise, ∀S ∈ SCCSF , (E ∩ S) ∈ GF(F ↓UPF (S,E), UF (S, E) ∩ C),

where BFS(F , C) is a function, called base function, that, given an argumentation
framework F = (A,R), such that |SCCS(F)| = 1 and a set C ⊆ A, gives a subset
of 2A.

Baroni et al. [2005] proved that grounded, complete, stable and preferred seman-
tics satisfy SCC-recursiveness. CF2 and stage2 semantics also satisfy this principle,
since they are defined by using SCC recursive schema. None of the remaining se-
mantics satisfies SCC-recursiveness. To show that ideal, semi-stable, stage and eager
semantics does not satisfy SCC-recursiveness, consider the examples from Figures 20
and 21, which are both due to M. Giacomin (personal communication, 2016).
Naive semantics does not satisfy SCC-recursiveness since it ignores the direction of
attacks. Consider the example from Figure 22. All four prudent semantics violate
SCC-recursiveness. Consider the argumentation framework from Figure 4. Let σ be
any of the four prudent semantics. In this example, every argument forms an SCC.
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Figure 19: p-complete semantics is not com-closed. There are eight p-complete
extensions: E1 = ∅, E2 = {b}, E3 = {c}, E4 = {d}, E5 = {b, d}, E6 = {c, d},
E7 = {b, c, d}, E8 = {b, c, a}. Let T = {E2, E3}. Com-closure is not satisfied since set
{b, c} has two competition sets, namely E7 and E8.

Thus, each extension must contain both e and f . Furthermore, no extension can
contain neither of b, c, d, since they are all attacked by e of f . Finally, if σ satisfied
SCC-recursiveness, each extension would contain a, which is not the case.

The results considering cardinality are easy to obtain.
We do not include several properties that are not satisfied by any of the studied

semantics. Let us mention three such properties. Downward closure [Dunne et al.,
2015] basically says that each subset of each extension is an extension. Non-triviality
[Dunne et al., 2012] says that it is not the case that σ(F) = {∅}; in words, the empty
set is not the only extension. Decisiveness [Dunne et al., 2012] is a stronger principle
that asks that every framework has exactly one extension E and that E is not empty.
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Figure 20: Ideal semantics is not SCC-recursive. Both in F1 and in F2, there
are two SCCs: S1 = {a, b, c} and S2 = {d, e}. Suppose ideal semantics is SCC-
recursive. Then, we can calculate the ideal extension of an argumentation framework
by starting from S1 and then continuing to S2. Denote by F1

1 the restriction of F1
on S1 and by F1

2 the restriction of F2 on S1. The ideal extension of F1
1 is the

empty set. The ideal extension of F1
2 is also the empty set. So the exact same

information is transferred to the next SCC, S2. The second SCC, S2 is the same for
both frameworks, so given the same information from S1, both frameworks should
have the same ideal extension. However, σ(F1) = ∅ whereas σ(F2) = {e}. Thus,
ideal semantics does not satisfy SCC-recursiveness.

a b c

d

Figure 21: Semi-stable, stage and eager semantics violate SCC-recursiveness. Let σ
be stage, semi-stable or eager semantics. Consider the first SCC, S1 = {a, b, c}. If
we restrict the argumentation framework to S1, the only extension under σ is {b}.
If σ satisfied SCC-recursiveness, each extension of this framework would contain b,
which is not the case, since {a} is an extension of this framework under σ.

5 Summary and outlook

The principle-based approach has developed over the past ten years into a cor-
nerstone of formal argumentation theory, because it allows for a more systematic
study and comparison of argumentation semantics. In this article we give a com-
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a b

Figure 22: Naive semantics does not satisfy SCC-recursiveness. Note that the first
SCC is S1 = {a}. If naive semantics satisfied SCC-recursiveness, every naive exten-
sion of the whole framework would contain a, which is not the case since {b} is a
naive extension of this framework too.

plete analysis of the fifteen main alternatives for argumentation semantics using the
twenty-seven main principles discussed in the literature on abstract argumentation.
Moreover, Caminada [forthcoming] discusses the principles used in structured argu-
mentation, which he calls rationality postulates, and Dung [2016] analyses prioritised
argumentation using a principle-based or axiomatic approach.

The principle-based approach has also been used to provide a more systematic
study and analysis of the semantics of extended argumentation frameworks, of the
aggregation of argumentation frameworks, and of the dynamics of argumentation
frameworks. For example, principles of ranking-based semantics have been proposed
[Amgoud and Ben-Naim, 2016; Amgoud et al., 2017; Bonzon et al., 2016b], where
the output is not a set of extensions but a ranking on the set of arguments, and prin-
ciples have been developed for bipolar argumentation [Cayrol and Lagasquie-Schiex,
2015]. Likewise we expect a further systematic study of weighted argumentation
frameworks, preference-based argumentation frameworks, input/output frameworks,
abstract dialectical frameworks, and so on.

It may be expected that the principle-based approach will play an even more
prominent role in the future of formal argumentation, as the number of alternatives
for argumentation semantics increases, new argumentation principles are introduced,
and more requirements of actual applications are expressed in terms of such prin-
ciples. Moreover, in the future applications and principles concerned with infinite
frameworks may become more prominent. For example, when the set of arguments
becomes infinite, it may be that there are no semi-stable extensions. However, Bau-
mann [forthcoming] illustrates how a meaningful version of eager semantics can be
defined, which no longer has the property that it always returns exactly one exten-
sion.

Finally, the principle-based approach to formal argumentation may lead to the
study of impossibility and possibility results, as well as the development of repre-
sentation theorems characterising sets of argumentation semantics. The use of the
principle-based approach in other areas of reasoning, such as voting theory or AGM
theory change, may inspire such further formal investigations.
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