
UNIVERSITÀ DI PISA

Facoltà di Scienze Matematiche Fisiche e Naturali
Corso di Laurea Specialistica in Informatica

Tesi di Laurea Specialistica in Informatica

Extending Cairo
with color space support

Candidato:

Andrea Canciani

Relatore:

Dott. Antonio Cisternino

Controrelatore:

Prof. Francesco Romani

Anno Accademico 2009/10

Abstract

Cairo is a 2D vector graphics library which can draw on multiple output
targets, including PDF, PostScript, SVG, Xlib, Quartz and GDI.

Cairo provides an interface which exposes PDF-like operations, hence it
can draw complex shapes and fill them with a colored pattern, but it lacks
color management.

The purpose of this work is to design and implement an extension of
the Cairo library which augments it with color management support, in
accordance with the ICC and PDF standard specifications. This extension
makes it possible to move the color handling from applications to the graphic
library and provides a flexible and efficient drawing model.

2

Acknowledgements

This work would have been much harder, if not impossible, without the
contributions and help I received from many people.

I would especially like to thank Cairo developers, in particular Adrian
Johnson and Benjamin Otte, whose previous work on color spaces in Cairo
has been a useful reference and starting point, and Chris Wilson and Joonas
Pihlaja who helped me to learn most of the Cairo internals.

I believe that a valuable contribution to this work comes from the long
thread about the extension I was proposing. I sent a mail on this topic on
the Cairo development mailing list and many users replied with use cases
and suggestions based on their experience with color management.

The chats with Øyvind Kol̊as (maintainer of the GEGL graphic library),
have been very useful when trying to find out what the correct drawing
model was and the requirements it had to satisfy.

I greatly appreciate the helpfulness of Lars Borg, who kindly permitted
the use of his images to recreate the ICC color profile test in Cairo, and of
Gernot Hoffmann, who let me use his beautiful PostScript images in this
document.

My friends, my family and my advisor deserve special credits for sup-
porting me through the development of this project.

i

Contents

1 Introduction 1

2 Color spaces 3
2.1 Digital color . 3
2.2 Color perception . 4
2.3 Reference color spaces . 5
2.4 Standard color spaces . 8
2.5 Device-dependent color spaces 10
2.6 Hue, Saturation, Lightness . 10
2.7 CMYK . 11
2.8 Calibrated color spaces . 12
2.9 ICC color profiles . 13

3 Color management in graphic software 15
3.1 Hardware support . 15

3.1.1 Standard profiles . 15
3.1.2 Embedded profiles . 15
3.1.3 Calibration . 16

3.2 Software . 17
3.2.1 Professional graphic applications 17
3.2.2 Document viewers . 17

3.3 Support in documents . 18
3.3.1 PostScript . 18
3.3.2 Portable Document Format 20
3.3.3 Scalable Vector Graphics 21
3.3.4 Raster images . 21

3.4 Graphic APIs . 22
3.4.1 Quartz . 22
3.4.2 GDI+/WPF . 23
3.4.3 OpenGL . 24
3.4.4 Qt . 24
3.4.5 Cairo . 24

3.5 Desired features . 25

ii

3.5.1 CMYK color spaces 25
3.5.2 Y CbCr color spaces . 26
3.5.3 Gamma handling . 26

4 Design 28
4.1 Cairo drawing model . 28

4.1.1 Cairo objects . 28
4.1.2 Contexts . 28
4.1.3 Patterns . 30
4.1.4 Surfaces . 31
4.1.5 Cairo graphic pipeline 31
4.1.6 Compositing in Cairo 32

4.2 Support for color spaces . 33
4.2.1 Drawing model . 33
4.2.2 Advantages and limitations 34
4.2.3 Public API . 35

4.3 Usage . 37
4.3.1 Initial approach . 38

5 Implementation 40
5.1 Image surfaces . 40
5.2 Vector surfaces . 41

5.2.1 PDF . 41
5.2.2 PostScript . 42

5.3 Quartz surfaces . 42
5.4 OpenGL surfaces . 43
5.5 Testing . 44

6 Results 45
6.1 Regressions . 45
6.2 New tests . 46
6.3 Conclusions . 47
6.4 Further developments . 48

New public API functions 50

iii

List of Figures

2.1 The CIEXYZ color matching functions 6
2.2 The CIExyY chromaticity chart. 7
2.3 Gamuts of sRGB and Adobe RGB. 9
2.4 HSV and HSL color spaces. 11
2.5 The general color space to PCS conversion 13

3.1 The relationship between linear and sRGB intensities 27

4.1 Cairo drawing operations . 29
4.2 The Cairo pattern types . 30

5.1 The common RGB → XY Z → RGB conversion 44

6.1 Regression caused by floating point computations 45
6.2 Regression caused by bugs in external utilities 46
6.3 Images in different color spaces 46
6.4 Primaries of some color spaces 47

iv

Chapter 1

Introduction

Graphic systems and drawing libraries have been able to draw in color for
a long time, but hardware constraints and limited scope of high-quality
color management have pushed for faster software with poor color handling.
Digital color has recently received more attention because of the diffusion
of digital photography.

It is quite common for anybody to shoot digital photos and to edit them
or to watch and print them using a browser. Some people do not care if the
colors printed photo match those on screen, but most people is disappointed
when this happens. Unless some additional care is taken when printing, this
happens very frequently, because monitors and printers synthesize colors in
different ways.

The same problem obviously applies to any digital visual content, there-
fore professional graphic workflows started tackling it a long time ago, be-
cause they require correct color processing and accurate color reproduction
in order to get the same result no matter what output device is used.

Instead, most software represents colors with 3 numerical values, which
indicate the intensity of red, green and blue respectively. When applications
directly accessed the video memory of the computer, these values controlled
the image produced on the screen. Nowadays application cannot communi-
cate directly with the hardware, but the most graphic software stacks still
do the same thing: they just feed the graphic card with the RGB values
from the application.

As hardware speed and user expectations grow, more applications are
implementing proper color handling, because it is needed in any software
which must display and print documents and provide the same visual results
across multiple computers and output devices.

A notable example can be found in browsers, whose latest versions are
providing color management: Mozilla Firefox enables is by default since
version 3.5 and Microsoft Internet Explorer provides it since version 9.

Although some applications are adding color management support, it

1

is quite hard to write color managed software, because the burden of color
space handling and color transformation is in the application instead of the
graphic library.

Most graphic libraries have not been designed to perform color manage-
ment internally and provide no way to use an external color management
system. This matched the requirements of most applications, but is be-
coming insufficient for modern graphic interfaces, because application which
need color management have no option but to perform color transformations
explicitly.

This approach has several limitations and is not generally feasible, there-
fore another approach is proposed: if graphic libraries expose appropriate
color managed operations, it is possible to completely delegate color han-
dling to them. This moves the color management code from applications to
graphic libraries, where it can be integrated with the drawing pipeline to
get better quality and higher performance.

This change is independent but similar to the evolution from raster-only
imaging libraries to vector based ones: higher level operations make it easier
to get better-looking graphics.

The purpose of this work is to extend the Cairo graphic library with
facilities to enable the development of color managed applications. Cairo
has been chosen because it is a widely used graphic library, especially in
open source projects (GTK and Mozilla being the two major ones), which
is completely lacking color management. Moreover Cairo is a cross-platform
library which supports many different output formats, therefore this exten-
sion makes color management support available for a very wide range of
applications.

The thesis has the following structure:

• Chapter 2 introduces the theoretical foundations of color management
and the standard technology which is generally used to implement it.

• Chapter 3 analyzes the availability of this technology or other alter-
native color handling solutions in software across the whole graphic
stack.

• Chapter 4 describes the current Cairo drawing model and extends it
to support color transformations, based on what is currently available
in state-of-the-art graphic systems.

• In chapter 5 an implementation of this model is presented, along with
shortcomings, problems, and solutions found while extending the li-
brary.

• Chapter 6 shows the results and points out some ideas to improve the
proposed implementation of color management and to take further
advantage of the possibilities it offers.

2

Chapter 2

Color spaces

2.1 Digital color

In order to perform computations on colored images, colors must be repre-
sented with numbers. The most common way to express a color in a digital
environment has been to simply use the output intensity for devices which
measure colors (like scanners and digital cameras) and the input intensity
for devices which reproduce colors (like monitors, projectors, printers).

Although these values indicate a well-defined color on each device, they
are not related not to human color perception, but just to the device behav-
ior. In particular, the most common case has been to have three of these
values, each controlling a different type of light-emitting element of a mon-
itor. These elements are phosphors which cover the display surface and can
emit red, blue or green light, depending on their type.

Because of this, colors are often expressed with three numbers, indicating
a red, green and blue light intensity, also known as RGB. As explained in
section 2.5, these values will not result in the same color if used on two
different devices. In fact, these values do not indicate a color, but input
levels of a color reproduction device. Nonetheless, they provide a color
representation which has been widely used when the cost of getting accurate
color reproduction was too high for commodity hardware.

Although these numbers correspond to a physical measure, they have
often been indicated as pure numbers in the [0, 1] interval, to be intended
as a relative intensity, from the minimum to the maximum allowed by the
monitor. Another common representation, which is used to improve the
performance of the computations, indicates the values as bytes, i.e. integers
in [0, 255]. This representation matches very well the capabilities of most
video hardware, but it quantizes to only 256 different values. This is suffi-
cient for some simple graphic operations, but if more complex computations
are performed on data represented with this accuracy, the error can be am-
plified and become visible. To work around this problem, some programs

3

use 16-bit color data and the output images of many digital photo cameras
can have more than 8 bit of precision.

As the hardware improves and provides more processing power and input
and output devices which can handle a higher number of quantization levels,
the applications evolve and become able to perform slower computations on
color data within reasonable times, therefore some modern programs can
even handle color in floating point format.

Moreover, thanks to the available computational power, these programs
started to implement color systems which can provide more accurate re-
sults than simple RGB values. This is required in order to satisfy the user
expectation of the same visual result no matter what output device is used.

2.2 Color perception

A framework which can describe colors and operate on them preserving
their appearance across multiple different physical devices needs to have
foundations based on the human perception of colors. In this setting, a color
is usually defined as the sensation produced in the brain by the stimulation
of the eye with light.

From a physical point of view, this light is an electromagnetic wave,
thus it can be described by its spectral power distribution, i.e. the intensity
of each frequency composing the wave. Although spectra could be used
to indicate colors, this is not effective representation, because two identical
spectra will cause the same color to be perceived, but the human vision
system perceives some different spectra as identical colors as well.

Two such spectral power distributions which produce the same color
sensation are called metamers. Metamerism plays an important role in color
reproduction, because it makes it possible to represent the color associated
to a very wide range of spectra using a combination of just three primaries.

This property can be obtained by studying the physiology of the human
eye. The human retina contains two types of cells: rods and cones. Cones
can be of 3 different types, so one might expect the 4 cellular perceptions
to form a 4-dimensional space in which each “color sensation” occupies a
different point. As a matter of fact, the rods only contribute significant
information in particular conditions (when viewing very dark images), so
they can be ignored in image reproduction systems. The sensibility of each
cone type to each wavelength of the visible spectrum provide sufficient in-
formation to determine with a reasonable accuracy 1 whether two spectra
are metamers or not.

Most color reproduction systems rely on this fact to produce in the

1The vision system is actually not completely uniform and color perception depends on
other factors, for example the angle under which the color is viewed. This is often ignored
and a standard approximation is used.

4

observer color sensations using appropriate combinations of red, green and
blue light, but this approach has some limits, because the range of colors
that can be synthesized is smaller than the range of visible colors.

2.3 Reference color spaces

In order to provide a systematic way to identify metamers and represent
colors, CIE (Commission Internationale d’Eclairage) defined the standard
observer [5].

To create a model of the human vision based on the assumption that any
color could be obtained from an appropriate combination of three monochro-
matic lights, CIE performed an experiment to determine an average viewer
which could be used as reference.

The standard observer is a mathematical model based on empirical mea-
sures which describes the color perception of the hypothetical average hu-
man. Any color is represented by the values X, Y, Z which can be computed
as:

X =

∫ ∞
0

I(λ)x(λ) dλ

Y =

∫ ∞
0

I(λ) y(λ) dλ

Z =

∫ ∞
0

I(λ) z(λ) dλ

In these equations, I(λ) is the spectral power distribution of the color,
x(λ), y(λ) and z(λ) are the color matching functions (shown in figure 2.1),
which have been derived experimentally by CIE.

Two spectra which have the same XYZ coordinates are metamers for the
standard observer, i.e. the average human would perceive them as the same
color. For this reason these coordinates are called tristimulus and are the
preferred representation of colors from a colorimetric perspective.

The X, Y and Z components define a point in the CIEXYZ color space,
which corresponds to a color perception. In general, color spaces are coor-
dinate systems in which a colors can be represented as an n-uple. In order
to get a colorimetric meaning, color spaces are usually defined by specifying
the relationship between each point with the corresponding tristimulus, i.e.
using the CIEXYZ color space as a reference.

The main defect of CIEXYZ is its non-uniformity. The perceptual differ-
ence between two colors does not correspond in a simple way to the distance
of their XYZ representation.

To address this problem, other color spaces have been constructed; the
most widely used one is probably CIELAB, which has been defined, again,
by CIE. The CIELAB coordinates can be computed from XYZ as follows:

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

350 400 450 500 550 600 650 700 750 800 850

W
ei

gh
t

Wavelength [nm]

x(λ)
y(λ)
z(λ)

Figure 2.1: The CIEXYZ color matching functions

L? = 116f

(
Y

Yn

)
− 16

a? = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]
b? = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
where (Xn, Yn, Zn) is the reference white point (usually one of the CIE

standard illuminants, like D50 or D65) and

f(t) =

{
t
1
3 if t > (6

29)3

1
3

(
29
6

)2
t+ 4

29 otherwise

CIEXYZ and CIELAB have two special roles that other color spaces
don’t usually have:

• They are the basis for other color spaces. Other color spaces are
typically based either on CIEXYZ or on CIELAB.

• They are interchange color spaces. If the relationship between a color
space and CIEXYZ is defined appropriately, it is possible to convert
the tristimulus representation of a color to and from the representation
in the new color space. The same consideration applies to CIELAB.

6

This makes it possible to convert colors between two arbitrary, other-
wise unrelated, color spaces.

Another well-known CIEXYZ-based color space is CIExyY. It is projec-
tively related to CIEXYZ and its purpose is to better separate luminance
from chromaticity coordinates.

The Y component (luminance) of CIExyY is the same as that of CIEXYZ.
The x, y components, also known as chromaticity coordinates, are defined
by the following formulas:

x =
X

X + Y + Z

y =
Y

X + Y + Z

380

460

470

475

480

485

490

495

500

505

510

515

520 525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605
610

620

635

700

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

2
0

0
0

2
1

0
5

2
2

2
2

2
3

5
3

2
5

0
0

2
6

7
7

2
8

5
7

3
0

7
7

3
3

3
3

3
6

3
6

4
0

0
0

4
4

4
4

5
0

0
0

5
7

1
4

6
6

6
7

8
0

0
0

1
0

0
0

0

D50

D65

D93

Figure 2.2: The CIExyY chromaticity chart. Image from [9], used with kind
permission of the author, Gernot Hoffmann.

This color space is often used to compare the expressive power of other
color spaces. In figure 2.2 a projection of the visible colors in the xy plane is
shown (the colored area of the graph), delimited by the points corresponding
to the visible spectrum. The plot shows some other well-known points: D50,
D65 and D93, which are the most widely used CIE reference illuminants,

7

and the Planckian locus, which is range of colors emitted by a black body
when varying its temperature.

2.4 Standard color spaces

The CIEXYZ and CIELAB color spaces have been designed to describe
human perception, but they are unrelated to image acquisition and repro-
duction devices. Other color spaces have been standardized and have been
widely used for television, computer monitors, scanners, printers etc.

Monitors are physical devices which reproduce colors using additive color
synthesis: they mix colored light to obtain the desired color. The standard
observer model implies that three primaries would in theory be sufficient to
compose any color, but in practice, this would require the light emitters to
be able to produce any intensity, including the negative ones. This is not
physically possible, so the range of colors which can be composed is limited
to the combination of the primaries ranging from minimum to maximum
intensity (usually represented respectively as 0 and 1).

The range of possible colors within these constraints is called gamut. Al-
though the gamut is usually a three-dimensional subset of the CIEXYZ color
space, for simplicity it is often represented by its bi-dimensional projection
on the xy plane of CIExyY.

The color space which is currently being used as the standard color space
for modern file formats and devices is sRGB. It is defined from the CIEXYZ
color space, but it has been designed to match the behavior of computer
monitors, therefore its primaries are the colors emitted by red, green and
blue phosphors of typical CRT displays. Moreover, the relationship between
the coordinates and the primary intensity (usually called gamma curve or
tone reproduction curve) is non-linear, because the relationship between the
input signal and the output intensity of a cathode ray tube is a power law.

In [16] the sRGB color space is defined as:RlinearGlinear
Blinear

 =

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570

XY
Z

f(t) =

{
1.055t

1.0
2.4 − 0.055 if t > 0.00304

12.92t otherwise

R = f(Rlinear)

G = f(Glinear)

B = f(Blinear)

8

380

460

470

475

480

485

490

495

500

505

510

515

520 525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605
610

620

635

700

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

sRGB

Adobe RGB

Figure 2.3: A projection of the gamuts of sRGB and of Adobe RGB in the
CIExyY chromaticity chart. Image based on [9], with the authorization of
the original author, Gernot Hoffmann.

Unfortunately the gamut of sRGB is quite small, so other color spaces
with a wider gamut are often used, for example to handle photos (Adobe
RGB, ProPhoto RGB) 2.3. The main disadvantage of these color spaces is
that, since colors are represented with quantized components, the minimum
color difference is bigger than with sRGB. This can be a problem if colors
are represented with 8 bits per components or fewer because it might make
it impossible to have a continuous color transitions.

Other standard color spaces have been created, for example as part of
television standards ([13], [2], [17]). They all have three primaries, gamma
curves and, although they have different coefficients, they share the basic
structure with sRGB. This makes it possible to represent them in a simple
way, as shown in section 2.9.

Luma-chroma color spaces, which are often employed in image and video
compression to keep more detail in the image lightness at the expense of
chromatic accuracy, retain the same structure as well, although the three
components are not actually primaries. The JPEG Y CbCr color space is the
most common example of this family of color spaces.

9

2.5 Device-dependent color spaces

Color spaces in this family are probably the most widely used, because col-
ors described by giving a n-uple of components (like RGB, Hue-Saturation-
Lightness or Cyan-Magenta-Yellow-Black values) without specifying the re-
lationship between the components and the tristimulus values of the color,
are typically specified in a device-dependent color space.

Most software ignores color management and sends commands to the
hardware without proper color handling. This happens when color is spec-
ified in a device-dependent color space, i.e. its components are directly
passed to the hardware, without transforming them to take into account the
color reproduction behavior of the devices.

This happens, for example, whenever the pixel components of a moni-
tor are controlled directly. Two different monitors displaying the brightest
available “red” will usually show two different shades of red.

The very wide use of RGB triples led to the misconception that RGB
values are sufficient to describe a color, without the need of the reference
system provided by device-independent color spaces, but in general, a point
in a device-dependent color space does not represent a well-defined, unique
color. The color can only be obtained by using the coordinates of that point
as input for a device.

The coordinates of a point in a device-dependent color space are the
intensities of the device components, therefore any point whose coordinates
are in the valid range (i.e. between the minimum and maximum intensity
that the device can handle) immediately defines a point in the gamut of
a device, but the tristimulus (or any other colorimetric description) of the
color cannot be computed, it can only be measured after the device has
reproduced it.

This means that the same point can result in a different tristimulus
on each device and conversely that a given tristimulus is in a point which
depends on the device. For this reason device-dependent color spaces are
not appropriate when color fidelity across multiple devices is desired.

2.6 Hue, Saturation, Lightness

Another family of color spaces has been designed to assist artists when
they need to choose a color. Hue, saturation and lightness are easier to
combine into the desired color than red, green and blue intensity, because
they emulate the color mixing procedure performed on pigments. To create
color spaces based on these properties, a relationship between them and
RGB colors was established, defining HSV (Hue, Saturation, Value) and
HSL (Hue, Saturation, Lightness) as depicted in figure 2.4.

These color spaces have been defined on top of device-dependent RGB,

10

Figure 2.4: On the left, the color cone described by HSV; on the right, the
HSL color double cone.

therefore they suffer from the same issues as any device-dependent color
space. Despite this, they are important because they provide an intuitive
way to express colors, thus alternative color spaces were defined with the
same structure.

CIELCH is a Lightness-Chroma-Hue device-independent color space which
provides the same perceptual uniformity properties as CIELAB but whose
coordinates are in a cylindrical space which separates hue and chroma (sat-
uration).

Its definition is a straightforward transformation of the CIELAB coor-
dinates in cylindrical coordinates:

L?LCH = L?LAB

C?LCH =
√

(a?LAB)2 + (b∗LAB)2

H?
LCH = arctan

b∗LAB
a∗LAB

2.7 CMYK

The device-dependent CMYK color space (Cyan, Magenta, Yellow and Key
black) is the printer-related equivalent of device-dependent RGB, i.e. to
define a color, it directly specifies the intensities of ink to be sent to the the
device.

There is a substantial difference in the color synthesis performed by
display devices and that used in printing devices: monitors use additive
color synthesis, where the spectra of multiple light emitters are summed;
printers drop think ink layers on paper, which behave as filters for the light
being reflected by the medium. This means that each ink can absorb a part

11

of the light being reflected and this type of color synthesis is thus called
subtractive.

Just like red, green and blue are three primaries which provide a rea-
sonably wide gamut for additive color synthesis, their complements (cyan,
magenta and yellow) can be used to compose colors in subtractive color syn-
thesis, although the physical properties of inks and paper usually result in
a smaller gamut than what most monitors provide. This is basically caused
by the inherent impossibility to synthesize fully saturated colors.

Even if it would not be strictly needed, printers usually have a fourth
ink, black. This provides a twofold advantage: since the black printed area
being larger than colored areas on average, the black ink makes it possible to
have a lower cost per page; in addition, from the colorimetrical point of view
this ink provides a different shade of black, which is often more “colorless”
than the shade which can be composed by mixing the same quantity of other
inks.

Similar considerations led to exachrome printers, which try to widen the
gamut by providing additional colors to be mixed, and to printing workflows
which include specific inks for colors which cannot be synthesized. Some-
times these inks are not even colors, but are used for some special effects,
like metallic or glittering inks.

2.8 Calibrated color spaces

The sRGB color space has been proposed as a standard color space to be
adopted both for software and hardware color management. This would in
theory make it possible to have a color managed workflow without the need
of color profiles. However, even if modern hardware tries to comply with
the sRGB standard, a device-specific color space is usually needed in order
to achieve high color accuracy. Each physical device is unique and changes
over time, thus in a professional graphic workflow both input and output
devices must be calibrated.

A calibrated color space is a color space whose primaries and tone repro-
duction curves are determined by measuring the input/output behavior of
the device with a colorimeter or with a spectrometer. This makes it possi-
ble to have a very accurate match between the expected color (modeled by
the mapping between the device-specific color space and CIEXYZ) and the
perceived color.

The calibration process requires additional hardware and software, but
its cost is nowadays quite reasonable. Additionally, some vendors provide
color profiles for their hardware. These profiles are usually created by aver-
aging the properties of some sampling of the products, so they cannot be as
accurate as a device-specific profile, but they can improve the color accuracy
of the device with no additional effort or cost for the user.

12

It should be noted that, although calibrated color profiles are usually cre-
ated to match a specific device, they are device-independent color spaces,
because they provide a mapping between the components and the corre-
sponding tristimulus.

2.9 ICC color profiles

Even if color spaces are defined mathematically, they often need to be stored
along with the color components to which they give a colorimetrical meaning.

This can be accomplished by encoding them as an color profile, which
can represent the mathematical definition of the color space as a sequence
of bytes.

The most widespread format for color profiles has been designed and
specified by the International Color Consortium. ICC profiles [3] can rep-
resent color spaces with up to 15 components and with an almost arbitrary
mapping to/from CIEXYZ or CIELAB.

To guarantee that colors can be converted between any color spaces,
without having to define a mapping between each possible pair, the con-
version is defined using a Profile Connection Space. ICC profiles contain
a function which converts colors from the profile color space to the PCS
(which is required to be either CIEXYZ or CIELAB) and vice versa. To
convert a color between two arbitrary color spaces, it is converted from the
source color space to the PCS, then from the PCS to the destination color
space.

component1
component2

...
componentn

fA1

fA2

...

fAn

...
...

Look-up
table

fM1

fM2

fM3

M3×4

fB1

fB2

fB3

X L
Y a
Z b

Figure 2.5: The general color space to PCS conversion

Figure 2.5 shows the general conversion from a color in the color space
defined in a profile and the PCS. The multidimensional LUT makes arbitrary
mappings possible even if the fXi functions are constrained to be unary.
Simple color spaces can often be described by providing only a part of these
components. For example, to describe sRGB, the M matrix and the fMi
functions would be sufficient2.

2There are some additional constraints on which components must be specified and the
ICC specification makes it possible to avoid this complicated definition for simple color
spaces. Most standard RGB color spaces and simple calibrated color spaces can be defined
directly by specifying the primaries and the tone reproduction curves.

13

The transformation from PCS to the profile color space involves the
same operations, but performed in the opposite direction. The opposite
transformations is not, in general, the inverse of the direct transformation,
therefore it is explicitly described in the profile.

An ICC color profile usually contains multiple color transformation func-
tions between the color space and the PCS, which are selected depending
on the rendering intent. Although in theory the association between a color
space and CIEXYZ is unique and completely defines the color space, in
practice color spaces have a limited gamut. Colors which are out-of-gamut
needs to be mapped to in-gamut colors when a physical device is used to
reproduce them.

The ICC specification describes four different rendering intents:

• the absolute colorimetric intent preserves the tristimulus of in-gamut
colors

• the relative colorimetric intent rescales tristimulus values so that the
white point of the color space to the white point of the PCS

• the perceptual intent is vendor specific, but it generally tries to provide
the most pleasing perceptual result

• the saturation intent is vendor specific, but, as indicated by the name,
it tries to preserve the saturation

The artist is supposed to choose a rendering intent from the available
ones so that its result provides the best result, but unfortunately this de-
pends both on the content of the image being converted and on its purpose.
Usually the relative colorimetric and the perceptual rendering intents pro-
vide the best results.

14

Chapter 3

Color management in
graphic software

3.1 Hardware support

3.1.1 Standard profiles

The color management model which has been proposed for the Web and is
being adopted by Microsoft and Apple is centered on sRGB. This standard
is based on the color reproduction capabilities of common CRT monitors,
therefore it can provide a reasonable approximation for colors to be displayed
on screen.

The adoption of sRGB on other hardware (scanners, printers and photo
cameras) has been promoted to simplify the creation of color managed work-
flows, in which every image elaboration element handles both input and
output in the standard color space.

This has helped in improving the consistency across multiple devices,
but has some issues because of the limitations imposed by the sRGB gamut.
They have been partially worked around by using bigger color spaces, usually
Adobe RGB.

Having multiple standard color spaces requires the input hardware to
tag the images with information about their color space and the software to
handle the input color spaces and convert the image to the color space of
the output devices. This is basically the same as a full color-managed work-
flow, therefore this approach defeats the purpose of a simple color managed
workflow completely based on sRGB.

3.1.2 Embedded profiles

Even if some standard color profiles are designed to match the behavior of
common hardware, they cannot provide a close match, because of their gen-
erality. To take advantage of the capabilities of specific hardware, vendors

15

often provide color profiles for their products, usually by embedding them
in the device.

These profiles describe the average behavior of a sampling of devices
of the same model, therefore they provide valuable information about the
device specifications. For example some hardware has primaries are more
saturated than the sRGB ones, which result in a wider gamut. If no color
transformation is performed, the visual result will not match the expected
one. The embedded color profile defines the color transformation to be
applied in order to obtain the expected result.

Even if embedded profiles do not provide the best possible color fidelity,
they are useful because they improve the accuracy of color reproduction
without additional operations by the user.

3.1.3 Calibration

The best possible color fidelity can be obtained by calibrating the devices, i.e.
by measuring their behavior. Calibration is mainly used in professional color
managed workflows, but its cost is becoming lower, hence non-professional
users are beginning to perform it as well.

For input devices calibration is performed by using to acquire a standard
reference, for example a scanner is usually calibrated by acquiring a page
whose color content is known.

The inverse approach can be applied to output devices: they are used
to synthesize some known component intensities and the resulting color is
measured with a colorimeter or a spectrometer.

Calibration software can then convert the measured data to a color profile
which describes the relationship between the values of the device components
and the corresponding color. The quality of the profile obviously depends
on the number of measures performed, so high quality profiles require more
calibration time, but noticeable quality improvements can even be achieved
with a relatively small number of samples.

An important limitation of calibrated profiles is that they only provide
high accuracy for the specific conditions in which the device was calibrated.
Different profiles need to be created if these conditions are modified. For
example most printers mix 4 inks (cyan, magenta, yellow and black) on
white paper to synthesize colors. Different ink cartridges and paper types
result in different colors, so a calibration of the printer is needed in order to
achieve accurate color reproduction whenever the combination of paper and
ink cartridges changes.

16

3.2 Software

3.2.1 Professional graphic applications

People using graphic software professionally need color managed workflows
to ensure that their images will look the same no matter what output device
will be used to view or edit them. Color management is especially important
when the images will used on different output devices (monitors vs. printers,
different monitors), because images in device-dependent color spaces would
cause the result to look different on each device.

Because of this, professional graphic software makes it possible to work
and create documents using device-independent color spaces. In a color
managed workflow every color is expressed in a device-independent color
space, so that it can be converted in the output device color space when it
has to be displayed or printed.

This issue is common to every representation of visual contents as both
raster-based and vector-based editors have to handle this issue, thus most
modern image formats have some support for color spaces. This means that
usually the editor can embed in the image file an ICC color profile which
describes the color space of the image.

Adobe Photoshop and Adobe Illustrator are well-known color managed
applications for editing respectively raster and vector images.

GIMP, Inkscape and Scribus are examples of color managed image ed-
itors developed by the free software community. All of them use the Lit-
tleCMS library as color management system.

These applications probably need to communicate directly with the color
management system to implement some of their most advanced operations.
Nevertheless they use the Cairo graphic library to render their content,
therefore the proposed extension would make it easier to display it correctly.

3.2.2 Document viewers

Most applications (browsers, image viewers, PDF readers, movie players,
etc.) provide some document viewing capabilities and often have to be able
to read and use correctly the color space information provided in the files
they access. In order to provide a good user experience, documents displayed
on screen and printed on paper are expected to look the same. For the same
reason an image is supposed to look the same on any computer, no matter
what monitor is displaying it.

This has two effects:

• there must be some “reasonably good” way to handle image data whose
color space is not known

• image data in a given color space must be converted to the monitor
color space

17

The first problem has been partially solved by defining a default color
space [16]. On the Web, any image without an explicit color space is assumed
to be expressed in sRGB. This is consistent with what some system already
did and is being adopted for most parts of the modern graphic interfaces.

The solution of the first problem only reduces a very wide class of images
to the state of being defined in a known color space, which is exactly the
second problem. Different approaches have been adopted to handle this
problem, but the main one currently is to leave it to applications.

For this reason some application use color management libraries, but
unfortunately these libraries are not integrated in the graphic API used to
display the images. Each application must be able to detect the monitor
color space and to perform the color conversion of the images it wants to
display. This makes color management more complicated and more prob-
lematic performance-wise.

Color management is starting to be available in browsers, because the
major ones added (or enabled) it in recent releases: Microsoft Internet Ex-
plorer 9 and Mozilla Firefox 3.5 use the information provided by ICC color
profiles embedded in the images they display.

Other software is moving towards color management as well, for example
Poppler, the default PDF viewer on GNOME-based desktops applies ICC
color profiles using LittleCMS. Instead at the time of this writing, Eye of
GNOME, the default image viewer in the same environment, is unable to
handle ICC profiles embedded in the images it displays.

3.3 Support in documents

Even editors and viewers are sometimes missing color management, many
graphic document formats have some support for color profiles. The follow-
ing section summarizes the color management facilities available in some of
the most common formats on the Web (SVG, JPEG, GIF and PNG images)
and in printing (PostScript and PDF documents, TIFF images).

3.3.1 PostScript

PostScript [10] is the page description language used by most printing de-
vices. It is a Turing-complete language, which means that in theory it is as
expressive as a language can be, but in practice it has some major limita-
tions when compared to modern graphic formats, like the absence of support
for transparency.

Beside from transparency, the color support in PostScript is fairly com-
plete, even if not directly support ICC profiles, because it has some support
for color management both for the input and for the output.

Input colors, such as solid colors, shadings, embedded images, always

18

have an associated color space, usually called CSA, Color Specification Ar-
ray.

Colors can be expressed in the device-dependent RGB color spaces using
red-green-blue intensities or hue-saturation-brightness values:

/DeviceRGB setcolorspace red green blue setcolor

red green blue setrgbcolor

hue saturation brightness sethsbcolor

Grayscale and CMYK components can be specified in a similar way:

/DeviceGray setcolorspace gray setcolor

gray setgray

/DeviceCMYK setcolorspace cyan magenta yellow black setcolor

cyan magenta yellow black setcmykcolor

Device-independent color spaces are described by specifying a conversion
to CIEXYZ. For example, a color in sRGB can be set using these commands:

[/CIEBasedABC

<< /DecodeLMN

[dup 0.03928 le

12.92321 div

0.055 add 1.055 div 2.4 exp

ifelse

bind dup dup

]

/MatrixLMN [0.412457 0.212673 0.019334

0.357576 0.715152 0.119192

0.180437 0.072175 0.950301]

/WhitePoint [0.9505 1.0 1.0890]

>>

] setcolorspace

red green blue setcolor

Depending on the number of components and the formulation of the
color space, it can be defined with:

• CIEBasedA, for color spaces with just one component,

• CIEBasedABC, for simple 3-components color spaces,

• CIEBasedDEF, for 3-components color spaces which need a color look-
up table,

• CIEBasedDEFG, for 4-components color spaces

19

Transformation to output components can be expressed in a similar way,
by specifying the mapping from CIEXYZ to the device-specific output color
space, using a CRD (Color Rendering Dictionary). Just like CIE-based input
color spaces, CRD describe the color transformation in a PostScript-specific
way, not woth a standard ICC profile.

Because of limitations on CSA and CRD structures, the conversion be-
tween ICC color profiles and CSA/CRD color space representations is only
possible for color spaces with 1, 3 or 4 components, but this is not a major
problem, because these are the most widely used color spaces.

In addition to this, PostScript provides support for some special color
spaces strictly related to the PostScript drawing model or to printing (for
example support for special non-chromatic inks). Although this can be
useful for some professional users, they have been considered out of the
scope of this extension.

3.3.2 Portable Document Format

PDF, standardized in [8], is a page description language based on PostScript,
but the absence of flow control commands makes it easier to parse and inter-
pret. Conversely, the availability of modern graphic primitives, like trans-
parent colors and blending, permits many graphic effects that PostScript
was unable to express in a simple document.

Color management support in PDF is similar to that provided by the
PostScript language. /DeviceRGB, /DeviceGray and /DeviceCMYK are avail-
able and serve the same purpose as in PostScript. Instead of the PostScript-
specific CSA and CRD color space representations, PDF supports CIE-based
color space using standard ICC color profiles:

100 0 obj

[/ICCBased 101 0 R]

endobj

101 0 obj

<< /N 3 % 3 components

/Length 1605 % length of the profile data stream

/Filter /ASCIIHexDecode % filter used to decode the stream

>>

stream

00 00 02 14 ... hex encoding of the ICC profile ... 03 90 >

endstream

endobj

In addition to this, PDF specifies the behavior of color conversion with
respect to graphic operations, because in general color transformations do

20

not commute with color blending and interpolation. PDF specifies that
interpolation operations are to be performed in the color space of the object
being interpolated, whereas blending of an object on a destination is to be
performed in the color space of the destination. This is, in fact, the model
adopted in the extension of the Cairo library, thus chapter 4 will analyze it
in greater detail and will show that it can achieve the maximum possible
generality.

Just like PostScript, PDF also has the possibility of print-oriented color
spaces, to support special components, like golden or opaque inks, to be ex-
pressed in the document and used or emulated on the output device depend-
ing on their availability. These features are not supported by the proposed
color space extension, but they might be added as future enhancements.

3.3.3 Scalable Vector Graphics

The Scalable Vector Graphics [7] standard specifies an XML-based graphic
format. Although it is a vector format like PostScript and PDF, SVG has
many differences with respect to them.

In particular, with regard to color support, SVG has no concept of device-
dependent colors, as it implicitly defaults to using the sRGB color space.
ICC profiles can be used to specify input colors in arbitrary color spaces,
but color operations like interpolation and blending can only be performed
in sRGB or in linear RGB (i.e. the sRGB color space with linear tone
reproduction curves).

There is ongoing work to define some color management features as part
of the SVG Color specification [4], which adds support for device-dependent
color spaces and other predefined color spaces, like CIELAB and CIELCH.
This specification also extends the color spaces that can be used for inter-
polation to sRGB, linearRGB, CIELAB and CIELCH, but it does not allow
ICC-based color spaces to be used for this purpose. Although the allowed
color spaces are usually sufficient, the impossibility of expressing operations
performed in other color spaces is still quite limiting from the point of view
of the proposed extension.

It should be noted that SVG is a recent format and is still evolving,
hence it is definitely possible that it will provide the same (or even more
extensive) color support as PDF.

3.3.4 Raster images

Even though raster images are usually stored in some compressed format
which makes their structure more complex, they are conceptually described
by a rectangular grid of color samples, each expressed as a n-uple of com-
ponent values. This is typically accomplished by specifying the RGB values
in each point, but this approach does not allow proper color management.

21

When no color space is specified, images are usually assumed to be in
sRGB or, depending on their purpose, in linear RGB, but most modern
raster file formats support the embedding of an ICC color profile as part
of the image metadata, which make it possible to explicitly define the color
space in which the sample components are.

In particular, the ICC specification [3] describes how to embed ICC
profiles in JPEG, GIF and TIFF images, while the support for color profiles
in PNG is explicitly described in its specification [6].

3.4 Graphic APIs

3.4.1 Quartz

Quartz is the core graphic API on MacOS X and iOS. It is a vector rendering
API, based on the PDF standard, which exposes through a C interface most
of the PDF features, including color management.

Specifically, Quartz uses ColorSync, the MacOS X color management
system, to handle color profiles and perform color transformations.

Because of this, Quartz implements most of the useful parts of color
management: it supports device-dependent color space and thanks to Col-
orSync it can also parse and use ICC color profiles both for input and output,
under the additional constraint that PDF must have native support for the
profile. This restricts the color profiles it can handle to those with 1, 3 or 4
components, but it has already been noted that this condition is satisfied by
most common profiles. If this condition is satisfied, the creation of a color,
given its components and the ICC profile is very simple:

CGFloat components[] = { /* the color components */ };
color_space = CGColorSpaceCreateWithICCProfile (icc_profile);

color = CGColorCreate (color_space, components);

CGColorSpaceRelease (color_space);

Colors in device-dependent color spaces can be created in a similar way,
by using the appropriate color space creation functions:

• CGColorSpaceCreateDeviceRGB ()

• CGColorSpaceCreateDeviceGray ()

• CGColorSpaceCreateDeviceCMYK ()

A notable feature of Quartz is that none of its functions allow to create
a colored graphic object (colors, gradients, images) without explicitly spec-
ifying its color space. This effectively guarantees that every object always
has an associated color space, without needing a default color space.

22

Quartz is also quite flexible: even if it is based on PDF, it can be used
to draw on raster images and it is, in fact, the graphic API used for the GUI
of most MacOS X applications. Nonetheless it retains the ability to use the
same sequence of commands to generate vector images in the form of PDF
documents.

3.4.2 GDI+/WPF

The graphic rendering API on Microsoft Windows has evolved over the years,
but it does not yet provide the same level of color support as Quartz. Both
GDI+ (Graphics Device Interface), the legacy API, and WPF (Windows
Presentation Foundation) provide extensive vector rendering operations, in-
cluding filling and stroking complex shapes with “brushes” which can rep-
resent both solid colors and more complex pattern, but they offer limited
support for color management.

These APIs supports both standard ICC profiles and WCS profiles,
which are a different way to describe color conversions. Although they have
some additional capabilities, they are not widely used, because they are only
supported by the Windows Color System [11] and cannot be embedded in
documents without being converted to ICC profiles.

The drawing model provided by GDI+/WPF and WCS is quite similar
to the SVG one with respect to colors, because it imposes strict limitations
on what color spaces can be used and which objects can be color managed:

• GDI+ usually works in device-dependent RGB. It can enable color
management only on device contexts, i.e. output images. It can set
an output color profile and an input color space, with some additional
restrictions: input color spaces can only have a simple structure (like
sRGB), while output profiles must satisfy different constraints depend-
ing on the OS version.

• WPF makes it possible to specify colors in device-dependent RGB, in
sRGB or in a color space defined by an ICC profile, but it does not
allow choosing the color space in which operations are performed.

The constraints imposed by these APIs are about as tight as the SVG
ones, hence the same consideration applies: artists will probably have no
trouble working in the allowed color spaces, but implementing color man-
aged applications on top of this drawing model might require some explicit
color conversions. Although these color transformations can be performed
using the color management APIs (Windows Image Color Management or
Windows Color System) explicitly, they do not allow the flexibility which
can be obtained performing drawing operations in arbitrary color spaces.

23

3.4.3 OpenGL

OpenGL is a cross-platform rendering API which abstracts device-specific
and OS-dependent capabilities and exposes simple drawing primitives, like
triangles. OpenGL closely matches the hardware functions, therefore its
first versions only allowed for a fixed rendering pipeline, but its flexibility
has greatly increased thanks to the introduction of a programmable pipeline.

OpenGL offers no direct support for ICC color profiles or for any color
space besides device-dependent RGB. This turns out to actually cause some
practical problems, because improper color handling has some issues, mainly
related to the mismatch between the linear color space and the non-linear
tone response curves of common monitors.

Two extensions have been proposed in order to fix this problems:

• EXT texture sRGB allows sRGB to be used on textures, i.e. as input
color space

• EXT framebuffer sRGB allows sRGB to be used on framebuffers, i.e.
as output color space

When these extensions are not available or when the desired color space
is not sRGB, simple color transformations can be performed using the pro-
grammable pipeline, as described in [12], but this is likely to have a negative
performance impact. Although the same approach would make it possible
to support generic ICC profiles, it is far from practical, except for simple
profiles.

3.4.4 Qt

Qt is a cross-platform application and UI framework. It provides a ren-
dering API which wraps multiple possible targets (platform-specific graphic
libraries, raster images, SVG files) and exposes an unified interface to draw
on them.

The QPainter rendering API resembles GDI, as it can draw complex
shapes, but its color patterns have no color management at all. Solid col-
ors can be specified in many different device-dependent color spaces (RGB,
CMYK, HSL and HSV), but operations are always performed in device-
dependent RGB.

Part of these limitations are caused by the portability requirements of the
Qt framework: the compositing operations are implemented using platform-
specific capabilities, which usually do not include color management.

3.4.5 Cairo

Cairo is an cross-platform graphic library with support for multiple out-
put devices. It officially supports rendering to Xlib, Quartz, GDI, PDF,

24

PostScript and SVG and has experimental backends for OpenGL, OpenVG,
XCB, Qt and other graphic APIs.

Cairo abstracts backend-specific operations and exposes PDF-like draw-
ing commands. These commands are converted to native operations when
possible or performed by a fallback system if the backend does not support
the operation.

The observations in section 3.3, make it apparent that all the officially
supported vector document formats have some color space support, with
PostScript and PDF already providing extensive color management features
and SVG evolving in that direction. Conversely, GUI-related backends have
limited color management capabilities and Cairo is no exception.

Even if the drawing model exposed by Cairo is based on PDF, the library
originates from an abstraction of low-level X operations. The X server can
perform vector-based drawing through the RENDER extension, but it only
supports simple shapes (triangles and trapezoids) and it can only operate
in device-dependent RGB.

Cairo generalizes these operations to PDF drawing operations, like fill-
ing and stroking complex shapes, but does not yet provide color manage-
ment features. There have been some attempts at improving this by adding
CMYK, which is of particular interest for printing, and extending the sup-
port for planar YUV surfaces, but they didn’t get merged in the official
library.

A detailed explanation of the Cairo drawing model, with specific focus
on color is given in section 4.1.

3.5 Desired features

The implementation of color management in Cairo would solve some issues
that are, in fact, special cases. The following features have been reported
multiple times as possible enhancements and each has a working or a partial
implementation, but so far they did not get merged in the Cairo library,
mainly because the problem of extending the Cairo drawing model was not
addressed properly.

3.5.1 CMYK color spaces

Even if it has the same limitations and defects of every device-dependent
color space, the support for CMYK has been repeatedly requested as new
feature in Cairo. This in not surprising, because without support for device-
dependent CMYK, it is basically impossible to implement a color managed
application on top of Cairo, even if the application calls into the color man-
agement system directly.

A device-dependent CMYK color space would make it possible to im-
plement color management on top of Cairo because CMYK images let the

25

application have accurate control over the intensity of the inks used by the
output device. This is needed in order to respect the color computed by
the color management system. If the CMYK components were converted to
RGB before being sent to the output device, the ink intensities used when
printing would likely not be the same as those originally computed, hence
the resulting color would likely be different.

In addition to this, some standard printing workflows (like PDF/X-1A)
require all the color information to be expressed in device-dependent CMYK,
thus the ability to create and handle documents in CMYK would allow to
use Cairo in these workflows.

3.5.2 Y CbCr color spaces

The another attempt at adding some color space support to Cairo aimed
at improving the interaction between Cairo and video formats. To improve
the compression, video frames are commonly represented in a Y CbCr color
space, which Cairo is unable to handle. Because of this, using Cairo to
impose text, video controls or a logo on it requires a conversion of the video
frames to RGB; then the application can draw on them with Cairo and
either display the RGB frames or, depending on what was the destination,
it might need to convert back to Y CbCr.

Color space support makes it possible to avoid the (potentially double)
color conversion between Y CbCr and RGB. When the color conversion can-
not be avoided, it will be performed by Cairo using the appropriate facilities
if they are provided by the destination backend. For example this means
that hardware-accelerated color transformations might be possible using GL
shaders for most color spaces commonly used in video formats. This is likely
to improve the performance of the conversion because it avoids moving the
video data between video memory and main memory and performs the com-
putation in parallel on the GPU.

3.5.3 Gamma handling

Another issue which is often ignored but is actually very important for a
high-quality imaging system is proper gamma handling. This affects a very
wide range of applications, because basically every graphic element besides
opaque solid colors is affected.

Most physical output devices are non-linear, so the data sent to them
must be transformed to compensate their behavior. This is sometimes per-
formed implicitly by performing the color computations in the output color
space, for example by using sRGB input images, composing them in sRGB
and sending them to a monitor (whose color space is assumed to approx-
imately be sRGB). If the “compose” step ignores the non-linearity of the
sRGB color space, the resulting image will often look incorrect.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
u

tp
u

t
in

te
n

si
ty

Input intensity

tone response curve

Figure 3.1: The relationship between linear and sRGB intensities

This problem is especially evident, for example, when scaling images [1].
If a black and white checkerboard image is scaled down 2:1, the expected
result is a perceptually medium gray, but most programs will instead com-
pute a “numerical” medium gray, which looks darker. On a typical display,
assuming the sRGB color space, the a 50% input intensity would result in
an output whose lightness is about 20% of the white. In order to produce a
50% output gray the input intensity should be about the 75%, as shown in
figure 3.1.

This problem can be avoided by working in linear space, but both input
and output images are usually expected to be in the sRGB color space,
therefore a color conversion is needed.

27

Chapter 4

Design

4.1 Cairo drawing model

4.1.1 Cairo objects

Cairo has few public types, which basically allow the user to choose a source,
a destination and how to transfer the color from the source to the destina-
tion.

Surfaces represent vector or raster images in Cairo. They can be used
both as destinations and as sources, but they don’t usually receive com-
mands directly from the user.

To draw on a surface, a context must be created on it. The context
contains the drawing status and it is the object which supports the drawing
commands.

To choose the source which will be painted on the destination, a pattern
must be created and set in the context. Patterns can represent a solid color,
a gradient or an image.

The source is not entirely transferred to the destination. Each context
can have a clip, which limits the portions of the destination surface changed
by any graphic operation.

In addition to it, each graphic operation defines a mask, which influences
“how much” color will be transferred from the source from the destination.

The implementation is usually more efficient, but conceptually all the
drawing commands have a source, which is modulated by a mask, cut by
the clip and then composited on the destination.

4.1.2 Contexts

Cairo drawing operations are performed on a context, which represents the
state of the rendering device. The context augments the destination sur-
face with a state, which makes it possible to describe a complex drawing
operation using a sequence of simple commands.

28

These commands include functions to set up the rendering options, like
antialiasing and error tolerance, to transform the coordinate system in which
the commands are executed and to set up the source pattern.

In addition to these, contexts have commands to define a path composed
of linear segments and Bezier curves, which can describe complex shapes.

A path can be used used to clip the context, further drawing operations
on the context will only affect the regions which are inside the path.

Cairo

Figure 4.1: Some examples showing Cairo drawing operations. From left to
right: fill, stroke, text, mask (through a radial pattern).

A path can also be used in drawing operations. If a path is filled, the
color of the source pattern will transfer on the destination surface in the
region inside the path. If a path is stroked, its segments will be replaced
with thick lines and the source will transfer through them.

There are three more notable drawing operations, which ignore the path:
an operation to write text1, an operation to paint the source over the whole
destination and an operation to use the alpha channel of a pattern as the
transfer mask.

Conceptually every drawing operation defines a transfer mask which con-
trols the amount of color transferred to the destination surface. For a mask

operation, this is obvious, but other operations can be seen as special cases
of the mask operation:

• paint uses a solid opaque mask

• fill uses a surface mask whose alpha channel is the coverage of the
path, i.e. 0 outside the path and 1 inside the path

• stroke uses a surface mask whose alpha is the coverage of the stroked
path (the path whose linear elements have been replaced with thick
segments)

• text uses a mask whose alpha is computed according to the font engine
rendering, in a way which is equivalent to that of a fill mask

1Technically there are two text operations: show text and show glyphs. The second
one allows the calling application to layout each symbol composing a text string, therefore
is considered the true text API, whereas the first one is a “toy” API, useful for testing
and demos.

29

4.1.3 Patterns

Cairo supports four types of patterns2, which can be used to describe the
color of every point of the plane. They are mostly based on the shading
patterns defined in the PDF specification [8]. An example for each pattern
type has been painted in figure 4.2.

Figure 4.2: The four pattern types supported by Cairo. From left to right:
solid, linear, radial and surface pattern.

The simplest patterns are solid patterns. They have the same color
everywhere.

Cairo linear patterns (known as axial shadings in the PDF specification)
are described by two points and a piecewise linear color function. The color
function defines the color of every point on the line connecting the two
points. The color of every other point of the plane is the same as that of
the nearest point on the line.

The appearance of radial patterns has changed over time, but the latest
definition matches that of PDF radial shading. The pattern is defined by two
circles and a piecewise linear color function. The color function defines the
color of every circle in the family of circles obtained by linear interpolation
of the two reference circles. Any point on the plane which does not belong
to any of the circles of the family is transparent; any point which belongs to
more than one circle has the color of the circle with the highest interpolation
parameter.

Surface patterns use surfaces, i.e. arbitrary images, to color every point
of the plane. Surfaces usually only describe a bounded rectangle, therefore
some additional information is needed to define the color of points outside
the surface. This information is provided by an extend rule, which map each
point either to the color of a point of the image, or to the transparent color.
It should be noted that in general interpolation is needed to compute the
color of points inside the surface boundaries, because raster surfaces sample
the color on a discrete set of points.

2Recent development snapshots of the Cairo library contain a fifth pattern type, which
corresponds to the tensor-product patch mesh defined in PDF and PostScript.

30

4.1.4 Surfaces

One of the important features of Cairo is its ability to draw on many different
output targets. The officially supported targets include raster image buffers,
standard vector formats like PDF, PostScript and Scalable Vector Graphics,
and platform-specific drawing systems, like GDI, Quartz and X.

In Cairo these output targets are supported using a system of surface
backends. Each backend can translate the Cairo graphic operations to com-
mands which are appropriate for the target. If this is not possible because
the operation is not supported by the target, it falls back to a generic imple-
mentation which performs the operation in Cairo. The result is then passed
to the target.

The target is exposed through the Cairo API as a surface object, there-
fore different backends provide different functions to create surfaces. When
a surface object is created, its output target and the appropriate conversions
between Cairo and native graphic operations are set up. In addition to this,
some backends provide additional functions to access some target-specific
operations.

It is worth noting that besides from being used as destinations for draw-
ing, surfaces can also be used to create patterns, which makes it possible to
use them as sources for graphic operations. It is quite common to create
temporary surfaces to be drawn on the real destination.

4.1.5 Cairo graphic pipeline

A simplified drawing pipeline for Cairo can be imagined as performing for
each pixel the following steps:

• Compute the clip. The clip is defined as the intersection of geometric
shapes and carries no color information, so the result of this computa-
tion is a coverage value. If the pixel is outside the clip (i.e. its coverage
is 0), the destination will not be affected.

• Compute the mask. The mask can be defined as a geometric shape
or as a pattern. It provides another “coverage” value, whose effect
depends on the operator.

• Compute the source. The source is a pattern which provides a color.
This color can have any opacity.

• Read the destination. Conceptually no computation is performed, be-
cause the whole pipeline is working in the destination coordinate space.

• Composite the values according to the operator definition.

• Store the result in the destination.

31

Most of the complexity of the rendering is in the the computations per-
formed in the first three steps. When they transform a shape into coverage
values, they involve rasterization of the shape. Otherwise they evaluate the
color of a pattern for each pixel.

4.1.6 Compositing in Cairo

Just like most graphic libraries, Cairo defines several different ways to trans-
fer color from a source to a destination. These functions are called operators
and include Porter-Duff compositing operators and PDF blend modes.

In [15], Porter and Duff define the compositing operators to be the func-
tions which use the alpha component of a pixel as a “shape”. This makes
it possible to define the result as the union of the regions where source and
destination do or do not overlap, giving the 12 classic compositing operators.

The PDF standard [8] defines other operators, which all have the same
behavior for the alpha component, but allow more complicated interactions
between the color components of source and destination.

Cairo adds two more operators to these, borrowing them from the REN-
DER specification [14]. In addition to this, Cairo defines some rules to
generalize the operators to partially opaque clips and masks.

Most of the operators can be defined mathematically in a simple way:

resultα = opα(clip,mask, sourceα, destinationα)

resultc = opc(clip,mask, sourceα, destinationα, sourcec, destinationc)

where:

• clip is the shape value provided by the clip path

• mask is the shape value provided by the mask path or pattern

• sourceα is the transparency of the source pattern

• sourcec is the c color component of the source pattern

• destinationα is the transparency of the destination surface

• destinationc is the c color component of the destination surface

• resultα is the transparency of the destination (which will replace the
old destinationα value in the destination surface after the whole com-
putation has been performed)

• resultc is the c color component of the result (which will replace the
old destinationc value in the destination surface after the whole com-
putation has been performed)

• opα and opc are the operator compositing functions

32

Operators which can be expressed with this formulas (using appropriate
opα and opc functions) are called separable operators, because each color
component can be computed independently. This property provides a very
simple way to apply separable operators to any source and destination pair,
as long as their components match (i.e. they are in the same color space).

There are some operators which cannot be defined with such a formula,
because they work on the color as a whole. These operators are defined in
the PDF standard as nonseparable blend modes and conceptually represent
the source and destination in HSL and compute the result taking some HSL
components from the source and the other from the destination.

The following table summarizes the definition of the PDF nonseparable
blend modes:

Operator Hue Saturation Luminosity
HUE source destination destination

SATURATION destination source destination
COLOR source source destination

LUMINOSITY destination destination source

Nonseparable operators are defined on the color as a whole, thus they
do not have a straightforward generalization to arbitrary color spaces. The
PDF standard specifies the behavior for RGB and CMYK (and, implicitly,
for grayscale), but it does not extend them to other color spaces.

4.2 Support for color spaces

4.2.1 Drawing model

Considering the graphic pipeline, there are three main stages where color-
related operations happen:

• computation of the source

• compositing

• storing the result to the destination

The first assumption is that every image is specified in an appropriate
color space, so that it is possible to associate a color to the n-uple of com-
ponent intensities.

The computation of the source involves interpolating between color sam-
ples. Color interpolation is not invariant with respect to the color space it is
performed into, so the color space in which it is performed must be specified.
Without any loss of generality, the color space of the source can be assumed
to be the one in which we want to perform the interpolation. This means
that applications should create patterns with an appropriate color space.

33

Compositing takes colors from source and destination, which can be
in different color spaces and computes a result. Even if it looks like the
compositing space must be specified, a reasonable choice is to always use
the destination color space. This makes the conversion from the destination
color space to the compositing color space an identity function.

Moreover, since the result is already in the destination color space, it
can be stored with no further conversion.

The very common situation of images in device-dependent color spaces
is handled by performing the operations in the device-dependent color space
if color conversion can be avoided. This is needed in order to be consistent
with the previous behavior.

If color conversion from a device-dependent color space is used, the re-
sults are backend-dependent (i.e. they can be different depending on the
output being an SVG document, a PostScript file or a raster image). The
reason for this behavior is that some backends allow device-dependent color
spaces to be used together with device-independent color spaces.

4.2.2 Advantages and limitations

The apparently very limited freedom in color space choice does not actually
stop the application from performing source interpolation and compositing
in any color space.

If a pattern must be interpolated in a color space which is not the same
as the one in which the samples are specified, the samples can be converted
to the interpolation color space. These new samples can be used to create
another pattern which performs the interpolation in the desired color space.

If the application wants to composite in a color space which is not the
same as the desired output color space, it can simply use a temporary sur-
face. The temporary surface will have the “composite color space” (although
it will actually be a destination color space). It will receive all the drawing
operations, then it will be drawn on the “true” destination, to convert its
colors to the desired color space.

These choices provide several advantages:

• The components which form the output of a source do not depend
on the color space in which the interpolation occurs, but only on the
source samples. This means that the functions which performs the
interpolation can be color space agnostic.

• Destinations are always used in their own color space. If the color was
repeatedly converted to another color space and back to the destina-
tion color space, it would accumulate rounding error.

• The number of color conversions performed is at most the same as
those which would have to be performed if the interpolation space

34

and/or the compositing color spaces were independent from the source
and destination color spaces. In some cases this performance advan-
tage comes at a memory cost, because there is a trade-off between
additional computations and the additional memory required by tem-
porary surfaces.

• There is only one place where color conversions happen, i.e. in the
compositing operations. This is important in order to control the
complexity of the system. Moreover it means that a single parameter
(the rendering intent) is sufficient to specify the desired color mapping
between the two color spaces.

• This design is consistent with the color handling model defined in the
PDF specification. This makes it inconsistent with the drawing model
used in the SVG specification, but it is still possible to implement the
latter using temporary surfaces.

4.2.3 Public API

The proposed API extension adds a color space type and functions to use
it; this section contains an overview of the new functions and of their com-
pliance with the design which has been chosen. Appendix 6.4 contains the
prototypes of the new functions and their technical documentation.

The cairo color space t type represents color spaces. It can be in-
stantiated to get objects representing device-dependent or device-independent
color spaces:

• cairo color space create device rgb() creates a device-dependent
RGB color space. This is the color space in which Cairo performs all
of its computations by default.

• cairo color space create device gray() creates a device-dependent
grayscale color space. Some Cairo backends were implicitly using this
color space in order to perform some optimizations of their output.

• cairo color space create device cmyk() creates a device-dependent
CMYK color space.

• cairo color space create icc() creates a device-independent color
space from an ICC profile.

• the NULL value represents the 0-components device-dependent color
space. Although this color space is unable to express any color, it
is useful when a pattern or a surface carries no color content and is
completely defined by its transparency.

35

Most public Cairo types are reference counted and cairo color space t

is no exception. Consistently with other Cairo types, color spaces have a
reference count of 1 upon creation and are immediately destroyed as soon as
they reference count becomes 0. Instances of cairo color space t cannot
be modified, therefore a copy or clone operation is not provided nor needed,
as it is equivalent to cairo color space reference() .

Since they cannot be modified, their status is only set upon creation and
it can only indicate a failure in the instantiation, either because of an invalid
input profile or because the available memory is insufficient.

In addition to these functions, new functions to create patterns and
surfaces with an arbitrary color space have been provided.

The functions to create a pattern which performs interpolation in a given
color space are the following:

• cairo pattern create color() creates a solid pattern. The com-
ponents of the pattern color are expressed in the interpolation color
space.

• cairo pattern create {linear|radial} with color space() cre-
ates a gradient with a given interpolation color space. The color func-
tion of the gradient pattern must be defined by adding stops whose
color is represented by components in this color space.

• cairo pattern add color stop color() adds a color stop to the
color function of a gradient. It does not provide an input parameter
for a color space because the components must be specified in the
pattern interpolation color space, which is chosen at pattern creation
time.

• cairo pattern create surface() can be used to create a surface
pattern. This is not a new function and it does not accept any color
space as input. The interpolation color space of the resulting surface
pattern will be the same as the color space of the surface.

Surface creation functions in Cairo are usually backend-dependent, but
there are some special functions which create a new surface from an existing
one, trying to preserve the backend type. Two of these functions have been
extended in order to support a color space parameter:

• cairo surface create similar with color space creates a new sur-
face with a given size, color space and content (color, transparency or
both).

• cairo push group with color space replaces the target of the op-
erations performed on a context with a new temporary surface, which
is created with the specified color space and content.

36

Backend-specific surface creation APIs should be extended to support
the creation of surfaces in arbitrary color spaces. Cairo surface formats
should be extended accordingly, to permit surfaces whose color space has
more than 3 components.

Finally the extension provides a function to control the color transforma-
tion, by specifying the rendering intent: cairo set rendering intent() .
This function makes it possible to select one of the ICC-specified rendering
intents. This controls the transformation between two different color spaces,
in particular with respect to the gamut and the white point mapping.

4.3 Usage

The new functions can be used together with the old API, which always
implicitly use device-dependent RGB, but can also replace it in order to
have the same code for any color space.

For example a solid half-transparent yellow pattern can be created with
the old API:

cairo_pattern_t *yellow;

yellow = cairo_pattern_create_rgba (1.0, 1.0, 0.0, 0.5);

or the same object can be created with the new API:

cairo_color_space_t *deviceRGB;

cairo_pattern_t *yellow;

double components[3] = { 1.0, 1.0, 0.0 };
deviceRGB = cairo_color_space_create_device_rgb ();

yellow = cairo_pattern_create_color (deviceRGB, components, 0.5);

Starting from this code, it is possible to create the sRGB yellow changing
only the color space construction:

cairo_color_space_t *sRGB;

cairo_pattern_t *yellow;

double components[3] = { 1.0, 1.0, 0.0 };
sRGB = cairo_color_space_create_icc (sRGB_data, sRGB_len);

yellow = cairo_pattern_create_color (sRGB, components, 0.5);

These patterns can be used in any context and will be composited ac-
cording to the color space of the target surface. Sometimes it is desirable to
perform the compositing in a different color space, for example it is common
to perform the graphic operations in linear RGB and to have sRGB output.

This can be accomplished as follows:

/* cr is assumed to be an empty cairo context */

37

/* create a temporary surface on which the compositing

* operations will be performed in linear RGB */

cairo_color_space_t *linearRGB;

linearRGB = cairo_color_space_create_icc (lRGB_data, lRGB_len);

cairo_push_group_with_color_space (cr, linearRGB,

CAIRO_CONTENT_COLOR_ALPHA);

...

/* drawing operations */

...

/* copy the content of the group to the target surface */

cairo_pop_group_to_source (cr);

cairo_paint (cr);

The last paint operation will happen in sRGB, but it will actually simply
convert the group surface to the destination color space. This only works
if the destination is empty at the beginning if the code. If the destination
had some content, additional operations to copy it to the group surface and
then to clear it before painting the group content would be needed.

4.3.1 Initial approach

The API which had been initially proposed also provided a public color type.
This is not actually a new type in Cairo, because internally Cairo already
defines it as a private type which stores the alpha, red, green and blue com-
ponents of the color in a device-dependent RGB color space. In the proposed
extention, instead, colors were represented by (color space, components)
pairs. This representation guarantees that whenever a color is being used,
its color space (and thus its colorimetrical meaning) is known.

Unfortunately exposing Cairo colors through the public API caused some
issues:

• The operation which adds a color stop to a gradient was defined to
accept a color type, instead of sample components. This made it
possible to add color stops in multiple different color spaces, which
caused the color interpolation function to be ill-defined.

• Cairo internally creates some temporary colors on the stack in order
to make sure that their creation cannot fail. These objects cannot
respect the normal reference counting behavior, thus they need to be
cloned instead of referenced, whenever they must be pinned.

• Reference counting and error management made the implementation
of the new color type more complicated than the old one, without
practical advantages.

38

For this reason, the public color type was removed and the API was
modified to only accept color components and their color space, where ap-
propriate. This approach preserves the guarantee that colors are always
specified by a (color space, components) pair, but avoids the problems in-
troduced by the public color type.

39

Chapter 5

Implementation

5.1 Image surfaces

Although Cairo is a vector drawing library, its most important backend is
raster-based. The image backend performs the drawing commands on a
memory buffer which represents a raster image. This backend implements
every feature available in Cairo and can therefore rasterize any sequence of
drawing commands. Any other backend does not need to be able to perform
every operation, because for unimplemented operations Cairo will fall back
to image.

The implementation of the drawing operations in the image backend is
actually split in two parts:

• shape rasterization is performed in Cairo. This includes the stroking,
which transforms lines to polygons, and scan conversion of the poly-
gons to raster images.

• pattern rasterization and compositing are performed by Pixman, the
pixel-manipulation library.

As pointed out in section 4.1.5, the shape-related operations carry no
color information, therefore they are basically unaffected by the addition of
color spaces handling. Instead, the biggest part of the changes needed to
add support for color spaces to the image backend was inside the Pixman
library.

Pixman is the library which performs the computations needed to get
the color of a source pattern and composite it on a destination. Even if the
extension was designed to require minimal changes, both these parts need
to be modified to support images with an arbitrary number of components.
In addition to this, the source needs to be converted to the destination color
space whenever the two spaces don’t match.

To implement these changes, the functions which create patterns were
extended with a color space parameter and the compositing function was

40

augmented with the color transformation.
On top of this, the computations were rewritten to use a floating point

representation instead of the original fixed point. This was needed to pre-
serve acceptable accuracy, because image interpolation and compositing
must be performed on premultiplied components, but color transformation
ignores the alpha and works on straight components1.

The drawing pipeline places color transformation between image inter-
polation and compositing, therefore premultiplied components must be “un-
premultiplied”, then premultiplied again. Unfortunately, the premultiplied
representation implies that on non-opaque colors, color components have a
very limited range, which can cause big quantization errors. This is usu-
ally not a problem, because the components are directly used to composite
the source image on the destination, without any intermediate operations.
Instead, if the color need to be converted between two color spaces, the
quantization error can be amplified.

For this reason, color computations were rewritten to provide results
in floating point. This representation provides quantization levels which
becomes finer toward 0, which makes it possible to have a very small quan-
tization error even when using the premultiplied representation.

5.2 Vector surfaces

5.2.1 PDF

Every graphic object in a PDF is tagged with a color space, but Cairo has no
support for color spaces, hence the current implementation of the cairo-pdf
backend uses device-dependent RGB and grayscale color spaces for all PDF
objects.

It is quite easy to extend the PDF backend to support 3-components
ICC color spaces as they can be embedded and their reference can be used
where the device-dependent RGB color space was used. This means that
the profiles used in the document need to be tracked and added to the PDF
stream, to avoid needlessly duplicating them.

In order to extend the PDF backend with support for color spaces with
more than 3 color components, the internal representation of patterns and
the functions that write them as objects in the PDF document must be
extended accordingly.

1Premultiplied colors are represented by the n-uple (α, αc1, ..., αcn), or in the com-
mon case of RGB (α, αr, αg, αb), opposed to the straight representation (α, c1, ..., cn) (or
(α, r, g, b)). The compositing formulas for premultiplied colors require no division and are
generally simpler, therefore compositing is typically implemented on premultiplied compo-
nents. Image interpolation introduces fringes with the color of the image border (usually
black) if it is performed on straight components.

41

For color spaces or drawing operations which are not supported by the
PDF specification, a fallback image is generated and the raster object is used
instead of vector operations, thus in these cases the PDF backend relies on
the image backend to perform the drawing operation.

5.2.2 PostScript

PostScript is strictly related to PDF and the implementation if the two
backends in Cairo reflects this. In fact, the cairo-ps backend declares some
function to make the differences between the two formats as small as possi-
ble.

Just like PDF, PostScript graphic objects have a color space entry which
indicates the meaning of their components. The cairo-ps backend only uses
objects in device-dependent RGB, thus internal objects have 3 components.
To support device-dependent color spaces with a different number of com-
ponents (the native device-dependent grayscale and CMYK color spaces),
the data structures that represent colors in the PostScript backend must be
generalized.

Moreover, to support device-independent color spaces, the input ICC
profiles used to specify the color space for source patterns must be converted
to Color Specification Arrays. Although PostScript can express any ICC
profile (with 1, 3 or 4 components) as a CSA, their representation is not the
same. A similar problem happens for output ICC profiles set on the surfaces:
they need to be converted to PostScript Color Rendering Dictionaries.

Converting ICC profiles to PostScript-specific color space representations
is a common problem, that color managed applications need to handle if they
want to support PostScript output. For this reason most color management
systems provide facilities to perform the conversion between PostScript color
spaces and ICC color profiles.

It should also be noted that PostScript only provides a limited subset of
Cairo operations, in particular it only supports opaque patterns and cannot
change the compositing operator, hence whenever these are needed, an image
fallback is generated.

5.3 Quartz surfaces

Quartz is the native MacOS X drawing API. Just like Cairo, it provides
PDF-like drawing commands, but Quartz always requires the colors to be
specified in some color space.

The cairo-quartz backend implements the Cairo API on top of Quartz.
The current Cairo implementation has no color space information, there-
fore the Quartz backend ignores the color management features provided by
MacOS X. This is accomplished by always using the device-dependent RGB
color space.

42

With the new color space extension, it is possible to directly use Quartz
color management features by transforming Cairo color space objects into
Quartz color spaces and using them instead of the device-dependent ones.

This works quite well except when the backend has to fallback because
of a missing operation. In this case the color transformation is performed by
a different color management system, which can produce slightly different
results in most cases and very different results for device-dependent color
spaces.

This problem has been reduced significantly by improving the drawing
operations to avoiding fallback paths as much as possible.

5.4 OpenGL surfaces

Recent Cairo releases and development snapshots contain an experimental
OpenGL-based hardware-accelerated backend, which performs compositing
and source pattern interpolation using fragment shaders.

GL fragment shaders are small programs which perform a parallel com-
putation on the GPU. Although the implementation of the generic ICC color
conversion as a fragment shader is possible in theory, it is very unpractical,
because it requires additional logic to implement n-components vectors and
n-dimensional color lookup tables. In fact, the implementation of generic
3-components color spaces is still quite complicated and inefficient, even if
OpenGL supports 3-dimensional lookup tables in the form of 3D textures.

The straightforward implementation of 3-components color transforma-
tion uses 1D textures to represent the curves from the ICC profile and a 3D
texture for the LUT. This requires 10 texture accesses for the input color
space to PCS transformations and 10 more texture accesses for the PCS
to output color space one. A slightly more efficient implementation would
merge the two conversions, but in general this would only save 3 texture
lookups.

A much bigger improvement can be obtained by noticing that a very
big family of ICC profiles is actually much simpler and only specifies three
primaries and three tone reproduction curves. When connecting two such
profiles, the color conversion process is defined as in figure 5.1. Moreover
the two matrix multiplication operations can be combined in a single ma-
trix matrix multiplication, further simplifying the fragment shader. These
assumptions make it possible to implement a GL shader which performs the
color transformation using only 6 texture lookups and one vector-matrix
multiplication.

Although this color transformation is much more constrained than the
generic transformation, it is also very common, because most display profiles
and profiles for standard color spaces have exactly this structure. In partic-
ular, the sRGB color space and the standard Y CbCr color spaces match this

43

RG
B

fr

fg

fb

M3×3

XY
Z

M ′3×3

f−1r′

f−1g′

f−1b′

R′G′
B′

Figure 5.1: The common RGB → XY Z → RGB conversion

structure. This makes is possible to use these color spaces in GL without
having to perform a costly fall back, which would require copying the image
data between the video card and main memory.

5.5 Testing

The correctness of the Cairo implementation is checked using a test suite
which performs some interesting sequences of graphic operations whose ex-
pected result is known. The actual result is then compared to a reference
image and the outcome of the test is a failure if noticeable differences are
found. The tests are run on every backend to ensure that the result only
depends on the sequence of Cairo operations and not on the output back-
end. This is an effective way to check that all the backends have the desired
behavior.

Tests are used to check if the library behaves as expected, which is
especially important when adding new functions, and to keep track of bugs,
making sure that there are no regressions. Because of this, the test suite
is usually extended when new API functions are added and when a bug is
found.

The public functions added by the proposed extension are tested by cre-
ating patterns of every possible type with multiple different interpolation
color spaces. In addition to these tests, the ICC profile support test from
http://color.org/version4html.xalter was implemented using Cairo
graphic operations to draw the images from the original test.

44

http://color.org/version4html.xalter

Chapter 6

Results

6.1 Regressions

The code changes in Pixman introduce some regressions in the test suite
because of different rounding between the integer the floating point com-
positing functions. The difference is usually not visible, but in some cases
the test suite still reports these as failures. An example of such a regression
can be seen in figure 6.1.

Figure 6.1: The regression in the extended-blend-mode test, caused by float-
ing point computations. From left to right: reference image, result, differ-
ence (amplified).

This kind of regressions can be safely ignored, because the new results
are likely more accurate than the old ones, in which case the differences
actually indicate incorrect rounding in the integer implementation of the
operation.

Another group of test failures is caused by bugs in the external tools
used by the test suite to convert its output to raster images that can be
compared. This is unfortunately frequent when new features are added or
the output of the vector backends changes in nontrivial ways. An example
of this kind of failure can be seen in figure 6.2.

Besides from these regressions, the extension is backward-compatible,

45

Figure 6.2: The regression in the clear-source test, caused by a bug in the
external PDF rasterization tool. On the left, the PDF output; on the right,
the PNG image produced by the rasterizer.

therefore, as expected, it causes no changes in the output of the existing
tests.

6.2 New tests

The new tests check that the extended Cairo can handle color conversions
as expected. Figure 6.3 shows the result of the test based on the ICC profile
test. The left image shows that the 4 parts of the image are drawn ignoring
their color profile, thus using the color components as if they were expressed
in the device-dependent RGB color space. The right image shows the correct
result obtained by applying the color profiles of those images.

Figure 6.3: An example image showing images expressed in different color
spaces. On the left, the output without color management; on the right, the
output with color management.

The new tests also show that different backends handle device-dependent
colors in different ways. A test which makes this clearly visible is provided
in figure 6.4. The images in this figure contain 8 squares, each painted using
primaries from a different color space. Each square is divided in 4 parts,

46

each filled with a different primary color. The squares show (from top to
bottom, from left to right):

• a device-dependent color space with no components, thus with no pri-
maries

• the grayscale device-dependent color space (white)

• the RGB device-dependent color space (red, green, blue)

• the CMYK device-dependent color space (cyan, magenta, yellow and
black)

• e-sRGB, an extension of the sRGB color space

• YCC, a luma-chroma color space (whose components are luminosity,
blue chromaticity and red chromaticity)

• GBR, an sRGB-like color space whose primaries have been swapped
(green, blue, red)

• Adobe RGB, the standard Adobe RGB color space (red, green, blue)

Figure 6.4: An example image showing colors from multiple color spaces.
On the left, the output of the image backend; on the right, the output of
the PDF backend.

It is very easy to spot the differences between the different “red” colors
in different color spaces. Another visible difference can be noticed by com-
paring the CMYK primaries in the image backend and in the PDF backend.

6.3 Conclusions

The proposed extension makes it possible to add color management to the
Cairo library without breaking existing applications which assume that the
library operates in the device-dependent RGB color space.

This extension provides support for color spaces described using ICC
profiles, which makes it possible to have a much more accurate control on the
color handling. As special cases, it allows compositing to happen in linear

47

RGB or in sRGB, to perform gamma correction and to use device-dependent
CMYK color spaces. The extension also provides the ability to perform
compositing in Y CbCr color spaces, which can result in a performance boost
when working with video streams.

This extension has been designed to extend the whole drawing pipeline
with color management in a way which is efficient for raster images and
matches the behavior of common vector formats, thus avoiding expensive
fallbacks and simplifying its implementation. In addition to this, it provides
a generic color management workflow, which lets the application control the
color transformations and operations performed in each step. This general-
ity is important, because it allows the implementation of different drawing
models on top of Cairo.

Even if the design of this extension is quite flexible and the implemen-
tation shows that it works, there are some issues, which should be solved to
make this extension merge-ready.

The main issue that would currently prevent a merge of this extension is
that Cairo and Pixman have changed significantly during the development
of this extension. Cairo added support for a new pattern type and Pixman
modified its internal structure. For the extension to be useful, the changes
will need to be extended to also provide the new pattern type in arbitrary
color spaces and to conform to the new Pixman compositing structure.

Another issue is performance, because most functions in Pixman have
been modified to work on floating point data. Although this is reasonable
on modern processors which can perform floating point operations, Pixman
is also used on some platforms where floating point computations are per-
formed in software, therefore if these architectures are to be supported by
Pixman, the new code would need to be profiled on them. If the floating
point code results in a major slowdown, a fixed-point implementation would
probably be needed to provide acceptable performance on these architec-
tures.

6.4 Further developments

The extension required extensive changes to the drawing pipeline, hence
there are some enhancements that could should be implemented to take full
advantage of the new features:

• As stated in section 4.2.3, it would be appropriate to also extend
backend-specific API to support the creation of documents in any color
space.

• The extension implements a floating point compositing pipeline, but
does not export this functionality through an image format. Expos-
ing floating point raster image buffers through the public API would

48

make it possible to perform drawing operations and color transforma-
tions with greater accuracy. This would be especially important for
operations that amplify the quantization error.

• In order to improve the performance when compositing video frames,
support for Y CbCr color spaces is not sufficient. Video frames are
usually stored as planar downsampled images, but these image formats
are currently unsupported in Cairo. In this case, avoiding the color
conversion might not be sufficient to improve the performance, unless
the conversion between different memory layouts is avoided as well.

• It would be possible to extend the color space support to include the
special color spaces defined in the PDF specification.

49

New public API functions

/**

* cairo_color_space_create_device_gray :

*

* Creates a new # cairo_color_space_t corresponding to a

* device - dependent grayscale color space.

*

* Return value: a reference to the static device gray color space.

* It doesn ’t require unreferencing , but it is safe to call

* cairo_color_space_destroy () on it.

*

* This function will always return a valid pointer.

**/

cairo_color_space_t *

cairo_color_space_create_device_gray (void);

/**

* cairo_color_space_create_device_rgb :

*

* Creates a new # cairo_color_space_t corresponding to a

* device - dependent RGB color space.

*

* Return value: a reference to the static device RGB color space.

* It doesn ’t require unreferencing , but it is safe to call

* cairo_color_space_destroy () on it.

*

* This function will always return a valid pointer.

**/

cairo_color_space_t *

cairo_color_space_create_device_rgb (void);

/**

* cairo_color_space_create_device_cmyk :

*

* Creates a new # cairo_color_space_t corresponding to a

* device - dependent CMYK color space.

*

* Return value: a reference to the static device CMYK color space.

* It doesn ’t require unreferencing , but it is safe to call

* cairo_color_space_destroy () on it.

*

* This function will always return a valid pointer.

**/

cairo_color_space_t *

cairo_color_space_create_device_cmyk (void);

/**

* cairo_color_space_create_icc :

* @profile: an ICC color profile

50

* @profile_len : the size of @profile

*

* Creates a new # cairo_color_space_t corresponding to an ICC profile.

*

* Return value: the newly created # cairo_color_space_t if successful ,

* or an error color space in case of no memory. The caller owns the

* returned object and should call cairo_color_space_destroy () when

* finished with it.

*

* This function will always return a valid pointer , but if an error

* occurred the color space status will be set to an error. To

* inspect the status of a color space use cairo_pattern_status ().

**/

cairo_color_space_t *

cairo_color_space_create_icc (const void *profile ,

unsigned long profile_len);

/**

* cairo_color_space_reference :

* @color_space : a # cairo_color_space_t

*

* Increases the reference count on @color_space by one. This prevents

* @color_space from being destroyed until a matching call to

* cairo_color_space_destroy () is made.

*

* The number of references to a # cairo_color_space_t can be get using

* cairo_color_space_get_reference_count ().

*

* Return value: the referenced # cairo_color_space_t .

**/

cairo_color_space_t *

cairo_color_space_reference (cairo_color_space_t *color_space);

/**

* cairo_color_space_destroy :

* @color_space : a # cairo_color_space_t

*

* Decreases the reference count on @color_space by one. If the result

* is zero , then @color_space and all associated resources are freed.

* See cairo_color_space_reference ().

**/

void

cairo_color_space_destroy (cairo_color_space_t *color_space);

/**

* cairo_color_space_get_reference_count :

* @color_space : a # cairo_color_space_t

*

* Returns the current reference count of @color_space .

*

* Return value: the current reference count of @color_space . If

* @color_space is a nil object or a static color space , 0 will be

* returned.

**/

unsigned int

cairo_color_space_get_reference_count (cairo_color_space_t *color_space);

/**

* cairo_color_space_status :

* @color_space : a # cairo_color_space_t

*

* Checks whether an error has previously occurred for this color

51

* space.

*

* Return value: % CAIRO_STATUS_SUCCESS , % CAIRO_STATUS_NO_MEMORY .

**/

cairo_status_t

cairo_color_space_status (cairo_color_space_t *color_space);

/**

* cairo_color_space_get_number_of_components :

* @color_space : a # cairo_color_space_t

*

* Returns the number of components of @color_space .

*

* Return value: the number of components of @color_space . If

* @color_space is a nil object , 0 will be returned.

**/

unsigned int

cairo_color_space_get_number_of_components (

cairo_color_space_t *color_space);

/**

* cairo_pattern_create_color :

*

* @color_space : the color space in which the @components define the

* desired solid color

* @components : the components of the color in the given color space

* @alpha: the alpha component of the color

*

* Creates a new # cairo_pattern_t corresponding to a translucent color.

*

* Return value: the newly created # cairo_pattern_t if successful , or

* an error pattern in case of no memory. The caller owns the

* returned object and should call cairo_pattern_destroy () when

* finished with it.

*

* This function will always return a valid pointer , but if an error

* occurred the pattern status will be set to an error. To inspect

* the status of a pattern use cairo_pattern_status ().

**/

cairo_pattern_t *

cairo_pattern_create_color (cairo_color_space_t *color_space ,

double *components ,

double alpha);

/**

* cairo_pattern_create_linear_with_color_space :

* @color_space : the color space in which the color stops will be

* specified and interpolated

* @x0: x coordinate of the start point

* @y0: y coordinate of the start point

* @x1: x coordinate of the end point

* @y1: y coordinate of the end point

*

* Create a new linear gradient # cairo_pattern_t along the line

* defined by (x0 , y0) and (x1 , y1). Before using the gradient

* pattern , a number of color stops should be defined using

* cairo_pattern_add_color_stop_color ().

*

* Note: The coordinates here are in pattern space. For a new pattern ,

* pattern space is identical to user space , but the relationship

* between the spaces can be changed with cairo_pattern_set_matrix ().

*

52

* Return value: the newly created # cairo_pattern_t if successful , or

* an error pattern in case of no memory. The caller owns the

* returned object and should call cairo_pattern_destroy () when

* finished with it.

*

* This function will always return a valid pointer , but if an error

* occurred the pattern status will be set to an error. To inspect

* the status of a pattern use cairo_pattern_status ().

**/

cairo_pattern_t *

cairo_pattern_create_linear_with_color_space (

cairo_color_space_t *color_space ,

double x0,

double y0,

double x1,

double y1);

/**

* cairo_pattern_create_radial_with_color_space :

* @color_space : the color space in which the color stops will be

* specified and interpolated

* @cx0: x coordinate for the center of the start circle

* @cy0: y coordinate for the center of the start circle

* @radius0: radius of the start circle

* @cx1: x coordinate for the center of the end circle

* @cy1: y coordinate for the center of the end circle

* @radius1: radius of the end circle

*

* Creates a new radial gradient # cairo_pattern_t between the two

* circles defined by (cx0 , cy0 , radius0) and (cx1 , cy1 , radius1).

* Before using the gradient pattern , a number of color stops should

* be defined using cairo_pattern_add_color_stop_color ().

*

* Note: The coordinates here are in pattern space. For a new pattern ,

* pattern space is identical to user space , but the relationship

* between the spaces can be changed with cairo_pattern_set_matrix ().

*

* Return value: the newly created # cairo_pattern_t if successful , or

* an error pattern in case of no memory. The caller owns the

* returned object and should call cairo_pattern_destroy () when

* finished with it.

*

* This function will always return a valid pointer , but if an error

* occurred the pattern status will be set to an error. To inspect

* the status of a pattern use cairo_pattern_status ().

**/

cairo_pattern_t *

cairo_pattern_create_radial_with_color_space (

cairo_color_space_t *color_space ,

double cx0 , double cy0 , double radius0 ,

double cx1 , double cy1 , double radius1);

/**

* cairo_pattern_get_color_space

* @pattern: a # cairo_pattern_t

*

* Returns the color space of @pattern.

*

* Return value: a # cairo_color_space_t . The caller owns the returned

* object and should call cairo_color_space_destroy () when finished

* with it.

**/

53

cairo_color_space_t *

cairo_pattern_get_color_space (cairo_pattern_t *pattern);

/**

* cairo_pattern_add_color_stop_rgba :

* @pattern: a # cairo_pattern_t

* @offset: an offset in the range [0.0 .. 1.0]

* @components : the color components of the stop to be added

* @alpha: the alpha component of the stop to be added

*

* Adds a translucent color stop to a gradient pattern. The offset

* specifies the location along the gradient ’s control vector. For

* example , a linear gradient ’s control vector is from (x0 ,y0) to

* (x1 ,y1) while a radial gradient ’s control vector is from any point

* on the start circle to the corresponding point on the end circle.

*

* The color is specified in the same way as in

* cairo_pattern_create_color ().

*

* If two (or more) stops are specified with identical offset values ,

* they will be sorted according to the order in which the stops are

* added , (stops added earlier will compare less than stops added

* later). This can be useful for reliably making sharp color

* transitions instead of the typical blend.

*

* Note: If the pattern is not a gradient pattern , (eg. a linear or

* radial pattern), then the pattern will be put into an error status

* with a status of % CAIRO_STATUS_PATTERN_TYPE_MISMATCH .

**/

void

cairo_pattern_add_color_stop_color (cairo_pattern_t *pattern ,

double offset ,

const double *components ,

double alpha);

/**

* cairo_surface_create_similar_with_color_space :

* @other: an existing surface used to select the backend of the new

* surface

* @color_space : the color space for the new surface

* @content: the content for the new surface

* @width: width of the new surface , (in device -space units)

* @height: height of the new surface (in device -space units)

*

* Create a new surface that is as compatible as possible with an

* existing surface. For example the new surface will have the same

* fallback resolution and font options as @other. Generally , the new

* surface will also use the same backend as @other , unless that is

* not possible for some reason. The type of the returned surface may

* be examined with cairo_surface_get_type ().

*

* Initially the surface contents are all 0 (transparent if contents

* have transparency).

*

* Return value: a pointer to the newly allocated surface. The caller

* owns the surface and should call cairo_surface_destroy () when done

* with it.

*

* This function always returns a valid pointer , but it will return a

* pointer to a "nil" surface if @other is already in an error state

* or any other error occurs.

**/

54

cairo_surface_t *

cairo_surface_create_similar_with_color_space (cairo_surface_t *other ,

cairo_color_space_t *color_space ,

cairo_content_t content ,

int width ,

int height);

/**

* cairo_push_group_with_color_space :

* @cr: a cairo context

* @color_space : the color space of the group to be created

* @content: a # cairo_content_t indicating the type of group that

* will be created

*

* Temporarily redirects drawing to an intermediate surface known as a

* group. The redirection lasts until the group is completed by a call

* to cairo_pop_group () or cairo_pop_group_to_source (). These calls

* provide the result of any drawing to the group as a pattern ,

* (either as an explicit object , or set as the source pattern).

*

* The group will have a content type of @content and a color space of

* @color_space .

*/

void

cairo_push_group_with_color_space (cairo_t *cr ,

cairo_color_space_t *color_space ,

cairo_content_t content);

/**

* cairo_set_rendering_intent :

* @cr: a #cairo_t

* @intent: the rendering intent to be used for color transformations

*

* Sets the rendering intent to be used for all drawing

* operations . See # cairo_rendering_intent_t for details on the

* semantics of each available rendering intent.

**/

void

cairo_set_rendering_intent (cairo_t *cr , cairo_rendering_intent_t intent);

/**

* cairo_get_rendering_intent :

* @cr: a #cairo_t

*

* Returns the rendering intent of a cairo context.

*

* Return value: the current rendering intent of @cr.

**/

cairo_rendering_intent_t

cairo_get_rendering_intent (cairo_t *cr);

55

Bibliography

[1] Eric Brasseur. Gamma error in picture scaling. http://www.4p8.com/
eric.brasseur/gamma.html.

[2] European Broadcasting Union Technical Centre. Standard for chro-
maticity tolerances for studio monitors. EBU Tech. 3213-E, August
1975.

[3] International Color Consortium. Image technology colour management
– Architecture, profile format, and data structure. ICC, May 2006.

[4] World Wide Web Consortium. SVG color 1.2, part 2: Lan-
guage. WD-SVGColor12-20091001, http://www.w3.org/TR/2009/

WD-SVGColor12-20091001/, October 2009.

[5] Commission Internationale d’Eclairage. Colorimetry. CIE, Central Bu-
reau of the CIE, Vienna, second edition, 1986.

[6] David Duce. Portable network graphics (png) specification. http:

//www.w3.org/TR/PNG, November 2003.

[7] Jon Ferraiolo, Jun Fujisawa, and Dean Jackson. Scalable vector
graphics (SVG) 1.1 specification. World Wide Web Consortium, Rec-
ommendation REC-SVG11-20030114, http://www.w3.org/TR/2003/

REC-SVG11-20030114, Jabuary 2003.

[8] International Organization for Standardization. Document manage-
ment – portable document format – part 1: Pdf 1.7. ISO 32000-1:2008,
July 2008.

[9] Gernot Hoffmann. Ps-tutor function graphs and other ap-
plications for postscript. http://www.fho-emden.de/~hoffmann/

pstutor22112002.pdf.

[10] Adobe Systems Inc. PostScript Language Reference Manual. Addison-
Wesley Publishing Company, Reading, Massachusetts, USA, 3rd edi-
tion, February 1999.

56

http://www.4p8.com/eric.brasseur/gamma.html
http://www.4p8.com/eric.brasseur/gamma.html
http://www.w3.org/TR/2009/WD-SVGColor12-20091001/
http://www.w3.org/TR/2009/WD-SVGColor12-20091001/
http://www.w3.org/TR/PNG
http://www.w3.org/TR/PNG
http://www.w3.org/TR/2003/REC-SVG11-20030114
http://www.w3.org/TR/2003/REC-SVG11-20030114
http://www.fho-emden.de/~hoffmann/pstutor22112002.pdf
http://www.fho-emden.de/~hoffmann/pstutor22112002.pdf

[11] Microsoft. Windows Color System. http://www.microsoft.com/

color.

[12] Hubert Nguyen, editor. GPU Gems 3. Addison-Wesley, 2008.

[13] Society of Motion Picture and Television Engineers. Composite analog
video signal – ntsc for studio applications. SMPTE 170M-1999, 1999.

[14] Keith Packard. The X Rendering Extension. http://cgit.

freedesktop.org/xorg/proto/renderproto/plain/renderproto.

txt.

[15] Thomas Porter and Tom Duff. Compositing digital images. In Hank
Christiansen, editor, Computer Graphics (SIGGRAPH ’84 Proceed-
ings), volume 18, pages 253–259, July 1984.

[16] Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and Ri-
cardo Motta. A standard default color space for the internet — sRGB.
http://www.w3.org/Graphics/Color/sRGB, November 1996.

[17] International Telecommunication Union. Parameter values for the hdtv
standards for production and international programme exchange. ITU-
R BT.709-5, 2002.

57

http://www.microsoft.com/color
http://www.microsoft.com/color
http://cgit.freedesktop.org/xorg/proto/renderproto/plain/renderproto.txt
http://cgit.freedesktop.org/xorg/proto/renderproto/plain/renderproto.txt
http://cgit.freedesktop.org/xorg/proto/renderproto/plain/renderproto.txt
http://www.w3.org/Graphics/Color/sRGB

	Introduction
	Color spaces
	Digital color
	Color perception
	Reference color spaces
	Standard color spaces
	Device-dependent color spaces
	Hue, Saturation, Lightness
	CMYK
	Calibrated color spaces
	ICC color profiles

	Color management in graphic software
	Hardware support
	Standard profiles
	Embedded profiles
	Calibration

	Software
	Professional graphic applications
	Document viewers

	Support in documents
	PostScript
	Portable Document Format
	Scalable Vector Graphics
	Raster images

	Graphic APIs
	Quartz
	GDI+/WPF
	OpenGL
	Qt
	Cairo

	Desired features
	CMYK color spaces
	YCbCr color spaces
	Gamma handling

	Design
	Cairo drawing model
	Cairo objects
	Contexts
	Patterns
	Surfaces
	Cairo graphic pipeline
	Compositing in Cairo

	Support for color spaces
	Drawing model
	Advantages and limitations
	Public API

	Usage
	Initial approach

	Implementation
	Image surfaces
	Vector surfaces
	PDF
	PostScript

	Quartz surfaces
	OpenGL surfaces
	Testing

	Results
	Regressions
	New tests
	Conclusions
	Further developments

	New public API functions

