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Abstract 

The mobilization of geogenic molybdenum (Mo) and arsenic (As) from the aquifer matrix 

sediments in Central Florida, USA has resulted in the contamination of groundwater and 

irrigated soils. The aquifer matrix contained up to 825 mg/kg Mo and 144 mg/kg As. The 

concentrations of Mo and As in groundwater reached up to 5000 μg/L and 300 μg/L which 

exceed the WHO guidelines of 70 μg/L and 10 μg/L, respectively. In this research, in order to 

evaluate the potential of Mo and As as contaminants in the aquifer matrix sediments, chemical 

fractionation, primary sources, and the adsorption/desorption behavior of Mo and As by/from 

hydrous ferric oxide (HFO) were studied. The adsorption of Mo onto organic matter (OM) was 

also investigated to determine its role in removing Mo from groundwater. First, a five step 

sequential extraction procedure (SEP) was applied to 10 aquifer matrix samples which were 

chosen from three cores near Lithia village in Central Florida. Then, the chromium-reducible 

sulfur (CRS) method was used to assess the primary sources of Mo and As. This particular 

method was used to determine the relationship between reduced sulfur including inorganic 

reduced sulfur such as sulfur content in pyrite (FeS2) and organic sulfur (OS) and  the trace 

elements (Mo and As) in the aquifer matrix. Finally, to assess the adsorption and desorption 

of Mo and As by/from HFO and humic acid (HA), a combination of batch experiments with 

HFO, HA and the aquifer matrix sediments were conducted. 

The results of SEP showed that Mo was mainly present in the soluble fraction (step 1). For six 

samples, more than 80%, for two samples more than 50% and for two samples up to 20% Mo 

was released during the first step. About 10% Mo was leached during steps 2 and 3, which 

dissolve carbonates, HFO, manganese oxides and powellite (CaMoO4). Approximately 25% 

of Mo bounded to crystalline iron oxides, pyrite and OM in steps 4 and 5. In contrast to Mo, As 

was present in all the extraction’s steps in somewhat similar abundances: step 1 (17%), step 

2 (11%), step 3 (30%), step 4 (23%) and step 5 (18%). Hydrous and crystalline iron oxides, 

which were dissolved in steps 3 and 4 contained the highest As concentrations. From this 
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procedure, it became clear that compared to As, Mo is more easily released from the aquifer 

matrix. 

Pyrite and OM which were present in both aquifer matrix sediments underlying Lithia area and 

in Avon Park Formation (APF), were generally considered as source for Mo and As. To 

evaluate this statement, a total of 24 samples (including 10 samples which were already 

subjected to SEP analysis) were chosen from Lithia area and APF. The samples were selected 

based on the following four criteria: (1) high total Mo concentration, (2) high total As 

concentration, (3) high total sulfur concentration, and (4) good geographic representation of 

the study area. The results of CRS did not confirm the presence of Mo in pyrite in the Lithia 

area, though it was shown to exist as a minor constituent in the APF. The total organic carbon 

content in the residues of CRS (OCres) method was positively correlated to Mo (R2 = 0.71 and 

p < 0.001). There was no correlation between OS and Mo. Compared to Mo, As concentration 

in pyrite was much higher, pointing to pyrite as a major primary source for As in the aquifer 

matrix sediments. There was a weak correlation between As and OCres. The results suggested 

that the Mo found in the aquifer matrix and groundwater was mainly sourced from OM rather 

than pyrite, whereas As originated mainly from pyrite as a primary source, in addition to iron 

oxides in the adsorbed forms. 

The adsorption and desorption of Mo and As by/from HFO and HA indicated that HFO was 

not a major sink for Mo but a significant secondary source for As. Molybdenum sorption onto 

HFO mainly happened by the formation of inner-sphere complexes. Arsenic(III) and As(V)  

sorption onto HFO resulted in inner-sphere complexes. Oxygenated water had no significant 

effect on the mobilization of Mo and As from the aquifer matrix in the Lithia area and APF. 

Powellite could be considered as a minor secondary source for Mo and As. In the alkaline pH 

ranges (pH ranges of the study area), the adsorption of Mo on HA was too low. 

Special experiments were carried out for the first time in the present study to distinguish Mo 

adsorption types onto HFO (inner or outer complexes). First, the aquifer matrix samples and 

HFO samples with specified amount of Mo adsorbed on their surfaces were dissolved in DDI 
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water and shaken for 48 h. Then, the first three steps of the SEP were applied to the residue 

of the samples. The results showed two types of Mo adsorption onto HFO, i.e. inner sphere 

and outer sphere complexes. Studies to date recognized only one type, i.e. inner sphere 

complexes, for Mo adsorption onto HFO. Therefore, this is a completely new finding stemmed 

from this study. In addition, our experiments also provided a precise estimation of the amount 

of each adsorption type. About 20% of the total Mo sorbed onto HFO were outer sphere and 

80% inner sphere complexes. Such methodology is of appreciable practical application 

because it is quicker, cheaper and simpler with much less complexity. It is believed that the 

invented technique is important, not only for the study area but also for all ecological projects 

and environmental pollution studies which may involve Mo in one way or another.  

To summarize, this study demonstrated that OM was a main primary source for Mo in the 

study area. Oxidation of OM led to the mobilization of Mo from strong phases to soluble 

phases. This process resulted in the release of Mo into groundwater. On the other hand, Mo 

was removed from the groundwater either through powellite precipitation or via adsorption 

onto adsorbents such as HFO, OM, and clay minerals. Precipitation of powellite was 

considered as trivial and insufficient to be a substantial sink for Mo. Also, Mo adsorption onto 

HFO and OM was not significant. The main reason for low Mo adsorption onto HFO was 

related to the point of zero charge (PZC) of HFO which roughly corresponded to the pH of the 

Lithia’s groundwater. It was also discovered that there was a strong competition between 

phosphate, sulfate and molybdate for HFO sorption sites. Phosphate competed strongly with 

molybdate for sorption sites, while sulfate was relatively a weaker competitor.  

Mo adsorption/desorption by/from other adsorbents such as clays, carbonates and their 

organically bounds, remain questionable. These are the areas requiring more research, since 

very little, if any, is known about these topics. All these considerations and findings explain 

why Mo was not fixed and commuted between groundwater and the exchangeable phases in 

Lithia area. 
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Kurzzusammenfassung 

Die Mobilisierung von geogenem Molybdän (Mo) und Arsen (As) aus Sedimentgesteinen hat 

in Zentral-Florida zu Kontamination des Grundwassers und der bewässerten Böden geführt. 

Diese Sedimentgesteine enthalten bis zu 825 mg/kg Mo und 144 mg/kg As. Die Mo und As 

Konzentrationen im Grundwasser erreichen bis zu 5000 μg/L beziehungsweise 300 μg/L und 

übersteigen die WHO-Richtwerte von 70 μg/L und 10 μg/L erheblich.  

In dieser Arbeit wurden die chemische Fraktionierung, die primären Quellen sowie die 

Adsorption/Desorption von Mo und As an wasserhaltiges Eisenoxid und organische Stoffe 

(OM) untersucht, und versucht, ihre mögliche Rolle als Kontaminanten in dem Aquifer-Matrix 

zu bewerten. Zuerst wurde ein fünfstufiges sequentielles Extraktionsverfahren auf 10 Aquifer 

Matrixproben angewendet, die aus drei Bohrkernprobe in der Nähe des Dorfes Lithia 

ausgewählt wurden. Dann wurde das CRS-Verfahren zur Bestimmung von Chrom-

reduzierbarem Schwefel angewendet, um primäre Mo und As Quellen zu beurteilen. Diese 

besondere Methode wurde verwendet, um die Beziehung zwischen reduziertem Schwefel 

(Pyrit Schwefel und organischer Schwefel) und der Mo und As Konzentration in den 

sedimentären Gesteinen zu bestimmen. Schließlich wurde eine Kombination aus 

Batchversuchen mit synthetisiertem Ferrihydrit, Huminsäure und Aquifer-Matrix durchgeführt, 

um die Adsorption und Desorption von Mo und As an diese Materiale zu beurteilen. Die SEP 

Ergebnisse zeigen, dass Mo eine  sehr lösliche Fraktion ist (Schritt 1). Bei sechs Proben 

wurden mehr als 80 % Mo, bei zweien mehr als 50 % und bei zwei weiteren bis zu 20 % in 

der Fraktion mobilisiert. Etwa 10 % Mo wurden im Schritt 2 und 3 mobilisiert, die Carbonate, 

HFO, Manganoxide und Powellit wurden gelöst. In den Schritten 4 und 5 wurden etwa 25 % 

Mo an Eisenoxiden, Pyrit und OM adsorbiert. Im Gegensatz zu Mo war Arsen in allen 

Extraktionsschritte etwa gleich vertreten: Schritt 1 (17 %), Schritt 2 (11 %), Schritt 3 (30 %), 

Schritt 4 (23 %) und Schritt 5 (18 %). Wasserhaltige und kristalline Eisenoxide, die in den 

Schritten 3 und 4 gelöst wurden, enthielten die höchsten As Konzentrationen. Durch dieses 
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Verfahren wurde deutlich, dass Mo im Vergleich zu As leichter aus der Aquifer-Matrix gelöst 

und mobilisiert wird.  

Pyrit und OM, die in der Lithia und APF Aquifer-Matrix vorkommen, werden allgemein als 

Quellen für Mo und As angenommen. Um diese Möglichkeiten zu bewerten  wurden insgesamt 

24 Proben (einschließlich 10 Proben der SEP) aus Lithia und APF gewählt. Die Proben 

wurden auf Grundlage dreier Kriterien ausgewählt: (1) hohe gesamt  Mo Konzentration, (2) 

hohe gesamt As Konzentration und (3) gute geographische Darstellung des 

Untersuchungsgebietes. Die Ergebnisse der CRS zeigten kein Mo in Pyrit in DEP Kernen. Es 

wurde jedoch als Nebenquelle in APF bestätigt. Der Gesamtgehalt an organischem 

Kohlenstoff in den Resten der CRS (OCres) zeigt eine gute Korrelation mit Mo (R2 = 0.65). Es 

gibt keine Korrelation zwischen dem organischen Schwefel (OS) und Mo. Im Vergleich zu Mo, 

ist die As-Konzentration in Pyrit viel höher und weist auf Pyrit als primäre Quelle für As in den 

Aquifer-Matrix. Es gibt eine schwache Korrelation zwischen As und OCres. Die Ergebnisse 

zeigen, dass  organisches Material und nicht Pyrit die primäre Quelle für Mo in der Aquifer-

Matrix und im Grundwasser ist, während As hauptsächlich auf adsorbiertes Pyrit als primäre 

Quelle zurückzuführen ist sowie auf Eisenoxide in den adsorbierten Formen. 

Molybdän und As Adsorption und Desorption an HFO und Huminsäure zeigen, dass 

Ferrihydrit keine wichtige Quelle für Mo, jedoch eine bedeutende sekundäre Quelle für As ist. 

Molybdän Sorption an HFO bildet hauptsächlich inner-sphärische Komplexe. Arsenic (III) und 

As(V)  Sorption an HFO bilden inner-sphärische Komplexe. Sauerstoff angereichertes Wasser 

hatte keinen signifikanten Effekt auf die Mobilisierung von Mo und As in Lithia und APF. 

Powellit könnte als sekundäre Quelle für Mo und As in Betracht gezogen werden. Die 

Molybdän Adsorption an Huminsäure ist in dem untersuchten alkalischen pH-Bereich zu 

niedrig. 
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Das Ergebnis dieser Arbeit zusammenzufassen, organische Materie wurde in der Lithia-

Region als primäre Quelle für Molybdän bestimmt. OM konnte oxidiert werden und Molybdän 

wurde in Folge dessen von der starken Phase zur löslichen Phase verschoben und ins 

Grundwasser freigesetzt. Denkbar sind zwei Arten, Molybdän aus dem Grundwasser zu 

entfernen. Erstens durch Niederschlag von Powellite, jedoch war dies nicht signifikant. 

Zweitens durch Adsorbenten wie HFO und OM. Jedoch war die Molybdän-Adsorption auf HFO 

und OM aus zwei Gründen in Bezug auf HFO nicht signifikant. Zunächst entsprach der pH-

Wert des Untersuchungsgebietes etwa dem Nullpunkt  von HFO. Zweitens herrschte ein 

Wettbewerb zwischen Phosphat und Molybdän. Selbst wenn Mo trotz dieser Beschränkungen 

adsorbiert werden konnte, waren 20 % des gesamten Mo-sorbierten Zustandes immer noch 

austauschbar. Diese könnten als äußere und innere Sphären-Komplexen betrachtet werden. 

Während frühere Studien nur innere Sphären-Komplexe für Mo-Adsorption auf HFO 

feststellten, ist dieses Erkenntniss neu. Mo-Adsorption/ Desorption mit anderen 

Adsorptionsmitteln wie Ton, Carbonat und dessen organischen Verbindungen müssten noch 

untersucht werden. Die große Menge Gesamt-Mo wurde jedoch nicht fest an diese 

Adsorptionsmittel adsorbiert, daher wurde es in der Lithia-Region frei und verlagert zwischen 

Grundwasser und austauschbaren Phasen gefunden. 
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Chapter 1. Introduction 

 

1.1 Problem statement 

Generally, water quality studies focus on anthropogenic sources as potential environmental 

contaminants. However, groundwater contamination is not exclusively due to the direct input 

of contaminants. Geogenic trace element enrichment in sedimentary rocks can contaminate 

drinking water and irrigated soils (Pichler and Mozaffari, 2015; Pichler et al., 2016). The 

leaching of metals from these rocks poses a threat to the groundwater resources and may 

persist for a long time in groundwater (e.g., Amini et al., 2008; Ferguson and Gavis, 1972). 

This type of contamination is a public health issue worldwide particularly for arsenic (As), but 

this is the first study of its kind with respect to molybdenum (Mo). Thus, in this study, emphasis 

was on Geogenic Mo as a potential groundwater contaminant. 

In general, metals and metalloids can be divided into two groups: those which are essential 

for human survival like calcium (Ca), magnesium (Mg), zinc (Zn), iron (Fe), Mo, etc, and those 

which are less important and at the same time toxic, including among others mercury (Hg), 

lead (Pb) and As (Slaveykova and Wilkinson, 2005). In fact, Mo plays a unique role in the 

environment. In one hand, it is a cofactor of enzymes which are essential in plants, animals 

and for human health and it is important for the functioning of the enzyme xanthine 

dehydrogenase which plays key roles in human metabolism (Momcilovic, 2000; WHO, 2011). 

In the other hand, it has potential benefits for patients with asthma and sulfite sensitivity. High 

doses of Mo can damage organisms in terrestrial and aquatic environments and could cause 

some problems for human organs like osteoporosis, gout, liver enlargement, disorders of the 

gastrointestinal tract, respiratory infections, kidney diseases, increased blood levels of Mo, 

uric acid and increased xanthine oxidase activity (Krishnamachari and Krishnaswamy, 1974; 

Stiefel, 1996). Major threats to human health are associated with exposure to Pb, cadmium 
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(Cd), Hg, uranium (U) and As. These metals and metalloids pose serious threats to the health 

of millions of people around the world (O'Shea et al., 2007; Reza et al., 2010; Schreiber et al., 

2000). The Lithia area in Central Florida provides an exceptional field site to study the 

contamination of groundwater by geogenic Mo and As in a limestone aquifer. Previous studies 

indicated no obvious anthropogenic or agricultural sources for Mo and As in the area (Pichler 

and Mozaffari, 2015; Pichler et al., 2016). The sedimentary rocks in the Lithia area contained 

high levels of Mo and As. The concentrations of Mo and As in the aquifers were high and 

exceeded the WHO guidelines of 70 and 10 μg/L, respectively (Pichler and Mozaffari, 2015; 

Pichler et al., 2016). 

 

1.2 Research objectives 

The central hypothesis of this study was to determine whether geogenic Mo and As are 

potential contaminants in a limestone aquifer. Although water quality studies focus mainly on 

anthropogenic sources; but terrestrial environments and groundwater may also be affected by 

the mobilization of geogenic trace metals such as Mo and As from sedimentary rocks. There 

were some studies with regard to As, but very little knowledge, if any, was available about Mo 

and its leaching processes from the sedimentary rocks into groundwater. Thus, the specific 

objectives of this work were to: 

1. Assess the chemical fractionation of Mo and As in the aquifer matrix by using sequential 

extraction procedure (SEP), 

2. Test the effect of dissolved oxygen and time on Mo and As mobilization from the aquifer 

matrix, 

3. Determine the primary sources of Mo and As in the aquifer matrix by using the chromium 

reduction sulfur (CRS) method, 
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4. Evaluate powellite (CaMoO4) as a source for Mo and As in the aquifer matrix and 

groundwater, 

5. Evaluate Mo and As adsorption and leaching processes from hydrous ferric oxide (HFO) in 

the aquifer matrix, and 

6. Investigate organic matter (OM) as a Mo adsorbent from groundwater. 

 

 

1.3 Research outlines 

The research described in this thesis is organized in 6 chapters. Chapter 1, Introduction, 

describes the research background, study site, problems and objectives. In Chapter 2, a 

review of the publications dealing with the primary sources of Mo and As, 

adsorption/desorption, speciation, mechanism, and model applications is presented.  

The main subjects dealt with in this thesis are described in Chapters 3 to 5, which are assigned 

to achieve the research objectives already mentioned in the previous chapters. Chapter 3 

deals with the assessment of Mo and As speciation in the aquifer matrix. This chapter 

describes a modified five-step SEP which was applied to 10 samples of three cores to assess 

the presence of Mo and As in the adsorbed/exchangeable phases, carbonates, hydrous  iron 

oxides (HFO), crystalline  iron oxides and sulfides. In addition, the effect of dissolved oxygen 

on the exchangeable phases is also presented. A part of this research was published in the 

Journal of Applied Geochemistry (Pichler and Mozaffari, 2015). 

In Chapter 4, the primary sources of Mo and As in the aquifer matrix and groundwater are 

determined. Analysis which introduced powellite as a main secondary source for the elements 

in question are also described in this Chapter. 

Chapter 5, discusses the adsorption of Mo and As onto two adsorbents, HFO and humic acid. 

Additionally, desorption experiments from HFO are also described.  
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Chapter 6 presents the conclusions and recommendations drawn from this investigation. 

 

1.4 Site description 

1.4.1 Location 

This study was carried out in a local area (Lithia) and a regional area (Southwest Florida). 

Lithia is a relatively small area (3 ͯ 4 km), located approximately 30 km southeast of Tampa 

city on the west coast of Florida. There are approximately 100 private water supply wells and 

5 monitoring wells including DEP-1 to DEP-5 which were installed by The Florida Department 

of Environmental Protection (DEP) after discovering more than 5000 μg/L Mo by accident in 

an irrigation well in Lithia area (Fig 1.1). Previous studies collected water and drill core 

samples from these wells for analyses (Pichler and Mozaffari, 2015; Pichler et al., 2016). The  

drill cores were analyzed for total organic carbon, Ca, Mg, Si, Al, P, Sr, As, Mo, Fe, and S 

content (Pichler and Mozaffari, 2015). The water samples were analyzed for turbidity, pH, 

conductivity, dissolved oxygen, oxygen reduction potential, alkalinity, Al, Sb, As, Br, Cd, Ca, 

Cl, Cr, Cu, F, Fe, Pb, Mg, Mn, Mo, Ni, N, K, Se, Si, Na, Sr, SO4, S, P, V, and Zn. Fig. 1.2 

shows the 3-dimensional view of the Lithia area. 

The regional area is located in the southwest Florida Water Management District between 

Tampa and Fort Myers. There are currently 190 Aquifer Storage Recovery (ASR) wells in 

Florida, at various stages of construction or operation. Of these, 15 ASR wells are not in 

compliance with the Federal Drinking Water Regulations due to the mobilization of trace 

metals such as Mo and As (Arthur et al., 2007). Of the 15 wells, 9 with the highest Mo and As 

concentration in aquifer matrix, were chosen for this research. 
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1.4.2 Concentration of Mo and As in groundwater and sediments/rocks 

The concentration of Mo and As in groundwater reached up to 5000 and 350 μg/L, respectively 

(Pichler and Mozaffari, 2015; Pichler et al., 2016). Approximately 50% of the groundwater in 

the Lithia area is contaminated by Mo and As. In Fig. 1.3, the boundary between the yellow 

and blue color shows the WHO guideline values for Mo and As. The supplementary data 

related to this work can be found in appendix 1, and Pichler et al., (2016). 

The sedimentary rocks in the study area contained up to 825 mg/kg Mo and 144 mg/kg As 

(Pichler and Mozaffari, 2015; Pichler et al., 2016). In the core of DEP-1, the concentration of 

Mo increased at depths of 45 m and 70 m. In the core of DEP-2, Mo showed the same pattern 

as As. It varied significantly between 5 and 35 m followed by high concentrations at 

approximately 45 and 70 m. In the core of DEP-5, the concentration of Mo was elevated at 

several depths, the highest values were observed at approximately 50 and 75 m depths. In 

the core of DEP-1, As was high at depths of approximately 45 and 55 m. In the core of DEP-

2, As concentration varied significantly between 5 and 35 m, followed by two pronounced high 

concentrations at 45 and 60 m. In the core of DEP-5, As was high at depths of approximately 

50 and 65 m (Fig. 1.4). The specifications of the mentioned cores which are related to this 

work can be found in Pichler and Mozaffari (2015), and Pichler et al., (2016). 
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Fig. 1.3 Map of Mo and As concentrations (μg/L) in supply and monitoring wells and the 

locations of the monitoring wells in the Lithia area aquifer. 
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Fig. 1.4 Concentration of Mo and As in vertical profile for well clusters DEP-1, DEP-2 and 

DEP-5 (data from Pichler and Mozaffari, 2015; Pichler et al., 2016). 

 

1.5 Geology and Hydrogeology 

1.5.1 Regional geology of Central Florida 
 

The similarities between the Florida basement rocks and the subsurface rocks in northwest 

Africa indicate that the area now known as Florida was a part of northwest Africa. The 

basement rocks of southeastern United States, including Florida, is a subsurface extension of 

the igneous, metamorphic, and sedimentary rocks that are exposed in the Appalachian 

Mountains. These rocks are overlain by the Cedar Key, Oldsmar, and Avon Park Formation 

(APF), as well as the Ocala and Suwanee limestone. These formations consist of limestone, 
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dolomite, anhydrite, and gypsum which were deposited when most of the Florida peninsula 

was below sea level. The total thickness of these formations ranges from 1675 to 3660 m 

(Scott et al., 1989). The overlying Hawthorn Group, deposited about 25 million years ago, 

represents a transition between the marine-derived and land-derived sediments. Generally, 

the lower layers of the Hawthorn Group are marine-derived and contain limestone, whereas 

the upper layers of clay, fine sand, and silt are land-derived. These upper layers of the 

Hawthorn Group, generally restrict groundwater movement. Overlying the Hawthorn Group 

and continuing upward to the present land surface are unconsolidated sediments consisting 

of quartz sand, clay, and some organic materials. The thickness of the Hawthorn Group, which 

varies greatly in central Florida, is a key element in the lake formation process. Fig. 1.5 shows 

the lithostratigraphic units of the regional geology of Florida. 

1.5.2 Local geology of the study area 

The stratigraphic column of the study area predominantly consists of Miocene Hawthorn 

Group, which is subdivided into a lower section comprising the undifferentiated Arcadia 

Formation, Tampa and Nocatee Members of the Arcadia Formation and the upper section of 

the Peace River Formation (Scott et al., 1989). These formations unconformably overlay the 

Oligocene Suwannee limestone and its thickness from the surface is about 80 m. Petrographic 

and mineralogy studies showed that carbonates are the dominant lithology in the Lithia area. 

The stratigraphic column from top to bottom is approximately as follows: 0-18 m surficial 

sediments, 18 - 60 m Hawthorn Group, 60-70 m Tampa Member and below 70 m Suwannee 

Limestone (Pichler and Mozaffari, 2015) (Fig 1.4). The Upper Pliocene to Pleistocene surficial 

sediments generally comprises unconsolidated to poorly indurated clastic deposits such as 

sand, sandy clays, phosphorite and some well-indurated carbonate rocks. The Hawthorn 

Group consists of layers of clay, sand beds, carbonate lenses, and phosphorite. The 

Suwannee limestone is a continuous sequence of carbonate rocks with generally high porosity 
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and permeability. The APF is comprised of interbedded limestone, dolomite and deeper beds 

of continuous dolomite that increase in evaporites towards the base.  

1.5.3 Floridan Aquifer System 

The Floridian Aquifer System (FAS) consists of thick carbonaceous units that comprise all or 

part of the Paleocene to Early Miocene series covering an area of 259,000 km2 from southern 

South Carolina, through southeastern Georgia and part of southern Alabama to the entire 

state of Florida (Budd and Vacher, 2004; Williams and Paillet, 2002). The FAS is a continuous 

sequence of carbonate rocks with generally high porosity and permeability. Based on the 

hydrologic properties of the present lithological units, it is divided into the Upper Floridian 

Aquifer (UFA), Intermediate Aquifer System and Lower Floridian Aquifer (LFA) (Scott et al., 

1989). The Upper Floridian aquifer is comprised of the Suwannee and Ocala Limestone as 

well as the APF (Randazzo and Jones, 1997). The upper portion of the APF comprises the 

lower part of the UFA system. The Tampa Member and the lower part of the Arcadia Formation 

of the Hawthorn Group are part of the upper section of the FAS, where it consists of permeable 

carbonate lenses (Randazzo and Jones, 1997). 

 

Fig. 1.5 Lithostratigraphic and hydrogeologic units of Florida defined by Scott et al., (1989). 
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Chapter 2. Literature review 

This literature review encompasses the prominent aspects of molybdenum (Mo) investigation 

within this thesis, including the original sources of Mo in sedimentary rocks and Mo sorption 

onto sorbents in the aquatic environment. It also deals with geochemistry mineralogy and 

various sources of arsenic (As), especially sedimentary As. 

 

2.1 Geochemistry, biochemistry and applications of Mo 

Molybdenum plays unique roles in geochemistry and biochemistry, hence both geochemists 

and biochemists find this trace element interesting. In oxic waters, it is conservative and 

relatively unreactive, and is the most abundant transition metal with a residence time of 

440,000 years (Miller et al., 2011). Under such conditions, Mo is (more likely) slowly removed 

from seawater by manganese oxides (Bertine and Turekian, 1973; Chappaz et al., 2014). In 

contrast, in anoxic/sulfidic (euxinic) settings, Mo is readily removed from solution, such that 

Mo enrichments in sediments are considered diagnostic of reducing depositional conditions 

(Chappaz et al., 2014; Adelson et al., 2002; Tribovillard et al., 2004). Few elements possess 

such bimodal redox behavior in the environment. This unusual chemistry serves as a 

palaeoenvironmental indicator of reducing conditions for sedimentary Mo. 

Biochemically, Mo is a cofactor of enzymes which are essential in plants, animals and for 

human health (Stiefel, 1996). This element is important for the functioning of the enzymes like 

xanthine dehydrogenase, sulfite oxidase, and aldehyde oxidase, which play key roles in 

human metabolism (Momcilovic, 2000; WHO, 2011). It also has potential benefits for patients 

with asthma and sulfite sensitivity. However, chronic occupational exposure has been linked 

to a number of ailments including fatigue, lack of appetite, anorexia, joint pain, and tremor. 

Exposure to Mo may also give rise to Mo-induced copper deficiency and pneumoconiosis (Cot, 
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2003; WHO, 2011). The chemical state of Mo, route of exposure, and dietary doses of copper 

and sulfur all have a likely impact on its toxicity. Despite the above observations, recognized 

cases of Mo toxicity in humans are rare (Berislav, 1999; Cot, 2003). In considering these 

human health problems, the World Health Organization (WHO, 1993) recommended 70 μg/L 

as a guideline for Mo concentrations in drinking water. 

Molybdenum has seven stable isotopes including:  92Mo, 94Mo, 95Mo, 96Mo, 97Mo, 98Mo and 

100Mo with relative abundances ranging from 9.5 to 24.13% (Fig. 2.1). Thus, from an analyst’s 

perspective, Mo offers both an unusually large mass spread as well as a number of options 

for isotope ratio determination. Combined with rich redox chemistry and covalent-type 

bonding, both of which tend to drive isotope fractionation, these factors make the Mo isotope 

system a particularly promising target for stable isotope investigation (Moore et al., 1974). 

 

Fig. 2.1 Average natural abundances of the stable isotopes of Mo. 

Molybdenum is a component of steel alloys and welding rods and it is used as an additive in 

lubricants, as a corrosion inhibitor and in the manufacture of tungsten, pigments and ceramics. 

It is added to cast iron for hardness control at concentrations of 250 to 450 mg/kg (Morrison 

et al., 2006). It is also used in agriculture to counteract Mo deficiency in crops (WHO, 2011). 
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Therefore, Mo can be distributed in the environment as a result of industrial or agricultural 

contamination. It can also be circulated due to fossil-fuel combustion, leaching from fly ash 

and release from mine wastes (Morrison and Spangler, 1992). 

 

2.2 Natural reserves of Mo 

The average concentration of Mo in the Earth’s crust, as well as in igneous and sedimentary 

rocks can be seen in Table 1.1 (Taylor and McLennan, 1985). Being a chalcophile element, it 

is found mainly as molybdenite (MoS2). Other natural mineral forms of Mo include wulfenite 

(PbMoO4), powellite (CaMoO4) and ilsmannite (Mo3O8). Approximately 95% of the world’s Mo 

and 60% of the world’s Cu are sourced from porphyry copper deposits (Hollister, 1978). 

Compared to the hundreds of porphyry copper deposits existing worldwide, climax-type 

porphyry Mo deposits are extremely rare. A total of thirteen deposits are known, all in western 

North America, ranging in age from Late Cretaceous to mainly Tertiary. The deposits are of 

relatively high grades (typically 0.1 to 0.3% Mo) and may be very large, typically 100 to 1,000 

million tons (Clark, 1972; Hollister, 1978). Molybdenum, as MoS2, is the primary commodity in 

all known deposits. The known resources of Mo amount to about 5.4 million tons of Mo in the 

United States and about 13 million tons in the rest of the world (Taylor et al., 2012). In addition 

to the occurrence and accumulation of Mo as a mineral deposit and its anthropogenic sources, 

it concentrates in sedimentary rocks which underwent sulfidic conditions especially in the 

presence of organic matter (OM) (Adelson et al., 2002; Bostick et al., 2003; Campillo et al., 

2002; Chappaz et al., 2014; Das et al., 2007; Erickson and Helz, 2000; Helz et al., 1996; 

Kaback and Runnells, 1980; Riboulleau et al., 2000; Tribovillard et al., 2004; Vorlicek, 2004; 

Zheng et al., 2000). Although sedimentary Mo is not a considered Mo resource, it has the 

potential of contaminating aqueous environments (Pichler and Mozaffari, 2015). Therefore, 



CHAPTER 2: LITERATURE REVIEW 

15 

 

geochemical processes controlling the leaching of Mo from sedimentary rocks into the aquifer 

matrix, groundwater and agricultural soils need to be researched. 

Table 2.1: Molybdenum concentration (mg/kg) in different rock types (Taylor and McLennan, 

1985).  

Upper crust     Granite     Basalt     Shale     Sandstone     Limestone     Amphibolite, Granolite 

       1.5                1            1.5         2.6             0.2                  0.4                     1.5 - 2.9 

 

 

2.3 Importance of Mo in the biogeochemical cycle of nitrogen 

Nitrogen is an essential component of all biopolymers such as amino acids, proteins and 

nucleic acids. Molybdenum plays a crucial part in trapping and fixing N2 in biopolymers. 

Although N2 accounts for roughly 80% of the earth’s atmosphere, and nitrate is relatively 

abundant in seawater, ammonia is the only nitrogen form that can be assimilated into biomass 

directly. Therefore, the reduction of dinitrogen and nitrate to bioavailable ammonia, catalyzed 

by nitrogenase and nitrate reductase, is critical in the biological system (Kasper, 1983). 

Molybdenum is an essential and constitutive part of the active centers of these enzymes. As 

show in Fig. 2.2, the biogeochemical cycle of nitrogen generally includes several metabolic 

pathways including: 1) nitrogen fixation, 2) denitrification, 3) nitrification, 4) assimilation 5) 

dissimilatory nitrate ammonification, and 6) anaerobic ammonia oxidation (anammox). A large 

family of Mo enzymes is also involved in heterocyclic metabolism (Philippot and Hojberg, 

1999). For instance this element is necessary for the fixation of atmospheric nitrogen by 

bacteria at the start of protein synthesis. 
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Fig. 2.2 Molybdenum and its roles in the biogeochemical cycle of nitrogen (modified after 

Einsle and Kroneck, 2004). 

Considering the small quantity of Mo in the continental crust (Table 2.1), the question that 

arises is from where the Mo required for N2 fixation comes from. Tannins in plants play an 

important role in accumulating Mo in the outset layer of the soil in the Earth’s surface. The 

binding of Mo to insoluble tannins should significantly slow down the leaching rate of highly 

soluble molybdate, allowing Mo accumulation in topsoil layers, thereby forming an important 

reservoir of Mo accessible to N2-fixing bacteria. Mo which is present in the deep soil horizons 

is extracted by the root network of trees, and is incorporated in leaves. When the senescent 

leaves fall to the ground, they provide a Mo-enriched environment for N2-fixing bacteria living 

in the upper soil horizon (Kraus et al., 2003; Marks et al., 2015; Wichard et al., 2009). Despite 

its importance for N2  fixation in nature, Mo appears to be toxic if its concentration in the 

aqueous environments exceeds the WHO guideline of 70 μg/L (WHO, 2011). It should be 

noted that the concentration of Mo in plants should not be higher than 5 mg/kg (Goldberg et 

al., 2009; Kaspar, 1983). 
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2.4 Molybdenum geochemistry in marine environments 
 

The hydrogeochemical behavior of Mo has an exclusive potential to track paleodepositional 

conditions (Mongenot et al., 1996). Therefore, its geochemistry has been extensively studied 

over the last four decades (Bertine and Turekian, 1973; Goldberg et al., 1996; Erickson and 

Helz, 2000; Adelson et al., 2002; Bostick et al., 2003; Goldberg, 2010; Helz et al., 2011; 

Chappaz et al., 2014; Pichler and Mozaffari, 2015). The average crustal value for Mo in 

sedimentary rocks, which were deposited under oxic conditions, is 1 to 2 ppm (Wolthers et al., 

2005); in anoxic/sulfidic sediments, it is up to 825 mg/kg (Lyons et al., 2003; Mitry et al., 1999; 

Pichler and Mozaffari, 2015). Table 2.2 shows the concentration of Mo in different sedimentary 

rocks and soils. 

2.4.1 Molybdenum behavior in oxic conditions 

The dominant species of Mo in oxic seawater is the molybdate, MoO4
2-, with a modern 

seawater concentration of about 10 μg/L (Morford and Emerson, 1999). It is a conservative 

trace element and the most abundant transition metal in the modern ocean, with a residence 

time of 440,000 years (Miller et al., 2011). Despite the stability of molybdate in solution, Mo 

can be enriched up to 1000 mg/L in oxic sediments (Bertine and Turekian, 1973). In this 

environment, Mo can be adsorbed onto iron oxyhydroxides and manganese oxides (Crusius 

et al., 1996; Goldberg et al., 2009). Ferromanganese crusts and nodules are probably not the 

dominant sinks themselves because these sediments accumulate very slowly. Molybdenum 

which is associated with Mn oxides in widely disseminated pelagic sediments may be 

quantitatively more important, although Mo enrichment in pelagic sediments are relatively 

small (Anbar, 2004). 
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2.4.2 Molybdenum enrichment in anoxic/sulfidic conditions 
 

It has been revealed that Mo is systematically more enriched relative to the other redox-

sensitive/sulfide forming elements such as U, V, Ni, Cu, Zn, and Cr (Adelson et al., 2002; 

Chappaz et al., 2014; Erickson and Helz, 2000; Glass et al., 2013; Zheng et al., 2000). It is a 

known indicator of reducing depositional conditions and by using this element, it is easier to 

characterize paleoredox conditions (Adelson et al., 2002; Brumsack, 2006; Erickson and Helz, 

2000). In reducing environment, Mo(VI) is reduced to Mo(IV) and is released into the pore 

water as a result of the reductive dissolution of Mn and Fe in anoxic/sulfidic waters and fixed 

with iron sulfide and/or OM (Chappaz et al., 2014; Dahl et al., 2013; Glass et al., 2013; Helz et 

al., 2011; Helz et al., 1996; Lyons et al., 2003; Tribovillard et al., 2008; Tribovillard et al., 2004). 

There are several models for Mo enrichment in anoxic/sulfidic sediments: 

1. Manganese (Mn) redox cycling has the potential to concentrate MoO4
2- at the sediment-

water interface. In cases where anoxia zone extends upward into the water column, Mn2+ 

oxidizes just above the chemocline to particulate MnOx (solid). The particulate Mn settles in 

the anoxic waters, and redissolved Mn2+ diffuses back through the chemocline, thus 

completing a redox cycle. The concentrated molybdate at the water-sediment interface is fixed 

by OM and/or pyrite (Adelson et al., 2002). 

2. Another model suggests that Mo fixation in the presence of dissolved sulfide does not simply 

result from MoS2 or MoS3 formation, but instead mineralization occurs through organic 

thiomolybdates and inorganic Fe–Mo–S cluster complexes, possibly occurring as solid-

solution components in Fe sulfides (Helz et al., 1996). Helz et al., (1996) introduced the 

concept of a geochemical switch, which transforms Mo from a largely conservative element to 

a particle-reactive species in marine depositional environments. The oxygen atoms in MoO4
2- 

are susceptible to replacement by soft ligands, such as S donors. According to Erickson and 

Helz et al., (2011) and Helz et al., (1996), a key step in this inorganic pathway is the reaction: 

MoO4
2-→thiomolybdates (MoOxS4

−x, x=0–3), which is a reactive particle and is thus prone to 
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scavenging. The sulfide activation of the switch depends on the ∑H2S activity (Erickson and 

Helz, 2000; Zheng et al., 2000). Because each successive sulfidation reaction is about one 

order of magnitude slower than the previous one, thiomolybdate equilibria might not be 

achieved in seasonally or intermittently sulfidic waters (Erickson and Helz, 2000). Persistently, 

sulfidic conditions appear to be necessary. In the sediments, the transformation reactions are 

catalyzed by proton donors or in the presence of some active-surface minerals such as 

kaolinite (Erickson and Helz, 2000; Vorlicek, 2004). Once the thiomolybdate switch has been 

achieved, Mo is scavenged by forming bonds with metal-rich (notably Fe) particles, sulfur-rich 

organic molecules (Helz et al., 1996; Tribovillard et al., 2004) and iron sulfide (Vorlicek, 2004). 

The work of Helz et al., (1996) also suggested the formation of compact, monocrystalline Fe–

Mo–S cluster compounds that are capable of surviving over geologic time periods.   

3. Chappaz et al., (2014) introduced a model, which describes Mo fixation in the reducing 

environment by OM and pyrite. Based on this model, first Mo co-precipitates as Fe-Mo-S 

leading to the formation of Fe5Mo3S14 in the water column. After Mo reduction in the water-

sediment interface, it is fixed by OM. They argued that the dominant source for Mo in 

sedimentary rocks is OM, not pyrite. The correlation between Mo and OM in six different sites 

including 1) Cariaco Basin, 2) Posodonia Shale, 3) Doushantuo Formation, 4) Mount McRae 

Shale, 5) Transvaal Super group F, and 6) Transvaal Super group P was much stronger than 

that between Mo and pyrite (Chappaz et al., 2014; Lyons et al., 2003). Organic matter plays a 

powerful role in fixing and retaining Mo in a long-term sequestration. Molybdenum enrichment 

was positively correlated to an amount of sulfurized OM but not to pyrite abundance. However, 

pyrite could act as an initial trap, prior to Mo uptake by OM that is sulfurized after the pyritization 

step (Tribovillard et al., 2004). 
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2.5 Molybdenum in groundwater 

The concentration of Mo in groundwater is often insignificant but depending on the aquifer 

matrix, lithology of the surrounding environment and anthropological contamination (related to 

urban, commercial, industrial, and mining activities), it may be very high locally and exceed the 

WHO guidelines of 70 μg/L. The mobilization of Mo under neutral and basic conditions is more 

prominent than under acidic conditions (Goldberg et al., 2009; Gustafsson, 2003). Under 

neutral or basic conditions, molybdenite (MoS2) is weathered and oxidized. In acidic 

environments, molybdenite is stable or Mo in solution is immobilized by the precipitation of iron 

molybdate. Under neutral conditions, Mo is expected to be released into solution, where the 

oxidation of molybdenite occurs, leading to the formation of molybdate oxyanions (Bostick et 

al., 2003; Takeno, 2005). Molybdate predominates in solutions having pH values above 4. The 

stability diagrams of Mo are shown in Fig. 2.3. 

 

Fig. 2.3 Eh-pH diagram for aqueous and solid species of Mo (modified after Takeno, 2005). 
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2.5.1 Molybdenum sorption 

Metal contaminants can be removed from the solutions by sorption onto the solid phases 

present in the system. The term sorption is defined by some authors either as adsorption or 

absorption. Adsorption typically refers to the accumulation of atoms or molecules of solutes, 

gases or vapor (sorbates) on a solid surface (sorbent), while absorption is defined as sorption 

in the internal region of a porous media. Sorption to surfaces may occur by physical binding 

forces (van de Waals force), by chemical bonding (Coulomb force) or by hydrogen bonding 

(Merkel et al., 2005). 

The surface sites of minerals have a pH-dependent charge, which mainly controls the surface 

sorption behavior. For every mineral, there is a pH at which the positive and negative charges 

(caused by protonation and deprotonation) become equal and hence have a surface charge 

of zero. This pH is called point of zero charge (PZC). For instance, the PZC for quartz is 2, for 

kaolinite it is about 3.5, for goethite, magnetite and hematite, it is between 6 and 7, and for 

corundum, it is 9.1 (Drever, 1988). Table 2.3 presents the mineralogical PZC and specific 

surface area data for some oxides, pyrite and clay minerals. Further information about the PZC 

of metal oxides and related materials can be found in Kosmulski (2002). 
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Table 2.3: Specific surface area (m2/g) and point of zero charge (PZC) for the oxides, pyrite and 

clay minerals. 

Solid                  Surface area  PZC Reference 

          

Amorphous Fe oxide 222.7 7.23 Goldberg et al., 1996 

Amorphous Fe oxide 120  Qi and Pichler, 2014 

Amorphous Fe oxide 750 8.1 Gustafsson, 2003 

Hematite  10.9 7-9.5 Kosmulski, 2002 

Hematite  30-90  Cornell et al., 1987 

Goethite  63.1 8.82 Goldberg et al., 1996 

Poorly crystalline goethite 148.8 7.83 Goldberg et al., 1996 

Aluminium oxide  102.9 9.3 Goldberg et al., 1996 

Gibbsite  56.5 9.41 Goldberg et al., 1996 

Amorphous anoxide 209.9 9.3 Goldberg et al., 1996 

Calcite 22 8-9.5 Somasundaran and Agar, 1967 

KGa-1 kaolinite 9.14 2.88 Goldberg et al., 1996 

KGa-2 kaolinite 19.3 2.93 Goldberg et al., 1996 

SWy-1 montmorillonite 18.6  Goldberg et al., 1996 

SAz-1 montmorillonite  48.9  Goldberg et al., 1996 

STx-1 montmorillonite  70.3  Goldberg et al., 1996 

IMt-1 illite 24  Goldberg et al., 1996 

Anatase 7.39 6.15 Weng et al.,1997 

Mn oxide (birnessite)  7.3 269 Matern and Mansfeldt, 2015 

Pyrite 41.7 6.4 Borah and Senapati, 2006 
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Surface complexation can be defined as inner-sphere complexes in which the ions are directly 

bound to the surface of the solid phase and outer-sphere complexes in which a hydration layer 

covers the ions (Borah and Senapati, 2006; Cornell et al., 1987; Kosmulski, 2002; 

Somasundaran and Agar, 1967; Weng et al., 1997). In an inner-sphere complex, a cation can 

also be sorbed on a positively charged surface and complexes are tied much stronger 

(Goldberg et al., 2009; Matern and Mansfeldt, 2015; Merkel et al., 2005; Qi and Pichler, 2014). 

The most common and useful models are the constant capacitance model (CCM) (Schindler 

and Gamsjäger, 1972), the triple layer model (Davis et al., 1978), multi-site approaches 

(Hiemstra et al., 1989) and the generalized two-layer model (Dzombak and Morel, 1990). The 

generalized two-layer model is developed as two-layer model and the diffuse layer model 

(Dzombak and Morel, 1990). The generalized two-layer model explains the sorption of ions as 

a chemical reaction on a specific surface site of an oxide mineral. This surface reaction might 

be a proton exchange (acid-base), cation or anion binding via ligand exchange on surface 

hydroxyl sites. This is a simple model which can account qualitatively and quantitatively for all 

available model-constraining experimental data (Dzombak and Morel, 1990). 

One of the main factors controlling the distribution of Mo in natural environments is its sorption 

on soil and sediment. The adsorption of Mo on adsorbents is a function of pH and the 

geochemical composition of groundwater (Stollenwerk, 1998). The significant sorption sites in 

the aquatic environment for Mo include hydrous ferric oxide (HFO) (Goldberg et al., 1996; 

Gustafsson, 2003), pyrite (Bostick et al., 2003; Xu et al., 2006), Fe and Al oxides, clay minerals 

(Goldberg, 1985, 2010), calcite (Goldberg et al., 1996), anatase (Prasad Saripalli et al., 2002) 

and OM (Bibak and Borggaard, 1994). 

2.5.1.1 Molybdenum sorption on hydrous ferric oxide and goethite 
 

The sorption of molybdate by soils involves anion exchange, primarily with surface hydroxyl 

groups found in the mineral part of the soil, especially those pertaining to the oxides and 

hydrous oxides of aluminum and iron (Dzombak and Morel, 1990; Goldberg et al., 1996; 
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Kaback and Runnells, 1980). Hydrous ferric oxide is one of the main adsorbents in the oxic 

environment. The adsorption of molybdate by adsorbents including HFO is a function of several 

chemical factors, including the Mo concentration in solution, the pH of the solution, the 

concentration of the competing anion and the adsorbent concentration in the aquifer matrix. 

The adsorption of Mo on HFO is maximum at low pH extending to a pH of about 4 to 5 

(Goldberg et al., 1996; Gustafsson, 2003; Stollenwerk, 1998). Mo adsorption on an aquifer 

matrix including HFO decreases with increasing Mo solution concentration (Stollenwerk, 

1998). Anions such as phosphate, arsenate and to a lesser extent, sulfate compete with 

molybdate for adsorption sites (Gustafsson, 2003; Stollenwerk, 1998). Gustafsson et al., 

(2003) showed that Mo adsorption in the presence of phosphate shifted by 2 units to the left 

on the pH scale. However, the percentage of its adsorption at low pH (< 4) is still over 90%. 

These results are similar to those of Goldberg et al., (1996). As expected, surface sites 

availability plays a critical role in Mo adsorption.  

Molybdenum adsorption on goethite is a function of pH. Maximum Mo adsorption was recorded 

at low pH of 4 to 5. Adsorption decreases rapidly from pH 5 to 8 with little adsorption occurring 

at pH above 8. Molybdate reacts with the protonated sites of goethite but not with the neutral 

site. Since the PZC of goethite is about 8.4, goethite surfaces are positively charged, between 

pH 4 and 8 (Zhang and Sparks, 1989). Depending on the crystallization of the goethite, its PZC 

charge ranges from 7.83 to 8.82. Poorly crystalline goethite has a higher surface area (148.8 

m2/g) but lower PZC (Goldberg et al., 1996). Ionic strength dependence of adsorption has been 

used to indirectly distinguish between inner- and outer-sphere adsorption mechanisms for both 

cations and anions (Hayes and Leckie, 1987; Hayes et al., 1988). Ions showing little ionic 

strength dependence of adsorption form strong inner-sphere surface complexes; ions showing 

marked ionic strength dependence are considered to be weakly adsorbed as outer-sphere 

surface complexes. In a study by Hayes et al., (1988), Mo showed little ionic strength 

dependence on goethite and this was taken as an evidence for the inner-sphere surface 
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complexation. Zhang et al., (2000) showed that the effect of ionic strength on Mo adsorption 

onto goethite was minor and similar results were obtained by Hayes et al., (1988). 

2.5.1.2 Molybdenum sorption on iron, aluminum, titanium, and manganese oxides 
 

The mobility of Mo in soils and sediments depends on several factors including soil mineralogy, 

pH and anion competition (Bostick et al., 2003; Goldberg et al., 1996; Gustafsson, 2003; 

Manning and Goldberg, 1996). Studies by Ferreiri et al. (1985) showed that Mo adsorption on 

oxides increased from pH 2 to 4, exhibited a peak near pH 4, and decreased with increasing 

pH above 4. The decrease in adsorption occurred at pH above 4 more rapidly for Al oxides 

than for Fe oxides (Ferreiro et al., 1985). The mechanism of Mo adsorption on Al and Fe oxides 

was suggested to be ligand exchange with surface hydroxyl ions (Ferreiro et al., 1985; 

Goldberg et al., 1996). Ligand exchange is a mechanism by which ions become specifically 

adsorbed as inner-sphere surface complexes. Inner-sphere surface complexes contain no 

water molecules between the adsorbing ion and the surface functional group (Sposito, 1984). 

The PZC of variable charged minerals shifts to a more acidic pH value, following the specific 

adsorption of anions. Molybdenum adsorption lowers the PZC of goethite, indicating specific 

adsorption. By studying the effects of ionic strength on anion adsorption, Hayes et al., (1988) 

were able to distinguish between inner- and outer-sphere surface complexes. Outer-sphere 

surface complexes contain at least one water molecule between the adsorbing ion and the 

surface functional group (Sposito, 1984). Hayes et al., (1988) suggested that since selenite 

showed little ionic strength dependence in its adsorption behavior, it was specifically adsorbed 

on goethite in an inner-sphere surface complex. 

Hematite: Mo adsorption onto hematite is a function of initial concentration of Mo, pH, contact 

time and ionic strength (Das and Jim Hendry, 2013; Ferreiro et al., 1985; Goldberg et al., 1996). 

The mentioned studies showed that the maximum adsorption of Mo on hematite occurred at 

pH 4, and dropped significantly as the pH increased beyond the maximum, thus demonstrating 

high sensitivity of sorption to pH changes. Because of the PZC of hematite (7.5) at low pH, the 
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surface of hematite has a net positive charge that would attract HMoO4
- and MoO4

2- ions, 

thereby causing adsorption by electrostatic attraction. However, as the pH increases, the 

portion of positively charged surface sites on hematite decreases, increasing repulsion of 

anionic Mo species, and reducing adsorption. Under these conditions, Mo adsorption does not 

occur through electrostatic interaction, but through specific chemical interaction between the 

negatively charged hematite surface and Mo ions (Goldberg, 2010; Goldberg et al., 1996). 

Gibbsite: Molybdenum adsorption on gibbsite has been investigated by many researchers 

(Ferreiro et al., 1985; Goldberg et al., 1996; Manning and Goldberg, 1996). Goldberg et al., 

(1996) conducted experiments and concluded that there was maximum Mo adsorption on Al 

oxides at low pH of about 4 to 5. At pH above 5, adsorption decreased rapidly with adsorption 

occurring at pH above 8. Molybdenum adsorption was higher, having a higher specific surface 

area and lower crystallinity. These results are similar to those of Ferreiro et al., (1985). 

Manganese oxide: Anbar (2004) showed that authigenic Mo concentration of 100 to 1000 

mg/kg in oxic sediments, correlated well with Mn oxides, most likely reflecting the removal of 

Mo from the oceans by adsorption on and/or coprecipitation with Mn oxide phases. Birnessite 

is one of the most common Mn oxides in soils. It has a large specific surface area (269 m2/g) 

and its PZC is 7.3 (Matern and Mansfeldt, 2015). Matern and Mansfeldt (2015) conducted a 

series of batch expriments to determine Mo adsorption to birnessite and found that the amount 

of adsorbed molybdate was strongly dependent on pH and time. It reached equilibrium roughly 

after three days and the maximum adsorption of molybdate occurred at pH 3. 

Anatase: Molybdate adsorption onto TiO2 is strongly governed by pH of the solution and 

surface loading. Under acidic conditions, the sorption of Mo was higher than 95% and constant, 

whereas under neutral to alkaline conditions, there was a significant decrease in Mo uptake by 

anatase (Prasad Saripalli et al., 2002). The edge of adsorption happened approximately at pH 

6.5 (Prasad Saripalli et al., 2002), which is close to the PZC (6.15) of TiO2 (Weng et al., 1997). 
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2.5.1.3 Clay minerals 
 

Molybdenum adsorption on clay minerals exhibited a peak close to pH 3 and decreased rapidly 

with increasing pH until the adsorption was virtually zero close to pH 7 (Goldberg et al., 1996; 

Jones, 1957; Motta and Miranda, 1989). The relative adsorption on clay minerals increased in 

the order: illite < kaolinite < kaolinite and montmorillonite < nontronite < metahalloysite (Jones, 

1957; Motta and Miranda, 1989). Goldberg et al., (1996) concluded that the magnitude of Mo 

adsorption increased in the following order: kaolinite < illite < montmorillonite. However, it is 

difficult to compare the adsorption affinity per unit mass or per unit surface area, since the 

suspension density varies between adsorbents of different experiments. 

For Mo adsorption on kaolinite, the PZC of kaolinite is shifted to a more acidic pH value by 

changing the amounts of ionic strength, indicating an inner-sphere adsorption mechanism for 

Mo on these surfaces. Adsorption may occur through a variety of mechanisms, including 

adsorption on the outer or inner-sphere complexes and precipitation. Outer-sphere adsorption 

is a weak electrostatic attraction between an ion and the surface. Goldberg et al., (1996) 

reported that inner-sphere adsorption occurred through the formation of one or more chemical 

bonds between the surface and the adsorbate. 

2.5.1.4 Pyrite 
 

The scavenging of Mo in the oceans occured primarily in anoxic/sulfidic basins where Mo was 

sorbed by sulfide minerals including pyrite (Chappaz et al., 2014; Helz et al., 1996). Molybdate 

and tetrathiomolybdate (MoS4
2-) are two major Mo species in this environment; their adsorption 

on pyrite was shown to be a function of ionic strength and pH (Bostick et al., 2003; Xu et al., 

2006). Both MoO4
2- and MoS4

2- adsorption are impacted by increasing ionic strength; MoO4
2- 

adsorption is affected by the addition of salt at all concentrations, while MoS4
2- adsorption is 

unaffected except at low ionic strength. Generally, changes in ionic strength affect outer-

sphere complexes; therefore implying that a portion of adsorbed MoO4
2- and MoS4

2- is present 
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as an outer-sphere complex or at least as a labile complex. Maximum molybdate adsorption 

occurs at pH 5 and 6 and then adsorption decreases sharply as the pH increases. 

2.5.1.5 Organic matter 
 

Under anoxic/sulfidic (euxinic) conditions, marine sediments including limestone are known to 

incorporate Mo into OM and pyrite (Adelson et al., 2002; Brumsack, 2006; Chappaz et al., 

2014; Dahl et al., 2013; Helz et al., 1996; Kaback and Runnells, 1980; Pichler and Mozaffari, 

2015; Tribovillard et al., 2004; Vorlicek, 2004; Zheng et al., 2000). However, in comparison to 

pyrite, the dominant source of Mo in sedimentary rocks is OM (Chappaz et al., 2014). The 

correlations between Mo and OM in six different sites studied were much stronger than those 

of Mo and pyrite (Chappaz et al., 2014; Lyons et al., 2003). 

The adsorption of Mo from aqueous solutions was determined for eight different soil types from 

the Atlantic Coastal Plain and Piedmont regions by Karimian and Cox (1978). The data 

followed the Freundlich isotherm more consistently than Langmuir. Adsorption increased as 

the organic matter and/or Fe oxide contents of the soils increased (Karimian and Cox, 1978). 

Wichard et al., (2009) used x-ray spectroscopy to examine the chemical speciation of Mo in 

soil samples from forests in Arizona and New Jersey. They concluded that in the leaf litter 

layer, most of the Mo formed strong complexes with plant derived tannins and tannin-like 

compounds; Mo was bound to these organic ligands across a wide pH range. In deeper soils, 

Mo is bound to both iron oxides and natural organic matter. Molybdenum bound to OM can be 

captured by small complexing agents that are released by nitrogen-fixing bacteria; the Mo can 

then be incorporated into a nitrogenase (Wichard et al., 2009). Bibak et al., (1994) conducted 

batch experiments and concluded that Mo adsorption on humic acids was a function of pH. Its 

adsorption envelope decreased sharply from its maximum at pH 3.5.  
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2.5.2 Competitive impacts of anion effect on Mo adsorption 

Roy et al., (1986) showed that the mobility of Mo in aquifers depends on several factors 

including sediment characteristics, and the presence of other oxyanions that compete with Mo 

for the surface sites of the sorbents. 

Phosphate: phosphate (PO4
3-) concentration affects MoO4

2- adsorption, although PO4
3- and 

MoO4
2- form inner-sphere surface complexes (Ferreiro et al., 1985; Goldberg, 2010; 

Gustafsson, 2003). Roy et al., (1986) showed that the adsorption of molybdate was noticeably 

reduced by the competitive adsorption of phosphate on the surfaces of clay minerals. It has 

been revealed that molybdate transport in groundwater was retarded by sorption, depending 

on the pH and phosphate concentration in the water (Diels and Vanbroekhoven, 2008). 

Gustafsson et al., (2003) demonstrated that sorbed P reduced Mo sorption in soils, especially 

at high P levels. Stollenwerk (1998) observed that a lesser quantity of MoO4
2- was adsorbed 

from sewage-contaminated groundwater than from uncontaminated groundwater, mostly 

because of the competition for surface sites exerted by PO4
3-. Phosphate exhibited a highly 

competitive behavior towards adsorption of MoO4
2- and MoS4 

2− onto goethite and pyrite (Xu et 

al., 2006). 

Sulfate: Sulfate formed outer-sphere adsorption complexation on goethite, while molybdate 

formed inner-sphere adsorption complexation; therefore, sulfate did not show significant 

competition effect on Mo adsorption onto goethite (Xu et al., 2006). Goldberg (2010) showed 

that sulfate formed inner- and outer-sphere complexes on the aluminum oxide but its 

concentration did not affect Mo adsorption. Molybdate adsorption onto gibbsite was not 

impacted by sulfate, but the adsorption of sulfate was significantly inhibited by molybdate (Wu 

et al., 2000). 

Tungstate and Vanadium: Vanadium (V), Mo and tungsten (W) were adsorbed strongly at 

pH 4 by kaolin, and decreased sharply reaching zero at pH 6.5. When V, Mo, and W were 
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added simultaneously, the adsorption curves showed that adsorption of Mo(VI) predominated 

at pH 4, whereas W(VI) and V(V) predominated at pH 5 to 6 and pH over 6.5, respectively 

(Mikkonen and Tummavuori, 1993). Mikkonen and Tummavuori (1993) conducted further 

research on the effect of adsorption of V, Mo, and W on the release of phosphate to the 

aqueous phase. Experimental results showed that the retention of W and Mo is greatest for 

the most acidic samples (around pH 4), and adsorption of molybdate occurs faster than 

vanadate and tungstate. Furthermore, in addition to the fact that phosphate can displace 

adsorbed molybdate, it can also be displaced by high amounts of other specifically adsorbed 

anions such as V, Mo, and W in the pH range of 2.5 to 7.5. The affinity of tungstate for the 

goethite surface was greater than that of molybdate (Xu et al., 2006). 

Other anions: Some other anions showed little effect on Mo adsorption, e.g. arsenate 

adsorption onto clay minerals (Goldberg and Forster, 1998), selenite adsorption onto y-Al2O3 

(Wu et al., 2001), and silicate onto goethite and pyrite (Xu et al., 2006). 

 

2.6 Sedimentary arsenic 

Elemental As is a member of group 15 of the periodic table, together with nitrogen, phosphorus, 

antimony and bismuth. It has an atomic number of 33 and an atomic mass of 74.91. Arsenic is 

a ubiquitous element found in the atmosphere, soils and rocks, natural waters and organisms.  

Arsenic in rocks and sediments: The concentration of As in sedimentary rocks typically lies 

within the range of 1 to 10 mg/kg (Li, 2000; Taylor and McLennan, 1985), i.e, slightly above 

average terrestrial abundance. On average, sediments are more enriched in As than igneous 

rocks. Sands and sandstones tend to have the lowest concentrations, reflecting the low As 

concentrations of their dominant minerals including quartz and feldspar. Average concentration 
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of As in sandstone is about 4 mg/kg, although Ure and Berrow (1982) reported a lower average 

of 1 mg/kg. 

Arsenic is found in coal; coals from south-western China were reported to contain as high as 

826 to 2,578 mg/kg (Nriagu et al., 2007) and up to 32,000 mg/kg was reported by Wang et al., 

(2006). In Germany, the As content of bituminous shale ranged from 100 to 900 mg/kg 

(Smedley and Kinniburgh, 2002). The As contents of American coal were reported to be up to 

2,200 mg/kg (Wang et al., 2006), but the mean concentration of more than 7000 samples was 

24 mg/kg. Pyrite is the main source of As in coal with high As contents, whereas in coals with 

lower As, the As tends to be associated with organic materials (Yudovich and Ketris, 2005). 

Argillaceous deposits showed a broader range and higher average As concentration than 

sandstone, typically an average of about 13 mg/kg (Ure and Berrow, 1982). The higher values 

reflect the larger proportion of sulfide minerals, oxides, OM, and clay. Black shale typically has 

highest As concentrations principally because of its enhanced pyrite content. Marine 

argillaceous deposits have higher concentrations than non-marine deposits. This may also be 

a reflection on the grain-size distributions, with potential for a higher proportion of fine materials 

in offshore pelagic sediments as well as systematic differences in sulfur and pyrite contents. 

Marine shale tends to contain higher sulfur concentrations. Sediment provenance is also an 

important factor. Particularly, high As concentrations were measured in shales from mid-ocean 

settings (Mid-Atlantic Ridge average of 174 mg/kg). In this case, Atlantic Ridge gases may be 

the source of As. Carbonate rocks typically have low concentration, reflecting the low 

concentrations of the constituting minerals (approximately 3 mg/kg) (Ure and Berrow, 1982). 

Some of the highest observed As concentration, often several thousand mg/kg, are found in 

ironstone and Fe-rich rocks. Phosphorites are also relatively enriched in As (values up to 

approximately 400 mg/kg have been measured). Concentrations of As in unconsolidated 

sediments are not notably different from those in their indurated equivalents, muds and clays 

having typically higher concentrations than sands and carbonates. Values are typically 3 to 10 
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mg/kg, depending on the texture and mineralogy. Elevated concentrations tend to reflect the 

amounts of pyrite or HFO in the environment; high concentrations are also typically found in 

mineralized areas. Placer deposits in streams can have very high concentrations due to the 

abundance of sulfide minerals. 

Average As concentration in stream sediments in England and Wales were in the range of 5 

to 8 mg/kg (Johnson et al., 2005; Smedley and Kinniburgh, 2001). Similar concentrations have 

also been found in river sediments where groundwater As concentrations were high. Datta and 

Subramanian (1997) found concentrations in sediments from the River Ganges averaging 2 

mg/kg (ranging from 1.2 to 2.6 mg/kg), from the Brahmaputra River averaging 2.8 mg/kg 

(ranging from 1.4 to 5.9 mg/kg) and from the Meghna River averaging 3.5 mg/kg (ranging from 

1.3 to 5.6 mg/kg). They found concentrations in lake sediments ranging from 0.9 to 44 mg/kg 

(median 5.5 mg/kg) but noted that the highest concentrations were present up to a few 

kilometers down-slope of the mineralized areas. The upper baseline concentration of these 

sediments is likely to be about 13 mg/kg. They also found concentrations of 1.9 to 170 mg/kg 

(median 9.2 mg/kg) in glacial till and noted the highest concentrations down-ice of mineralized 

areas. As enrichments were observed to decrease in sediments in both near shore and 

continental-shelf deposits (Legeleux et al., 1994; Peterson and Carpenter, 1986). Legeleux et 

al., (1994) noted an increase in concentration with depth (up to 30 cm) in the continental shelf 

sediments due to the generation of increasingly reducing conditions; concentrations varied 

between sites, but generally increased with depth in the range of 2.3 to 8.2 mg/kg. 

Arsenic in waters: In Wisconsin and Florida, USA, As concentration in groundwater in 

sandstone and limestone aquifers were as high as 100 and 344 μg/L, respectively. Oxidation 

of pyrite hosted by these formations was the likely source of As, the transport of which was, in 

some instances, retarded by its association with Fe oxyhydroxides (Pichler and Mozaffari, 

2015; Thornburg and Sahai, 2004). In Florida, the anthropogenic disturbance of subsurface 

redox conditions in an aquifer containing pyrite as a trace mineral led to significantly elevated 
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As concentrations in groundwater (Price and Pichler, 2006). In the adjacent State of Michigan, 

USA, As concentrations in groundwater reached 220 μg/L in a sandstone aquifer (Haack and 

Rachol, 2000). In Australia, a combination of increased water withdrawals during development 

and declining recharge due to drought caused oxidation of pyrite in sedimentary aquifers, 

resulting in As contamination of water wells (Appleyard et al., 2006). In England, groundwater 

from a sandstone aquifer contained As at concentrations that spanned from 10 to 50 μg/L; the 

As content of the sandstone ranged from 5 to 15 mg/kg. Desorption at pH of about 8 appeared 

to was the mechanism for As release to groundwater (Kinniburgh et al., 2006). Water wells 

completed in a Mesozoic Era sandstone in northern Bavaria also contained As at 

concentrations ranging from 10 to 150 μg/L (Heinrichs and Udluft, 1999), although the minerals 

contributing As were not identified. 

 

2.7 Geochemistry of aqueous As 

Arsenic is mobilized in the environment through a combination of natural processes such as 

weathering reactions, biological activity and volcanic emissions as well as through a range of 

anthropogenic activities (Pichler et al., 2001; Price and Pichler, 2006; Smedley and Kinniburgh, 

2002). Most environmental As problems are due to mobilization under natural conditions, but 

humans have an important impact via mining activities, combustion of fossil fuels, the use of 

As bearing pesticides, herbicides and crop desiccants and the use of As as an additive to 

livestock feed, particularly for poultry.  

Arsenic occurs in nature in two primary forms, inorganic and organic. Inorganic As occurs in 

four oxidation states (-III, 0, +III and +V). Arsenite, As(III) and arsenate, As(V) are the dominant 

forms found in natural waters. Inorganic As is a metalloid widely distributed in the Earth‘s crust 

(Qi and Pichler, 2014). In aquatic systems, As has complex chemistry with oxidation-reduction, 

ligand exchange, precipitation and adsorption reactions, all taking place. Under pE conditions 
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occurring in oxygenated waters, As acid species (H3AsO4
0, H2AsO4

-, HAsO4
2- and AsO4

3-) are 

predominant for the pH ranges encountered in surface and groundwater, although the fully 

dissociated arsenate ion would be rare because very few waters reach a pH higher than 11.5. 

At pE values characteristic for mildly reducing conditions, the fully protonated arsenite species 

(H3AsO3
0) is predominant over a wide pH range (1 to 9). Dissolved arsenite tends to be much 

more mobile than arsenate. Both H2AsO3
- and HAsO3

2- become dominant at higher pH values. 

Organic species of As are predominantly found in food, such as shellfish, and include forms 

such as monomethyl arsenic acid (MMAA), dimethyl arsenic acid (DMAA), and arsenosugars.  

Organic As forms may be produced by biological activity, mostly in surface waters or wetlands, 

but are rarely important. Under sulfidic, mainly neutral to alkaline conditions, As forms 

thioarsenates and thioarsenites which can become the predominant As species (Planer-

Friedrich et al., 2007, 2009). The equilibrium mineral stability of As under different pE and pH 

values exhibits a sequence of stable minerals from fully oxidized As pentoxide to fully reduced 

native As in the presence of 10-4 M total dissolved sulfur. No mineral corresponds with arsenate 

oxide because of its extreme solubility (about 40 g per 100 g of solution). Some divalent cations 

commonly found in surface and groundwater would promote the precipitation of metal 

arsenates that are less soluble. Arsenate is chemically similar to phosphate and may be 

isomorphously substituted and enriched in phosphate minerals (Ferguson and Gavis, 1972). 

Arsenic can be removed from the aqueous solution by sorption and co-precipitation. Clay 

minerals and HFO play an important role in retarding As in the environment. 
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Chapter 3. Chemical fractionation of molybdenum and arsenic 

 

Abstract 

Fractionation of molybdenum (Mo) and arsenic (As) in 10 matrix samples of the Lithia aquifers- 

which were singled out from three drill cores near the Lithia area in Central Florida- was 

determined by sequential extraction procedure (SEP). The samples contained up to 825 mg/kg 

Mo and 144 mg/kg As. The aim of this work was to determine the proportions of Mo and As in 

different forms, in the matrix of Lithia aquifers. The reagents which were used in the SEP 

analysis included sodium acetate (NaOAc), hydroxylammonium chloride (HONH2·HCl) and 

Aqua regia. Concentration of Mo and As was measured by inductively coupled plasma mass-

spectrometry (ICP-MS); analytical quality was controlled by including a replicate and a blank 

in every batch. Blanks contained no detectable amount of the elements in question and 

replicate samples results showed high precision (average standard deviation of 2.8 and 0.86 

for Mo and As, respectively). The SEP results were compared with those obtained by total 

digestion method. The recovery ranged from 88 to 111% for Mo and 75 to 116% for As, and 

the precision (RSD) in the extracts was below 10%. In most samples, up to 90% Mo was 

present in the very soluble fraction (step 1), indicating a major source for Mo. For six samples 

more than 80%, for two samples more than 50% and for the remaining two samples up to 20% 

of Mo was released in this fraction. About 10% Mo was leached during steps 2 and 3, through 

which carbonates, hydrous ferric oxides (HFO) and manganese oxides were dissolved. 

Approximately, 25% Mo was removed in steps 4 and 5, where crystalline iron oxides, pyrite 

and organic matter (OM) were dissolved. Because of the importance of powellite as a possible 

source of Mo and in order to better understand this hypothesis, powellite was precipitated and 

run through the SEP. It was completely dissolved during step 3 through which HFO was also 

dissolved. The results showed that a maximum 4% Mo was released from powellite and HFO. 

In contrast to Mo, As was present in somewhat similar abundances in all of the extraction 

steps, i.e. step 1 (17%), step 2 (11%), step 3 (30 %), step 4 (23 %) and step 5 (18%). Hydrous 
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and crystalline iron oxides which were dissolved in steps 3 and 4 contained the highest As 

concentrations. Arsenic was possibly present as impurity in some minerals like pyrite and 

powellite, and co-precipitated with HFO. 

From the procedure described above, it became clear that Mo is easily mobilized from the 

aquifer matrix. The mobilization of Mo can proceed along several pathways which include 

oxidation of OM, desorption from mineral surfaces, and re-dissolution of powellite. Extraction 

of Mo in step 1 for 3 samples from surficial sediments was relatively low. This could be due to 

following three reasons:  

1. Surficial sediments underwent lower water level fluctuations and less change in physico–

chemical conditions and as a result, lower OM degradation.  

2. Oxygenated waters caused degradation of OM and could lead to the mobilization and 

transport of Mo from the surficial sediments into the deeper aquifers.  

3. Higher concentration of Mo in sources like phospherite, iron oxides and powellite than in 

OM. 

To assess the effect of dissolved oxygen on the easily mobilized Mo and As, 32 aquifer matrix 

samples from the Lithia area and Avon Park Formation (APF) were dissolved in groundwater 

of a well near the Geology Department of the Bremen University and distilled deionized (DDI) 

water. The dissolved oxygen of the groundwater sample was low and relevant for the 

experiments (0.45 mg/L). The experiments for the groundwater samples were conducted 

under a glove box to provide an isolated conditions from the outside atmosphere. The results 

suggested that Mo and As extraction increased with increase in time and equilibrated after 48 

h. The amount extracted when both solutions were used was almost the same after 48 h, 

indicating no oxygen effect on Mo and As desorption from the aquifer matrix.  
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3.1 Introduction 
 

Molybdenum is an important nutrient for a range of biological functions in animals, plants, 

human body and microorganisms (Stiefel, 1996). However, very large doses of Mo can 

damage organisms in terrestrial and aquatic environments (Cornell et al., 1987; 

Krishnamachari KA, 1974; WHO, 1993). Therefore, geochemical processes governing Mo 

leaching from contamination sources and sedimentary rocks into the groundwater resources 

are of significance and need to be addressed.  

Numerous research were conducted to assess the geochemistry of Mo in marine sediments 

(Bertine and Turekian, 1973; Chappaz et al., 2014; Crusius et al., 1996; Glass et al., 2013; 

Helz et al., 1996; Kaback and Runnells, 1980; Lyons et al., 2003; Miller et al., 2011; Tribovillard 

et al., 2008; Werne et al., 2008). However, no attempt has been made to investigate the 

fractionation and mobilization of Mo in/from sedimentary rocks. 

The behavior of the elements in the environment (e.g., bioavailability, toxicity and distribution) 

cannot be reliably predicted on the basis of their total concentration. Chemical speciation is of 

interest in environmental analytical chemistry because the behavior of trace elements in 

natural systems depends on the forms as well as on the amounts available for consumption 

or taking part in chemical reactions. This is often undertaken by single or sequential extraction. 

These procedures involve subjecting a solid sample such as soil or sediment to successive 

attacks with reagents possessing different chemical properties (acidity, redox potential or 

complexing properties). In this study, SEP was carried out for determination of Mo and As in 

sedimentary rocks following the procedure recommended by Pichler et al., (2001). Samples 

subjected to the SEP were from three drill cores (DEP-1, DEP-2 and DEP-3) in the Lithia area. 

The SEP was selected to provide information about soluble phases, adsorption, desorption 

and sulfides/OM which is attributed to the primary and secondary sources of Mo and As in 

sedimentary rocks. In addition, some samples from Lithia area and APF formation were 
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dissolved in groundwater and DDI water to assess the dissolved oxygen effect on Mo and As 

desorption from the aquifer matrix. Molybdenum mineral, powellite (CaMoO4), was also 

synthetically prepared to evaluate how it is dissolved during the SEP.  

 

3.2 Materials and methods 
 

3.2.1 Materials and reagents 
 

All chemicals used in these experiments were of analytical grade, and used without any further 

purification. Distilled deionized water was used to prepare solutions and dilute the samples. 

The reagents which were used in the SEP are listed in Table 3.1.  

Powellite was precipitated by mixing 1 M Ca(NO3)2.4H2O and 1 M Na2MoO4-2H2O solutions 

in equal Ca/MoO4 molar proportions. To test the influence of dissolved oxygen on the weak 

bond of Mo and As, groundwater and DDI water were added to some samples of the Lithia 

area and APF formation and shaken for 48 h. 

3.2.2 Sample selection, preparation and analytical methods 
 

The samples were chosen from DEP-1, DEP-2, and DEP-5 in Lithia area and APF drill cores. 

All the samples were selected based on three criteria including high Mo concentration, high 

As concentration and good geographic representation of the study area. The samples were 

powdered with an agate mortar and pestle which were thoroughly rinsed with ethanol in 

between samples to prevent cross contamination. An electronic scale was used to weigh out 

1 ± 0.005 g of powdered sample by pouring it into 50 mL centrifuge tube for the experiments.  

Fifty mg of each sample were used to measure total content of the elements. The total 

concentrations of major elements were measured by inductively coupled plasma optical 

emission spectrometry (ICP-OES) using an Optima 7300 instrument (Perkin Elmer). Trace 
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elements of Mo and As in different phase of the SEP were determined by using inductively 

coupled plasma mass spectrometry (ICP-MS) using an iCAP-Q instrument (Thermo Fisher). 

The detection limits for Mo and As were 1 and 0.5 μg/L, respectively. 
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3.2.3 Sequential extraction procedure 
 

Step 1. Twenty mL of 1 M NaOAc (at pH 8.1) were added to 1 g of powdered sample in a 50 

mL screw cap centrifuge tube. The contents were shaken for 2 h at room temperature by a 

mechanical shaker operating at 250 RPM. The solutions were centrifuged for 10 min at 4000 

RPM and separated from the solids , decanted into another 50 mL labeled tube, diluted to 50 

mL and was finally prepared for analysis after filtering. The residues were rinsed with 5 mL 

DDI water and centrifuged again, and the washings were discarded. 

Step 2. Another 20 mL of 1 M NaOAc adjusted to pH 5 and were added to the residues of the 

first step and the procedure continued similar to step 1. 

Step 3. Twenty mL of a freshly prepared 0.5 M HONH2·HCl in 0.25 M of HCl were added to 

the residues of the second step, capped and shaken for 5 to 10 seconds. The samples were 

then placed in a hot block at 60°C for 2 h with the cap loosened. Every 30 min interval, the 

caps were tightly closed and the contents were shaken for 5 to 10 seconds. The samples were 

then centrifuged and the extracts were separated as described above. 

Step 4. Thirty mL of 1 M HONH2·HCl in 0.25% HOAc were carefully added to the residues of 

the third step, capped and shaken for 5 to 10 seconds. Then, the samples were placed in the 

hot block at 90°C for 3 h, capped and the contents were shaken every 20 min. The samples 

then centrifuged for 10 min, the supernatant liquids were decanted in 50 mL centrifuge tubes 

and topped up to 50 mL and filtered. The residues were rinsed with 5 mL 25% HOAc and the 

washings were discarded. 

Step 5. Six mL HCl and 2 mL HNO3 (8 mL Aqua regia) were added to the residues of the forth 

step, capped and shaken for 5 to 10 seconds. The samples were placed in the hot block for 3 

h and the contents were shaken for 5 to 10 seconds every 30 min. The liquid supernatants 
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were separated after centrifuging samples for 10 min, transferred to 50 mL centrifuge tube, 

and finally prepared for analysis after filtering. 

3.2.4 Powellite precipitation 
 

Powellite (CaMoO4) was precipitated to test its behavior during the SEP. It  was  prepared by  

the same general procedure described by Andrew et al., (1992). Calcium molybdate 

[CaMoO4(c)] was prepared by mixing 1 M Ca(NO3)2.4H2O and 1 M Na2MoO4-2H2O solutions 

in equal Ca/MoO4 molar proportions.  A white precipitate was generated upon mixing. The 

suspension was allowed to react by constantly mixing it for 48 h. The white precipitate was 

removed from the solution by vacuum filtration and washed with copious amounts of DDI water 

and by pure ethanol thereafter. The solid was oven-dried at 115° C for 24 h. The precipitate 

was analyzed by X-ray diffraction technique which showed it contained no impurities (Fig. 3.1). 

 

Fig. 3.1 X-ray diffractometer patterns for precipitated powellite 
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3.2.5 Mobilization test for weakly bound Mo and As 
 

To test the influence of dissolved oxygen on the easily mobilized Mo and As in the Floridian 

aquifer matrix, 32 samples were selected from the Lithia area drill cores and the APF. Then, 

40 mL water with a background electrolyte of 0.01 M NaNO3 were added to 1 g of each sample 

and shaken for 48 h. In addition, 40 mL groundwater with low dissolved oxygen content which 

was collected from a water well near the Geology Department of the Bremen University (0.45 

mg/L) was added to 1 g of the samples in a glove box. The samples were then shaken for 1, 

4, 12, 24, and 48 hours at room temperature by a mechanical shaker operating at 250 RPM. 

The extract were separated from the solid residues by centrifugation at 4000 RPM for 10 min. 

The supernatants were decanted into a 50 mL tube, diluted to 50 mL and prepared for chemical 

analyses (i.e., filtration, dilution if necessary).  

 

3.3 Results 

3.3.1 Sequential extraction procedure results 
 

Sequential extraction procedure takes the advantage of using increasingly stronger solvents, 

each targeting a specific host mineral fraction (Table 3.1) and enabling us to subdivide the bulk 

trace element (in this case Mo and As) content of a sample into proportions of different 

extractabilities. This exercise provides an estimation of the potential mobility of Mo and As and 

is thus more valuable for ecological considerations than the bulk content. In the present 

research, A SEP recommended by Pichler et al., (2001) was used to assess Mo and As 

mobility from the aquifer matrix sediment. Analytical quality of the SEP was controlled by 

including a replicate and a blank in every batch. The results showed high precision for replicate 

samples with average standard deviation of 2.8 for Mo and 0.86 for As, and the blanks 

contained no detectable concentration of the elements in question. The accuracy of 

measurements was verified by comparing the sum of the fractions in the extracts with the total 
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content in the sample. Good agreement was observed between the two with recoveries ranging 

from 88 to 111% for Mo and 75 to 116% for As. 

3.3.1.1 Molybdenum 
 

Results of Mo fractionation by the SEP experiments are shown in Tables 3.2. A majority (up to 

90%) of Mo was removed in the first step i.e., adsorbed/exchangeable phase. About 10% Mo 

was leached during the second and third steps, which relate to carbonates, HFO, manganese 

oxides and powellite dissolution. Approximately 25% Mo was released during steps 4 and 5 

that dissolve crystalline iron oxides, pyrite and OM.  

Excluding sample 10-11 which contained the lowest Mo concentration of 25 mg/kg, up to 90%  

Mo was removed in step 1, whereas much lower Mo was removed during the other steps 

(Table 3.2 and Fig. 3.2). More than 80% Mo was removed from samples 45-46, 46-47, 70-71, 

31-32, 42-43 and 51-52. Approximately 65 to 70% Mo was removed from samples 18-19 and 

75-76. In contrast to these samples, samples 10-11 and 69-70 showed much lower extraction 

rate of 5 and 21%, respectively. In step 2, about 3 to 4% Mo was removed from almost all the 

samples. Samples 10-11, 18-19, 31-32, 50-51 and 69-70 did not release any Mo in this step. 

Insignificant amount of Mo was removed during step 3; Mo extraction ranged from 2 to 4% for 

all the samples. In step 4, more than 20% Mo was released from Sample 10-11. For the 

remaining samples, including samples 18-19, 69-70 and 75-76, about 2 to 17% of the total Mo 

contents were extracted. In step 5, little Mo was removed from samples 45-46, 50-51, 75-76, 

31-32 and 42-43. However, the extraction rates for samples 10-11, 46-47, 69-70 and 70-71 

were relatively high i.e., 17, 11, 20 and 8%, respectively.  
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Table 3.2: Summary of the results of Mo (mg/kg)a extracted by the five-step SEP, and the total 

content of element in the samples. 

Core Sample Step 1 Step 2 Step 3 Step 4 Step 5 
Σ 

1+2+3+4+5 Total Recb % 

DEP-1  45-46 114 8.3 1.9 1.0 1.8 127.4 122 104.7 

DEP-1  46-47 750 49.0 32.0 23.4 115.0 969.2 825 110.8 

DEP-1  70-71 399 15.8 1.3 14.7 62.0 492.4 499 89.0 

DEP-2  10-11 1 3.0 10.0 4.0 2.0 20.1 25 92.0 

DEP-2  18-19 21 1.8 8.8 3.2 1.0 35.9 38 102.4 

DEP-2  31-32 52 2.0 1.2 1.0 1.0 56.8 53 104.3 

DEP-2  42-43     76 6.0 2.2 1.0 1.0 86.1 78 109.4 

DEP-5  50-51 30 2.9 1.5 1.0 1.1 36.3 36 100.7 

DEP-5 69-70 6 4.0 3.9 3.0 6.0 22.8 30 88.2 

DEP-5  75-76 85 12.0 15.0 4.0 1.0 116.7 136 105.5 
 
a Average value of two replicate samples 
b Rec. =Recovery = (Σ 1 + 2 + 3 + 4 + 5 / total content) × 100%. 
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Fig.3.2 Percentage and concentration of Mo removed during the SEP. The amount leached in 

steps 1 to 5 corresponds to those listed in Table 3.2. 
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3.3.1.2 Arsenic 
 

Arsenic extraction rate was lower than Mo in step 1. As shown in Table 3.3 and Fig. 3.3, 

approximately 33 to 45% As was removed from samples 45-46, 46-47, 70-71 and 31-32. About 

10 to 24% As was removed from samples 42-43 and 50-51. Virtually no As was extracted from 

the remaining samples. There was no extraction of As in step 2 for samples 10-11, 18-19, 31-

32, 50-51 and 69-70. The highest As removal (About 30%) was for sample 45-46. On average 

30% As was recovered while dissolving HFO in step 3. This was the highest extraction rate for 

As during the SEP. With the exception of sample 10-11 whose removal rate was 64%, only 3 

to 30% As was removed in step 4. Arsenic percentage rate was very low of 3% for sample 46-

47. Arsenic extraction rate was much higher than that of Mo in step 5. Although, there was no 

extraction for samples 45-46, 46-47 and 31-32, up to 51% As was removed from the rest of 

the samples. Samples from DEP-5 including 50-51, 69-70 and 75-76 exhibited higher As 

extraction rate 22, 5 and 18%, respectively. With the exception of sample 18-19 whose 

extraction rate was 41%, the As extraction for samples 70-71, 10-11 and 42-43 were lower at 

11, 7 and 9%, respectively. 
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Table 3.3: Summary of the results of As (mg/kg)a extracted using a five-step SEP, and the total 

content of the element in the samples. 

Core Sample Step 1 Step 2 Step 3 Step 4 Step 5 

        Σ 

1+2+3+4+5 Total Rec.% 

DEP-1 45-46 11.4 8.7 6.4 4.1 n.d. 31.0 29.6 104.6 

DEP-1  46-47 71.7 28.6 45.6 4.6 n.d. 151.5 143.9 105.3 

DEP-1  70-71 28.4 13.8 25.7 21.7 9.9 99.5 131.7 75.6 

DEP-2  10-11 n.d. n.d. 9.0 21.1 2.1 33.6 28.8 116.6 

DEP-2  18-19 n.d. n.d. 4.8 3.8 6.2 15.3 17.8 85.7 

DEP-2  31-32 2.7 n.d. 3.1 1.4 n.d. 9.6 9.3 103.6 

DEP-2  42-43 4.1 2.7 4.2 5.8 1.9 18.8 19.8 94.7 

DEP-5  50-51 1.8 n.d. 7.8 5.7 5.2 22.4 29.8 75.1 

DEP-5 69-70 n.d. n.d. 17.5 5.5 24.3 48.5 59.9 81.0 

DEP-5  75-76 1.5 2.1 24.9 11.9 11.2 51.7 52.2 99.0 

 

a Average value of two replicate samples 

b Rec. = Recovery = (Σ 1 + 2 + 3 + 4 + 5 / total content) × 100%. 

n.d. = not detected 
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Fig.3.3 Percentage and concentration of As removed during the SEP. The amount leached in 

steps 1 to 5 corresponds to those listed in Table 3.3. 
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3.3.2 Dissolving aquifer matrix samples in groundwater and DDI water 
 

The aquifer matrix samples from the Lithia area and APF were dissolved in groundwater and 

DDI water at pH 6.5 and shaken in a mechanical shaker operating at 250 RPM with different 

contact time of 1, 4, 12, 24 and 48 h. The groundwater sample used in this analysis (pH = 6.35 

and O2 = 0.48 mg/L) was taken from a water well near the Geology Department of Bremen 

University. The results of these experiments are shown in Tables 3.4 and 3.5. The experiments 

with groundwater and DDI water were undertaken to 1) identify the kinetic of readily mobilized 

Mo and As from the aquifer matrix and 2) assess the effect of dissolved oxygen on Mo and As 

mobilization. It took 48 hours to release all easily bound Mos. No significant difference was 

observed between results from groundwater and DDI water (Fig. 3.4 and Fig. 3.5). The amount 

of Mo and As extracted with both solvents were in good agreement with the amount released 

during the first step of the SEP results.  
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Table 3.4: Amounts of Mo (mg/kg) mobilized from the aquifer matrix by reaction with 

groundwater and DDI water at pH 6.5 in different mixing times as compared to total Mo.  

          
Core Sample Total       Groundwater (pH = 6.35 and O2 = 0.48 mg/L)   DDI water (pH 6.5) 

    1 h  4 h  12 h  24 h  48 h  48 h  

 
DEP-1 45-46 122 28 32 45 59 72  91 
DEP-1  70-71 639 167 216 286 335 357  357 
DEP-2 10-11 25 n.d. n.d. n.d. n.d. n.d.  n.d. 
DEP-2 18-19 38 4 5 9 11 14  15 
DEP-2 42-43 78 38 49 66 63 75  74 
DEP-5 44-45 41 18 21 30 34 44  38 
DEP-5 46-47 44 10 12 18 21 22  25 
DEP-5 50-51 202 101 107 122 122 128  126 
DEP-5 56-57 75 23 25 32 34 38  39 
DEP5 69-70 39 n.d. n.d. n.d. n.d. n.d.  1 
DEP-5 72-73 112 13 16 18 21 20  31 
DEP-5 74-75 33 11 16 18 20 26  37 
DEP-5 75-76 197 70 76 78 80 86  89 
DV1 72 39 n.d.    1  2 
DV1 256 26 6    n.d.  1 
R13 415 3800 13    71  150 
R13 425 108 n.d.    10  12 
R13 452 235 1    50  43 
R20 368 71 n.d.    13  36 
R20 376 138 1    34  45 
R20 406 329 1    100  112 
R20 408 135 3    44  67 
R22 306 109 n.d.    12  21 
R25 299 29 n.d.    1  6 
R25 313 42 n.d.    10  12 
R25 315 48 n.d.    8  9 
R28 354 50 10    14  24 
R28 373 49 1    15  24 
R28 374 118 n.d.    91  89 
R39 306 66 n.d.    23  32 
R39 515 97 19    28  24 
TRSH-1 313 36 n.d.       2   3 

 

n.d. = not detected 
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Table 3.5: Amounts of As (mg/kg) mobilized from the aquifer matrix by reaction with 

groundwater and DDI water at pH 6.5 in different mixing times as compared to total As.  

                    

Core Sample Total       Groundwater (pH = 6.35 and O2 = 0.48 mg/L)   DDI water (pH 6.5) 

    1 h  4 h  12 h  24 h  48 h  48 h  

DEP-1 45-46 29.7 2.4 3.6 1.8 3.3 5.0  6.0 
DEP-1  70-71 131.7 12.5 13.1 18.3 20.7 21.6  25.0 
DEP-2 10-11 28.8 1.0 n.d. 1.1 n.d. 1.0  1.8 
DEP-2 18-19 17.8 n.d. n.d. n.d. 1.0 1.0  1.4 
DEP-2 42-43 19.8 1.0 n.d. 1.2 1.0 2.2  3.0 
DEP-5 44-45 11.7 1.0 1.4 1.8 1.0 1.2  3.0 
DEP-5 46-47 16.9 n.d. 1.7 1.0 1.0 1.5  2.0 
DEP-5 50-51 77.4 n.d. 1.8 2.2 1.0 2.0  1.5 
DEP-5 56-57 13.8 n.d. n.d. n.d. 1.0 n.d.  2.9 
DEP5 69-70 66.8 1.7 1.0 1.0 1.0 1.0  2.8 
DEP-5 72-73 24.7 1.0 n.d. 1.0 n.d. n.d.  2.4 
DEP-5 74-75 17.9 1.6 1.0 1.1 2.9 2.7  4.0 
DEP-5 75-76 56.8 1.1 1.6 2.9 1.7 3.1  4.0 
DV1 72 5.0 1.0    n.d.  n.d. 
DV1 256 1.9 3.5    n.d.  n.d. 
R13 415 15.0 1.1    11.0  8.0 
R13 425 16.7 1.1    1.8  2.0 
R13 452 22.9 1.0    1.0  1.0 
R20 368 9.9 n.d.    3.0  3.3 
R20 376 8.1 n.d.    2.0  3.1 
R20 406 27.5 3.1    n.d.  n.d. 
R20 408 21.4 1.4    1.6  1.7 
R22 306 16.9 1.0    1.2  2.0 
R25 299 30.8 1.0    1.8  1.6 
R25 313 5.1 1.0    2.0  2.0 
R25 315 5.7 n.d.    1.5  1.4 
R28 354 11.1 n.d.    1.2  1.2 
R28 373 20.5 n.d.    1.5  1.4 
R28 374 18.3 1.0    3.0  2.0 
R39 306 8.4 1.0    2.0  2.8 
R39 515 7.9 n.d.    2.0  1.5 
TRSH-1 313 3.3 1.0       1.0  1.0 

 

n.d. = not detected 
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Fig. 3.4 Amount of Mo mobilized during the reaction with groundwater and DDI water in 

different mixing times. The data corresponds to Table 3.4. 
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Fig. 3.5 Amount of As mobilized during the reaction with groundwater and DDI water in 

different mixing times. The data corresponds to Table 3.5. 

 

 

 



CHAPTER 3: CHEMICAL FRACTIONATION 

56 

 

3.4 Discussion   

3.4.1 Estimation of the potential mobility of Mo and As 
 

In order to evaluate potential mobility of Mo and As in the aquifer matrix sediments, a slightly 

modified five-step SEP recommended by Pichler et al., (2001) was applied to 10 drill core 

samples of the Lithia area. Molybdenum was mostly present in very soluble phases, while As 

had somewhat equal extractions in all fractions.  

Step 1: In this step, NaOAc at pH 8.1 was used as a solvent. As shown in Figures 3.2 and 3.3, 

most Mo and up to 45% As were discovered to be in adsorbed/exchangeable phase. Only, 

three samples including 10-11, 18-19, and 69-70 yielded virtually no Mo and As. This might be 

due to the different conditions that these samples underwent rather than having different 

sources of Mo and As. Two possible reasons for the high Mo and As extracted in step 1 of 

SEP are as follows:  

1. Specific factors such as temperature, humidity or drying condition are capable of influencing 

extraction phases in anoxic sediments (Hall et al., 1996). For instance, Goldberg et al., (1996) 

compared the phase distribution of iron (Fe) and cadmium (Cd) in the anoxic sediments 

extracted (a) immediately upon collecting sediments and (b) after oven drying and exposure 

to air. Oxidation of the sediments caused shifting of Cd (circa. 50%) from the sulfide phase to 

the more labile exchangeable and reducing fractions. It is well known that Mo enrichment 

mostly happens in the anoxic sediments and the sediments deposited beneath oxygen-

deficient marine waters are enriched in Mo relative to normal (oxic) marine sediments and 

continental crust. In such sediments, Mo bonds to OM and/or sulfide minerals (Chappaz et al., 

2014; Dahl et al., 2013; Tribovillard et al., 2004). Thus, oxidation of these materials and 

minerals has likely moved these phases of Mo and As to the weaker exchangeable and 

reducible phases and finally released them into groundwater.  

2. Molybdenum and As in groundwater may be adsorbed by sorbents. An electrostatic 

adsorption modeling with PHREEQC showed that molybdate (MoO4
2-) was the dominant Mo 
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species in the groundwater samples. The predicted speciation of Mo in the alkaline pH range 

of groundwater was 65% MoO4
2-, 19% MgMoO4, 14% CaMoO4, and a negligible amount of 

other species (Fig. 3.6). This finding was in good agreement with what was reported by (Carroll 

et al., 2006). In fact, the result of our modeling exercise matches well with what happens in 

various environments including hydrosphere. This is why molybdate is referred to as the 

dominant species of Mo in the literature. All significant sorption sites for Mo and As in the 

aquatic environment  include HFO (Goldberg et al., 1996; Gustafsson, 2003), pyrite (Bostick 

et al., 2003; Xu et al., 2006), Fe and Al (aluminum) oxides and clay minerals (Goldberg, 1985, 

2010), calcite (Goldberg et al., 1996), Mn oxides (Matern and Mansfeldt, 2015), and OM (Bibak 

and Borggaard, 1994). Among these, Mo adsorption on Mn oxides and calcite was ruled out 

due to the low adsorption capacity of Mo onto calcite and low Mn concentration throughout the 

aquifer matrix (Goldberg et al., 1996; Pichler and Mozaffari, 2015). Molybdenum adsorption on 

clay minerals is a function of pH. Its adsorption on these minerals exhibited a peak near pH 3 

but decreased rapidly with increasing pH until the adsorption was virtually zero near pH 7 

(Goldberg et al., 1996). Molybdenum adsorption onto the Al and Fe oxides extended from pH 

3 to 5 (Ferreiro et al., 1985). Limestone clearly showed the ability to remove As from 

groundwater (Cederkvist et al., 2010). Arsenic displayed high affinity on iron oxides and 

hydroxides such as HFO, goethite, and hematite (Lenoble et al., 2002; Pichler et al., 2001; 

Pierce and Moore, 1982).  
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Fig. 3.6 Results of PHREEQC model for aqueous species distribution for a range of pH values 

within the groundwater of Lithia area. 

Approximately 2-10% Mo was removed during the second step of the SEP, which extracts 

carbonates (Fig. 3.2). Since Mo was not found to be co-precipitated with carbonates and also 

its adsorption on calcite and calcareous soils is low (Goldberg et al., 1996), its extraction from 

samples 149-152 (30 mg/kg), 228-232 (12 mg/kg), and 144-149 (9 mg/kg) in the second step 

of the SEP could not be related to carbonates. These extracts should have been shifted from 

the stronger phases which were oxidized to the labile fractions (Fig. 3.2). As it is seen in Fig. 

3.3, in this step, up to 30% As was removed pointing to carbonates as a potential site for As 

adsorption or coprecipitation. Limestone acts not only as a pH buffer, but may also promote 

the removal of As by Fe-mineral (McNeill and Edwards, 1995; Shan et al., 2013). McNeill and 

Edwards (1995) reported that calcium can react with As (e.g. AsO4
3−) to form a sparingly 

soluble calcium compound. Shan et al., (2013) showed that the dissolution of limestone 

adjusted the pH value of the reaction system to form a weakly alkaline environment. Their 
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results suggested that complex mechanisms including 1) As(III) adsorption onto Fe-minerals, 

2) As(III) oxidation to As(V) by iron minerals, and 3) precipitation of Ca – As(V) with Ca released 

through limestone dissolution collectively played the main role in removing As from the 

solution. 

An insignificant amount (4%) of Mo was removed during the third step of the SEP (Fig. 3.2). 

Hydrous ferric oxides, Mn oxides, and powellite dissolved in this step all contributed to this 

removal. Considering the low concentration of Mn in the study area (Pichler and Mozaffari, 

2015), Mo is therefore believed to either adsorbed to or scavenged with HFO or precipitated 

as powellite. Therefore, HFO and powellite could be considered as minor secondary sources 

for Mo released during the third step of the SEP. The adsorption of Mo onto HFO is a function 

of several chemical factors including Mo concentration in the solution, solution’s pH, competing 

anion concentration, and Fe concentration in the aquifer matrix. It was demonstrated that Mo 

adsorption on Fe oxides was at its maximum at pH lower than 4 and 5 (Goldberg et al., 1996; 

Stollenwerk, 1998). The extraction of As in this step was much higher than Mo. Of the two 

naturally occurring forms of As (arsenite, As(III) and arsenate, As(V)), arsenate exhibited 

maximum sorption onto HFO at pH values of 4 while arsenite at pH range of 7 to 8.5 (Pierce 

and Moore, 1982; Qi and Pichler, 2014). Arsenate formed inner sphere surface complexes on 

amorphous iron oxides and showed very little ionic strength dependence as a function of the 

solution’s pH. In contrast, arsenite formed outer sphere surface complexes with HFO and could 

be desorbed easier than arsenate into the environment (Goldberg and Johnston, 2001). This 

indicates that those As which were adsorbed on HFO and other sorbents could also be 

released in both steps 1 and 2 of the SEP as arsenite. The suitability of a wide range of pH for 

As adsorption, high affinity of As to adsorb on HFO, and low concentration of ions which have 

the potential to compete for surface sites, all imposed no limitation for As to be adsorbed in the 

study area. However, inadequate surface availability of HFO restricted As adsorption.  
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In step 4 of SEP, crystalline Mn as well as Fe oxides including goethite, lepidocrocite, 

pyrolusite, hematite, and other partially oxidized sulfide minerals and the degrading fraction of 

organic materials were all dissolved. A series of processes and reactions need to be taken into 

account to enable us to explain the encountered situation. First, Mo enrichment in oxic 

sediments were found to be attributed to its adsorption onto Mn and Fe oxides (Crusius et al., 

1996; Goldberg et al., 2009). Under normal conditions at the time of sediment deposition, Mn 

refluxing has the potential to concentrate dissolved MoO4
2- at the sediment-water interface. In 

cases where anoxia zone extends upward into the water column, Mn2+ is oxidized to particulate 

MnOx (solid) just above the chemocline. The particulate Mn settled into the anoxic waters and 

re-dissolved Mn2+ diffused back through the chemocline, thus completing a redox cycle 

(Adelson et al., 2002). This type of Mo enrichment can be ruled out because the concentration 

of Mn in the aquifer matrix of the study area was shown to be too low (Pichler and Mozaffari, 

2015). Secondly, Goldberg et al., (1996) found that Mo adsorption onto iron oxides was a 

function of pH, surface area, and the degree of crystal development. Maximum Mo adsorption 

happened at low pH of about 4 to 5. Adsorption decreased rapidly as pH increased from 5 to 

8. Negligible adsorption occurred at pH above 8. Molybdenum adsorption increased in the 

order: hematite < goethite < amorphous Fe oxide < poorly crystalline goethite. Therefore, the 

relatively high Mo extractions in samples 10-11, 18-19, 69-70 and 75-76 can be associated 

with poorly crystalline to crystalline iron oxides (Fig. 3.2). Finally, the other possible sources 

for Mo in this step of the SEP are partially oxidized OM and sulfide minerals including pyrite.  

With the exception of sample 10-11 (64% As removal), approximately 30% As was removed 

in step 4 (Fig. 3.3). The sorption of As on iron oxides depends on its oxidation state and the 

mineralogy of the iron oxides. It was found that at neutral pH, more than 80% As can be 

adsorbed onto hematite and goethite (Mamindy-Pajany et al., 2009). Arsenic (III) sorption on 

goethite decreased at neutral to alkaline pH ranges (Giménez et al., 2007). Maximum As 

adsorption on hematite took place at pH 4.2 (Singh et al., 1996). Arsenic (III) sorption on 



CHAPTER 3: CHEMICAL FRACTIONATION 

61 

 

magnetite increased to pH 9 and at higher pH its adsorption decreased (Giménez et al., 2007). 

All these considerations justified the relatively high As extraction rate in this step (Fig. 3.3).  

As shown in Fig. 3.2., Mo extraction in step 5 of the SEP, which was released from sulfide 

minerals, OM and other possible sources, was low. Extraction of Mo and As in step 5 is related 

to the primary sources of these elements. Organic matter, and to a lesser extent pyrite, in 

karstified and fractured limestone could easily oxidize, degrade and shift the metals such as 

Mo and As to the weaker exchangeable and reducible phases. Therefore, the lower extraction 

rate of Mo in this step might be due to its lower OM content, because OM is oxidized and 

degraded easier than pyrite. This is supported with higher As extraction than Mo in this step, 

and it showed that pyrite is the main primary source of As in the Lithia area. 

3.4. 2 Exchangeable phase of Mo and As  
 

In Lithia area, each resident has its own water well. Thus, extensive groundwater pumping 

took place to meet the water demand for agriculture and drinking purposes. This may 

introduced oxygen-depleted water from the deep aquifer into the shallow aquifer and vice versa 

(Pichler et al., 2016). In addition, large fractures and karsts in the local limestone aquifers 

may enhanced infiltration of O2 into the deeper groundwater environment. Oxidation of OM 

which could be the main primary source of Mo, mobilized and released Mo into the 

environment. But from the leaching experiment in the present study, it became clear that O2 

played no role in releasing loosely bound Mo and As (Fig. 3.4 and 3.5). Molybdenum and As 

which are released to the groundwater, may be adsorbed onto mineral surfaces such as clay 

minerals and/or co-precipitated with powellite and HFO (Pichler et al., 2001). The cation-

exchange capacity of clay minerals is very high. These extremely high exchange capacities 

are due to the extremely large surfaces and electric charges of the surfaces. Mo removal from 

the solution occurs through a variety of mechanisms, including adsorption as outer-sphere and 

inner-sphere complexes, and precipitation as a secondary minerals (Goldberg et al., 1996). 

Outer-sphere adsorption is a weak electrostatic attraction between an ion and the surface. 
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Inner-sphere adsorption occurs through the formation of one or more chemical bonds between 

the surface and the adsorbate. Thus, Mo which is adsorbed as outer-sphere complexes, could 

be easily released into the environment. Considering the fact that carbonate is not a significant 

sorption site for Mo (Ferreiro et al., 1985), the competition between anions such as phosphate, 

arsenate, sulfate, and molybdate for the available sorption sites in Lithia area including HFO, 

clay minerals, and OM was the main reason for the existence of weakly bound Mo in the 

aquifer. Molybdenum and As could also be released from powellite dissolution. Electron 

microprobe analyses of powellite as a minor mineral in the Lithia area revealed that it contained 

up to 17,600 mg/kg or 42 wt% Mo (Pichler and Mozaffari, 2015).  

 

3.5 Conclusions 
 

Molybdenum and As were at elevated levels in the aquifer matrix of the study area in central 

Florida, USA. The presence of Mo as a very soluble form pointed to the anthropogenic 

disturbance of subsurface redox conditions which was caused by oxygenated surface water 

penetrating into the deeper aquifers. As a result, Mo was first transferred from the strong phase 

to the more labile form and was finally released into the groundwater system. Therefore, in 

most of the studied samples, up to 90% Mo was present in the adsorbed/exchangeable fraction 

(step 1) whereas relatively much lower Mo was removed during the other steps. Little Mo was 

extracted during the second and third steps of the SEP, which dissolve minerals like 

carbonates, HFO, and powellite. Crystalline iron oxides, pyrite and OM were dissolved in steps 

4 and 5 and were responsible for a wide range of Mo extraction rates from 4 to 55%. Arsenic 

was distributed in different phases in the study area and its extraction was in somewhat similar 

abundances in different steps of the SEP. However, hydrous and crystalline iron oxides which 

dissolve in steps 3 and 4 of the SEP contained the highest As concentrations. 
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 A considerable amount of Mo (50 to 90%) was removed from the aquifer matrix by dissolving 

the relevant samples in DDI water and groundwater. Mo extraction increased with increasing 

contact time and reached equilibrium after 48 h. The amount extracted with both solutions were 

almost the same after 48 h, showing that dissolved oxygen played no role in the release of Mo 

and As from the aquifer matrix. 
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Chapter 4. Primary sources of molybdenum and arsenic 

 

Abstract 

In this chapter we explain how the chromium-reducible sulfur (CRS) method was used to 

determine the relationship between reduced sulfur including pyritic sulfur and organic sulfur 

(OS), molybdenum (Mo) and arsenic (As) concentrations in marine sediments in the Lithia area 

and Avon Park Formation (APF) in Central Florida. A total of 24 samples -including 10 samples 

which were already subjected to the sequential extraction procedure (SEP) analysis (Chapter 

3)- were chosen from Lithia area and APF, and were analyzed by the CRS technique. The 

samples were chosen based on the following four criteria: (1) high total Mo concentration, (2) 

high total As concentration, (3) high total sulfur (S) concentration, and (4) good geographic 

representation of the study area. In order to remove all other types of sulfur, the samples were 

first dissolved in acetone. The residues of the samples were then dissolved in 0.5 M 

hydroxylamine hydrochloride in 0.25 M HCl (step 3 of the SEP) to remove any possible 

secondary source of Mo and As. After washing the residue of the samples for three times with 

distilled deionized (DDI) water, they were dissolved in an acidic chromium (II) solution. The 

H2S which was evolved from the samples was transferred via N2 carrier into 30 mL of 3% zinc 

acetate with 10% NH4OH and trapped as ZnS for quantification by iodometric titration. After 

chromium reduction, the residues were  washed three times with water, filtered and dried in a 

desiccator and were finally analyzed for Mo, As, and sulfur concentration by inductively 

coupled plasma–optical emission spectrometer (ICP-OES). 

Groundwater and DDI water samples were added to a small amount of powellite which was 

already mixed with sample R13 1090 (Mo and As free sample) to assess the behavior of 

powellite in the natural environment. The content was shaken in a mechanical shaker at room 

temperature for 1, 5, 10, 24, and 48 hours at pH 5, 6, 7, and 8 hours. Finally, the samples were 

centrifuged and the extracts were analyzed for Mo and As by ICP-OES.  
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Pyrite, which is present in the matrix of the aquifer underlying Lithia area and in the APF, is 

generally regarded as a source of Mo and As. However, the results of CRS did not confirm the 

presence of Mo in pyrite, though it was shown to exist as a minor constituent in the APF. The 

total organic carbon content in the residues of CRS (OCres) showed a positive correlation with 

Mo (R2 = 0.71 and p < 0.001). However, no correlation was found between OS and Mo. The 

concentration of As in pyrite was much higher as compared to Mo, pointing to pyrite as a major 

primary source for As in the aquifer matrix. There was a weak correlation between As and 

OCres. The results suggested that the primary source of Mo found in the aquifer matrix and 

groundwater is mainly related to organic matter (OM) rather than pyrite, whereas As originated 

mainly from pyrite as a primary source as well as from iron oxides in the adsorbed forms. 

Powellite could only be considered as a minor secondary source for Mo and As. 

 

4.1 Introduction 
 

Molybdenum is a trace constituent of the upper crust, with an average abundance of 1 to 2 

mg/kg (Taylor and McLennan, 1985). Geochemically, it is relatively unreactive in oxygenated, 

aqueous solutions, and hence it is a nominally conservative element in the oceans. In fact, Mo 

is removed so slowly from the seawater that it is considered as the most abundant transition 

metal in the oceans despite being a ppm-level constituent of the crust. In oxic environment, 

manganese (Mn) redox cycling has the potential to preconcentrate MoO4
2- at the sediment-

water interface (Adelson et al., 2002). Molybdenum may be adsorbed onto Mn and iron (Fe) 

oxyhydroxides (Chappaz et al., 2014; Crusius et al., 1996; Dahl et al., 2013; Zheng et al., 

2000). Its adsorption to aluminum (Al) and Fe oxides extends from pH 3 to 8 (Goldberg et al., 

2009; Gustafsson, 2003; Stollenwerk, 1998). In contrast, Mo is readily removed from the 

solution in anoxic-sulfidic settings, so that Mo enrichment in sediments is considered 

diagnostic of reducing depositional conditions. Molybdenum has two major primary sources in 
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anoxic-sulfidic environment namely pyrite and OM (Bertine and Turekian, 1973; Chappaz et 

al., 2014; Crusius et al., 1996; Das and Jim Hendry, 2013). Pyrite and OM have high capability 

to fix Mo from seawater and retain it during the digenesis stages of sedimentary rocks (Adelson 

et al., 2002; Dahl et al., 2013; Helz et al., 2011; Tribovillard et al., 2008; Tribovillard et al., 

2004). Recently, a case study that used laser ablation-inductively coupled-plasma mass 

spectrometry (LA-ICP-MS), showed that pyrite from six different locations of modern and 

ancient sediments is not the dominant host for Mo (Chappaz et al., 2014). In contrast to pyrite, 

a clear relationship was found between Mo and OM for five of the same six locations which 

were studied. Although, OM is regarded as the main host for Mo in anoxic/sulfidic sediments, 

the relevant processes through which OM adsorbs Mo are not well understood as yet (Glass 

et al., 2013; Lyons et al., 2003; Meng et al., 2000). The sulfidation of OM reduces lability and 

enhances the preservation of OM (Tribovillard et al., 2004; Werne et al., 2008). According to 

Adelson et al., (2001), the organic thiomolybdates are presumed to be formed through 

replacement of oxygen in the first coordination sphere of Mo by macromolecular S, thereby 

producing covalent S bridges between Mo and the sulfurized macromolecules. This 

assumption was proved by studying six Mesozoic geological formations which underwent 

anoxic/sulfidic conditions during the deposition (Tribovillard et al., 2004). 

 Arsenic is an element that occurs naturally in the sedimentary rocks including shales, clays, 

phosphate rocks, as well as sedimentary Fe and Mn oxides (Couture et al., 2013; Kinniburgh 

et al., 2006; Lenoble et al., 2002; Peterson and Carpenter, 1986; Shimp et al., 1971; Wang et 

al., 2006). In nonmarine clays and shales, As is more enriched in clay minerals (Kinniburgh et 

al., 2006; Lenoble et al., 2002), whereas a substantial proportion of the As in offshore marine 

sediments is present as pyrite (Yudovich and Ketris, 2005). Couture et al., (2013) found a 

correlation between As and OM in sedimentary rocks. A similar correlation was found by Shimp 

et al., (1971) for unconsolidated sediments of Lake Michigan.  
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In this study, the CRS method was applied to 24 samples to determine the relationship 

between Mo, and sulfurized OM, and pyrite. Before applying this technique, all secondary Mo 

sources including powellite (as a secondary mineral), and Mo adsorbed onto clay minerals, 

manganese and iron oxyhydroxides were removed from the samples. This was done by 

dissolving the samples in acetone, followed by dissolving the residues instep 3 of the SEP. In 

order to determine the role of powellite as a source for Mo, a small quantity of powellite already 

mixed with one -Mo and As free- sample (sample R13 1090), was dissolved in groundwater 

and DDI water and was shaken for 1, 5, 10, 24, and 48 hours at pH 5, 6, 7, and 8. 

 

4.2 Materials and methods 

4.2.1 Selection and preparation of samples for CRS method 
 

The CRS is a well-known method for the determination of reduced inorganic sulfur and OS 

compounds in modern and ancient sediments. With this method, it is possible to quantify both 

pyritic sulfur and organic sulfur and uncover their relationships with Mo and As. The CRS 

method was applied to 24 samples of the aquifer matrix samples -including 10 samples which 

were already subjected to sequential extraction procedure analysis in Chapter 3- from Lithia 

area and APF. Lithia area samples included DEP-1, DEP-2 and DEP-5 cores. The samples 

were chosen based on the following four criteria: (1) high total Mo concentration, (2) high total 

As concentration, (3) high total sulfur concentration, and (4) good geographic representation 

of the study area. These experiments were conducted to investigate the role of sulfurized OM, 

OM and pyrite in serving as hosts for Mo and As in the sedimentary rocks. Before using the 

CRS method, elemental sulfur, powellite as a secondary mineral and all those Mos which were 

adsorbed on various sorbents such as clay minerals, Fe and Mn oxides were removed. The 

following steps were carried out to achieve this: 
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1. In order to obtain the total elemental composition of samples, 50 mg of each sample was 

digested in the Milestone Ethos system with a microwave power of 1000 W and temperature 

control.  

2. Elemental sulfur was extracted with acetone. About 75 mL acetone were added to 3 g of 

sediment and shaken for 4 h at room temperature in a mechanical shaker operating at 250 

RPM. The produced extract was separated from the solid residue by centrifuging at 4000 RPM 

for 20 min. The supernatant was then decanted into a 100 mL Erlenmeyer flask and prepared 

for chemical analyses. To wash the residues, they were suspended in 5 mL DDI water, 

centrifuged, and the supernatant was discarded thereafter.  

3. The residues of acetone extraction were oven-dried at 40° C and powdered with an agate 

mortar and pestle that was cleaned with pure quartz sand and rinsed with DDI water between 

consequential samples to prevent cross contamination. An electronic scale was used to weigh 

2 g of the powdered sample which was subsequently poured into a 50 mL screw cap centrifuge 

tube. Thereafter, 40 mL of freshly prepared hydroxylamine hydrochloride and 0.5 M in 0.25 M 

HCl (Step 3 of the SEP) were added to the centrifuge tube. The samples were then placed in 

a hot block at 60°C for 2 h with the cap loosened. At every 30 min interval the cap was tightly 

closed and the contents were shaken. In the subsequent step, the samples were centrifuged 

and the extracts were separated as described earlier. By adopting this procedure, powellite 

and the adsorption forms of Mo and As were removed from the samples. 

4.2.2 Chromium-reducible sulfur method 
 

To prepare the Cr(II) solution, first a glass bottle with two outlets was filled with Zn-shot to 

about one-tenth full (Fig. 4.1). Then, 2 M CrCl3.6H2O which was prepared with 0.5 M HCl, was 

slowly added to the Zn-shot, that is, 20 g of Zn-shot per 100 mL of acidic Cr(III) solution (Burton 

et al., 2008; Manning and Goldberg, 1996; Mohan and Pittman Jr, 2007). The screw cap of the 

bottle was not firmly tightened to allow releasing excess pressure from the pyrex bottle. A tube 
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was attached to one of the outlets for air gas (N2) and the other outlet was sealed for removing 

Cr(II) solution from the glass bottle. For a period of 2 to 3 h, Cr(III) was completely reduced to 

Cr(II), until a clear bright blue color appeared (Fig. 4.1)..  

 

 

Fig. 4.1. Apparatus for preparation of the acidic Cr (II) solution used for extraction in the CRS 

method (modified after Borton et al., 2008). 
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Pyritic sulfur (Spyr) was extracted from the samples using the method described by Canfield et 

al., (1986). The residues of step 3 of the SEP were washed 3 times with DDI water and oven-

dried at 40° C, and powdered by an agate mortar and pestle which were cleaned as described 

earlier. One gram of powdered sample was transferred to a 100 mL Erlenmeyer flask and 

stirred to disaggregate any large clumps. Ten mL ethanol were added to the sample, and 

attached to a trapping vessel which contained 30 mL of a 3% m/v zinc acetate (Fig. 4.2). The 

system was flushed with N2, and a plastic syringe was used to add 40 mL Cr(II) solution and 

20 mL concentrated HCl to each flask. As the ethanol solution was purged with N2, the reagent 

mixture was added to the flask. About 2 h contact period was needed to liberate pyritic sulfur, 

and trap it as H2S in the Zn-acetate trapping vessel.  

 

Figure 4.2. Apparatus used in the CRS method: (A) Purging acidic Cr (II) solution and ethanol 

to the sample, (B) Release of sulfur from the solution and transferring it to the zinc acetate 

trapping vessel (modified after Gröger et al., 2009). 
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4.2.3 Quantification of CRS 
 

The trapped sulfide was quantified by iodometric titration. The reverse titration of the excess 

iodine was conducted with a thiosulfate solution following the procedure described by Burton 

et al., (2008). The residues of the Cr(II) reduction precipitates were washed with DDI water for 

5 times. This residue contained only OS because sulfate salts, pore water sulfur, elemental S, 

polysulphide, acid-volatile sulfides and pyritic sulfur were all removed during the course of 

acetone extraction, step 3 of the SEP, and the CRS method.  

A total of 50 mg of each sample, before and after applying CRS, was weighted to measure the 

total content of the elements in pyrite. The sulfur content in the sample after applying CRS is 

abbreviated as OS and the difference between two measurements (before and after applying 

CRS) yields pyritic sulfur. A digestion system (Milestone Ethos) with a microwave power of 

1000 W and temperature control, was used to digest the sediments. After digestion, elemental 

analysis was carried out by inductively coupled plasma–optical emission spectrometer (ICP-

OES). 

4.2.4 Powellite 
 

Powellite was freshly prepared as described earlier in Chapter 3 (Wasay et al., 1996). In order 

to evaluate the powellite dissolution,  an appropriate amount of powellite was added to 1 g of 

a Mo free aquifer matrix sample and allowed to dissolve with the groundwater and DDI water 

samples. The samples were shaken for 1, 5, 10, 24, and 48 hours and subsequently 

centrifuged and analyzed for Mo and As. To assess the impact of pH on the behavior of 

powellite, the pH of four samples were adjusted to 5, 6, 7, and 8 by adding HNO3 or NaOH and 

the samples were shaken for 48 h.  
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4.3 Results 

4.3.1 Chromium reduction sulfur results  

The concentration of pyritic sulfur (Spyr) was determined by two different approaches: (1) the 

difference between sulfur content in the samples before and after CRS method and (2) directly 

by titration. The results of both methods were in good agreement. Compared to the Lithia area 

samples, those from APF contained lower Spyr. The concentration of Spyr was highest in core 

DEP-5 at depth 67 to 68 m (Table 4.1). Sample R-20 with 11.6 mg/kg Mo, contained the highest 

Mo concentration in pyrite. With the exception of samples 46-47 and 70-71, no Mo was 

released from pyrite in Lithia. In contrast to Mo, the concentrations of As in pyrite were much 

higher. Among all 21 samples of the Lithia Area and APF, only sample DEP-5 from the depth 

of 73-74 m had no As in pyrite. For the rest of the samples, the concentrations of As in pyrite 

ranged from 0.9 to 27.5 mg/kg. Some samples contained significant amounts of organic carbon 

(Corg), with a maximum of 1.55% in sample 70-71. The concentration of OS compounds -which 

were isolated in the residue of pyrite extracted samples- ranged from 111.7 to 14153 mg/kg 

(Table 4.1). The concentration and percentage of Mo and As in pyrite is illustrated in Figs 4.3 

and 4.4. 
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Fig.4.3 Percentage and concentration of Mo in pyrite and in Cr (ǁ) residue. 
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Fig.4.4 Percentage and concentration of As in pyrite and in Cr (ǁ) residue. 
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4.3.2 Comparing the results obtained by CRS method with SEP 

Neither the adsorption form nor the secondary and co-precipitated minerals including HFO and 

powellite were considered as the primary sources of Mo and As. One way to remove these 

fractions from the aquifer matrix samples is to apply the first three steps of the SEP (Chapter 

3) on the samples. The other approach which was used in this study was to dissolve the 

samples in acetone (Canfield et al., 1986; Passier et al., 1999) followed by step 3 of the SEP.  

To test and validate this procedure, the results obtained by applying the first three steps of the 

SEP were compared with those obtained when acetone and the step 3 of the SEP was applied. 

The amounts of Mo and As extracted in steps 4 and 5 of the SEP must also be comparable 

with those extracted with CRS method and the element content in the residue of the CRS 

method. Fig.4.5 shows that the results of the two techniques were in good agreement for Mo 

(Figure 4.5A) but differed for As (Figure 4.5 B); the amount of As extracted in steps 4 and 5 of 

the SEP was lower than the amount extracted by the CRS method and the residue of the CRS 

method. 
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Fig. 4.5 Comparison of the results obtained by the CRS method and the SEP. 
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4.3.3 Dissolving the synthesized powellite in groundwater and DDI water 

The results of powellite dissolution in groundwater and DDI water at different periods and at 

different pH ranges are shown in Fig. 4.6. The maximum amount of Mo mobilized from 

powellite was 0.7% of the total Mo content of the sample. Molybdenum dissolution at pH 5 and 

6 was 0.8% and 0.85%, respectively. At pH 7 and 8, no Mo was released from powellite.  

 

Fig. 4.6 Percentage of Mo released from powellite during reaction with groundwater and DDI 

water.  



CHAPTER 4: PRIMARY SOURCE 

79 

 

4.4 Discussion  

4.4.1 Possible sources of Mo and As in sedimentary rocks 

In total, three different sources could be considered for Mo and As in the aquifer matrix, which 

include OM, pyrite and powellite. Among these sources, pyrite and OM were considered as 

the main primary sources. In sulfidic environment, pyrite and OM have the capability to fix Mo 

from seawater and retain it over geological time scales (Chappaz et al., 2014; Tribovillard et 

al., 2004). The enrichment of Mo in sediments by pyrite and OM can be described by three 

models:  

1. Manganese plays a crucial role in the first model. Its redox cycling has the potential to 

concentrate MoO4
2- at the sediment-water interface. In cases where anoxia zone extends 

upward into the water column, Mn2+ is oxidized to particulate MnOx (solid) immediately above 

the chemoline. The particulate Mn settles into the anoxic waters and redissolved Mn2+ diffuses 

back through the chemocline, thus completing a redox cycle (Adelson et al., 2002; Helz et al., 

1996). Concentrated MoO4
2- at the water-sediment interface could be fixed by OM and/or 

pyrite. 

2. In a reducing environment, Mo is first co-precipitated as Fe-Mo-S, leading to the formation 

of Fe5Mo3S14 in the water column. After Mo is reduced in the water-sediment interface, it is 

fixed by OM and pyrite (Chappaz et al., 2014). Chappaz et al., (2014) proved that OM, 

compared to pyrite, is the dominant source for Mo in sedimentary rocks.  

3. Helz et al., (1996) introduced the concept of “geochemical switch”, through which dissolved 

sulfide transforms Mo from a largely conservative element to a particle-reactive species in 

marine depositional environments. According to Erickson and Helz (2000) a key step in this 

pathway is the reaction: MoO4
2-→thiomolybdates (MoOxS4

−x, x=0–3), which is particle reactive 

and thus prone to scavenging. The sulfide activation of the switch depends on ∑H2S activity 
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(Erickson and Helz, 2000; Helz et al., 2004; Zheng et al., 2000). Because each successive 

sulfidation reaction is about one order of magnitude slower than the previous one, dithio -→ 

trithio - and trithio → tetra - thiomolybdate equilibria might not be achieved in the seasonally or 

intermittently sulfidic waters (Erickson and Helz, 2000). Therefore, sulfidic conditions seem to 

be required. Of the three possible primary sources for Mo, pyrite and OM are more effective in 

fixing Mo from seawater at the time of sediment deposition. There was no evidence to show 

that Mo is co-precipitated with Mn in the study area. The Mn concentrations were rather low 

with more or less uniform distribution throughout the study area with median values of 24, 37 

and 34 mg/kg for Cores DEP-1, DEP-2 and DEP-5, respectively. The possible explanation is 

that the physicochemical conditions in the sedimentary environment did not change 

sufficiently. 

Compared to Mo, the main primary host for As in sedimentary rocks is pyrite. Under reducing 

conditions, As can be sequestered by co-precipitation with, or adsorption onto Fe sulfides such 

as, pyrite and mackinawite (Wolthers et al., 2005). In OM-rich sediments, organic substances 

compete with reactive iron for incorporating the reduced sulfur of the sediments. In cases 

where the amount of reactive iron is limited, bisulfide concentrations in the pore waters 

increase, and OM is believed to become a significant sink for reduced sulfur. Under these 

conditions, sulfurization of OM plays an important role in the formation of thiol-bound with As 

(Couture et al., 2013). 

4.4.2 Pyrite 

Although pyrite is regarded as one of the two main sources of Mo in the marine environment 

(Chappaz et al., 2014; Lyons et al., 2003), the concentration of Mo in pyrite was too low in the 

study area (Fig. 4.3). None of the samples of DEP-2 and DEP-5 contained any Mo in pyrite. 

Among the APF samples, sample R-20, and among the DEP samples, sample 46-47 contained 

the highest Mo concentration in pyrite (11.6 and 10.7 mg/kg receptively). DEP-2, which is 

located in the central part of the area with the highest groundwater pumping rate (Pichler et 
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al., 2016), underwent more anthropogenic perturbation compared other wells. Therefore, a 

change in the physico-chemical condition could be a reason for mobilization of Mo from pyrite. 

Also, the pyrite minerals in DEP-5 core -which was drilled at a far distance as a reference well- 

contained no Mo. This clearly indicated that pyrite could not be a significant primary source for 

Mo. This finding is in excellent agreement with the results reported by Pichler and Mozaffari 

(2015). They found no Mo in the selected pyrite minerals using microprobe analysis. Chappaz 

et al., (2014) showed that pyrite acts as a minor source for Mo in marine environments. 

Similarly, Tribovillard et al., (2004), argued that pyrite in the marine environment acts as an 

initial trap for Mo, while Mo may be remobilized from pyrite during digenesis. A report compiling 

published data of Mo, pyrite, and total organic carbon (TOC) concentrations for  six study sites 

clearly showed a better correlation between Mo-TOC than between Mo-pyrite in 5 of the sites 

(Chappaz et al., 2014; Dahl et al., 2013; Tribovillard et al., 2004; Zheng et al., 2000). 

It is well known that pyrite is the main primary source for As in the sediments and sedimentary 

rocks. The As content in the aquifer matrix and its fraction in pyrite are shown in Fig. 4.4. These 

results showed that the main origin of As in the aquifer matrix was pyrite. A clear positive 

correlation (R2 = 0.85 and p < 0.002) was observed between As enrichment in pyrite and the 

sulfur extracted by the CRS method (Fig.4.7). Pichler and Mozaffari (2015) found highly varying 

concentrations of As in pyrite ranging from approximately 200 to 9000 mg/kg. Assuming that 

pyrite is the source of As, four scenarios needed to be considered to explain the high 

concentrations of As. Each of these scenarios involves a change of hydraulic conditions in the 

Lithia area, causing the rapid introduction of oxygenated groundwater into the Upper Floridan 

aquifer where most of the supply wells are screened:  

1. The  removal  of  clays  during  the  phosphate  mining  process  in a location to the east  of  

the Lithia area, which is hydraulically up gradient of the site, allowed water with different  

geochemical characteristics from the ambient surface/surficial aquifer to flow into the deeper 

aquifer.  
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2. Water from a gypsum stack which is associated with a former phosphate plant is drained 

into a creek that straddles the up gradient extent of the site. This creek may  be  a  surface  

reflection  of  a  fracture  that  allows  drainage  water  with different characteristics to flow 

quickly into the deeper aquifer.  

3. The extensive pumping from the well field that is located on the western portion of the study 

site significantly altered the hydraulic head between surficial/intermediate aquifer and the 

underlying Floridan aquifer providing more potential for waters from the shallow intervals to 

flow into the deeper aquifer.  

4. There could be a combination of one or more of the aforementioned scenarios. 

 

 

Fig. 4.7 Correlation between As concentration in pyrite and sulfur extracted by the CRS 

method. 
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4.4.3 Organic matter 

If the role of pyrite as a sink for Mo does not explain most of the data obtained through this 

research, then some other alternative pathways for Mo burial in euxinic settings must be 

proposed. It is well known that Mo may be enriched in the sediments by incorporating into OM 

(Adelson et al., 2002; Chappaz et al., 2014; Crusius et al., 1996; Dahl et al., 2010; Tribovillard 

et al., 2008; Vorlicek, 2004; Werne et al., 2008; Wilde et al., 2004; Zheng et al., 2000). In the 

present case, a statistically significant correlation (R2 = 0.71 and p < 0.001) was observed 

between Mo and OCres (Fig. 4.8), which suggested that OCres was a major primary source for 

Mo. Tribovillard et al., (2004) argued that sulfurized OM has a great capability to incorporate 

Mo and retain it over a geological time scale as well as during digenesis. However, no 

correlation was found between Mo and organic sulfur which indicated that sulfurized OM 

played no role to enhance the trapping of Mo at the time of sediment formation.  There were 

no significant relationships between As, OCres and OS. This indicated that OM and its sulfurized 

form did not insert significant impact on the groundwater quality with respect to As.  

 

Fig. 4.8 Correlation between Mo concentration in the residue of the CRS and the OCres. 
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4.4.4 Powellite 

Molybdenum and As could be released by powellite dissolution. Based on the average of 5 

Electron microprobe analyses of powellite, its chemical composition (by mass) was 

approximately 21% Ca, 42% Mo and 1.76% As, while other elements were less than 0.2%  

(Pichler and Mozaffari, 2015). Results from geochemical modeling showed that powellite was 

supersaturated and the precipitation of powellite in the alkaline pH range was likely when Mo 

concentration reached 3250 μg/L in the groundwater sample of Lithia area. On the other hand, 

dissolution of the synthesized powellite in DDI water and the groundwater sample of Bremen 

demonstrated that only minor amounts of powellite could be released in the natural system 

(Fig.4.6). Hence, neither precipitation nor dissolution of powellite is likely to happen at a 

considerable rate in the Lithia area and consequently powellite was regarded as a minor sink 

for Mo and As, if any.   

 

4.5 Conclusions 

The results obtained by applying steps 4 and 5 of the SEP in Chapter 3 which were considered 

to be related to the primary sources of Mo and As including OM and pyrite were found to be in 

good agreement with the CRS results. The positive correlation between OC and Mo in the 

residues of CRS, with little Mo in pyrite, proved that OM was the main primary source for Mo. 

Organic sulfur which was assumed to have a substantial ability to trap Mo in sediments played 

no role to fix Mo at the time of deposition. The presence of Mo in a very soluble form pointed 

to the anthropogenic disturbance of subsurface redox conditions which was caused by the 

penetration of oxygenated surface water into deeper aquifers. As a result, Mo was first shifted 

from the organic phase to the more labile form and subsequent released into the groundwater. 

Molybdenum on the other hand, appeared to be adsorbed onto mineral surfaces. Its adsorption 
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on calcite and HFO was too low. Some loosely bound Mo in the aquifer matrix could be 

attributed to clay minerals, which are coated with organic materials.  

Pyrite was found to be the main primary source of As in the study area. There was no significant 

relationship between As and OM in the CRS residuals. Precipitation of powellite was controlled 

by the concentration of Mo in groundwater samples in the Lithia area. Geochemical modeling 

showed that powellite as a secondary Mo mineral was super-saturated when Mo concentration 

in the groundwater of Lithia was higher than 3250 μg/L (Chapter 3). On the other hand, the 

dissolution of synthesized powellite in DDI water and groundwater demonstrated that only 

minor amounts of powellite could be released from the aquifer matrix. Thus, the precipitation 

and dissolution of powellite was insignificant in the Lithia area. 
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Chapter 5. Impact of adsorption (hydrous ferric oxides and humic 

acid) and desorption (hydrous ferric oxides) reactions on the 

mobilization of molybdenum and arsenic from the aquifer matrix 

 

Abstract 

In order to assess the adsorption and desorption behavior of molybdenum (Mo) and arsenic 

(As) by/from hydrous ferric oxides (HFO), a series of batch experiments on the synthesized 

HFO samples were carried out. Four core samples from the exploration boreholes of the Lithia 

area were also included in the desorption experiments to determine the role of HFOs present 

in the study area in retaining Mo and As. All the experiments were undertaken using distilled 

deionized (DDI) water. The results showed that the adsorption affinity of Mo on HFO was very 

high at low pH, but very low at pH above 8. Similarly, adsorption of As(III) and As(V) onto HFO 

was very high at low pH; but compared to Mo, both As(III) and As(V) were stronger adsorbed 

to HFO at pH 7 to 9, which coincide with the pH range of the study area. In addition to the 

batch experiments, a surface complexation model was run to simulate the adsorption of Mo 

and As onto HFO. The model findings were supportive of the experiments results. Desorption 

experiments were carried out by dissolving HFO and core samples in DDI. The experiments 

showed that about 50 to 96% Mo in the core samples were released, but no Mo from those 

absorbed onto the HFO during the adsorption experiments was liberated. The removal of Mo 

from the core samples was not pH dependent. In contrast to Mo, As was mobilized to a lesser 

degree; in 3 of the 4 core samples less than 30% were removed, and a maximum 50% was 

released from the fourth sample. No As was released from HFO samples when DDI water was 

used as solvent.  

Following desorption experiments, the residues of the core and HFO samples were 

sequentially dissolved through the first 3 steps of the sequential extraction procedure (SEP) 
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which were described in Chapter 3. These were carried out to identify the type of the 

adsorption, i.e. whether it is inner or outer sphere complexes. About 20% Mo was removed 

from the HFO samples during step 1 but little Mo was leached in the second step and the rest 

of Mo (≈ 80%) was dissolved in the third step where HFO itself was also dissolved. Little As 

was released during steps 1 and 2 of the SEP, but almost all of the As was released during 

step 3. The experiments showed that Mo sorption onto HFO was mainly through forming inner-

sphere complexes which is a stronger bond than outer-sphere complexes. An isotherm 

modeling proved that anions such as phosphate and to lower degree sulfate competed with 

Mo for sorption sites. In contrary to Mo, As competed better with the mentioned ions and sat 

on a considerable number of HFO sites; something that was also proved by the high extraction 

rate of As in the third step of SEP which was described in Chapter 3. 

In addition to HFO, humic acid (HA) adsorption test was carried out to evaluate the role of 

organic matter (OM) in removing Mo from groundwater. In the alkaline pH ranges (pH ranges 

of the study area), Mo adsorption onto HA was low. Thus, OM had no significant impact on the 

Mo behavior in the study area. 

 

5.1 Introduction 
 

Adsorption/desorption by/from the surface of solid minerals and OM are the dominant reactions 

controlling the fate of many heavy metals in terrestrial and aquatic environment. Knowledge of 

these phenomena is essential for understanding retention and transport of heavy solutes in 

soils and geological media. It is also crucial for assessing the environmental risk of 

contamination and pollution provoked by these elements. Therefore, most investigations 

regarding environmental concerns have been focused on describing the sorption and transport 

of heavy metals under field conditions as well as in the laboratory experiments. Elevated Mo 
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and As in Lithia area in both aquifer matrix and groundwater provided an exceptional field site 

to deepen these investigations.  

Molybdenum adsorption onto soils and soil minerals has been well studied (Das and Jim 

Hendry, 2013; Goldberg, 2010; Gustafsson, 2003; Prasad Saripalli et al., 2002; Stollenwerk, 

1998; Zhang and Sparks, 1989). Iron (Fe), aluminum (Al) and, to some extent, titanium (Ti) 

oxides may be important adsorbent minerals for Mo, as they may acquire a positive charge at 

low to medium pH values (Ferreiro et al., 1985; Manning and Goldberg, 1996; Matern and 

Mansfeldt, 2015). Among them, HFO is one of the main adsorbent in the oxic environments 

and has relatively huge surface area of about 600 m2/g. In practice, the mobility of heavy metals 

in water depends on several factors including soil and sediment characteristics, ionic strength 

and concentration of oxyanions that compete with each other for soil or sediment retention 

sites. Goldberg et al., (1996) reported that ionic strength had a minor impact on Mo adsorption 

onto HFO. Few researchers investigated the influence of multiple anions on Mo adsorption 

(Bostick et al., 2003; Goldberg and Forster, 1998; Gustafsson, 2003; Hiemstra et al., 1989; 

Roy et al., 1986; Wu et al., 2000; Wu et al., 2001). Phosphate strongly competes with 

molybdate for adsorption sites and sulfate also competes for sorption sites but to a lesser 

degree than phosphate (Goldberg, 2010; Gustafsson, 2003). Sulfate forms outer-sphere 

complexes during adsorption on goethite, while molybdate forms an inner-sphere complex 

(Goldberg et al., 1996). The affinity of tungstate is greater than molybdate for the goethite 

surface (Xu et al., 2006). There is only one relatively old research regarding Mo adsorption 

onto OM (Bibak and Borggaard, 1994). These workers found that Mo adsorption decreases 

rapidly from its maximum at pH 3.5, indicating a different mechanism, probably complex 

formation between carboxyl and phenol groups on HA and Mo in octahedral coordination.     

Arsenic is a trace element that is toxic to animals including humans (Abernathy et al., 1999). 

The concentrations of As in soils and waters can be elevated due to mineral dissolution, use 

of arsenic bearing pesticides, disposal of fly ash, mine drainage, and geothermal discharge 
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(Banning and Rüde, 2010; Price and Pichler, 2006). Presently, there is a widespread concern 

about elevated concentrations of As in the aquifers of Bangladesh (Harvey et al., 2002; 

Nickson et al., 1998; Nickson et al., 2000). Of the two naturally occurring forms of As, arsenate, 

As(V), and arsenite, As(III), trivalent As is considerably more toxic. These species can be 

removed from the solutions by sorption onto the solid phases present in the system. Both 

arsenite and arsenate are adsorbed onto soil mineral surfaces, but show very different 

adsorption behaviors. Clay minerals and HFOs play an important role in the retardation of As 

in the environment (Kersten et al., 2014; Manning and Goldberg, 1996).  

In this study the adsorption/desorption of Mo and As onto/from two-line HFO at different pH 

ranges was investigated. The samples (HFO samples and core samples) were first dissolved 

in DDI water. The first three steps of the SEP were then applied to the residue of the samples 

to evaluate the surface complexes formed during the adsorption experiments. Experiments 

were also carried out to study adsorption of Mo onto HA to assess the role of organic materials 

in removing Mo from groundwater. An isotherm modeling exercise using three competing 

anions including molybdate, phosphate, and sulfate which were present in the Lithia area was 

performed to evaluate their role in the adsorption behavior of molybdate onto HFO in Lithia 

groundwater. 

 

5.2 Materials and methods 
 

5.2.1 Reagents, sample selection and analytical methods 
 

Distilled deionized water with a resistivity less than 18 MΩ/cm was used to prepare all of the 

solutions. Stock Mo and As(III, V) solutions were prepared by dissolving Na2MoO4.2H2O 

(Sigma-Aldrich, Spain), As2O3 (for As(III)), and HAsNa2O4.7H2O (for As (V))  (Sigma-Aldrich, 

Spain) in DDI water, respectively. To maintain a relatively constant ionic strength, all working 
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Mo and As solutions were freshly prepared with a background electrolyte concentration of 0.01 

M of NaNO3.   

Four samples from DEP-1, DEP-2, and DEP-5 cores were chosen for desorption experiments. 

The samples were selected by taking into account three criteria including high Mo 

concentration, high As concentration, and appropriate geographic representation of the study 

area. The samples were powdered by hand with an agate mortar and pestle and rinsed with 

ethanol to prevent cross contamination. An electronic scale was used to weigh out 1 ± 0.005 

g of powdered sample which was subsequently poured into 50 mL centrifuge tubes for the 

experiments. Fifty mg of each sample were used to measure the total content of the elements.  

5.2.2 Preparation of HFO  
 

Two-line HFO was synthesized following the procedure described by Swedlund and Webster 

(1999). Four M NaOH solution (Sigma-Aldrich, Germany) were added drop-wise, under 

constant stirring, to a solution containing 18.44 mM of Fe(NO3)3.9H2O (Alfa Aesar, Germany). 

The resulting suspension was kept for 20 h at about 20o C. Iron (hydr)oxide particles from 

similar suspensions were previously examined by Fe K-edge EXAFS spectroscopy and found 

to be 2-line ferrihydrite (Gustafsson, 2003; Swedlund and Webster, 1999; Tiberg et al., 2013). 

Prior to the batch experiments, the suspension was back-titrated to pH 4.6 by adding specified 

volumes of 0.1 M HNO3 which was followed by strongly stirring for 30 min to prevent buildup 

of excessive CO2 in the suspension.  

5.2.3 Batch experiments 
 

In this section, batch experiments which were set up to assess Mo, As(III) and As(V) adsorption 

onto HFO as well as Mo adsorption onto HA are described. Molybdenum, As(III) and As(V) 

adsorption experiments were conducted by mixing a background electrolyte of 0.01 M NaNO3 

with appropriate amounts of the HFO suspension. Then various volumes of acid (HNO3) or 

base (NaOH, prepared the same day) were added to the suspension to produce a wide range 
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of pH, from 3 to 10. In the next step, few aqueous solutions including Na2MoO4.2H2O, As2O3 

(As (III)), and HAsNa2O4.7H2O (As (V)) were added to each suspension. The final 

concentration for Mo was 10 mg/L, while that of both As(III) and As(V) was 15 mg/L. 

Approximately 40 mL sample from the suspensions were taken and transferred to the 

polypropylene centrifuge vials. The suspensions were shaken for 48 h by a mechanical shaker 

operating at 250 rpm at room temperature; they were then centrifuged for 20 min at 4000 rpm 

and separated from the solids. The supernatants of all the samples were filtered by either 0.2 

μm cellulose acetate filters (Membrex, Germany) or 0.45 μm Sabina membrane filters. The 

percentage of adsorbed Mo and As was simply calculated by computing the difference 

between the initial and final Mo concentrations using Equation (5.1): 

Absorption (%) = (Ci −Cf/Ci) ×100       Equation 5.1 

where Ci and Cf are the concentration of element in the initial and final solutions, respectively. 

Desorption batch experiments were performed to determine whether the sorption is reversible 

or not. The experiments were carried out by adding 40 mL DDI water with a background 

electrolyte of 0.01 M NaNO3 to the residue of centrifuged HFO (This is for those samples which 

adsorbed all Mo and As from the solutions during the 48 h contact time). The solutions were 

shaken for 48 h and subsequently centrifuged and analyzed for Mo and As content. To 

compare these results with the Floridian aquifer matrix, 4 samples from the Lithia cores were 

selected. First, 40 mL DDI water with a background electrolyte of 0.01 M NaNO3 were added 

to 1 g of each sample, and subsequently shaken in the same manner as the HFO samples.  

Two humic acids were used for this study including humic acid sodium salt from Sigma Aldrich 

(HA) and purified humic acid (PHA). For preparation of HA stock solution, commercial HA was 

dissolved in DDI water at pH above 10, followed by filtering through 0.45-μm acetate cellulose 

membranes. Purified humic acid was prepared by washing HA with 1 M NaOH in a glove box 

and were purged with nitrogen for 12 h. It was then precipitated with HCl at a pH between 1 



CHAPTER 5: ADSORPTION & DESORPTION 

92 

 

and 2, centrifuged, rinsed three times with 0.1 N HCl in order to remove the fulvic and 

hydrophilic acid compounds, and finally rinsed with DDI water to remove excess salt. The 

percentage of Mo and As adsorbed onto HA and PHA was simply determined by computing 

the difference between the initial and final Mo concentration using Equation 5.1. 

5.2.4 Sorption type of Mo and As onto HFO 
 

Desorption batch experiments were carried out to determine the adsorption type of Mo and As 

onto HFO. Firstly, the core and HFO samples (residuals of the samples after adsorbing all Mo 

and As from the solutions following 48 h contact time) were dissolved in 40 mL DDI water, and 

subsequently shaken for 48 h. Secondly, the residues of the first step were dissolved in 20 mL 

1 M sodium acetate (NaOAc) adjusted to pH 8.1 and shaken for 2 h at room temperature by a 

mechanical shaker operating at 250 RPM, i. e. step 1 of the SEP. Thirdly, the experiments 

were repeated on the residues of the second step with the same reagent at pH 5, i.e. step 2 of 

the SEP. Finally, 20 mL of a freshly prepared, 0.5 M hydroxylamine hydrochloride in 0.25 M 

HCl were added to the residues of the third step, capped and shaken for 5 to 10 seconds. The 

samples were then placed in a hot block at 60°C for 2 h with the cap loosened. At 30 min 

intervals, the caps were tightly closed and the contents shaken for 5 to 10 s, i.e. step 3 of the 

SEP. The filtrates (after 10 min centrifuge) of each step were analyzed to measure Mo and As 

concentration. 

5.2.5 Modelling 
 

The diffuse layer model (DLM) (Dzombak and Morel, 1990) was run to predict the adsorption 

of Mo and As onto HFO. The same DLM parameters as Dzombak and Morel (1990) were used, 

i.e. a) an specific surface area of 600 m2/g was assumed, b) the site density was fixed at 0.205 

mol/mol Fe, and c) the log K’s of the surface complexation reactions defining the formation of 

the protonated FeOH2
+ species and the deprotonated FeO- species were set at 7.29 and -8.93, 

respectively.  
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In the modeling exercise, the protonation reactions of molybdate were considered as:  

K1 =  HO4
-/ H+ + XO4

2-   Equation 5.2 

K2 =  XO3(H2O)3/ 2H+ + 2XO4
2-  + 2H2O Equation 5.3 

where X is Mo, K1 and K2 are equilibrium constants. Log K1 and log K2 were set at 4.24 and 

8.24, respectively.  

A second modeling code was used to evaluate the impact of phosphate and sulfate 

concentrations on the molybdate sorption onto HFO in the Lithia area. For this model, the DEP-

1 well data was used by varying concentrations of these ions. The concentrations were 

gradually altered as such to resemble the concentration of anions ranges in the study area. 

The competitive sorption data for molybdate and phosphate were fitted to the multi-component 

Freundlich equations (Equations 5.4 and 5.5) using PHREEQC code. The same equations can 

be written for molybdate and sulfate: 

SMo = aMo CMo / (CMo + KMo, P CP) 1-bMo   Equation 5.4 

SP = aP CP / (CP + KP, Mo CMo) 1-bP   Equation 5.5 

where SMo is the amount of sorbed Mo per unit mass of the sorbent (HFO) in the presence of 

competitor P, SP is the amount of sorbed P per unit mass of the sorbent in the presence of 

competitor Mo, aMo and ap are the single solute Freundlich constants for solutes Mo and P, CMo 

and CP are the equilibrium concentrations of the solutes, KMo,P is the competition coefficient of 

P on Mo, and KP,Mo is the competition coefficient of Mo on P. Sorption was calculated by taking 

into account the change in Mo, P and S concentrations. A summary of the input data for the 

two-site diffuse layer model is presented in Table 5.1. 
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Table 5.1 Surface complexation reactions for the two-site diffuse layer model (data from 

PHREEQC database). 

Reactions                                                                             Log K 

SurfwOH + H+ = SurfwOH2
+     6.3  

SurfwOH = SurfwO- + H+     -7.1  

SurfwOH + MoO42- + H+ = SurfwMoO4
- + H2O      8.2  

SurfwOH + MoO4
2- = SurfwOHMoO4

2-   2.4  

SurfwOH + PO4
3- + 3H+ = SurfwH2PO4

0 + H2O  27.8  

SurfwOH + PO4
3- + 2H+ = SurfwHPO4

- + H2O  21.6  

SurfwOH + PO4
3- + H+ = SurfwPO4

2- + H2O   16.5  

SurfwOH + SO4
2- = SurfwOHSO4

2-    0.7  

SurfsOH + H+ = SurfsOH2
+     6.3  

SurfsOH = SurfsO- + H+     -7.1  

SurfsOH + MoO4
2- + H+ = SurfsMoO4

- + H2O                        10.3  

SurfsOH + MoO4
2- = SurfsOHMoO4

2-    4.2  

SurfsOH + PO4
3- + 3H+ = SurfsH2PO4

0 + H2O                       27.8  

SurfsOH + PO4
3- + 2H+ = SurfsHPO4

- + H2O                         21.6  

SurfsOH + PO4
3- + H+ = SurfsPO4

2- + H2O                            16.5  

SurfsOH + SO4
2- = SurfsOHSO4

2-    0.7 

 

SurfwOH and SurfsOH represent low and high affinity bonding sites. Surface site density in 

the model (Dzombak and Morel, 1990) for SurfwOH was 0.83 μM/g and was 0.02 μM/g for 

SurfsOH. The surface area was assumed to be 600 m2/g (Gustafsson, 2003; Stollenwerk, 

1998). 
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5.3 Results 
 

5.3.1 Adsorption experiments 
 

Results of the Mo – HFO batch experiments (Fig. 5.1 and Table 5.2) indicated that the 

adsorption affinity of Mo onto HFO was highly pH dependent. Nearly 100% Mo was adsorbed 

at low pH, whereas little Mo adsorption occurred at pH above 8. Initial Mo concentration in the 

solutoin was 10 mg/L. Adsorption of As(III) and As(V) onto HFO was strongly pH dependent 

(Fig. 5.2 and Table 5.3). Compared to Mo, As(III) and As(V) were adsorbed much more 

strongly onto HFO at pH 7 to 9, which corresponded to the pH range of the study area. Initial 

concentration of both As(III) and As(V) in the solution was 15 mg/L. 

The chemical equilibrium program, Visual MINTEQ, was employed to produce model fits for 

the Mo and As data. For As(V) and As(III), some scatter was observed in the adsorption 

envelopes. However, a better fit was obtained for Mo when Dzombak and Morel’s (1990), 

diffuse layer model (DLM) constants was used (Fig. 5.1 and Fig. 5.2). 
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Table 5.2: Measured pH and concentrations of dissolved Mo, As(III) and As(V)  in the 

batch experiments. 

pH Mo  As(III)  As(V)   

3.67 n.d.  n.d. n.d. 

4.36 n.d.  n.d. 0.2 

5.65 0.1  n.d. 0.3 

6.2 0.5  n.d. 0.8 

6.75 0.4  0.1 0.3 

7.15 5.0  n.d. 1.1 

8.15 8.5  0.8 1.5 

8.4 8.0  0.2 1.5 

9.39 9.0  0.3 3.0 

 

 

Fig. 5.1 Molybdenum adsorption onto HFO. Diffuse layer model (Dzombak and Morel, 1990) 

specifications: weak sites 0.83 μM/g and strong sites: 0.02 μM/g, surface area: 600 m2/g. 

Points are observations (initial molybdenum concentration of 10 mg/L) and the curve is the fit 

for diffuse layer model model (DLM). 
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Fig. 5.2 Arsenite and arsenate adsorption onto HFO. Points are observations (arsenite and 

arsenate initial concentration of 15 mg/L) and the lines fit the diffuse layer model (DLM). 

Adsorption of Mo onto HA and PHA was strongly pH dependent (Table 5.3 and Fig. 5.3). The 

highest Mo adsorption was at around pH 3.5. Molybdenum adsorption decreased exponentially 

with increasing pH and remained constant at pH above 7. The difference between Mo 

adsorption onto HA and PHA was related to impurities in HA such as clay minerals. 
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Table 5.3: Amounts and percentages of Mo adsorbed on HA and PHA.

pH               HA                     PHA   

 sorbed mg/kg sorbed %  sorbed mg/kg sorbed % 

3.5 7.7 51  7.1 47 

4 6.0 40  4.5 30 

4.6 4.1 27  1.8 12 

5.3 2.4 16  2.0 13 

6.1 2.6 17  1.2 8 

7 0.6 4  0.6 4.3 

8 1.1 7   0.7 4.4 

 

 

Fig. 5.3 Molybdenum adsorption on HA and PHA. 
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5.3.2 Desorption experiments 
 

Desorption batch experiments were conducted by using clean and fresh DDI water to 

determine the reversibility of Mo and As adsorbed onto HFO. In addition, 4 samples from the 

aquifer matrix were selected and analyzed in the same manner as HFO’s samples to assess 

the role of HFO as a host for Mo and As. The results of these experiments can be seen in 

Tables 5.4, 5.5, and Fig. 5.4 (A, B). 

 

Table 5.4: Amounts of Mo released from the aquifer matrix and HFO samples by reaction with 

DDI water at different pH ranges. 

pH   DEP-1 45-46   DEP-1 70-71   DEP-2 18-19   DEP-5 50-51   HFO (10, 15 mg/L) 

    mg/kg       %   mg/kg       %   mg/kg       %   mg/kg       %     

3.67  116          96  357          71  20          53  20          86  n.d. 

4.36  116          96  361          72  21          55  21          94  n.d. 

5.65  112          93  353          71  20          53  20          83  n.d. 

6.2  117          97  344          69  23          56  23          81  n.d. 

6.75  114          94  340          68  19          50  19          86  n.d. 

7.15  113          93  332          67  20          53  20          92  n.d. 

8.15  114          94  344          69  21          55  21          89  n.d. 

8.4  116          96  342          68  19          51  19          81  n.d. 

9.39   117          97   354          71   22          57   22          83   n.d. 

n.d. = not detected 
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Table 5.5: Amounts of As released from the aquifer matrix and HFO samples by reaction with 

DDI water at different pH ranges. 

pH   DEP-1 45-46   DEP-1 70-71   DEP-2 18-19   DEP-5 50-51   HFO (10, 15 mg/L) 

    mg/kg       %   mg/kg       %   mg/kg       %   mg/kg       %     

3.67  13              43 40              30 2                 9  7               23  n.d. 

4.36  13.4           45 39.5           30 2                 9  8               26  n.d. 

5.65  14              47 40              30 3               12  7               23  n.d. 

6.2  14              47 40              30 2                9  5               17  n.d. 

6.75  13              43 37              28 2                9  6               19  n.d. 

7.15  12.5           42 37              30 1                5  6               19  n.d. 

8.15  13.4           45 39.5           28 2                9  5               18  n.d. 

8.4  14              47 37              28 1                5  6               19  n.d. 

9.39   9.9             33 37.6           28 1                5   7               23   n.d. 

n.d. = not detected 
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Fig. 5.4 (A, B) Percentage of Mo and As mobilized from the aquifer matrix as a result of the 

reaction with DDI water. The data corresponds to Tables 5.4 and 5.5. 
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5.3.3 Evaluation of adsorption types using sequential extraction  
 

Hydrous ferric oxide possesses high specific surface area and is scattered everywhere in an 

aquifer matrix. Thus, it provides large sorption sites for toxic elements including Mo and As. 

The elements could be adsorbed onto HFO by forming inner and outer-sphere surface 

complexes. In order to investigate the adsorption type of Mo and As onto HFO, the first three 

steps of the SEP was applied to the residue of the desorption experiments. The results are 

presented in Tables 5.6, 5.7 and Fig. 5.5.  

Table 5.6: Amounts of Mo extracted by the first three steps of the SEP. 

Sample   Step1   Step 2   Step 3   Total 

   mg/kg       %  mg/kg       %  mg/kg       %  mg/kg  

DEP-1 45-46   n.d.            n.d.            n.d.            122 

DEP-1 70-71  2.2         0.42 1.8         0.34 1.8         0.35 499 

DEP-2 18-19  1.0         2.63 1.0         2.63 n.d.           38 

DEP-5 50-51  0.2         0.59 0.3         0.88 0.3         0,79 36 

HFO-1  0.1           1.1 1.6         15.8 8.0         77.4 10 

HFO-2   0.4           2.5 3.0           19   11.5       71.9 15 

n.d.= not detected 

Table 5.7: Amounts of As extracted by the first three steps of the SEP. 

Sample   Step1   Step 2   Step 3   Total 

   mg/kg       %  mg/kg       %  mg/kg       %  mg/kg  

DEP-1 45-46   3               10 4               13 6               20 30 

DEP-1 70-71  4                3  2                2  30             23 132 

DEP-2 18-19  1.5             8  1                6  7               39 18 

DEP-5 50-51  3              10  4              13  17             57 30 

HFO - As(III)   n.d.           n.d.           14             93 15 

HFO - As(V)   n.d.            n.d.            13             87 15 

n.d.= not detected 
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Fig. 5.5 Amounts and percentages of Mo and As released as a result of the application of the 

first three steps of the SEP to the residue of the desorption experiments. The data corresponds 

to Tables 5.6 and 5.7. 
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5.3.3 Geochemical modeling and adsorption isotherms 
 

The adsorption of molybdate (MoO4
2-), phosphate (PO4

3-), and sulfate (SO4
2-) onto HFO in 

DEP-1 well sample was simulated by PHREEQC using Dzombak and Morel (1990) form of 

diffuse double layer surface complexation model. The model provided a direct relation between 

molybdate adsorption and solution chemistry. The consequences of change in pH, phosphate, 

and sulfate on molybdate adsorption can be described with a relatively small number of mass 

action expressions. The sorption isotherms for the three anions as a function of pH are 

depicted in Figures 5.6 and 5.7. There was a decrease in sorption with an increase in pH of 

the groundwater solution. At any given pH and solution concentration, phosphate was sorbed 

more strongly than molybdate. Adsorption of molybdate decreased with increase in pH, a 

behavior typical of anion adsorption onto iron oxide. Sulfate also competed for sorption sites 

but to a lesser degree than phosphate. Adsorption of molybdate was nonlinear; the amount 

adsorbed decreased with increase in aqueous concentration. Adsorption isotherms also 

became more linear with increase in pH. 
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Fig. 5.6 Adsorption isotherms for molybdate in competition with phosphate in DEP-1  

groundwater sample for HFO sites. The pH values (6.5 and 7.5) and anion concentrations in 

the solution were chosen as such to resemble the expected range of the study area. 
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Fig. 5.7 Adsorption isotherms for molybdate in competition with sulfate in DEP-1 groundwater 

sample for HFO sites. The pH values (6.5 and 7.5) and anion concentrations in solution were 

chosen as such to resemble the expected range of the study area. 
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5.4 Discussion 

5.4.1 Possible molybdate, arsenite and arsenate sorption sites 
 

Adsorption is the main reaction which controls the mobility of many inorganic solutes including 

Mo and As. The extent of adsorption is highly dependent on the chemical composition of both 

the aqueous and solid phases. Variations in pH, concentration of the competing solutes, overall 

groundwater composition, and surface properties of the adsorbent have been shown to 

influence the mobility of anions and cations (Das and Jim Hendry, 2013; Gustafsson, 2003; 

Schaller et al., 2009; Wu et al., 2000). 

In the aquatic environment, the major sorption sites for Mo and As include HFO (Goldberg et 

al., 1996; Gustafsson, 2003), pyrite (Bostick et al., 2003; Xu et al., 2006), Fe and Al oxides 

and clay minerals (Goldberg, 1985, 2010), calcite (Goldberg et al., 1996), anatase (Prasad 

Saripalli et al., 2002) and OM (Bibak and Borggaard, 1994a). Of all these minerals and 

materials which may act as sorption sites, the aquifer matrix in the Lithia area contained 

relatively high amount of HFO, clay minerals, carbonates and OM (Pichler and Mozaffari, 

2015). The mentioned sorption sites are discussed in more detail in the order of their 

importance below here. 

Hydrous ferric oxides: It has been known for a long time that Mo may be bound to Fe and Al 

oxides in soils and sediments (Bibak and Borggaard, 1994b; Ferreiro et al., 1985; 

Goldberg, 1985; Goldberg et al., 1996; Stollenwerk, 1998). It is the main adsorbent for Mo 

and As in the oxic environment. Molybdenum adsorption onto HFO exhibits a maximum 

value at low pH extending to about a pH of 4 (Goldberg et al., 1996; Stollenwerk, 1998). 

The rate of Mo adsorption onto HFO decreases with increase in the concentration of Mo 

in the solution (Stollenwerk, 1998). Ferreiro et al., (1985) showed that the sorption of Mo 

by HFO depends largely on pH, reaching maximum value at a pH of 4.  
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Of the two naturally occurring forms of As, i.e. arsenate, As(V), and arsenite, As(III), As(V) 

shows maximum sorption onto HFO at a pH of 4  while As(III) shows maximum sorption 

at the pH range of 7 to 8.4 (Pierce and Moore, 1982). Arsenate forms inner sphere surface 

complexes on HFO and shows very little ionic strength dependence on solution’s pH. In 

contrast, arsenite forms outer sphere surface complexes on HFO and can be released 

into the environment easier than arsenate (Goldberg and Johnston, 2001).  

Clay minerals: It is a well-known fact that clay minerals play an important part in the retardation 

of Mo and As in the environment. Molybdenum adsorption onto clay minerals showed pH 

dependence and maximum adsorption peak near a pH of 4 (Goldberg, 1985, 2010; Jones, 

1957). Several studies showed that the relative adsorption of Mo onto clay minerals 

increased in the order: illite < kaolinite < kaolinite and montmorillonite < nontronite < 

metahalloysite (Jones, 1957; Theng, 1971; Motta and Miranda, 1989). Similarly, Goldberg 

et al., (1996) reported that the magnitude of Mo adsorption in an increasing order is: 

kaolinite < illite < montmorillonite. However, it is difficult to compare the adsorption affinity 

per unit mass or per unit surface area since the suspension density varies between 

adsorbents in different experiments. The mentioned study concluded that Mo adsorption 

onto clay minerals exhibited a peak near pH 3 and then decreased rapidly with increasing 

pH until adsorption was virtually zero near pH 7. Adsorption of Mo onto clay mineral can 

occur through a variety of mechanisms, including adsorption on outer- or inner-sphere 

complexes as well as precipitation. Outer-sphere adsorption is a weak electrostatic 

attraction between an ion and the surface of clay mineral. Inner-sphere adsorption occurs 

through the formation of one or more chemical bonds between the surface in question and 

the adsorbate. For Mo adsorption onto kaolinite, the point of zero charge (PZC) was shifted 

to a more acid pH value, indicating an inner-sphere adsorption mechanism.  

Carbonates: In sediments, carbonate is not a major sink for Mo (Goldberg et al., 1996). Fox 

and Doner (2002) conducted relevant experiments and found that the sorption of Mo onto 
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calcite was low. In contrast, it has been revealed that As may be removed from the aquatic 

environments by carbonates.  

Organic matter: To our knowledge, there is only one research regarding Mo adsorption onto 

OM (Bibak and Borggaard, 1994b). However, a considerable number of research has 

been focused on the enrichment of Mo by OM in the marine environments (Adelson et al., 

2002; Bostick et al., 2003; Brumsack, 2006; Chappaz et al., 2014; Crusius et al., 1996; 

Dahl et al., 2010; Dahl et al., 2013; Erickson and Helz, 2000). On the other hand, 

numerous studies have already been conducted on As adsorption onto OM (Giménez et 

al., 2007; Mohan and Pittman Jr, 2007; Nickson et al., 1998; Nriagu et al., 2007; Peterson 

and Carpenter, 1986; Pierce and Moore, 1982).  

Other oxyanions: Some oxyanions such as phosphate, silicate and sulfate compete with 

molybdate and arsenate for sorption sites (Goldberg, 1985, 2010; Jones, 1957; Pichler 

and Mozaffari, 2015). Roy et al., (1986) showed that the adsorption of molybdate is 

noticeably reduced by the competitive adsorption of phosphate on the surfaces of clay 

minerals. Molybdate adsorption onto gibbsite is not influenced by sulfate, but the 

adsorption of sulfate is significantly inhibited by molybdate (Wu et al., 2000). Silicate has 

a minor competitive effect on molybdate adsorption onto goethite while sulfate does not 

impart any competitive effect (Xu et al., 2006). 

5.4.2 Hydrous iron oxides 
 

The maximum, average and median concentration of Fein the Lithia area were 87311 mg/kg, 

3535 mg/kg and 940 mg/kg, respectively. In the matrix of the local aquifer which underlies the 

town of Lithia in Central Florida, Fe concentration was high in two specific horizons, particularly 

at depths of 5 to 20 m in DEP-2 and depths of 50 to 70 m in DEP-1, DEP-2 and DEP-5 cores 

(Pichler and Mozaffari, 2015). The calculated correlation coefficients between Mo and Fe, as 

well as between As and Fe, within the measurement intervals were 0.1 and 0.71, respectively. 
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Therefore, Fe variations were generally in agreement with As and to a low extent with Mo. 

The mineralogy and petrology studies in the Lithia area showed that Fe in the sedimentary 

rocks have originated from crystalline iron oxide, pyrite and HFO (Pichler and Mozaffari, 

2015). The results from the SEP experiments (data not shown) in Chapter 3 proved that 

approximately only 10% of the total Fe content in the Lithia area was in the form of HFO. The 

adsorption batch experiments demonstrated that maximum Mo adsorption occurred at low pH, 

up to pH 6, which decreased sharply with increase in pH (Fig. 5.1). The neutrality of the study 

area’ pH led to the neutralization of the available surface sites and as a result, the adsorption 

of Mo and As was reduced. Since, the PZC for HFO is 8.1 (Goldberg, 2010), at pH ranges of 

6.5-8, the protonated surface sites tended to transform to neutralized surface, and Mo 

adsorption onto HFO was consequently negligible.  

Applying the first three steps of the SEP to the residues of initial stage of desorption 

experiments confirmed that HFO did not provide a significant adsorption site for Mo (Fig. 5.5). 

Although, about 20% Mo was desorbed from the synthesized HFO surface site in step 1 of the 

SEP, little, if any, was released from the aquifer matrix. This, which was against our 

expectations, clearly indicated that the majority of the retained Mo existed in the primary 

sources, including OM and pyrite. Such finding was also confirmed by the SEP in step 3 where 

HFO and powellite were dissolved but no Mo was released from the aquifer matrix sample 

(Fig. 5.5). Therefore, neither HFO nor powellite could be considered as a significant source for 

Mo in the Lithia area. 

5.4.2.1 The novelty of the methodology implemented in this research 
 

In geochemical texts, surface complexations are classified into inner-spherical complexes in 

which the ions directly bound to the surface of the solid phase, and outer-spherical complexes 

in which a hydration layer covers the ions. One way to detect the presence of an outer-sphere 

complex in a solution is to increase the ionic strength during the batch experiments, and 

monitor the PZC. Some researchers suggested that no shifting in the PZC is a reasonable 
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evidence of outer-sphere complexes (Ferreiro et al., 1985; Goldberg, 2010; Stollenwerk, 

1998). In contrast, the ions adsorbed via inner-sphere surface complexes show insignificant 

dependence on ion strength (Zhang and Sparks, 1989). However, there are also contrary 

scientific documents which indicate that lack of shift in the PZC can result from the formation 

of inner-sphere surface complexes that do not produce a change in the net surface charge 

(Goldberg et al., 2009; Manning and Goldberg, 1996). To help overcoming the above 

mentioned discrepancy and to find an easier method to distinguish between inner and outer 

sphere complexes, special experiments were carried out for the first time in the present study 

as described above, i.e. applying the first three steps of the SEP to the residue of the samples 

after being in contact for 48 h with DDI water in a shaker. Our experiments not only proved that 

there are two types of Mo adsorption but also provided a precise estimation of the amount of 

each adsorption type. To further explain the novelty of our methodology, we propose the 

following rationale about the amount of Mo which was extracted in step 1 of the SEP:  

(Mo extracted in step 1) % ≈ 20% of total adsorbed on HFO (outer-sphere surface complexes) 

+ X% of total adsorbed on other adsorbents such as clay minerals, OM, and etc.  

Such methodology is of appreciable practical application because it is quicker, cheaper and 

simpler with much less complexity. It is believed that the implemented methodology is 

important, not only for the study area but also for all ecological projects and environmental 

pollution studies which may involve Mo in one way or another. Further, these findings are novel 

and contrary to the previous works which reported that Mo adsorption onto HFO occurs in inner 

sphere complexes only (Ferreiro et al., 1985; Goldberg et al., 1996; Xu et al., 2006). In line 

with the above experiments, an isotherm modeling exercise with competing anions including 

molybdate, phosphate, and sulfate was undertaken to identify why Mo extraction in step 3, 

which was dissolved HFO, was so low. These ions which were present in the Lithia area, were 

released from the phosphorite, anhydrite and gypsum lenses of the sedimentary rocks (Pichler 

and Mozaffari, 2015). The amount of Mo adsorbed onto HFO decreased with increasing Mo 
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concentration in the solution (Figs. 5.6 and 5.7). Phosphate and to a lower extent sulfate, 

competed with molybdate for adsorption sites. Competitive interactions between phosphate, 

molybdate and sulfate indicated that phosphate occupied more HFO sorption sites than 

molybdate and sulfate (Figures 5.6 and 5.7). The main reason for this behavior of molybdate 

was attributed to the PZC of HFO (pH 8.1). The pH values of the groundwater in the study area 

were close to the PZC of HFO. This argument was also supported by the very low Mo extraction 

in step 3 of the SEP described in Chapter 3 (Fig. 3.2).  

5.4.3 Organic matter 
 

Numerous researches have revealed that sediments deposited beneath oxygen-deficient 

marine waters compared to oxic marine sediments and continental crust are more enriched in 

Mo. For example, Brumsack (1986) noticed a high correlation between OM and V, Mo and Zn 

for Cretaceous black shales from Cape Verde Basin drill cores. Werne et al,. (2002) showed 

striking covariance between OM and Mo/Al ratios in Devonian euxinic shales from western 

New York. Additionally, Brumsack (2006) discussed the general OM–trace metal relationship 

using Pliocene examples. However, to our knowledge only one research has been carried out 

to investigate Mo adsorption onto OM, i.e., Bibak and Borggaard, (1994). They found that in 

the alkaline pH range, Mo adsorption onto OM is too low. Such observation is in good 

agreement with the results of our study (Fig. 5.3). Thus, OM could not be considered a 

significant adsorbent in the study area. However, this may not be the ultimate role of OM in the 

aquifer in question because OM has high ability for complexing metal ions, formation of colloids 

and coating the mineral surface sites which have high potential to influence Mo behavior in the 

study area. Extensive research are needed to better understand all these phenomena. 
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5.5 Conclusions 
 

In this part of the study it has been shown that considerable amount of Mo (50 to 96%) were 

removed from the Lithia area aquifer matrix samples by dissolving the samples in DDI water. 

In contrast, Arsenic showed much less mobility. By undertaking adsorption and desorption 

experiments, it became clear that Mo was not significantly adsorbed onto HFO and OM in the 

study area. However, OM could affect the speciation of Mo and As species including 

molybdate, arsenite and arsenate, and consequently influencing the migration of these 

pollutants in the environment.  

A novel application of SEP method has been demonstrated in this study. By applying the first 

three steps of SEP to the residues of DDI extracted samples, two types of Mo adsorption 

mechanisms on HFO were recognized which include inner-sphere and outer-sphere surface 

complexes. This technique is superior to the earlier methods in determining the type of 

adsorption and in differentiating between inner and outer complexes. Hence, this is the novelty 

of this study. The three first step of the SEP analysis demonstrated that approximately only 

20% of Mo adsorbed on HFO took place via forming outer-sphere complexes. In contrast, As 

was strongly absorbed by HFO and its adsorption mechanism could therefore be considered 

as inner-sphere complexes.  
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6. Conclusions, outlooks and recommendations for further research 

 

6.1 Conclusions  
 

This study investigated the chemical fractionation, primary sources and adsorption/desorption 

behavior of molybdenum (Mo) and arsenic (As) by/from hydrous ferric oxides (HFO) and humic 

acid (only for Mo) in the Lithia area and Avon Park Formation (APF), Florida, USA. This was 

the first such study for Mo and one of only a few similar studies for As. The findings are 

summarized in the following paragraphs: 

1) Molybdenum and As were found at elevated levels in the aquifer matrix and groundwater 

in the study area. Molybdenum was present mostly in highly soluble phases 

(adsorbed/exchangeable) while As showed somewhat equal concentrations in all 

fractions including adsorbed/exchangeable, carbonates, HFO, crystalline iron oxides, 

sulfides and OM. 

2) The primary source of Mo found in the aquifer matrix and groundwater was mainly 

attributed to the OM rather than pyrite, whereas As originated mainly from pyrite as a 

primary source as well as from HFO in the adsorbed forms. There was a positive 

correlation between Mo and OM (R2 = 0.71 and p < 0.001). The results of chromium-

reducible sulfur (CRS) did not point to the presence of Mo in pyrite in DEP drill cores, but 

as a minor source in the APF. 

3) Geochemical modeling indicated that powellite was super-saturated in the Lithia water 

wells. The dissolution of the synthesized powellite which was already mixed with sample 

R13 1090 (Mo and As free sample) in DDI water and groundwater demonstrated that 

only minor amounts of powellite were released from the aquifer matrix sample.  Powellite 

was not dissolvable in the pH range of the groundwater of study area. All these findings 

indicated that powellite could not be considered as a source for Mo.  
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4) Geochemical modeling also showed that in the Lithia area, Mo sorption onto HFO 

decreased with an increase in the groundwater pH. Also, adsorption of Mo was initially 

nonlinear but adsorption isotherms became more linear as pH increased. The amount of 

Mo adsorbed decreased with increasing aqueous concentration. Phosphate strongly 

competed with molybdate for adsorption onto HFO. Similarly, sulfate competed for HFO 

sorption sites, but less than phosphate. 

5) The batch experiments of the Mo–HFO systems indicated that the adsorption affinity of 

Mo onto HFO was highly dependent on pH. Almost 100% of Mo was adsorbed at low 

pH, whereas little Mo adsorption occurred at pH above 8 at all surface coverage. 

Arsenic(III) and As(V) adsorption onto HFO was strongly pH dependent. Compared to 

Mo, As(III) and As(V) were adsorbed much more strongly to HFO at pH range of 7 to 9, 

which corresponded to the pH range of the groundwater in the study area. Molybdenum 

sorption onto HFO happened mainly via forming inner-sphere complexes. Arsenic(III) 

and As(V) sorption onto HFO were, in contrary, through inner-spherical complexes. 

6) The Mo adsorption capacity of humic acid (HA) and purified humic acid (PHA) was high 

at around pH 3 but decreased exponentially with increasing pH; it remained constant at 

pH above 7. However, this may not be the ultimate role of OM in the aquifer in question 

because OM has high ability for complexing metal ions, formation of colloids and coating 

the mineral surface sites which have high potential to influence Mo behavior in the study 

area. 

7) Hydrous ferric oxide was not a main sink for Mo but a significant secondary source for 

As. Dissolved oxygen inflicted no significant impact on the concentration of dissolved Mo 

and As in the Lithia area and APF.   

 

6. 2 Outlooks and recommendations for further research 
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This study has dealt with geogenic Mo and As as potential contaminants in a limestone aquifer 

in Central Florida, USA. While there are some similar studies with respect to As, this is the first 

study of its kind with respect to Mo. Thus, more efforts are still required to study geochemistry 

of Mo along the following lines: 

1)    Organic matter was proved to be the main primary source for Mo. Consequently, its 

oxidation and degradation is the main cause of groundwater contamination. However, 

processes leading to the fixation and association of Mo with OM are still not well 

understood. One approach to deal with this phenomenon is to scavenge Mo with HA in 

the laboratory. There are two general approaches; synthetic and analytic. In the synthetic 

approach, one would dig into the literature of organic chemistry to list known reactions 

of molybdate, thiomolybdate, etc. with organic molecules.  Alternatively, one might 

postulates what organic natural products are likely to scavenge Mo, and then design 

experiments to prove that accordingly. In the analytic approach, one would look for new 

ways of establishing the nature of Mo binding to OM.  For example, finding new ways to 

chromatographically separating the organic extracts in a sequential extraction procedure 

(SEP) to see where Mo moves to?  There are some very interesting syncrotron-based 

microscopic methods available that could be very useful. 

2)     Although, SEP provides useful information about chemical speciation of the elements but 

from adsorption point of view this technique is insufficient. For example, we designed 

experiments and found that about 20% of total Mo which was co-precipitated with HFO 

was released in step1 (exchangeable phase, Chapter 3), while HFO itself dissolves in 

step 3.  Similar behavior are expected from other adsorbents such as carbonate, Al 

oxides, clay minerals, OM, and etc. Therefore, these complexities need to be addressed 

by conducting extensive research.  

 3)   The simultaneous/competitive adsorption behavior of Mo with other paragenesis elements 

(As, P, V, U, S) which is affected by factors such as the sequence of addition of species, 
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adsorbate/adsorbent ratios, and ionic strength with/without the presence of natural 

organic matters.  

With respect to Lithia area in Central Florida, it is recommended to provide more adsorption 

surfaces to reduce Mo and As health risk for the drinking water. Such practice could be carried 

out, for example, by injecting HFO into the groundwater. It is also necessary to manage 

fertilizers application which contain phosphate to reduce its concentration in the groundwater 

as a strong competitor for sorption sites.  A potential remedy for the As and Mo problem in the 

Lithia area may be to install water wells with discrete screens in the Suwannee Limestone or 

deeper. It is recommended to include Mo in the analytical program whenever elevated As 

concentrations are encountered in aquifers of marine origin. 
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a b s t r a c t

To investigate the potential of Mo and As as possible geogenic contaminants, three sediment cores were
examined to evaluate their mineralogical association, distribution and mobility. The cores were described
and analyzed for total organic carbon (TOC), Ca, Mg, Si, Al, P, Sr, As, Mo, Fe, and S content. Except in the
uppermost segment, limestone was the main lithology with the occasional presence of dolomite and
clay. That change in lithology was also observed in the bulk chemical composition, where Ca, Mg and Sr
concentrations increased with depth, while Si, Al and P concentrations decreased with depth. Minor
minerals included pyrite (FeS2), powellite (CaMoO4) and ferrihydrite. The minimum, maximum, median
and standard deviations for all analyzed elements, including As and Mo were comparable for all three
cores. Molybdenum and As, however, varied significantly with depth and median As and Mo values were
above their respective crustal averages of approximately 1.1 mg/kg and 1.5 mg/kg. The median values for
As were 1.9 mg/kg in core DEP-1, 3.3 mg/kg in DEP-2 and 1 mg/kg in DEP-5. The median values for Mo
were 2.3 mg/kg in core DEP-1, 2.5 mg/kg in DEP-2 and 2.5 mg/kg in DEP-5. Maximum concentrations for
As were 101.9 mg/kg, 47.5 mg/kg and 56.2 mg/kg in cores DEP-1, DEP-2 and DEP-5, respectively.
Maximum concentrations for Mo were 880 mg/kg, 123 mg/kg and 225 mg/kg in cores DEP-1, DEP-2 and
DEP-5, respectively. Electron microprobe analyses of individual minerals revealed variable concentra-
tions of As ranging from approximately 300 to 9000 mg/kg, in pyrite and up to 17,600 mg/kg in powellite
(CaMoO4). The Mo concentration in pyrite was consistently below the detection limit of approximately
100 mg/kg. In powellite the Mo concentration was up to 42 wt%.

A subset of 10 samples from different stratigraphic sections and with different As and Mo concen-
trations was further investigated to assess As and Mo mobility under changing physicochemical con-
ditions. Leaching the aquifer matrix with a 1 M NaOAc solution at a pH of 8.1 removed more than 70% Mo
in 8 of the 10 samples. The maximum value was 97%. In contrast to Mo, As was mobilized to a lesser
degree. In 8 of the samples less than 30% were removed and the maximum was only 50%. Molybdenum,
which seemed to be loosely bound to mineral and organic matter surfaces thus could easily be removed
from the aquifer matrix, while As on the other hand should be much less mobile, because it occurred
either tightly adsorbed by hydrous ferric oxide or as an impurity in pyrite. Thus, it is advisable to include
Mo in the analytical program whenever elevated As concentrations are encountered in groundwater.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Molybdenum (Mo) is considered an essential element, whose
daily requirement for humans is approximately 0.3 mg (WHO,
2011), while at the same time high doses of Mo could be detri-
mental to human health. The recommendation by theWorld Health

Organization (WHO) for drinking water is that Mo should not
exceed 70 mg/L (WHO, 2011). Currently only anthropogenic Mo
contamination seems to be of environmental interest and partic-
ularly in mining areas it is a well-known contaminant (Davies et al.,
2005; Heijerick et al., 2012; Smedley et al., 2014; Zhai et al., 2013)
where it is released during mining operations and due to weath-
ering of mine tailings (Price et al., 1999). The deterioration of
groundwater, however, is not exclusively due to the direct input of
anthropogenic contaminants, such as the discharge of Pb due to
battery recycling (e.g., Pichler, 2005). Another process leading to

* Corresponding author.
E-mail address: pichler@uni-bremen.de (T. Pichler).

Contents lists available at ScienceDirect

Applied Geochemistry

journal homepage: www.elsevier .com/locate/apgeochem

http://dx.doi.org/10.1016/j.apgeochem.2015.08.006
0883-2927/© 2015 Elsevier Ltd. All rights reserved.

Applied Geochemistry xxx (2015) 1e11

Please cite this article in press as: Pichler, T., Mozaffari, A., Distribution andmobility of geogenic molybdenum and arsenic in a limestone aquifer
matrix, Applied Geochemistry (2015), http://dx.doi.org/10.1016/j.apgeochem.2015.08.006



groundwater deterioration can be the mobilization of naturally
occurring (geogenic) elements induced by anthropogenic pertur-
bations of the physicochemical conditions in the aquifer (e.g., Amini
et al., 2008; Ferguson and Gavis, 1972; Korte and Fernando, 1991;
McNeill et al., 2002; Peters and Blum, 2003). This type of
anthropogenic-induced contamination is a public health issue
worldwide. In particular the ongoing catastrophic problems with
arsenic (As) in Bangladesh and West Bengal are front-page stories
in newspapers and scientific journals (e.g., Ahmed et al., 2006).
There is the potential that geogenic Mo could be candidate for
anthropogenic-inducedwidespread groundwater contamination as
well. Marine sediments are known to accumulate Mo in organic
matter (e.g., Tribovillard et al., 2004) and in pyrite (e.g., Helz et al.,
2011, 1996). Since As is known to accumulate in the same two
phases the physicochemical conditions that cause the release of As
from the aquifer matrix should also release Mo.

Elevated arsenic (As) is a well-known problem in Floridan
groundwater, whenever the physicochemical conditions in the
aquifer are perturbed due to anthropogenic activities (Arthur et al.,
2007; Jones and Pichler, 2007; Katz et al., 2009; Wallis et al., 2011).
Thus As is routinely analyzed after completion of new wells, which
led to the discovery of elevated As and Mo concentrations in
groundwater in a rural area in central Florida (Pichler and
Sültenfuß, 2010). There As concentrations of up to 350 mg/L and
Mo concentrations of up to 5000 mg/L were measured. The value of
5000 mg/L is substantially above what could be considered
“normal” for Mo concentrations in groundwater. Smedley et al.
(2014) who studied Mo in Great Britain found a 10 to 90th
percentile range of 0.08e2.44 mg/L with a median of 0.57 mg/L and a
maximum observation of 230 mg/L in stream water samples
(n ¼ 11,600). In groundwater samples the 10 to 90th percentile
ranged from 0.035 to 1.80 mg/L with a median of 0.20 mg/L and a
maximum observation of 89 mg/L (n ¼ 1735).

While some information about the occurrence and distribution
of As in the Floridan aquifer matrix exists (e.g., Pichler et al., 2011),
next to nothing is known about Mo. In this study, we present a first
look at the distribution andmineralogical association of As together
with Mo in a limestone aquifer of marine origin. To estimate As and
Momobility, a modified extractionwas carried out according to the
procedure recommended by Pichler et al. (2001).

2. Study area

The study area is located in the municipality of Lithia southeast
of Tampa Bay in the United Sates (Fig. 1). There, a multilayered
aquifer system exists, which can be subdivided into three distinct
hydrostratigraphic units, which are, from the top down: the Surfi-
cial Aquifer System (SAS), the Intermediate Aquifer System (IAS),
and the Upper Floridan Aquifer System (UFA). Katz et al. (2007)
provided detailed mineralogical and lithological descriptions of
these units and their regional hydrogeology in central Florida,
which were recently reviewed (Hughes et al., 2009). Relevant
hydrogeological characteristics of these units are briefly summa-
rized here.

The unconfined SAS consists of unconsolidated to poorly indu-
rated clastic deposits with depths to the water table ranging from
about 3 m to 15 m below land surface (Katz et al., 2009). The upper
surface of the SAS is defined by the surface topography, which near
the wells with high As concentrations is generally about 30 m
above mean sea level (amsl) and ranges from about 65 m just to
east of the high-As wells to near zero where it intersects Hills-
borough Bay about 35 km to the west. Near the high-As concen-
tration wells, the base of the SAS is 10 m amsl and dips to the west
at a slope of approximately 0.001. The SAS generally is not used as a

major source of water supply because of relatively low yields (less
than 19 L/min), high Fe content, and the potential for contamina-
tion from the surface. Water table elevations in the SAS generally
are above the potentiometric surface of the UFA, indicating
downward groundwater flow through the IAS from the SAS to the
UFA (Katz et al., 2009).

The IAS consists of several water-bearing units separated by
confining units, which are composed mainly of the siliciclastic
Hawthorn Group with interlayered sequences of more and less
permeable carbonates, sands and clays (Scott, 1988, 1990). The
extent, thickness, and permeability of the IAS are variable, but
generally control the downward leakage between the SAS and the
UFA (Katz et al., 2009). Pyrite is found unevenly distributed
throughout the Hawthorn Group and occurs mainly in its fram-
boidal form (Lazareva and Pichler, 2007). Arsenic concentrations in
the Hawthorn Group are generally less than 5 mg/kg, but can reach
up to 69 mg/kg in samples with abundant pyrite (Lazareva and
Pichler, 2007; Pichler et al., 2011). Near the highest As concentra-
tions, the bottom of the IAS is about �30 m amsl and dips to the
west at a slope of approximately 0.001.

The UFA is the major source of water supply within the study
area and consists of permeable limestone and dolomite deposited
in a shallow marine environment (Green et al., 1995; Miller, 1986).
Carbonate deposition was interrupted at first periodically, and
finally completely, with the influx of the siliciclastic sediments
eroded from the Appalachian Mountains that form the IAS. Within
the region of high As concentrations, the bottom of the UFA is about
e 400 m amsl and dips to the west at a slope of approximately
0.001. Because of its high permeability, the Florida Geological Sur-
vey has been testing the UFA to serve as an underground reservoir
for aquifer storage and recovery (ASR) systems. Detailed litholog-
ical, mineralogical, and geochemical studies of the two uppermost
formations of the UFA, the Tampa Member and the Suwannee
Limestone, showed that As is generally present in low concentra-
tions (a few mg/kg), but is concentrated in minor minerals, such as
pyrite, which may contain up to 11,200 mg/kg As (Lazareva and
Pichler, 2007; Price and Pichler, 2006). The Tampa Member of the
Arcadia Formation hydrostratigraphically belongs to the UFA,
although it is the lowermost stratigraphic unit of the Hawthorn
Group (Miller, 1986).

Fig. 1. Location of the study area showing domestic supply wells and their approxi-
mate As concentrations and the locations of the three cores, which were sampled for
this study (DEP-1, DEP-2 and DEP-5).
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3. Materials and methods

3.1. Core description

To assess the occurrence, distribution and mineralogical asso-
ciation of As and Mo in the aquifer matrix in the study area three
cores were analyzed (Fig. 1). Core DEP-1 was drilled inside the area
of contamination to a depth of 114 m below surface and sampled
between 44 m and 114 m. Core DEP-2 was drilled inside the area of
contamination to a depth of 103 m below surface and sampled
between 4 and 103 m. As a reference, core DEP-5 was drilled
outside the area of contamination to a depth of 103m below surface
and sampled between 27m and 103m. The cores were described in
detail, which included the chemical analyses for total organic car-
bon (TOC), Ca, Mg, Si, Al, P, Sr, As, Mo, Fe, and S content and the
preparation of thin sections. Each core was sampled at a spacing of
approximately 0.5 m to ensure representation of all stratigraphic
units. In addition to those interval samples, targeted samples were
taken along each core from sections with visible pyrite, hydrous
ferric oxide, clays, or organic material. These sections were sus-
pected to have higher As concentrations than the bulk carbonate or
clay matrix. This sampling approach was successfully applied to
assess the importance of pyrite as the source of As in the UFA
(Lazareva and Pichler, 2007; Pichler et al., 2011; Price and Pichler,
2006). The samples were dried at room temperature and subse-
quently powdered and dissolved using a digestion method modi-
fied from van der Veen et al. (1985). Once cooled, the digestates
were diluted to 50 mL with deionized water (DI) and allowed to
settle for at least 24 h before being passed through a 2.0 mm Teflon
filter. Two mL of the filtered samples were diluted with 8 mL of DI
for determination of Ca, Mg, Si, Al, P, Sr, Mo, Fe, and S on a Perkin
Elmer Optima 2000 DV inductively coupled plasma-optical emis-
sion spectrometer (ICP-OES). A 10 mL aliquot of each sample was
prepared for As analysis by hydride generation-atomic fluorescence
spectrometry (HG-AFS) on a PSA 10.055 Millennium Excalibur in-
strument following (Price and Pichler, 2006). To assure quality
control, approximately 10% duplicate samples were randomly
selected. Sample blanks, which were added every 5e10 samples,
did not show detectable concentrations of As (<0.2 mg/L). To test
recovery, 2 samples from each batch were spiked in liquid form
with the equivalent 25 mg/kg As before digestion. Recovery of As
from the spiked samples was always between 90% and 110%.

Polished thin sections were made for 20 samples high in As and
Mo for further analyses of discrete mineral phases by optical mi-
croscopy, scanning electron microscopy (SEM) using a Zeiss Supra
40 instrument equipped with a Bruker EDX detector and electron
microprobe analysis (EMPA) using a JEOL JXA-8900R instrument.
Reference materials consisted of natural and synthetic sulfide,
sulfate, silicate, and oxide. Due to logistic limitations, only core
DEP-2 was analyzed top to bottom. The other two cores, DEP-1 and
DEP-5, were analyzed starting at a depth of approximately 45 m
(below surface) and had essentially the same stratigraphy, element
patterns and concentrations as DEP-2 (Appendix A and B).

Total carbon (TC), inorganic carbon (IC) and total organic carbon
(TOC) were determined as follows: (1) The samples were dried at
105 �C, (2) TC was determined by combusting a dried sample at
1350 �C in an oxygen atmosphere using a LECO CR-412 instrument,
(3) TOC was determined by the same combustion method after
removal of IC with phosphoric acid (1:1) and (4) IC was determined
by difference.

3.2. Mobilization test for weakly bound As and Mo

To assess the mobilization potential of As and Mo from the
aquifer matrix 10 samples were chosen for a chemical extraction

experiment based on the following criteria: (1) high total Mo
concentration, (2) high total As concentration and (3) geographic
representation of the study area (Fig. 1). The extraction experiment
was carried out on duplicate samples following step 1 of an
established sequential extraction procedure (Pichler et al., 2001;
Price and Pichler, 2005). All chemicals used were reactant grade
or better and solutions were prepared with double deionized water
(DDI) of at least 18 MU cm�1.

The purpose of this procedure was to assess the amount of
exchangeable (i.e., easily mobilized) As and Mo in the aquifer ma-
trix. To carry out the extraction 20 mL of 1.0 M sodium acetate
(NaOAc) adjusted to a pH of 8.1 were added to 1 g of powdered
sample in a 50 mL screw cap centrifuge tube and shaken for 2 h at
room temperature in a mechanical shaker operating at
250 motions min�1. The extract was separated from the solid res-
idue by centrifugation at 4000 RPM for 10 min. The supernatant
was decanted into a 50 mL tube, diluted to 50 mL and prepared for
chemical analyses (i.e., filtration, dilution if necessary). To wash the
residuals they were re-suspended in 5 mL of DI water then
centrifuged and the supernatant was discarded.

4. Results

4.1. Stratigraphy, mineralogy and chemical composition of the cores

The stratigraphy from top to bottom was approximately as fol-
lows: 0e18 m surficial sediments (SAS), 18e60 m Hawthorn Group
(IAS), 60e70 m Tampa Member (UFA) and below 70 m Suwannee
Limestone (UFA). Except in the uppermost segment, limestone was
the main lithology. Occasionally dolomite and clay minerals were
present. That lithology was also observed in the bulk chemical
composition, where Ca, Mg and Sr concentrations increased with
depth, while Si, Al and P decreased, indicating the decreasing sili-
ciclastic and clay content (Appendix A and B). Core lithology,
Arsenic and Mo concentrations in DEP-5, which was the reference
core from outside the area of contamination, did not differ from
those cores drilled inside the area of contamination (DEP-1 and
DEP-2). The minimum, maximum, median and standard deviations
for all analyzed elements, including As andMowere comparable for
all three cores (Figs. 2 and 3, Appendix B). Molybdenum, As, S and
Fe, however, varied significantly with depth and median As and Mo
values were above their respective crustal averages of approxi-
mately 1.1mg/kg and 1.5mg/kg (Li, 2000). Themedian values for As
were 3.4 mg/kg in DEP-1, 4.7 mg/kg in DEP-2 and 3 mg/kg in DEP-5
(Appendix A, Fig. 3). The median values for Mo were 4.4 mg/kg in
DEP-1, 6 mg/kg in DEP-2 and 3.1 mg/kg in DEP-5 (Appendix A,
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Fig. 3). However, these median values are heavily skewed due to
occasionally high values of up to 100 mg/kg for As and up to
880 mg/kg for Mo (Appendix A).

The concentrations were highest in the SAS and IAS and
returned to “normal”, i.e., expected values for crustal carbonate
rocks, in the UFA below a depth of 60e70 m below surface (Fig. 4).
The concentrations of Fe and S seemed to follow the same pattern,
being elevated in each of the cores at approximately the same
depth (Fig. 5). In core DEP-1 As was elevated at depths of approx-
imately 45m and 55m (Fig. 5). In core DEP-2 As varied significantly
between 5 m and 35 m and then had two pronounced high con-
centrations at 45 m and 60m (Fig. 5). In core DEP-5 As was elevated
at depths of approximately 50 m and 65 m (Fig. 5). In core DEP-1
Mo was elevated at depths of approximately 45 m and 70 m
(Fig. 5). In core DEP-2 Mo showed the same pattern as As. It varied
significantly between 5 m and 35 m and then had two pronounced
high concentrations at approximately 45 m and 70 m (Fig. 5). In
core DEP-5 was elevated at several depths, the highest values at

approximately 50 m and 75 m (Fig. 5).
Euhedral and framboidal pyrite was identified as a minor min-

eral in the IAS and UFA sections (Fig. 6), where it generally filled
void spaces. Sometimes occurring together with hydrous ferric
oxide (HFO) (Fig. 6A) or with powellite (Fig. 6B). Electron micro-
probe analyses revealed variable concentrations of As in pyrite
ranging from approximately 300 to 9000 mg/kg (Table 1). The
molybdenum concentration in pyrite was consistently below the
detection limit of approximately 100 mg/kg and the highest values
for Zn and Sb were 806 mg/kg and 730 mg/kg, respectively. These
values were in the same range as those previously reported for the
IAS (Lazareva and Pichler, 2007) and Suwannee Limestone (Price
and Pichler, 2006). HFO was identified mainly in the upper sec-
tions of the cores.

In core DEP-1 the calcium molybdate powellite (CaMoO4) was
identified at a depth of approximately 45 m. It occurred as very
small grains of approximately 20 mm in diameter filling void spaces
and enclosing primary mineral grains of the aquifer matrix indi-
cating that powellite was the latest stage of mineral formation
(Fig. 6B). Based on the average of 5 EMPA measurements, its
chemical composition by mass was approximately 21% Ca, 42% Mo
and 1.76% As, while other elements were less than 0.2% (Table 2).
The elevated As concentration could also be observed by energy
dispersive X-ray spectroscopy (EDX) (Fig. 6D).

Organic carbon was present throughout the cores, ranging from
0.1 to 3.3% (Appendix C). Its occurrence in each of the three cores
was almost identical. Core DEP-1 had a maximum concentration of
2.6% and a median of 1.4% (n ¼ 22), core DEP-2 had a maximum
concentration of 3.0% and a median of 1.4% (n¼ 27) and core DEP-5
had a maximum concentration of 3.3% and a median of 1.4%
(n ¼ 26).

4.2. Mobilization experiment

The results for the mobilization of Mo and As are shown in
Table 3. Analytical quality was evaluated by including a replicate
and a blank in each analytical batch. The results showed high
precision for replicate samples (average standard deviation of
replicates were 2.8 for Mo and 0.86) for As and the blanks did not
contain detectable concentrations of either element.

During the experiment with NaOAc at a pH of 8.1, which had the
purpose to identify easily mobilized Mo in the aquifer matrix up to
97% were removed (Fig. 7). More than 80% Mo was removed from
samples 45e46, 46e47, 70e71, 31e32, 42e43 and 51e52 and
approximately 65%e70%Mowas removed from samples 18e19 and
75e76. Despite the high extraction from these samples, two sam-
ples 10e11 and 69e70 showedmuch lowerMo extraction of 5% and
21%, respectively. The percentages were calculated using the cor-
responding Mo concentrations from the total analyses (Appendix
A).

In contrast to Mo, As was mobilized to a lesser degree and the
samples could be divided into three groups. Between 21% and 50%
As were removed from samples 42e43, 45e46, 46e47, 70e71 and
31e32 and approximately 10%e24% As were removed from sam-
ples and 50e51, while little to nothing was removed from the
remaining samples, 10e11, 18e19 and 69e70 (Table 3). The per-
centages were calculated using the corresponding As concentra-
tions from the total analyses (Appendix A).

5. Discussion

5.1. Molybdenum

In the aquifer matrix below the town of Lithia in central Florida
cores, Mowas elevated in certain horizons, particularly at depths of
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approximately 40e60 m below surface in all three cores (Fig. 5).
Values were comparable between the cores with maximum values
above 100 mg/kg and median values of around 3 mg/kg. These
values were higher than what was considered to be the mean
concentration of Mo in the Earth's crust of around 1e2 mg/kg (Li,
2000). However, Mo concentrations can be significantly higher in
sediments, which were deposited under oxygen-depleted condi-
tions. Hatch and Leventhal (1992) reported up to 850 mg/kg Mo for
the Stark Shale Member of the Dennis Limestone in Kansas and
Calvert and Pedersen (1993) reported a range from 21 to 160 mg/kg
Mo for sediments from several anoxic basins. In purely oxic sedi-
ments of marine origin Mo concentrations are generally much
lower (Bertine and Turekian, 1973; Crusius et al., 1996) and thus
changing redox conditions during deposition may cause the Mo
variation seen in the DEP cores (Fig. 4). According to Scott (1988)
the depositional environment of the Hawthorn Group changed

constantly from marine or peri-marine conditions that seemed to
have ranged from prodeltaic and shallow to sub-tidal marine, to
intertidal and supratidal with occasional deposition of terrestrial
sediments in the form of paleosoils and weathered residuum of the
Hawthorn sediments. In addition the existence of phosphorite
deposits in the Hawthorn Group points towards upwelling and the
associated changes in redox conditions (Riggs, 1984), as well as the
varying abundance of organic carbon in the sediments (Appendix
B).

The exact mineralogical association of Mo in the aquifer matrix
remains unclear, although the mineral powellite (CaMoO4) was
observed in the aquifer matrix (Fig. 6). Based on crystal habit it is
unlikely that powellite is a primary mineral that would have
precipitated during sediment deposition or early diagenesis. In
Fig. 6B powellite encloses primary calcite fragments indicating that
it was the latest or one of the latest mineral phases to precipitate in

Fig. 5. Approximate stratigraphy and depth profiles for the concentration of iron (Fe), sulfur (S), arsenic (As) and molybdenum (Mo) in cores DEP-1, DEP-2 and DEP-5.
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the aquifer matrix. Precipitation of powellite due to evaporative
concentration of Mo in the pore water during drying of the samples
could have happened. However, several powellites showed very
delicate banding, which appeared to be growth banding (Fig. 6C).
The fine scale of the bands and their uniformity precludes the type
of rapid deposition one would expect from evaporation during core
handling. Thus it is conceivable that powellite is a sink for Mo,
rather than a source. Thermodynamic modeling with the computer
code Geochemist's Workbench (GWB), using recent thermody-
namic data for aqueous Mo species, powellite and molybdenite,
showed that powellite was super-saturated in groundwater sam-
ples with Mo concentrations above 2000e3000 mg/L. Precipitation
of powellite from super-saturated groundwater was observed
elsewhere as well (e.g., Conlan et al., 2012). Thus, the likely primary
source for Mo is organic matter, which is sufficiently abundant in

the aquifer matrix. Themean concentrationwas in each of the three
cores was 1.4%, which is significantly higher than 0.24%, which is
considered the mean concentration in limestone (Gehman, 1962).
Organic matter has a high adsorption potential for Mo (Jenne,1998)
and is known to incorporate and concentrate Mo (e.g., Tribovillard
et al., 2004).

Under reducing conditions at the time of sediment deposition,
Mn refluxing has the potential to concentrate dissolved MoO4

2� at
the sedimentewater interface. In cases where anoxia extends up-
ward into the water column, Mn2þ oxidizes to particulate MnOx
(solid) just above the chemocline. The particulate Mn settles into
the anoxic waters, and re-dissolved Mn2þ diffuses back through the
chemocline, thus completing a redox cycle (Adelson et al., 2002). In
this case Mo can be co-precipitated by Mn and Fe oxides. However,
no evidence was found to indicate that Mo was co-precipitated
with Mn and Fe oxides during time of sediment deposition. The
Mn concentrations were rather low and more or less uniformly
distributed throughout the study area with median values of 24, 37
and 34 for Cores DEP-1, DEP-2 and DEP-5, respectively. The possible
explanation is that the physicochemical conditions in the sedi-
mentary environment did not change sufficiently. On the other
hand, in sulfidic settings, pyrite and organic matter (OM) have a
greater capability to fix Mo from seawater and retain it during
diagenesis (Adelson et al., 2002; Helz et al., 2011, 1996; Tribovillard

Fig. 6. (A) Optical microscopy image of pyrite and HFO in core DEP-1 at a depth of 60 m. (B) Back scatter electron image of powellite and a framboidal pyrite from core DEP-1 (46 m
depth) of powellite in a clay/carbonate matrix. (C) Secondary electron microprobe image (polished thin section) of a powellite crystal showing fine growth banding. (D) EDX spectra
for the powellite in image B.

Table 1
Average chemical compositions of pyrite (FeS2) in thin sections from cores DEP-1
and DEP-2.

Core Sample Fe S As Sb Zn Mo Ca Total

wt% wt% mg/kg mg/kg mg/kg mg/kg wt% wt%

DEP-1 45e46 42 52 8788 730 320 <0.5 0.19 95
DEP-1 45e46b 47 52 2113 0 48 <0.5 0.53 99
DEP-1 57e58 47 52 1281 18 40 <0.5 0.04 99
DEP-1 57e58 48 53 360 0 15 <0.5 0.03 101
DEP-1 64e65b 47 53 451 9 68 <0.5 0.15 100
DEP-1 64e65 46 52 1412 16 54 <0.5 0.24 98
DEP-2 17e18a 47 53 794 9 59 <0.5 0.22 99
DEP-2 17e18b 46 52 1164 11 806 <0.5 0.39 98
DEP-2 41e42 38 51 6597 57 19 <0.5 0.52 90
DEP-2 62e63d 47 53 1846 32 28 <0.5 0.03 100
DEP-2 62e63b 47 52 1713 25 98 <0.5 0.11 99
DEP-2 67e68 46 54 681 66 21 <0.5 0.76 101
DEP-2 68e69 48 53 285 13 6 <0.5 0.06 101

Table 2
Average chemical compositions of powellite (CaMoO4) in thin sections from core
DEP-1.

Core Sample Fe S As Sb Zn Mo Ca Total

mg/kg mg/kg mg/kg mg/kg mg/kg wt% wt% wt%

DEP-1 45e46 5935 4690 15,050 <0.5 755 23 15 41
DEP-1 47e48 472 3216 17,640 34 1312 42 21 66
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et al., 2008). Of the two possible sources OM is considered the
dominant source for Mo (Chappaz et al., 2014). A closer look at the
element distribution in core DEP-2 (Fig. 7) corroborates OM in the
sense that hydrous ferric oxide and pyrite are excluded as major
sources. If those two minerals were a source for Mo then either Fe
or S or both should have been elevated at depth of 40 mwhere Mo
has its maximum concentration. Pyrite was also ruled out because
no Mo was detected during the electron microprobe analyses of
pyrite.

5.2. Arsenic

In the aquifer matrix below the town of Lithia in central Florida
cores, As was elevated in certain horizons, particularly at depths of
approximately 10m, 45m, 60m and 70m below surface in all three

cores (Fig. 4). Values were comparable for all three cores with
maximum values above 100 mg/kg and median values of around
3 mg/kg. These values are higher thanwhat is considered the mean
concentration of As in the Earth's crust of around 1e2 mg/kg (Li,
2000). The observed distribution and concentration values are
similar to previous studies of As occurrence in the Floridan Aquifer
System (FAS) (Lazareva and Pichler, 2007; Pichler et al., 2011). Ac-
cording to Taylor and McLennan (Taylor and McLennan, 1985) the
abundance of As in the upper continental crust is approximately
1.5 ppm. This value is somewhat controversial, because most of the
individual rock types that were analyzed for As have higher values.
The mean abundance in the common igneous rocks, basalt and
granite, are 8.3 and 7.6 ppm, respectively (Taylor,1964). The average
for shale and its related materials, such as loess and mud, is
approximately 10.6 ppm (Li, 2000). The average composition for
sandstone is too difficult to determine, but the value for the
commonly used geostandard GSR-4 is 9.1 ppm (Govindaraju, 1994).
The average value for limestone/dolomite is 2.6 ppm (Baur and
Onishi, 1969). Arsenic is considered a chalcophile element and
therefore often found in As-rich pyrite, although discrete As min-
erals, such as arsenopyrite and reaglar are common if As concen-
trations are sufficiently high (e.g., Borba et al., 2003; Price et al.,
2013; Price and Pichler, 2006). In oxic sediments As shows a high
affinity for adsorption or co-precipitation with hydrous ferric oxide
(HFO), such as ferrihydrite, goethite and hematite (Dixit and
Hering, 2003; Lenoble et al., 2002; Pierce and Moore, 1982).

In the subsurface As was found as a minor element in pyrite and
powellite (Tables 1 and 2), while in the SAS where the conditions
are more oxygenated, As was likely bound to HFO, hence the as-
sociation of As and Fe (Fig. 8). In the IAS, As occurs together with
powellite and in the UFA where Fe and S were elevated As should
predominantly occur in As-rich pyrite. This inferred As mineralogy
follows the expected redox gradient for groundwater from
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Fig. 7. Percentage and absolute amount of Mo and As mobilized during the reaction with a NaOAc solution at pH 8.1. The data corresponds to Table 3.

Table 3
Amounts of Mo and As mobilized from the aquifer matrix sediments by reaction
with NaOAc at pH 8.1 compared to total Mo and As.

Core Sample MoA MoA MoT AsA AsA AsT

mg/kg % mg/kg mg/kg % mg/kg

DEP-1 45e46 114 94 122 11 39 30
DEP-1 46e47 750 91 825 72 50 144
DEP-1 70e71 399 80 499 28 22 132
DEP-2 10e11 1 4 25 n.d. n.d. 29
DEP-2 18e19 21 55 38 n.d. n.d. 18
DEP-2 31e32 52 97 53 3 29 9
DEP-2 42e43 76 98 78 4 21 20
DEP-5 50e51 30 83 36 2 6 30
DEP-5 69e70 6 20 30 n.d. n.d. 60
DEP-5 75e76 85 62 136 2 3 52

Note: MoA is mobilized Mo and MoT is total Mo in the sample; the same for As;
n.d. ¼ not detected.
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oxygenated near the surface to more reducing conditions at depth.
HFO is generally stable under oxygen-rich conditions (Jambor and
Dutrizac, 1998), while pyrite is stable under the reduced condi-
tions in the UFA (e.g., Jones and Pichler, 2007). The redox stability of
powellite is not well known, however, reducing (sulfidic) condi-
tions seem to have little influence on powellite stability, since
powellite and pyrite coexist in close proximity (Fig. 6B). Unfortu-
nately there is nothing known about abiotic molybdate reduction
but sulfate its structural analog is well studied and abiotic sulfate
reduction can only proceed at temperatures above 160 �C (Machel,
2001). It appears, however, that pyrite is the primary source of As in
the subsurface below Lithia, because only little powellite was pre-
sent in the aquifer matrix. This assumption can be verified with a
massbalance approach using the bulk concentrations of Fe, S, and
As combined with As concentrations in individual pyrites. Due to
the correlation between S and Fe (R2¼ 0.94), it can be assumed that
Fe and S concentrations were controlled largely by the presence of
pyrite (Fig. 9A). The pyrite line (Fe ¼ 2S) represents Fe/S ratios that
are exclusively controlled by the presence of pyrite (Fig. 9A). Thus,
using the values of S and Fe, the abundance of pyrite in each sample
was calculated and the calculated amount of pyrite was multiplied
by the mean arsenic concentration of pyrite obtained by electron
microprobe analyses (Table 1) and compared to the actual analyzed
bulk arsenic concentrations (Appendix A). Calculated and
measured arsenic are compared in Fig. 9B. Many samples show
good agreement between the measured and calculated As con-
centrations, i.e., they follow the dashed line in Fig. 9B. For those
samples that lie significantly above the equal concentration line,
calculated arsenic concentrations were lower than those measured
in the bulk sample. These results can be explained by existence of
other As sources such as, clays, organic material, hydrous ferrous
oxides and powellite or an underestimation of the amount of pyrite.
Samples that show a much higher calculated arsenic concentration
compared to a measured result probably due to overestimation of
pyrite abundance due to the presence of S from sources other than
pyrite, e.g., gypsum or anhydrite.

5.3. Mobilization of As and Mo

Until present, no effort was made to investigate the geogenic or
anthropogenic mobilization of Mo from sedimentary rocks and its
impact on groundwater quality. In anoxic/sulfidic sediments, Mo is

mainly associated with iron sulfides and/or OM (Chappaz et al.,
2014; Dahl et al., 2013; Erickson and Helz, 2000; Glass et al.,
2013; Zheng et al., 2000). In normal seawater, Mo is stable as
MoO4

2� with a resident time of approximately 440 thousand years
(Miller et al., 2011). Its enrichment is much lower compared to
sulfidic sediments and it can be preserved inmarine oxic sediments
by adsorption onto Fe/Mn-oxyhydroxides (Goldberg et al., 2009;
Zheng et al., 2000).

Considering how As and Mo are bound in the aquifer matrix
below Lithia (i.e., organic matter, pyrite, powellite and HFO;
Fig. 8), changing the physicochemical conditions should cause the
mobilization of As and Mo in three ways: i) the introduction of
oxygen into the aquifer could result in the oxidation of pyrite and
organic matter (e.g., Alberic and Lepiller, 1998); ii) consumption of
oxygen by biotic and abiotic processes could result in the reduc-
tion of HFO (Amirbahman et al., 1997; Welch and Lico, 1998); and
iii) non-equilibrium saturation could eventually lead to the
aqueous dissolution of powellite (e.g., Conlan et al., 2012). On the
other hand, the same three scenarios could also cause the pre-
cipitation of As and Mo: i) the introduction of oxidative conditions
could result in the adsorption of As onto newly precipitated HFO
(e.g., Pichler et al., 1999); ii) the change to reducing conditions
could result in the incorporation of As into newly precipitated
pyrite (Bostick and Fendorf, 2003) or adsorption of As and Mo
onto pyrite (Bostick et al., 2003); and iii) non-equilibrium

Fig. 8. Stratigraphy and depth profiles for the concentration of arsenic (As), molyb-
denum (Mo), sulfur (S) and iron (Fe) in core DEP-2. The dashed lines are an aid to
correlate peaks across the graph and the minerals names on the right side indicate the
possible source.

Fig. 9. (A) Plot of Fe vs. S for the three monitoring well clusters DEP-1, DEP-2 and DEP-
5. The dashed line represents the “pyrite line”, i.e., if pyrite would be the single source
of Fe and S in a sample then all analyses would plot on this line. (B) Plot of As measured
vs. As calculated, based on As abundance in pyrite (see text for more explanation). The
dashed line represents the ideal case of As measured ¼ As calculated. Data points that
fall above this line contain more bulk As than expected, considering pyrite as the only
source of As, and are made up of mostly samples containing clay. Data points below the
line are due to high S contents in organic material and therefore have higher calculated
As values.
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saturation could result in the precipitation of powellite from
super-saturated groundwater (e.g., Conlan et al., 2012). Any of
these changes in the physicochemical conditions beneath Lithia
can be caused by mixing between shallow, oxygenated and deep,
oxygen-depleted groundwater. In Lithia each home has its own
water well, because the township is not connected to the public
water supply system. Thus there is the potential that the abun-
dance of private supply wells in this area may short-circuit the
hydraulic gradient across the confining layer in the Hawthorne
group (IAS), e.g., bringing oxygen-depleted water from the deep
aquifer into the shallow aquifer and vice versa. While there is
little known about Mo mobilization, there is abundant knowledge
about the release of geogenic As under oxidizing, as well as
reducing conditions. Since Mo can be present in similar solid
phases, such as HFO, pyrite and organic matter (e.g., Tribovillard
et al., 2004), the release mechanisms of As should be a good
analog. For example, Delemos et al. (2006) argued that leakage of
organic contaminants from a landfill in New England, USA
mobilized geogenic As by driving the reduction of As-bearing
oxides. At other sites, pumping-induced hydraulic gradient
changes can perturb physiochemical conditions in the aquifer,
mobilizing geogenic As. Harvey et al. (2006) argue that geogenic
As at their field site in Bangladesh is mobilized because pumping
for irrigation draws fresh organic carbon into the aquifer, which
subsequently drives the reduction of As-bearing oxides. The
introduction of oxygen-rich surface water into an anoxic aquifer
during aquifer storage and recovery (ASR) caused the dissolution
of As-rich pyrite and thus increased As concentration in recovered
water above the drinking water limit of 10 mg/L (e.g., Wallis et al.,
2011). Since in an anoxic aquifer the inferred association of Mo is
with organic matter (e.g., Tribovillard et al., 2004), the introduc-
tion of oxygen into an anoxic aquifer would oxidize the organic
matter and liberate Mo.

From the leaching experiment it becomes clear that Mo should
be easier mobilized from the aquifer matrix than As (Fig. 7). Up to
90% of Mo were removed during the reaction with 1.0 M sodium
acetate (NaOAc) adjusted to a pH of 8.1, while at the same time only
up to 50% As were mobilized. This indicates that the majority of Mo
in the aquifer matrix is adsorbed onto mineral surfaces and organic
matter, while As should be present as impurities in minerals, i.e., As
in pyrite and powellite and co-precipitated with HFO. Thus the
mobilization of Mo can proceed along several pathways, which are
oxidation of organic matter, desorption from mineral surfaces and
re-dissolution of powellite. However, only Mo mobilized through
oxidation of organic matter should be considered primary Mo.
There was evidence for redox disequilibrium in the IAS in the study
area, i.e., co-occurrence of pyrite and HFO and pyrite and powellite
in the aquifer matrix (Fig. 2). Thus, following the initial release from
the aquifer matrix Mo could be adsorbed by either pyrite or HFO
under uncertain redox conditions and later released from either.
Since its stability is mainly controlled by the ion activity product
(IAP) of Ca2þ and MoO4

2� dissolution of secondary powellite is
possible once the IAP of the groundwater is less than the Ksp (e.g.,
Conlan et al., 2012). Thus we propose that the release of Mo to
groundwater in the IAS intervals could be a combination of
changing redox conditions and changing ion activity product (IAP)
due to mixing between shallow and deep groundwater, as well as
the reversal from oxygenated to reducing conditions. Considering
the observed redox disequilibrium, which indicated at least a single
but most likely several redox changes, As should be mobilized
similarly. During the infiltration of oxygenated surface water pyrite
oxidation causes the release of As, while during periods of upward
flow of oxygen-depleted groundwater, HFO is reduced and co-
precipitated (sorbed) As is released.

6. Summary and conclusions

Arsenic (As) and molybdenum (Mo) were found at elevated
levels in the aquifer matrix of the Surficial Aquifer System (SAS) and
the Intermediate Aquifer System (IAS). Median values for bothwere
approximately 3e6 times higher that their respective crustal av-
erages. In the upper part of the Upper Floridan Aquifer System
(UFA) median values were below their corresponding crustal av-
erages. Thus the distribution of As and Mo in the study area seems
to be controlled by the clastic and clay content of the aquifer matrix.
With depth the aquifer matrix changes from (1) poorly indurated
clastic deposits, to (2) interlayered sequences of carbonates, sands
and clays and to (3) limestone and dolomite. That lithological
change was also observed in the bulk sediment chemical compo-
sition, where Ca, Mg and Sr concentrations increased with depth,
while Si, Al and P concentrations decreased with depth.

In the SAS As mainly occurred adsorbed onto hydrous ferric
oxide (HFO) and in the IAS and UFA As was found as an impurity in
pyrite, with concentrations of up to 9000 mg/kg. Although Mo
generally has a high affinity for incorporation into pyrite, in the
study area pyrite was virtually Mo-free. Thus pyrite formed during
a period when Mo was either not present in the aquifer matrix or
when physic-chemical conditions were such that Mo was securely
bound by organic matter. In a few samples the mineral powellite
(CaMoO4) was discovered, which was not considered a source of
Mo, but rather a sink. Geochemical modeling indicated that in the
study area powellite was supersaturated and its crystal habit dis-
missed precipitation during sediment deposition or early diagen-
esis. Thus organic matter is the likely primary source of Mo in the
aquifer matrix. The difference of where and how Mo and As were
present in the aquifer matrix impacted their behavior during the
mobilization experiments. Molybdenum, which seemed to be
loosely bound to mineral and organic matter surfaces, was easily
removed from the aquifer matrix. Arsenic on the other hand was
much less mobile, because it occurred either tightly absorbed by
HFO or as an impurity in pyrite.

Currently this study stands alone and thus it remains ques-
tionable if Mo is of similar concern as As, nevertheless it would be
advisable to include Mo in the analytical program whenever
elevated As concentrations are encountered in aquifers of marine
origin.
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