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INTRODUCTION 

 

Further to aesthetic value, turfgrass canopies are often required to 

supply a high level of resistance to severe wear. This is particularly true of 

sports installations (football, golf, rugby, baseball, horse racing, tennis, etc.), but 

ornamental and functional turfgrass canopies are not exempt from having to 

withstand wear. As such, one of the main aspects of turfgrass variety selection 

is indeed selection for wear resistance (and recovery), and one of the main 

goals of turfgrass maintenance is minimizing wear effects and maximising 

recovery. 

Due to these particular requirements of turfgrass in terms of wear 

resistance and recovery, and given the very high maintenance interventions 

required to maximize these traits, any further knowledge on the physiological 

and biological mechanisms underlying wear resistance and recovery could lead 

to a decrease or in an optimization of turfgrass maintenance. In terms, this 

would have considerable positive financial repercussions on the annual budgets 

necessary to maintain high-profile turfgrass surfaces, and would also increase 

the environmental sustainability of turfgrass surfaces due to a decrease in 

maintenance operations and in agronomic inputs (fertilizers, irrigation water, 

pesticides, etc.). 

Despite benefiting from a Mediterranean (or “transition”) climate, due 

to the lack of a true Mediterranean turfgrass culture, countries of the 

Mediterranean basin have until now favoured the use of C3 turfgrass species 

more suited to the northern European climatic areas. These species generally 
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exhibit a scarce adaptation to climates below the 44°N parallel, with very high 

irrigation water requirements, high susceptibility to pests and generally low heat 

stress tolerance. Furthermore, these species have always been associated with 

a much lower wear resistance and recovery, compared to C4 turfgrass species. 

In recent years, thanks to the influx of American turfgrass culture 

spreading to southern Europe, and thanks to an intense turfgrass research 

activity by southern European Universities, C4 warm-season grass subfamilies 

(Chloroideae and Panicoideae) have witnessed a widespread of use for the 

establishment of sports, ornamental and functional turfgrass. These species, 

though subject to a varying degree of winter dormancy in Mediterranean areas, 

exhibit a much higher drought, heat and pest stress tolerance, coupled with a 

much higher wear resistance and recovery (thanks also to their stoloniferous 

and rhizomatous growth habit). These fundamental traits of C4 turfgrass 

species make for a much improved adaptation to Mediterranean areas, and 

consequently a much easier and environmentally friendly establishment and 

maintenance of C4 turfgrass surfaces. 

Turfgrass wear effects are considered to be the sum of soil 

compaction and tissue wounding. The first member of this equation (soil 

compaction) can be successfully addressed during turfgrass establishment (with 

the adoption of sandy rootzone layers and drainage) and during maintenance 

(with the use of specific soil decompaction machines). The second member of 

the equation (tissue wounding) still needs much research in order to effectively 

comprehend the mechanisms that underlie turfgrass tissue wear resistance.  

Recovery in C4 turfgrass species is facilitated by the frequent 

presence of stolons and rhizomes, which supply numerous regrowth points 
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(nodes) from which turfgrass can recuperate. However, many differences in 

recovery are present among C4 turfgrass species and these also need to be 

further investigated. 

The present doctorate thesis consists of the summa of two 

experimental trials in which the author aimed to evaluate C4 turfgrass 

species’ mechanical resistance and recovery, and their physiological and 

biological basis, devoid of soil compaction effects. 

Study One consisted of  breaking down turfgrass wear resistance by 

evaluating the tensile strength of various plant organs (leaves, stolons and 

rhizomes). Tensile strength was measured in general terms (thus giving a 

feedback on species’ strength) and per unit area of tested tissue (thus giving a 

feedback on the species’ tissue strength, and hence on its’ constituents). These 

results were plotted against laboratory investigation on main tissue constituents. 

Study Two consisted of evaluating turfgrass wear resistance as 

tested with a numerical control wear simulating machine used by FIFA to 

measure artificial turf wear resistance. Wear resistance and recovery results (in 

terms of shoot density lost and recovered, both in absolute and percentage 

terms) were plotted against laboratory investigation on main tissue constituents. 

The two experimental trials are presented as in litteris manuscripts 

that are due for submission to scientific journals, and as such they can be read 

and evaluated independently from one another.  
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STUDY ONE 

 

Physiological and morphological factors 

influencing leaf, rhizome and stolon tensile 

strength in C4 turfgrass species. 

 

 

Introduction 

Warm-season grass subfamilies (Chloroideae and Panicoideae) are the most 

widely used turfgrass species for the creation of sports, ornamental and 

functional lawns in most areas between the 40°N and 40°S parallels. Among 

these, Cynodon dactylon [L.] Pers., Zoysia japonica Steudel and Zoysia 

matrella (L.) Merrill. are the most wear tolerant species (Youngner 1961; 

Turgeon 2005). These species share a great adaptability to wide pH and salinity 

ranges (Marcum, 1999), a high colonization and recuperation capability deriving 

from their stoloniferous and\or rhizomatous growth habit, high temperature and 

drought resistance, but differ markedly in their wear resistance, as it has been 

so far measured in field trials (Beard et al, 1981; Trenholm et al 1999; 

Shearman et al 2001). 

Turfgrass wear is known to be the sum of two main effects: soil compaction and 

plant tissue wounding (Beard 1973; Carrow and Petrovic 1992). Compaction 

affects root system growth, nutrient uptake and gas exchange capability of the 
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root system, and water circulation within the soil, with results often considered 

akin to anoxia (Feldman 1984; Unger and Kaspar 1994; Dest et al. 2009). Plant 

tissue injury is generalized, with all plant tissues suffering wounds and death 

from wear and, although the meristematic apex (“crown”) is the vital part of the 

turfgrass plant (Beard 1973) that if damaged leads directly its death, severe 

damage to other tissues (shoots, stolons, rhizomes, roots) can also cause plant 

withering and general decrease in turfgrass density. Therefore, plant tissue 

mechanical resistance is to be considered a primary factor in determining 

turfgrass wear resistance. 

Sanson (2006) stated that plant leaves’ resistance is achieved by a number of 

mechanisms, which operate at the molecular, cell, tissue, and structural levels, 

with monocotyledon and dicotyledon differing in venation patterns and cell wall 

volume fractions. 

Several studies have tackled crop and forage monocotyledon species’ tissue 

strength: Sun and Liddle (1993) suggested that leaf tensile strength in Cynodon 

dactylon increases with age, while MacAdam and Mayland (2003) found that in 

tall fescue leaf tensile strength per unit area was negatively correlated with both 

leaf blade width and thickness, because of the greater distance between veins 

and therefore more mesophyll tissue volume in wider leaves, and hence a 

higher proportion of cell contents to fiber. Balsamo and  Orkwiszewski (2008) 

found that tensile strength in leaves of Zea mays is associated with percent 

tissue lignification and the appearance of leaf architectural characters that are 

associated with the transition from the juvenile to the adult phase. Wright and 

Illius (1995) found that schlerenchima and fibre content positively influenced the 
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fracture properties of certain forage grasses, and that fracture usually occurs at 

a zone of weakness at the intercalary meristem. 

Given the predominant role of cell wall constituents in imparting plant tissue 

mechanical strength (Doblin et al. 2010), turfgrass wear resistance has often 

been correlated with several biological and physiological parameters such as 

total cell wall (Shearman and Beard 1975), modified acid detergent fibre 

(Canaway 1981), sucrose phosphate synthase and sucrose synthase activity, 

stem and leaf moisture (Trenholm et al. 2000), leaf flexibility (Sun and Liddle 

1993), evapotranspiration rate, leaf chlorophyll concentration, membrane 

permeability, leaf peroxidase activity, spectral reflectance, tissue potassium 

(Shearman and Beard 1973; Carrol and Petrovic 1991) and silica concentration 

(Trenholm et al. 2001). 

As indicated by FIFA, traction  measurements are routinely carried out in 

laboratory environment on artificial turf fibres and tufts of fibres (FIFA 2008). 

The present research was aimed at evaluating  the mechanical resistance of the 

plant organs that make up a mature sward of three select C4 turfgrass species, 

via traction tests carried out in a controlled laboratory environment and with 

FIFA-approved numerical control machinery, and correlating these results with 

laboratory analysis of main plant tissue constituents, in order to increase the 

understanding of the biological factors that effectively contribute to the strength 

of turfgrass plant tissues. 

 

Materials and methods 

Plant material and growth conditions 
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In March 02 2009 three 50 cm2 plugs per species were harvested from mature 

swards of Cynodon dactylon x Cynodon transvaalensis cv. Tifway 419 (Cdxt), 

Zoysia matrella (L.) Merr. Cv. Zeon(Zm) and Paspalum vaginatum Sw. cv. 

Salam (Pv) grown on a silt loam soil at the research station of the Centre for 

Research on Turfgrass for Environment and Sports - University of Pisa (43° 40’ 

N, 10° 19’ E; 6 m a.s.l.). Plugs were washed clean from native soil and 

transferred to 5000 ml pots containing peat (Brill Type 3 Special: 50% white 

peat – 50% black peat; pH: 5.5-6.0; salt content: 0.7-1.2 g l-1; N: 100-160 mg l-1; 

P2O5: 120-200 mg l-1; K2O: 140-240 mg l-1). The nine pots (three per species) 

were arranged in a completely randomized block with three replications in a 

greenhouse environment and allowed to grow as stolon donor plants (plants 

suspended 1.5 m above ground) for 209 days (max T° 35±4 °C; min T° 25±3 

°C; 80±5 % relative humidity). After initial rooting in the pots, only one mowing 

at 1 cm height was carried during the trial (April 10 2009) in order to uniform 

vegetation. During the 209 days of greenhouse growing the identical 

management practices for all species were: daily irrigation with 5 mm of water; 

four fertilizations (April 10, May 11, June 8 and July 13) each with 5 g m-2 of N, 

1 g m-2 of P2O5 and 2 g m-2 of K2O; no fungicide or weed control application; no 

trimming of resulting stolons.  

 

Traction tests 

All tests were carried out from September 28 2009 to October 01 2009 at 

Labosport Italia laboratories (Cernusco Lombardone – Italy). Laboratory 

conditions were maintained constant at 23°C temperature and 50% relative 

humidity. The device used to carry out the tests was an “MTS Insight 1” single-
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column electromechanical dynamometer with 1 kN load cell. Traction speed 

was set at 500 mm min-1 and distance between vices was 25 mm for leaves and 

15 mm for stolons and rhizomes. Rubber inserts were glued on the 

dynamometer vices in order to minimize plant tissue damage from tightening of 

the vices. The output of the MTS dynamometer for each tested sample was 

traction peak value (N). 

Leaves rhizomes and stolons were randomly collected from the pot. Stolon and 

rhizome samples were prepared for testing including 1 node and 1 cm of 

internode fore and aft of the node. 

From stolons, the 3rd, 7th and 14th nodes from the tip of the stolon were selected 

for investigation. 

The total number of samples was: 

- Stolons: 3 nodes (3rd, 7th and 14th) x 3 species x 3 replicates (pot) x 3 

samples = 81 nodes tested. 

- Leaves: 10 leaves x 3 species x 3 replicates (pot) = 90 total leaves 

tested. 

- Rhizomes: 3 nodes x 3 species x 3 replicates (pot) = 27 total nodes 

tested. 

 

The following equation, deriving from plant tissue biometrics (see following 

paragraph) and from peak load measurements, was used for all species and 

plant organs to calculate traction peak load per unit area (N mm-2): 

 

Traction peak load per unit area (N mm-2) = Traction peak load (N) / section (mm2)    [1] 
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The calculation of traction peak load per unit area was aimed at removing the 

effect of species-specific plant tissue dimensions from traction data, and 

introducing the parameter of absolute plant tissue traction resistance.  

 

Plant tissue biometrics 

All measurements were carried out from September 28 2009 to October 01 

2009 at Labosport Italia laboratories. Stolon diameter (mm), rhizome diameter 

(mm) and leaf blade thickness were measured via a  Mitutoyo Absolute IP54 

digital feeler gauge with a 0.5 N max load and ± 2 nm error. Leaf blade width 

(mm) was measured via the digital ruler function of a AM413MT-Dino-Lite 20x-

200x digital microscope. Leaf blade width and thickness were measured in the 

middle of the leaf blade’s length. Stolon and rhizome diameters were measured 

in the middle of the apical internodes. 

All measurements were carried out on 20 samples for each organ randomly 

collected from each pot. 

 

Tissue sections were then calculated as follows:  

 

Leaf section (mm2) = leaf width (mm) x leaf thickness (mm)   [2] 

Stolon or Rhizome section (mm2) = π (stolon or rhizome diameter (mm)/2)2   [3] 

 

Tissue constituent laboratory analysis 

On October 02 2009 plant tissues were sampled in the same manner as 

described in the ‘Traction tests’ paragraph and stored at -80°C. Plant tissue 

samples were tested for their content in the following substances: starch (mg g-1 
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FW), glucose (nmol mg-1), sucrose (nmol mg-1), fructose (nmol mg-1), dry matter 

content (%), lignin (absorbance at 335 nm g-1 FW) and silica (absorbance at 

650 nm g-1 FW). All tests were carried out on rhizome, stolon (3rd, 7th and 14th 

nodes from the stolon apex) and leaf (except for starch content) of each 

species. All the analyses were conducted in triplicate. The laboratory test 

methods for the determination of the above substances were as follows:  

a) Starch. Samples (100 mg FW) were grounded in a mortar and resuspended 

in 100 mL of 10 mM KOH, and boiled for 1 min. To each sample were then 

added 1 ml of 1N HCl. The starch standard solution was prepared using 100 mg 

of potato soluble starch dissolved in 100 ml dH2O and boiled 1 min.  To both 

samples and standards (final volume 50 ml) was added 1 mL of fresh iodine 

solution (0.13% K2 and 0.3% KI, dissolved in dH2O) and the absorbance was 

read at 595 nm in few minutes. Starch concentration was expressed as mg 

starch/g FW.  

b) Glucose, sucrose and fructose. Samples (100 mg FW) were rapidly  frozen 

in liquid nitrogen and ground to a powder, then extracted as described by 

Tobias et al. (1992) and assayed for glucose, fructose and sucrose content 

through coupled enzymatic assay methods (Guglielminetti et al. 1995). The 

efficiency of the methods was tested by using known amounts of carbohydrates. 

Incubations of the samples and standards were carried out at 37 °C for 30 min. 

The reaction mixtures (1 mL) were as follows. Glucose: 100 mM Tris-HCl, pH 

7.6, 3 mM MgCl2, 2 mM ATP, 0.6 mM NADP, 1 unit Glc6P dehydrogenase; the 

A340 was recorded. Fructose was assayed as described for glucose plus the 

addiction of 2 units of PGI; the increase in A340 was recorded. Sucrose was first 

broken down using 85 units of invertase (in 15 mM Na-acetate, pH 4.6) and the 
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resulting glucose and fructose were assayed as described above. Recovery 

experiments evaluated losses taking place during the extraction procedures. 

Two experiments were performed for each metabolite by adding known 

amounts of authentic standards to the sample prior to the extraction. The 

concentration of the standards added were similar to those estimated to be 

present  in the tissues in preliminary experiments. The recovery ranged 

between 97 and 104%.  

c) Dry matter content. Samples (1 g FW) were dried in an oven at 60°C for 1 

week and than the dry matter was measured.  

d) Lignin. Lignin was quantified via a thioglycolic acid (TGA) precipitation 

method (Lee et al. 2001). Pigments and soluble phenolics were removed from 

samples (100 mg FW) by three changes of absolute methanol over 3 days. The 

cleared tissue was then dried in an oven at 30°C for 1 day. The dried tissue was 

suspended in 1 ml 10% (v/v) TGA in 2M HCl (v/v) and heated for 4 h at 100°C 

in a water bath. When cooled, the solution and all tissues were then transferred 

to a fresh tube and subjected to centrifugation at 14000xg for 15 min. The 

supernatant was decanted and the pellet washed with 2.0 ml dH2O before 

centrifugation at 14000xg for 10 min. The supernatant was decanted and 1.0 ml 

1M NaOH added and mixed to solubilize the TGA derivatives. The suspension 

was then incubated overnight at 4°C before centrifugation at 14000xg for 10 

min. The NaOH supernatant was added to a fresh tube and the TGA derivatives 

precipitated by adding 0.4 ml concentrated HCl and incubating in an ice bath for 

1 h. The reddish/brown precipitate was pelleted by centrifugation for 10 min at 

14000xg. The supernatant was decanted and the precipitate dissolved in 1 ml 

0.5 M NaOH. The absorbance (A) of each resultant orange solution was 
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determined at 335 nm (Graham and Graham 1991) and the concentration of 

wall bound TGA derivatives expressed as absorbance at 335nm g-1 FW.  

e) Silica. Content of silica in the different plant species was determined using 

an autoclaved-induced digestion (Elliot and Snyder 1991). Samples (100 mg 

FW) were dried at 60°C for 48 h and then ground using liquid nitrogen. Samples 

of plant tissue were wetted with 400 µL of 50% H2O2 in 100-mL polyethylene 

tubes previously rinsed with 0.1 M NaOH and DW. To each tube was added 

900 mg of 50% NaOH (W/V) at room temperature, and each tube was gently 

vortexed. The tubes were individually covered with loose fitting plastic caps. 

The rack of tubes was placed in an autoclave at 138 kPa for 1 h. After 

atmospheric pressure was reached, the tubes were removed and the contents 

brought to 50 mL with dH2O. Silica in dilutions of samples was determined 

colorimetrically by the following procedure: to each sample were added with 

mixing 7.8 mL of 20% acetic acid, 2 mL of ammonium molybdate solution (54 

g/L, pH 7.0), 1 mL of 20% tartaric acid, 0.2 mL of reducing solution (described 

below).  

Five minutes elapsed between the addition of the ammonium molybdate and 

the tartaric acid. The reducing solution was made by combining solution A (2 g 

of Na2SO3 in 25mL of dH2O plus 0.4 g of l-amino-2-naphthol-4-sulfonic acid) 

and solution B (25 g of NaHSO3 dissolved in about 200 mL of dH2O) and 

diluting to 250 mL. Following the addition of all the reagents, the samples were 

mixed well and allowed to stand for 30 min. Plastic ware rinsed with 0.1 M 

NaOH was used throughout. The colour was read at 650 nm with a 1 cm path 

length. The silica content was expressed as A650nm g-1 FW. 
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Statistical analysis 

All statistical analysis were carried out with a COSTAT 6.400  software (CoStat 

2008). Bartlett’s test on homogeneity of variances was carried out on all data 

sets. Non normally distributed data sets were log transformed until normal 

distribution was obtained.  

Species effect was evaluated in leaves and rhizomes data via ANOVA in a 

completely randomized block design, while stolons data was subject to ANOVA 

in a 2 way completely randomized block design (interaction of species x ordinal 

node effects). In all cases, Tukey’s Honestly Significant Difference (HSD) for 

P<0.05 was used to detect differences between means. 

All parameters for each species were then submitted to a multiple regression 

analysis to find the equation of the subset of 5 parameters with the highest 

regression coefficient (R2) for traction peak load (N) and traction peak load per 

unit area (N mm-2).  

 

Results 

Leaves 

Highest leaf width (Table 1) was recorded by Pv (2.83 mm), while Cdxt and Zm 

recorded a much finer leaf texture (P<0.005). Again, Pv showed the thickest leaf 

(0.19 mm), with Zm (0.14 mm) and Cdxt (0.10 mm) showing lower thickness 

with successive steps in significance levels (P<0.005).  

These two last parameters determined an average calculated leaf section of 

0.53 mm2 for Pv which is roughly two fold higher than Zm (0.24 mm2) and 

threefold Cdxt (0.16 mm2) (P<0.005).  
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Leaf traction peak load (Fig. 1) was significantly higher (P<0.005) for Zm (4.61 

N), with Pv and Cdxt leaves showing similar values of a lower magnitude.  

However, the analysis of calculated data on traction peak load per unit area 

(Fig. 2), while confirming the highest value of Zm leaf tissue (20.20 N mm-2) 

followed by Cdxt (13.51 N mm-2), highlights a Pv leaf tissue strength (4.82 N 

mm-2) that is roughly five times lower than Zm (P<0.005). 

No significant differences between species were found for glucose and fructose 

content (Fig. 7), while Cdxt sucrose content (60.76 nmol mg-1) was roughly 

three times higher than Pv and Zm (P<0.05). 

Lignin absorbance (Fig. 4) in Zm (96.79) was roughly three times higher than 

both Pv and Cdxt (P<0.005).  

Silica absorbance (Fig. 5) was significantly different (P<0.05) with Cdxt showing 

the highest value of absorbance at 650 nm (12.34), followed by Zm (6.89) and 

Pv (5.02).  

Dry matter (DM) percentage (Fig. 6) was highest (P<0.005) and very similar in 

Cdxt and Zm (43.57% and 42.44% respectively), while Pv showed much lower 

dry matter (29.39%). 

 

The multiple regression equations of the subset of 5 parameters for all species 

with the highest determination coefficient (R2) for peak load and peak load per 

unit area were: 

 

Leaf peak load =  

0.28 +0.06(Glucose) -0.04(Sucrose) +0.01(Lignin) +0.09(DM) -0.83(Silica) 

(R2=0.96) 
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Leaf tissue peak load per unit area =  

-5.24 +1.58(Glucose) -3.01(Fructose) +0.17(Lignin) +0.19(DM) -0.29(Silica) 

(R2=0.99). 

 

Rhizomes 

Cdxt (3.00 mm2, Table 1) and Pv (3.38 mm2) had significantly higher rhizome 

sections than Zm (1.54 mm2) (P<0.005).  

Peak load (Fig. 1) (P<0.01) was highest for Zm (60.94 N), with Cdxt and Pv 

showing similar values (40.02 N and 41.38 N, respectively).  

This trend continued in peak load per unit area (Fig. 2), but with higher 

(P<0.005) differences between Zm (40.88 N mm-2) and Cdxt and Pv (13.84 N 

mm-2 and 12.96 N mm-2, respectively). 

Starch content (Fig. 3) (P<0.005) indicated a much higher concentration in Cdxt 

rhizomes (193.78 mg g-1) compared to Zm (47.62 mg g-1) and Pv (26.31 mg g-

1), while no significant differences were found for glucose, sucrose and fructose 

concentrations (Fig. 7). 

Lignin absorbance (Fig. 4) (P<0.005) in Zm (295.92) was approximately 

threefold that of Cdxt (101.49) and six fold that of Pv (54.75), while no 

statistically significant differences were found for silicate (Fig. 5) content and dry 

matter percentage (Fig. 6). 

 

The best multiple regression equations for peak load and peak load per unit 

area were: 

 

Rhizome peak load =  
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2.36 +14.02(Glucose) -3.14(Sucrose) +1.07(Fructose) +0.23(Lignin) -7.07(Silica) 

(R2=0.61) 

Rhizome tissue peak load per unit area =  

7.54 +7.43(Glucose) -1.99(Sucrose) +0.23(Lignin) -0.20(DM) -6.24(Silica) 

(R2=0.79). 

 

Stolons 

The species x node  interaction was significant in stolon section (Table 2) 

(P<0.05), with Pv stolon internodes consistently thicker than Cdxt and Zm stolon 

internodes. Pv nodes differed between them, with central nodes thicker than 

basal and apical ones. 

No significant interaction was found for peak load, but species effect was 

significant (Fig. 1) (P<0.005) with Zm (35.64 N) and Pv (32.87 N) showing 

higher traction resistance compared to Cdxt (23.37 N). Node effect (Fig. 10) 

was also significant (P<0.005) with 3rd node (18.19 N) being significantly weaker 

than 7th (34.77 N) and 14th (38.92 N) node. 

Significant species x node interaction (Fig. 8) (P<0.01) was found for traction 

peak load per unit area, with Zm basal nodes significantly stronger than all other 

nodes (over 30 N mm-2), while Pv3 (7.56 N mm-2), Pv7 (12.27 N mm-2) and 

Cdxt3 (12.48 N mm-2) were found to be the nodes with the weakest tissues. 

Starch content (Fig. 3) was significant at species level (P<0.005) with Cdxt 

(160.17 mg g-1) showing considerably higher levels of starch compared with Pv 

and Zm.  

Stolon glucose (P<0.05), sucrose (P<0.01) and fructose (P<0.01) 

concentrations were significant at species level (Fig. 7), with Pv (14.29 nmol 
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mg-1, 58.84 nmol mg-1 and 15.40 nmol mg-1 respective sugar content) 

consistently showing the highest concentrations and Zm (8.60 nmol mg-1, 18.13 

nmol mg-1 and 6.92 nmol mg-1 respective sugar content) consistently showing 

the lowest concentrations. 

Species x node interaction for lignin absorbance (Fig. 9) was highly significant 

(P<0.005), with highest concentration in Zm14 (343.46), followed by Zm7 

(281.06), Zm3 (167.54) and then by all the other nodes and species that do not 

differ significantly between them. 

Silica absorbance (Fig. 5) was significant at species level only (P<0.005), with 

Cdxt  returning the highest absorbance (3.16), while Zm and Pv do not differ 

significantly between them. 

Dry matter percentage (Fig. 6) was significant at species level (P<0.005) with a 

significantly higher dry matter percentage for Cdxt (47.27%) and Zm (45.26%) 

compared with Pv (23.87%), while at node level (Fig. 11) (P<0.005) basal nodes 

showed a much higher dry matter percentage than the 3rd node. 

 

The best multiple regression equations for peak load and peak load per unit 

area were: 

 

Stolon peak load =  

-22.48 +11.91(Section) +0.68(Glucose) +0.07(Lignin) +0.42(DM) -1.51(Silica) 

      (R2=0.61) 

Stolon tissue peak load per unit area =  

-1.25 +0.18(Glucose) +0.18(Fructose) +0.05(Lignin) +0.24(DM) -0.76(Silica) 

(R2=0.79). 
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Discussion 

One of the rationales behind this study is that measured traction peak 

load (N) indicates the strength of a species as would be witnessed in the 

field, while calculated traction peak load per unit area (N mm-2) is a 

measure of tissue mechanical strength, and hence more strictly correlated 

with histological constituents and architecture.  

The leaf width (Pv>Zm=Cdxt) findings are in accordance with the National 

Turfgrass Evaluation Program’s results (NTEP, 2007a; NTEP 2007b; NTEP 

2009). Leaf thickness and dry matter indicates Pv as the species with the most 

succulent leaf. This would be in accordance with the characteristics of Pv as a 

species originating from swampy and waterlogged areas (Barnard 1969; 

Colman and Wilson 1960).   

Leaf tissue traction peak load data confirm Zm as the species generally 

indicated as most resilient, although no previous micromechanical tests were 

carried out on Zm and this assumption relies only on field experiments and 

evaluations (NTEP 2007b), but also rebut the general assumption of Pv as a 

generally “weak” species (and hence unsuitable for use in sports turf), in 

accordance with previous findings on Pv leaf tensile strength (Trenholm et al. 

2000). Previous micromechanical tests on leaf tissues of bermudagrass (Alamar 

et al. 2008) produced much higher results, but with no indication of variety or 

leaf dimensions. 

Indeed, once the section of leaf tissue subject to traction is entered into the 

equation (Pv>Zm>Cdxt), the specific strength of each entry’s leaf tissues are 

highlighted -  Zm emerges as the strongest and, on a leaf tissue mechanical 

resistance standpoint alone, the most suitable for highly-trafficked areas.  
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Starch levels are with the ecophysiology of the different species. The species 

originating from arid areas (Cdxt), and hence more adapted to the energy 

expenditure associated with the repeated closing and opening of stoma, 

accumulates more starch, while Pv (originating from waterlogged and other high 

humidity areas) accumulates the least starch. Zm has an intermediate climate 

adaptation and has an intermediate starch accumulation level. 

The content of total soluble sugars (TSS) in stolons indicates how the strongest  

species (Zm) has consistently the lowest TSS content, and this emerges as one 

of the clearest “markers” for predicting tissue strength.  

As such, Zm would appear to deplete TSS and starch in favour of the 

construction of strength-inducing cell-wall constituents (lignin, etc.). This would 

indicate a higher aptitude to mechanical stress (and hence wear tolerance), but 

it could hamper its recovery. 

Younger organs (stolons) contain less starch, but in weaker species (Cdxt and 

Pv) this does not determine a lower TSS content. TSS levels denote a lack of 

biological stress, since in no species and no organ are there sugar starvation 

symptoms. 

Leaf TSS showed no clear correlation with tissue mechanical resistance, but it 

can be said that, in these optimal trial conditions, Cdxt shows a higher capability 

of synthesizing sugars in leaves that is compatible with its ecophysiology of a 

species originating from arid areas. 

Glucose was the TSS that was consistently found in all multiple regression 

equations explaining tissue strength, and as such it can be considered a marker 

for this trait.. 
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From the results of this study, leaf lignin content seems to be one of the main 

factors  determining leaf tensile strength in Zm, while the similar lignin content in 

Pv and Cdxt is in accordance with previous research results (Trenholm et al. 

2000). The higher lignification of leaf cells in Zm, along with its correlation with 

tissue age (Akin 1989), is also in accordance with its slow growth (Patton et al. 

2007; Volterrani et al. 2008), while the opposite applies to Pv and Cdxt. 

Despite being present in all turfgrass tissues (Epstein 1999), leaf tissue silica 

content seemed to have a detrimental effect on tensile strength and generally 

enters multiple regression equations for leaves as a negative term. 

Rhizome tensile strength seems to be unaffected by dimension (even in 

absolute form) and by sugar and starch content. This once again highlights a 

supremacy of the tissue component factor over the organ dimensional factor. 

The higher starch content of Cdxt is in accordance with its faster linear growth 

(Volterrani et al., 2008) and recuperative potential, starch being the fuelling 

material for these two distinctive traits. The tissue constituents that most seem 

to influence rhizome tensile strength are lignin (with a positive contribution) and 

silica with a negative contribution. 

In accordance with the findings of Wright and Illius (1995), it was observed that 

stolons subject to tensile stress break in the area at the intercalary meristem at 

the apical zone in the immediate proximity of a node. Once again, dimensional 

factors seem to have little influence on the tensile properties of stolons, with 

tissue constituents and dry matter contributing in a decisive manner. 

Older stolon tissues have higher strength than younger ones, and lignin 

(positive influence) and silica (negative influence) are the tissue constituents 

that most influence this trait. An in-depth investigation on schlerenchima for 
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these species would probably shed further light on the stolon tissue resistance 

mechanisms. The consistently low starch and sugars content in Zm tissues are 

in accordance with its slow growth. 

 

Conclusions 

Several aspects emerged from the present work that can be summarized as 

follows: 

1. Tensile strength tests on leaf, rhizome and stolon tissues of Cdxt, Zm and Pv 

can supply useful information regarding these species’ starch, sugars, dry 

matter, lignin and silica content. 

2. Tensile strength was more influenced by tissue constituents than by tissue 

dimension. 

3. The results of tensile strength tests are in accordance with these species’ 

wear resistance as tested in previous work, with Zm stronger than Cdxt and 

Pv. 

4. In rhizomes and stolons, tissue breakage usually occurs in the area at the 

intercalary meristem at the apical zone in the immediate proximity of a node. 

5. Older tissues have higher tensile strength thanks to their higher lignification. 

6. Starch and sugars content found in tissues is in accordance with the species’ 

previously observed linear growth rate, with Cdxt faster than Pv and Zm. 

7. Starch content is generally inversely proportional to lignin content. 

8. Stolon TSS content, and glucose in general, is a clear marker of tissue 

mechanical strength. 
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9. Lignin is the principle constituent in determining tissue tensile strength, and 

as such it could be used as a turfgrass wear resistance predictor in the 

cultivar breeding stages. 

10. Silica is a constituent undermining tissue tensile strength. 

11. Leaves are the plant organs with the highest silicization and the lowest 

lignification of tissues. 
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Table 1. Cdxt, Zm, Pv: leaf width, leaf thickness, leaf section, rhizome section. 
Species effect. Means followed by the same letter in a column do not differ 
significantly at P ≤ 0.05. *, **, *** significant for 0.05, 0.01, 0.005 probability 
levels respectively.  
 

 Leaf width
(mm)

Leaf thickness
(mm)

Leaf section 
(mm2) 

Rhizome section
(mm2)

Cdxt 1,68 b 0,10 c 0,16 c 3,00 a
Zm  1,66 b 0,14 b 0,24 b 1,54 b
Pv  2,83 a 0,19 a 0,53 a 3,38 a
 *** *** *** ***
CV (%) 12,8 12,74 17,80 22,42
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Table 2. Cdxt, Zm, Pv – stolon nodes 3, 7 and 14: section. Interaction Species x 
Node, Species effect, Node effect. Means followed by the same letter in a 
column do not differ significantly at P ≤ 0.05. *, **, *** significant for 0.05, 0.01, 
0.005 probability levels respectively.  

 
 Stolon section (mm2) 
Species x Node 
Tifway 3 1,33 c
Tifway 7 1,60 c 
Tifway 14 1,58 c 
Zeon 3 1,32 c 
Zeon 7 1,39 c 
Zeon 14 1,53 c 
Salam 3 2,53 b 
Salam 7 3,15 a 
Salam 14 2,61 b 
 * 
Species 
Tifway 1,51 b
Zeon 1,41 b 
Salam 2,76 a 
 *** 
Node 
3 1,73  b
7 2,05  a 
14 1,91 ab 
 ** 
CV (%) 18,64
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Traction peak load - species effect
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Figure 1. Cdxt, Zm, Pv – leaf, rhizome, stolon: traction peak load – species effect. Within each organ (leaf, rhizome, stolon): 
column treatments with the same letter do not differ significantly at the P≤0.05 probability level.  
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Traction peak load per unit area - species effect
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Figure 2. Cdxt, Zm, Pv – leaf, rhizome, stolon: traction peak load per unit area – species effect. Within each organ (leaf, rhizome, 
stolon): column treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Starch content - species effect
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Figure 3. Cdxt, Zm, Pv – rhizome, stolon: starch content – species effect. Within each organ (leaf, rhizome, stolon): column 
treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Lignin content - species effect
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Figure 4. Cdxt, Zm, Pv – leaf, rhizome, stolon: lignin content – species effect. Within each organ (leaf, rhizome, stolon): column 
treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Silica content - species effect
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Figure 5. Cdxt, Zm, Pv – leaf, rhizome, stolon: silica content – species effect. Within each organ (leaf, rhizome, stolon): column 
treatments with the same letter do not differ significantly at the P≤0.05 probability level; ns = not significant. 
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Dry matter - species effect
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Figure 6. Cdxt, Zm, Pv – leaf, rhizome, stolon: dry matter percentage – species effect. Within each organ (leaf, rhizome, stolon): 
column treatments with the same letter do not differ significantly at the P≤0.05 probability level; ns = not significant.
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Glucose content - species effect
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Sucrose content - species effect
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Fructose content - species effect
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Figure 7. Cdxt, Zm, Pv – leaf, rhizome, stolon: glucose, sucrose and fructose 
content – species effect. Within each organ (leaf, rhizome, stolon): column 
treatments with the same letter do not differ significantly at the P≤0.05 
probability level; ns = not significant. 
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Stolon traction peak load per unit area - Species x stolon node interaction
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Figure 8. Cdxt, Zm, Pv – stolon nodes 3, 7 and 14: traction peak load per unit area – species x stolon node interaction. Column 
treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Stolon lignin content - Species x stolon node interaction
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Figure 9. Cdxt, Zm, Pv – stolon nodes 3, 7 and 14: lignin content – species x stolon node interaction. Column treatments with the 
same letter do not differ significantly at the P≤0.05 probability level. 
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Stolon traction peak load - node effect
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Figure 10. Cdxt, Zm, Pv – stolon nodes 3, 7 and 14: traction peak load – stolon node effect. Column treatments with the same 
letter do not differ significantly at the P≤0.05 probability level. 
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Stolon dry matter - node effect
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Figure 11. Cdxt, Zm, Pv – stolon nodes 3, 7 and 14: dry matter percentage – stolon node effect. Column treatments with the same 
letter do not differ significantly at the P≤0.05 probability level.
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STUDY TWO 

 

Physiological and morphological factors 

influencing wear resistance and recovery in 

C3 and C4 turfgrass species. 

 

 

Introduction 

Wear resistance and recovery are probably the most important characteristics 

sought in turfgrass species, especially when these are destined to sports turf 

use. 

In general, turfgrass wear is considered to be the sum of soil compaction and 

plant tissue injury effects (Beard, 1973; Carrow and Petrovic, 1992). The 

detrimental effects of soil compaction are generated by reduced root system 

growth, scarce water circulation within the soil (including a decrease in soil 

drainage capabilities) and a decrease of the gaseous portion of the soil triphasic 

system, with results similar to anoxia for turfgrass plants (Dest et al. 2009; 

Feldman 1984; Unger and Kaspar 1994). However, while little can be done to 

increase turfgrass plant tissue intrinsic wear resistance, soil compaction effects 

can be controlled with the adoption of modified rootzone layers that are more 

difficult to compact (i.e. silica or volcanic sands and gravels) (Baker 1990; Snow 

1993; Volterrani and Magni 2004), the inclusion of synthetic fibers in native or 
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modified soil (Baker 1997; Henderson et al. 2003), the adoption of slit or pipe 

drainage systems (Daniel 1969; Gibbs 1988; Ward 1983) and standard soil 

decompaction maintenance practices (Canaway et al. 1986; Cockerham et al. 

1993). 

Turfgrass wear resistance has so far only been evaluated in field experiments 

relying on the application of wear by different traffic simulators (Bonos et al. 

2001; Canaway 1976; Carrow et al. 2001; Cockeram and Brinkman 1989; 

Sherman et al. 1974; Sherman et al. 2001; Henderson et al. 2005; Vanini et al. 

2007), or by evaluating natural wear as inflicted by athletes in training or match 

play (Baker et al. 1992). Field turfgrass wear application methods and 

evaluations are not able to segregate soil compaction from plant tissue 

wounding effects, and could be heavily influenced by soil and weather 

conditions, management practices and can be prone to human error. 

Furthermore, natural wear inflicted by athletes is highly differential according to 

the type of sport played and the area of the pitch taken into consideration. 

From a plant tissue point of view, turfgrass wear resistance has been correlated 

with total cell wall (Shearman and Beard, 1975), modified acid detergent fiber 

(Canaway, 1981), sucrose phosphate synthase and sucrose synthase activity, 

stem and leaf moisture (Trenholm et al., 2000), evapotranspiration, leaf 

chlorophyll concentration, membrane permeability, leaf peroxidase activity, 

spectral reflectance, tissue potassium concentration (Shearman and Beard, 

1973; Carrol and Petrovic, 1991) and silica (Trenholm et al., 2001a). However, 

all these parameters have been correlated with turfgrass wear resistance as 

measured in field conditions. 
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FIFA’s regulation of the materials and methods associated with the construction 

of artificial turf pitches (FIFA 2008a; FIFA 2008b) has spawned the 

development of a series of machinery and instruments for the lab and field 

evaluation of artificial turf that are highly standardized and which show great 

potential for natural turf evaluation. One of these, the Lisport machine (EN 

15306:2007), could be routinely used to evaluate turfgrass wear resistance in 

laboratory and devoid of most soil effects. 

Turfgrass wear recovery is intended as the capability of regenerating single 

plant tissues, and hence regenerating whole canopies or portions of canopies, 

after wounding or death of plants deriving from human or animal activity. As 

such, single plant and canopy recovery is a fundamental characteristic in 

turfgrass species, especially when these are used in sports turf. Turfgrass 

recovery is species-specific and is correlated to growth rate and number of 

meristematic growing points from which new growth develops (Hoffman et al. 

2010a) and sucrose phosphate synthase and sucrose synthase activity (Bayrer 

et al. 2006). Specific agronomical practices can influence turfgrass recovery, 

such as nitrogen fertilization and irrigation (Canaway 1985; Trenholm et al. 

2001b), but also the season in which turfgrass canopies are subject to wear 

(Park et al. 2010). 

The present research was aimed at evaluating the wear resistance of select C3 

and C4 turfgrass species and mixes, as measured in the laboratory with a 

numerical control machinery and practices that minimize soil compaction 

effects. Turfgrass recovery was also evaluated in greenhouse after wear 

simulation and all the results obtained (wear and recovery) were regressed 

against plant organ biometric data and plant tissue constituents data. 
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Materials and methods 

Plant material and growth conditions 

In March 29 2010 nine 98 cm x 44 cm x 4 cm sods per species were machine-

harvested from mature swards of Cynodon dactylon x Cynodon transvaalensis 

cv. Tifway 419 (Cdxt), Zoysia matrella (L.) Merr. Cv. Zeon (Zm), Paspalum 

vaginatum Sw. cv. Salam (Pv) and a sports-type mix of  Lolium perenne L. (cvs. 

Speedster 35% and Greenway 35%) + Poa pratensis L. (cvs. SR2100 15% and 

Greenknight 15%) (C3), grown on a silt loam soil at the research station of the 

Center for Research on Turfgrass for Environment and Sports - University of 

Pisa (CeRTES) (43° 40’ N, 10° 19’ E; 6 m a.s.l.). Sods were pressure-washed 

clean from native soil and transferred to rectangular plastic containers of the 

same dimensions as the sods, containing a 2 cm layer (8.62 l per container) of 

silica sand as a growing medium (pH: 7.6; lime: 6.4 g kg-1; EC: 68.7 µS cm-1; 

CEC: 6.82 meq 100 g-1). The 36 sods (nine per species) were arranged in a 

completely randomized block with three replications in a greenhouse 

environment and grown for 100 days to remove climatic and soil effects on 

sward characteristics (max T° 34±5 °C; min T° 25±4 °C; 85±8 % relative 

humidity). Mowing with clippings removal was carried out weekly at 3.0 cm with 

a bench-mounted reel mower. Irrigation was carried out daily for the first 4 

weeks, and subsequently three times a week (5.0 l m-2 for all irrigations). Foliar 

fertilizations were carried out on April 21, May 5 and June 3 with 5 g m-2 of N, 

1.7 g m-2 of P2O5 and 1.7 g m-2 of K2O. Fungicide applications were carried out 

on March 29, April 28, May 19 and July 05 with 20 cm3 of commercial product 

containing azoxystrobin (23.2%) in 2 l for all sods. No weed control was carried 

out. 
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After wear simulation (July 06-07) sods were transferred back to the 

greenhouse to evaluate turfgrass recovery for 61 days (until September 06). 

During recovery mowing with clippings removal was carried out weekly at 3.0 

cm with a bench-mounted reel mower. Irrigation was carried out three times a 

week with 5.0 l m-2 per irrigation. Foliar fertilizations were carried out on July 13 

and August 10 with 5 g m-2 of N, 1.7 g m-2 of P2O5 and 1.7 g m-2 of K2O. 

Fungicide applications were carried out on July 20 and July 27 with 20 cm3 of 

commercial product containing azoxystrobin (23.2%) in 2 l for all sods. No weed 

control was carried out. 

 

Wear simulation tests 

All tests were carried out in July 06-07 2010 at Labosport Italia laboratories 

(Cernusco Lombardone – Italy). Laboratory conditions were maintained 

constant at 23°C temperature and 50% relative humidity. The device used to 

carry out the tests was a FIFA-approved “Lisport” machine (FIFA 2008, EN 

15306:2007). This numerical control machine consists of two (118 ± 5 mm Ø x 

300 mm) studded cylinders with 145 ± 5 studs and weighing 31 ± 0.5 kg 

(including the axle). Football studs are standard 13 ± 0.5 mm cylindrical nylon 

studs with a Shore A hardness of 96 ± 2. and are randomly bolted onto the 

cylinder’s surface. Cylinders speed across the turf is 0.25 ± 0.05 m s-1 and,  in 

order to maximize the randomization studs contact with the tested sample, the 

test sample tray is also oscillated transversely by 20 ± 1 mm at a speed of 

0.015 ± 0.005 m s-1. The forward cylinder rolls by contact with the tested 

sample, while the hind roll is moved by a chain linkage at a ratio of 1:2.5 in 

order to impart a “ripping” effect on the tested specimen. The cylinders are 
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floating and therefore no vertical adjustment was necessary with the samples’ 

turfgrass heights. 

Prior to testing, the sods were manually trimmed down to the Lisport test tray 

dimensions (81.5 x 42 cm).  The uniform surface of abraded turfgrass was 500 

x 300 mm. 

Three wear levels were evaluated for each species: 0 Lisport cycles, 20 

continuous Lisport cycles and 40 continuous Lisport cycles, where each Lisport 

cycle consists of one outward and one return path on the tested sample. 

 

Plant tissue biometrics 

All measurements were carried out on July 02 2010, before wear simulation (= 

T0) at CeRTES. Stolon diameter (mm), rhizome diameter (mm) and leaf blade 

thickness were measured via a  Mitutoyo Absolute IP54 digital feeler gauge with 

a 0.5 N max load and ± 2 nm error. Leaf blade width (mm) and internode length 

were measured via the digital ruler function of a AM413MT-Dino-Lite 20x-200x 

digital microscope. Leaf blade width and thickness were measured in the middle 

of the leaf blade’s length. Stolon and rhizome diameters were measured in the 

middle of the apical internodes. All measurements were carried out on 20 

samples for each organ randomly collected from the sods. 

 

Tissue sections were then calculated and expressed as follows:  

 

Leaf section = leaf width x leaf thickness.     [1] 

 

Stolon or Rhizome section = π (stolon or rhizome diameter/2)2   [2] 
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Shoot and horizontal stem density measurements 

All measurements were carried out at CeRTES on July 02 2010 (before wear 

simulation = T0), on July 14 2010 (one week after wear simulation = T1) and on 

September 06 2010 (after recovery = T2). From each sod a 66.44 cm2 plug was 

harvested and the number of live shoots was manually counted. Data is 

calculated and expressed as follows: 

 

T0, T1, T2 Shoot density =  T0, T1, T2 live shoots number / 66.44 cm2  [3] 

 

T1 shoot retention after wear (%) =   

100 – [(T0 shoot density-T1 shoot density)/ T0 shoot density] * 100 [4] 

 

T2 shoot recovery (%) =   

100 – [(T1 shoot density-T2 shoot density)/ T1 shoot density] * 100 [5] 

 

On the same T0 samples (plugs of 66.44 cm2) for each species, the horizontal 

stem density (HSD) was manually evaluated by measuring and summing the 

length of all the rhizome and stolon fractions found in C3 plugs. Data was 

calculated and is expressed as follows: 

 

T0 HSD (cm cm-2) = total rhizome and stolon fraction length / 66.44 cm2  [6] 

 

For C3 species only, further calculated data deriving from measured biometrics 

was T0 nodes cm-2 (T0 HSND), that supplied an indication of the potential 

recuperative points in each species, and T0 horizontal stem volume (T0 HSV), 
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that supplied an indication of sugars and starch available for recuperation 

(Volterrani et al. 2009). Data was calculated and is expressed as follows: 

  

T0 HSND = [6] / internode length       [7] 

  

T0 HSV = [6] * [2]         [8] 

 

Tissue constituent laboratory analysis 

On July 02 2010 (T0) plant organs were sampled from the sods and stored at -

80°C. The organs were sampled as follows:  

- leaves: four fully expanded leaves x 3 samples x sod (replicate) x species 

- rhizomes (Cdxt, Zm and Pv only): three 2 cm portions x 3 samples x sod 

(replicate) x species 

- stolons (Cdxt, Zm and Pv only): three 2  cm portions x 3 samples x sod 

(replicate) x species 

- stems (C3 only): three 2 cm portions x 3 samples x sod (replicate) x 

species  

Plant tissue samples were tested for their content in the following substances: 

starch (mg g-1 FW), glucose (nmol mg-1), sucrose (nmol mg-1), fructose (nmol 

mg-1), dry matter content (%), lignin (absorbance at 335 nm g-1 FW) and silica 

(absorbance at 650 nm g-1 FW). Starch content investigations were not carried 

out on leaf samples. All the analyses were conducted in triplicate. The 

laboratory test methods for the determination of the above substances were as 

follows:  
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a) Starch. Samples (100 mg FW) were grounded in a mortar and resuspended 

in 100 mL of 10 mM KOH, and boiled for 1 min. To each sample were then 

added 1 ml of 1N HCl. The starch standard solution was prepared using 100 mg 

of potato soluble starch dissolved in 100 ml dH2O and boiled 1 min.  To both 

samples and standards (final volume 50 ml) was added 1 mL of fresh iodine 

solution (0.13% K2 and 0.3% KI, dissolved in dH2O) and the absorbance was 

read at 595 nm in few minutes. Starch concentration was expressed as mg 

starch/g FW.  

b) Glucose, sucrose and fructose. Samples (100 mg FW) were rapidly  frozen 

in liquid nitrogen and ground to a powder, then extracted as described by 

Tobias et al. (1992) and assayed for glucose, fructose and sucrose content 

through coupled enzymatic assay methods (Guglielminetti et al. 1995). The 

efficiency of the methods was tested by using known amounts of carbohydrates. 

Incubations of the samples and standards were carried out at 37 °C for 30 min. 

The reaction mixtures (1 mL) were as follows. Glucose: 100 mM Tris-HCl, pH 

7.6, 3 mM MgCl2, 2 mM ATP, 0.6 mM NADP, 1 unit Glc6P dehydrogenase; the 

A340 was recorded. Fructose was assayed as described for glucose plus the 

addiction of 2 units of PGI; the increase in A340 was recorded. Sucrose was first 

broken down using 85 units of invertase (in 15 mM Na-acetate, pH 4.6) and the 

resulting glucose and fructose were assayed as described above. Recovery 

experiments evaluated losses taking place during the extraction procedures. 

Two experiments were performed for each metabolite by adding known 

amounts of authentic standards to the sample prior to the extraction. The 

concentration of the standards added were similar to those estimated to be 
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present  in the tissues in preliminary experiments. The recovery ranged 

between 97 and 104%.  

c) Dry matter content. Samples (1 g FW) were dried in an oven at 60°C for 1 

week and than the dry matter was measured.  

d) Lignin. Lignin was quantified via a thioglycolic acid (TGA) precipitation 

method (Lee et al. 2001). Pigments and soluble phenolics were removed from 

samples (100 mg FW) by three changes of absolute methanol over 3 days. The 

cleared tissue was then dried in an oven at 30°C for 1 day. The dried tissue was 

suspended in 1 ml 10% (v/v) TGA in 2M HCl (v/v) and heated for 4 h at 100°C 

in a water bath. When cooled, the solution and all tissues were then transferred 

to a fresh tube and subjected to centrifugation at 14000xg for 15 min. The 

supernatant was decanted and the pellet washed with 2.0 ml dH2O before 

centrifugation at 14000xg for 10 min. The supernatant was decanted and 1.0 ml 

1M NaOH added and mixed to solubilize the TGA derivatives. The suspension 

was then incubated overnight at 4°C before centrifugation at 14000xg for 10 

min. The NaOH supernatant was added to a fresh tube and the TGA derivatives 

precipitated by adding 0.4 ml concentrated HCl and incubating in an ice bath for 

1 h. The reddish/brown precipitate was pelleted by centrifugation for 10 min at 

14000xg. The supernatant was decanted and the precipitate dissolved in 1 ml 

0.5 M NaOH. The absorbance (A) of each resultant orange solution was 

determined at 335 nm (Graham and Graham 1991) and the concentration of 

wall bound TGA derivatives expressed as absorbance at 335nm g-1 FW.  

e) Silica. Content of silica in the different plant species was determined using 

an autoclaved-induced digestion (Elliot and Snyder 1991). Samples (100 mg 

FW) were dried at 60°C for 48 h and then ground using liquid nitrogen. Samples 
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of plant tissue were wetted with 400 µL of 50% H2O2 in 100-mL polyethylene 

tubes previously rinsed with 0.1 M NaOH and DW. To each tube was added 

900 mg of 50% NaOH (W/V) at room temperature, and each tube was gently 

vortexed. The tubes were individually covered with loosefitting plastic caps. The 

rack of tubes was placed in an autoclave at 138 kPa for 1 h. After atmospheric 

pressure was reached, the tubes were removed and the contents brought to 50 

mL with dH2O. Silica in dilutions of samples was determined colorimetrically by 

the following procedure: to each sample were added with mixing 7.8 mL of 20% 

acetic acid, 2 mL of ammonium molybdate solution (54 g/L, pH 7.0), 1 mL of 

20% tartaric acid, 0.2 mL of reducing solution (described below). Five minutes 

elapsed between the addition of the ammonium molybdate and the tartaric acid. 

The reducing solution was made by combining solution A (2 g of Na2SO3 in 

25mL of dH2O plus 0.4 g of l-amino-2-naphthol-4-sulfonic acid) and solution B 

(25 g of NaHSO3 dissolved in about 200 mL of dH2O) and diluting to 250 mL. 

Following the addition of all the reagents, the samples were mixed well and 

allowed to stand for 30 min. Plastic ware rinsed with 0.1 M NaOH was used 

throughout. The colour was read at 650 nm with a 1 cm path length. The silica 

content was expressed as A650nm g-1 FW. 

 

Statistical analysis 

All statistical analysis were carried out with a COSTAT 6.400  software (CoStat 

2008). Bartlett’s test on homogeneity of variances was carried out on all data 

sets. Non normally distributed data sets were log transformed until normal 

distribution was obtained.  
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Species effect was evaluated in leaves, stolons, rhizomes and stems via 

ANOVA in a completely randomized block design. 

The interaction (species x wear level effect) for shoot density and live shoot 

retention and recovery was analyzed in a 2 way completely randomized block 

design. 

In all cases, Tukey’s Honestly Significant Difference (HSD) for P<0.05 was used 

to detect differences between means. 

All parameters for C3 species were then submitted to a multiple regression 

analysis to find the equation of the subset of 5 parameters with the highest 

regression coefficient (R2) for T0 shoot density, T1 live shoot retention (20 and 

40 Lisport cycles) and for T2 shoot recovery (20 and 40 Lisport cycles). 

 

Results 

Horizontal stem and leaves biometrics 

Cdxt and Pv showed the thickest horizontal stems (3.12 and 2.62 mm2 

respectively – Table 1), with Zm returning much lower thickness (1.49) 

(P≤0.005). 

The internode length on Pv (1.23 mm) was significantly shorter than Cdxt and 

Zm (1.57 and 1.71 respectively) (P≤0.01). 

Zm was the species that produced the highest amount of horizontal stems, with 

a HSD of 15.84 cm cm-2 (Table 1), compared to Cdxt and Pv (5.77 and 5.48 

respectively) (P≤0.005). 

Zm was also the species with the highest HSND and HSV (P≤0.005) (9.57 

nodes cm-2 and 2.37 cm3 cm-2) while, for both these parameters, Pv and Cdxt 

attained lower values than Zm. 
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Highest leaf width (Table 2) was recorded by C3 mix (2.59 mm), followed by Pv 

(2.20), while Cdxt and Zm recorded a much finer leaf texture (P<0.005).  

Again C3 and Pv showed the thickest leaves (0.21 and 0.19 mm respectively), 

with Zm and Cdxt (0.14 and 0.13 respectively) showing thinner leaves 

(P<0.005).  

Leaf thickness and width determined an average calculated leaf section of 0.53 

mm2 for C3, followed by Pv (0.42) and Zm and Cdxt (0.20 and 0.18 

respectively) (P<0.005).  

 

Rhizomes 

Starch content (P<0.005 – Figure 5) was much higher in Cdxt rhizomes (135.52 

mg g-1) compared to Zm  and Pv (41.91 and 24.60 respectively). 

Rhizome glucose content (Figure 7) was highest in Cdxt and Pv (92.20and 

79.24 nmol mg-1 respectively), while Zm had a roughly threefold lower content 

(31.03) (P≤0.05). 

Sucrose content was highest in Cdxt and Zm (121.40 and 130.65 respectively) 

and lowest in Pv (73.69) (P≤0.05). No significant differences were found for 

fructose concentration. 

Lignin concentration in Zm (450.41) was considerably higher than Cdxt and Pv 

(171.24 and 96.27 respectively) (P<0.01 – Figure 6). 

Zm was the species with the highest silica content in rhizomes (4.53 – P<0.05 – 

Figure 8), followed by Pv (2.31) and by Cdxt (1.63). 

Dry matter was highest in Zm (54.97 % - P<0.05 – Figure 9), followed by Cdxt 

(46.36 %) and by Pv (29,06 %). 
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Stolons 

Stolon (Cdxt, Zm, Pv) and stem (C3) starch content (Figure 5) was much higher 

in Cdxt (205.23 mg g-1), while Zm, Pv and C3 exhibited a significantly lower 

content (40.44, 16.48 and 15.59 respectively) (P<0.005).  

Glucose content (Figure 7) was highest in Cdxt, Zm and Pv (31.28, 29.39 and 

30.07 respectively), with C3 stems showing a threefold lower content (10.07) 

(P<0.05). 

This result is inverted for fructose (P<0.005) and sucrose (P<0.005), with Cdxt, 

Zm and Pv stolons showing significantly lower levels of these soluble sugars 

compared to C3 stems. 

Lignin content (P<0.005 – Figure 6) was considerably higher in Zm stolons 

(473.71), followed by Cdxt stolons (196.87), then by Pv stolons (90.57) and by 

C3 stems (11.65). 

Cdxt stolons showed the highest degree of tissue silicization (4.53 – P<0.005 – 

Figure 8), followed by Zm (3.23) and Pv (1.47). C3 attained a silicization level 

intermediate between Zm and Pv (2.10). 

Zm showed the highest dry matter percentage (58.11 % - P<0.005 – Figure 9), 

followed by Cdxt (45,72 %) and by Pv and C3 (32.72 % and 28,61 %, 

respectively). 

 

Leaves 

Zm leaves had the highest glucose content (33.10 nmol mg-1 – Figure 7), while 

Cdxt and C3 showed lower intermediate levels (22.84 and 27.01 respectively) 

and Pv returned the lowest glucose content (6.89) (P≤0.05). 
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Both for fructose and sucrose, C3 leaves had the highest content (35.23 for 

fructose and 84.99 for sucrose), with Cdxt and Zm leaves showing lower 

intermediate contents (6.61 and 18.56 for Cdxt, 6.34 and 16.40 for Zm), while 

Pv had a largely inferior content (1.10 and 2.58) (P≤0.05). 

Lignin content was highest in Zm leaves (143.57 – Figure 6) and approximately 

twofold that of Cdxt and Pv (72.34 and 58.53 respectively) and approximately 

sevenfold that of C3 species (20.06) (P≤0.05). 

Cdxt showed the highest leaf tissue silica content (12.94 – P<0.05 – Figure 8), 

followed by Zm (6.61) and by Pv and C3 (4.09 and 3.12, respectively). 

The C4 species with the highest dry matter percentage was Zm (42.30 % - 

P<0.005), followed by Cdxt (34.61 %) and by Pv (25.68 %). C3 showed an 

intermediate value between Cdxt and Pv (29.53 %). 

 

T0, T1 and T2 shoot density 

T0 shoot density (species effect – Figure 2) was significantly higher in Zm (7.10 

shoots cm-2), followed by Cdxt (5.05) and by Pv and C3 attaining lower levels of 

density (3.39 and 3.08 respectively) (P<0.005). 

The species x wear intensity interaction on T1 (after wear) shoot density (Figure 

3) was significant (P<0.005), with Zm 20 and Zm 40 treatments showing the 

highest density (4.22 and 1.55) while Cdxt 20, Cdxt 40, Pv 20 and Pv 40 

treatments obtained a lower value (1.37, 1.09, 1.40 and 1.23 respectively) and 

lower still for C3 20 and C3 40 (0.67 and 0.43 respectively). 

The species x wear intensity interaction on T2 (after recovery) shoot density 

was significant (P<0.005), with Zm 20 showing the highest density (4.60), while 
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Cdxt 20, Cdxt 40, Zm 40, Pv 20 and Pv 40 obtained a lower density (1.88, 2.12, 

2.38, 1.59 and 2.01 respectively), followed by C3 20 (0.67) and C3 40 (0.43). 

 

The multiple regression equation of the subset of 5 parameters for C4 species 

with the highest adjusted determination coefficient (R2) for T0 shoot density 

was: 

 

T0 shoot density (C4) =  

1.48 +0.38(HSD) -0.34(HSND) +0.001(Stolon starch) -0.005(Stolon sucrose) +0.06(Rhizome dry matter) 

(R2=0.99) 

 

 T1 shoot retention after wear and T2 shoot recovery 

The species x wear intensity interaction on T1 shoot retention percentage 

(Figure 4) was significant (P<0.005), with Zm 20 retaining the highest 

percentage of shoots (59.49%), followed by Pv 20 (41.26), followed by Cdxt 20, 

Cdxt 40, Zm 40, Pv 40 and C3 20 (27.34, 22.19, 22.08, 36.33, 21.68 

respectively) and by C3 40 (13.87). 

The same interaction on T1 shoot recovery was significant (P<0.005), with Cdxt 

40 showing the highest shoot recovery percentage (93.34), followed by Cdxt 20, 

Zm 40 and Pv 40 (37.07, 59.29 and 62.23 respectively) and by Zm 20, Pv 20, 

C3 20 and C3 40 (8.95, 14.06, 6.04 and 8.03 respectively). 

The multiple regression equations of the subset of 5 parameters for C4 species 

with the highest adjusted determination coefficient (R2) for T1(20) shoot 

retention, T1 (40) shoot retention, T2(20) shoot recovery and T2 (40) shoot 

recovery were: 
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T1 (20) shoot retention (C4) =  

71.28-15.78(HSV) -0.15(Stolon starch) +0.09(Stolon lignin) +0.13(Stolon glucose) -0.54(Stolon fructose) 

(R2=0.99) 

T1 (40) shoot retention (C4) =  

101.7-13.07(HSV) -0.20(Stolon starch) +6.01(Stolon silica) -1.67(Rhizome fructose) -0.18(Rhizome DM) 

(R2=0.99) 

T2 (20) shoot recovery (C4) =  

37.51 -0.22(HSD) -6.08(leaf width) +0.16(Stolon starch) -1.83(Stolon silica) -0.30(Rhizome DM) 

(R2=0.99) 

T2 (20) shoot recovery (C4) =  

140.38 -15.97(HSV)+3.20(Stolon glucose) -0.60(Stolon sucrose) +4.15(Leaf glucose) -4.68(Leaf DM) 

(R2=0.99) 

 

Discussion 

The longer internodes of Zm and Cdxt compared to Pv are not in accordance 

with previous research, that however was focused on new turfgrass 

establishment of these species and not on fully-established turf (Volterrani et al. 

2008). 

The thinner horizontal stem of Zm is in accordance with its extremely fine 

texture and higher dry mass percentage. HSD in Zm is approximately threefold 

that of Cdxt and Pv, which indicates this specie’s capacity of creating an 

extremely dense weave of horizontal stems.  

The highest Horizontal Stem Node Density scored by Zm would indicate a 

higher recuperation potential by this species. However, given the observed 

lower recuperation capacity of Zm, tissue constituents appear to play a more 

important role in recuperation than mere node density. 
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The same can be said of Horizontal Stem Volume, where the higher HSV found 

in Zm (which could be interpreted as an indication of the volume of starch and 

soluble sugars available for recuperation) does not determine a faster 

recuperation. 

The wider and thicker leaves of C3 do not determine a higher wear resistance, 

as indeed DM results indicate that most of the fresh weight of leaves is made up 

of water. 

In general, no clear pattern can be established between leaf biometrics and C4 

wear resistance, with the thinner-leaved Zm and Cdxt exhibiting a significantly 

different wear resistance and the coarser-leaved Pv being more akin to Cdxt 

than to Zm in terms of wear resistance. The same absence of patterns was 

detected for leaf biometrics and wear recovery. 

In general, this would indicate a higher influence of tissue constituents on 

wear resistance and recovery, compared to mere biometrics. 

Starch content showed a consistent negative correlation with shoot retention 

after light wear (20 cycles) and as such low starch is can be considered a 

reliable marker of wear resistance. Inversely, starch seems to determine best 

recovery in C4 species, and it can be considered a reliable marker for species 

recuperative potential. 

Total soluble sugar (TSS) content did not show appreciable differences within 

C4 species, while the very high sucrose and fructose content in C3 is probably 

derived from fructans and starch (Damiani et al. 2004). This explainable by the 

fact that these two soluble sugars are the starting constituent (sucrose) and the 

final hydrolysis product (fructose) of fructans. At the same time, glucose is very 

low in C3 as it does not enter directly in fructan metabolism.    
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The higher initial shoot density of Zm is determined by its high HSD and HSND. 

High HSV in Zm is also determined by high HSD and HSND, that overcome the 

low section (HSS) component of Zm horizontal stems.  

Thanks to this very high initial density, and thanks to its intrinsically stronger 

tissues, Zm emerges as the species with the highest wear resistance, both in 

absolute and shoot retention percentage terms. Cdxt and Pv emerge as very 

similar species in terms of absolute wear resistance, but tissue-wise loses a 

lower percentage of its shoots, indicating a higher resilience of its tissues and 

shoots compared with Cdxt. As expected and as indicated in previous studies 

(Gaussoin et al. 2001), C3 species offer a much lower wear resistance and a 

virtually nil recuperative potential compared with C4 species. This is due to their 

lower initial density, lower lignin content and the absence of vegetative 

propagation organs. 

Despite the fact of having the highest number of potential recuperative points 

(HSND), Zm is the slowest recuperating species (and the opposite is true for 

Cdxt and Pv), indicating how the C4 species’ physiology and biochemistry is a 

more powerful asset than mere node density when it comes to recuperation. 

All C4 species recuperated a higher percentage of shoots after mere severe 

wear (40 cycles) and this different behavior in recovery from 20 and 40 cycles 

deserves further study. This would help to better comprehend whether this is 

due to better usage of light, space and nutrients dictated by the decrease in 

canopy density associated with wear, or if there are precise physiological and 

enzymatic reactions associated with severe wear that induce a more prompt 

and intense recovery. 
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Silica is frequently studied as a factor influencing turfgrass wear resistance, and 

in the present study stolon silica content positively influenced shoot retention 

after severe wear (40 cycles). This is probably due to a higher shear resistance 

imparted by silica to organ tissues, although this would have to be confirmed by 

further research. 

Dry matter was a frequent marker entering multiple regression analysis of wear 

resistance and recovery. This is in accordance with findings on the lower 

mechanical resistance of turfgrass tissues with high water content (Trenholm et 

al. 2000; Hoffman et al. 2010b), and would also indicate that a higher dry matter 

content corresponds to a higher availability of TSS and starch to fuel recovery 

from wear. 

In general, lignin showed to be the more clear and consistent marker for wear 

resistance, thanks to the mechanical resistance properties it imparts to organ 

tissues. 

 

Conclusions 

Several aspects emerged from the present work that can be summarized as 

follows: 

1. The Lisport machine can be successfully used in an effective and 

reproducible way to fathom out natural turfgrass wear resistance, devoid 

of soil compaction effects. 

2. Wear resistance for C4 species as observed in the field does not 

necessarily coincide with the relative tissue intrinsic resistance, but rather 

with the initial canopy density. 

3. C4 species show a wear resistance that is much higher than C3 species. 
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4. C3 species show a virtually nil recuperative capability (mainly due to the 

lack of vegetative propagation organs). 

5. The species with a very high intrinsic (tissue) wear resistance are also 

the species with the slowest recuperation potential. This seems to be due 

to lower levels of starch and TSS available for recovery. 

6. Starch was a clear marker of wear resistance (negatively correlated) and 

recovery (positively correlated). 

7. Silica was a marker positively correlated with wear resistance. 

8. Lignin was the clearest marker found to be positively correlated with 

wear resistance. 

9. A more severe wear induces a higher percentage of shoot recovery, and 

this particular aspects deserves further investigation. 
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Table 1. T0 Cdxt, Zm, Pv: horizontal stem internode length, calculated Horizontal Stem Section (HSS), Horizontal Stem Density 
(HSD), calculated horizontal stem node density (HSND), calculated horizontal stem volume (HSV).  
*, **, *** significant for 0.05, 0.01, 0.005 probability levels respectively. Means followed by the same letter in a column do not differ 
significantly at the P≤0.05 probability level. 
 

 Internode 
length (cm) 

HSS
(mm2)

HSD
(cm cm-2)

HSND  
(nodes cm-2) 

HSV
(cm3 cm-2)

Cdxt 1,57 a 3,12 a 5,77 b 3.79 b 1.54 b

Zm 1,71 a 1,49 b 15,84 a 9.57 a 2.37 a

Pv 1,23 b 2,62 a 5,48 b 4.52 b 1.43 b

 ** *** *** *** ***

CV 
(%) 

17,96 23,31 7,99 23.42 22.09
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Table 2. T0 Cdxt, Zm, Pv and C3: leaf width, leaf thickness, calculated leaf section.  
*, **, *** significant for 0.05, 0.01, 0.005 probability levels respectively. Means followed by the same letter in a column do not differ 
significantly at the P≤0.05 probability level. 
 

 Leaf width
(mm)

Leaf thickness 
(mm)

Leaf section
(mm2)

Cdxt 1,49 c 0,13 b 0,18 c

Zm 1,48 c 0,14 b 0,20 c

Pv 2,20 b 0,19 a 0,42 b

C3 2,59 a 0,21 a 0,53 a

 *** *** ***

CV (%) 12,19 19,31 14,67
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T0 shoot density - species effect
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Figure 1. Cdxt, Zm, Pv and C3 – T0 shoot density – species effect. Column treatments with the same letter do not differ 
significantly at the P≤0.05 probability level. 
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T1 and T2 shoot density - species x wear intensity interaction

a

a

b

b

b

bc

b

bcd

bc
bc

b

bcd

cdcd
dd

0

1

2

3

4

5

T1 shoot density T2 shoot density

S
ho

ot
 d

en
si

ty
 (s

ho
ot

s 
cm

-2
)

Zm 20

Zm 40

Cdxt 20

Cdxt 40

Pv 20

Pv 40 

C3 20

C3 40

 
Figure 2. Cdxt, Zm, Pv and C3 – T1 and T2 shoot density – species x wear intensity interaction. Column treatments with the same 
letter do not differ significantly at the P≤0.05 probability level. 
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T1 shoot retention, T2 shoot recovery - species x wear intensity interaction
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Figure 3. Cdxt, Zm, Pv and C3 – T1 shoot retention and T2 shoot recovery – species x wear intensity interaction. Column 
treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Starch content - species effect
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Figure 4. Cdxt, Zm, Pv and C3 – rhizomes, stolons-stems: T0 starch content – species effect. Within each organ (rhizome, stolon) 
column treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Lignin content - species effect
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Figure 5. Cdxt, Zm, Pv and C3 – rhizomes, stolons-stems, leaves: T0 lignin content – species effect. Within each organ (rhizomes, 
stolons-stems, leaves) column treatments with the same letter do not differ significantly at the P≤0.05 probability level.
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Glucose content - species effect
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Fructose content - species effect
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Sucrose content - species effect
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Figure 6. Cdxt, Zm, Pv and C3 – rhizomes, stolons-stems, leaves: T0 glucose, 
sucrose and fructose content – species effect. Within each organ (rhizomes, 
stolons-stems, leaves) column treatments with the same letter do not differ 
significantly at the P≤0.05 probability level; ns = not significant. 
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Silica content - species effect
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Figure 7. Cdxt, Zm, Pv and C3 – rhizomes, stolons-stems, leaves: T0 silica content – species effect. Within each organ (rhizomes, 
stolons-stems, leaves) column treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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Dry matter percentage - species effect
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Figure 8. Cdxt, Zm, Pv and C3 – rhizomes, stolons-stems, leaves: T0 dry matter percentage – species effect. Within each organ 
(rhizomes, stolons-stems, leaves) column treatments with the same letter do not differ significantly at the P≤0.05 probability level. 
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CONCLUSIONS 

 

The present research has shown that it is possible to successfully 

evaluate C4 turfgrass species tissue mechanical resistance, wear resistance 

and recovery devoid of soil compaction effects. This has been made possible by 

the careful standardization of test samples and areas (through a period of 

greenhouse acclimation in which differences originating from soil, fertilization, 

climate and management practices have been annulled or minimized), and by 

the in-laboratory use of highly automatized testing machinery that effectively 

removes differences originating from climate or operator factors. 

The results have shown that differences between species in terms of 

tissue mechanical resistance, wear resistance and recovery can be traced down 

to specific tissue constituents that effectively contribute to tissue strength and 

recuperative energy, while other constituents – although not directly contributing 

to tissue resistance or plant recovery – can be considered as biological or 

physiological markers for these traits. 

Another interesting finding of the present research has been to 

partially clarify the effective implications of biometrics in the dynamics of tissue 

mechanical resistance, wear resistance and recovery. On this subject, the 

introduction of strength per tested tissue unit area and (Study One) and the 

adoption of percentage shoot loss or recovery (Study Two) have successfully 

managed to distinguish between a species’ characteristics as observed in the 

field and the effective strength of a specie’s tissues. By depurating results from 

the dimensional factor, the true differences between different species’ tissues 

have been clarified. 

Further to the above points, the research has shown that turfgrass 

density (both in terms of shoot density and node density) is not in itself an 

indicator of a turfgrass canopy’s wear resistance, nor of its recovery capability. 

Indeed, one of the fundamental findings emerging throughout the present 

research is that tissue constituents are far more influential on tissue mechanical 
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resistance, wear resistance and recovery compared to mere biometrics and 

density. 

Lastly, the use of highly specialized and virtually unmanned 

laboratory machinery has proved a factor that can drastically increase the 

precision of this type of turfgrass investigations. Compared to traditional 

machinery (i.e. traditional field wear simulators), this type of machinery can 

effectively remove most operator-derived errors. 

The author believes that the very specific results originating from this 

work could be a particularly useful tool for:  

a) turfgrass genetics and selectors in order to improve the efficacy of 

the selection and genetic improvement for the traits of wear resistance and 

recovery;   

b) chemical companies that can target the development of new 

chemical products at increasing (or decreasing) certain tissue constituents 

associated with these traits (i.e. lignin). 

According to the figure shown 

on the right, the positive outcome of 

improved turfgrass genetics and the 

arrival on the market of specific 

chemicals could determine a reduction 

of the time consuming and financially 

draining management practices aimed 

at maximising wear resistance and 

recovery. This would not only decrease 

the social impact of high-profile 

turfgrass species but also, thanks to a 

decrease in the use of various 

agronomical input factors, it would 

determine a welcome decrease in the 

environmental impact of these 

otherwise extremely useful, 

aesthetically pleasing and widely 

enjoyed surfaces. 
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ATTACHMENT 1 
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Photo 1. Cdxt, Pv and Zm plugs freshly brought into greenhouse from the field, to be raised as donor plants. May 2009. 
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Photo 2. Cdxt, Pv and Zm donor plants ready for explant of organs to be submitted to trials. September 2009. 
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Photo 3. Cdxt, Pv and Zm donor plants at the Labosport Italia laboratory. September 2009. 
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Photo 4. The MTS Insight Dynamometer used for tensile strength tests. September 2009. 
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Photo 5. Details of the MTS Insight Dynamometer used for tensile strength tests. September 2009. 
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Photo 6. Fitting rubber inserts to the dynamometer’s vices to avoid tissue damage. September 2009. 
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Photo 7. Mitutoyo digital feeler gauge used to measure organ biometrics. September 2009. 
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Photo 8. Measuring Zm leaf width with the digital ruler function of a Dyno-Lite digital microscope. September 2009. 
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Photo 9. Measuring Cdxt stolon tensile strength. September 2009. 
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Photo 10. Measuring Cdxt stolon tensile strength – typical above-node meristem breakage point. September 2009. 
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 Photo 11. Typical dynamometer output for Cdxt leaf tensile strength test. September 2009. 
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Photo 12. Typical dynamometer output for Zm leaf tensile strength test. September 2009. 
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Photo 13. Typical dynamometer output for Cdxt stolon tensile strength test. September 2009. 
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Photo 14. Typical dynamometer output for Zm stolon tensile strength test. September 2009. 
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ATTACHMENT 2 
 

STUDY TWO PHOTO REPORT 
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Photo 1. Turfgrass sod rolls freshly harvested from the field. April 2010. 
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Photo 2. Washing soil off turfgrass sod rolls. April 2010. 



 

 

106

 
 
Photo 3. Washed sod exposing roots and rhizomes. April 2010. 
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Photo 4. Turfgrass slabs in greenhouse ready for acclimation. April 2010. 
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Photo 5. Turfgrass slabs in greenhouse ready for transport to Labosport Italia laboratories. July 2010. 
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Photo 6. Turfgrass slabs testing in the Lisport machine (1). July 2010. 
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Photo 7. Turfgrass slabs testing in the Lisport machine (2). July 2010. 
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Photo 8. Turfgrass slabs testing in the Lisport machine (3). July 2010. 
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Photo 9. T0: typical unworn Cdxt. July 2010. 
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Photo 10. T1:typical worn Cdxt (40 Lisport cycles). July 2010. 
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Photo 11. T2:Typical worn Cdxt (40 Lisport cycles) after 30 dd recuperation; grey area is the plug hole to count shoots. August 
2010. 


