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nNOS                  Neuronal Nitric Oxide Synthase 
p.i.                      Post injection 
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RCCC                 Renal clear cell carcinoma 
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SSTR                 Somatostatin receptor 
TSH                   Thyroid-stimulating hormone 
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INTRODUCTION 
 
 
 

1.   Somatostatin and its receptor family. 
 
 
 
1.1     Somatostatin and it actions. 
 
Somatostatin (somatotropin release-inhibiting factor, SRIF or SST) was 

identified in the hypothalamus as a tetradecapeptide with the goal of 

inhibiting the release of growth hormone (GH)1. Subsequently it was 

discovered that the human SST gene encodes a precursor prohormone, that is 

enzimatically cleaved to yield the two bioactive forms of SST: the first is 

composed by 14 aminoacids (SST-14), while the second by 28 aminoacids 

(SST-18). Both SST-14 and SST-28 are found in circulation, secreted not 

only from hypothalamus but, from gastrointestinal tract, the central and 

peripheral nervous system and to a lesser extent, other endocrine glands and 

reproductive organs2. SST functions as a neurotransmitter in the central 

nervous system (CNS) and as a regulator of endocrine and gastrointestinal 

functions1,3. SST inhibits hormone release, in particular GH, TSH, insulin 

and gut hormones, affects gastrointestinal function (inhibits gut exocrine 

secretion, regulates intestinal absorption, and decreases mucosal 

proliferation) and serves as neurotransmitter or neuromodulator. SST also 

blocks the release of growth factors (IGF-1, EGF, PDGF) and cytokines (IL-

6, IFN-γ)4,5,6.  
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These actions are mediated by a family of seven transmembrane domain G-

protein coupled receptors composed by five different subtypes of SSTR. 

These are termed Somatostatin receptors 1-5 (SSTR1–SSTR5) and are 

encoded on five different chromosome7,8. These receptor subtypes all share 

common signal pathways of signal transduction involving adenylate cyclase, 

Ca2+-K+ channels and Na+/H+ exchanger and protein dephosphorylation8 and 

bring to inhibitory effects on cellular processes such as secretion and cell 

proliferation7. 

 

1.2 Somatostatin receptors and their expression in normal 
tissues. 

 

SSTR1-5 are five different receptors belonging to the same family, encoded 

by five different genes located on separate chromosomes. SSTR2 can be 

found in two different isoforms: SSTR2a or SSTR2b, obtained by two forms 

of alternative splicing, that led to a long variant (SSTR2a) or a short one 

(SSTR2b). The two isoforms differs only in the length of the cytoplasmic 

tail. The two variants are present in human too. 

Thus, there are six putative SSTRs subtypes composed by 356-391 

aminoacid residues. Each receptor is composed by seven α-helix trans-

membrane domains typical of G-protein coupled receptors. The individual 

subtypes display a remarkable degree of structural conservation across 

species. SSTR1 presents 94-98% sequence identity between human, rat and 

mouse isoforms; SSTR2 presents 93-96% sequence identity between human 

rat, mouse, porcine and bovine isoforms. SSTR4 presents 88% of sequence 

identity between the rat and the human isoforms. SSTR3 and SSTR5 are less 

conserved and show an homology of 82%-83% between human and rodent 

isoforms. 
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The transmembrane domains have a great similarity in sequence, while the 

carboxy- and amino-terminal sequences  are different from each other20. 

Somatostatin receptors were identify in different tissue using different 

technologies such as receptor binding studies, RT-PCR and 

immunohistochemistry and it was determined that SSTRs are expressed 

throughout the body including the CNS9, particularly in brain and in 

peripheral organs including GI tract10,11, endocrine and exocrine 

pancreas12,13,14, kidney15, pituitary, thyroid, adrenals and immune 

cells16,17,18,19,20,21. SSTR2a is the most expressed SST receptor and 

particularly, there is a very high expression in pancreatic islet and in 

peripheral nervous system, but also in adrenals, immune system and in 

kidney. SSTR4 is expressed in foetal and adult lungs, while a good 

expression of SSTR3-5 was demonstrated in T-lymphocytes.  

 

1.3 Somatostatin receptor subtypes expression in human  
cancers. 

 

Several studies demonstrated that different tumours express or overexpress a 

particular or several membrane receptor subtypes on their cellular membrane 

compared to the correspondent healthy organs22. SSTRs were the first 

receptor family to be identify in tumors. In particular, it is now well 

described and documented their expression in some malignancies22,23. The 

majority of human SSTR-positive tumors simultaneously express multiple 

SSTR subtypes, although  there is a considerable variation in SST subtype 

expression between the different tumor types and among tumors of the same 

type. The presence of SSTRs in cancers was demonstrated by molecular 

biology with mRNA level using in situ hybridazation24,25, RNase protection 

assays methodologies and RT-PCR26,33, or by immunohistochemistry 
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adopting specific antibody against synthetic peptide sequences of the 

SSTR1-527. It is by the combination of these different technique that more 

accurate results are obtained. SSTR2 is the most expressed receptor subtype 

in the majority of tumors28. 

There are some malignancies that express SSTRs. The most common SSTRs 

expressing tumors are: neuroendocrine tumors (NET)29 and 

gastroenteropancreatic tumors (GEP)30,31. Characteristic of these cancer 

types is the interface between the endocrine (hormonal) system and the 

nervous system. NETs derive from diffused neuroendocrine system and, this 

is the  consequence because, NETs can spread to different parts of the body. 

NETs are a heterogeneous group of neoplasm, originating from neural crest, 

that can be classified in two different sub-groups: the first and most 

common, is composed by well-differentiated and slowly-growing tumors, the 

second composed by rare pathologies, is made by poorly differentiated and 

malignant tumors with an aggressive behaviour. NET tumors includes: 

pituitary tumors32,33, pheochromocytoma34, meningioma35, glioma36, head 

and neck tumours37, paragangliomas38, medullary thyroid carcinomas 

(MTCs)39, small cell lung cancer40. 

Endocrine tumors of the gastroenteropancreatic (GEP) axis (involving the 

gastrointestinal system, stomach, and pancreas) are rare, generally slow-

growing tumors that occur in the pancreas and the gastrointestinal tract, 

which includes the stomach, small and large intestine41.  

They have a common embryologic origin, indicated by the term 

“protodifferentiated stem cell,” and it is now believed to derive from the 

endoderm and capable of giving rise to a variety of tumors.  

GEP tumors include carcinoid tumors and pancreatic endocrine tumors (also 

called pancreatic islet cell tumors). GEP tumors includes: carcinoid tumors, 

islet cells carcinomas42 of the pancreas such as gastrinomas, glucoganomas, 
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GRFomas, vipomas, insulinomas, non functioning islet cells carcinomas, 

midgut and gastrointestinal tumors.  

Moreover, there are two hereditary pathologies that have as consequent the 

establishment of different kinds of expressing SSTRs NET. These are: 

Multiple Endocrine Neoplasia, type 1 (MEN-1)  and Multiple Endocrine 

Neoplasia type IIa-b (MEN-2a/b). 

MEN-1 is a hereditary syndrome and is characterized by the presence of 

parathyroid glands, pancreatic islet cells, and pituitary gland43,44,45 tumors. 

These tumor insurance is associated with the loss of a tumor suppressor gene 

on chromosome 11q1346,47. Moreover, it seems that allelic loss might be 

responsible for sporadic parathyroid and pituitary tumors as well as stomach, 

pancreas, and intestine48,49,50 NETs. 

The second is Multiple Endocrine Neoplasia type 2a (MEN-2a) syndrome is 

characterized by the occurrence of the following tumors: 

pheochromocytomas, medullary thyroid carcinomas (MTC) and parathyroid 

hyperplasia. 

Multiple endocrine neoplasia type IIb (MEN-2b), has stigmata of cutaneous 

and mucosal neuromas and is not associated with parathyroid hyperplasia. 

MEN-2a, MEN-2b and familial MTCs are associated with RET 

protooncogene51,52 mutations, a conventional dominant oncogene located on 

10q11.2 chromosome. Although mutations in this region have been 

associated with sporadic MTC, the role of this gene in sporadic GEP tumors 

is not known.  

Finally, the presence of SSTRs have been demonstrated both in vitro and in 

vivo in some other not endocrines malignancies such as adenocarcinomas of 

the breast53, kidney53,53, prostate54, de-differentiated papillary and follicular 

thyroid cancer55, ovary, lymphomas56. 
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De-differetiated thyroid cancer includes papillary thyroid cancer (PTC). This 

pathology is usually curable by the combination of surgery, radioiodine 

ablation, and thyroid-stimulating hormone suppressive therapy, but  

recurrence occurs in 20–40% of patients57. During tumor progression, 

cellular dedifferentiation occurs in up to 5% of cases and it is usually 

accompanied by more aggressive growth, metastatic spread, and loss of 

iodide uptake ability, making the tumor resistant to the traditional therapeutic 

modalities and radioiodine. Along with the loss of radioiodine concentrating 

ability, de-differentiated thyroid cells develop some features typical of other 

tumors such as NETs. Beside the occurrence of transition from follicular 

epithelial thyroid cancer to medullary thyroid cancer, the expression of 

SSTRs on thyroid cells has recently been documented, demonstrating that 

these tumors highly express SSTR-1, SSTR-3, SSTR-558. 

 

In conclusion, from the current scientific literature, it can be asserted that: 

 
• SSTR2 is the most frequently expressed SSTR subtype in a majority 

of cancers; 

• There is a high heterogeneity in the expression of individual SSTR 

within and between different tumors;  

• SSTR1-2-3-5 are often found in GEP tumors, MTCs and in ephitelial 

ovarian cancers; 

• SSTR3 is overexpressed in thymomas and inactive pituitary 

adenomas; 

• Human cervical and endometrial cancers has a great expression of 

SSTR1-2-3; 

• SSTR2-3-5 were found in human lung cancers; 

• GH-secreting pituitary adenomas express SSTR2-5; 
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• non-iodophil follicular epithelial thyroid cancer expresses SSTR-1, 

SSTR-3, SSTR-5. 

 

 

The predominant expression of SSTR2 in so different kinds of tumor threw 

the basis of the successful clinical application of radiolabelled or not SST 

analogs (octapeptide) [see section 2.3]. 

 

1.4    Incidence and mortality. 

 
NET  has a low incidence on population (about 5 cases on 100,000 

inhabitants that is 0.5% of the total of malignancies) but, in the last 30 years, 

incidence is growing up of about five times, while survival is the same. 

Both men and women can be affected by NETs, but an higher frequency is 

recorded in middle age (40-45 years old) and old (70-75 years old) male59. 

Children are attacked too.  

In Italy, every year 1,200 new NET diagnosis are registered. Diagnosis is 

often difficult, because typical symptoms are low and sometimes difficult to 

understand. These include: diffuse rash, abdominal cramps accompanied by 

diarrhoea. 

GEP tumors are the most frequent type of SSTRs expressing tumors, 

corresponding to the 70% of the totality, while brunchopulmonary carcinoids 

represent more than 25%. Regarding entero-pancreatic district, enteron 

carcinoids represent 29% of the patients, while ductal and gastric carcinoids 

are less common. Finally,  appendicular and pancreatic carcinoids60 are quite 

rare.  
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1.5   Neuroendocrine tumors aetiology.……………………… 

 

NETs aetiology still remains unknown. Carcinoids incidence is mainly 

considered sporadic.  

Hereditary proneness is observed in MEN-1 syndromes. Hemminki59 reports 

that less than 1% of Swedish has a carcinoid history in their family.  

However, it seems that some ethnic groups  are mainly predisposeded to be 

affected by neuroendocrine tumors. This suggests that hormonal and ethnic 

factors have an influx on the neuroendocrine tumors growth.  

 

1.6 Gastroenteropancreatic tumors aetiology. 

 

Around 80% of GEP NETs express somatostatin receptors (SSTRs) on their 

cellular membrane. Tumours expressing SSTRs often contain one or more 

receptor subtypes. In addition, recent studies have shown that such receptors 

are preferably expressed in well-differentiated forms, that some advanced 

tumours can loose a particular receptor subtype while keeping others61. 

 

Stomach  

 

Stomach NETs correspond to 5% of  all GEP tumors62, but a more accurate 

data were obtained after endoscopy technique using. 

The most diffused stomach NETs are carcinoids that can be divided into 

three groups, where prognosis represents the main difference between these 

groups.  

These are: 

-  type  1, where the pathology is associated with chronic atrophic 

gastritis: it constitutes 70-80% of gastric  carcinoids. Old  women 
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(60-80 years) are prevalently attacked. It is a benign tumor. Only in 

rare cases  show metastasis; 

-  type 2, it is associated with MEN-1: men and women are attacked 

with the same incidence; 

-  type 3,  it is a sporadic tumor: it has a predilection for male. 70% of 

the cases are associated with metastasis and a strong therapeutic 

approach is required. It has a poor prognosis. 

 

Appendix. 

 

Appendix is a frequent site for carcinoids insurgence, but Modlin62 

demonstrated a progressive decrease of appendicular NETs in last years. 

Appendicular carcinoids rapresent 60-70% of all appendicular tumors, but 

only 0.3-0.5% of all the appendicectomy63.  

Only in rare cases, appenicular NETs symptoms are shown and a precise 

diagnosis come out with histological examinations after appendicectomy.   

Appendicular tumor onset age is between the second/third life decade. 

Another incidence spike was observed between 70-74 years. 

Appendicular carcinoids incidence is 2.1 higher in women compared to 

men64. 

Mayo Clinic case-report reported that only 4% of appendicular carcinoids 

has metastasis insurgence. This is the reason because survive rate is about 5 

years in 95% of patients. 

 
 
Oesophaghagus. 

 
Primitive oesophaghagus NET are extremely rare (0.05% of all GEP tumors 

and less than 1% of the neoplasia of this organs)60. 60-70 year old men are 
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the most attacked. ……………………………………………………………. 

Oesophaghagus tumors are divided in typical carcinoids, atypical carcinoids 

and neuroendocrine carcinoids with small or big cells65. The last one is very 

rare. Atypical carcinoids and small cells oesophaghagus NET have poor 

prognosis. 

 
Enteron 

 
Enteron NETs are more frequent. Black people, particularly male, are 

predominantly predisposed  in this tumor growth. 

Duodenum and proximal jejunum carcinoids are associated with Zollinger-

Ellison syndrome, a pathology that demonstrated about 10 years of survival 

in 84% of the cases.  

Other histotypes are: SST secreting tumors neurofibromatosis 1 associated or 

not, poorly differentiated carcinoids and ganglytic paragangliomas. 

Distalis and ileal jejunum carcinoids are associated with carcinoid 

syndrome66. 

At diagnosis,  about 60% of patients shows distant metastasis. Five years is 

the average of  survival prognosis in 60% of patients. 

 
Colon and rectus. 

 
If colon NETs are extremely rare, rectus NETs represent about 20% of all 

GEP tumors65. In western counties, colon NETs are diagnosed during the 

seventh decade of life, while rectal carcinoids during the sixth63.   

Poorly differentiated colon tumors are typical and male are mostly attacked, 

while rectus tumors usually present differentiated tumoral cells. It is rare that 

colon and rectus syndromes could be associated to carcinoids. 
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Pancreas. 

 

Pancreas NETs incidence is about 10/1.000.000 population/year. Women are 

mainly attacked, particularly during the third/fourth decade of life. Pancreas 

NET are 2% of all the pancreas neoplasia67.  

Pancreas NETs are divided into two groups: functional and not-functional, 

depending on whether a clinical syndrome resulting from the autonomously 

released hormone is present (gastrinoma, insulinoma, glaucagoma, VIPoma, 

somatostinoma, GRFHoma, ACTHoma). Not-functional tumors frequently 

release hormones and peptides (chromogranin A, pancreatic polypeptide, 

neurotensin, enolase) that do not cause distinct clinical syndromes. 90% of 

not-functional pancreatic NETs are malignant. 

Not-functional pancreas NET corresponds to 15% of all pancreas tumors. 

Clinical showing is due to the tumoral mass effect on nearer organs. Cellular 

proliferation is usually slow but, at diagnosis, more than 50% of patients 

presents liver and lymph nodes metastatic diffusion.  

Insulinomas are the most frequent functional pancreas NETs (about 70% of 

all pancreas NETs). 40-60 years old female shows an high insulinoma 

incidence. Diagnosis occurs early, because patients show an incorrect 

glucidic metabolism. 10% of insulinomas are included in MEN-1 panel.  

20% of pancreas NETs are gastrinomas (incidence 4-10 case/1,000,000 

persons/year). Maximal incidence are registered during the fourth decade of 

life. Symptoms are poor. 25-50% of the patients is affected by MEN-1. 

VIPomas corresponds to 2-8% of pancreatic NETs, 70% of patients are 

women. 

Glucoganomas represent 5% of all pancreatic NETs and 8% of all functional 

tumors. Even in this last case females are mostly attacked, incidence spike is 

obseved at 40 years.  
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Pancreatic cancers demonstrated an heterogeneous expression profile of 

SSTR subtype68. Somatostatin receptors have been extensively mapped in 

different pancreatic tumours by means of autoradiography, reverse-

transcription polymerase chain reaction, in situ hybridization and 

immunohistochemistry; SSTR-1, -2, -3 and -5 are usually expressed in 

pancreatic NETs. Pancreatic insulinomas had heterogeneous SSTRs 

expression while 100% of somatostatinomas expressed SSTR 5 and 100% 

gastrinomas and glucagonomas expressed SSTR 269. 

 

1.7   Medullary thyroid carcinoma. 

 

Medullary thyroid carcinoma (MTC) arises from thyroid’s parafollicular C 

cells. MTCs correspond to 5% of all thyroid cancers. It may occur as 

sporadic, as a component of the MEN-2b syndrome, or as familiar medullary 

thyroid cancer syndrome. These hereditary syndromes are autosomal 

dominant disorder and are caused by mutation of the ret proto-oncogene.  

MTC patients typically present thyroid nodule, cervical adenopathy, distant 

disease, high level of  circulating calcitonin and consequent flushing, pruritus 

and diarrhea. Other elements and typical features of MEN-2a/-2b are 

observed.   

MTC demonstrated a coexpression of more than one SSTR. The presence of 

different SSTR subtypes mRNA were observed by RT-PCR with the 

exception of SSTR4 mRNA70. 

 

1.8 Follicular and Papillary Thyroid Cancer. 
 

 
Thyroid cancer incidence increased 2.6-fold from 1973 to 2006. This change 

can be attributed primarily to an increase in papillary and follicular thyroid 
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carcinoma, which increased 3.2-fold (P<0.0001)71. Follicular and papillary 

thyroid cancers are generally characterised by excellent clinical outcome 

after conventional treatment (thyroidectomy and 131I treatment). But during 

tumor progression, cellular dedifferentiation occurs in up to 5% of cases and 

is usually accompanied by more aggressive growth, metastatic spread, and 

loss of iodide uptake ability, making the tumor resistant to the traditional 

therapeutic modalities and radioiodine. Conventional chemotherapy and 

radiotherapy have a modest, if any, effect on advanced dedifferentiated  

thyroid cancer, which is responsible for a large number of deaths attributed 

to thyroid cancer. Various recent studies have described the visualization of 

metastases from follicular cell-derived thyroid carcinomas by means of 

somatostatin receptor scintigraphy although, in contrast to medullary thyroid 

carcinoma, these tumors are not of neuroendocrine origin. These findings are 

in agreement with the in vitro demonstration of specific somatostatin binding 

receptors in thyroid carcinoma cells. In the majority of these tumors, the 

expression of SSTR-1 seems to predominate, but a high positivity was 

observed in SSTR-3, and SSTR-5 expression too72.  

 

1.9 Lung. 
 

Lung cancer is the most common cause of cancer death both in men and 

women throughout the word. The two main lung cancer type are: small cell 

lung cancer and non-small cell lung cancer and diagnosis occurs by 

microscopy.  The American Cancer Society estimates that 219,440 new cases 

of lung cancer were diagnosed in the U.S. and 159,390 deaths due to lung 

cancer occur in 2009. In U.S., incidence on population is one out of every 14 

men (almost 70% of people diagnosed with lung cancer are over 65 years of 

age, while less than 3% of lung cancers occur in people under 45 years of 

age). The management of pulmonary neuroendocrine tumours is poorly 
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standardised and data about somatostatin receptors (SSTR) expression or 

therapeutic guidelines for somatostatin analogue administration are still 

debated. From a study it was demonstrated that SSTR2a was strikingly 

overexpressed in metastatic typical carcinoids as compared with atypical 

carcinoids and clinically benign typical carcinoids73.  

 
 1.10   Breast. 
 

Breast cancer is the  most common cancer disease among women74. Each 

year 210,000 new cases are diagnosed in U.S., of which  50,000 are ductal 

carcinoma in situ and 41,000 dies. Incidence continues to increase slowly, 

but mortality started to decrease from 1990s, thanks to mammographic 

screening, improvement of surgical techniques, radiation therapy and 

systemic adjuvant therapy, but about 1,000,000 new cases are diagnosed 

worldwide each year and death incidence dramatically changes in each 

nation. 5% of breast cancer are hereditary, however, the majority of breast 

cancers75 are sporadic and are critically influenced by hormonal exposure to 

ovarian steroids76. Normal breast development, breast carcinogenesis as well 

as growth and progression of breast cancer depends on several hormones 

produced by the ovary (estrogens, progesteron), pituitary (GH, prolactin), 

and endocrine pancreas (insulin), as well as growth factors (epidermal 

growth factor, transforming growth factor, insulin-like growth factor) 

synthesized locally by normal or cancerous epithelial cells and by stromal 

cells. SSTR1-5 expression were determined in primary ductal breast tumors 

through semi-quantitative RT-PCR and immunocytochemistry. All five 

SSTR subtypes are variably expressed at the mRNA level in breast tumors 
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are localized to both tumor cells and the surrounding peritumoral regions as 

detected by immunocytochemistry77.  

 
1.11   Kidney. 
 
Renal cell carcinoma (RCC) corresponds of about 2% of all cancer 

worldwide, and thanks to the increasing use of imaging techniques diagnosis 

occurs easily and it incidence is increasing till 1.5-5.5%78. RCC has a major 

lethality if compared to the other urinary tract tumors. Metastatic disease 

occurs in 30-40%79 of RCC patients, and metastatic disease occurs 2 years 

after partial or total nephrectomy80, while not treated metastatic RCC 

patients have a 5 years survival of 0-18%81. It was demonstrated by 

immunohistochemistry that not pathological kidney express SSTRs, SSTR-1 

and 2a in glomus, while SSTR1-2-2a-2b-4-5 in tubule16.  

 

1.12  Lymphoma. 

Lymphoma is a cancer in the lymphatic cells of the immune system and 

presents as a solid tumor of lymphoid cells. These malignant cells often 

originate in lymph nodes, presenting as an enlargement of the node. 

Lymphomas are closely related to lymphoid leukemias, which also originate 

in lymphocytes but typically involve only circulating blood and the bone 

marrow (where blood cells are generated in a process termed haematopoesis) 

and do not usually form static tumors. There are many types of lymphomas, 

and in turn, lymphomas are a part of the broad group of diseases called 

hematological neoplasms.  Lymphomas represent 5.3% of all cancers in the 

United States and 55.6% of all blood cancers. Prognosis depends to the 

lymphoma type and stage. In particular, SSTRs are expressed in non-

Hodgkin's lymphoma82, lymphomas of the mucosa-associated lymphoid 
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tissue (MALT)-type arise in the stomach, but extragastric locations are also 

frequently encountered83.  

 

2 Somatostatin and it actions. 
 

2.1 Somatostatin and it activation. 
 

SST is encoded by a single gene and it mature form is obtained by two 

subsequent proteolitic cleavages that bring from the primitive pre-

prosomatostatin to the prosomatostatin that is newly modified in the two 

final and mature products: 14 amino acids SST (SST-14) and 28 amino acids 

SST (SST-28)28 (Figure 1).  Pharmacological studies reveals that SST-14 and 

SST-28 binds to SSTR1-5 receptors with high affinity, but SST-28 has a  10 

times higher affinity for SSTR-5 respect to SST-14. 

SST functions were discovered in 1973 by Guillemin and Gerich84. It was 

isolated in the hypothalamus and researchers initially hypothesized that the 

only own function was to inhibit growth hormone release by pituitary gland. 

Subsequently, SST was discovered in most brain regions and in peripheral 

organs, but SST is typically contained in neurons or endocrine-like cells, 

such as central and peripheral nervous systems, in the endocrine pancreas 

and the gut, and in small number in the thyroid, adrenals, submandibular 

glands, kidney, prostate and placenta, where it executes different functions7.  

 

2.2 Somatostatin  functions. 
 

SST action is executed when it binds to it specific receptor. There are five 

SSTRs subtypes, composed by seven transmembrane domains and coupled 

by G-protein (Figure 2).  
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Figure 1: SST-28 and SST-14. The two forms have the same aminoacidic 
sequence, with the length is the only exceptions. The yellow dots represent 
the pharmacophore. 
 
 
When the SST-SSTR binding occurs, the second messenger systems is 

activated. This system includes: inhibition of Adenylyl Cyclase, inhibition of 

calcium channels and activation of phospholipase-c. All these processes 

bring to the inhibition of the hormone secretion. Moreover,  phosphotyrosine 

phosphatases (PTPs) are activated by SST. PTPs can activate two different 

pathways: the first shows as consequence cytostatic effects by the inhibition 

of the Mitogen Activated Protein Kinase, the second leds to the apoptosis 

activation, having as last event cell death85,7 (Figure 3).   

Because SST is involved in the inhibition of hormone secretion and brings to 

cytostatic or cytotoxic effects and because SSTRs are over-expressed in  

different types of tumors, SST and it activated pathways are the most studied  

processes for cancer treatment and diagnosis.  

 

2.3 Somatostatin and its analogues. 
 

2.3.1 Agonists. 
 

When a SST-analogue with an agonist behaviour binds to it specific SSTR 

subtype, G-protein are activated by phosphorilation through protein kinases 
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A/C and G-protein coupled receptors (GPCR) kinases and the mechanism 

that derives is  the internalisation of the SSTR-agonist complex. 

 

 
                     

 

 

 

 

 

 

Figure 2: G-protein coupled receptor94. 

 

Internalisation occurs with the formation of clathrin-coated pits (involving β-

arrestins). The internalised complex is then channel to endosomes, where 

dephosphorilation occurs. Finally, the receptors are recycled and go back to 

the membrane as functional receptors28 (Figure 4). GPCR down-regulation 

results from lysozomal degradation of intracellular receptors, this led to a 

decrease of mRNA and protein synthesis. 

Due to its actions, SST started to be studied in particular for the therapy of 

SSTR-expressing tumors. Native SST has a very short half life in human 

serum (about 3 minutes), because it is rapidly attacked and degraded by 

endogen reducing agent as glutathione oxidase, thioredoxin reductase or 

basic and nucleophilic agents, thus preventing it application to the clinic. In 

order to get over this difficulty, SST-analogs with different affinity to each 

SSTR subtypes and with different behaviour were synthesized.  
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Figure 3:  SST mechanism of actions92. 

 

The first and well known SST-analogue is Octreotide, also named SMS 201-

995 or Sandostatine®. It is a cyclic octapeptide that maintain the SST 

pharmacophore together with a protection against degradation, that are 

represented by the presence of a D-Phe residue at N-terminus together with 

an alcoholic residue (Thr-ol) at C-terminus. Metabolic stability was given by 

the presence of a disulphide bridge between Cys2-Cys7 (Figure 5). Octreotide 

has an half life of  117 minutes in human serum, a great affinity for SSTR-2 

and a moderate affinity for SSTR-3/5 (Table 1).  

Later, new peptides with different affinity profiles and different behaviour 

were synthesised, but Octreotide is still considered the milestone in the SST-

analogues history. For example, other analogues that are now in clinical 

trials are Lanreotide and Vapreotide but, even in these cases the main 

limiting factor remains the affinity to each SSTR subtypes. Because SST has 

a large spectra of action and in particular for it antisecretory action, the 

potential of SST analogues in cancer treatment is very high, especially for 
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those tumors such as pituitary tumors, gastrointestinal tract, acromegaly, 

prevention and treatment of pancreatic surgery complications.  

 

 

Figure 4:  Rapresentation of intracellular routing of GPCRs after agonist 
activation (L= ligand, PP= phosphate group)28.  
 

Even if these drugs are very promising, an important problem to underline is 

the typical behaviour of SSTRs. In fact, this receptors have the particularity 

to create homo- and heterodimers with the receptors of other system 

(dopamininergic and opioid receptors), becoming very difficult to predict the 

therapeutic potential of SST-analogues. 

 
 
Compound       hsstr1     hsstr2     hsstr3     hsstr4      hsstr5 
SS-14                 1.1          1.3          1.6          0.53         0.9 
SS-28                 2.2          4.1          6.1            1.1        0.07 
Octreotide      > 1000        2.1          4.4      > 1000         5.6 
Lanreotide      > 1000        1.8           43             66       0.62 
Vapreotide     > 1000        5.4           31             45          0.7 
 
Table 1. Binding affinities (Ki, nM) to hSSTR of clinically used SST-

analogues86. 
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Figure 5: Octreotide. Pharmacophore corresponds to the red aminoacids. 

 
2.4 Somatostatin analogues and cancer. 

 

Due to it antisecretory activity, the therapeutic potential of SST in cancer 

treatment is multiple.  

Different neoplasms express a particular SSTR or co-express more than one 

SSTR subtypes. This was abundantly studied during the last twenty years. 

For example, pituitary adenomas express SSTR-2 and -5, receptors that are 

important in inhibiting the excessive GH secretion in acromegaly. Since GH 

stimulates production of IGF-I, that has been implicated in promoting 

cancer87, SST-analogues may retard additional cancers by decreasing 

systemic GH/IGF levels88.    

Another important mechanism of anti-neoplastic action of these drugs 

appears to be the inhibition of neoangiogenesis.  

Angiogenesis is a fundamental process in the context of tumour growth, and 

one of the main factors involved in the appearance of new tumour vessels is 

vascular endothelial growth factor (VEGF). SST-analogues inhibit the 

production and secretion of many angiogenic factors89. It has been 

demonstrated that octreotide induced inhibition of angiogenesis by a process 

that is G-protein, calcium- and cAMP dependent and is protein protein-
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kinase C (PKC) and PTP independent90. SSTRs expression has been 

demonstrated in peritumoral vessels in different tumour types, and it appears 

to be unrelated to the receptor expression in the tumour cells24. SSTR2 is 

expressed when the endothelial cells begin growing91. In fact, SSTR2 gene is 

expressed on proliferating angiogenic vessels. These data were confirmed by 

immunohistochemistry and in vivo scintigraphy. This is the reason, because 

SSTR2 may be a specific target for anti-angiogenic therapy with SSTR2-

binding SST conjugated to radioisotopes (section 2.5) or cytotoxic agents.  

Preclinical studies on the potentiality of SST analogues in inhibiting   

angiogenesis were performed in different experimental models, including the 

chicken chorioallantoic membrane model, the human umbilical vein 

endothelial cell proliferation model and the human placental vein 

angiogenesis model.  

Recent studies have focused on SSTRs signalling and its effects on cell 

growth, because it is recognized that SST has activity as endogenous 

antiproliferative agent in many different experimental tumor models both in 

vivo and in vitro92. However, these effects, that are highly significant in 

preclinical study, become much more questionable when the data are 

translated to clinical trials, so that the research is still moving further and a 

significant progress is doing in understanding the mechanism by witch SSTR 

activation may lead to cytostatic or apoptotic effects. In particular, it is now 

accepted that, the main transduction system involved in the antiproliferative 

activity of SST is represented by the activation of a subset of 

phosphotyrosine phosphotases92,92.   

Therefore, the effects of SST on tumor cell growth may take place at 

different levels93: directly blocking the cell cycle progression through the 

binding to SSTRs expressed on cell and the activation of PTPs, and 
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indirectly through the modulation of tumor growth mediated by the 

inhibition of the production of GF, or via an antiangiogenic effect.  

  

Figure 6: Somatostatin receptors characteristics94. 

 

Frequently, the activation of SSTRs causes cytostatic effects, with cell’s 

block in the G1 phase. The role of SST as an endogenous regulator of cell 

cycle is a recognised activity and, using different in vitro and in vivo 

experimental models, all the five SSTR subtypes were reported to induce 

arrest of cell proliferation94 or induce apoptosis88 too. 

Different SSTRs (SSTR1, SSTR2, SSTR4 and SSTR5) have been implicated 

in vitro in the G1–G0 cell cycle blockade, while the apoptotic effect of SST 

being mediated through SSTR3 and less through SSTR2.  

SSTR-3 was shown to increase wild type p53 through a dephosphorylation-

dependent conformational change and to induce Bax, but not p21, in 

apoptosis caused by octreotide treatment of Chinese Hamster Ovary cancer 

(CHO) cell line stably transfected with human-SSTRs and MCF-7 human 

breast adenocarcinoma cells95, where transient G2/M blockade and apoptosis 

were demonstrated96. In these cells, octreotide had cytotoxic effects leading 

to apoptosis, with a rapid time-dependent induction of wild-type p53.  
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In human pancreatic adenocarcinoma, it was demonstrate that, during the 

tumoral progression, the cells lose the ability to express SSTR2 but, 

reintroducing this receptor into the pancreatic cancer cells by stable 

expression, leads to a constitutive activation of the SSTR2 gene and evokes a 

negative feedback loop, inhibiting cell proliferation. This may suggest that 

SSTR2 gene transfer might be considered as a possible novel therapy for 

pancreatic cancer 97 (Figure 6; Table 2).  

 SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 

Chromosome  14q13 17q24 22q13 20p11 16p13.3 

Aminoacid sequences 391 369 418 388 363 

MAPK modulation + + + + + 

Signalling via PTP ↑ ↑ ↑ ↑ ↑ 

Effect on cAMP ↓ ↓ ↓ ↓ ↓ 

Functions ↓Angiogenesis 
↑cell cycle 

arrest 

↓hormonal 
secretion 
↑cell cycle 

arrest 

↑apoptosis ↑cell 
cycle 
arrest 

↓hormonal 
secretion 
↑cell cycle 

arrest 

 

Table 2: Somatostatin receptors characteristics (chromosomal localisation of 
the genes encoding the five SSTR subtypes; aminoacids structure; G-protein 
coupling and activation; effect on cAMP; signalling via tyrosine 
phosphatases and receptor-specific functions)98. 

 
Even if, the cytotoxic and cytostatic effects of SST analogues were 

abundantly studied in vitro, currently, no consistent results were proved in 

patients  to inhibit cell proliferation or metastasis in NETs. In fact,  treatment 

with SST-analogues has produced variable results in clinical practice 

especially when used as single agent. Poor results were seen with rapidly 

progressive tumors, with high proliferation capacity despite the presence of 

SSTRs99. Conversely, well-differentiated tumors such as mid-gut carcinoids 

respond well, with stabilization of tumor growth over many years.  

What is well established is that SST can decrease in tumor growth from 

indirect effects, through suppression of synthesis and secretion of GFs and 
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some hormones (insulin, prolactin, IGF-1, EGF, TGF-α, gastrin, 

cholecystokinin and GH). An important example is constituted by IGF-1, 

that plays as modulator of many neoplasms, because SST analogues suppress 

the GH-IGF-1 axis by both central and peripheral mechanisms. 

Experimental studies of combinations of octreotide with antimitotic drugs 

resulted in slightly additive actions100,101. 

Furthermore, somatostatin analogs have also been used as carriers to deliver 

cytotoxic agents to cancer cells. 

 

2.5 Radiolabeled Somatostatin-analogs. 

 

The presence of SSTRs in different neoplasm can be exploited, not only in 

long term therapy with not-cytotoxic SST-analogs, but also in tumor 

diagnosis and therapy with radioactive analogues. The use radiolabeled SST 

analogues derives from the necessity to obtain consistent inhibition of cell 

proliferation or metastasis in NETs, exploiting cytotoxic effects  due to 

radiation.  

Thus, basic knowledge of SSTR subtype profiles in different neoplasm, the 

affinity profile, binding/internalization of SST analogues-carried 

radionuclides features are critical for the evaluation of the potential 

usefulness of receptor-mediated radiotherapy. The uptake of radiolabeled 

SST-analogues depends on the number of SSTR on the cell membrane, on 

the internalization rate and on the of the recycling time and mass of the 

radiolabeled peptide.  

In nuclear medicine, two are the techniques for diagnosis using 

radionuclides: γ-scintigraphy and positron emission tomography (PET). The 

main differences between the two technologies consisting in the different 

emission spectra of the radionuclides exploited. In fact, it is necessary to 
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adopt radiopharmaceuticals containing a radionuclides that emits γ-radiation 

with an energy between 100-250 KeV in γ-scintigraphy and the required  

instrumentations are γ camera and SPECT camera. PET camera requires 

pharmaceuticals radiolabeled with β+ emitting radionuclides (positron 

emission) and a PET or PET-CT camera.  

The first radiolabeled SST-analogue was [123I-Tyr3]-octreotide, a 

radiopharmaceutical with γ-emission102. The radiopeptide was used for in 

vivo localisation of tumors, but although the pharmacological profile was 

optimal with a very high SSTR2 affinity (IC50= 2.0±0.7 nM) and a very high 

internalisation rate in tumoral cells, the radiopharmaceutical was turned out 

be useful as a diagnostic tool. This was due to the lipophilic feature of  [123I-

Tyr3]-octreotide, that bring to an hepatobiliary exctretion, with the 

consequence that abdomen imaging results with low sensitivity.  

Subsequently, a first chelator was united to octreotide: DTPA 

(Diethylentriaminepentaacetic acid). This chelator allows the radiolabelling 

with 111-Indium, giving a hydrophilic feature to the radiopeptide and a renal 

excretion. 111In-DTPA-Octreotide gave a better biodistribution profile, even 

if affinity for SSTR2 was reduced (IC50= 22±3.6 nM). 111In-DTPA-

Octreotide was the first commercialized radiopeptide for diagnostic imaging 

in nuclear medicine (Octreoscan®, 111In-pentereotide, Millinckrodt Med., St. 

Louis, MO, USA). 

Subsequently, new strategies were developed and research was moved to 

find new solutions to allow the radiolabelling of SST-analogues with other 

radionucides, both for γ-scintigraphy and PET.  

Particularly, DTPA was substituted by HYNIC ( 2-hydrazinonicotinic acid) 

to be possible radiolabeling with 99mTc. This radiometal has a very low cost 

production and a short half life (6 h). At moment, there are two different 

successful 99mTc-radiolabeled SST-analogue: these radioconjugates 
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demonstrated good results if compared to Octreoscan®. These are 99mTc-N4-

Tyr3-Octreotide and 99mTc-HYNIC-Tyr3-Octreotide (HYNIC-TOC). Tyr3-

Octreotide is synthesised in a more recent times compared to octreotide and 

presents the octreotide skeleton, but of the third aminoacid is a Tyrosine 

instead of a Phenilalanine (Phe is replaced by a Tyr).  

SST-analogues were radiolabeled with 18F too. In this case, inconveniences 

are a rapid washout of the radiopeptide, an high liver uptake and a 

consequent not clear imaging of the abdominal area103. Another radiometal 

with β+ emission is 64Cu, that is also used for SST-analogues radiolabelling 

and from preclinical data, particularly biodistribution profile on animal 

model seems favourable104. 

The introduction of the macrocyclic chelator DOTA (1,4,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid) gave advances in this 

technology. The obtained metal complex is kinetically and 

thermodynamically stable. This radiometal is encapsulated and embedded 

inside the macrocyclic cage which protects it from the attack of competing 

ligands present in the human tissues and the body fluids. DOTA chelator 

makes possible the radiolabelling with different radiometals, such as: 111In, 
90/86Y, 177Lu and 66/67/68Ga. 68Ga-Tyr3-octreotide (68Ga-DOTATOC) is a very 

successful radiopeptide for tumor imaging  with PET scan, in fact the 

radiopharmaceutical offers a very high quality imaging and a very high 

tumor-to-background ratio105,104.  

Consequence of peptide receptor mediated scintigraphy was peptide receptor 

mediated radionuclide therapy (PRRT). To have a successful PRRT, four 

requirements are necessary. These are:  

 
• The number of receptors on tumoral cells have to be high in number. 

• The radiopeptide needs to be internalised in tumoral cells. 
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• The radionuclides have to emit radiations with an high linear energy 

transfer (LET), in order to destroy the tumor tissue.  

• The whole metal-chelator-peptide complex must have suitable 

pharmacokinetics.  

 
There are three types of therapeutic radionuclides: α-emitters, β-emitters and 

Auger-electron emitters, each one with different range of energy deposition 

and LET properties (Figure 7). Radionuclides with β emission are the most 

used in the current clinical practise for therapeutic applications. The 

advantage for β–emitters is that it is not required to target all the tumoral 

cells for their killing (crossfire effect, low LET).  There are different type of 

β-emitters radionuclides and are classified considering their energy of 

emission. So, there are β-emitters radionuclides with a low range (mean 

range <200µm, as 177Lu), with a medium range (mean range between 200µm 

and less than 1 mm, as 67Cu, 153Sm) and high range (mean range >1 mm, as 
90Y). Moreover, for those cases where γ-emissions are present too, 

biodistribution profile is reproducible, for example 177Lu has a γ-emissions 

(160-202 KeV), while Y-90 is a pure β—emitter. 

α-emitters particles emits with an high LET over a path length of 3-4 cells 

diameters.  

Auger-electron emitters have an electron energy between 10 KeV and 

several eV. This type of radionuclides have a very short effect range (several 

nanometers) and high toxicity, giving them ideal for small cluster metastatic 

cells therapy.  

The first widely used radiolabelled SST-analogues for PRRT was 90Y-

DOTA-Tyr3-octreotide (90Y-DOTATOC)106,107. Studies have demonstrated 

that 90Y-DOTA-Tyr3-octreotide is successful for the therapy of metastatic 
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NETs, in particular in pancreatic tumors and carcinoids, but some evidences 

are described for other NETs too108.  

Another radiopharmaceutical used for PRRT is DOTA-Tyr3-Thr8-octreotide 

(DOTATATE), which differs from DOTA-Tyr3-octreotide by a aminoacidic 

modification in the aminoacid number 8 (the alcoholic molecule was take 

off: Thr (ol)  became Thr) (Figure 8). The peptide retains  high affinity for 

human SSTR2 as demonstrated by YIII-DOTATATE binding studies (7-fold 

higher compared to YIII-DOTATOC) (Table 3). 

Despite this higher affinity for SSTR2, biodistribution profiles of 111In-

DOTATOC and 111In-DOTATATE are very similar. Further, preclinical 

studies on nude mice bearing SSTR2-xenograft tumor demonstrated that 
177Lu- has performed better compared to 90Y in small or medium tumors. 

This behaviour is related to Lutetium-177 maximum tissue range of 2 mm 

compared to 11 mm of Yttrium-90. Additionally, 177Lu emits γ-radiation, 

giving the possibility to obtain the biodistribution profile after the PRRT.  

 

Compound                 hSSTR1  hSSTR2  hSSTR 3  hSSTR4  hSSTR5 

SS-28                              5.2±0.3   2.7±0.3    7.7±0.9    5.6±0.4    4.0±0.3 
InIII-DTPA-octreotide  > 10,000    22±3.6    182±13    >1,000     237±52 
YIII-DOTA-OC             >10,000       20±2        27±8  >10,000      57±22 
YIII-DOTA-TOC           >10,000   11±1.7   389±135  >10,000    114±29 
YIII-DOTA-TATE        >10,000   1.6±0.4     >1,000  523±239   187±50 
YIII-DOTA-Lanreotide  >10,000      23±5  290±105   >10,000    16±3.4 
YIII-DOTA-Vapreotide  >10,000      12±2    102±25  778±225   20±2.3 
 
Table 3:Affinity profiles for human SSTR1-5 of a series of Somatostatin 
analogues (values are expressed as IC50 ± SEM, in nM)109. 
 
 
Summarizing, it is important to underline that when a chelator is added to the 

peptide, some changing in affinities profile are obtained. For example, it can 

be present a loss of affinity for a particular subtype receptor, especially for 
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SSTR5, but also for SSTR3 and SSTR2. Not only, changing in affinity 

profiles are obtained when a metal is present and a particular metal  instead 

of another. 

Although the in vivo metabolism, excretion pathway and retention times of a 

molecule are important parameters for its evaluation as a new tracer for 

diagnosis or therapy, there is no doubt that the in vitro characterization of the 

receptor binding affinity of such a molecule is crucial information, 

particularly nowadays when several studies on the receptor expression 

pattern on tumors are available. 

 

 

Figure 7: Penetration of Particulate and  Electromagnetic Radiation.  

 

Therefore, the conclusion from the informations presented here is that the 

efficacy of the currently used radiolabeled somatostatin analogues derives 

mainly from their moderate to high affinity for SSTR2, the receptor with the 

widest distribution among the SSTR family. 
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Having complex structures, in which every component influences the 

biological efficacy in vivo, it is still a challenge to find the best metal-

chelator-SST analogue structure with not only suitable pharmacological 

properties, but also with optimal pharmacokinetics and pharmacodynamics. 

  

 

Figure 8: Structures of the somatostatin analogues Tyr3-octreotide and Tyr3-
octreotate and of the chelator DOTA110. 
 

 

3 Strategies to improve pharmacological profile of 
radiolabeled Somatostatin analogues.  

 

3.1 Characteristics of Somatostatin analogues for Nuclear 
Medicine. 

 

Summarizing, the factors limiting therapeutic efficacy of SST analogues are 

their selectivity for a particular SSTR, requiring a precise determination of 

receptor subtypes expression in tumor tissue before therapy and their partial 

answer in therapeutic protocols used in clinic until now, consisting in their  

antisecretory activity. On the other hand, native SST with great affinity for 

all five SST receptors, are not practise in clinical, because SST has a short 
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plasma half-life (1–3 minutes in humans), giving necessary continues 

infusion on treated patients.  

Mainly for this reasons and for the unsuccessful results in therapeutic 

protocols in the last years oncologic research was devoted to the 

development and synthesis of new pharmaceuticals which, once radiolabeled 

and injected in vivo, can be used in for imaging and therapy of tumours.  

For this purpose, labelled molecules must possess high selectivity towards 

tumour cells or tissues to reach efficient targeting activity. 

At moment, in nuclear medicine the current SST analogues used both for 

diagnosis and therapy shows good affinity for SSTR2 and a moderate 

affinity for SSTR3-5 (Table 4).  

SST-14 served as model for all the analogues synthesized over the years and 

all the radiolabeled somatostatin based compounds used in clinical 

applications are derivates of octreotide. Octreotide have a critical position 

between two aminoacids, that is maintained from the native molecule and, if 

it is replaced, it could give modification in the biological properties of the 

molecule. This sequence corresponds to the Lys5- D-Thr6 where a β-turn is 

present. The main modifications present in the SST analogues in clinical 

practise are: a changing in position 3 (Phe >Tyr) for vapreotide, lanreotide 

and TOC and a substitution of the sixth aminoacid (Thr>Val) for lanreotide 

and vapreotide.  

Other modifications could are present at C-terminus and at N-terminus of the 

peptide and of course each of these modifications induce changing in the 

affinity profiles (Table 4). 

Even if some important results are obtained by PRRT, new SST analogues 

with high affinity for a particular SSTR subtype as SSTR3 and SSTR5 or a 

pan-SST analogue (analogues that possess high affinity for all the subtype 
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receptors) are required, so that PRRT with maximal therapeutic effects  can 

be performed on patients. 

 
 
Compound                    hSSTR 1   hSSTR 2   hSSTR 3   hSSTR 4   hSSTR 5 

SST-28                             5.2±0.3      2.7±0.3       7.7±0.9      5.6±0.4      4.0±0.3 
InIII -DTPA-OC              > 10,000       22±3.6       182±13      > 1,000      237±52 
Y III -DOTA-OC               >10,000          20±2          27±8      >10,000        57±22 
Y III -DOTA-TOC             >10,000       11±1.7     389±135     >10,000     114±29 
Y III -DOTA-TATE           >10,000      1.6±0.4        >1,000    523±239     187±50 
Y III -DOTA-Lanreotide    >10,000          23±5     290±105     >10,000      16±3.4 
Y III -DOTA-Vapreotide   >10,000           12±2      102±25    778±225      20±2.3 

 

Table 4: Affinity profiles for human SSTR1-5 of a series of somatostatin 
analogues (values are expressed as IC50 ± SEM, in nM)109. 
 
 

3.2  Modification of pharmacokinetics/pharmacodynamics of 
radiolabeled Somatostatin analogues. 

 

Affinity is a crucial parameter for a new peptide development, in fact this 

parameter corresponds to the tendency of a drug to bind to a binding site 

including specific receptor. Affinity can be evaluated at equilibrium by the 

affinity or association constant (sometimes given the symbol K), which is the 

reciprocal of the dissociation constant (KD), or it can be measured in pD2 

units, that corresponds to the negative logarithm of the concentration of the 

agonist that produce half of the maximal response.  

So, the molar concentration of a drug inducing 50% of the maximal response 

is considered the affinity between a drug to it proper receptor (IC50) and it is 

expressed as the negative logarithm of the concentration of the agonist that 

produce half of the maximal response. 

Affinity studies are the first step of a very long study, if a new drug is the 

target of the research.  
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If affinity profile is favourable, the next step will be performed. In nuclear 

medicine, it is usual that the new peptide is linked to a chelator molecule that 

allows the radiolabeling with different radiometal so, it is important to 

perform affinity assay even after the chelator linking, because this molecule 

can induce some modifications in binding assays results. After this passage, 

radiolabeling and stability tests are to be performed. Another important step 

consisting in the measurement of human serum stability and in vitro assays 

on an adapt cell line. This last step is important to establish an eventually 

biological effect of the new radiopeptide. After this phase, experiments will 

be performed on animal models. Objective of this phase is to establish the 

biodistribution profile of the radiopharmaceutical, if the radiopharmaceutical 

goes to it target,  the washout, if there are any secondary effects (kidney 

burning, for example). 

After all these evaluations, a clinical phase on patient could be started. Of 

course, it could be that a very promising radiopharmaceutical from 

preclinical data gives unlucky results on men, infect, in vivo studies on 

animals can not predict the drug behaviour in humans. This is the case of 
123I-[3-iodo-Tyr3]-octreotide where, despite the very spectacular first results, 

the radiopharmaceutical was abandoned, because of the high hepatobiliary 

excretion, with the consequence that abdomen imaging results with low 

sensitivity. 

There are a lot of different SST analogues, each one with a different affinity 

and different behaviour and, for researchers, the purpose still remains to 

design new pharmaceuticals with a more elective action, a better affinity for 

a particular SSTR subtype and a prolonged action replacing the others in the 

current trade. 
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3.3 Modulation in hydrophilicity/lipophilicity. 

 

Clearance refers to the volume of blood or plasma cleared of a drug in a unit 

time. It is defined as the product of the volume of distribution rate constant 

and only unbound proteins are available for clearance. Physiologic excretion 

pathway of the drugs are mainly through liver or kidney, it depend by the 

characteristic of the pharmaceutical. 

For radiopharmaceuticals, the excretion pathway is of crucial importance for 

both the diagnostic performances (high tumor/background ratios, thus signal 

intensity in diagnostic by PET or SPECT) and low toxicity profile in therapy.  

Regarding SST analogues, particularly the DOTA chelated analogues, the 

hydrophilic characteristic of these peptides determine a predominant renal 

clearance making the kidney the dose limiting toxicity organ for PRRT. For 

this reason, efforts are directed to increase lypophilicity of the compounds. 

Of course, these modifications have not to influence the affinity profile.   

The current radiolabeled SST analogues, 111In/90Y-DOTA-octreotide  and 

octreotide derivates demonstrated an increased metabolic clearance with a 

gallbladder accumulation. The same was observed in 68Ga-DOTA-octreotide 

derivates, where the abdominal uptake did not demonstrate any refinement.  

This problem can be crossed adding an hydrophilic spacer, hoping that 

pharmacological performance will be maintained.  

 

3.4  Lowering the kidney uptake . 

 

The treatment of patients with SSTR positive tumours with peptide receptor 

radionuclide therapy (PRRT) has with no doubt beneficial effects. One of the 
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limits of this therapy is represented by kidney burning. In fact, the 

radiolabelled peptides are rapidly cleared via the glomeruli in the kidneys 

into the urine, but a low percentage is reabsorbed and retained in the cortical 

proximal tubules. After glomerular filtration a fraction of the administered 

peptides is internalized via endocytic receptors; megalin is responsible to this 

process. Transfer of the radiopeptides to the lysosomes is followed by 

degradation of the peptide, after which aminoacid chelate conjugates are 

trapped in the lysosomes of the tubular cells, delivering a high radiation dose 

to the renal cortex during PRRT. In PRRT, the maximum tolerated dose in 

patients is not exactly known, but dosimetric studies applying the principle 

of the biological equivalent dose (correcting for the effect of dose 

fractionation) suggest that a dose of about 37 Gy is the threshold for 

development of kidney toxicity. This threshold is lower when risk factors for 

development of renal damage exist: age over 60 years, hypertension, diabetes 

mellitus and previous chemotherapy, but the upper limit for kidney safety is 

fixed to 27 Gy111.   

In Erasmus Medical Centre in Rotterdam, co-infusion of lysine and arginine 

(Lys/Arg) has become a standard procedure during PRRT with 177Lu- or 90Y-

labelled somatostatin analogues, reducing the renal retention of the 

radiopeptides by approximately 35%112.  

 

3.5  Targeting the cell nucleus. 

 

To have a successful PRRT, there are some parameters that a clinician have 

to consider. Of course the presence of an high density of SSTRs on tumoral 

cells is the first one, but it is not the unique. In fact it has to consider if the 

radiopeptide has a very high affinity for the expressed SSTR subtype and if 

the SSTR are functional. After these considerations, others important 



Introduction 

                                                                                                     44 

reflections have to be done: is the receptor-peptide internalised into the 

tumoral cells? And in case of affirmative answer: how long is the 

radiopharmaceutical retention time in cells? Retention time is a very crucial 

parameter, because if it is very long, the radiopharmaceutical have a 

maximal therapeutic effect. In PRRT, the radiometals mainly used are 90Y 

and 177Lu, these shows respectively an intermediate and high energy, making 

fruitful a therapy on medium or large tumor diameter, where the cytotoxic 

effect is due to the cross-fire effect. The problem is that β-emitters do not 

show any effectiveness on small metastasis cell cluster, but the problem can 

be easily surpassed using radiometals with different characteristics. The ideal 

radioemitters are Auger-electron emitters, because of their high toxicity and 

short effect range (several nanometers).  

There are some radionuclides that emits Auger electrons (Table 5), some of 

them are currently used in the routine clinical practise. Auger electron 

emitters, inducing DNA damage by indirect mechanism, led to cell death. 

Moreover, a prolonged retention of the radiopeptide in the target cells will 

bring to an unquestionable success of PRRT.  

Auger-electron emitter antibodies conjugates demonstrated positive results 

for the therapy of different pathologies, in particular for B-cell lymphomas113 

and some preclinicals studies were also started for SST analogues and the 

results seem encouraging. 

Finally, it is important to point the attention to those SST analogues that 

demonstrated an antagonist behaviour, where their importance in PRRT 

seems to be controversial. 

The rationale is that agonists, after high-affinity binding to the receptor, 

usually trigger internalization of the ligand–receptor complex114. The 

internalization process is the basis for an efficient accumulation of the 

radioligand in a cell over time and it has been considered a crucial step in the 



Introduction 

                                                                                                     45 

process of in vivo receptor targeting with radiolabeled peptides. But there are 

few information about those SST analogues that not demonstrated the ability 

to trigger receptor internalization. This molecule shows an antagonist 

behaviour, stably binding to their specific SSTR subtypes, but not activating 

any biological answer and this is the reason because antagonists were not 

considered in for therapy. However, antagonists may have characteristics 

other than those related to internalization that may make their radiolabeled 

derivatives suitable tools for in vivo receptor targeting115. 

 

Radionuclide      Half-life         Auger yield     Auger energy 
                                               (keV) 

51Cr                       27.7 d                   5.4                  3.65 
55Fe                       2.73 d                   5.1                  4.17 
67Ga                      3.26 d                   4.7                  6.26 
75Se                        120 d                   7.4                 5.74 
99mTc                     6.01 h                   4.0                 0.89 
111In                        2.8 d                 14.7                 6.75 
113mIn                    1.66 h                   4.3                 2.04 
115mIn                      4.5 d                   6.1                 2.84 
123I                        13.2 h                 14.9                 7.42 
125I                        60.1 d                 24.9               12.24 
193mPt                    4.33 d                 26.4               10.35 
195mPt                    4.02 d                 32.8               22.52 
203Pb                     2.16 d                 23.3               11.63 
 
Table 5: Characteristics of some Auger-emitting radionuclides116 . The 
Auger yield is the mean number of Auger and Coster-Kronig electrons 
emitted per decay. The Auger energy is the average total kinetic energy of 
Auger and Coster-Kronig electrons emitted per decay. 
 

Most relevant is the in vitro evidence that, in certain circumstances, 

antagonist radioligands may label an higher number of receptor-binding sites 

than agonist radioligands, in fact Ginj et al.115 demonstrated that  adequately 

labelled SSTR2-3 antagonists, even though they do not internalize, may be 

useful radioligands to target tumors in vivo. More importantly, it also shows 
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that antagonists may be even better candidates to target tumors than agonists 

with comparable binding characteristics because the radiopeptide remains 

stably bound to it proper receptor both in vitro and in vivo experiments. 

 

3.6     Understanding the post-endocytic pathway of SSRs. 

 

When a G-protein coupled receptor is activated, the activated molecular 

mechanism requires some minutes because the signalling transduction starts. 

The processes of internalization and desensitization are adaptive mechanisms 

that prevent persistent receptor stimulation from producing detrimental 

cellular effects. Internalization may also play a role in receptor 

resensitization. A critical first step in both G-protein coupled receptors 

internalization and desensitization is believed to be receptor phosphorylation 

by G-protein kinases and second messenger activated kinases. In case of 

SSTR2, it was demonstrated that there are some aminoacids at carboxyl-

terminus that are phophorylated after the agonist-receptor binding. Then 

phosphorylated receptors bind regulatory proteins called arrestins, which 

inhibit further signaling by blocking receptor-G protein interaction117,118. 

Several studies have proved the phosphorylation of different SSTR subtypes 

upon agonist activation119,120,121. Special attention has been given to SSTR2 

subtype122,123 because, due to its presence in a wide range of tumors, 

modulation of SSTR2 receptor function is likely to have important 

therapeutic consequences and possibly may be exploited to improve SSTR2 

receptor-mediated radioligand internalization. Therefore, elucidation of early 

events, which occur after exposure to agonist as well as heterologous 

hormones, may provide new strategies to enhance the clinical utility of 

SSTR2 receptor-target drug. 
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AIMS OF THE PROJECT 
 

 

Aim of the study is to evaluate new SST-analogues recently prepared 

through a ring-closing metathesis of the on-resin linear octapeptide carrying 

two allil-glycine in the place of the corresponding cysteine residues. These 

molecules keep the same sequence of the parent octreotide with some 

modifications. These new molecules were developed and synthesized in 

Laboratory of Peptides and Proteins, Chemistry and Biology (University of 

Florence). 

In order to evaluate the affinity of new compounds to the different subtypes 

of human SSTRs, the radioligand binding assays were performed. First 

results of binding assays gave the possibility to focus the attention on two of 

these SST analogues and in particular for those that demonstrated high 

affinity for SSTR2, SSTR5 or both of them. These two SST analogues, that 

were called Peptide 1 and Peptide 2. After their coupling with DOTA, 

binding profile was re-tested. DOTA-Peptide 1 was chosen for this study 

since the chelation with DOTA does not altered its affinity to SSTR2 (IC50 

was even increased) while affinity for SSTR5 was lost. DOTA-Peptide 2 lost 

it affinity for SSTR5. 

The program takes advantage of synergic research strategies addressing 

pharmacological, biological, radiochemical, radiopharmacological and 

radiodosimetrical issues with the final objective to develop new suitable 

radiolabelled octreotide analogues for PRRT and for in vivo imaging.  
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The project is focused on the evaluation of the new analogue after labelling 

with radiometals (177Lu, 111In). Internalisation and cellular retention on cell 

lines expressing  SSTR2 and of the biodistribution profiles are performed.  

The dynamic binding of the radiolabelled analogue was evaluated real-time 

by a new methodology, the LigandTracer® for interaction analysis.  

Immunofluorescence studies were performed, treating the cells with a fixed 

concentration of the SST analogue for established times to visualize  the 

intracellular localization of the SSTR-peptide complex.  

Finally, the proapoptotic effect of  the SST analogue was studied performing 

TUNEL assay.
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MATERIALS AND METHODS 

 

1 Peptides Synthesis.  

 

Peptide was synthesised in a Teflon reactor fitted with a polystyrene porous 

frit. Peptide was prepared using the general Fmoc-SPPS strategy on pre-

swelled H–L-Thr(tBu)–ol–2–chlorotrityl resin (0.5 mmol/g). Couplings were 

performed by adding two equivalents of protected amino acid activated by 

HATU and four equivalents NMM in DMF, stirring for 45 minutes for each 

coupling and monitoring by the qualitative ninhydrin (Kaiser) test. The resin 

aliquot containing the linear epta-peptide was swollen for 2 hours in 

anhydrous DCM. After two hours, the vessel was heated to 45°C and a DCM 

solution of 2nd generation Grubbs catalyst (0.5 mole equiv. calculated on the 

basis of 0.5 mmol/g of peptide) was added124,125.  The suspension was then 

stirred for 48 h at 45 °C. The resin aliquot was washed with DCM, DMF, 

and MeOH, then swelled for 45 min at room temperature in DMF126,127. 

Fmoc–Hag was deprotected (2.5 mL of 20% piperidine in DMF for 5 

minutes, 4 time repeated) and coupled with Fmoc–D-Phe as described above, 

affording the on-resin cyclic octapeptide128,129.  Activated DOTA(tert-Bu)3 

was added to the on resin-cyclic peptide affording the peptide-DOTA 

conjugate 1, which was then deprotected and cleaved with 

TFA/H2O/EDT/phenol (94:2:2:2, 3 h). The resin was filtered off, the solution 

was concentrated under reduced pressure and the peptide was precipitated by 

adding Et2O. The collected solid was dissolved in water, lyophilized and re-

dissolved in H2O. The aqueous solution was pre-purified by SPE, eluting 

with an increased percentage of CH3CN in H2O (from 0% to 100%). The 
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fractions enriched of compound 1 were then subjected to the purification by 

semi-preparative RP-HPLC and characterized by ESI-MS. The MS spectrum 

of the pure compound showed a major peak of m/z [M+2H]2+ ion and 

another small peak corresponding to [M+H]+. The peptide-DOTA conjugate 

had a chromatographic purity > 97% (Table 1). 

 

Compound 
number 

Compound 

name 

    Mass 

Spectrum 

        HPLC  

Calculated Observed Tr (min) 
Purity 

(%) 

1                      DOTA-Peptide 1 1416,71 709.79 14.050 97 

 
Table 1: Characteristic of DOTA-Peptide 1. 

 

2   Determination of Somatostatin Receptor Affinity Profiles. 

 

CHO-K1 and CCL39 cells stably expressing human SSTR1-5 receptors were 

grown, as described previously109. Cell membrane pellets were prepared and 

receptor autoradiography was done on 20 µm thick pellet sections (mounted 

on microscope slides), as described in detail previously109. For each of the 

tested compounds, complete displacement experiments were done with the 

universal SST radioligand [125I]-[Leu8,D-Trp22,Tyr25]-SST-28 using 

increasing concentrations of the unlabeled compounds ranging from 0.1 to 

1000 nmol/L. SST-28 was run in parallel as control using the same 

increasing concentrations. IC50 values were calculated after quantification of 

the data using a computer-assisted image processing system. Tissue 
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standards containing known amounts of isotopes, cross-calibrated to tissue-

equivalent ligand concentrations, were used for quantification109.  

 

3  Studies performed with 177Lu-DOTA-Peptide 1. 

 

3.1 Peptide radilabeling. 

 

The radiolabelling procedure was optimized as follows: 10µg DOTA-

Peptide-1 was diluted in 300µl ammonium acetate buffer (pH 5; 0,4M) and 1 

mCi 177LuCl3 was added for in vitro studies. It was increased the specific 

activity by adding 2.9 mCi 177LuCl3 for serum stability assay and in vivo 

biodistribution studies. The solution was heated at 95°C for 30 minutes.  

 

3.2  Quality control. 

 

A quality control check was performed using analytic reversed phase high-

performance liquid chromatography (RP-HPLC) with a radiometric detector, 

before adding 0.1% Human Serum Albumin, in 0.9% NaCl. 

 

3.3  Serum Stability and Identification of Metabolites. 

 

Serum stability test were performed on 1 ml fresh human serum, previously 

equilibrated in a 5% CO2 (95% air) environment at 37°C, 100 µl of 

radiopeptide (corresponding to 30 pmol) were added. The mixture was 

incubated at 37°C, 5% CO2 environment. At different time points, 100 µl 

aliquots were removed and treated with 200 µl EtOH. Samples were 

centrifuged for 5 minutes 1300 rpm to precipitate serum protein. The 
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supernatant was removed and collected to be checked by analytical HPLC 

and the pellets were washed twice with EtOH. The activity of the ethanolic 

phase and the precipitate were measured by a γ-counter. Both counts were 

compared to give the percentage of 177Lu complexes not bound to proteins or 

the percentage of radiometal transferred to serum proteins. 

 

3.4  Cells line and culture conditions. 

 

 Human Embryonic Kidney (HEK-293) cell lines stably expressing T7-

epitope tagged SSTR2 (HEK-SSTR2) were prepared as described before130, 

and maintained by serial passage on monolayer in DMEM containing 

10%FBS, L-glutamine, penicillin-streptomycin and 500g/ml G418 in a 

humidified 5% CO2 atmosphere at 37°C.  

The viability of the cells was assessed using trypan blue stain and counted 

under a microscope with a “Neubauer’s counting chamber”. 

 

3.5  Radioligand Internalisation Studies. 

 

 For all cell experiments, 0.8–1.1 million HEK-SSTR2 cells were distributed 

in six-well plates pre-treated with poly-Lysine and incubated overnight at 

37°C in a 5% CO2/air atmosphere with internalization buffer (DMEM 

containing 1%FBS, L-glutamine, penicillin-streptomycin and 500g/ml G418) 

to obtain good cell adherence.  

Further more, the internalisation rate was linearly corrected to 1 million cells 

per well in all cells experiments. 

On the next day, the medium was removed, cells were washed twice with 

PBS and incubated for 1 h with fresh internalisation medium. Approximately 

0.02 MBq per well of the 177/natLu-DOTA Peptide 1 (2.5 pmol per well) to a 
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final concentration of 1.67 nmol/l  (corresponding to 500,000 cpm) were 

added to the medium and the cells were incubated at 37°C, 5% CO2, with 

and without an excess of the DOTA Peptide 1 (1 µmol/l) to determine non-

specific internalisation. At appropriate time periods (30 minutes, 1-2-4-24 

hours), the internalisation was stopped by removing the medium and 

washing the cells with ice-cold PBS. To remove the receptor-bound 

radiopeptide, an acid wash was carried out with 0.1M glycine buffer pH 2.8 

for 10 minutes on ice. This procedure was performed to distinguish between 

membrane-bound (acid-releasable) and internalised (acid-resistant) 

radioligand. Finally, the cells were solubilised with 1M aqueous NaOH and 

incubated for 10 min at 37° C. The culture medium, the receptor-bound and 

the internalised fractions were measured radiometrically in a γ-counter . 

  

3.6 Cellular Retention Studies. 

  

For cellular retention studies, HEK-SSTR2 cells stably transfected (about 1 

million per well) were incubated with 2.5 pmol per well (1.67 nmol/l) of 
177/natLu-labeled DOTA-Peptide 1 with and without an excess of the DOTA-

Peptide 1 (1 µmol/l) for 120 minutes; then, the medium was removed and the 

wells were washed twice with 1 ml of ice-cold PBS. In each experiment, an 

acid wash for 5 minutes on ice with pH 2.8 glycine buffer was performed 

twice to remove the receptor-bound ligand. Cells were then incubated again 

at 37°C with fresh internalization buffer (DMEM containing 1% FBS, pH 

7.4). After different time points, the external medium was removed for 

quantification of radioactivity in a γ-counter and replaced with fresh 37°C 

medium. Finally, the cells were solubilised in 1N NaOH and removed, and 

the internalized radioactivity was quantified in a γ-counter. The recycled 

fraction was expressed as the percentage of the total internalized amount per 
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1 million cells, and the internalization rate was linearly corrected to 1 million 

cells per well in all cell experiments. 

 

3.7  Biodistribution studies in tumor bearing nude mice. 

 

 Animals were kept, treated and cared for in compliance with the guidelines 

of the Swiss regulations (approval #789). 

Athymic female nude mice were implanted s.c. with about 10-12 million 

HEK-SSTR2 cells freshly suspended in sterile PBS. About seventeen days 

after the inoculation, mice showed solid palpable tumor masses (tumor 

weights: 60–150 mg), and were used for in vivo biodistribution experiments. 

Each animal was injected into the tail vein with 10 pmol 177/natLu-DOTA-

Peptide 1 (0.15-0.2 MBq). To determine the non-specific uptake of 

radiolabelled peptide, a group of mice were injected with 20 nmol of  

DOTA-Peptide 1, 5 minutes before the injection of the radiopeptide. 

The animals were sacrificed at 1, 4 and 24 hours after the injection of 
177/natLu-DOTA-Peptide 1. The organs of interest were collected and 

weighed; their radioactivity was measured, and the %ID/g was calculated. 

 

4 Studies performed with 111In-DOTA-Peptide 1. 

 

4.1 Peptide radiolabeling.  

 

10 µg DOTA-Peptide 1 was dissolved in 10 µL dH2O, adding  CH3COONH4 

buffer 0.4M (pH 5) and 111InCl3 was added, particularly 1 mCi  for in-vitro 

assays and 2.9 mCi for in-vivo tests. The solution was heated at 95°C for 30 

minutes, before adding human serum albumin.  
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4.2 Quality control. 

 

Quality control was obtained using Sep-Pak C18 Cartridge. After the column 

preparation, 0.05-0.1 ml indium/111In-DOTA-SST analog was pushed by a 

syringe into the Sep-Pak. After this passage, 5 ml of water were slowly 

pushed into the column and collected as “Fraction 1”. Hydrophilic impurities 

are contained in this fraction. Similarly, 5 ml of methanol were pushed into 

the column, using a 5 ml syringe. This second fraction, that was collected as 

“Fraction 2” corresponds to the labeled peptide. The cartridge is also 

collected in a tube and counted,  in fact all the not-elutable impurities 

remains into the column. The three tubes were counted in a gamma-counter 

and the radiolabeling purity was calculated as: 

 

% 111In-DOTA-SST analogue = ( Fraction 2 activity/Total activity)  

 

Where Total activity corresponds to the sum of Fraction 1, Fraction 2 and the 

activity remaining in Sep-Pak. 

 

4.3  Cells line and culture conditions. 

 

Rat pancreatic adenocarcinoma cell line (AR4-2J) stably expressing wild 

type rat-SSTR2 were maintained by serial passage on monolayer in DMEM 

containing 20% FCS and L-glutamine in a humidified 5% CO2 atmosphere at 

37°C.  

The viability of the cells was assessed using trypan blue stain and counted 

under a microscope with a “Neubauer’s counting chamber”. 
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4.4  Radioligand Internalisation Studies. 

 

 Cells were seeded a density of 0.9 to 1.1 million per well in six-well plates 

and incubated overnight at 37°C in a 5% CO2/air atmosphere in growth 

medium to obtain good cell adherence. 

The loss of cells during the internalization experiments was <10%.  Further 

more, the internalisation rate was linearly corrected to 1 million cells per 

well in all cells experiments. 

This assay was performed maintaining the same condition previously 

described in the session 3.5, both for the radioligands concentration and time 

points. 

 

4.5  Cellular Retention Studies. 

 

For cellular retention studies, AR4-2J (about 1 million per well) were 

incubated with 2.5 pmol per well (1.67 nmol/l) of 111InDOTA-Peptide 1 with 

and without an excess of not radiolabeled peptide. The procedure adopted 

was the same described in 3.6 section. 

 

4.6  Biodistribution studies on balb-c mice. 

 

Groups of healthy balb-c mice were injected with 10 pmol 111In-DOTA-

Peptide 1 and sacrificed at 1, 4, and 24 hours post injection. To evaluate the 

non-specific uptake of radiolabelled peptide, a group of mice were injected 

with 20 nmol of not radiolabeled DOTA-Peptide 1. The organs of interest 

were dissected, weighed, their radioactivity was measured by a gamma 

counter and the %ID/g was calculated.  
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5 Ligand Tracer®. 

 

5.1  Cell culture and conditions. 

A human papillary thyroid cancer cell line (NPA-87) was cultured and 

maintained by serial passage on monolayer at 37°C in RPMI 1640 

supplemented with 10% FBS, sodium pyruvate, not essential amino acids, L-

glutamine and penicillin/streptomycin, in a humidified incubator with 5% 

CO2.  

The viability of the cells was assessed using trypan blue stain and counted 

under a microscope with a “Neubauer’s counting chamber”. 

 

5.2 Characterization of NPA-87. 

 

NPA-87 cell line was characterized by Western Blot analysis and 

immunofluorescence studies for the determination of expression of all the 

five SSTRs subtypes. 

 

5.2.1  Western Blot analysis. 

 

Cells were maintained in a dish. When confluence was reached, cells were  

washed with ice-cold PBS and treated by ice-cold lysis buffer. After scraping 

adherent cells off the dish, the cells suspension were transferred into a pre-

cooled microfuge tube, maintaining a constant agitation for 30 minutes at 

4°C and centrifuged in a microcentrifuge at 4°C (20 minutes at 12,000 rpm). 

After discarding the pellet, Bradford assay was performed, using BSA as 

protein standard. 
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Sample of about 20-25 µg protein were used for western blot analysis. 

Sample were separated by electrophoresis on 10% SDS-polyacrylamide gel 

and transferred onto polyvinylidene difluoride membranes (BioRad). The 

membranes were probed with rabbit polyclonal antibodies anti SSTR1-5 

(Santa Cruz Biotechnology) 1:1000 and horseradish peroxidase-conjugated 

anti-rabbit antibodies (1:2000; Santa Cruz) were used as secondary 

antibodies. The peroxidase reaction products were visualized by LumiGLO 

chemiluminescent substrate (Pierce Chemicals).  

 

5.2.2  Immunofluorescence studies.   

 

25,000-35,000 NPA-87 cell were seeded on chamber slide 8-well plates and 

incubated overnight at 37°C in a 5% CO2/air atmosphere with the growth 

medium. On the next day, cells were washed twice by ice/cold PBS and pre-

warm growth medium were added. Cells were re-equilibrated at 37°C in a 

5% CO2/air atmosphere.  

Therefore, the cells were processed for immunofluorescence microscopy. 

After fixation and permeabilization for 7 minutes with ice-cold methanol (-

20°C), cells were rinsed twice with PS (100mM PBS mixed with 0.15M 

sucrose), and blocked for 60 minutes at room temperature with PS containing 

0.1% BSA. The cells were subsequently incubated for 60 minutes at room 

temperature with a rabbit polyclonal primary antibody anti SSTR1-5 (Santa 

Cruz Biotechnology) diluted 1:200 in PS containing containing 0.1% BSA 

and then washed three times for 5 min each with PS. 

The cells were then incubated for 60 minutes at room temperature in the dark 

with the secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (H+L) 

diluted in PS (1:150). Thereafter, the cells were washed three times for 5 

minutes each with PS containing 0.1% BSA, embedded with mounting 
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media, and covered with a glass coverslip. The cells were imaged using a 

immunofluorescence microscope (Leica, Wetzlar, Germany) and a DP10 

camera (Olympus, Tokyo, Japan). 

 

5.3     Ligand Tracer®. 

 

LigandTracer Instruments rely on a simple and robust technology for 

detecting protein-cell interactions in real-time. The key function is the 

possibility to detect interactions during incubation. This is made possible by 

including one active area (the seeded target cells) and one in situ reference 

area in the cell-dish. The cell-dish is then placed on a inclined, slowly 

rotating support. A solution containing a precise concentration of labeled 

protein is added to the dish and accumulates in the bottom part. Each 

revolution the cells will get in contact with the liquid. The detector is 

mounted over the upper part, collimated to read only the part of the dish that 

is essentially liquid-free. 

When running, the activity is measured several times per revolution. If the 

protein binds to the cells, clear peaks will be seen in the graph. The peak 

height from each revolution is automatically extracted and can be followed 

over time (as in uptake/retention measurements). Alternatively, peak heights 

obtained from different concentrations of radiolabeled protein can be used to 

calculate the affinity of the interaction. 

In particular, LigandTracer Yellow was adopted in this study. In fact, this 

instrumentation depicts how PET/SPECT markers bind to cells. The 

instrument preparation can be made well in advance of the actual 

measurement, which allows for unmet time-efficiency when working with 

rapidly decaying nuclides. 
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Ligand Tracer Yellow is mainly used for uptake/retention measurements, 

which reveals the kinetics of the PET/SPECT-marker interaction with cells.  

 

5.4  Affinity assays with Ligand Tracer® and pharmacological studies.

  

NPA-87 cells were seeded (about 1,000,000 per dish) in a local part of a 

poly-Lysine pre-treated cell dish (diameter= 89 mm), as indicated in Figure 

1.  

The seeded cells were allowed to attach firmly to the dish surface for 24 

hours maintaining inclined the dish at 37°C in a humidified incubator with 

5% CO2.  

The dish was then placed on an inclined, rotating support where a radiation 

detector was mounted over the elevated part. Cell culture medium containing 

a low concentration (0.1 nM) of  111In-DOTA Peptide 1 or OctreoScan®  

were added to the dish and the detector registered the intensity as a function 

of rotational position. Every  about 20 minutes, the concentration was 

increased by addition of a small amount of radioligand stock solution to the 

medium already present in the dish. During the last incubation, it was 

obtained a concentration of 550 nM on the culture medium. The procedure 

was repeated until a sufficiently high concentration had been reached. No 

washes of the cell dish were performed throughout the affinity measurement. 

The affinity of the interaction was obtained by fitting an interaction model 

(monovalent binding) to the measured peak heights.  

In a parallel experiments, NPA-87 cells were seeded (25,000 cells per well) 

on chamber slide 8-well plates and incubated overnight at 37°C in a 5% 

CO2/air atmosphere with the growth medium. On the next day, cells were 

treated with 100 nM DOTA-Peptide 1 or DTPA-Octreotide at 37°C and 5% 

CO2 in growth medium for 0, 30, 60 and 120 minutes. 
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Figure 1: The principle of rotating RIA. 

 

At the end of incubation times, incubations were stopped placing the 

chamber slide on ice. Therefore, the cells were processed for 

immunofluorescence microscopy. After fixation and permeabilization for 7 

minutes with ice-cold methanol (-20°C), cells were rinsed twice with PBS, 

and blocked for 60 minutes at room temperature with PBS containing 1% 

BSA. The cells were subsequently incubated for 60 minutes at room 

temperature with an SSTR2a-specific primary antibody (SS-8000-RM 

BioTrend Chemikalien GmbH) diluted 1:500 in PS and then washed three 

times for 5 minutes each with PS containing 0.1% BSA. 

The cells were then incubated for 60 minutes at room temperature in the dark 

with the secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (H+L) 

diluted in PS (1:600). Thereafter, the cells were washed three times for 5 min 

each with PS containing 0.1% BSA, embedded with mounting media, and 

covered with a glass coverslip. The cells were imaged using a 

immunofluorescence microscope (Leica, Wetzlar, Germany) and a DP10 

camera (Olympus, Tokyo, Japan). 

 



Materials and methods 

                                                                                                     62 

 

6 Pharmacological studies. 

 

6.1 Immunofluorescence studies: SSTR2 internalisation. 

 

25,000-35,000 AR4-2J cell line expressing native wild type SSTR2 were 

seeded on chamber slide 8-well plates and incubated overnight at 37°C in a 

5% CO2/air atmosphere with the growth medium. On the next day, cells were 

washed twice by ice/cold PBS and pre-warm growth medium were added. 

Cells were re-equilibrated at 37°C in a 5% CO2/air atmosphere.  

One hour later, cells were treated with 100 nM DOTA-Peptide 1 at 37°C and 

5% CO2 in growth medium for 0, 5, 15, 30 minutes. Additionally, in parallel 

experiments, cells treated with 100 nM DOTA Peptide 1 for 30 minutes at 

37°C and 5% CO2 and were subsequently washed with PBS and incubated 

for 30 minutes in an agonist-free medium at 37°C and 5% CO2. At the end of 

incubation times, incubations were stopped placing the chamber slide on ice. 

Therefore, the cells were processed for immunofluorescence microscopy. 

After fixation and permeabilization for 7 minutes with ice-cold methanol (-

20°C), cells were rinsed twice with PS, and blocked for 60 minutes at room 

temperature with PS containing 0.1% BSA. The cells were subsequently 

incubated for 60 minutes at room temperature with an SSTR2a-specific 

primary antibody (SS-8000-RM BioTrend Chemikalien GmbH) diluted 

1:500 in PS and then washed three times for 5 minutes each with PS 

containing 0.1% BSA. 

The cells were then incubated for 60 minutes at room temperature in the dark 

with the secondary antibody Alexa Fluor 546 goat anti-rabbit IgG (H+L) 

diluted in PS (1:600). Thereafter, the cells were washed three times for 5 

minutes each with PS containing 0.1% BSA, embedded with mounting 



Materials and methods 

                                                                                                     63 

media, and covered with a glass coverslip. The cells were imaged using a 

immunofluorescence microscope (Leica, Wetzlar, Germany) and a DP10 

camera (Olympus, Tokyo, Japan). 

 

6.2 Immunofluorescence studies: investigation of intracellular     
localization of the internalized SSTR2. 

 

To investigate the intracellular localization of the internalized SSTR2, it was 

examined its colocalization with the M6PR, a marker for the trans-Golgi 

network (TGN)/late endosomal compartment.  

About 25,000-35,000 AR4-2J cells per well were seeded on chamber slide 8-

well plates and incubated overnight at 37°C in a 5% CO2/air atmosphere 

with the growth medium, cells were treated with or without 1 µM  for 20 

minutes at room temperature. Then the reaction was blocked and cells were 

fixed and permeabilized as described above.  

The cells were subsequently incubated for 60 minutes at room temperature 

with the SSTR2a-specific antibody SS8000-RM (1:500 in PS) together with 

the monoclonal antibody to Mannose 6 Phosphate Receptor (cation 

independent)-late endosome marker (M6PR abcam ab 2733) (5 µg/ml in PS). 

The cells were washed and then incubated sequentially with Alexa Fluor 546 

goat anti-rabbit IgG (H+L) diluted in PS (1:600) and then, after further 

washing, with the Alexa Fluor 488 goat antimouse IgG (H+L) diluted in PS 

(1:400), each for 60 minutes at room temperature in the dark. 

Thereafter, the cells were washed three times for 5 minutes each with PS 

containing 0.1% BSA, embedded with mounting media, and covered with a 

glass coverslip.  

The cells were imaged using a immunofluorescence microscope (Leica, 

Wetzlar, Germany) and a DP10 camera (Olympus, Tokyo, Japan). 
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7 Investigation of the activation of the  apoptotic pathway. 

 

7.1 TUNEL assay.  

 

Apoptotic cells were visualized by direct fluorescence fragment end labelling 

of DNA breaks (TUNEL) using a commercially available kit (Fluorescein-

FragEL; Calbiochem). 

About 150,000 AR4-2J cells expressing native wild type SSTR2 were seeded 

on chamber slide 4-well plates and incubated overnight at 37°C in a 5% 

CO2/air atmosphere with the growth medium. On the next day, cells were 

washed twice by ice/cold PBS and pre-warm growth medium were added. 

Cells were re-equilibrated at 37°C in a 5% CO2/air atmosphere.  

One hour later, cells were treated with different concentrations of DOTA-

Peptide 1 (from 0.1nM to 1000nM) at 37°C and 5% CO2 in growth medium. 

Incubations were stopped 16-18 hours after, placing the chamber slides on 

ice. Cells were washed twice by PBS, then cells were fixed in 4% 

formaldehyde (in 1X PBS) for 15 minutes at room temperature. After this 

passage, cells were washed twice with PBS and permeabilized with 

proteinase K (1:100 in 10 mM Tris HCl buffer, pH 8) for 20 minutes at room 

temperature. Subsequently, a 30 minutes of incubation TdT Equilibration 

buffer (1:5 with dH2O CalbioChem) at room temperature was performed. 

The next passage corresponds to the labelling reaction. The cells were 

incubated with the TdT Labelling Reaction mixture composed by 

Fluorescein-FragELTM TdT labelling reaction mix and TdT enzyme. Cells 

were covered with 60 µl of the mixture and incubated in a humidified 

chamber at 37°C for 90 minutes. To visualise the entire cellular population 

on Sytox® Orange Nucleic Acid Stain (0.1 µM Molecular Probes) were 

incubated at room temperature  for 10 minutes. 
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Thereafter, the cells were washed three times with PBS, embedded with 

mounting media, and covered with a glass coverslip. The cells were imaged 

using a immunofluorescence microscope (Leica, Wetzlar, Germany) and a 

DP10 camera (Olympus, Tokyo, Japan). 
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RESULTS 

 

1  Peptide synthesis. 

 

In the method here reported it was used the H–L-Thr(tBu)–ol–2-chlorotrityl 

resin (0.5 mmol/g) which already contains the C-terminal [Thr(ol)15]. The 

elongation of the peptide sequence was stopped after the coupling of Hag3 

residue, with the aim of removing any possible interference of the aromatic 

ring of the N-terminal D-Phe2 on the correct orientation of the allylglycine 

side chains required by the next ring-closing reaction. The linear hepta-

peptide was then converted by RCM with a 2nd generation Grubbs catalyst to 

the corresponding cyclic analogue124,125,126,127. 

The D-Phe2 terminal residue was added only after the cyclization step128,11 

The last step was the coupling of the prochelator DOTA (tert-Bu)3 to the N-

terminus of the peptide, affording compound 1. Cleavage of the fully 

protected conjugates from the resin was obtained by the cleavage mixture 

TFA/H2O/EDT/phenol (94:2:2:2, 3 h) which afforded also the free 

carboxylic groups of the DOTA moiety.  

 

2   Determination of Somatostatin Receptor Affinity Profiles: 
Binding Affinity to SSTR1–5 Receptors.  
 

All compounds were tested for their ability to bind to the five human SST 

receptor subtypes in complete displacement experiments using the universal 

SST radioligand [125I]-[Leu8,D-Trp22,Tyr25]-SST-28. SRIF-28 was run in 

parallel as control. IC50 values were calculated after quantification of the data 

using a computer assisted image processing system. The data are shown in 

Table 1.  
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Peptide hSSTR1 hSSTR2 hSSTR3 hSSTR4 hSSTR5 

Peptide 1 >1000 9.6±0,9 >1000 249±51 8.7±3.9 

DOTA-
Peptide1 

>1000 8 >1000 >1000 100 

SRIF-28 2.3±0.4131 3.0±0.2131 3.6±0.5131 1.6±0.3131 2.1±0.2131 

Table 1: IC50 (nM) values performed on membranes prepared from CHO-K1 cells stably 
expressing each human-SSTRs. 
 

3  
177Lu-DOTA  Peptide 1. 

 

3.1  Peptide radiolabeling and Quality Control. 

 

Quality control was performed by RT-HPLC with a radiodetector and 

demonstrated highly pure radioligands (98-100%). 

 

3.2  Serum Stability and Identification of Metabolites. 

 

 The compound is stable in human serum. After 6 days few metabolites 

(<10%) were observed for this time period. No more than 10% of 

radioactivity was found in the protein fraction (pellet) at the first time points 

of the study (1, 2, 4 hours). A slide increase was observed up to 6 days when 

<15% of radioactivity was found in the protein fraction.  

 

3.3  Radioligand Internalisation Studies. 

 

 The uptake of 177/natLu-DOTA-Peptide 1, evaluated on HEK-SSTR2 cells, 

demonstrated a time-dependent uptake in cells with a high specific 

internalization rate after 4 and 24 hours of incubation  (Graph 1 and Table 

2). In particular, the internalised fraction of 177/natLu-DOTA-Peptide 1 after 4 
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and 24 hours incubation in HEK-SSTR2 corresponded  to 38,63±3,26% and 

57,68±3,00% respectively (2.5 pmol/106 cells). These experiments were 

done using 177Lu-DOTA-Tyr3-octreotide as reference and it seemed that the 

two radiopharmaceuticals have similar behaviour. 

 

 

 

 

 

 

 

 

 

Graph 1 and Table 2: Radioligand internalisation studies were performed on HEK-293 cell 
line, stably expressing human SSTR2. Values and SD are the results of two independent 
experiments (each experiment was performed in triplicates). 
 

3.4   Cellular Retention Studies. 

 

In efflux studies, the radiopeptide was allowed to internalize for 120 

minutes; the medium was removed and the cells were washed twice by cold 

PBS and two cold glycine buffer pH 2.8 washes were performed to remove 

the receptor-bound ligand. Warm medium was added (37° C) and after 15, 

30, 60, 90, 240 minutes removed again, measured for radioactivity and 

replaced with a fresh one.  

As shown in Graph 2 and Table 3 the externalization results showed time 

dependence: cells retained more than 50% of 177Lu-DOTA-Peptide 1 after 

four hours of incubation. 

Time  

(min) Total     

Non 

specific 

Total-Non 

Specific 

0 0 0 0 

30 8,49±1,24 0,17±0,03 8,33±1,25 

60 15,52±3,83 0,21±0,02 15,32±3,84 

120 27,41±4,48 0,26±0,04 27,16±4,50 

240 38,95±3,28 0,32±0,04 38,63±3,26 

1440 58,69±3,17 1,01±0,21 57,68±3,00 
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Graph 2- Table 3: Efflux studies were performed on HEK-293 cell line, stably expressing 
human SSTR2. Values and SD are the results of two independent experiments (each 
experiment was performed in triplicates). 
 
3.5   In vivo biodistribution. 

 

 The pharmacokinetic studies were performed in nude mice bearing HEK-

SSTR2 tumor animal model. The results are given in Table 4 and 5 and in 

Graph 3 as a percentage of injected dose per gram of tissue (%ID/g). 

The biodistribution studies demonstrated, by the measurement of blood 

samples taken at each time point, that the radiolabelled peptide was cleared 

rapidly from the circulation. The highest tissue activity is in the kidney 

which can be explained by the renal excretion being the physiological way 

for the elimination of this radiopharmaceutical. The other organs 

demonstrated a very low uptake, except for the stomach and the pancreas, 

but it is well known that these organs express SSTRs11,12 ,13 ,14. At 24 hours 

time point more than 50% of the radiopharmaceutical was cleared from these 

organs. 

A high radioligand accumulation was observed in the tumors at 1 and 4 

hours post injection (22.69±5.36 and 23.69±1.74 %ID/g respectively).  

 

 

Time points 

(min.) 

% Retained in 

cells/total 

internalized 

0 100,00±0,00 

15 88,47±0,44 

30 81,42±0,78 

60 73,9±1,46 

90 68,63±1,74 

120 63,89±1,97 

240 55,40±2,07 
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Organ 1 h (hours) 4 h 4 h blocking 24 h 

Blood 0,55±0,19 0,12± 0,02 0,10±0,01  0,04± 0,00 

Heart 0,23± 0,09 0,08± 0,02 0,09±0,01 0,06± 0,01 

Liver 0,80±0,16  0,68±0,06 0,73± 0,06 0,46 ±0,00 

Spleen 0,50 ±0,05 0,39± 0,05 0,28 ±0,05 0,34 ±0,05 

Lung 0,91± 0,3 1,04±0,55  0,20 ±0,03 0,26 ±0,03 

Kidney 10,63±2,03 11,16±1,19 9,85 ±0,91 6,69 ±0,7 

Stomach 5,04±2,05 3,29 ±0,86 0,25±0,04  2,43± 0,12 

Intestine 0,65±0,25 0,39 ±0,11 0,13 ±0,01 0,22± 0,03 

Adrenal 0,44±0,19  0,59±0,26 0,38 ±0,21 0,52 ±0,21 

Pancreas 2,87±0,61 1,85±0,32 0,16 ±0,02 0,95± 0,15 

Pituitary 0,80±0,64 1,25±0,89 0,08 ±0,01 0,04 ±0,00 

Muscle 0,11±0,04  0,05±0,02 0,05 ±0,00 0,03±0,02  

Bone 0,71±0,09 0,65±0,2  0,22 ±0,08 0,66 ±0,07 
Tumor 22,90±5,36 23,69±1,74 4,95 ±1,54 12,87±1,35 

 

   

0,00

5,00

10,00

15,00

20,00

25,00

30,00

bl
oo
d

he
ar
t

Li
ve
r

sp
le
en

lu
ng

ki
dn
ey

st
om
ac
h

in
te
st
in
e

ad
re
na
l

pa
nc
re
as

pi
tu
it
ar
y

m
us
cl
e

bo
ne

tu
m
or

Organs

%
ID
/g
r.

1h
4h
4h blocking 
24h  

Table 4 and Graph 3:  Biodistribution of 177Lu-DOTA Peptide 1 in a HEK-SSTR2 animal 
model (1, 4 and 24 hours post injection of the radiopharmaceutical). 
 

Ratio 1h 4h 24 h 

Tumor/kidney 2.15 2.12 1.92 

Tumor/liver 28.66 34.86 27.86 

Tumor/pancreas 7.98 12.79 13.51 

Tumor/blood 41.82 195.07 361.27 

Tumor/muscle 212.42 521.38 377.49 
Table 5: Tumor/normal tissue radioactivity ratios. Results are the mean of groups of 4 
animals, except for the 4 hours blocking (n=3). 
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4   111In-DOTA  Peptide 1. 

 

4.1 Peptide radiolabelling and quality control. 

 

Radiolabelling yield demonstrated not successful results during the first 

phase of the study (55-76% of pure radiopeptide), but it was obtained 92% of 

pure radiopeptide during the last experiments.  

 

4.2  Radioligand internalisation studies. 

 

The uptake of 111In-DOTA-Peptide 1 was evaluated on AR4-2J cells and it 

was demonstrated a time-dependent uptake in cells with specific 

internalization rate after 4 hours of incubation (6,59%±0,92). The 

experiments were continued till 24 hour time point demonstrating high dose 

of internalised radioligand (27,23%±1,6)  (Graph 4, Table 6). This 

experiments were performed using 111In-DOTA-Tyr3-octreotide and 111In-

DOTA-Tyr3-octreotate as controls. 

 

4.3 Cellular Retention Studies. 

 

In efflux studies, the radiopeptide was allowed to internalize for 120 

minutes; the medium was removed and the cells were washed twice by cold 

PBS and two cold glycine buffer pH 2.8 washes were performed to remove 

the receptor-bound ligand. Warm medium was added (37° C) and after 15, 

30, 60, 90, 240 minutes removed again, measured for radioactivity and 

replaced with a fresh one.  As shown in Graph 5 and Table 7 the 

externalization results showed time dependence: cells retained more than 



Results 

                                                                                                     72 

50% of 111In-DOTA-Peptide1 after four hours of incubation, maintaining 

similar behaviour of 177Lu-DOTA-Peptide 1. 

 
Graph 4, Table 6: : Radioligand internalisation studies were performed on AR4-2J cell 
line, stably expressing SSTR2. Values and SD are the results of three independent 
experiments (each experiment was performed in triplicates). 
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Graph 5, Table 7: Efflux studies were performed on AR4-2J cell line, stably expressing 
native SSTR2. Values and SD are the results of three independent experiments (each 
experiment was performed in triplicates). 
 
 
 
 

Time  
(min) 

Total Non 
Specific 

T-N 

0 0,00 0,00 0,00 

30 
0,75±0,11 0,1±0,14 0,50±0,16 

60 
1,70±0,24 0,2±0,09 1,61±0,27 

120 
3,35±0,26 0,23±0,1 3,16±0,23 

240 
7,16±0,77 0,22±0,56 6,59±0,92 

1440 
27,31±1,61 0,09±0,01 27,23±1,6 

Time 
points  
(min.) 

%Retained in 
cells/total 
internalized 

0 0,00 

15 90,67±0,32 

30 80,80±1,81 

60 77,76±1,56 

90 68,63±1,74 

120 68,56±2,89 

240 62,75±3,04 
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4.4   In vivo biodistribution. 
 
 
Pharmacokinetic studies were performed in balb-c healthy mice. Results 

(%ID/g) showed high radioligand accumulation in the pituitary gland at 1, 4 

and 24 hours post injection, but the stomach and the pancreas demonstrated a 

good uptake of the radiopharmaceutical too. These results are compatible 

with normal SSTRs expression with exception of the kidneys that 

demonstrated not specific uptake, because of the radiopharmaceutical 

clearance.  The other organs demonstrated a low uptake. At the 24 hours 

time point a good clearance was observed for all  tissues, the only exception 

are constituted by kidneys and pituitary gland, where the uptake remained 

high (Graph 6, Table 8). 

 

 

 
Table 8: Biodistribution of 111In-DOTA Peptide 1 in healthy balb-c mice (1, 4 and 24 hours 
post injection of the radiopharmaceutical). 
 

 

Organs 1h 4h 4h blocking 24 h 

blood 0,95±7,8E-05 0,67±0,0014 0,10±0,0008 0,18±0,0009 

heart 0,42±0,0003 0,29±0,0002 0,08±0,0005 0,10±2,830E-05 

Liver 0,82±0,0008 0,76±0,0015 0,52±0,0032 0,44±0,0003 

spleen 0,51±0,0010 0,41±0,0005 0,15±0,0010 0,28±5,201E-05 

lung 1,87±0,0005 1,48±0,0035 0,27±0,0022 0,49±0,0017 

kidney 13,39±0,0011 13,57±0,0057 7,15±0,0596 4,88±0,0009 

stomach 1,13±0,0032 1,04±0,0025 0,29±0,0016 0,46±0,0011 

intestine 0,43±0,0026 0,44±0,0008 0,22±0,0016 0,17±0,0004 

adrenal 0,33±0,0117 0,15±0,0003 0,02±4,75E-05 0,18±0,0001 

pancreas 0,57±0,0022 0,43±0,0021 0,17±0,0010 0,27±0,0001 

pituitary 14,93±0,008 7,45±0,0024 7,99±0,080 8,10±0,0070 

muscle 0,26±0,0015 0,20±0,0006 0,10±0,0007 0,15±0,0003 

bone 0,75±0,0006 0,54±0,0023 0,16±0,001 0,27±0,0012 
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Graph 6: Biodistribution of 111In-DOTA Peptide 1 in healthy balb-c mice (1, 4 and 24 hours 
post injection of the radiopharmaceutical). 
 

 

5 Ligand Tracer®. 

 
5.1 Characterization of NPA-87. 

 
5.1.1   Western Blot analysis. 

 
Western Blot evidenced the presence of SSTR-2 expression in NPA-87 cell 

line with a concomitant presence of other SSTRs subtypes, particularly, it 

was demonstrated the expression of SSTR3 and SSTR5 (Picture 1). 

 
5.1.2 Immunofluorescence studies. 

 
Immunofluorescence studies confirmed the results obtained by Western Blot 

analysis. Even in this case it was observed a positivity for the expression of 

SSTR2, SSTR3 and SSTR5 (Picture 2). 
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Picture 1: SSTR2-3-5 expression on NPA-87 cell line by Western Blot Analysis. 

 

Picture 2: SSTR2-3-5 expression on NPA-87 cell line by Immunofluorescence studies. 

 

5.2  Affinity assays with Ligand Tracer® and pharmacological studies. 

 

Radiolabeling and quality control of 111In-DOTA-Peptide 1 were performed 

as previously described and the same results were obtained.  

OctreoScan® and 111In-DOTA-Peptide 1 affinity were measured with 

LigandTracer® on NPA87 cells. In parallel, pharmacological studies were 

performed, demonstrating a precise different intracellular localization of 

SSTR2 after the treatment with the cold peptides at each time point of the 

study.  

SSTR2 
75-85KDa 

SSTR3 
46KDa 

SSTR5 
54-63KDa 

SSTR2 SSTR3 SSTR5 
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DTPA-Octreotide and the DOTA-Peptide 1 have generated similar answer if 

compared to the affinity results obtained with LigandTracer® experiments 

with the same radiolabeled peptides. Preliminary results of the affinity 

studies with LigandTracer® on NPA-87 are reported in Graph 7 both for 

OctreoScan® and 111InDOTA-Peptide 1, where Bmax and KD are reported. 
111InDOTA-Peptide 1 has similar pharmacological proprieties as 

OctreoScan® on cell lines and these results suggest that after radiolabelling 

the peptide retain affinity and uptake in selected cell lines.  

Pharmacological assays by immunofluorescence demonstrated that there is a 

precise localisation of the ligand-receptor complex at different time points 

(Picture 3) and it seems that the process ends after two hours of incubations.  
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Graph 7: Saturation binding with 111InDOTA-Peptide 1 and Octreoscan® on NPA-87 cell     
lines. 
 

 

Picture 3: Sequential intracellular localization of SSTR2 after treatment with cold peptides. 
DTPA-Octereotide (on the left) and DOTA-Peptide 1 (on the right) have generated similar 
response. 
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6 Pharmacological studies. 

 

6.1  Immunofluorescence studies: SSTR2 internalisation. 

 

The internalization assay was validated through a series of experiments in 

AR4-2J cells showing that SSTR-2 is membrane bound in the absence of 

agonist; that there is a time, temperature, and agonist concentration 

dependency for SSTR2 internalization (Picture 4 A-E).  

Picture 4B illustrates that an early phase of agonist-induced SSTR2 

internalization is noticed in vitro at 5 minutes, as shown by the monitoring of 

SSTR2 trafficking with immunofluorescence microscopy. Furthermore, this 

in vitro SSTR2 internalization is also rapidly completed within minutes, as 

seen in the 15- and 30-minutes times (Picture 4C and 4D). Finally, when the 

agonist is removed from the medium (washing step), the SSTR2 receptors 

are relocated to the cell surface as soon as 30 minutes after washing (Picture 

4E). 

 

 

     

                               A                                                              B 
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                             C                                                          D 

 E 

Picture 4 A-E: Agonist-induced internalization of SSTR2 receptor in AR4-2J. AR4-2J were 
treated either with vehicle alone (A) or with 100 nM DOTA- Peptide 1 for 5 (B), 15 (C), or 
30 min (D) at 37°C and 5% CO2. Moreover, in parallel experiments, cells treated with 100 
nM DOTA-Pepide 1 for 30 min at 37° C and 5% CO2 were subsequently washed with PBS 
and then incubated for 30 min in agonist-free medium at 37° C and 5% CO2 (E). Cells were 
then fixed, permeabilized, labeled with SSTR2 primary antibody, and processed for 
immunofluorescence. Internalization is already observed at 5 min and is completed at 30 
min. After subsequent washing and incubation in agonist-free medium, SSTR2 receptors are 
back at plasma membrane. 
 
 
6.2 Immunofluorescence studies: investigation of intracellular     

localization of the internalized SSTR2. 
 

In this session, it was demonstrated that SSTR2 is internalized via clathrin-

coated vesicles and localizes to mannose 6-phosphate receptor–positive 

(M6PR) intracellular compartments, most likely the trans-Golgi network 

(TGN)/late endosome.  

In Picture 5, it was allowed to observe the 1 µM internalisation of SST 

analogue after an incubation of 20 minutes at room temperature. SSTR2 and 
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M6PR are not completely overlapping, but it was demonstrated SSTR2 is 

internalized via clathrin-coated vesicles.    

  
                M6PR                                            SSTR2a                            

Merge 

 
 
Picture 5: Agonist-induced internalization of SSTR2 in AR4-2J. AR4-2J were treated with 
1 µM DOTA- Peptide 1 for 20 min at room temperature. SSTR2 is internalized via clathrin-
coated vesicles and localizes to mannose 6-phosphate receptor–positive (M6PR) 
intracellular compartments, most likely the trans-Golgi network (TGN)/late endosome. 
Merge corresponds to the M6PR and SSTR2 pictures overlapping. 

 

7   Investigation of the activation of the  apoptotic pathway. 

 

7.1  TUNEL assay. 

 

TUNEL assay did not demonstrate any positivity. Cells obiuvesly appered 

stressed and probably the pharamcological treatment with an high dose of 

SST analogues induced a cytostatic effect on cells. This experiment was 
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performed using DOTA-Tyr3-octreotide as control, that demonstrated to 

have the same behaviour of DOTA-Peptide 1. 

This are only a preliminary results, most probably other cellular pathways 

are involved, particularly the actention have to be focus on cytostatic effect 

due to the activation of SSTR2 by a SST analogue. It seems that apoptosis is 

not the predominantly activated pathway by SSTR2, for this reason this 

experimental session has to be considered only a first step of another 

important session that have to be studied in further experimental protocols.
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DISCUSSION 
 
 

 
 
The importance of peptides probes in diagnosis and therapy is growing up in 

the last decade. Receptors, and in particular GPCRs, are expressed with high 

density in tumoral cells. For this reason, in recent times, regulatory peptides 

receptors became an interesting and important target in cancer imaging and 

treatment. This is possible, because cellular membrane receptors (GPCRs) 

have the peculiarity to be overexpressed in tumoral cells, while their density 

is quite low in physiologic healthy organs, avoiding a general toxicity. 

SSTRs represented the first example of peptide-based probe for cancer 

imaging and for PRRT, since these receptors are over-expressed on most 

neuroendocrine tumors, GEP and other cancers such as bronchial NET, 

breast cancer, RCC and some lymphomas. In more recent times, other 

receptors have been used as targets for cancer imaging by regulatory 

peptides. This is the case of cholecystochkinin/gastrin and GLP-1132 

analogues for NETs, bombesin133 and neuropeptide Y134 analogues for 

prostate and breast cancers, Arg-Gly-Asp peptides for neoangiogenesis135. 

Even if all these analogues are still in preclinical or early stage clinical 

development, some of them seem very promising. 

Specific target of tumors through selective molecules, either for diagnostic or 

therapeutic reasons, are promising in oncology, compared with earlier less 

specific approaches. In fact, peptides demonstrated some features that make 

them very attractive and advantageous compared to the other molecules used 

in clinic. For example, full molecules antibodies presents some problems due 

to poor diffusion and target accessibility, while peptides have small size 
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(<10,000 Da), good tissue diffusion and target accessibility, but also no 

antigenicity, easy synthesis and easy adequate radiolabelling.   

The action of these peptides depend, first of all, on affinity for specific cell 

membrane surface receptors that, once bound to these ligands, transfer them 

to within the cell (peptide-receptor internalization) and eventually to the 

perinuclear and nuclear location, where they persist for relatively long 

periods. Hence, hypothetically once firmly labelled, the radioligand is 

thereby useful for imaging and therapy136. 

Therefore, principle of peptide-based cancer imaging presumes that an 

analogue, linked to a chelator that allows a stable radiolabeling with different 

radiometals (111In, 68Ga and 99mTc) for in vivo imaging is injected to the 

patient intravenously. The radiopharmaceutical will distribute through the 

body. In case of the high expression of the specific receptor on tumoral cells, 

the radiopeptide will bind to them and a subsequently internalisation of the 

radiolabeled peptide-receptor complex will occur. This process will allow to 

γ-camera (111In and 99mTc- SST analogues) or PET scans (68Ga SST 

analogues) to underline the high specific uptake of the tumoral masses 

compared with the other organs, that demonstrate a low or none 

accumulation of radioactivity. Kidneys or liver are the other organs that will 

record a consistent accumulation of radioactivity. This is due to the 

physiological excretion of the radiopharmaceutical. SST analogues 

demonstrated a predominantly renal excretion, with the exception of the first 

radiolabeled SST-analogue further abandoned in clinic, the very high 

lipophilic 123I-[3-iodo-Tyr3]-octreotide, characterized by high accumulation 

in liver, thus perform poorly when imaging abdominal area.  

The gold standard for in vivo imaging of SSTR2 expressing tumors is now 

represented by OctreoScan® (111In-DTPA-octreotide). In this case, excretion 
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pathway is predominantly by kidneys, but it can be observed an epatobiliary 

excretion of low entity, giving sometimes a not fully clear abdomen imaging. 

Common indications for OctreoScan® scintigraphy include the detection and 

localization of a variety of NET, other tumors and their metastases, the 

staging of patients with neuroendocrine tumors, the follow-up of patients 

with known disease, and lastly the selection of patients with inoperable 

and/or metastatic tumors for PRRT. 

Subsequently, new analogues were studied. In particular, the new peptides 

have maintained octreotide as skeleton, introducing some modifications, as 

aminoacidic substitutions or the introduction of a synthetic aminoacids. The 

choice of adopting DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid) as chelator brought some advantages compared to DTPA. 

DOTA  forms a kinetically and thermodynamically stable metal complexes, 

because the radiometal is encapsulated and embedded in the DOTA-skeleton, 

where it is protected by the attack of  competing ligand present in human 

tissue and body fluids. 

Limit of DOTA-SST analogues is their hydrophylicity, resulting in a 

predominantly renal excretion and a potentially kidney damage. It is 

important to avoid kidneys injure, especially for those patients where PRRT 

is required. This inconvenience is now gets over adopting two strategies: 

kidneys protection by ramified amino acids infusions in patients and 

introduction of some modifications in the octapeptide amino acidic sequence, 

improving in lipophilicity and maintaining the affinity profiles previously 

obtained.  
90Y and 177Lu radiolabeled SST-analogues, particularly DOTA-Tyr3-

octreotide and DOTA-Tyr3-octreotate, are currently adopted for PRRT in 

different clinical setting among the word. This two radiopharmaceuticals 

have an important background and important preclinical and clinical studies 
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are performed until now. Most consistent clinical studies have been 

performed in the nuclear medicine centre at the IEO (Milan, Italy) and in 

Rotterdam. Paganelli et al. published that partial and complete remissions 

were obtained in 28% of 87 patients with neuroendocrine tumors137 treated 

by 90Y-DOTA-Tyr3-octreotide. A multicenter phase-1 study performed in 

Rotterdam (The Netherlands), Brussels (Belgium), and Tampa (USA) with 
90Y-DOTA-Tyr3-octreotide demonstrated in 58 patients received escalating 

doses up to 400 mCi (14.8 GBq)/m2 in four cycles or up to 250 mCi (9.3 

GBq)/m2 single dose, no maximum tolerated single dose138. The cumulative 

radiation dose to kidneys was limited to 27 Gy. All received ramified 

aminoacids concomitant with 90Y-DOTA0,Tyr3-octreotide for kidney 

protection. Three patients had dose-limiting toxicity: one had liver toxicity, 

one had thrombocytopenia grade 4, and one had MDS138. 

DOTA-Tyr3-octreotate has demonstrated very successful results in 

preclinical studies, in particular in terms of tumor regression and animal 

survival in a rat model139. The affinity results performed by Reubi et al. and 

published in 200024, demonstrated a nine fold increase in affinity for the 

SSTR subtype 2 for DOTA-Tyr3-octreotate if compared with DOTA-Tyr3-

octreotide, and a six- to sevenfold increase in affinity for their Yttrium-

loaded counterparts, and clinical studies performed in patients with large 

NET demonstrated that DOTA-Tyr3-octreotate gave a partial tumor 

remission of 35% and complete remission in 3%140.  
177Lu-DOTA-Tyr3-octreotate allow to obtain a higher absorbed doses in most 

of the tumors with about equal doses to potentially dose-limiting organs. 

Because of the lower tissue penetration range of 177Lu if compared with 90Y, 

it may be especially important for small tumors. Moreover, if it are  

compared the residence time in tumors for 177Lu-DOTA-Tyr3-octreotide and 
177Lu DOTA-Tyr3-octreotate in the same patients in a therapeutical setting, 



Discussion 

                                                                                                     85 

we found a factor 2.1 in favour  of 177Lu-DOTA-Tyr3-octreotate141; and at 

the moment, 177Lu-DOTA-Tyr3-octreotate seems to be the radiolabeled SST-

analog of choice when performing PRRT. 

In more recent studies, new SST-analogs with a broader receptor subtype 

affinity profile has been initiated. These new compounds, DOTA-NOC and 

DOTA-BOC, present a substitution in position number 3 of the peptide, 

where Tyrosine are replaced by synthetic alanines: 1-naftil-alanine (DOTA-

NOC) or a benzothienyl-alanine (DOTA-BOC) and demonstrated high 

affinity for hSSTR2-5142 and DOTA-NOC for SSTR-3 too142. 

This two radiopeptides are now in clinical phase for scintigrafic acquisition, 

but their availability is difficult, because are not on the trade, consequently 

their utilise is limited to a small numbers of diagnostic centres. 

Studies performed by 68Ga-DOTANOC demonstrated a very successful 

imaging for the detection of small tumor lesions, especially for lymph nodes 

and bones which is attributable to the high target to not-target ratios obtained 

to this SST-analogue with a broader receptor subtypes affinity profiles143. 

For the peculiarities of this radiopeptide, DOTA-NOC seems a good 

candidate for PRRT. 

At moment, clinical protocols foresee that malignant cells of tumoral masses 

are highlighted with 111In-DTPA-octreotide (OctreoScan®) enables in vivo 

imaging tumors and metastasis144,145. Thanks to the develop of 68Ge/68Ga 

generators and PET-CT scans, a more accurate imaging of tumors is now 

obtained by the use of 68Ga-DOTA-SST analogues. A study performed in a 

small group of patients by Gabriel M. et al146 demonstrated that 68Ga-DOTA-

Tyr3-octreotide performed better results compared with conventional nuclear 

medicine examinations. In particular, the better imaging properties are based 

on the higherspatial resolution of PET and some beneficial pharmacokinetic 
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properties of 68Ga-DOTA-Tyr3-octreotide. Anyway, 68Ga may not be used 

for dosimetric estimates. 

The idea of this project derives from a precise clinic necessity, consisting in 

the research of new radiopharmaceuticals that can be adopted in the PRRT,   

in particular all those SSTRs expressing tumors that elude from any 

therapeutic plan. This is the case of thyroid cancers once they presented 

dedifferentiation. In fact, papillary e follicular thyroid cancers after the 

conventional treatment,  develop locoregional recurrence (20%) and distant 

metastasis (10%), loosing the ability to uptake 131I and showing elevated 

serum tireogloguline (Tg) concentration147. Different studies have 

demonstrated that specific SST binding to membranes of normal thyroid 

tissues and thyroid carcinoma cell lines as well as disparate proliferative 

effects of different SST analogs on cell lines in monolayer cultures. To date, 

human carcinomas have been reported to express predominantly SSTR2, 

with limited expression of SSTR1, SSTR3, and SSTR4. SSTR5 expression 

in human cancers appears unique to thyroid cancer, except for a preliminary 

report of expression in human breast carcinomas. Various recent studies have 

described the visualization of metastases from follicular cell-derived thyroid 

carcinomas by means of somatostatin receptor scintigraphy although, in 

contrast to medullary thyroid carcinoma, these tumors are not of 

neuroendocrine origin. These findings are in agreement with the in vitro 

demonstration of specific somatostatin binding receptors in thyroid 

carcinoma cells. In the majority of these tumors, the expression of SSTR-1, 

SSTR-3, and SSTR-5 seems to predominate, and depending on the applied 

technique, in some tumors no SSTR-2 could be demonstrated at all. While 

the radiopharmaceutical specifically binds to the tumoral cells, the radiation 

emitted by the radionuclide can additionally exert a cytotoxic effect on 
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adjacent non-SSTR expressing cells, by cross-fire of the emitted particles 

diffusing within a certain range in tissues. 

Generally, the current SST analogues in clinical use, octreotide and 

derivates, at clinically available doses, interacts with SSTR2 and some of 

them with SSTR5, but with a less affinity. 

Because dedifferentiated thyroid cancers express SSTR3-5 with high density, 

while the SSTR2 expression seems to be very controversial, SST analogues 

with high affinity for SSTR3, SSTR5 or both are required.    

In this study, a new SST analogue: DOTA-Peptide 1 was characterised.  

The peculiarity of this SST analogue consists in the replacing of Cys2-Cys7 

by two allyl-glycine linked together by a double bound. This avoids the 

problem of the disulphide bridge present in the others, that are subjected, 

once is injected throw the blood flow, to the attack of the endogenous 

reducing agents as glutathione oxidase or thioredoxin reductase, or of basic 

and nucleophilic agents. Another aminoacidic change that is important to 

underline is the presence of a 2-NaI  in position 3 (pharmacophore). 

The peptide was synthesized by solid phase synthesis giving a more than 

95% of peptide purity.  

Affinity profile were performed before and after DOTA coupling and it was 

demonstrated that the addition of DOTA is responsible of a loosing of 

affinity for hSSTR5. 

DOTA-Peptide 1 does not showed an enthusiastic affinity profile results for 

hSSTR 2 (DOTA-Peptide 1 has an  IC50 of about 8 nM for hSSTR2, while 

DOTA-Tyr3-octreotate IC50 is 1,5±0,4 nM), but in vitro and in vivo 

experiments  gave promising and  important results.  

In this project, internalisation rate, cellular retention and radio-binding 

proprieties of a new SST-analogue with a high affinity for SSTR2 was 

evaluated. 
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The first part of the study was performed in collaboration with the division 

of radiological chemistry, in the department of radiology of UHBS in Basel 

(Switzerland). DOTA-Peptide 1 was radiolabeled with 177Lu, a radiometal 

used for therapeutic purposes (β-emitter; 497 keV, 78%), but which also 

allows imaging (γ-emitter, 113 keV, 6%, 208 keV, 11%).  

After the stability tests, demonstrating an high stability in human serum until 

4 days, radioligand internalisation and cellular retention assays were 

performed on HEK-293 cell line stably expressing T7-epitope tagged human 

SSTR2 (HEK-SSTR2) and it was demonstrated that a very high radiopeptide 

accumulation in cells and a time-dependent internalisation. Particularly, it 

was observed that after 4 hours of incubation 38.63%±3.26 of radiopeptide is 

internalised. During these experiments a plateau was not reached, so 

incubations were continued till the 24th hour, where an high dose of 

internalised fraction was observed (57.68%±3.00). Internalisation assays 

were performed using 177Lu-DOTA-Tyr3-octreotide as control, showing a 

similar behaviour between the two radiopeptides.  

Cellular retention studies demonstrated that an high degree of radiopeptide is 

retained in cells after 4 hours of incubation (55.4% of radioactivity is 

retained in the cell from the total internalized conjugate). This is an 

important result because a prolonged intracellular retention is of importance 

if long-lived radionuclides are going to be used in therapy studies.  

Finally, a very high tumor uptake resulted in tumor-bearing mouse model 

adopted in this part of the research project.  

The biodistribution studies performed on female nude mice bearing HEK-

SSTR2 tumors demonstrated, by the measurement of blood samples taken at 

each time point, that the radiolabelled peptide was cleared rapidly from the 

circulation (0.55±0.19 1 hour post injection; 0.12±0.02 4 hours post injection 

0.04± 0.00 24 hours post injections). The highest tissue activity is in the 
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kidney  (10.63±2.03 1 hour post injection, 11.16±1.19 4 hours post injection, 

6.69 ±0.7 24 hours post injection) which can be explained by the renal 

excretion being the physiological way for the elimination of this 

radiopharmaceutical. The other organs demonstrated a very low uptake 

except for the stomach (5.04±2.05 1 hour post injection, 3.29 ±0.86 4 hours 

post injection and 2.43± 0.12 24 hours post injection) and the pancreas 

(2.87±0.61 1 hour post injection, 1.85±0.32 4 hours post injection, 0.95± 

0.15 24 hours post injections), but it is well known that these organs express 

SSTRsErrore. Il segnalibro non è definito.. At 24 hours more than 50% of the 

radiopharmaceutical was cleared from these organs. 

An high radioligand accumulation was observed in the tumors at 1 and 4 

hours post injection (22.69±5.36 and 23.69±1.74 %ID/g respectively). When 

the receptors were blocked by a co-injection of an excess of the same cold 

peptide, the tumor uptake was found to be about 80% less compared to the 4-

hour time point and this also holds for the other SSTR-positive organs.  

At the 24 hours time point a good clearance was observed for all non-tumor 

and non-specific tissues, the only exception being the kidney, where the 

uptake remained high (6.69±0.70%ID/g).  

111-Indium was the second radiometal used for DOTA-Peptide 1 

radiolabeling.  111In is a γ-emitter with radiation energy of 0,171 and 0,245 

MeV 90,94%, but it can used for therapeutic purpose, because 111-Indium is 

a Auger electron emitter (14.7 Auger yield, Auger energy 6.75 keV). 

Radioligand internalisation and retention assays and biodistribution studies  

were performed adopting the protocols described in previous session. This is 

a necessary step because different radiometals influence the pharmacological 

properties of radiopeptides. 

In vitro assays were performed on rat pancreatic adenocarcinoma cell line 

(AR4-2J) stably expressing native SSTR2. Even in this case radioligand 
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internalisation assays were performed using 111In-DOTA-Tyr3-octreotide/tate 

as references and it was demonstrated that internalisation is a time dependent 

process. Radioligand internalisation assay demonstrated a 6.59%±0.92 of 

internalised fraction after 4 hours of incubation. This dose is relatively higher 

in case of longer incubations (27.23%±1.6 of internalised radiopeptide at 24 

hours time point).  

The uptake results are appreciably lower if compared with the same 

experiment managed with 177Lu-DOTA Peptide 1. The motivations are 

mainly two: the first can be the radiometal changing that influences the 

peptide behaviour, the second regards the cell line adopted in this session. 

AR42J cells express wild type SSTR2 and receptor density is considerably  

lower if compared with the SSTR2 expression of transfected HEK-SSTR2.  

Regarding cellular retention studies it can asserted that 111In-DOTA Peptide 

1 maintained the same features presciently described, in fact cells retained 

62.75%±3.04 of 111In-DOTA-Peptide1 after four hours of incubation. 

In vivo biodistribution studies where performed on groups of healthy balb-c 

mice. Animals were injected with 10 pmol 111In-DOTA-Peptide 1 (0.15-0.2 

MBq) and scarified 1, 4 and 24 hours post injection.  To determine the non-

specific uptake of radiolabelled peptide, a group of mice were injected with 

20 nmol of DOTA-Peptide 1, 5 minutes before the injection of the 

radiopeptide. Results are expressed as % of injected dose/ grams of tissue.  

Pharmacokinetics studies demonstrated that the radiopeptide was rapidly 

cleared from circulation (0.95±7.8E-05 1 hour post injection, 0.67±0.0014 4 

hours post injection, 0.18±0.0009 24 hours post injection). An high 

radioligand accumulation is observed in the pituitary gland at 1 

(14.93±0.0088), 4 (7.45±0.0024) and 24 hours (8.10±0.0070) post injection, 

the stomach (1.13±0.0032 1 hour post injection, 1.04±0.0025 4 hours post 

injection, 0.46±0.0011 24 hours post injection) and the pancreas 
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(0.57±0.0022 1 hour post injection, 0.43±0.0021 4 hours post injection, 

0.27±0.0001 24 hours post injection) too demonstrated a good uptake of the 

radiopharmaceutical. These are compatible with normal SSTRs expression 

with an exception of the kidneys that are responsible of the 

radiopharmaceutical clearance (13.39±0.001 1 hour post injection, 

13.57±0.00572 4 hours post injection, 4.88±0.0009 24 hours post injection).  

The other organs demonstrated low uptake. At 24 hours time point a good 

clearance was observed for all tissues, the only exception are constituted by  

kidneys and pituitary gland, where the uptake remained high. 

Affinity studies were also performed with a new technology: LigandTracer® 

produced by Ridgeview instruments AB. This instrument gives the 

possibility to perform different pharmacological assays on living cells in real 

time, as binding assays and uptake/ retention measurements.  

The advantage of this instrumentation consists on the possibility to have a 

complete automate system and the possibility of using only a plate dish for 

all the study and consequently a small number of cells. Even if, this 

instrumentation seems to be very promising, it were noticed some problems 

that needs be solved to improve this methodology. The most important 

consists in the instrument software, that presents some difficulties in the data 

lecture.  

Affinity studies were performed on NPA-87 cells expressing SSTR2 receptor 

with 111In-DOTA Peptide 1 and OctreoScan®, as control. 

These are only preliminary results and the methodology requires important 

modifications. IC50 and Bmax values are obtained (OctreoScan®: IC50= 331.8 

nM and Bmax= 445.7; 111In-DOTA Peptide 1: IC50=110.0 nM and Bmax= 

29.88).  Moreover, by immunofluorescence studies, a precise different 

intracellular localization of SSTR2-ligand complex was observed at different 

times of the study, anyway, DTPA-Octreotide and DOTA-Peptide 1 have 
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generated similar answer, but it seems that DOTA-Peptide 1 have a higher 

potentiality to internalise.  

Regarding pharmacological assays, immunofluorescence, a sensitive 

immunocytochemical method, was applied to examine SSTR2 internalization 

after DOTA-Peptide 1 treatment, peptide with an established interest for 

nuclear medicine.  

Unlike radioactive isotopes, ligands to be tested for internalization will not 

experience alteration, which might affect the structure of the ligand and thus 

its biologic activity. 

As conclusion, it can assert that high-affinity in SSTR2 binding is a 

prerequisite for an agonist to trigger SSTR2 internalization, and the 

behaviour of this compound seems reflect those of agonist. 

Finally, it is important to emphasize that the second-generation compounds 

foreseen for in vivo SSTR2 targeting, such as octreotide, octreotate and the 

object of the study modified in position 3 and linked to DOTA, often have 

considerably better internalization capabilities than do the first-generation 

compound DTPA-octreotide148. 

The last session of the study regarded pro-apoptotic effects of SST-analogue. 

TUNEL assay was performed on AR42J cells treated with high concentration 

of DOTA-Peptide 1. Even if there are some studies in literature149,150,151 that 

confirm the activation of the apoptotic pathway by the activation of SSTR2, 

no positivity were observed in TUNEL experiments. 

Further considerations and investigations are required, especially the 

cytostatic effect due to SSTR2 activation have to be studied. 

The cytotoxic signalling initiated by SST analogue is associated with the 

induction of wild type p53 and Bax152 and in a study where an human 

adenocarcinoma breast cancer cell line (MCF-7) was used, it was 

demonstrated that no increase in p21, pRb or c-Myc was observed at 2 and 
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24 hr of Octreotide treatment and the lack of induction of p21 by octreotide 

is consistent with its ability to induce wild type p53 and apoptosis but not G1 

arrest152. But this only a consideration, anyway it seems that SSTR2 

modulates cell proliferation through SHP-1. Following recruitment to SSTR2 

and subsequent activation, SHP-1 dephosphorylates various signaling 

molecules including growth factor receptors and nNOS, while enhancing the 

induction of p27Kip1 and promoting cell cycle arrest153. 

Finally, it is important to underline that the α- or β-emitting SST analogues-

tagged radionuclides shall elicit maximal cytotoxic response due not only to 

the triggering of apoptosis via induction of wt p53 and Bax by receptor-

mediated signaling but also to the radiation induced damage following 

internalization. So it could predicted that treatment with SST analogs alone 

or in combination with radiation and/or chemotherapy could be most 

effective in treating wild type p53- and SSTR-expressing tumors.……
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CONCLUSIONS 

 

 

In recent years, knowledge in the SST field is considerately grown up, but a 

great number of dark points have still to be clarified and the developing of 

potent SST analogues for cancer treatment will require a more complete 

understanding of their intracellular actions and interactions.  

Radiometal-labeled SST-analogues have demonstrated some or great benefit 

in the in vivo localization and PRRT of human tumors. The strategy that 

brought to an unquestionable positive result depends by a changing in 

strategy, in fact new chelators were adopted that allowed high 

thermodynamic and kinetic stability to the radiopeptides, while in terms of 

pharmacokinetic, pharmacodynamic and biological properties  improvements 

are significant. 

In this study, a new DOTA-based peptide (DOTA-Peptide 1) with diagnostic 

and therapeutic potential was characterized pharmacologically.  

The limitation of this analogue is high the hydrophilicity of the molecule and 

a consequent kidney burning, determining a dose limiting organ in this type 

of targeted radiotherapy.  

The peculiarity of the new analogue consists in the presence of two allil-

glycines in the place of correspondent cysteines. Moreover, an aminoacidic 

substitutions is present in position 3, where a synthetic aminoacid is present.  

The new SST analogue shows agonist characteristic with a great 

internalization in SSTR2-expressing cells and good biodistribution profile in 

mice bearing xenograft tumors. 
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Finally, it can conclude affirm that these results indicate that 111In/177Lu-

DOTA-Peptide 1 is a promising new SST-based radioligand for possible 

diagnosis and peptide radiocereptor therapy of tumors specifically expressing 

SSTR2. 
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