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Chapter 1

Introduction

Owing to new available technologies, new research fields become available to sci-
entists. Within the area of atomic physics, the ultracold gas technologies open new
perspectives in the investigation of the regimes with strong interactions between
atoms. A wide range of applications is associated with the manipulation in dif-
ferent configurations of ultracold atoms excited to highly excited states. Rydberg
atoms have been intensively studies since nineteen seventy and due the merge of
this field with ultracold atomic physics, cold Rydberg atoms brought several con-
cepts to a new light. Rydberg atoms are known to exhibit strong dipolar moments
hence flexible investigations of strong interactions between excited atoms become
an interesting subject. For example it becomes possible to investigate interactions
between individual particles.

One of the implications of the strong interactions between Rydberg atoms is
the phenomenon denominated as dipole blockade [44, 51], that has been recently
studied both theoretically, for instances [4, 17], and experimentally for different
atomic ensembles, as in [72, 33, 38]. This concept is presented in the context
of atomic clocks [15], quantum computation [29], quantum cryptography [6] and
quantum information [51, 44]. Further research on the Rydberg-Rydberg interac-
tions has produced collective coherent excitations [39, 39, 33, 45] and a non-linear
dependence on the number of excited atoms as a function of intensity of the irra-
diation lasers and atomic density [72, 67].

In order to achieve the quantum computation targets [60], the implementation
of quantum protocols consisting of a sequence of quantum gates requires an ex-
perimental realization of a quantum bit. As Rydberg atoms exhibit long range
interactions they were proposed to be suitable candidates for realization of con-
trollable quantum systems [44]. Yet, the implementation of a quantum gate is an
ambitious task where a coherent manipulation of a great number of coupled states
is needed. For this reason it was proposed that Rydberg excitations should be
performed in samples with a precise spatial order. As a solution atoms in optical
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lattices were proposed. Already a strong interest in optical lattices as a tool of
investigation of ultracold atoms [59],[8] or as a tool of addressing the atoms has
been showed [59]. The combination of the strong interactions between Rydberg
atoms with the possibility of implementing a spatial order that will simplify co-
herent manipulation of a large number of coupled states provide us with exciting
applications for the quantum information.

The main goal of my thesis is to present new results on the excitation of Ry-
dberg atoms from ultracold atomic samples obtained during my work as. The
dipole blockade and its experimental implications without and with the presence
of optical lattices are presented. This thesis shows results on Rydberg excitations
of rubidium Bose condensates in one-dimensional periodic potentials. The co-
herent excitation dynamics of up to 30 Rydberg states in a condensate occupying
around 100 sites of an optical lattice was observed. The zero-dimensional char-
acter of the system, in which at most one Rydberg excitation is present per lattice
site, is ensured by expanding the condensate in a cylindrical trap in which the ra-
dial size of the atomic cloud is much less than the blockade radius of the Rydberg
states with 55 < n < 80.

This thesis encompasses six chapters and is organized as follows:

• Chapter 2 is an introduction to general ideas of atomic physics. It intro-
duces basic theoretical concepts such as the light shift or the three level
atom. These concepts have applications while performing our experiments.
Moreover, a short characterization of Rydberg atoms and their properties is
included. The most important topic of this thesis the Rydberg dipole block-
ade is also described.

• Chapter 3 describes the theoretical background of Bose Einstein conden-
sation. The first part presents the trapping and cooling methods used in
experimental realization of ultracold atoms. The second part of the chapter
gives an overview of cold atoms in periodic potentials. It presents also how
to realize a periodic potential by light interference.

• Chapter 4 is devoted to experimental setup. The experimental apparatus
of the Pisa BEC laboratory is described. An accurate description of the
experimental procedure applied to reach the BEC quantum phase in dilute
gases is included. This chapter also includes information about excitation
of Rydberg atoms and the implementation of periodic potentials. The setup
used in this thesis to prepare cold atomic samples was build at the end of
last century and described in detail in the PhD thesis of Donatella Ciampini
[19]. The part of the setup used to create optical lattices was implemented
and presented in the PhD thesis’s of Alessandro Zenesini [75] and Carlo
Sias [66]. Therefore those setups will be not described with full details.
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The part of setup dedicated to Rydberg excitations was mainly build during
my PhD work and is first described in details in the present thesis and also
reported in Viteau et al. [74].

• Chapter 5 describes the characterization of experimental parameters such
as the Rabi frequencies and the efficiency of the ion detection. The first
results obtained on the photoionization of Bose Einstein condensates and
cold atoms in magneto-optical traps are also shown. Moreover, the effects of
excitation lasers and electric fields on the atomic ensembles are mentioned.
All the material contained in this chapter, and in the following ones, is the
result of my original research work, in collaboration with other members of
the BEC team.

• Chapter 6 presents our results on the excitations of Rydberg atoms from
both BEC samples and cold atoms trapped in a MOT. The experiments ex-
ploring different BEC density regimes and their influence on the ion produc-
tion are presented. A new method of estimating the dipole blockade radius
is examined. The further part of chapter 5 reports the temporal dependence
of the detected ions on the duration of the irradiating laser pulse. Results
for different atomic density regimes and different quantum number n are
shown. Clear signatures of sub-Poissonian counting statistics in the regime
of strong interactions have been measured.

• Chapter 7 is devoted to description of the cold Rydberg atoms experiments
performed within the periodic potential of optical lattices. The influence
of the Rydberg excitations in optical lattices on the phase coherence of a
Bose Einstein condensate is examined. The coherent excitations of the ul-
tracold atomic samples are described. The influence of atomic distributions
is also taken into account. A new method of spatial distribution cleaning is
presented.
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Chapter 2

Atomic Physics Foundations

2.1 Atom-Light Interactions

To deal with ultracold atoms it is crucial to understand atom light interactions. A
major part of the techniques used in our experiments is based on the interactions
between the matter and light. During the preparation of ultracold samples the
optical pumping into chosen state is used. Then dipole traps are based on the
idea of a dipole force acting on atoms. Another implementation of the atom light
interactions may be found in imaging the atoms. To manipulate ultracold samples
we use optical lattices that are also based on the dipole force. In the experiments
with Rydberg atoms, ultracold samples are excited by mean of the two photon
transitions.

The simplest model describing the properties of these interactions is the two
level atom presented in (2.1.1). Since the Rydberg atoms used in the experiments
presented in this thesis are excited via two photon excitation, a three level atom
is described in subsection (2.1.3). Most of the experiments described in this work
use far detuned transitions, so section (2.1.3) also deals with an effective two level
atom.

2.1.1 A Two-level Atom

In this section the basis of atom light interaction theory is described. The detailed
description of this problem can be found in ref. [57]. We consider a closed two
level atom composed by the ground state |g〉 and the excited state |e〉 decaying to
the ground state by spontaneous emission with rate Γ. They are separated by ~ω0.
In figure 2.1 a schematic picture of the two level atom is presented. The atom
is irradiated by monochromatic light with frequency ωL and detuned by ∆. This
system is described by total Hamiltonian H:
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Figure 2.1: A two level atom with the ground state |g〉 and an excited |e〉, where
~ω0 is the energy difference between these states. Laser coupling between |e〉 and
|g〉 has a frequency ωL and is detuned by ∆ = ωL − ω0 from resonance.

H = HA +HL +HAL, (2.1)

where HA stands for the electronic energy of the atom, HL is the energy of the
light and HAL represents the atom-light interaction. The three contributions are
[57]:

HA = ~ω0 |e〉 〈e| , (2.2)

HL = ~ωL(â+â+
1

2
), (2.3)

HAL =
~Ω

2

(
|g〉 〈e| â+ |e〉 〈g| â+

)
, (2.4)

where â+ and â are creation and annihilation operators. In equation (2.4), the
dipole approximation is made. In this case the size of the atom is neglected with
respect to the wavelength of the light. The resonant Rabi frequency is given by
the dipole coupling of the two states:

Ω =
−eE0

~
〈e| r |g〉 =

−E0

~
µeg, (2.5)

where E0 stands for electric field amplitude. For the purpose of this subsection
we can assume a classical light field omitting creation and annihilation of photons.
In this way the dynamics of the system can be described using the density matrix
ρ. The convenience of the two-level atom is that it evolves in accordance with the
optical Bloch equations (OBEs). The steady state solution of the OBE permits the
estimation of the steady state for the excited population ρee:

ρee =
s0/2

1 + s0 + (2∆/Γ)2
=

Ω2

Γ2 + 2Ω2 + 4∆2
, (2.6)

4



where Γ is a decay rate from the excited state and s0 stands for on-resonant satu-
ration parameter given by:

s0 =
2Ω2

Γ2
=

I

Is
. (2.7)

In equation (2.7) Is is the saturation intensity defined as:

Is = πhc/3λ3τ, (2.8)

where λ is the wavelength of the irradiating light. In general the saturation param-
eter is given by:

s =
Ω2/2

∆2 + Γ2/4
. (2.9)

For s << 1 populations are mostly in the ground state and at larger values they
are distributed between the excited and the ground state, for instance at s = 1 in a
one to three ratio. When the excitation rate and decay rate in the steady state are
equal the total scattering rate Γsc of light from the laser field is given by:

Γsc = Γρee =
ΓΩ2

Γ2 + 2Ω2 + 4∆2
. (2.10)

In the case of strong damping Γ >> Ω the solution of the optical Bloch equa-
tions give the excited state population:

ρee(t) =
Ω2

4∆2 + Γ2

(
1 + e−Γt − 2 cos ∆te−Γt/2

)
. (2.11)

At very high intensities i.e. for s0 >> 1, power broadening of the linewidth of the
transition may be observed. Its power-broadened value Γ′ is given by:

Γ′ = Γ
√

1 + s0. (2.12)

The quantities derived above can be used to calculate the absorption of a laser
beam by an atomic cloud due to re-scattering of the laser light. The scattering
of light from a laser beam results in intensity losses as spontaneously re-emitted
photons are spread over the whole solid angle. This reduction is given by:

dI

dz
= −~ωLΓscng, (2.13)

where I stands for the intensity of the light and ng is the atomic density. When
laser light intensity near resonance is low, the scattering rate is given by Γsc =
s0Γ/2 and therefore, the absorption rate is:

dI

dz
= −σegngI, (2.14)

where σeg for scattering light out of the beam on resonance given by:

σeg =
~ωΓ

2Is
=

3λ2

2π
. (2.15)
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2.1.2 Light Shift and Dressed States

Figure 2.2: The dressed atom picture for a two level atom. N and N+1 are the
number of photons in the light mode.

The light shift of atomic or molecular states caused by electromagnetic radia-
tion must be considered when one performs high resolution spectroscopy experi-
ments. Such a light shift perturbs the atomic frequencies whose measurement may
be the goal of several experiments. For example in our experiment we exploit the
light shift in order to generate potential in light fields for example dipole traps or
optical lattices. When the quantization of the light field is taken into account we
can talk about the dressed atom picture. The dressed state approach combines an
atom with its bare states |g〉 and |e〉 and eigenstates of the light fields |N〉. This
concept is discussed in details in ref. [21]. Figure 2.2 presents an intuitive dressed
state picture. This figure shows the atomic levels from section 2.1.1 plotted and
horizontally separated for different number of photons in the light mode (N-1, N,
N+1,...). The corresponding energy state is denoted by the atomic state and by
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the photon number. Its energy is the sum of the light mode energy and atomic
excitation energy. The coupling between the atom and the laser field leads to a
mixing of these states, resulting in the dressed states. In figure (2.2) |g,N + 1〉
and |e,N〉 form a new states called |+, N〉 and |−, N〉 with the energy given by:

E± = ±~
2

√
Ω2

0 + ∆2 = ±~
2

Ωeff , (2.16)

this equation defining an effective Rabi frequency Ωeff . Each of these states con-
sists of a superposition of both atomic states. Fraction of each state on resonance,
∆ = 0, is 50% and far from the resonance, ∆ >> Ω, every state has a dominant
contribution of one atomic state. The shift with respect to dominating state also
known as the ac Stark shift ∆ac is:

∆ac = ±
(

1

2

√
Ω2 + ∆2 − ∆

2

)
≈ ±Ω2

4∆
. (2.17)

2.1.3 Three-level Atom and an Effective Two-level Atom

Figure 2.3: The Three level atom. An atom with the ground state |1〉 , first excited
state |2〉 and second excited state |3〉 = |r〉 coupled by two laser modes.

When the two level scheme is expanded to the three level one, new appli-
cations become available. Therefore, in this subsection a three level system is
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explained. Applications of this system are relevant for the experiments presented
in this thesis:

• a) Measurement of the Autler-Townes Splitting which in a three-level con-
figuration is used to to experimentally estimate the Rabi frequency of the
strongly driven transition. In the present investigtion the first step of the
transition is strongly driven, whereas the second is weak to probe the Ryd-
berg states. The spectroscopy on the transition connecting |3〉 and |2〉 shows
two lines due to the dressed state, each containing a fraction of |2〉. The
splitting of these lines is the effective Rabi frequency Ωeff . Experimental
implementation of this effect (Autler-Townes splitting [5]) will be shown in
chapter 5 as a tool in to measure first step transition Rabi frequency.

• b) Excitation of the Rydberg atoms, where the two photon transition is used.
In figure 2.3 the three level system is presented. An atom is irradiated by two
light pulses with frequencies ωL1 and ωL2 respectively. The laser light for
both steps is slightly detuned from the resonance, detunings being ∆L1 and
∆L2, respectively. The coupling strength of each transition step is described
as Ω1 for the first step and Ω2 for the second one.

Most of our experiments done with the Rydberg atoms is detuned from the in-
termediate state. This detuning is much larger than the resonant Rabi frequencies.
For this reason that state is almost not populated. Then, if decay from |r〉 to |2〉
is neglected, |2〉 mat be adiabatically eliminated and a reduction to an effective
two level atom can be applied. For the Rydberg excitation scheme the method is
found in Appendix A of [52]. The effective resonant two photon Rabi frequency
is given by:

Ω′eff =
Ω1Ω2

4∆L1

, (2.18)

with an effective two-photon detuning modified with respect to ∆L1 + ∆L2 by a
light shift analogous to that of equation (2.17):

∆eff = ∆L1 + ∆L2 +
|Ω2|2

4∆L1

− |Ω1|2

4∆L1

. (2.19)

Therefore, the effective non-resonant Rabi frequency is given by:

Ωeff =
√

Ω′2eff + ∆2
eff . (2.20)

A more precise adiabatic elimination procedure was developed in ref. [14] for a
three-level Λ scheme. The additional light shift introduced in equation (2.19) is
small enough to be neglected. Therefore in our experiments we take into consid-
eration only equation (2.18).
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Figure 2.4: Dressed atom picture for three level atom coupled by two laser modes.
this scheme is very similar to the dressed two level atom in figure 2.2. The addi-
tional state |r〉 is used as a third level.

2.2 Rydberg Atoms

In the previous section (2.1) the three level atom was discussed. In this part the nl
Rydberg state will replace former |3〉 = |r〉 level. Rydberg atoms are atoms ex-
cited to high energy states, described by the principal quantum number n. Intense
studies on Rydberg atoms have been conducted since the 1970s and they have
played an important role in atomic physics ever since. They were first observed
in 1885 by Balmer and presented in his formula for wavelengths of visible series
of atomic hydrogen for transitions from ni=2 to a higher level with a quantum
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number n [34]:

λ =
4c

Ry

n2

n2
i − 4

. (2.21)

The large distance of the electron from the atomic core determines most of
the physical properties of Rydberg atoms. For instance the radius of an excited
atom scales like n2 and can hence become very large (for n=100 about one µm)
compared to the atom in a ground state (order of nm). Rydberg atoms can stay
in the excited state for long periods of time, for n=100 almost one second. They
are sensitive even to small electric fields via the Stark effect. Their advantage, for
several experiments over neutral ground state atoms is the high polarizability that
scales like n7. This section will briefly introduce the properties of Rydberg atoms,
already described in [34] and the interactions between them..

2.2.1 Properties of Rydberg Atoms
A Rydberg atom can be described as an electron orbiting around the atomic core.
This electron “feels” mainly the Coulomb potential of the Z protons in the nucleus.
This nucleus is shielded by Z-1 core electrons. This configuration resembles hy-
drogen and therefore, a lot of the properties of Rydberg atoms can be derived
from the hydrogen atom approach. The energy and radius of hydrogen atom with
an electron in a state with principal quantum number n are given by:

En = −Ryhc

n2
, (2.22)

rn = a0n
2, (2.23)

where a0 stands for the Bohr radius and Ry for the Rydberg constant:

Ry =
mee

4

8ε20h
3c

= −13.6 eV. (2.24)

Rydberg states with small angular momentum l < 4 are called defect states. This
defect is due to the energy shift caused by the core electrons. This shift has to be
taken into account by replacing the principal quantum number n with an effective
principal quantum number n∗ = n− δl. The quantum defect, δl, can be calculated
with the Rydberg-Ritz formula [34]. Table (2.1) shows the properties of Rydberg
atoms that are important for following discussion.

2.2.2 Dipole matrix elements
One condition for a coherent two photon excitation to the Rydberg state is that
the excitation rate Ω is bigger than the decay rate Γ. When this requirement is
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Table 2.1: scaling laws for properties of Rydberg atoms.
Property Expression P state n-scaling law

Binding energy En = − Ry

(n∗)2
(n∗)−2

Level spacing En − En−1 (n∗)−3

Polarizability π (〈r〉)2 (n∗)7

Liftime (spontaneous decay) τ = τ ′n∗γ (n∗)3

Lifetime (black body radiation) τbb = 3~(n∗)2

4α3kBT
(n∗)2

Transition dipole moment µ5P,nS = 4.4154(n∗)−1.5 (n∗)−1.5

Dipole-dipole interaction coefficient C3 (n∗)4

van der Waals interaction coefficient C6 (n∗)11

met one can observe coherent excitation. Both Ω and Γ depend on the quantum
number n. The Rabi frequency in a two level atom is proportional to the matrix
transition element µeg and the decay rate Γeg is proportional to its square:

Γeg =
2ω3

eg

3ε0hc3
µ2
eg. (2.25)

This matrix element can be decomposed to a radial Rn′l′,nl and an angular
Al′m′,lm part. For the transition caused by the absorption of a photon µeg is given
by:

µeg = e 〈e| ε̂r |g〉 = e 〈n′l′m′| ε̂r |nlm〉 = e 〈n′, l′ ‖rq‖n, l〉Al′m′,lm, (2.26)

where the states are described using their quantum numbers (n,l,m), m stands
for magnetic quantum number and the final states are indicated by an apostrophe
(n’,l’m’). the radial part of the dipole matrix is in the order of a0n

2 and it is defined
as:

〈n′, l′ ‖r‖n, l〉 =
√
lmaxRn′,l′,nl, (2.27)

where lmax stands for the maximum of l′ and l and Rn′,l′nl is given by

Rn′,l′,nl =

∫
r2drRn′,l′(r)rRn,l(r). (2.28)

2.2.3 Lifetime of Rydberg States
All atoms that are excited to Rydberg states are subject to spontaneous emission.
A Rydberg state has many lower lying n,l states it can decay to. Therefore, the
total lifetime of a state is the sum of all decay rates through all decay channels:

1

τ
=
∑
n,l

An′,l′,nl, (2.29)
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where An′,l′,nl are the Einstein A-Coefficient describing the total decay rate
from a state n’,l’ to a state n,l:

An′l′,nl =
∑
m,q

2ω3
eg

3ε0hc3
| 〈n′l′m′| ε̂r |nlm〉 |2 =

2ω3
ege

2

3ε0hc3

R2
n′l′,nl

2l′ + 1
. (2.30)

For the nS and nD alkali Ryberg states here investigated, the lifetimes are
several microseconds long. The radiative lifetime increases as n or l increases
and can be accurately calculated [71] using the empiric formula:

τ = τ ′n∗γ. (2.31)

The lifetime of Rydberg atoms can be also limited by thermal radiation so the
black body correction has to be taken into account:

1

τT
=

1

τ
+

1

τbb
, (2.32)

where 1/τbb is the back body radiation induced decay rate [34]:

1

τbb
=

4α3kBT

3(n∗)2
, (2.33)

with α the fine structure constant. Values of τ ′ and γ are presented in table (2.2)

Table 2.2: Lifetime parameters for Rb atoms [34].
Parameter s p d f
τ ′ (ns) 1.43 2.76 2.09 0.76
γ 2.94 3.02 2.85 2.95

2.2.4 Rydberg Atoms in Electric Fields
Rydberg atoms are sensitive to electric fields. The large separation between an
electron and its positive core is responsible for the weak binding energy. There-
fore, to ionize Rydberg atoms relatively weak electric fields are needed. This sen-
sitivity is used in the detection system where excited atoms are ionized and then
pushed toward a detecting device. The ionization and the detection of Rydberg
atoms is described in more details in chapter 4 and chapter 5. Atoms other than
hydrogen can be described using the hydrogen approach. However, the important
differences should be kept in mind. In zero electric field the ionic core depresses
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the energy of the levels with low l. To quantitatively treat the problem of an atom
in electric field, a perturbative approach is used with the perturbation term for an
electric field of a strength F in z-direction V = ezF . The perturbation treatment
of the energy of states n gives:

En = E(0)
n +

〈
n(0) |V |n(0)

〉
+
∑
k 6=n

|
〈
n(0) |V |n(0)

〉
|2

E
(0)
n − E(0)

k

+ ..., (2.34)

where the second order term is summed over all unperturbed states
∣∣k(0)

〉
.

Atomic states with distinct parity don’t have a permanent dipole moment there-
fore, there is no energy correction for the first order. Degenerate states however,
with different parity can mix and form states with the permanent dipoles. This
dipole moment can then interact with the applied electric field. Therefore, the
Stark effect can be observed. One can distinguish two types of Stark effect, first
and second order. The first order results in a linear shift of the energy levels and
it happens for degenerate hydrogen-like states. As presented in the textbook by
Gallagher [34], the defect states, as those we are dealing with in the alkali atoms,
show the second order Stark effect which is quadratic and can be calculated using:

∆Est = −1

2

[
α0 + α2

3m2
J − J(J + 1)

J(2J − 1)

]
F 2, (2.35)

where α0 and α2 are the scalar and tensor polarizabilities, the F is the applied
electric field and J stands for the angular momentum with its projection along the
quantization axis. The sign of the quadratic shift is determined by the sign of the
detuning to the closest state due to the energy denominator in equation (2.34). The
Stark shift in rubidium atoms varies for different l-levels. For S-states th energy
shift is always negative [61], while for D-state positive polarizabilities were also
observed [38]. An important feature of non-hydrogen alkali atoms is the avoided
crossing between Stark levels of two different n-states.

2.2.5 Dipole-Dipole Interaction
During experiments with Rydberg atoms, the electric field is used to ionize the
atoms or to induce a permanent dipole moment. When the electron cloud is shifted
with respect to the nucleus atoms gain a dipole moment. Dipole-dipole interac-
tions are the result of the interactions between two atoms or molecules with per-
manent dipole moments. To describe the dipole-dipole interaction let us consider
a system consisting of two atoms A (core A+ and electron 1) and B (core B+ and
electron 2), as in figure 2.5. These atoms are separated by the distance ~R. The

13



Figure 2.5: Two excited atoms: A (core A+ and electron 1) and B (core B+ and
electron 2) at the distance R.

Hamiltonian describing this system is:

H = HOA +HOB + Vint + Vdd, (2.36)

where HOA and HOB are the terms describing electrons of atoms A and B, and
Vint determines the Coulomb interaction terms between two atoms :

Vint =
e2∣∣∣~R∣∣∣ − e2

| ~rA2|
− e2

| ~rB1|
+
e2

|~r|
, (2.37)

here ~R = ~AB is the distance between atom A and atom B, ~rA2 is the distance
between atom A and the excited electron of atom B and ~rB1 is the distance between
atom B and the excited electron of atom A.

~rA2 = ~R + ~rB2 , (2.38)

~rB1 = ~R + ~rA1 , (2.39)

~r = ~R− ~rB1 + ~rA2 . (2.40)

Then the interaction term of the Hamiltonian Vdd is described by the dipole-
dipole interaction

Vdd =
1

4πε0R3
( ~µA · ~µB − 3(~n · ~µA)(~n · ~µB)), (2.41)

where ~n =
~R
R

is the interatomic operator and ~µA and ~µB are the atomic dipoles.
Due to the long range interaction electron 1 is always close to core A and electron
2 to core B.
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Figure 2.6: (a) Two excited atoms A and B separated by a distance R in the pres-
ence of an electric field ~F with an angle θ between the vector of the electric field
and the dipole moment of atom and (b) with the dipole moments µA andµB along
the direction of the electing field ~F .

If we apply an electric field, the atoms may create a permanent dipole along
the direction of the applied field ~F . If this external field ~F results stronger than all
other fields, for example the sum of the fields created by the dipoles, all dipoles
are aligned along the same field ~F :

1

2
α~F = ~µ, (2.42)

where α is the polarizability. Then Vdd will take the form

Vdd =
~µA · ~µB
4πε0

1

R3
(1− 3 cos2 Θ), (2.43)

where Θ is the angle between the vector of the electric field and the dipole
moment of atom A. The schematic picture of atom A and B in the presence of
the electric field ~F is shown in figure (2.6). The (1 − 3 cos2 Θ) dependence was
observed in Noel’s group [16]. In figure (2.7) the interaction between two dipoles
are shown. Dipoles placed side to side repel each other and dipoles aligned head
to tail attract.

The amplitude of dipole-dipole interaction is typically written in the form

Vdd =
C3

R3
, (2.44)

with the C3 coefficient determining the interaction amplitude. C3 increase with
the quantum number and obeys a rapid (n∗)4 scaling as in ref. [22].

15



Figure 2.7: Dipoles placed "side by side" repel each other, the one "head to tail"
attract.

In absence of a permanent dipole, the energy shift constitutes the distance
dependent potential curve between Rydberg atoms that is given by:

~∆̃(R) =
~∆

2
− sign(~∆)

√
~∆2

4
+
C2

3

R6

, (2.45)

where ∆ is the energy mismatch of the energy transfer process. The cross over
can be defined as a distance at which the energies transition from Van der Waals
into dipole dipole form and is gen by:

~∆ =
C3

R3
V dW

. (2.46)

Therefore we can conclude that for short distance R << RV dW the energy
shift takes form :

~∆̃ =
C3

R3
, (2.47)

which is the largest possible interaction energy between two Rydberg atoms.
In the case of long distance tail R >> RV dW when only one nearby energy

level dominates, the energy shift takes form:

∆E =
(C3/R

3)2

~∆
=
C6

R6
, (2.48)

with the C6 coefficient determining the interaction amplitude. Also C6 increase
with the quantum number and obeys a more rapid (n∗)11 scaling as in ref. [22].
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2.2.6 Dipole Blockade

Dipole-dipole interactions between Rydberg atoms give rise to a phenomenon
called dipole blockade. The blockade of excitation to the Rydberg state occurs
when dipole-dipole interactions take place and shift the energy levels. The block-
ade effect has been observed for cold atoms [22], and several similar phenomena
has been observed for electrons [32] and photons [7]. In dipole blockade, the
laser excitation of cold Rydberg atoms ground and Rydberg states are coupled by
a laser with a Rabi frequency Ω. When two atoms are in the same excited state,
the strong interaction between them (due to their large electric dipoles) causes a
symmetrical energy shift ∆E. If this shift becomes bigger then Ω, only one atom
can undergo excitation to the Rydberg state [73, 33]. In other words, the proba-
bility of excitation from the ground levels to the Rydberg levels decreases thanks
to the interaction with an already excited atom. If the interaction energy becomes
larger than the Rabi frequency and the laser resolution, the excitation laser fre-
quency is out of resonance with the shifted state. Then only one atom at a time
can be excited to the Rydberg state. The dipole blockade effect will be studied in
two extreme regimes: pairs of Rydberg atoms and dense atomic clouds.

Figure 2.8: (a) Principle of the Rydberg blockade between two atoms separated
by a distance R. The ground state |g, g〉 is coupled to the excited state |e, e〉 with a
Rabi frequency Ω. The strong interaction between the two atoms causes a shift in
the level energy. when this shift is larger than ~Ω the blockade effect occurs. (b)
Two-level atom approach is used to described atoms in the blockade regime. The
atoms are described by the two level system. The |Ψ+〉 is coupled only with |g, g〉
states, where |Ψ−〉 is not coupled to neither of |g, g〉 and |r, r〉 states.

First lets consider a pair of Rydberg atoms. In this situation one can either
excite the two atoms individually or collectively. Conditional excitation refers to
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the situation when atoms are addressed individually. During collective excitation
one addresses both atoms at the same time. The principle of the dipole blockade is
indicated in figure (2.8). The most important consequence of the dipole blockade
is the fact that we are not able to indicate which of these two atoms carries the
excitation. The two atoms end up entangled, with the wavefunction given by:

|Ψ+〉 =
1√
2

(
|g, r〉 eikR2 + |r, g〉 eikR1

)
, (2.49)

where R1 and R2 stand for the position of the two atoms and k for the wavevec-
tor. The antisymmetric wavefunction is given by

|Ψ−〉 =
1√
2

(
|g, r〉 eikR2 − |r, g〉 eikR1

)
, (2.50)

The coupling of |g, g〉 state with |Ψ+〉 is
√

2Ω and coupling with |Ψ−〉 doesn’t
exist, see figure (2.8). Therefore, two atoms taking part in the Rydberg excitation
can be described by an effective two level system. If the decay rate of the Rydberg
state, Γ, is smaller than the effective Rabi frequency, Ω′eff , the blockade radius is
defined by:

rb ≡ 6

√
C6

~Ω′eff
. (2.51)

The blockade radius describes the smallest volume in which only one atom can be
excited into the Rydberg state.

The experiments presented in this thesis are conducted with samples of ∼ 105

atoms and high densities (∼ 1013 cm−2). This means that the volume of a blockade
sphere may not cover all the volume of the sample (depends on the state and there-
fore on the blockade radius). Thus the sample may contain up to several hundreds
of atoms in the ground state and only a few in the Rydberg state. This fact changes
the dynamics and now collective behavior has to be considered. The Hamiltonian
that describes system of N interacting externally driven atoms is given by:

HN =
N∑
j=1

Hs
j +

∑
k<l

Vkl
1

2
(1 + σz)k

1

2
(1− σz)l, (2.52)

where Vkl stands for the interactions between atoms k and l, Hs
j is the single

atoms Hamiltonian defined by:

Hs
j =

~
2

Ω(σx)j +
~
2

∆(σz)j, (2.53)

and σx and σz are the well know Pauli matrices. The indexes j,k and l describe
The Hilbert subspace for respective atom. If the interaction are strong enough
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and only one atom can be excited, all states with more than one excitation can be
neglected. The ground state of the system is described by:∣∣Ψ(N,0)

〉
= |g1, g2, ..., gN〉 , (2.54)

and the collective state with one excitation is given by:∣∣Ψ(N,1)
〉

=
1√
N
|g1, g2, ..., ei, ..., gN〉 . (2.55)

where a constant phase factor was inserted for all components of the collective
state. In reality atoms separated by more than one wavelength experience different
phases of the excited light. This system can be again reduced to two-level system
with

∣∣Ψ(N,1)
〉

and
∣∣Ψ(N,0)

〉
states. The transition is driven with collective Rabi

frequency
Ωcoll =

√
NΩ. (2.56)

Therefore this system of N atoms behaves like a single atom and can be called the
superatom. The enhancement by

√
N of Rabi frequency was already predicted by

[27].
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Chapter 3

Introduction to Bose Einstein
Condensation and Optical Lattices.

A Bose Einstein Condensate (BEC) is the starting point of most of our investiga-
tions and it is used as a source of a phase coherent cold atoms. In 1995 the phase
transition of a dilute gas of bosons to a BEC was observed by several groups
[2, 26, 11]. The realization of a Bose Einstein Condensate was one final result
of a decade long research on the cooling and trapping of atomic gases. In this
chapter a review of some basics concepts about the theory of degenerate bosonic
gases is shown. Then the techniques needed to optically cool and trap atoms are
presented. Finally some theoretical and experimental concepts about optical lat-
tices are described, as they are used as an important experimental tool in one of
the later chapters of this thesis.

3.1 Bose Einstein Condensation in dilute alkali gases
Bose Einstein Condensation is a quantum phenomenon that results from the quan-
tum statistics of identical particles with integer spin. A Bose Einstein Condensate
(BEC) was predicted in 1925 by Albert Einstein [30, 31] on the basis of a work
by Satyendranath Bose [10]. The achievement of a BEC provides unique opportu-
nities to explore quantum phenomena using macroscopic samples. In this section
the main ideas for the theoretical description of Bose Einstein Condensates are
shown.

3.1.1 The non interacting Bose gas: statistical approach
A gas of non-interacting bosons at temperature T can be treated as a grand canon-
ical ensemble with the number of atoms given by:
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N =
∑
m

1

exp(β(εm − µ))− 1
, (3.1)

where εm is the mth energy level, µ stands for the chemical potential, kB is the
Boltzmann constant and β = (kBT )−1. If the energy spectrum is considered to be
a continuum the sum in equation 3.1 can be replaced by an integral resulting in:

N =

∫ ∞
0

g(ε)dε

exp(β(ε− µ))− 1
. (3.2)

Figure 3.1: When the temperature of the gas is high enough, the quantum nature
of the particles can be neglected and the system obeys Boltzmann statistics. With
decreasing temperature, the De Broglie length increases and when it has the same
order of magnitude as the inter atomic distance, the wave functions overlap [41].

In equation 3.2, g(ε) stands for the density of states and depends on the poten-
tial experienced by bosons. For a harmonic trapping potential it is given by:

g(ε) =
ε2

2(~ωho)3
. (3.3)

Magnetic and optical traps used in experiments on cold Bose gases can be
approximated by the harmonic oscillator, whose energy spectrum is;

εnx,ny ,nz =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy +

(
nz +

1

2

)
~ωz. (3.4)
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Therefore, ωho = (ωxωyωz)
1/3 and stands for the mean trapping frequency.

Below the critical temperature TC the chemical potential is extremely close to
zero, µ ≈ 0, [55]. the number of atoms, N0, populating the lowest energy state,
ε0,0,0 becomes a macroscopic fraction of the whole system. When this condition is
fulfilled Bose Einstein condensation occurs. The number of atoms in the excited
state is much smaller than the total number of atoms Nexc << N , where Nexc is
described as a difference between the total number of atoms and the number of
atoms in the ground state: .

Nexc = N −N0 =

∫ ∞
0

g(ε)dε

exp(βε)− 1
. (3.5)

Introducing equation (3.3) into equation (3.5) and solving the integral, one
obtains:

Nexc = N −N0 = ζ(3)

(
kBT

~ωho

)
, (3.6)

where ζ(·) is the Riemann function with ζ(3) ∼= 1.2. The gas becomes a
thermal Bose gas when its temperature is above the critical value T=Tc such that
N0 << N . This value can be calculated by imposing N0=0 into equation (3.6):

kBT = ~ωho
(
N

ζ(3)

)
∼= 0.94~ωhoN1/3. (3.7)

This equation shows that for a large enough number of atoms, N, the criti-
cal temperature is much larger than the energy level separation: kBTC/ (~ωho) ∼=
0.94N1/3 >> 1. In this case Bose Einstein condensation can be obtained experi-
mentally with the use of cold bosonic gases confined in harmonic potentials. For
temperatures below Tc the numbers of atoms in the ground state increases and
from equation (3.1) and equation (3.6) the fraction of condensed atoms can be
evaluated as:

N0

N
= 1−

(
T

Tc

)3

. (3.8)

During the experiments this behavior is clearly visible in the different widths
of the momentum distribution of the atoms in the condensate fraction and those in
the thermal cloud. The thermal cloud follows the Boltzmann distribution while the
condensate is described by the wave function of the ground state of the harmonic
trap. The wave function of the condensed gas is then given by:

φ0(~r) =
(mωho
π~

)3/4

exp
(
−m
π~
(
ωxx

2 + ωyy
2 + ωzx

z
))
. (3.9)
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Figure 3.2: Column density as a function of the position for a non-interacting
Bose gas at T = 0.95TC . The dotted line represents the density of the conden-
sate fraction, the dashed line shows the density of the thermal fraction and the
continuous line is the total density.

If the confining potential is switched off when the temperature is between
0 and Tc the distribution of the condensed and thermal part is different. The
atoms in the thermal cloud are characterized by the Gaussian distribution with
a larger width. The width of the BEC is narrower than in the thermal cloud case.
From these Gaussian widths the temperature of the atoms can be calculated. More
details about Bose Einstein condensation can be found in [25, 63].

3.1.2 The interacting Bose gas: mean field theory
Up to this point the non-interacting gas was taken into account but in the case
of weakly interacting atoms a different theoretical approach is needed. The many
body Hamiltonian describes a system of N interacting particles in a potential Vext:

Ĥ =

∫
d~rΨ̂+(~r)

[
− ~2

2m
+ Vext

]
Ψ̂(~r)+

1

2

∫
d~r′d~rΨ̂+(~r)Ψ̂+(~r′)V (~r−~r′)Ψ̂(~r)Ψ̂(~r′),

(3.10)
where V (~r−~r′) is the inter-particle interaction potential and Ψ̂2(~r) is the boson

field operator that annihilates or creates a particle at the position ~r. This operator
can be written as:

Ψ̂(~r) =
∑
α

Ψα(~r)âα, (3.11)
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where Ψα(~r) is the single particle wave function of the α-th energy level, and
âα is the corresponding boson annihilation operator. This equation can be sim-
plified using mean field approximations. The condensate part φ̂(~r, t) is separated
from the bosonic operators:

Ψ̂(~r, t) = φ̂(~r, t) + Ψ̂′(~r, t). (3.12)

When the temperature of the system is below Tc, the number of atoms in the
ground state is very large. Therefore, an addition or subtraction of one atom from
the system does not significantly changes the populations. For these reasons we
can treat φ(~r, t) as a complex function and equation (3.12) can be written as:

Ψ̂(~r, t) = φ(~r, t) + Ψ̂′(~r, t), (3.13)

where the wavefunction of the condensate is defined as φ(~r, t) ≡
〈

Ψ̂(~r, t)
〉

and the condensate density is:

n0(~r, t) = |φ(~r, t)|2 . (3.14)

The boson field operator in equation (3.13) is written in the Heisenberg pic-
ture, so it can be directly written in the Heisenberg equation:

i~
∂

∂t
Ψ̂(~r, t) =

[
Ψ̂, Ĥ

]
=

(
−~2∇2

2m
+ Vext(~r) +

∫
d~r′Ψ̂+(~r′, t)V (~r′ − ~r)Ψ̂(~r′, t)

)
Ψ̂(~r, t).

(3.15)
Assuming a dilute gas, the interaction term is just the two body scattering and

the interaction potential can be written as:

V (~r′ − ~r) =
4π~2as
m

δ(~r′ − ~r), (3.16)

where as is the s-wave scattering length. Moreover, if in equation 3.13, Ψ̂′(~r, t)
is small, then the operator Ψ̂(~r, t) can be replaced by the complex function φ(~r, t)
[25, 63]. In this way equation (3.15) becomes the Gross Pitaevskii Equation:

i~
∂

∂t
φ(~r, t) =

(
−~2∇2

2m
+ Vext(~r) + g

∣∣φ(~r, t)2
∣∣)φ(~r, t), (3.17)

whereg is given by

g =
4π~2as
m

(3.18)

p The Gross Pitaevskii Equation is Schrödinger equation with a nonlinear interac-
tion term. It is valid when the total number of atoms is much larger than 1, and if
scattering length is much smaller than the mean distance between atoms.
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3.2 Laser Cooling
This thesis work based on the excitation of Rydberg atoms from ultracold atomic
samples. To obtain a source of such atomic ensembles one needs to find meth-
ods to cool down the atoms. The Laser cooling, first mentioned by Hänsch and
Schawlow[37] and by Lethokov[3]: in the seventies is based on the interaction
between atoms and laser light. The development of laser cooling techniques was
an important step towards the realization of the Bose Einstein Condensate. In this
section the Doppler and Sub-Doppler laser cooling methods are presented.

3.2.1 Doppler Cooling
The first idea of laser cooling was to exploit light absorption and the Doppler ef-
fect due to a motion of atoms [37]. A two level atom absorbing a photon gets a
momentum kick in the direction of the photon propagation axis. The atoms spon-
taneously reemit a photon in a random direction, obtaining a recoil in the direction
opposite to the direction of the photon. If the difference between the frequency of
the irradiating light ωL and the atom transition frequency ω0 is negative

∆ = ωL − ω0 < 0 (3.19)

the laser is red detuned and an atom has maximum probability to absorb a
photon when it moves in the opposite direction with respect to the laser beam
propagation, since the Doppler effect shifts the laser frequency closer to the atomic
transition frequency. The velocity of the atom is decreased by gaining momentum
in the direction opposite to its motion. While considering the absorption of several
photons and their following emissions, one gets a momentum kick per cycle in
the direction of the incoming photon. This idea can be considered in a more
rigorous treatment, when one takes into account the radiation pressure by solving
the optical Bloch equations [57]. For small detuning (∆ << ω0) a process of
absorption and spontaneous emission on one atom changes its momentum by:

δp = ~~k (1− cos(θ)) , (3.20)

where ~kL = kLẑ is the wavewector and θ is random. Therefore, by averaging
over θ and deriving from the Bloch equation solution the number of spontaneous
emission processes per unit time, the force acting on atoms can be written as:

F = ~k
ΓΩ2

R/4

∆2 + Γ2/4 + Ω2/2
, (3.21)

where Γ is the natural linewidth of the excited atomic state and ΩR the Rabi
frequency. Considering the case of two counterpropagating beams, the total force
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is a sum of the forces acting on the atoms. The detuning ∆ has to be replaced
by ∆ ± kLv to take into account the Doppler shift, where v is the velocity of the
atom. One then finds:

~F = ~F+ + ~F− ≈ ~k2
LΓ∆

Ω2R

(Γ2/4 + ∆2)
= −γvz ẑ. (3.22)

For the red detuning, i.e. ∆ < 0 equation (3.22) states that the laser fields work
as a viscous medium for the atom. Such a system is know as an optical molasses
[18]. The theoretical lowest temperature achievable in an optical molasses is:

kBTD =
1

2
~Γ, (3.23)

and is usually referred to the Doppler temperature.

3.2.2 Sub-Doppler Cooling

Figure 3.3: Polarization scheme for the lin ⊥ lin configuration.

Although using the Doppler cooling one can cool samples down to tempera-
tures on the order of hundreds of microKelvins, the temperatures far below than
that are needed to achieve a Bose Einstein condensation. The next step in the quest
for condensation is constituted by the sub-Doppler cooling mechanisms where
temperatures lower than the Doppler cooling are realized experimentally [48].
The explanation for this behavior was found by treating the atom-light interaction
in dressed atom model of chapter 2. Sub-Doppler cooling was then explained by
taking into account the internal structure of an atom and the presence of polariza-
tion gradients. This process is usually called Sisyphus cooling and can be easily
understood in the case of two counterpropagating laser beams in the lin ⊥ lin
configuration, where beams have mutually orthogonal polarization. In this case
the laser light carries the overall electric field given by:

~E(~r, t) = E0x̂ cos (ωLt− kLz) + E0ŷ cos (ωLt− kLz) (3.24)
= E0 [(x̂+ ŷ) cosωLt cos kLz + (x̂− ŷ) sinωLt sin kLz] . (3.25)
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Considering an atom with total angular momentum Jg=1/2 for the ground state and
Je=3/2 for the excited one (see figure 3.4), the two Zeeman sublevels of the ground
state have different energies depending on the local polarization of the laser field.
These two states cross when the local polarization is linear. When an atom is in a
higher sublevel it has a maximum probability to experience a photon absorption.
Every time an atom spontaneously decays to the lower sublevel after absorption,
it loses the kinetic energy that it used to climb the potential hill corresponding to
the difference in energy between the two ground sublevels. This process repeats
during the motion of the atom.

Figure 3.4: Energy of the ground state sub levels of a Jg
=1/2 atom in a lin ⊥ lin laser field configuration.

This sequence when averaged in time causes a cooling of the gas below the
Doppler limit. The steady state kinetic energy is on the order of a few times the
recoil energy:

Erec = ~2 k
2
L

2m
, (3.26)

where kL = 2π/λ is the light wavevector. For example, the possible achieved
temperature in 87Rb is on the order of 1 µK.

3.3 The Magneto Optical Trap
Cooling in optical molasses is based on the dependence of the detuning seen by
the atoms on their velocity, see equation 3.25. Atoms inside three dimensional
molasses are not spatially confined. To trap these atoms a good strategy is to
make this detuning dependent on the spatial position of the atoms. To do this a

28



hω L

m =-1

m =1

m = 0

σσ+ -

0 z
^

δ

Figure 3.5: Principle of 1D MOT for a F=0→F’=1 transition. The inhomogeneous
magnetic field induces a space-dependent shift of Zeeman sublevels, producing a
space-dependent force on the atoms.

magnetic gradient b′ can be used. In a one dimensional system this corresponds to
having a magnetic field varying in space: ~B = b′zx̂. The magnetic field shifts the
Zeeman sub-levels of the excited state by:

∆Ez = µBgFmF b
′z, (3.27)

where µB is the Bohr magneton, gF is the Landé factor and mF stands for the z
component of the angular momentum. Assuming that the two counterpropagating
beams have a circular polarization σ± and that they create an optical molasses
along axis z, the detuning of these beams become:

∆∓ γvz ∓ µBgFmF b
′z/~. (3.28)

To understand how trapping occurs, one can consider atoms to have a ground
state with total angular momentum Jg=0 and an excited state with Je=1. The mo-
lasses laser beams are resonant to the mJ=0→mJ=1 transition for z < 0 and the
mJ=0→mJ=-1 transition for z > 0. In the case of circular polarizations σ+ and
σ−, the atoms absorb photons only when they are far from B=0 position, and only
from the molasses beam that is counterpropagating with respect to their motion,
see figure (3.5). In the three dimensional system with three counterpropagating
pairs of laser beams, force acting on atoms is given by, see figure (3.6):

~F = −
(
γv +mω2~r

)
, (3.29)

where

γ = −~kL2Γ∆
Ωr

(Γ2/4 + 2∆)2
ω2 =

µgF
mF b

′

m~kL
γ. (3.30)
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Figure 3.6: Laser beams and magnetic coils configuration in a standard 3D MOT.

The atoms are then trapped around B=0 point and this trapping is called Magneto-
Optical trapping.

3.4 Evaporative Cooling
Bose Einstein condensation requires cooling samples to temperatures not achiev-
able with an optical molasses. The technique used to cool atoms to the regime
where Bose Einstein condensation is possible is called the evaporative cooling
[56]. The idea of an evaporative cooling is to expel atoms with the highest en-
ergy from the whole system. This is achieved by cutting the edges of the thermal
velocity distribution as presented in figure 3.7.

Figure 3.7: In the evaporative cooling process the tail of the thermal velocity
distribution of the atoms is cut by expelling the atoms with the highest energy, see
(b). (c) The system then re-thermalizes and and the final temperature is lowered.

The evaporation is applied by lowering the edges of the confining potential and
letting the hottest atoms leave the trap. In our experiments evaporative cooling
is done in magnetic and optical traps. To obtain an efficient cooling procedure
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with a minimum loss rate, the energy of the system must vary sufficiently slowly
compared to the timescale of the thermalization process. The latter depends on
the elastic collision rate, so dense samples are needed if one wants to achieve fast
evaporation.

3.5 The magnetic Trap
In order to implement evaporative cooling with cold atoms, one needs conserva-
tive traps and the possibility to cut the high-energy tail of the atomic momentum
distribution. In our experiment we used two different magnetic traps.

• The quadrupole trap. Trapping with the quadrupole trap is the easiest
method of trapping atoms without using light assisted methods. A spherical
quadrupole field creates a magnetic gradient which results in a field:

~B = 2b′zẑ − b′yŷ − b′xx̂, (3.31)

where ẑ is called the strong axis because of the factor 2. The potential seen
by a particle with magnetic moment ~µ in a magnetic field ~B is given by:

U = −~µ ~B, (3.32)

and the energy of the atoms is then described by an equation similar to
equation (3.27):

The atoms are confined in a local energy minimum. For gFmF > 0 (weak
field seeking states) this requires a local magnetic field minimum. The states
that are strong field seeking (gFmF < 0) cannot be trapped by static mag-
netic fields due to Maxwell equations not allowing a maximum of a mag-
netic field in a free space. The modulus and orientation of the field seen
by the atoms in motion change continuously. The magnetic dipole of these
atoms must follow the magnetic field in order to avoid spin flips (Majorana
spin flips) that would cause transitions to untrapped Zeeman states. The
condition that has to be satisfied in order to avoid this behavior is:

dθ

dt
<
µB

~
= ωLar, (3.33)

where θ is the orientation of the magnetic field B and ωLar is the frequency
of rotation of the atomic magnetic moment around the direction of the mag-
netic field, called the Larmor frequency. In the region where B=0, ωLar=0
and the condition presented above cannot be satisfied and spin flips result in
loss of atoms from the trap.
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Figure 3.8: The TOP trap. A rotating magnetic field causes a continuous displace-
ment of the B=0 point in order to avoid spin flip losses at the center.

• The TOP Trap. A time-averaged orbiting potential (TOP) was introduced
in ref. [64] in order to solve the problem of Majorana spin flips at the center
of a quadrupole magnetic trap. Those losses are avoided by the use of a
rotating magnetic bias field BTOP added to the quadrupole magnetic field,
see figure (3.8). This time-dependent magnetic field creates a time-averaged
minimum of the effective potential acting on the atoms. The bias field is
given by:

~BTOP = B0 [x̂ sin(2πΩTOP ) + ẑ cos(2πΩTOP )] , (3.34)

where the rotation frequency ΩTOP is chosen to be smaller than ωLar to
maintain the atomic magnetic moment aligned with the total field. If the
motion of the atoms is much slower than the movement of the magnetic
field point, the potential felt by atoms then corresponds to the instantaneous
potential integrated over time:

U(x, y, x) =

∫
t=2π/ΩTOP

U(x, y, x, y)dt. (3.35)

The shape of the integrated potential is, close to its minimum, parabolic,
with its minimum Bmin 6= 0, and with average frequency given by:

ωho = (ωxωyωz)
1/3 =

b′√
BTOP

√
µ

m
. (3.36)
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3.6 The Optical Dipolar Trap
The second stage of evaporative cooling is implemented in an optical trap. The
optical dipole trap (further called dipole trap) uses the dipole force that emerges
when atoms are irradiated by a laser light [36]. The laser light has to be far detuned
from the atomic transition of the sample in order to avoid photon scattering. The
dipolar force is created due to the electric field carried by light:

~E(~r, t) = ~Eωe
−iωt + ~E−ωe

iωt. (3.37)

In equation (3.37) the classical field ~Eωe
−iωt represents the absorption of a

photon in a quantum mechanical treatment. The field ~E−iωe
ωt instead corresponds

to the photon emission. The irradiated atoms experience a potential acting on them
given by:

U = −~d · ~Eω, (3.38)

where ~d stands for the atomic electric dipole. Due to this potential the ground
state of the atoms changes as:

∆Eg =
∑
e

〈g| ~d ~Eω |e〉
1

Eg − Ee + ~ω
〈e| ~d ~E−ω |g〉 , (3.39)

where the sum is over all the excited states. Equation (3.39) after some calcu-
lation becomes:

∆Eg = −1

2
α(ω)

〈
E2(~r, t)

〉
t
, (3.40)

where 〈·〉t refers to a time average and α(ω) stands for the atomic polarizabil-
ity given by:

α(ω) =
∑
e

2(Ee − Eg)
∣∣∣〈e| ~dε̂ |g〉∣∣∣2

(Ee − Eg)2 − (~ω)2
(3.41)

The ground state energy changes due to the presence of the effective potential
Veff = ∆Eg causing a force on the atoms:

~F = −∇Veff = −1

2
α(ω)

〈
∇E2(~r, t)

〉
t
. (3.42)

The dipolar force, attractive when ~ω < Ee − Eg, i.e. the laser light is red
detuned, and repulsive when ~ω > Ee − Eg, i.e. the optical field is blue detuned,
relies on an spatially inhomogenous laser intensity. This description ignores the

33



Figure 3.9: On the left: Dipolar confinement along the gravity (z) direction cre-
ated by a laser beam. On the right: Dipolar confinement on the XY plane created
by two crossed laser beams.

effect of spontaneous emission and it is valid when the detuning of the laser light
is much bigger then the spontaneous decay rate:

|∆| = |~ω − (Ee − Eg)| >> (Ee − Eg). (3.43)

In this case atoms are excited to the virtual energy levels and then decay by
stimulated emission. The heating of the sample can be neglected because of the
absence of spontaneous emission. Therefore, a red detuned Gaussian laser beam
creates a trap for the atoms. This trap is usually called the dipolar trap has a depth
that can be expressed in terms of an equivalent temperature Tdip in Kelvin:

Tdip =
~Γ2

π∆IsatkB

P

w2
0

, (3.44)

where P is the power of the laser beam and w0 stands for its waist. The radial
frequency of the dipolar trap is described by:

ωdip =

√
2Γ2~

π|∆|mIsat

√
P

w2
0

. (3.45)

3.7 Optical lattices
Section (3.6) presented our application of the dipole force for trapping and ap-
plying evaporative cooling. By going one step further one can make this force
periodic. In this way new applications such as investigation of the BEC phase,
are available. Periodic potentials have been studied extensively in the physics
of electrons in crystals. Since some of the experiments presented in this thesis
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were performed on Bose Einstein Condensates loaded into periodic potentials, in
this section tools used for the experimental realization and calibration of optical
lattices are briefly discussed.

3.7.1 The standing wave

Figure 3.10: The periodic potential created by two counterpropagating laser
beams with lattice constant dL and depth V0. The radial Gaussian profile is due to
the finite size of the laser beams.

A standing wave can be realized using counterpropagating linearly polarized
laser beams of the same frequency ωL. The electric field ~E generated by the light
is given by:

~E(~r, t) = E0 sin(kLx+ ωLt)ê+ E0 sin(kLx− ωLt)ê = 2E0 sin(ωLt) sin(kLx)ê,
(3.46)

where E0 stands for the electric field amplitude and kL for the wavevector.
As explained in subsection (3.6) atoms in the presence of a wave feel an external
potential. In the case of a standing wave these atoms feel a periodic potential.
This potential depends on a square of ~E and can be written as:

V (x) =
V0

2
cos(2kLx), (3.47)

where V0 is the depth of the optical lattice. The amplitude of this potential is
given by:

V0 = ξ~
Ip
Is

Γs
∆
, (3.48)

where Ip stands for the peak intensity of the laser beam, Is is the saturation
intensity, ξ stands for a correction depending on the level structure of the atom
[36, 24] and dL is the lattice spacing. The quantum mechanical approach takes
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into account the interaction between an atom and the photons of the lattice beams.
This approach requires to define quantities related to the lattice starting from the
recoil momentum prec = ~kL. Therefore V0 is measured in units of the recoil
energy Erec introduced in equation (3.26). Other important quantities used are the
recoil frequency ωrec = Erec/h and the recoil velocity vrec = prec/m.

3.7.2 Atoms in a periodic potential
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Figure 3.11: (a) The dispersion law for the free particle presented as a dashed line
plotted with the energy versus momentum curve in the presence of the periodic
potential (continuous line) (b) Energy spectrum folded into first Brillouin zone.

• The bands:

The theory than has been most successful in describing periodic potentials
in quantum mechanics is the Bloch bands theory. The Hamiltonian describ-
ing a system in the presence of a spatial periodicity equal to L is given by:

H =
∇2

2m
+ V (x) =

∇2

2m
+ V (x+ L), (3.49)

and it can be easily shown that its eigenstates take the following form:

36



|ψn,q(x)〉 =
∑
q

eiqx |un,q(x)〉 , (3.50)

where |un,q(x)〉 is periodic in space. the energy spectrum of these eigen-
states have gaps in the energy dispersion relation every kL. This curve can
be folded into the first Brillouin zone and its limitations are described by
the interval q ∈ [−kL, kL] in quasi momentum space. One can consider the
same phenomenon in the atom-optic approach. If the Fourier transform of
the equation (3.49) it done, we obtain:

|un,q(x)〉 =
∑
j

un,q(j)e
i2jkL =

∑
j

cn,q |2jkL〉 , (3.51)

so the eigenstates takes the form:

|ψn,q〉 =
∑
j

cq |q + 2jkL〉 , (3.52)

where |ψn,q〉 is a superposition of plane waves produced after the nth order
of the diffraction process. From the experimental point of view it means
that the state of the BEC in the optical lattice can be seen as a superposition
of velocity classes with discreet momentum distribution |q + 2jkL〉. Figure
3.12 presents a BEC released from the lattice after a tTOF time of flight of
23.6 ms. The image shows different clouds located in space at positions
j · (2tTOF )/m. Each of the clouds contain atoms that experiences j cycles
of absorption and emission of the lattice photons.

 - 4k
L

 - 2k
L

   2k
L

   4k
L

Figure 3.12: The time of flight picture of a BEC released from an optical lattice
17 Erec deep. The white line represents an integrated profile of the atoms distri-
bution.
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• The two level solution: The band gaps resulting from Bloch theory can be
also observed in a simple toy model closer to the atom optics approach. The
model follows the treatment presented in the Section 3.6. It is repeated here
because the effective potential acting on the atoms in an optical lattice plays
an important role in the following analyses.

In a system composed by the ground state |g〉 and the excited state |e〉 in-
teracting with the electric field of a standing wave laser, the presence of the
optical lattice, the Hamiltonian can be written as:

H =

( −~∆ ~ΩR sin(kLx)/2
~ΩR sin(kLx)/2 0

)
.

where x is the mean value of the position and ΩR stands for the Rabi fre-
quency. When a large detuning is considered, the upper state is not excited
and, in analogy with equation (3.39), the ground state eigenvalue is de-
scribed by:

∆Eg = ~
Ω2
R

4∆
sin2(kLx). (3.53)

That means that the atoms experience a potential V (x), see equation (3.48)
with V0 given by:

V0 = ~
Ω2
R

4∆
= 2~Ω2

R. (3.54)

The eigenstates of the Hamiltonian H(x) = p2

2m
+ V0

2
cos(2kL)x are the sum

of the Mathieu functions. At the edge of the Brillouin zone on the base of
the atomic plane waves |+kL〉 and |−kL〉 one finds,

H =

( Erec V0/4
V0/4 Erec

)
,

with its solutions:

E0(kL) = Erec −
V0

4
; |ψ0,kL

=〉 1√
2

(|+kL〉 − |−kL〉) (3.55)

E1(kL) = Erec +
V0

4
; |ψ1,kL

=〉 1√
2

(|+kL〉 − |−kL〉) . (3.56)
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This calculations allows us to observe the energy spectrum of the Hamilto-
nian from equation (3.7.2) with its two eigenstates (equation (3.56)). This
eigenvalues are not degenerate but have a difference in energy of ∆E0 =
V0/2. This is equivalent to an energy gap in the dispersion law by Bloch
theory.

• Tight binding Model and Wannier States:
One can study a periodic system considering a localized wavefunction |φn〉
of an atom in a single site with perturbations coming from the neighboring
sites [46]. In this approximation, one deals with the overlap of atomic wave-
functions which are sufficient to require a correction to the isolated atoms
picture. However, the single site description remains relevant. The Hamilto-
nian (3.49) can be expressed in the Wannier basis as well. The Hamiltonian
matrix elements are:

Hn,l = 〈φn|H |φl〉 = E0. (3.57)

If the contribution from the next-nearest sites are negligible, one is allowed
to impose Hn,n+l = 0 for l 6= 0,±1 which represents the tight binding
approximation. The generic wavefunction is a superposition of the localized
wavefunctions, the Wannier functions:

ψ(x) =
∑
n

cnφn, (3.58)

where φn are mutually orthogonal. The localized functions φn do not sat-
isfy the Bloch theorem but this problem can be avoided by considering the
following superposition of the localized wavefunctions:

ψq(x) =
1√
2

∑
n

eiqndφn, (3.59)

where N stands for the number of occupied sites. The energy dispersion for
the fundamental band is given by:

E(q) = 〈ψq(x)|H |ψq(x)〉 . (3.60)

In the case of a single isolated state the localized functions are equivalent to
the eigenstates of a harmonic oscillator. The widths of the energy levels of
the Wannier functions are then described by the perturbations that are added
by the other sites. In this way the the correlation between the band width
and the dispersion are evident.
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3.7.3 The adiabatic theorem
The adiabatic transfer of an eigenstate of a solvable Schrödinger equation to a
perturbed one has been studied since the beginning of quantum mechanics [9].
The Schrödinger equation is represented in a form:

i~∂ |ψ(t)〉 = [H0 + V (P (t))] |ψ(t)〉 . (3.61)

Equation (3.61) contains a term V (P (t)) that is varying in time because the
parameter P varies with time. By solving the time dependent equation and taking
into account the decomposition of the system at time t = 0, one can write the
adiabatic condition: ∣∣∣∣(∂H∂t

)∣∣∣∣ << |Ek − E0|2

~
, (3.62)

where E0 and Ek are energies of the initial and final state, respectively. One
of the applications of the adiabatic theorem is the loading of atoms into a periodic
potential. We can consider what can happen when the BEC described as a plane
wave |p〉 is put into the optical lattice of depth V0 at time t = 0. The states of the
atoms in the basis of the Bloch states are given by:

|p〉t=0 =
∑
n,q

|ψn,q〉 〈ψn,q| p〉, (3.63)

where q is the momentum of the atoms in the first Brillouin zone, and n stands
for the band index. 〈ψn,q| p〉 is the probability for the atoms of being in state |ψn,q〉

As in most of the experiments we want to populate only the ground state we
load the atoms into the lattice in a time τon such that the atomic wavefunction
follows the adiabatic state. The initial free particle state |p〉 is linked to the single
Bloch state. Then the adiabatic condition (3.62) can be expressed:∣∣∣∣〈ψn′,q ∣∣∣∣ ddt

∣∣∣∣ψn,q〉∣∣∣∣ << |En′ − En|~
. (3.64)

The loading into the optical lattice is adiabatic when the above condition holds
for any Bloch state with n 6= n′. The most restrictive condition is for the band that
is closest in energy. That means for n′ = n ± 1. If one loads the condensate into
the |ψ1,0〉 state of the fundamental band, loading will be adiabatic if the condition
(3.64) is done for n′ = 2. Considering a shallow lattice, the gap between the
fundamental and the first excited state can be approximated with its value in the
free particle case |En′ − En| ≈ 4Erec and the condition (3.64) becomes [62]:

d

dt

V0

Erec
<< 32

√
2
Erec

~
. (3.65)
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In the case of loading with a linear ramp in time τon equation (3.65) can be
reduced to:

τon >> τad =
1

32
√

2ωrec

V0

Erec
, (3.66)

where ωrec = Erec/~. The adiabaticity condition 3.66 is also valid for the
switching off procedure with the switching off time τoff . On one hand if τoff <<
τad the wavefunction of the atoms will be formed by the plane wave decompo-
sition. On the other hand when τoff >> τad the atomic wavefunction follows
the adiabatic state instantaneously and the lattice is switched off in a single wave
plane.

41



42



Chapter 4

Experimental Set-up and methods

4.1 Creation of Bose Einstein Condensates

To create a Bose Einstein Condensate several steps have to be done. Atoms have
to be cooled and compressed to reach the critical value of the phase-space density
for the macroscopic occupancy of the ground state. The experimental realization
of the BEC is described in this section. The experimental setup in Pisa was cre-
ated and improved over the years. First to describe the apparatus used to obtain
ultracold samples was Donatella Ciampini [19]. In her thesis one can find the
setup presented in more details.

4.1.1 The Experiment

A Bose Einstein condensate is the principal tool of our investigations and its cre-
ation is a hard task. Production of a BEC of 87Rb atoms is the first step in almost
all our experiments. 87Rb is an alkali element, i.e., in group 1A of Mendeleev
periodic table. Its valence electron is in the 52S1/2 orbital so the lowest energy
transitions are to the 52P1/2 and 52P3/2 levels. These transitions are called the D1
and D2 lines, centered at 795 nm and 780 nm respectively.

The optical transition used to cool atoms is the D2 line, whose spectrum is
shown in figure (4.1). The hyperfine levels of the 5 2S1/2 and 52P3/2 states are
labeled F and F ′. The ground state hyperfine level used in our experiments is
|F = 2〉. Therefore, the frequency of the light used for the optical molasses and
the MOT is near resonant to the transition |F = 2〉 → |F ′ = 3〉, the so-called laser
cooling transition. It means that only the atoms in the |F = 2〉 level are trapped
in the MOT. However, this laser cooling transition is not closed, and atoms can be
off-resonantly excited to the |F ′ = 2〉 level, where they may decay to |F = 1〉.
This decay may cause the losses of atoms from the MOT. To avoid this, light near-
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resonant to the |F = 1〉 → |F ′ = 2〉 transition is added to the laser cooling light.
This action re-pump atoms from the |F = 1〉 level to the |F = 2〉 one. This light
is called repumper.

Figure 4.1: Scheme of D2 line of Rb 87

4.1.2 Laser sources
The experimental setup occupies two optical tables. One called the laser table is
used for the preparation of almost all the laser radiation. The so called BEC or cell
table contains the vacuum apparatus, the double MOT system and the major part
of the optics used for beam preparation. To shield the laser setup from acoustical
noise, both tables are enclosed by plastic curtains. This protection also helps to
minimize the effect of temperature fluctuations in the laboratory. To avoid stray
light the plastic shields of the BEC table are opaque.

The cooling and re-pumping light is provided by two master lasers, whose
output is optically amplified in order to obtain the power needed for the experi-
ment. The master lasers are composed of commercial laser diodes, with natural
linewidths of the order of few MHz. To reduce the linewidth, the diode outputs

44



are sent to gratings that create an external cavity with first order diffraction. At the
back of the grating a piezo electric transducer is placed to vary the cavity length.
In this setup, home made mounts are used. The whole laser system is temperature
stabilized using two Peltier elements, with precision of 0.01K. Also, to avoid any
coupling to the usual line noise, the lasers were powered from external batteries.

The frequency stabilization of the master lasers is a crucial point in all ex-
periments with cold atoms. It is achieved using Doppler free spectroscopy. The
laser frequency is locked to a peak in the saturated absorption spectrum and the
correction signal is sent to the external cavity length. In the master mounting the
grating position is controlled by a Piezo-Electric-Transducer (PZT). Scanning the
voltage applied to the PZT, the atomic absorption lines are produced. The cor-
rection signal sent the PZT is created as following. An Acousto Optic Modulator
shifts the laser frequency. Then, a double photodiode subtracts the Doppler curve
to the saturation absorption signal. To derive the peak, a sinusoidal modulation
is introduced to a Voltage Controlled Oscillator (VCO). Next, the output of the
signal of the differential photodiode pair is fed to a lock-in amplifier to generate
the error signal. At the end this signal goes to PZT and by this the lock-in loop
is closed. The optical circuit scheme used for the frequency lock-in is present din
figure 4.2

Figure 4.2: Saturated absorption scheme.

The output power of the two master lasers is around ∼ 20 mW. The re-pump
light is amplified by using a master-slave configuration, where a diode laser is
used as a slave. The output power of the slave is around ∼ 55 mW. To generate
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the laser cooling light much higher output power is needed. Thus, the amplifi-
cation takes place in two stages. At first, the master light is injected to a slave
diode laser. Then its output beam is used to inject a Power Amplifier (MOPA)
amplifier with output power of 600 mW. This light was used for all the purposes
of the experiment and after splitting was passed through acousto-optic modulators
(AOMs) to vary its frequency and to control the pulse duration and amplification.

4.1.3 The vacuum chamber
Our apparatus includes two quartz vacuum chambers placed at opposite sides of
a central body. This is made of steel and is internally divided by a wall whose
role is to divide the vacuum chamber in two parts. Each of them is connected by a
hole placed in the center of the wall where a carbon tube is positioned in order to
enhance differential pumping. The design of the cells is shown in the figure 4.3.
The two cells have square cross-section, but are of different sizes: 49x49x100 mm
and 24x24x100 mm. The smaller one is called science cell because that is where
the experiments take place. In order to created a pressure gradient between two
cells, two ionic pumps connected to the two parts of the vacuum chamber creates
pressure of 10−11 mbar in the science cell and 10−9 mbar in the big cell. In this
way the differential pump system is created. its role is to collect the largest number
of atoms to perform efficient evaporative cooling. The atoms are collected in the
2D MOT cell, where high Rb background pressure allows rapid MOT loading.
Then they are pushed to the science cell where they are evaporative cooled.

Close to the 2D MOT (bigger cell) two pairs of dispensers are placed. They
consist of electric resistances in which rubidium atoms are chemically bound to
their surfaces. They emit atoms when an electric current heats the strips and in-
duces a chemical reaction. The two dimensional MOT is created by two pairs
of counterpropagating laser beams circularly polarized with waist w0 = 12 mm.
The laser is detuned by ∆ = −2.4Γ from the |F = 2〉 → |F ′ = 3〉 transition
(Γ = 6.065 MHz is the natural linewidth of the |F ′ = 3〉 level), and a repumper
beam is added to them. The 2D MOT magnetic gradient is b′ = 11 G/cm. The
role of the 2D MOT is to collect and cool atoms in a cigar shaped cloud, whose
long axis is parallel to the carbon tube. In the same direction near resonant light
is sent to push the atoms from the 2D MOT cell into the second chamber. In the
science cell the atomic flux is collected by a 3D MOT.

4.1.4 The 3D MOT
To create a 3D MOT three pairs of counterpropagating beams are used. They
are obtained by splitting the 32 mW beam into six beams of waist w0 = 8 mm
and power ∼5 mW. Repumper laser light is added to two of these pairs. The six
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Figure 4.3: Scheme of the vacuum chamber. The magnetic field coils and both 2D
and 3D MOT laser beams are not present.

beams are detuned from the |F = 2〉 → |F ′ = 3〉 transition by ∆ = −2.9 Γ.
The magnetic gradient for the MOT is b′ = 6.6 G/cm. The flux of atoms from
the 2D MOT leads to a continuous loading of the 3D MOT. This loading process
is counteracted by atom loss process that is mainly due to collisions with back-
ground atoms. It takes ∼ 90 s of loading for the MOT to reach a stationary size,
where up to 2 · 109 atoms are trapped. A portion of the light scattered by the
atoms is collected by a lens and sent to an amplified photodiode, whose signal is
proportional to the number of atoms in the MOT. This defines the reference for
the trigger for the experiment in order to start with the cloud of roughly the same
number of atoms for every cycle. In this experiment loading times of 15−35 s are
usually sufficient in order to trap enough atoms before starting sub-Doppler and
evaporative cooling.

4.1.5 The magnetic field
The cooling and trapping of atoms requires different magnetic fields whose gen-
eration requires power supplies capable of generating high currents and special
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switches for large currents. This section presents a summary of the technical fea-
tures of our system.

• The quadrupole field. This is created by six cylindrical pancake-shaped
coils whose symmetry axis is along the direction of gravity Z, that is hence
the strong axis with the largest field gradient. In order to create a spa-
tial magnetic gradient, the three coils above the science cell are in anti-
Helmholtz configuration with respect to the three coils below the science
cell, see Fig.4.4. The coils are made of copper and are covered with an in-
sulating sock. The wires used for the coils are hollow, and are continuously
cooled by water flow. The resulting magnetic gradient has cylindrical sym-
metry so that its modulus in the z direction (the strong axis) is 2b′, while
in the x, y directions it is b′. Magnetic gradients up to b′ = 366 G/cm are
created when the current is 226 A . This value is reached in 4 ms, while the
time for switching off the field is of the order of few µs.

Figure 4.4: Schematic diagram of the mount of the coils for the magnetic gradient
(shaded) and the rotating bias field (white). The science cell is at the center of the
coils.

• The rotating bias field. This field BTOP is created by two pairs of coils:
a pair of circular coils that are placed between the quadrupole coils, and
a pair of square coils in the orthogonal direction (see Fig. 4.4 ), both in
the Helmholtz configuration. The current flowing in each pair oscillates in
time, and the pairs have a phase difference of by π

2
: Icircular = ITOP sinωt,

Isquared = ITOP sin (ωt+ π
2
), with ω

2π
= 10 KHz. The maximum value
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of the field is BTOP = 38 G. The cooling of the coils is ensured by their
contact with the water-cooled quadrupole coils.

• The compensation coils. These are three mutually orthogonal pairs of coils
in the Helmholtz configuration. The current flowing in these coils is of
the order of 100 mA. The magnetic field created by these coils is used to
compensate the external fields, such as the earth’s magnetic field and the
magnetic field created by the ion pumps.

• The extra-compensation coil. This is single a coil placed above and paral-
lel to the quadrupole coils. It creates a magnetic field that is varied during
the experiment in order to be able to vertically move the position of the
cloud along the z-axis and hence to minimize the losses when the trap is
changed, e.g., when passing from the TOP to the dipole trap.

4.2 The experimental sequence
Once ∼ 109 atoms are trapped in the MOT, sub-Doppler and evaporative cool-
ing are used in order to create a BEC. The different stages for driving the atoms
through the BEC phase transition results in a temporal sequence during which sev-
eral experimental parameters (laser frequency and intensity, magnetic fields etc.)
are changed. The temporal sequence of the experiment is controlled by a com-
puter with a precision of 10µs. Every single experiment performed is destructive
for a BEC, so the whole process has to be restarted from the 3D MOT loading.
In the following, the experimental sequence for the creation of a Bose-Einstein
condensate is listed in chronological order.

• The compressed MOT (C-MOT). During this phase the size of the MOT
is reduced by decreasing the magnetic gradient (to b = 2.6 G/cm) and in-
creasing the detuning (to ∆ = −4.8 Γ) of the laser. This phase is 200 ms
long. The compression is done to optimize the loading into the TOP trap.

• The Molasses. During this phase (6 ms), the magnetic gradient is switched
off and the detuning of the laser increases to ∆ = −5.0 Γ. The sample is
cooled to the sub-Doppler regime, reaching at the end of the stage a tem-
perature around 15µK. Moreover, the capacitors of the quadrupole field
power supply are charged during the molasses phase. This happens in order
to reduce the rising time of the magnetic gradient in the TOP trap.

• Optical pumping. This phase consists of pumping the atoms into the |F =
2,mF = 2〉 state. The quantization axis is defined by the rotating bias field
BTOP that is switched on with amplitude BTOP = 3.8 G. The selection
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rule for the light-induced atomic transition ∆mF = +1 is realized when
the light is circularly polarized σ(+) and the magnetic field is pointing in the
same direction as the light wavevector.

• The TOP trap. At the end of the optical pumping stage the atoms are
loaded into the TOP trap. This is done by increasing the magnetic gradient
in 1 ms to b′ = 73 G/cm, while the rotating bias field is turned on at its
maximum value, in order to maximize the circle of death radius. After
the loading, the trap frequencies are first increased in order to enhance the
collision rate, and hence to create the conditions for efficient evaporative
cooling. The evaporative cooling is then realized by reducing the circle of
death radius. At the end of the process the cloud contains ∼ 6 · 105 atoms
at a temperature T = 2.5µK.

• The Dipole trap. The atoms are loaded into the dipole trap, which is created
by use of a Yb:YAG laser with a maximum power of 5W and emitting at
λ = 1030 nm, i.e., far off-resonance from the Rb transitions. Its output is
split into two beams, and each of them is sent to an acousto-optic modulator,
and then to the atoms. There the two beams intersected at an angle ∼ 90◦,
creating an optical trap for the atoms. After passing through the science cell,
the reflection of each beam is collected and sent to a photodiode, whose
signal is sent to a PID circuit to control the power of the radiofrequency
input of the corresponding AOM and hence the power of the dipole beams.
The dipole beams have a maximum power of 1.2 W each, and are focused
on the atoms with a waist w0

∼= 70µm. The typical condensate is created in
a trap with maximum mean frequency of ω̄ ∼ 520 Hz.

• Bose Einstein Condensation. Following the atom loaded into the dipolar
trap, evaporative cooling starts. This is performed by ramping down the
power of both dipolar beams, so both the depth and the frequencies of the
optical trap are reduced. The overall ramp is formed by four linear ramps of
decreasing gradient. This cooling stage is 2.5 s long, and at its end a Bose
Einstein condensate of up to 105 atoms is created. An image after time of
flight of the almost pure condensate is presented in figure 4.5(b).

• Experiment. Holding the condensate in the dipolar trap with the final fre-
quencies or in other configurations, different experiments are performed by
switching on an optical lattice, Rydberg laser radiation or modulating the
power of the dipolar trap beams.

• Imaging At the end of the experiments the atoms are released from the trap
and allowed to expand in free space, in order to decrease the density of
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Figure 4.5: Images of the atomic cloud after 23 ms of time of flight, in (a) just
below the threshold temperature for condensation where the bimodal distribution
is evident, and in (b) for a almost pure condensate far below that temperature.

the cloud and increase its size. After a certain time (called time of flight)
of ∼ 10 − 20 ms a resonant light pulse of 20µs duration illuminates the
atoms and then is collected by a CCD camera, in which the shadow of the
atomic cloud is imaged. The CCD camera is from DTA, featuring a Kodak
Chip (KAF 1400) with pixel size 6.8 × 6.8 µm, whose quantum efficiency
is 40% at 780 nm. In front of the CCD camera an objective (Rodenstock
Aporodagon) of focal length f = 75 mm and f-number f/# = 4.5 is
placed. The objective is optimized for 1:2 reduction, but it is used reversed
in order to have a magnification of ∼ 2. The system is focused by minimiz-
ing the apparent size of small atomic clouds imaged on the CCD and the
calibration of the image size is done by performing an experiment of free
fall of the condensate under gravity.

The distinctive threshold for the formation of the condensate is identified by
looking at the profile of the absorption images. Just below the critical temperature
TC , a clear bimodal distribution is visible where the narrower peak contains the
condensate while the wider one is the thermal part of the cloud. Almost pure
condensate is observable when temperature of the sample is equal to TC .
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4.3 Excitation, ionization and detection of Rydberg
states

Dealing with Rydberg atoms is a complex task. In this section excitation path are
shown. Then lasers sources are described. Finally, ionization and detection of
Rydberg atoms are presented.

4.3.1 Excitation Paths of Rydberg states

As introduced in the previous section atoms are cooled down via laser and evapo-
rative cooling until they undergo Bose Einstein condensation. The BEC prepared
in this way is subject to photoionization or excitation to a Rydberg state. An atom
absorbs an incident photon which specifies the energy of the excited level. If one
photon is absorbed, this process will be called single-photon excitation. Two-
photon excitation is a special case of optical excitations. In this case the threshold
energy for excitation is achieved by combining two photons (equal or different).
For 87Rb single photon transition to a Rydberg state would require an ultraviolet
photon source but the limitation in the range of wavelengths at which cw lasers
are available made us consider the two-photon excitation scheme shown in figure
4.6. To excite atoms to a chosen Rydberg state transition 5S1/2 →6P3/2 → nl
is used. The first step, 5S1/2 →6P3/2 is achieved using 420 nm blue light. To
avoid creation of unwanted ions by blue laser and resonant excitation of the 6P3/2

state, the first step of the excitation is detuned between 300 MHz and 1 GHz from
resonance. Ionization of the rubidium atoms takes place via the two blue pho-
ton transition 5S1/2 →6P3/2 → ionization limit. Resonantly excited states and
unwanted ions are enough to destroy coherence of Rydberg excitation. From the
6P3/2 state, accordingly to the atomic selection rules, atoms can be excited to any
D or S state. To reach these states an infrared laser locked between 1000 nm
and 1030 nm is used. This wide wavelength range allows the excitation of state
with principal quantum number n between 30 and 120. The majority of the ex-
periments presented in this thesis states 55 D and 53 S were used. The choice
of quantum number n was rather arbitrary at the beginning of the experiments.
For this reason some data in this thesis was obtained using excitation to different
Rydberg states. Nevertheless through the course of these the measurements, when
the limitations of the set-up become clear, this choice was adjusted. All factors
affecting the choice of principal quantum number are described in the following
parts of this thesis.
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Figure 4.6: Rydberg atom excitation scheme. the first step is achieved by 421 nm
laser light whereas the second step is by IR radiation between 1000 nm and
1030 nm

4.3.2 The Lasers Settings

To coherently excite Rydberg states, the Rabi frequency has to be large compared
to spontaneous decay and decoherence rate. Level spacing of Rydberg states be-
come smaller (n−3) with higher principal quantum number n . To selectively ex-
cite only one state, the laser linewidth must be much smaller than the gap between
Rydberg states. Therefore, the generation and stabilization of the laser light is of
high importance. In the following the lasers used for Rydberg atom excitation and
frequency locking system are explained.

• First step transition : 5S1/2 → 6P3/2. The SGH 100 doubling unit uses a
TA 100 laser (840 nm) as a light source. The 420 nm wavelength is achieved
by doubling a MOPA laser (TOPTICA TA 100, with output power 700 mW)
with a TOPTICA doubling cavity (SGH 1004). A resonant doubling cavity
in a bow tie geometry composed of two plane and two confocal mirrors is
used. The schematic circuit is presented in figure 4.7. In this configuration
two beam waists are produced between each mirror pair. The doubling crys-
tal is made of potassium niobate KNbO3 and is placed in the beam waits
of the two confocal mirrors. The resonator is defined by 4 mirrors, where
one is partially transmitting for IR light and one is mounted on a piezo el-
ement which adjusts the cavity length. The doubling crystal allows non
critical phase matching for the range 420 − 480 nm. This phase matching
is achieved by temperature tuning. The temperature of the crystal is con-
trolled using a Diode Temperature Controller DTC 100.The output power
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in this configuration varies between 40 and 60 mW. The beam is then con-
trolled via an Acousto Optic Modulator AOM with 80% efficiency for the
+1 order. The 0-th order is sent to a photodiode and is utilized to control
the stability of the power during the experiment. The light arriving on the
atoms has a power of around 20 mW.

PIEZO

RM2

DOUBLING CRYSTAL

RM4 RM3

RM1

Figure 4.7: Optical circuit of the SHG100 resonant doubling cavity.

• Second step transition. The second step (6P3/2 →nl) of the Rydberg exci-
tation is accomplished by IR laser light. This laser is tuned to a frequency
of the one of the Rydberg level, between 1000 nm and 1030 nm, which
corresponds to a range of quantum states between n = 30 to n = 120. To
overcome the problem of limited output power, a master-slave configuration
is used. A TOPTICA DL 100 laser (output power =20 mW) is injected into
a Sacher TIGER laser (output power = 400 mW). The DL 100 is a tunable
grating stabilized diode laser with a linewidth of the order of 1 MHz. The
beam arriving to the atoms is also controlled by an AOM. The power on the
atoms varies between 140 and 150 mW.

• Reference Laser. The third laser injected to Fabry-Perot Interferometer
(described below) is an infrared TOPTICA DL100 with a wavelength of
780 nm. In this configuration, the 780 nm beam is used as a reference. This
laser is locked to a Rb absorption line using saturated absorption technique,
which along with temperature stabilization keep the laser locked for hours
at a time, with a linewidth smaller than 1 MHz.

• Locking System.Both lasers used for the excitation of Rydberg states are
locked using a Fabry-Perot interferometer FPI 100. A third laser injected to
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FPI is the reference laser of λ = 780 nm. Scanning Fabry-Perot interferom-
eters are frequently used tools for measuring spectral characteristic of cw
lasers. They may also be used as a precise locking system which is the task
the FPI fulfills in this experiment. The Fabry-Perot Interferometer FPI 100
used in our experiment is a piezoelectrically scanned device. It combines
high finesse F (F ∼120 for the blue laser) with the flexibility of using
it as a stable reference cavity. The FPI is characterized by a 1 GHz free
spectral range FSR for a set wavelength. This parameter range depends
on the wavelength of the injected laser. In this experiment three different
laser beams are injected to the FP cavity. This cavity is optimized for the
842 MHz light. The main problem of this solution is the change of reso-
lution and free spectral range of the 780 nm and 1020 nm lines. The FSR
ratio of 1020 nm and 842 nm laser light is taken into account when standard
deviation of the locked beam is calculated. Lasers injected into the FPI al-
ready have a linewidth smaller or comparable with 1 MHz, so the main task
of the interferometer is to stabilize the spectral lines against thermal drift
during the measurement. Also, the temperature of the FP cavity has to be
stabilized. The cavity is placed inside an isolated wooden box controlled by
two Peltier elements. A scheme representing the laser frequency stabiliza-
tion system is shown in figure 4.8 and has the following protocol. Firstly,
the signal of the FPI scan is acquired by the computer with LABWIEV in-
terface and the localization of the spectral lines is done. Figure 4.9 shows
the LABWIEV locking program. To scan the frequencies of the blue and
IR lasers inside the FPI cavity, TOPTICA Scan Controls SC 110 are used.
Then, the distance between the reference laser and the excitation laser is fit
in units of FSR. By keeping constant the distance between both the IR and
the Blue laser the correction signal is generated. Subsequently, the output
feedback is sent from the computer to the PID, proportional integral differ-
ential regulator (TOPTICA PID 110) used to stabilize the laser frequency
on the chosen value. As a result the absolute frequency stability is on the
order of 1 MHz. Nonetheless, the FPI is thermally isolated a small line drift
in time is still visible. To avoid this an error signal from the computer is
sent to the cavity which corrects against the change of the position by send-
ing the feedback to the computer. In this configuration the lasers are kept
locked for a long time.

The Fabry- Perot Interferometer and the 780 nm reference laser are placed on
the laser table to avoid noise introduced by mechanical shutters from the cell table.
The 780 nm light is transmitted via an optical fiber to the FP fiber coupler situated
on the cell table, along with the 842 nm and 1020 nm lasers.

55



PID PID

Computer 

FEEDBACK 

FABRY-PEROT INTERFEROMETER

INTERFACE 
FABRY-PEROT 

INTEREFEROMETER 

CAVITY

TOPTICA

780 nm

DIODE LASER

TOPTICA

1000-1030 nm

DIODE LASER

SACHER

TIGER 

DIODE LASER

TOPTICA

842 nm

DIODE LASER

WAVE-METER

TOPTICA

FREQUENCY DOUBLING

UNIT

ATOMS

LASERS FREQUENCY STABILIZATION SYSTEM

Figure 4.8: Frequency stabilization laser scheme.

Both lasers are superimposed before reaching the ions to excite the same vol-
ume of the sample. The pulse duration of the excitation lasers lasts between 100 ns
and 10µs, depending on the experiment.

4.3.3 The Ionization and the Detection of Rydberg States

Rydberg atoms are very sensitive to electric fields (polarizability ∼ n7). This
sensitivity provides a possibility to manipulate Rydberg atoms using for example
the Stark effect, where the energy of a state depends on the strength of an electric
field. Electric fields can be used to field ionize, excite atoms to high quantum
states and to push them toward the detection device, a Channel Electron Multiplier
(CEM). The KBL510 CEM is used in the experiments. By introducing some
moderated changes to the CEM bias circuit it is possible to operate the CEM in
two different modes, to detect ions or electrons. In the case of the experiments
presented in this thesis the ions are detected. The CEM is kept at −2.4 kV in the
ion counting mode to ensure maximum detection efficiency. After the detection
of ions by the CEM the output pulse is amplified by a fast timing amplifier and
subject to a constant fraction discriminator. Then an output signal is observed on
the LeCroy scope (WAVERUNNER) where ions can be counted. The CEM is
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780nm 780nm1002nm421nm

Figure 4.9: The frequency stabilization (locking) interface. The red dashed lines
represent l780 nm reference laser, blue and yellow the 421 nm and 1000-1030 nm
excitation laser respectively. The yellow and blue boxes present standard devia-
tion of the excitation lasers.

located around 15 cm from the cell center, close to the exit of the graphite tube
between the collection and science cell. A grid connected to a high voltage is
located 10 cm from the ultracold atomic sample. Its task is to guide the emitted
ions towards the CEM. Two pairs of plates connected to a high voltage are situated
on the outside of the scientific cell. One pair is placed in front and one on the
side of the vacuum chamber. A scheme presenting the science cell, including the
charge detection system located under vacuum, is presented in the fig 4.10(a).
The cell used in this set-up is made of quartz which gives us easy access to the
cell from all sides. It is not a common solution because of the creation of space
charges on the cell. More common is to use a cell made of metal to avoid this
effect because the conductive material would shield or neutralize them. In our case
the glass cell is chosen for its optical access. It gives a possibility to implement
optical lattice or freely change the paths of the excitation lasers. For this reason,
a constant electric field applied to the plates may result in charging the glass cell
and the creation of extra electric field acting on the atoms for a significant time.
To overcome the problem of space charges in the cell, ions are collected through
a sequence of electric pulses which typically have a rise time of a few ns and a
duration on the order of µs. In the present setup, 3.5 kV is applied to the front
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plates and −1 kV to the lateral ones, for around 3.9 µs. This time is adjustable
according to the Rydberg state. The −1.5 kV pulse applied to the grid is longer
(around 25µs). The ionizing pulses of the electric field were applied with 33 µs
delay. This configuration ensures a detection efficiency of positive ions on the
order of 35(10)%. An ion signal detected by the CEM is presented in figure
4.10(b). One limitation of the setup is the ionization field limit. With maximal
voltage applied on the plates we are not able to field ionize Rydberg atoms with
quantum number lower than n = 52. We face several problems. First of all the
plates are not placed inside the cell. This causes the shielding effect. Then electric
field acting on atoms is not homogeneous and we don’t know how exactly electric
field lines propagate inside the cell. For this reasons it is not possible to estimate
the electric field acting on the sample and the n = 52 value is the results of the
experimental observation.

Figure 4.10: In (a) The laser beams are superimposed so as to excite atoms within
the same volume. Ions are collected depending on the signs of the applied volt-
ages. In (b) the ion signal detected by the channeltron is presented.

4.4 Experimental realization of an optical lattice
In this section the implementation of the optical lattices is described. First, the
set-up used of our experiments presented. Then the experimental sequence will
be explained.
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4.4.1 The Set-Up

The optical lattice is created by crossing two different laser beams. They origi-
nate from the same laser, a Master Oscillator Power Amplifier (MOPA) TA100
produced by TOPTICA. The single mode laser output is set at a wavelength of
around λ = 849.2nm and has an output power of 750mW. Before they split in
two the beam passes through and optical insulator to avoid any back reflections
that could affect the light mode. Then the beam is split using a λ/2 waveplate and
polarizing beam splitter. Subsequently, each beam is guided through an acousto
optic modulator AOM (Crystal Technologies) that diffracts the input beam and
detunes it from its initial frequency. Both AOMs have their own radio-frequency
(RF) source (Agilent 3325A). The two modulators are aligned to optimize the
first order of diffraction and have the RF input centered at 74 MHz. Therefore,
the lattice beams are at the same frequency, apart from the cases where a detuning
between them is imposed on purpose. The efficiency of the AOMs is on the order
of 70 % for the first order. The zero-th order of diffracted light of one AOM was
sent to Fabry Perot cavity to monitor the single mode output of the laser. Each first
order diffracted beam is guided to a single mode, polarization preserving optical
fiber (OZ Optics). The optical set-up for the lattice described up to now is placed
on the laser table. A scheme of this optical set-up is presented in figure 4.11.

The optical fiber outputs are mounted at a distance of 15 cm from the atoms.
The power of each beam at the output of the fiber is around 70 mW. In front of
each fiber coupler a polarization cube is placed in a rotating mount as a polariza-
tion filter. The two beams are focused onto the atoms, and have a waist of around
120 µm and at the center of the cell. To provide a control of the power of each
lattice beam during the experiment a small part of the beam that is reflected by
the cell is sent to a photodiode. The photodiode signal is then sent to a PID cir-
cuit with a reference signal provided by the computer. The output of the PID is
then sent to an attenuator that controls the RF power at the AOM input, and hence
its diffraction efficiency. Both beams are controlled independently. The lattice
spacing is given by:

dL =
λ

2sin( θ
2
)
, (4.1)

where λ is the laser wavelength, and θ corresponds to an angle between two
lattice beams. In figure 4.11a) the case of two counterpropagating lattice beams
is shown. In this configuration lattice spacing is around half micron. To obtain
lattice spacing comparable with the dipole blockade radius the angular lattice con-
figuration is used (fig. 4.11b). In this case dL is ∼3 µm for θ ∼ 20o .
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Figure 4.11: Optical circuit for optical lattice realization, case of two counter-
propagating beams (dL=0.42 µm) and of angular lattice created by two beams
enclosing an angle θ.

4.4.2 Experimental sequence

The problem of adiabatic loading of atoms into an optical lattice is described in
more detail in the previous chapter. Nevertheless, a few experimental parameters
will be mentioned. To adiabatically load atoms into an optical lattice a linear ramp
of a few tens of ms is used, as schematised in figure 4.12. During this time, atoms
are transferred from the dipolar trap into the lattice by ramping up to the maximum
the power of the lattice beams and ramping down the dipolar oblique beam. Then,
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Figure 4.12: Scheme of experimental sequence.

atoms are kept inside the lattice for another few ms. This time is defined by the
number and duration of excitation pulses sent to the sample. Finally, the optical
lattice is switched off and the atoms are released. They are allowed to expand for
a few ms and then the absorption image is taken.

4.4.3 Calibration of the optical lattice

Lattice depth is always measured in units of the recoil energy Erec. Knowledge
of this parameter is a reliable tool for the calibration of experiments, allowing us
to perform experiments in comparable conditions every time. This value is even
more crucial if one conducts experiments where agreement with theory depends
strongly on the exact knowledge of the lattice depth e.g, when the tunneling rate
is involved.

In principle, one can calculate the lattice depth making use of equation (3.48)
While all of the atomic parameters within that equation are well known and the
detuning is relatively easy to measure via spectroscopy it is much harder to pre-
cisely measure the waist of the lattice beams at the position of the atomic sample.
Then other problem is to measure the optical powers and always results in some
percent of error. For these reasons we use an alternative method of obtaining the
value of the lattice depth. A very convenient way is to use the expansion of the
atoms released from the lattice. Firstly, one loads the condensate adiabatically
into the lattice and then abruptly switches the lattice lasers off. Gaussian wave
packets at each lattice site will expand freely and interfere with one another. The
interference pattern observed after some milliseconds of time of flight is a series
of regularly spaced peaks, see figure 4.13a). These peaks correspond to the dif-
ferent diffraction orders. From the relative weight of the momentum peaks, the
lattice depth can be calculated from, see ref. [24]:
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s =
V0

Erec
=

16

[lnP±1]4 P
1/4
±1

, (4.2)

where P±1 = exp −4π2σ2

d2
are the relative populations of the two symmetric plus

and minus first order peaks with respect to the 0-th order central peak . However,
one can use equation (4.2) only when the lattice depth is not too deep (s < 20),
see figure 4.13b). In the case when s > 20 one need to use a less accurate har-
monic approximation to the sinusoidal lattice potential about a potential mini-
mum by defining σ the Gaussian width of the wavepackets at the individual lattice
sides [24]:

σ =
d

πs1/4
, (4.3)

By inserting equation (4.3) into the formula defining the width of the cloud
after a time of flight:

w =
~tTOF
mσ

, (4.4)

one obtains a lattice depth is given by:

s1/4 =
dmw

π~tTOF
. (4.5)

In the case of our experiment equation (4.2) is used when we deal with a lattice
spacing on the order of half a micron. In the case of a bigger d the different peaks
of the interference pattern are not distinguishable and one need to use equation
(4.5) to estimate the lattice depth.
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a)

b)

Figure 4.13: (a) A scheme of Bose Einstein condensate loaded into an optical
lattice with interference patterns formed after releasing atoms from the optical
potential. (b) The real image of the interference pattern of a BEC released from
an optical lattice. One can see in the center the 0-th order peak and on the left and
right two ±1 order peaks.
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Chapter 5

Characterization of the
experimental system

To conduct experiments that aim at quantum information processing, precise knowl-
edge of the system is required. This led us to perform a series of preliminary mea-
surements which give answers on the limitations and stability of the set-up. The
role of these measurements was to precisely characterize the experimental system
which gives us important information for the experiments presented in the future
chapters of this thesis. In order to do this we use two methods. First of them is
the photoionization as it is an efficient tool to characterize system detection effi-
ciency or dynamics of the populations and it is not affected by the Rydberg atoms
interactions. As a second method we used two photon transition to Rydberg states
in order to characterize Rydberg transitions.

To describe our system we measured several quantities. The electron col-
lection is a basic technique that we use to extract information from the system,
therefore precise knowledge of the detection efficiency is crucial for estimation
of number of excited Rydberg states. We also need to take into account the ef-
fect of the charges building up in the quartz cell during ionization process and
how the residual electric resulting from this field affects energy levels of Rydberg
atoms. This is important when one examines the Rydberg atom spectra or results
of measurements on the dipole blockade. Furthermore, the knowledge of the Rabi
frequencies of the two steps of the Rydberg excitation are crucial in the experi-
ment when one wants to predict single-atoms dynamics and identify deviations
from this dynamics due to strong interactions. The mechanical effect of the lasers
on the ultracold atomic samples can also have important implications. Some pa-
rameters like the half width of the Rydberg spectra or the effect of the optical
lattices on these spectra were obtained by the Rydberg excitation.

In this chapter the answers on all question concerning the stability and effi-
ciency of our set up are presented. The experiments were partly conducted using
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Figure 5.1: Photoionization schemes used in the experiments. In (a) standard
421 nm+1020 nm two photons transition. In (b) two photon ionization with
780 nm+421 nm lasers.

rubidium atoms trapped and cooled in magneto-optical traps and partly with Bose
Einstein condensates.

5.1 Experiments in a Magneto-Optical Trap
Although the main purpose of this thesis is to present experiments conducted
with samples that underwent Bose Einstein condensation, first measurements were
done using ultracold atoms trapped in a MOT. Nowadays, magneto-optical traps
are used as a source of cold atoms in many photoionization experiments to be here
considered [28, 20, 1, 23, 65]. A big advantage of magneto-optically trapped sam-
ples is their availability as atoms in the MOT don’t have limited lifetimes as they
are constantly re-pumped. To perform experiments we used photoionization as it
is a perfect tool to characterize, for example, ion detection efficiency or population
dynamics. The photoionization of cold atomic samples of rubidium atoms trapped
in a MOT was first studied by Dinneen et al [28]. Rydberg excitations are the sec-
ond method of conducting measurements as it provides us with information about
Rydberg spectra. It is convenient to use atomic samples trapped in a MOT be-
cause of their low density which results in interparticle spacing comparable with
the dipole blockade radius.

To photoionize atoms from the MOT and BEC we use two photon transitions.
Figure 5.1 presents two photoionization schemes used in our experiments. In fig-
ure 5.1 (a) the scheme used for most of our experiments is shown. In this case we
use a 421 nm blue laser to excite atoms from 5S1/2 to 6P3/2 and 1020 nm to reach
the ionization threshold. The second scheme (figure 5.1 (b)) makes use of the
MOT beams to excite atoms to 5P3/2 and then 421 nm frequency to undergo ion-
ization process. When this ionization scheme is used the MOT beams are always
switched on, instead in the scheme when we use 421 nm+1020 nm configuration

66



during the excitation the MOT beams are off.
The first scheme (figure 5.1 (a)) is also used to excite Rydberg states. The

difference is the second step laser frequency tuned to the resonance with chosen n
level. This procedure differs from the schemes reported by other research groups
investigating Rydberg excitation in rubidium atoms[70, 67, 35, 58, 73, 33] that
use the blue laser light as the last transition step tuned to excite Rydberg atoms. In
our case, to change the Rydberg atom states the IR laser must be the tunable one.

5.1.1 Two photon MOT population losses
The photoionization of atoms in a MOT is a useful technique for measurements
of detection efficiency, characterization and calibration of the set-up. Both ioniza-
tion schemes introduced above have been used to create ions In the experiments
described in this Section. In the first scheme of figure 5.1(a) atoms from the
5S1/2(F=2) ground state are excited by 421 nm blue light up to intermediate state
6P3/2. The ionization threshold (ionization limit) is the minimum energy required
to ionize an atom and for 87 Rb it is∼4.18 eV [69]. This limit can then be reached
from the intermediate state by absorbing either a pulse of IR light or another blue
photon. In figure 5.1(b) the alternative scheme is presented. The cooling lasers
of ∼ 780 nm transfer population from 5S1/2(F=2) ground state to 5P3/2. Then a
pulse of 421 nm laser light is applied.

The number of atoms N trapped in a MOT with the re-pumper laser on in
continuous is almost constant (N∼109). When the loading is switched off, the
dynamics of the number of atoms is described by an exponential decay law with
a time constant 1/γ. The natural decay of atoms is caused, among others, by
interactions with background gas in the science cell. The presence of ionization
creates additional losses and so accelerates the atom number decay. The temporal
evolution of the number of ground state atomsN in the MOT is given by following
decay law [28]:

dN

dt
= − (γ + Γion)N. (5.1)

where we have introduced the two photon ionization rate Γion, produced by
two different laser light frequencies as described by:

Γion = g(2)S(2) I1

hν1

I2

hν2

, (5.2)

where I1 is the frequency and ν1 is the intensity of the first laser and I2 and
ν2 are intensity and frequency of the second one. The geometrical correction
coefficient, g(2), introduced in reference [20] and taking into account the spatial
distribution of the sample and the laser beam, is given by the ratio of the volume
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excited by the process of photoionization and the volume occupied by the atomic
cloud. Assuming that the spatial distributions are of a Gaussian shape, g(2) results

g(2) =
1√

1 + 2
(
dx

w

)2

√
1 + 2

(
dy

w

)2
. (5.3)

This is true for a Gaussian laser beam with waistw, centered on a Gaussian atomic
distribution with widths dx and dy. This factor has to be taken into account when
less than the whole sample is subject to photoionization. The geometrical correc-
tion coefficient approaches unity when the size of the laser beam is bigger than to
the size of an atomic sample.

During the photoionization experiment not every photon that hits atoms will
photoionize them. S(2) determines the two photoionization rate for unitary fluxes
of two laser beams. A cross section is typically introduced in the theoretical treat-
ment of multiphoton ionization in order to describe the dependence of the loss
rate, see for instance ref. [53]. In the situation when g(2) remains constant, the left
hand side of equation (5.2) depends only on the product of the lasers intensities.
This is valid only for weak intensities when shifts and widths of the intermediate
states near resonance for the two photon process are not important [47]. If these
conditions are not fulfilled S(2) is defined as a generalized cross section.

Figure 5.2: In (a), the Pph photoionization probability per laser pulse, in (b) the
unitary photoionization flux, S(2), as a function of the blue laser intensity Iblue
at IIR=2000 W/cm2 and different pulse lengths (green circles τpulse=1 µs, blue
triangles 0.5 µs and red squares 0.25 µs). The continuous lines represent theoret-
ical predictions for those pulse durations. Both Pph and S2 were determined by
measuring the temporal decay, γ, of the atoms from the MOT in the absence of
photoionization and the decay, γ + Γ, in its presence.
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Figure 5.3: 780+421 nm photoionization, in (a) photoionization probability Pph
per µs as a function of blue laser intensity Iblue at fixed pulse duration of 1 µs.
Figure (b) presents the photoionization probability Pph versus the pulse duration
τpulse for a fixed Iblue=44.2 W/cm2. In both plots, the 780 nm laser intensity is
0.15 W/cm2 and is detuned by -16.8 MHz from the 5S1/2F=2→5P3/2F’=3 reso-
nance. The continuous lines represent theoretical predictions.

Initially to ionize atoms trapped in the MOT the first scheme of fig.5.1(a) is
used. The sample is irradiated by 421 nm+1020 nm pulses of three different dura-
tions (0.25, 0.5 and 1 µs). Figure 5.2(b) presents the unitary flux photoionization
rate, S(2), as a function of 421 nm laser intensity Iblue. The fact that S(2) changes
with the intensity is justified by the influence of saturation and shifts on the 6P3/2

level.
A photoionization probability, Pph, is theoretically determined from the time

evolution of density matrix equations for atoms interacting with two photoionizing
pulses. The theoretical model developed in reference [1] is used to calculate the
probability. It takes into account both states directly coupled by laser radiation
and states involved in spontaneous emission cascade from the 6P to the 5S state,
optical pumping into the 5S1/2(F=1) is also considered. Without ground state
depletion the photoionization probability is proportional to the duration of the
pulse. The theoretical photoionization probability per pulse is plotted as a function
of Iblue in figure 5.2(a). The dependence on the pulse duration is visible. The
theoretical generalized cross section pulse is plotted as a function of Iblue in figure
5.2(b). Both plots in figure 5.2 are in good agreement with theory confirming our
good control over the photoionization process.

We also measured atom losses from the MOT induced by photoionization via
5P3/2. During the experiment blue laser intensities from 2 to 100 W/cm2 are
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Figure 5.4: Probability P of detecting N ions ions for different pulse durations,
τpulse, in the 780 nm + 421 nm photoionization configuration. From (a) to (d)
τpulse=30, 100, 150, 200 ns. The 780 nm laser has intensity,0.15 W/cm2 and
detuning 16.8 MHz while the 412 nm laser has an intensity of 45 W/cm2. Lines
connect the values of the Poissonian fit to the data. From (a) to (d) the measured
average value 〈Nions〉 T of the collected ions is 0.8(1), 2.9(3), 3.7(4) and 3.9(4).
The corresponding values determined from a fit with a Poisson distribution are
0.70(4), 3.0(2), 3.8(3) and 4.1(3).

explored. In the plot 5.3 (a) the Pph probability per µs as a function of blue
laser intensity is presented. Plot 5.3(b) reports probability Pph per pulse versus
the pulse duration at fixed intensity. On both plots the continuous lines represent
theoretical predictions. In this case the MOT ionization rate is proportional to
the product of the laser intensities. For each laser driven transition, the shifts and
widths of the states are inversely proportional to the linewidth of the initial and
final states. If the large laser intensity is applied to the transition from an excited
state to the continuum the shift is negligible. This is due to the latter state very
large linewidth. It is important to notice that during photoionization process the
atomic cloud changes its volume. To analyze the atomic losses this change has to
be taken into account. For this correction, it is assumed that the MOT operates in
the constant density regime.

5.1.2 The Determination of the charge detection efficiency

During the experiment not all ions that are created and pushed toward the CEM
will be detected. The electric field inside the cell is inhomogeneous and the de-
tecting device is not placed exactly on the way of the ion flux. Therefore, precise
knowledge of the detection efficiency is needed to perform quantitative measure-
ments of ions collected on the CEM. From now on this parameter will be defined
as ratio of ions created to ions detected on the CEM. Information about the de-
tection efficiency can be extracted by determining photoionization losses and the
average number of ions collected by the CEM measured as a function of the blue
laser intensity. Such data allows the calibration of charge detection efficiency in
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the following manner:

• the number of atoms lost from the MOT due to the sequence of laser pulses
is measured,

• the number of ions produced by the photoionisation pulse is calculated,
based on the theoretical ionization probability,

• the measurement of the ions that reach the CEM is performed.

During this calibration it is important to perform the experiment at a low num-
ber of collected charges, in order to avoid a saturation of the CEM output. In
order to improve the accuracy of the calibration process, we also compared the
ion count directly to the MOT losses because that comparison does not require the
determination of the laser parameters. To confirm the calibration of the average
number of ions detected, a statistical analysis of the number distribution of the
ion pulses at the CEM is applied. The ion distribution for different pulse duration
are shown in fig 5.4. The mean number of atoms extracted from this distribution
gives very good agreement with the mean number extracted from the average over
a large number of laser pulses.

The ionization spectra shown in following part of this thesis, for instance in
figure 5.11, are obtained using the configuration, presented in chapter 4 where
lateral plates are not present in the set-up. In this configuration a maximal global
detection efficiency of T = 3(1)% is measured. Instead the Poisson distribution
presented in figure 5.4 is obtained in the configuration with lateral plates, figure
5.4 and results in an efficiency of T = 35(10)%. We concluded that the presence
of the lateral plates helps to guide ions toward the CEM. Both configurations are
described in more details in chapter 4.

5.1.3 Rydberg excitation of atoms trapped in a MOT
To excite Rydberg states we have to tune the IR laser frequency to the frequency
corresponding to chosen n state. For this reason it is necessary to check how
well we are able to switch between quantum states by tuning the frequency of the
IR laser in the range of its accessible wavelength. The results are presented in
figure 5.5 where frequency scans of three different quantum states are shown.

To avoid populating the intermediate level 6 P3/2 that may cause incoherent
excitation to the Rydberg state, the blue light has to be detuned. Scans of the
Rydberg states with different detuning from the intermediate level are shown in
figure 5.6. The peak at zero IR detuning is produced by the two-step process based
on the resonant excitation of the intermediate 6P3/2 state. The remaining peaks are
produced by the two-photon process based on the off-resonant excitation of that
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Figure 5.5: Rydberg level signals, in arbitrary units, as a function of second step
excitation laser (IR) detuning for the blue laser resonant with the S→P transition.
In (a) 50 D state is presented with its 3/2 and 5/2 fine levels. In (b) 60 S1/2 level
is shown.

state. The results indicate that already with the laser detuned from the resonance
more than 300 MHz, the 6 P3/2 resonant contribution (determined by the zero
detuning peak) is minimal. These spectra are taken with the help of Box-car that
integrates the ion signals.
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Figure 5.6: 50D level spectra as a function of IR detuning, for different blue laser
detunings from the 6 P3/2 intermediate state: 100, 200, 300 and 400 MHz. The
zero detuning peak corresponds to two-step process, while the direct two-photon
excitation of the Rydberg state corresponds to the peak on the left whose resonant
position changes with the laser detuning.

5.1.4 The Stark shift
As explained in the chapter 2 Rydberg atoms are sensitive to electric fields. This
sensitivity provides us with possibility of manipulating Rydberg atoms. The en-
ergy of a state depends on the applied field (Stark effect). In an electric field pure
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states are mixed. The external field can be controlled by applying different voltage
into the plates. In our case good control over the electric field is important due to
the glass cell and the possibility of involuntary charging up the cell. Because of
this we cannot be sure that we control our fields very well. To check our control
upon the electric field applied on the cell the dependence of the energy states on
the applied field was measured. The constant electric field is applied during the
excitations but before the field ionization. This field by acting on the atoms shifts
their quantum states. In this way, by changing the voltage applied to external
electrodes we obtain the Stark map of 81D3/2,5/2 states. By comparing obtained
measurements with the theoretically calculated the Stark map we concluded to be
able to apply the extra electric field between 0 and 150 mV/cm. These results pre-
sented in figure 5.7 (a) show that despite having the glass cell we still can apply
controlled external field. In figure 5.7 (a), the case without the extra electric field
is shown. It corresponds to the first point on the Stark map shown in figure 5.7
(b). From this we can deduce that the residual field in the cell is ≈ 10mV/cm.
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Figure 5.7: In (a) spectrum of the 81 D excitation in case of no applied external
electric field and with the blue laser of the first step transition detuned by 60 MHz
from the 5S→6P resonance. The two-step and two-photon peaks are observed. In
(b) the Stark map of 81 D level is shown, blue squares correspond to the positions
of the 81 D5/2 and red dots to 81 D3/2 as a function of electric field.

In order to study the electric field that may build up during the excitations we
voluntary charged the cell. The field builds up in the cell when the electric pulse
is too long (more than a few ms). Charges accumulate on the cell creating an extra
electric field acting on the atoms. In figure 5.8, the effect of this electric field is
shown. After a 5 s pulse of the electric field is applied on the plates. The spectral
line of the 81 D level is taken every few minutes and its shape is compared to
the case where the extra field is not present, see figure 5.7 (a). It is clear that the
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Figure 5.8: (a) Time-evolution of the spectral lines of 81 D state. The cell was
first charged for 5 s and then left to freely discharge. Spectral line scans were
taken every few minutes. The blue laser light was 60 MHz detuned from the
intermediate state 6P3/2.

induced electric field broadens the lines, so clear resonant peaks of D3/2 and D5/2

are hard to distinguish, and their positions are shifted compared to the zero field
case of figure 5.7 (a).

The residual electric field is hard to defined as it change on a daily basis but
from several measurement one can say that it is on the order of 10 mV/cm.

5.1.5 The Determination of the Rabi frequency
While dealing with Rydberg atoms excitations it is important to know Rabi fre-
quencies of both steps of the transition, especially when one needs to predict
single-atom dynamics or consider deviations due to e.g. blockade effects. Also
knowledge of the Rabi frequencies is essential for efficient Rydberg excitation.
The Rabi frequency is proportional to the transition dipole moments µeg. The Rabi
frequency of the first step transition Ω1 can be easily measured experimentally by
Autler-Townes spectroscopy for ultracold atoms. This was already demonstrated
in reference [5]. To observe the Autler-Townes effect it is necessary to use two
lasers. The first one (420 nm) drives the transition between two states, in our case
5S1/2 and 6P3/2. Therefore, theses states are considered as dressed states. Then,
the transition to the Rydberg level is done using the second laser (1010-1030 nm).
This laser should have a weak power so the Rydberg state remains unaffected by
the applied lasers. By scanning the frequency of the second laser, we observe the
splitting of the resonant line of the first step of the transition. This measurement
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Figure 5.9: Spectrum showing the Autler-Townes split 6P 3/2 state probed by a
transition to the state 52S1/2. The strength of the probe transition was varied by
varying the light power of the 421 nm laser. The blue laser was resonant with the
6P3/2 state.

is conducted for different blue laser light intensities Iblue in the range from 15 to
1000 Isat, where Isat equals to Isat=2.3 mW/cm2. The spectra are taken at con-
stant IR laser intensity IIR of 400 mW/cm2. Figure 5.9 presents measurements of
the Autler-Townes splitting of the 6P3/2 state. The splitting between two lines for
a power of the blue laser Pblue ∼9 mW results in a Rabi frequency in the order of
Ωblue=2π×41 MHz. Calculations using:

Ωblue = Γ

√
Iblue
2Isat

, (5.4)

gives the value Ωblue=2π×35 MHz. This discrepancy is due to an imprecise
knowledge of the laser beam waists and the experimental error of the power mea-
surement. Table 5.1 presents values of Ωblue for different values of blue laser
power. The second step of the Rydberg excitation was determined from the dipole
coupling of the two states. During this measurements the Rabi frequency of the
second step transition was set to be ΩIR =2π×80 kHz.

While measuring the Rabi frequency of the first step of the transition some
interesting phenomena were observed. The excitation spectra are asymmetric and
broadened, see figure 5.9. The position of the mid point between the peaks is
shifted toward the lower energies. However, the Autler Townes theory does not
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Figure 5.10: The Autler Townes peaks positions (red and blue triangles) and the
central point of the spectrum (green squares). The dashed lines (red and blue)
present the theoretical calculations of the Autler Townes splitting and the green
continuous lines the determinations of the shifts from the electric field created by
the ions, as discussed in the text. In (a) the first step transition is on resonance with
the 6P3/2 state and results are plotted against power of the blue laser beam. (b) The
first step of the two photon transition was detuned by -10 MHz from resonance
and results are plotted as a function of the Rabi frequency Ω.

Table 5.1: Calculated values of Rabi frequency Ωblue for different blue laser pow-
ers.

Power of 421 nm (mW) Ωblue/2π (MHz)
0.2 5.3

0.45 7.8
1.85 15
2.9 19
4.2 23
9.2 35
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predict the shift of the central point and its position should be constant. Also the
split peaks show a tendency to move toward lower frequencies. From a theoretical
analysis it becomes clear that an electric field created by ions produced by the blue
laser photoionization is responsible for the shift. A model that assumes evenly
spread out ions creating the electric field confirms the previous results. To estimate
the electric field acting on the sample the number of ions produced by the blue
photon ionization was calculated. Then assuming all ions remain within the MOT
volume the average field was calculated. In this way the Stark shift was estimated.
During our experiment the first step excitation laser was on resonance or closely
detuned (-10 MHz) with the intermediate 6P3/2 state. An electric field created
by ions produced during excitation to the Rydberg state shift atomic states and
in the result the observed Autler-Townes peaks are also shifted. In figure 5.10
one can see that experimental and theoretical results are in good agreement. The
discrepancies between the model and the results are caused by the definition of
the volume occupied by ions and the fact that the field is not homogeneous.

For δbl = 0 the two peaks should have the same height, and instead the red
shifted one is more intense. This asymmetry was observed also for the spectra
recorded at δbl 6= 0. We don’t have a clear explanation of the asymmetry. In ad-
dition, one needs to take into account that ions are not distributed uniformly and
their spatial distribution follows the Gaussian profile of the blue laser and, there-
fore, the created electric field is not homogeneous. Due to this field dishomogene-
ity the split peaks are much broader than what expected from the Autler-Townes
theory.1

5.2 Two photon transition in BECs.

Since the main part of this thesis deals with Rydberg excitations of Bose Einstein
condensate samples, we performed a series of preliminary experiments aimed on
comparing two photon excitations in the MOT and in BECs in order to understand
how they differ from each other.

5.2.1 Ionization of BECs

In this subsection ion losses and ion creation are presented. The experiments are
done using the same laser parameters that are used while conducting experiments
in the MOT. No difference between the BEC and cold atoms trapped in the MOT
is seen. Nevertheless, during the analysis of BEC atom losses, the existence of

1The spread of the dipole moment values associated with various mF -sublevels could also
contribute to the apparent broadening.

77



thermal atoms following spontaneous emission from the excited state should be
considered.
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Figure 5.11: In (a) ion spectrum produced by BEC photoionization using
421+1020 lasers versus blue laser detuning, the IIR intensity being constant.
Each data point is taken with a laser pulse with intensity Iblue=0.12 W/cm2 and
IIR=2000 W/cm2. The continuous lines, and the right scale, represent the the-
oretical calculations of photoionization probability Pph. In (b) spectrum of the
momentum recoil prec imparted to the BEC against blue laser frequency is pre-
sented. Each data point is taken with a laser pulse with intensity Iblue=4 W/cm2

and IIR=2000 W/cm2. The continuous line shows the calculated value of the
momentum prec. The peaks are produced by the hyperfine structure of the 5P3/2

state. The zero detuning corresponds to the 5S1/2F = 2→ 5P3/2F
′ = 3 hyperfine

transition in appears

The number of ions produced during the photoionization process of the BEC
of around 104 atoms, is plotted in figure 5.11 (b). The transition scheme presented
in figure 5.1(a) is used. To begin, the average collected number of ions 〈Nions〉T ,
with 〈Nions〉 the number of produced ions, as a function of 421 nm laser detuning
is measured. The wavelength of the second step laser is fixed. Each point in the
figure corresponds to several BEC realizations. During this experiment we mea-
sured the integrated ion signal. Then the calibration of the signal has to be done
by comparison with a single ion signal. Furthermore, these data are compared
with the solution of the time evolution of the density matrix for the two photon
ionization case. The continuous line plotted in figure 5.11 (a) represents the theo-
retical photoionization probability Pph. The vertical scale on the right hand side is
chosen to match the ion signal (scale on the left). The line broadening of 3 MHz
was observed.

78



Figure 5.12: In (a) BEC absorption image, after 6.3 ms of time of flight. The
vertical line indicates the atomic cloud center. In (b) absorption image of the
ultracold atomic cloud irradiated by 0.3µs 421 nm laser pulse with intensity
Iblue=0.7W/cm2. The vertical lines indicate the new cloud center and the origi-
nal one.

5.2.2 Mechanical effects of photoionization laser

The momentum transfer from the blue photons to the condensed atoms has also
an effect on the shape of the BEC. While performing measurements on the BEC
deformation of the BEC is observed. The image of a BEC cloud with its spatial
distribution before laser ionization and after 6.3 ms of time of flight is presented
in figure 5.12 (a). The BEC presented in figure 5.12 is 14×14µm large.

In figure 5.12 (b) instead, an image of the ultracold atomic cloud after a 0.3 µs
pulse composed of 421 nm and 1020 nm lasers is shown. Photoionization pulses
strongly affect the ultracold atomic cloud by means of the following process:

• BEC absorbs a blue photon and recoils in opposite direction with momen-
tum prec,

• BEC spontaneously emits absorbed photons in the random directions,
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• atoms get converted into a thermal cloud following spontaneous emission
from the excited state and the resulting spatial distribution of the atomic
cloud is broader.

Figure 5.13: Spatial widths σx and σx (in µm) of the atomic thermal cloud cre-
ated by blue photon absorption versus the momentum recoil prec imparted to the
ultracold cloud.

A broadening of the momentum distribution is visible in the x direction of
propagation of the irradiation but also in the vertical z direction. The spatial dis-
tribution of the atomic cloud is composed from the narrow BEC part and much
broader thermal cloud, as in the spatial profiles reported in figure 5.12(b). Figure
5.13 reports the measurements of the σx width of the cold cloud in the horizontal
direction and σz in the vertical. The thermal cloud broadening is proportional to
the square root of the atomic recoil. The momentum transfer by the IR photons
is negligible compared to that due to the blue photons. In figure 5.11 (b) reports
experimental and calculated recoil momentum prec versus the blue laser detuning.
In the plot, zero detuning corresponds to the 5S1/2(F=2)→6P3/2(F’=3) transition.
The visible resonant peaks match the F’=1, 2, 3 hyperfine states of 6P3/2. The
theoretical prediction shows a very good agreement with the experimental points.

5.2.3 Rydberg spectra in BECs
It is important, to measure the widths of spectral lines of the Rydberg state. In
this case we investigate the 53 D level. We used low density BECs to avoid strong
interactions that could affect the result. The procedure used to create low density
BEC samples is presented in more details in chapter 6. Firstly, the BEC is loaded
into one arm of dipole trap while simultaneously switching off another one. Then
the atoms are left to expand for 100 ms in the horizontal direction. In this way,
the BEC is more than 300 µm wide. Figure 5.14 presents the number of ions
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Figure 5.14: Number of ions detected by the CEM as a function of the IR laser
detuning. Zero corresponds to the 6P3/2(F=3)→53D5/2 transition. The frequency
of the first step transition was detuned 500 MHz from the resonance. The intensity
of the blue laser is Iblue=15 W/cm2 and of the IR laser IIR=160 W/cm2.

detected by the CEM versus detuning of the 1020 nm laser light. Each point in
figure 5.14 is an average of 3 measurements where 15 excitation impulses are shot
in each realization of the BEC. The intensities of both lasers are constant for the
duration of the experiments. The visible peaks correspond to the D3/2 D5/2 levels.
As shown in figure 5.12 both peaks have a Full Width at Half Maximum (FWHM)
around 3 MHz. The FWHM value given by the spontaneous decays corresponds
to ≈0.4 MHz. The discrepancy is due to the dipole blockade and the linewidth of
the excitation lasers.

5.3 Rydberg atoms in optical lattices
In the following chapters we will deal with Rydberg excitations of a BEC loaded
into optical lattice created by 840 nm laser light, therefore one interesting point
for future experiments was to check if lattice lasers beams are going to affect the
spectral lines of the Rydberg states. In order to be sure that this radiation is not
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Figure 5.15: The spectral line of the 53D3/2,5/2 state. Atoms trapped in the MOT
are irradiated by the 500 ns pulse of 421+1020 nm. The blue laser frequency is
detuned by 500 MHz into the blue. The blue line corresponds to the case where
the lattice lasers were applied and red one to the case without optical lattice.

going to affect Rydberg levels we excited Rydberg atoms in the presence of the
840 nm radiation. The experiments were performed using the atoms trapped in a
MOT. The excitation pulse of 500 ns was applied and the 421 nm blue laser fre-
quency was detuned by 500 MHz. Different intensities of the light were explored.
In figure 5.15 the spectral lines of the 53 D sate are taken for different intensities
of the blue laser. Spectra are taken by scanning the frequency of the second step
transition. For each value of the blue laser intensity the scan is done with and
without the lattice lasers. As shown in figure 5.15, the lattice laser beams don’t
introduce any shifts or broadening to the spectral lines of the Rydberg states. In a
similar way we checked if the 1030 nm laser that creates the dipole trap does not
introduces any effect to the spectral lines and the result was negative.

5.4 Conclusions
In this chapter a series of experiments was performed. Their purpose was to define
several experimental parameters and to show how the future measurement can be
affected. In the first section the experiments in the magneto-optical traps were
described. A new experimental configuration for ionization and charge collection
has been described and characterized. The efficiency of ionization was measured
giving a value of 3(1)% for the configuration without lateral plates and 35(10)%
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when the lateral plates were present. Furthermore, the Stark shift experiment al-
lowed us to obtain an approximate value of the residual field in the experimental
cell, on the order of 10 mV/cm. This experiment showed that we have very good
control upon the applied external field. Furthermore, the losses observed for ul-
tracold samples were presented.

The second part of this chapter was devoted to experiments in Bose Einstein
condensates. First, the ionization spectra produced from a BEC have been pre-
sented. In the second part, some results on the Rydberg atom excitation were
examined. The half line width of the Rydberg atom spectra of around 3 MHZ has
been measured. In the last part of this chapter the Rydberg excitation of ultracold
atoms inside optical lattices has been presented showing no heating effect due to
the lattice lasers on the Rydberg spectra.
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Chapter 6

Dipole Blockade Effect in ultracold
atoms

An intriguing phenomenon arising from strong Rydberg interactions is the dipole
blockade [44, 51]. The blockade effect is often presented in the context of quan-
tum information processing, due to the fact that state dependent interactions are
important for the creation of two qubit quantum gates [13]. This blockade phe-
nomenon has been extensively studied both theoretically [4, 17] and experimen-
tally in different atomic ensembles: cold atomic clouds [72, 39], single atoms
[73, 33] and BECs [38]. The strong Rydberg-Rydberg interactions have been
studied in the context of gases and the first experimental results presented a non-
linear dependence on the number of excited atoms as a function of increasing
power of the excitation lasers and atomic density [72, 67]. Later research in high
density regimes shows that one can also observe coherent collective excitations
[39, 39, 33, 45]. The experiments presented in this thesis provide experimental
information about the dipole blockade effect in Bose Einstein Condensates. Much
stronger interactions in thermal samples are expected in BECs than in the thermal
samples due to their higher densities. The blockade effect can be observed both
using BEC samples of varying sizes and through the counting statistics, where the
Mandel Q factor is an indicator of a sub-Possonian counting distribution expected
in the strongly interacting regimes.

This chapter discusses experiments on the Rydberg excitation of atoms from
Bose-Einstein condensates to Rydberg states. The results on dipole blockade mea-
surements in BECs are reported. The experiments explored different BEC density
regimes and their influence on Rydberg atoms production, (section 6.2). In the
later part of this chapter we present the duration of the excitation pulse, (section
6.3). In the further part of the chapter results on counting statistic of ultracold
atoms are presented (section 6.5).
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Figure 6.1: The experimental time sequence: (a) To expand the BEC, the atoms
are loaded into a one of the arms of the dipole trap. (b) To squeeze the BEC,
the powers in the dipole trap laser beams are ramped up. Squeezed or expanded
BECs are then subject to excitation to Rydberg states and are imaged after a time
of flight.

6.1 Experimental procedure

In the experiments presented in the following part of this chapter we aimed at
measuring the Rydberg signal obtained from various sample sizes. Realization of
condensates with different sizes combines the techniques of Bose Einstein con-
densation presented in chapter 3 with a method of changing condensate size. To
obtain different sample sizes one can expand or squeeze the volume of a BEC,
keeping constant the number of atoms in a sample. With the close to constant
number of atoms when we change the size we change in effect the density of the
sample.

The process described in chapter 3 results in Bose Einstein condensates with
densities in the range of 1012-1013 cm−3. To experimentally achieve a Bose Ein-
stein condensate with lower densities, so with bigger sizes, we expand the BEC
in one arm of the dipole trap. At the final stage of evaporation the second dipole
beam power is ramped down and atoms remain in only one arm of the trap whose
power is ramped up in order to increase its radial trap frequency. Then the con-
densate is left for several milliseconds to expand in the horizontal direction, its
size is denoted as σBEC . By changing this expansion time, τexp, one can chose the
final size of the sample. An increase of τexp leads to an almost linear increase of
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Figure 6.2: Optical path for Rydberg excitation radiation. Samples confined in
one arm of the dipole laser are irradiated from along the direction of the dipole
trap beam.

the size of BECs. In figure 6.1(a) the experimental time sequence of the expansion
experiment is presented.

Smaller sizes of the sample are obtained by squeezing the sample confined by
both arms of the dipole trap. The minimum size corresponds to the maximum
applicable power to each arm of the dipole trap. The time sequence of this exper-
iment is presented in figure 6.1(b).

After a realization of the sample with the chosen size, a Rydberg excitation
pulse is performed. Each excitation/detention sequence consists of blue and IR
laser pulse, field ionization and ions detection. The total duration of one sequence
cannot be shorter than 42 µs due to a charging effect on the glass cell. If this
time was shorter the cell would not have time to discharge and in the effect the
experiment would be conducted in the presence of an external electric field. The
minimum duration of the laser irradiation is limited to 30 ns. This value comes
from the raise time of the Acousto-Optics Modulator.

To excite the sample, the two photon scheme described in chapter 4 was used.
The first step of the transition was blue detuned by 500 MHz from the intermediate
6P3/2 state.

Typically, for each expansion time three realizations of a BEC, each with at
least 15 excitation sequences were done. Then the number of the detected Rydberg
atoms was averaged and plotted against the size of a BEC.

In all the experiments the irradiation beam was aligned along the dipole trap
of beam that contained the expanding atoms, see figure 6.2. This alignment max-
imizes the overlap between the sample and the beams.
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Figure 6.3: (a) and (b) present BEC expanded for different time, texp.(c) Trans-
verse area of the blockade with the blockade radius, rb. The spheres indicate the
dipole blockade radius. The white doted lines represent the dipole trap beams.

6.2 Dipole Blockade in the expanded BEC

The experiment was performed to investigate the dependence on the size of the
condensate of the number of Rydberg atoms that fit into the atomic cloud. This
then could be used as a new method of measuring the dipole blockade radius.
Measuring the collected ion number and knowing the efficiency of the collection
one can calculate the number of Rydberg atoms created in a BEC. By changing
the length of the elongated cloud between a few microns and several hundreds of
microns we observed an increasing number of Rydberg atoms as more blockade
spheres fit into the one-dimensional chain.

The dipole blockade effect described in chapter 3 is characterized by the block-
ade radius rb. In a region dictated by this radius at most one Rydberg excitation
can be present. In the 3D model this region is defined as a sphere and is discussed
below. The 1D model can be viewed as a chain of Rydberg atoms separated by
the average distance d = 2rb. Therefore, while expanding the sample more block-
ade areas can fit into it resulting in exciting larger numbers of Rydberg atoms.
While the BEC expands it takes the form of a tube with a radial size of around
3µm, which is less then the dipole blockade radius for any n state used in the
experiments described in this chapter. The radial size of a BEC can be calculated
using the formula for the width of a wavefunction of a particle in a trap assuming
negligible interactions in the ground state [63]:

ai =

√
~
mωi

≈ 3µm, (6.1)

The trap frequency ωi in our case is around 50 Hz and corresponds to a dipolar
beam power of 280 mW.
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Figure 6.4: The dependence of the number of Rydberg atoms NRyd on the mea-
sured radial size of the atomic cloud, σz, without (squares) and with (dots) an
external electric field of 150 mV/cm.

If one takes into account this value the sample can be described as 1D system.
To confirm that we work in an effective 1D system we performed an experiment
where the horizontal size of a sample was kept constant. Instead the radial size
was changed by changing the temperature of the sample leading to a larger radial
size for higher temperature values. It can be concluded from figure 6.4 which
presents the dependence of the number of Rydberg atoms on the radial size of the
sample, that in the range between 2.2 µm and 2.5 µm we operate in 1D system
as the number of the excited atoms does not change. Going to wider samples that
correspond higher temperature values, one observes the linear grow in the number
of detected Rydberg atoms and constant number of Rydberg atoms from 2.7µm
signalizing that 3D regime has been reached.

Furthermore, we were interested in what happens when an external electric
field is acting on atoms. We know that in a case of our setup the residual electric
field is present in the cell. The measurements were performed in the same way
that measurements presented above but in this case an external electric field of ≈
150mV/cm was applied. From the figure 6.4 (green diamonds) one can observe the
effect of the field as a suppression of detected Rydberg atoms due to the increased
size of the blockade radius.

Measurements of the number of Rydberg atoms against the size of the con-
densate were conducted for different n states. For all of them the dependence
of the number of Rydberg atoms, NRydb, on σBEC , the size of the BEC sample,
was plotted. Each point presented on the plots is a result of averaging three BEC
realizations, each of 50 sequences. To calculate the number of Rydberg atoms
produced an efficiency of 35% was assumed, see chapter 5. Figures 6.5 a), and
b) present dependence of the number of excited Rydberg atoms on the size of the
BEC for the chosen n states. The number of excited atoms increases with in-
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creasing the horizontal size of the BEC. Measurements of the 53D5/2 state were
repeated and showed good agreement between each other, see figure 6.5 b).

As can be seen in chapter 2 the Van der Waals interaction coefficientC6, scales
as n11. So by imposing the C6 proportionality to n11 in the C6

R6 therm, we obtain
for the average Rydberg-atom separation d = rb ∝ n11/6. This is true only when
no electric field acts on the atoms. In the case when an external electric field is
applied the average Rydberg-atom separation d = rb ∝ n11/6 + n4/3 where n4/3

is obtained by imposing the C3 proportionality to n4 in the C3

R3 therm. In the case
of our experiment some residual field is present in the cell after switching off the
plates and the grid. The presence of such a electric induces dipole dipole inter-
actions which increases the dipole blockade radius rb. Even if this field is on the
order of 10 mV/cm, it causes small change of the measurements and the block-
ade radius. Nevertheless it has to be taken into account when one wants to obtain
a good agreement between experimental and theoretical data. While calculating
the number of detected Rydberg atoms, NRydb, the factor 1/2 was also taken into
account. This factor comes from excitation probability of a Rydberg state. Each
blockaded sphere should be considered as an effective two level system where
only one atom in the sphere can get excited. However, we need to consider that
we are collectively exciting atoms inside the blockaded area and therefore, the
probability of excitation is equal 1/2 as we average over all the excitations. The
effect of the external electric field on the atoms is presented in figure 6.6. This
measurement was conducted for the 66D5/2 state. The number of created Ryd-
berg atoms was measured for different sizes of the condensed cloud without any
external electric field (red line) and with an electric field of ≈ 150mV/cm created
by -10 V applied to the front plates (green line). From the figure 6.6 one can
clearly see than when the field is applied the number of Rydberg atoms NRyd is
much lower than in the case without the field, resulting in a higher dipole blockade
radius rb. As the Rabi frequency scales with the

√
N , where N is the number of

atoms in the blocked region to keep the the pulse area fixed we had to adjust the
time of the pulse for each size of the sample.

Figure 6.7 presents the blockade radius rb as a function of the quantum number
n. The experimental data are in good agreement with the calculated values. To
fit the experimental results of the blockade radius against the n state both Van der
Waals and dipole dipole interactions were taken into account.

To confirm obtained results we have compared the normalized number of ex-
cited Rydberg atoms, NRydb, to the saturation value N . The results present in
figure 6.8 show good agreement between the curves of the 53D5/2 and the 78D5/2

states.
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Figure 6.5: Number of excited Rydberg atoms, NRydb, as a function of the size of
the sample, σBEC , for the a) 53D5/2 and b) 78D5/2 states. From these plots one
can derive the blockade radius rb.
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Figure 6.6: Number of excited Rydberg atoms, NRydb, as a function of the size of
the sample, σBEC , for the 66 D5/2 state. The dots present measurements conducted
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Figure 6.7: Dipole blockade radius as a function of the principal quantum number
n. The red dots represent data obtained experimentally and the red line corre-
sponds to theoretical fit that takes into account both Van der Waals and dipole-
dipole interactions, the quantum defect being taken into account, as in ref. [22].
The results were obtained without an external electric field; however the residual
electric field was taken into account. The linewidth of the excitation laser was
300kHz.
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Figure 6.8: Number of the excited Rydberg atoms normalized to the saturation
value,Nsat, as a function of the BEC size, σBEC for the 53D5/2 (red dots) and
78D5/2 states (blue squares).

6.3 Coherent excitations of Rydberg atoms in BECs

Recent results in trapping and manipulation of ultracold samples gave us the pos-
sibility to coherently control large atomic ensembles. We wanted to check if with
the use of our present configuration an observation of the Rabi oscillations be-
tween ground and Rydberg state is possible. In this section the observation of
coherent excitation to the Rydberg state for different states and densities is pre-
sented. Using the setup discussed in chapter 4 and the expansion technique de-
scribed in section 6.1, a BEC sample was prepared in the same way three times
and a number of identical sequences consisting of Rydberg excitation, field ion-
ization and detection were conducted on each sample. The excitation time tpulse
or the condensate size σBEC were varied. The excitation dynamics were investi-
gated by changing the irradiation pulse durations tpulse, between 100 ns and 3 µs.
The first step of the two photon transition was blue detuned from the resonance by
500 MHz. The density and the excitation state were varied in order to investigate
the coherent behavior of Rydberg atoms.

In figure 6.9 experimental and theoretical excitation dynamics for three dif-
ferent BEC densities are presented. The graph represents a dependence of the
number of excited Rydberg atoms, NRydb, on the excitation pulse tpulse. Such
slopes for blocked excitations are predicted in [40]. The initial slope, α, can be
extracted from the fit of a simple exponential saturation function:

NRyd(t) = Nsat

(
1− eαt/Nsat

)
, (6.2)

where t stands for the excitation time and NRyd(t) is the number of Rydberg
atoms at time t. This function does not reproduce the exact dynamics but can be
used for extracting for example the saturation value, Nsat, and the rise time of the
slope, as in [38].

93



80

60

40

20

0

 N
R

y
d
b

3.53.02.52.01.51.00.50.0
 tpulse (µs)

 classic BEC

 50 ms expanded

 100 ms expanded

 

Figure 6.9: Number of the created Rydberg atoms as a function of the irradiation
pulse length, tpulse for three density values, the green triangles correspond to the
classic BEC with density ρ ≈1014 cm −3, the blue squares to 50 ms expansion and
ρ ≈ 3×1013 cm −3, and the red dots to 100 ms expansion and ρ ≈ 1×1013 cm −3.
Theoretical simulations of the excitation for the same density regimes as the one
used in experiments are in good agreement with the experimental data and they
are represented by lines.

Figure 6.9 shows that with a lower density the Rydberg atom number, NR,
grows more slowly than with the higher density values. This result is consistent
with the theory (see equation (2.56)) that states that the collective Rabi frequency
Ωcoll ∝

√
N . Using a theoretical simple model representing interactions between

the Rydberg atoms including the blockade effect, one can see that denser samples
i.e. at 50 ms expansion, reach the saturation value faster than those with lower
densities i.e. at 100 ms expansion. The fluctuation of the number of the Rydberg
atoms visible in figure 6.9 is a result of the fluctuation of the number of atoms in
the blockaded area obtained by integrating the distribution inside each sphere. The
final number of the excited Rydberg atoms NRydb is a sum of contributions from
all blocked regions. However, for the 100 ms expansion the discrepancy between
theoretical and experimental results is visible. The number of excited Rydberg
atoms predicted by theory is higher than the one observe during the measurements
due to the saturation of the experimental signal on the CEM1. In the case of the non
expanded BEC, the experimental curve differs significantly from curves obtained
from the expanded BECs. This is due to the fact that we cannot consider the
system being in 1D as the width of the non expanded BEC is greater than the
radius of the blockade for the 53D5/2 state. The almost pure condensate has a

1We observed that depending on a n state and the experimental sequence the detection saturates
when from 40 to 80 ions reach the CEM.
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Figure 6.10: Number of excited Rydberg atoms, NRydb, as a function of the pulse
lenght, tpulse for the 53D5/2 (red dots) and 78D5/2 states (blue squares). Samples
were expanded for 50 ms with the width in horizontal direction ∼ 160 µm. The
experimental data are represented by symbols and their theoretical data by the
continuous lines.

Gaussian distribution of atoms. The tail of such a distribution consists of single
atoms that are far from the blockade regimes of the atoms in the center of the
distribution. The exact contribution of these atoms is not well know and the results
are currently under further investigation.

In figure 6.10 the typical excitation dynamics for two different n-states are
presented. This experiment was conducted using 53D5/2 and 78D5/2 states. From
the experimental points one can see that the Rabi oscillations that characterize
coherent excitation are not very well distinguishable due to the non uniform dis-
tribution of atoms in the sample and the thermal tail of the BEC. The thermal
fraction gets excited and creates the Rydberg excitations with different collective
Rabi frequencies. In this way the excitations presented in the figure 6.10 are the
average of excitations with different collective frequency. As a result clear oscilla-
tions are washed out. As expected with a higher n state the dipole blockade radius
rb increases and the characteristic initial slope is faster. As the blockade radius for
the 53D5/2 is half of the radius of the 78D5/2 state, the number of blocked regions
that fits into the sample volume is twice as big, therefore we observe twice as
many detected Rydberg atoms. This is confirmed by a simple theoretical model
assuming complete collective Rabi oscillations between the ground and excited
state without decoherence over spatial dependence:

PRydb = sin2
(√

Nωt/2
)
, (6.3)
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where N is the number of atoms in the blocked area, ω is the Rabi frequency of
the excitation calculated with our experimental parameters. The number of atoms
in each sphere is calculated by integrating the distribution inside the sphere. Then
by considering a 1D Gaussian distribution the contribution of different blockade
sphere was summed. The separation between each sphere is twice the blockade
radius. In the model the number of atoms and the width of the distribution for both
states were fixed. The Rabi frequency was slightly adjusted due to the imprecise
measurement of the waist and powers of both excitation laser. In the case of pure
van der Waals interactions the distance between two excited Rydberg atoms is
defined as R=2rb ∝ n11/6. In the blockade regime, the scaling law for the de-
pendence of the collective Rabi frequency on the condensate volume is Ω ∝V1/2.
According to theoretical model, and as reported in table 6.1, that Rabi frequency
for the 1D configuration should scale as n−7/12.

Table 6.1: Scaling laws for the excitation volume and the collective Rabi fre-
quency 1D and 3D systems.

parameter 1D 3D
Volume V ∝ R ∝ R3

collective Rabi frequency Ω ∝ n−7/12 ∝ n5/4

6.4 Probing with BEC
In this section we describe a method of imaging the intensity profile of the ex-
citation lasers. A BEC small compared to the beam size allows us to examine
intensity distribution of the laser beams using BEC as a probe. The sample is re-
leased from the trap and passes through the laser beams of the excitation radiation.
This radiation consists of multiple pulses. The Rydberg atoms are detected while
the BEC passes through the beams, see figure 6.11a). In figure 6.11 b) one can see
the dependence of the ion count on the distance of the center of the cloud from the
trap center. The obtained results for the width of the laser beam (115±12µm) are
in very good agreement with the measured values.

6.5 Counting statistics in ultracold Rydberg sam-
ples.

In section 6.2 the blockade effect was explained using BEC samples of varying
sizes. In this section we will use the Mandel Q factor as an indicator of sub-
Poissonian counting distribution in the strongly interacting regimes. We present
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a) b)

Figure 6.11: (a) Schematic representation of the BEC released from the dipole trap
and passing through the excitation radiation. (b) The ion count versus distance
(measured relative to an arbitrary reference point) is characterized by a Gaussian
distribution.The inferred size of the laser beams is 115±12µm, to be compared to
actual size of 140µ.

results on large samples of ultra cold atoms trapped in magneto-optical traps. The
atoms in magneto-optical traps were chosen instead of the Bose condensed sam-
ples due to the higher experimental repetition rate. Due to strong interactions
that lead to dipole blockade we expected to see clear signature of sub-Poissonian
counting statistic with negative values of the Mandel Q-parameter.

6.5.1 The Mandel Q parameter
The Mandel parameterQ describing the deviation from the Poissonian distribution
is defined as [54]:

Q =

〈
N2
Rydb

〉
− 〈NRydb〉2

〈NRydb〉
− 1, (6.4)

where NRydb stands for the number of excited Rydberg atoms. In the case of
the pure Poissonian distribution, when the events are independent from each other
the Q factor is equal to zero because the variance id equal the mean. Values for
Q > 0 correspond to the super-Poissonian distribution and values Q < 0 to the
sub-Poissonian one. The minimum Q = −1 represents a theoretical case without
any fluctuations i.e. a pure or Fock state. In the limit of negligible interactions
between atoms in the sample, the dynamics of each atom is independent of the
dynamics of any other atom. If one assumes that the excitation laser irradiates
the whole sample in a homogeneous way, the probability of excitation for one
atom is Pexc = 〈NRydb〉 / 〈Na〉, where 〈Na〉 is the number of atoms in the sample.
The deviation of counting statistics from the Poissonian distribution is determined
by the probability of excitation [50, 49, 4]. If a sample consisting of N atoms
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is a subject of the excitation to the Rydberg states and each of atoms has 100%
probability to be excited, we obtain Q = −Pexc = −1. If then we consider the
same sample but the excitations are blocked due to the dipole blockade effect, the
number of excited Rydberg atoms in the whole sample is equal to the number of
blockade spheres that fit into the region covered by the atomic ensemble. During
one excitation pulse we excite again all possible Rydberg atoms from the system
due to the collective effect and the probability is again equal 1 giving Q=-1. In
this way the Rydberg excitation blockade is expected to lead to sub-Poissonian
counting statistic with negative values of the Mandel Q parameter. To character-
ize the dipole blockade via counting statistic we need to assume that the number
of Rydberg atoms does not fluctuate significantly from one excitation process to
another.

6.5.2 Experimental results
In our experiment we have conducted measurements for states with n > 52 finding
that Mandel parameters indicates strong sub-Poissonian counting statistics. As in
[49] for detected number of Rydberg atoms, the detected Mandel parameter will
be noted as Q′. Then the detection efficiency, η, has to be taken into account
giving as a result Q′ηQ where Q is the the real value of Mandel parameter. We
have obtained Q′ ≈ −0.5 which when considering η on the order of 35% Q′ is
very close to −1 (when errors of the detection efficiency and Q factor are taken
into account). The negative Q′ regime is extremely sensitive to the detuning from
resonance of the Rydberg excitation, with even a few MHz detuning leading to
highly super-Poissonian statistics.

We were interested to observe temporal changes of the sample in the regime
where number of Rydberg atoms is saturated. For this reason we determine theQ-
factor while performing excitation experiment using different time pulse lengths,
see figure 6.12. One can see that the measured value of Q′ decreases while the
number of excited Rydberg atoms increases and they both reach their saturation
point at the same time. This behavior was predicted by Stanojevic et al [68].

Furthermore, we were interested how the Q parameter depends on the detun-
ing of the second transition laser. For this reason we have conducted a frequency
scan of the IR laser. This measurement showed how the detuning of the IR laser
may affect the reliability of the measurement. In figure 6.13 it is clearly visible
that when one is out of resonance with the Rydberg state the value of Q-factor
becomes higher. We assume that this is due to jitter of the IR laser in/out of the
resonance position but this needs further theoretical investigation. The measure-
ments presented in figure 6.14 for the dependence of confirm that when the laser
is out of resonance with the excited state the Q does not reach its minimum value.
The curve corresponding to 5 MHz detuning from resonance with the Rydberg
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Figure 6.12: Excitation dynamics of the atoms trapped in the MOT. The 0.3×104

atoms were excited to the 71 D5/2 state. The Q′ factor was calculated for every
point measured.

state clearly grows and the Q-factor takes positive values. The timescale of the
excitations presented in figure 6.14 is longer than the usual excitation timescale
due to instability of the excitation laser. Instead curve (fig. 6.12) where the IR
laser was put on resonance presents a decrease of the Q-factor value while in-
creasing the pulse duration. The same measurements were conducted using as a
sample Bose Einstein condensates. The obtain results are in good agreement with
the measurements in a MOT, as negative Q values were observed.

6.6 Conclusions
In this chapter results on excitation of Rydberg atoms from ultracold atomic sam-
ples were presented. A new technique for calculating the dipole blockade radius
for effective 1D sample was demonstrated. By measuring the number of excited
Rydberg atoms in samples characterized by different sizes it is possible to calcu-
late the distance between the excited atoms. These results showed good agreement
with theoretical calculations. An attempt to measure collective coherent excita-
tions of Rydberg atoms in Bose Einstein condensate was also made. The obtained
results follow the theoretical predictions of the simple model that assumes inter-
actions between excited atoms. However, the collective Rabi oscillations were
hard to observe due to the non uniform distribution of atoms in the samples. The
evidence for an effective 1D system was presented by both experimental and the-
oretical results. Furthermore, we measured the counting statistics in the strong
blockade regime in ultra-cold clouds. We have found clear signatures of strong
interaction between Rydberg atoms that are proved by sub-Poissonian counting
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Figure 6.13: Rydberg atoms spectra in a MOT. The Q′-factor measurements (blue
squares) against the frequency are shown as well. The blue laser was detuned
by 1 GHz from the resonance with the intermediate state. The number of atoms
was 0.5× 104 and the intensities were Iblue ≈ 20 W/cm2 and IIR ≈ 380 W/cm2,
respectively. The time of the pulse lenght was 2 µs.
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Figure 6.14: The Rydberg excitation dynamics in a MOT. Atoms were irradiated
with blue and IR lasers with intensities Iblue ≈ 8 W/cm2 and IIR ≈ 380 W/cm2,
respectively. The red squares represent the case with the IR laser frequency put
on resonance and the blue one with the IR laser frequency detuned 5 MHz from
resonance.
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statistics with Mandel Q-parameters around −0.5.
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Chapter 7

Rydberg atoms in optical lattices

In recent years quantum information science was subject of intense studies [6, 12,
42]. The main goal for these theoretical and experimental efforts is to create quan-
tum computers. To achieve this goal one needs to be able to implement quantum
protocols that consist of a sequence of quantum gates which are basic quantum
circuits. A quantum gate operates on a small number of interacting qubits. An
experimental realization of a quantum bit is itself an arrangement of entangled
atoms. It is important to think about implementing quantum protocols. Rydberg
atoms were proposed to be a great subject for quantum information research as
they are characterized by a large polarizability so they exhibit long range interac-
tions. These interactions leading to dipole blockade effect make them a suitable
candidate for realization of controllable quantum systems [44]. However, experi-
mental implementation of quantum gates is a challenging task requiring coherent
manipulation of a large number of coupled states and so future applications re-
quire the large number of Rydberg excitations in a spatially ordered array. This
can be provided by placing atoms in periodical potentials. Several theoretical
attempts to create two qubits gates encompassing these two fields were already
made [42]. For example one of the discussed concepts uses atoms in optical lat-
tices and controllable state dependent two body interactions. Coherent cold colli-
sions of atoms, optical dipole-dipole interactions [12, 43], or the two qubit gates
based on the large permanent dipole interactions between Rydberg atoms in static
electric fields [44] may be example of such two body interactions.

In this chapter experiments with Rydberg atoms in the one dimensional optical
lattice are presented. In the first section the non destructive character of Rydberg
atoms excitation in optical lattices is shown. During an excitation process from a
sample containing 50 thousand atoms only few reach the Rydberg state. It will be
shown that this quantity is to small too perturb significantly the phase coherence
of a Bose Einstein condensate. Subsequently results on coherent excitation of
Rydberg atoms trapped in periodic potentials are demonstrated. According to the
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super-atom picture the collective Rabi frequency for a single-site excitation scales
with

√
N , where N is the number of atoms in the blocked area. We demonstrate

that the system consisting of tens of interacting Rydberg atoms trapped by periodic
optical potential follows this scaling law. We also prove that well-defined length
of the sample with sharp boundaries reduces the effect of non uniform distribu-
tion of atoms in the sample that is responsible for different collective local Rabi
frequencies. As a result we can observe collective Rabi oscillations in contrast to
the results presented in chapter 6.

7.1 Non destructive character of Rydberg excitations

In the case of the Rydberg atoms excited from a Bose Einstein condensate sample
one may expect that atoms that underwent the transition to high energy states
would destroy the phase coherence of the BEC. In this section we present results
on the effect of Rydberg atoms on the phase coherence of the condensate. We
performed measurements to check if the BEC after being a subject of excitation
to high n quantum states maintains its coherent properties. An optical lattice is a
useful tool to investigate phase properties of a Bose Einstein condensate. There
are two methods to extract information from the BEC: to look at the condensate in
situ or after time of flight. By looking at the BECs released form the lattice after
several milliseconds of time of flight one observes its momentum distribution.
As a result one can study the interference pattern of the atoms released from the
lattice. For shallow potentials one can examine such parameters as the lattice
depth, interference pattern profile or visibility.

Experiments presented in this section were performed in the configuration
where the lattice beams were couterpropagating with a lattice spacing was on
the order of half a micron. Clear interference pattern after free expansion of more
than 20 ms of time of flight were observed.

• Interference pattern profile

The sample was loaded adiabatically into the optical lattice which was then
abruptly switched off. After 23.6 ms of time of flight, atoms were imaged
via absorption imaging. Three different measurements were performed.
First we imaged the atoms released from the lattice without applying any
excitation radiation, see figure 7.1 a). Then to see the effect of the blue
laser radiation on the atoms we irradiated the condensate in the lattice using
421 nm laser radiation, see figure 7.1b). Subsequently, we performed two
step excitation using both excitation lasers (421 nm and 1020 nm) on the
sample prepared in the same way as in two previous cases, see figure 7.1c).
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The first step of this excitation pulse was 1 GHz blue detuned from the in-
termediate state and 75 shots of 1 µs were sent to the sample. By comparing
these three figures it is possible to observe a clear effect on the interference
pattern, when the excitations are on. An effect of the blue laser on the num-
ber of atoms is visible when one compares figures 7.1 b) with 7.1 a) but an
even stronger effect can be seen by looking at fig. 7.1 c). In figure 7.1d) one
can see the distribution profile of the three measurements. Although there is
some decrease of the central and side peaks populations when the blue and
blue + Ir radiation is applied, the overall interference pattern with all peaks
is still visible.

• Visibility measurements

One method of quantifying the degree of coherence between the lattice sides
is to define a visibility of the interference pattern. To obtain a pattern that
allows us to measure the visibility, one has to accelerate to the Brillouin
zone edge the BEC loaded into an optical lattice [24]. The visibility is
then calculated from the relative height of the side peaks compared to the
minimal high. The side peaks correspond to the momentum classes±2~kL,
where is the wavewector kL = 2π/λ. A sample interference pattern is
presented in figure 7.2 where the horizontal axis of this figure has been
rescaled in units of the recoil momentum. In this way it reflects momentum
of the condensate before releasing it from the optical lattice.

This interference pattern can become less distinct if one assumes that there
is a random phase different between neighboring sites. The effect can vary
from a slight peak broadening to the pattern becoming completely washed
out. The measurements of the visibility were used to quantify this effect.
The visibility is defined as the normalized difference between the maxima
hmax and minima hmin of an interference pattern, see figure 7.2 [59]:

V =
hmax − hmin
hmax + hmin

. (7.1)

Our measurements showed that it is possible to observe some decrease of
the visibility of the interference pattern that for the irradiated samples is on
the order of 45% and for samples without Rydberg excitation applied on
the order of 65%. However, the side peaks are still very well defined and
the error of the measurement is large. We can make a statement that by
exciting Rydberg atoms in an optical lattice we observe almost no effect on
the condensate visibility so far. Therefore, excitation to high n states can be
done avoiding the BEC phase perturbation.
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Figure 7.1: Interference patterns of the Bose Einstein condensate released from
the optical lattice with dL half a micron. Images are taken after ∼23 ms time of
flight. (a) No excitation lasers are present, (b) 75 shots of the 421 nm laser radi-
ation were applied, (c) both excitation lasers were used to create Rydberg atoms,
75 shots were applied to excite the sample. (d) A profile of interference patterns
of the condensate released from an optical lattice. One can observe that the first
order peaks are slightly less visible in the case with the excitation radiation.
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Figure 7.2: Calculation of the visibility. An absorption image integrated per-
pendicular to the lattice direction, where the hmax is the maximum and hmin the
minimum of the interference pattern [59].

Summarizing, exciting Rydberg atoms in an optical lattice shows no effect
on condensate phase. A typical BEC contains 50 thousand atoms of which only
around 40 get excited. This quantity of Rydberg atoms does not perturb the phase
coherence of the condensate. Also the interference pattern of a condensate re-
leased from stationary lattice remains well defined although some effect of the
blue laser alone and both excitation lasers is visible. Therefore, more than 10 ex-
citation sequences can be applied on the same condensate without a considerable
change of phase coherence or atom number in the condensate.

7.2 Coherent excitations
We expected that by implementing optical potential to our system we will have an
enhancement of the possibility of seeing collective oscillations as in each lattice
well the profile of the atoms is more defined. The results presented in chapter 6
showed that Rydberg atoms get collectively excited. Nevertheless, an observation
of complete Rabi oscillations was impossible because of the Gaussian profile of
the atomic distribution in the sample and the fluctuation in density for each exci-
tation volume. The enhancement of the oscillations is visible in figure 7.3 where
Rydberg excitations as a function of pulse duration is presented for configuration
with (blue dots) and without (red squares) implementing of optical potentials. In
our configuration the collective Rabi frequency is expected to be ∼ 200 kHz and
this value corresponds to experimental result visible in figure 7.3.

To maximize the number of collective excitations we set the lattice spacing
used in the experiment above at d = 2.2 µm. This value is different from the one
used in the experiments presented in previous section where d = 0.5 µm which
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Figure 7.3: The excitation dynamics of the Bose Einstein condensate expanded for
50 ms in the horizontal arm of the dipolar trap. The intensities of the excitation
lasers were Iblue ≈ 40 W/cm2 and IIR ≈ 380 W/cm2 for the 421 nm and 1021 nm
radiation respectively. The first step of the transition was blue detuned by 1 GHz
from resonance with the 6P3/2 state. Red squares correspond to the excitation
dynamics of the atoms held only by the dipole trap, instead blue dots correspond
to the atoms excited in the optical lattice. One can see that for the same parameters
the oscillations are visible only in the case of excitations of atoms inside an optical
lattice.
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a)

b)

Figure 7.4: For a Bose Einstein condensate loaded into an optical lattice, the red
spheres represent a region blocked by a Rydberg atom. (a) The lattice spacing is
small compared to the radius of the blockade, d << rb. (b) The lattice spacing is
comparable with the radius of the blockade, d ≈ rb.

according to the formula 4.1 is achieved by two counterpropagating beams. In
this chapter we will be using mainly the 53 D5/2 state whose blockade radius,
rb, is around ∼6 µm as it was estimated previously. Therefore in the case of
counterpropagating beams the obtained d value is around ten times smaller than
the dipole blockade radius; every tenth lattice site contains at most one collective
Rydberg excitation. In our case, we aimed for a lattice spacing comparable with
the radius blockade rb to enhance the probability of single excitation per site, see
figure 7.4. One can obtain the larger lattice spacing by changing the angle between
the two beams creating the optical lattice. Therefore, putting two beams with an
angle of Θ ∼ 18◦ between them, give a maximal achievable in our setup lattice
spacing of d = 2.6 µm. The experiments presented in the further part of this
chapter are conducted in this configuration.

To enhance the visibility of the oscillation effect we use a special loading pro-
cedure to clean the atomic distribution, schematized in figure 7.5. The general
idea of loading a Bose Einstein condensate into an optical lattice is briefly pre-
sented in chapter 4. In this section presented technique is improved in order to
“cut” the edges of the Gaussian distribution of the sample, see figure 7.6.

• The condensate expands inside one dipole trap beam (This procedure is
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Figure 7.5: Time sequence of the experiment. Firstly, the atoms are loaded into
one arm of the dipole trap where they expand. Then, the dipole trap beam is
ramped down while the lattice beam is ramped up (2 ms). After increasing back
the power of the dipole trap laser, the atoms trapped in the region of overlap of
these two laser beams are subject to excitation pulses. Finally, the atoms are
released and after few ms of time of flight an absorption image is taken.

already presented in previous chapter).

• The lattice beams are ramped up in 2 ms

• Simultaneously the power of the dipole trap laser is ramped down and the
atoms outside the lattice region are lost from the trap. The value of the
dipole laser is chosen to be low enough to lose the atoms from outside the
lattice region. The overlap region of these two beams is defined by the
lattice beam diameter and gives combined radial trap depth high enough to
hold the atoms.

• At the end dipole trap power is ramped back and gives the maximal radial
confinement of the atoms.

In this way we avoid having a large number of atoms outside the finite lattice
region. In this way the condensate occupies a region of defined horizontal length
and it gives us a possibility to evaluate precisely how many lattice sties are filled
by atoms using equation (4.1) for the lattice spatial period. At the end the Rydberg
excitations pulses are applied and both lattice and dipole beams are switched off.
The atoms are allowed to fall for a few ms and then an absorption image is taken,
see figure 7.5. In the meantime excited atoms are subject to electric field that
ionizes and pushes them toward the channeltron where they are detected.

The usefulness of the cleaning technique can be explained with the use of a
simple model that assumes the dipole blockade of Rydberg excitations with atoms
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BEC expantion

Ramping up the lattice beam

Ramping down the dipole beam

Figure 7.6: “Cleaning procedure”. Loaded into one arm of dipole trap laser, the
atoms are expanded. Then by introducing the optical lattice laser they are confined
in a region defined by the lattice beam diameter. When the dipole trap beam is
ramped down the atoms outside the region of the overlap are lost from the trap.

divided by the small regions corresponding to the lattice spacing. In figure 7.7 one
can see the Gaussian distribution of atoms, the blue line and the already cleaned
distribution as a red line. An influence of these distributions on the theoretical
results of the Rabi oscillations is clearly shown. The curve measured by using a
condensate with the cleaned distribution should be characterized by deeper and
more visible oscillations.

The frequency of coherent excitations of the Rydberg atoms is proportional to√
N , where N is the number of atoms in the blockade sphere. Loaded into the

lattice, a condensate was subject to the cleaning procedure cutting off the edges of
the original BEC. In figure 7.8 the experimental results of the excitation dynamics
for two different BEC densities are presented along with the results obtained from
the theoretical model used in chapter 6. The expansion of the condensates was
chosen to be 15 ms, 500 ms and 1 s. The difference in number of atoms in the
blocked region is of a factor of 4 for the 15 ms and 500 ms expansions and 20 for
the 15 ms and 1 s expansions. After rescaling with

√
N , the timescales of the col-

lective excitations are the same and the oscillations happen for the three densities
for the same time. A simple numerical model containing a gaussian distribution
of on-site Rabi frequencies and a small dephasing rate between the lattice sites,
chosen such as to reproduce the observed long-term increase in the number of col-
lective excitations, agrees well with our experimental observations. This model is
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a) b)

Figure 7.7: Simple simulation of the “cleaning” effect of the atom distribution. (a)
On the left hand side the blue line represent Gaussian distribution of atoms loaded
into an optical lattice and the red line already “cleaned” atoms distribution. (b)
On the right hand side one can see that in the case of the Gaussian distribution
the oscillations are weaker and not so pronounced as in the case of the “clean”
distribution.

an extension of the model used to analyze results presented in chapter 6. In this
case the separation between each blocked region is a fixed value corresponding to
the closes multiple of lattice site that is comparable with the blockade radius. A
visible in figure 7.8 increase of the signal is simulated by adding an atom number
dependent dephasing :

PRydb = sin2
(√

Nωt/2 + A
√
Ntott

)
, (7.2)

where A is a coefficient, determined by a fit to one set of data and Ntot is the
total number of atoms in the cloud.

7.3 Conclusions
In this chapter results on phase coherence of the Bose Einstein condensate dur-
ing the Rydberg excitations were presented. Both the interference pattern of the
BEC released from the static lattice and the visibility measured after releasing
atoms from accelerated potential shows non destructive character of the Rydberg
excitations on a phase of the condensate. In the second part of the chapter mea-
surements of the collective excitations were shown. Using a new procedure to load
atoms into a lattice we obtained well defined distribution of atoms is the sample.
The importance of this procedure was then proved by a simple theoretical model.
To conclude, the measurements provide evidence for coherent and collective Ry-
dberg excitation dynamics of BECs loaded into optical potentials. The observed
coherent collective excitations in different densities show the predicted scaling of
the number of atoms in the blockaded region.
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Figure 7.8: The excitation dynamics of the Bose Einstein condensate loaded
into an optical lattice. Atoms were subject to the cleaning procedure and ex-
cited by 421 nm laser blue detuned by 1 GHz from the resonance with the 6P3/2

state with intensity Iblue ≈ 40 mW/cm2 and 1021 nm laser with intensity of
IIR ≈ 380 mW/cm2, condensates expanded by 15 ms are represented by red
squares, the samples expanded by 500 ms by the blue dots and the one expanded
by 1 s by green triangles. The continuous lines represent the results obtained from
the simple numerical model.
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Chapter 8

Summary and Outlook

The strong interactions of Rydberg atoms and their implications have been the uni-
fying subject of this thesis. The fundamental phenomenon arising from these in-
teractions, the dipole blockade was then predicted to be a useful concept for quan-
tum information purposes, therefore experiments measuring the dipole blockade
radius and describing the characteristic of the interactions were presented. Fur-
thermore, as the quantum information requires also to coherently excited atoms
and the ability to control interactions between them, it was proposed to load ultra-
cold atoms into periodic potential. The results on the influence of the excitation
on the phase coherence of a Bose Einstein condensate and on the coherent collec-
tive excitations were then shown in the following part of the thesis. The results of
these experiments are summarized in the following.

In chapter 5 a series of experiments was presented. Their goal was to de-
fine experimental quantities and to show how future experiments can be affected
both mechanically and on the level of internal energies. First the experiments in
the magneto optical traps were performed. They gave us the knowledge about
the detection efficiency of the system that was measured to be around 35%. Fur-
thermore, by experimentally producing the Stark map and comparing it with the
calculated values we have obtained an approximate value of the residual field in
the glass cell around ≈ 10mV/cm. It was also proven that we have very good
control upon the applied external field. As further results we have showed that
due to emission from the excited level atoms experience a recoil. Some experi-
ments using atoms in the Bose Einstein phase were performed as well. We have
introduces the ionization spectra produced from a BEC. Then, we obtained some
results on the Rydberg atom excitation such as the half line width of the Rydberg
atom spectra (TBD). In the last part of this chapter the Rydberg excitation of ul-
tracold atoms inside optical lattices has been shown. No heating effect due to the
lattice lasers was observed on the Rydberg spectra.

Chapter 6 shows results on excitation of the Rydberg atoms from ultracold
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atomic ensembles. In this chapter we proposed a new method of measuring the
dipole blockade radius rb in an effective 1D system. This quantity can be extracted
form the linear grow of the number of Rydberg atoms produced as a function of
the size of the Bose Einstein condensate. These results are in very good agreement
with the theoretical calculations. Furthermore, we presented the evidence for the
effective one dimensional system. Moreover, we showed that the collective Rabi
oscillations are hard to observe due to non uniform distribution of atoms in the
sample. Finally, the counting statistic in the strong blockade regime in ultracold
atomic cloud was presented. We demonstrated clear signatures of the strong inter-
actions between the Rydberg atoms that were proved by sub-Poissonian counting
statistic with measured Mandel Q′-parameter around −0, 5 which results in −1
taking into account the efficiency of detection.

The results presented in chapter 7 shows that the Bose Einstein condensate
remains phase coherent during the Rydberg excitation. This was proven by both
looking at the interference pattern of the BEC released form the static lattice and
the visibility measured after releasing atoms from accelerated potential. Further-
more, by using the new loading procedure that purify the atomic distribution we
observed the coherent collective Rydberg excitation dynamics of BECs loaded
into optical potentials. Moreover, I showed that collective coherent excitations for
the different sizes of the sample follow predicted scaling of the number of atoms
in the blockaded region.

The results presented in this thesis represent extensive studies on the Ryd-
berg excitations in the magneto-optical traps and Bose Einstein condensates. The
shown results on measuring the dipole blockade radius, exciting atoms loaded into
optical potential into high energy levels and coherent collective excitations bring
us closer to the main goal of the research on the Rydberg atoms which are the
implementation of quantum protocols.
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Chapter 9

Publications

Publications:

1. Time-Resolved Measurement of Landau-Zener Tunneling in Periodic Poten-
tials A. ZENESINI, H. LIGNIER, G. TAYEBIRAD, J. RADOGOSTOW-
ICZ, D. CIAMPINI, R. MANNELLA, S. WIMBERGER, O. MORSCH,
AND E. ARIMONDO, Selected for the September 2009 issue of Virtual
Journal of Atomic Quantum Fluids, Vol. 1, Issue 3 September 2009. [76]

2. Ion detection in the photoionization of a Rb Bose-Einstein condensate M.
VITEAU, J. RADOGOSTOWICZ, A. CHOTIA; M.G. BASON, N: MAL-
OSSI, F. FUSO , D. CIAMPINI, I. I. RYABTSEV, O. MORSCH, AND E.
ARIMONDO, [74]

Conferences:

• Young EMALI Research Meeting, 22-24 May 2008,Vienna, Austria
Poster: Asymmetric Landau-Zener tunnelling and non-exponential decay in
a periodic potential

• ICAP 2008, 27 July-01August 2008, Storrs CN, USA

Poster:Asymmetric Landau-Zener tunnelling and non-exponential decay in
a periodic potential

• EMALI Mini school Control and engineering concepts plus experimental
techniques: specific tools ,7-12 September 2008, Copenhagen, Denmark,

• Second EMALI Annual Meeting, 14-16 September 2008, Copenhagen,
Denmark,
Poster: Asymmetric Landau-Zener tunnelling and non-exponential decay in
a periodic potential
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• EGAS (European Group on Atomic Systems), 8-11 July 2009, Gdansk,
Poland,
Poster: Ultracold Rydberg atoms in optical lattices

• International Workshop - Bloch Oscillations and Landau-Zener Tun-
neling, Max-Planck-Institut fúr Physik komplexer Systeme, Dresden, Ger-
many, May 04 - 08, 2009, Dresden, Germany
Poster: Landau-Zener tunnelling revisited: asymmetric tunnelling and time-
resolved measurements

• Young Researchers Meeting, 22-24 March 2009, Oxford, UK,

• Mid-term Meeting, 23 March 2009, Oxford, UK,
Oral presentation ESR talk: Landau Zener Tunnelling and Photoionization
experiments)

• ICAP 2010, 25 July-01 August 2010, Cairns, Australia
Poster: Dipole blockade and counting statistics in ultra-cold and Bose con-
densed Rydberg samples
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