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Introduction

It has long been known that the dynamics of a p–dimensional gravitational
theory is captured by quantities on (p − 1)–dimensional hypersurfaces [1]. It
was argued by Damour [2], based on an analogy by Hartle and Hawking [3],
that in the case of certain black hole solutions these surface quantities describe
the flow of a viscous (p − 1)–dimensional fluid. Perhaps the most concrete
realization of this idea is the one to one map between large wavelength features
of asymptotically AdSp black brane solutions and (p−1)-dimensional conformal
fluid flows presented recently in Refs. [4] and [5].

Indeed, within the framework of string theory’s AdS/CFT correspondence,
an initially surprising relationship between the vacuum equations of Einstein
gravity in an asymptotically locally AdSd+1 space and the equations of hy-
drodynamics in d dimensions has been unearthed. In particular a one to one
correspondence has been found between, on the one hand, a class of regu-
lar, long wavelength locally asymptotically AdSd+1 black brane solutions to
the vacuum Einstein equations with a negative cosmological constant and, on
the other, all long-wavelength solutions of the d dimensional hydrodynamical
equations

∇µT
µν = 0

of conformal fluid flows. The AdS/hydrodynamics correspondence provides an
explicit black brane solution for every history of a particular conformal fluid so
long as the fluid variables are constant over distances which are large compared
with the inverse temperature.

The nonrelativistic scaling limit - long distances, long times, low speeds and
low amplitudes - of the relativistic equations of hydrodynamics, connects the
relativistic conservation equation to the incompressible non-relativistic Navier-
Stokes equations

∂~v

∂t
+ ~v · ∇~v = −~∇p+ ν∇2~v + ~f ,

that have been investigated for nearly two centuries but whose extremely rich
dynamics still remainsl to be completely clarified. A particularly interesting
phenomenon is turbulence. In fact, most fluid flows become turbulent under
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a wide range of conditions. Even though turbulent flows are complicated phe-
nomena of a statistical nature, it has been proposed that they could be actually
governed by a new and simple universal mathematical structure analogous to
a fixed point of the renormalization group flow equations (e.g. [6]).

Given the fluid-gravity correspondence, it is of great interest to investigate
the gravity dual solutions of turbulent flows, and the conditions under which
turbulence may be expected. These turbulent solutions in the gravity dual
may cast light on the possible turbulent decay of gravitational solutions near
spacelike singularities - where indeed chaotic evolution is expected [7].

It is well known, for example from the Richardson’s cascade model [8], that
to realize steady state turbulence, one has to inject energy into a system.

A first possible way to do this is to apply an external perturbation - a forcing
function - deforming the fluid. Another way is to consider boundary conditions.
In the context of the fluid-gravity correspondence, this first approach has been
investigated in Ref. [9] where it was argued that a laminar fluid flow and the
dual gravity solution could decay to turbulent configurations. The problem
with this method is that forcing functions are necessarily inhomogeneous and
bring rather complicated solutions.

The second approach is closer to the intuition deriving from classical hy-
drodynamics. Indeed many solutions of the Navier-Stokes equations describing
fluids subject to hard wall type boundary conditions are known, even though
it is still not clear how to generate gravitational duals of these boundary con-
ditions.

In this Thesis we study boundary conditions in the AdS/hydrodynamics
correspondence as a preliminary investigation to the implementation of this
second approach. In particular we study the gravity dual of a boundary layer
separating two nonrelativistic, incompressible, fluid solutions with different
properties: a stationary fluid on the left side and a moving fluid on the right.
This simple setting is sufficient to produce turbulent motion in the fluid. For
this configuration we derive gravitational duals of the boundary, following the
prescription of Ref. [4]. While the fluid-gravity correspondence maps fluids on
the left and on the right of the layer into two vacuum gravity solutions, the
non trivial point is how to glue these two regions together.

We consider two distinct methods, that have different limits of validity,
with respect to the “thickness of the layer”. The first one consists in gluing
the two gravitational solutions by applying the Israel matching conditions [11]
to determine the stress tensor on the surface layer that separates the two
sides. One can understand this approach as letting the gravitational solution
continuously interpolate between the two solutions over a finite distance d and
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then taking the limit as this distance tends to zero while keeping the extrinsic
curvature of the interpolating layer finite.

The second possibility is to consider the gravity dual of a velocity function
interpolating between the two fluid solutions. Clearly this function will not
be a a solution of the Navier-Stokes equation in this region and therefore the
dual will not be a solution of the vacuum Einstein equations in this region.
Nevertheless one can follow this idea to see where it leads. In this case, one
cannot take the interpolation distance d to zero, because the dual is not defined
when derivatives are large with respect to the inverse of the temperature T .

A first interesting result that we will describe in detail in the last chapter
is that both of these methods yield stress tensors that do not depend on the
“thickness of the layer” d. Moreover the two methods yield bulk stress tensors
which differ by a finite amount. In particular, we will see that the disagreement
between the two calculations of the stress tensor arises entirely from the higher
derivative terms. Of course the fluid map is not defined at small d, as it yields
a divergent series, and so no divergences appear within the range of validity
of either approach.

The solutions that we find have to be handled with care. Indeed, as we
shall point out, the stress tensors derived using the two different methods do
not satisfy null energy condition and thus, as we will discuss, it is not clear
whether such a boundary layer may exist.

This Thesis is organised as follows. In Chapter 1 we shall give a short review
of “classic” work on black holes of the seventies which led to the membrane
paradigm, that is a picture of black holes as analogues to dissipative branes
endowed with finite electrical resistivity, and finite surface viscosity. We shall
review the derivation of the classical surface viscosity of black holes, that has
been re-derived in the quantum context of the AdS/CFT duality. We shall
also provide an introduction to black hole thermodynamics and a (sketchy)
derivation of the phenomenon of Hawking radiation, that of its crucial impor-
tance in fixing the coefficient between the area of the horizon and black hole
“entropy”.

Chapter 2 contains a presentation of properties of relativistic fluids and
a discussion of the special case of conformally invariant fluids that will be
relevant in the construction of gravity dual solutions. We shall review the ex-
tremely useful Weyl invariant formalism that we will apply in the perturbative
study of dissipative fluid solutions up to the second order in the derivative
expansion. Finally, we will introduce the non-relativistic scaling limit that re-
duces relativistic conservation equations of a conformal fluid to the celebrated
Navier-Stokes formula and we will study the residual conformal symmetry of
this equation.
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In Chapter 3 we shall introduce the basic scheme for constructing gravita-
tional solutions dual to fluid flows. We shall present - in various forms - the
AdS/hydrodynamic map up to the second order in the derivative expansion,
and we shall discuss its conformal invariance. Then we shall turn to some of the
physical properties of these solutions. We shall conclude the chapter with the
discussion of the non-relativistic limit of the AdS/hydrodynamic map under
the non-relativistic scaling limit introduced in Chapter 2.

In Chapter 4 we shall present some techniques and issues that are relevant
in the study of black holes and singular hypersurfaces in gravity. In partic-
ular we shall start by reviewing various possible energy conditions that are
relevant for black holes physics. Then we discuss the issue of the violation of
the loosest among these conditions, the null energy condition, and its physical
consequences. A relevant part of the chapter will be devoted to the introduc-
tion of some geometric notions useful for the description of hypersurfaces and
in particular the extrinsic curvature. These concepts will be used in applying
the seminal work of Israel on singular hypersurfaces in General Relativity to
our solutions.

Chapter 5 contains a derivation and discussion of the main results reported
in Ref. [10]. In particular we consider boundaries between nonrelativistic flows,
applying the usual boundary conditions for viscous fluids. We find that a näıve
application of the correspondence to these boundaries yields a surface layer in
the gravity theory whose stress tensor is not equal to that given by the Israel
matching conditions. In particular, while neither stress tensor satisfies the null
energy condition and both have nonvanishing momentum, only Israel’s tensor
has stress. The disagreement arises entirely from corrections to the metric
due to multiple derivatives of the flow velocity, which violate Israel’s finiteness
assumption in the thin wall limit.

Finally we summarise the findings and we discuss some open issues. An
Appendix is devoted to the notation and conventions that we have adopted.



Chapter 1

Black holes as dissipative branes

Solutions of general relativity describing spherically symmetric objects were
obtained soon after the formulation of Einstein’s theory. The singular be-
haviour of these solutions - named black holes - was interpreted, following
Subrahmanyan Chandrasekhar’s proposal, as the description of a potential well
due to a gravitational collapse of very massive astrophysical objects of mass
M when their radius shrinks below the limit 2GM/c2, known as Schwarzschild
radius. Early works assumed black holes to be passive objects, i.e. as given
geometrical backgrounds. This viewpoint changed in the 1970’s, when black
holes started being considered as dynamical objects, able to exchange mass,
angular momentum and charge with the external world. The study of the
global dynamics of black holes was pioneered by Penrose [12], Christodoulou
and Ruffini [13, 14], Hawking [15], and Bardeen, Carter and Hawking [16].
Later on this approach evolved with the study of the local dynamics of black
hole’s horizons in what is called the “membrane paradigm” [21]) thanks to the
works of Hartle and Hawking [3], Hanni and Ruffini [17], Damour [2, 18, 19],
and Znajek [20]. According to this point of view the horizon of a black hole is
interpreted as a brane with dissipative properties described for instance by an
electrical resistivity and a surface viscosity.

1.1 Black hole solutions

A few months after the publishing of the General Theory of Relativity, Karl
Schwarzschild proposed a solution of Einstein’s equations in the case of a spher-
ically symmetric object with mass M , that can be regarded as the general rel-
ativistic analog of the gravitational field of a mass point. In 3+ 1 dimensions,
the metric of the Schwarzschild solution can be written as

ds2 = −A(r)c2dt2 +B(r)dr2 + r2
(
dθ2 + sin2θdϕ2

)
(1.1)
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where t denotes the time coordinate measured by a stationary clock at infinity,
and where the coefficients A (r) and B (r) have the form

A(r) = 1− 2GM

c2r
, (1.2)

B(r) =
1

A(r)
. (1.3)

This solution has an apparently singular behaviour at the so called Schwarzschild
radius

rS =
2GM

c2
. (1.4)

For example, the sphere located at r = rS has the observable characteristic of
being an infinite-redshift surface. Indeed, the redshift of a clock at rest in the
metric, whose ticks are read from infinity, via electromagnetic signals,

dsat r=∞

dsat r
=

√
−g00(r = ∞)√

−g00(r)
=

1√
1− 2GM

c2r

(1.5)

goes to infinity for r → rS. Similarly the force needed to keep a particle at
rest at a radius r > rS goes to infinity as r → rS.

The 2-dimensional surface at r = rS, can be regarded as a 3-dimensional
hypersurface H in spacetime. It is possible to see that the hypersurface H is a
fully regular submanifold of a locally regular spacetime via a change of coordi-
nates near r = rS. Introducing the ingoing Eddington-Finkelstein coordinates
(v, r, θ, ϕ), where v = t+ r∗, with r∗, the so-called tortoise coordinate, defined
by

r∗ =

∫
dr

A (r)
=

∫
dr

1− 2GM
c2r

= r +
2GM

c2
log

(
c2r

2GM
− 1

)
, (1.6)

the line element takes the form

ds2 = −
(
1− 2GM

c2r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2) . (1.7)

In the new coordinates, the metric presents a manifestly regular geometry at
r = rS. An important property of H is that it is a null hypersurface, i.e. a
co-dimension-1 surface locally tangent to the light cone.

The vector normal to the hypersurface, ℓµ, such that ℓµdx
µ = 0 for all

infinitesimal displacements dxµ on the hypersurface, is a null vector i.e. ℓµℓ
µ =

0. Since ℓµ is a vector tangent to the hypersurface, we can consider its integral
lines ℓµ = dxµ/dt, which lie within the horizon. These integral curves are called
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the generators of the horizon. They are null geodesics curves, lying entirely
within the horizon. The physical consequence of this fact is that, classically, H
is a boundary between two distinct regions of spacetime: an external one from
which light can escape to infinity and an internal one where light is trapped and
out of which cannot escape. The internal region of H is an infinite spacetime
volume which ends, in its future, in a spacelike singularity at r = 0, where the
curvature blows up as r−3.

This kind of matter configuration is called black hole - since from the clas-
sical point of view it absorbs all the light that hits it, just like a perfect black
body in thermodynamics -, while the hypersurface H is called the (future)
horizon. Black holes are conjectured to be the final, stationary state reached
by any type of matter configuration undergoing a gravitational collapse.

The Schwarzschild solution was generalized in independent works by Reiss-
ner, and by Nordström, considering electrically charged spherically symmetric
objects. In this case, the coefficients A (r) and B (r) in (1.1) are given by
(setting for simplicity G = c = 1 here and in what follows)

A(r) = 1− 2M

r
+

Q2

r2
, (1.8)

B(r) =
1

A(r)
. (1.9)

It is easy to realise that now there exist two different horizons: an outer and
an inner one, defined by

r± = M ±
√

M2 −Q2 , (1.10)

which are the two roots of A(r) = 0.
A more general black hole solution, due to Kerr and Newman, is obtained

considering in addition to gravity (gµν) also electromagnetic interactions me-
diated by long range fields (Aµ). The final, stationary configuration of such a
black hole is described by three parameters, its total mass M , its total angular
momentum J , and its total electric charge Q, and is given by the following
Kerr-Newman solution

ds2 = −∆

Σ
ω2
t +

Σ

∆
dr2 + Σdθ2 +

sin2 θ

Σ
ω2
ϕ , (1.11)

Aµ dx
µ = −Qr

Σ
ωt ,

1

2
Fµν dx

µ ∧ dxν =
Q

Σ2
(r2 − a2 cos2 θ) dr ∧ ωt +

2Q

Σ2
ar cos θ sin θ dθ ∧ ωϕ ,

where

a =
J

M
, ∆ = r2 − 2Mr + a2 +Q2 , Σ = r2 + a2 cos2 θ ,
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ωt = dt− a sin2 θ dϕ , ωϕ = (r2 + a2) dϕ− a dt . (1.12)

The Kerr-Newman solution describes a black hole with regular horizon if
and only if the three parameters M , J , Q satisfy the inequality

a2 +Q2 ≤ M2 . (1.13)

A special class of black holes, called extremal, are those for which the inequality
is saturated. A Schwarzschild black hole (a = Q = 0) can never be extremal,
while a Reissner-Nordström black hole (a = 0) is extremal when |Q| = M , and
a Kerr black hole (Q = 0) is extremal when J = M2.

1.2 Global dynamics of black holes

Until the end of the 60’s black holes were seen purely as geometric backgrounds.
A famous gedanken experiment was proposed by Penrose in 1969 [12] showing
that in principle it would be possible to extract energy from a black hole. The
idea of Penrose was to consider a charged test particle - with energy E1, an-
gular momentum pϕ1, and electric charge e1 - coming from infinity and falling
into a Kerr black hole, moving on generic nonradial orbits. By Noether’s theo-
rem, the time-translation, axial and U(1) gauge symmetries of the background
guarantee the conservation of E, pϕ and e during the “fall” of the test particle.
Now it is possible to imagine a process in which the test particle splits near
the horizon of the black hole into two particles characterised respectively by
energy, angular momentum and charge E2, pϕ2 , e2, and E3, pϕ3, e3.

The black hole is described as a kind of gravitational soliton, that is as a
physical object, localized “within the horizon H”, possessing a total mass M ,
a total angular momentum J and a total electric charge Q. Upon dropping
a massive, charged test particles one expects a change in the values of M ,
J and Q. Therefore in the Penrose experiment the black hole should evolve,
due to absorption of particle 3, from an initial Kerr-Newman black hole state
(M,J,Q) to a final one (M + δM , J + δJ , Q + δQ) where

δM = E3 = E1 − E2, (1.14)

δJ = J3 = J1 − J2, (1.15)

δQ = e3 = e1 − e2. (1.16)

Penrose found that , under certain conditions, one finds that particle 3 can be
absorbed by the BH, and that particle 2 may come out at infinity with more
energy than the incoming particle 1, indeed the process can lead to a decrease
of the total mass of the black hole: δM < 0.
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M, Q, J

E  , p   , e
ϕ 222

E  , p   , eϕ3
3

E  , p   , eϕ1 11

Figure 1.1: Penrose process: a particle “1” splits in two particles “2” and “3”
while particle 2 escapes at ∞, particle 3 is absorbed by the black hole.

Christodoulou and Ruffini [13, 14] proposed a detailed analysis of the Pen-
rose work, casting light on the existence of a fundamental irreversibility in
black holes dynamics. Let us consider for the sake of simplicity a Reissner-
Nordström black hole, and a process of the kind described in (1.14). Consid-
ering an on-shell particle of mass µ, the Hamilton-Jacobi equation reads

gµν (pµ − eAµ) (pν − eAν) = −µ2, (1.17)

where a (−+++) signature is adopted. The momentum pµ is equal to

pµ = ∂S/∂xµ , (1.18)

where S is the action that in an axisymmetric1 and time-independent back-
ground can be taken as a linear function of t and ϕ

S = −Et + pϕϕ+ S (r, θ) . (1.19)

E = −pt = −p0 is the conserved energy, pϕ is the conserved ϕ-component of
angular momentum while the last term contains contributions depending on
the radial distance r and angular coordinate θ.

1A black hole is said to be axisymmetric if there exists a one parameter group of isometries
which correspond to rotations at infinity.
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The Hamilton-Jacobi equation using eq. (1.19) and the inverse metric for
a Reissner-Nordström black hole reads

− 1

A(r)
(p0 − eA0)

2 + A(r)p2r +
1

r2

(
p2θ +

1

sin2 θ
p2ϕ

)
= −µ2 , (1.20)

that can be recast as

(p0 − eA0)
2 = A(r)2p2r + A(r)

(
µ2 +

L2

r2

)
. (1.21)

Solving for E = −p0, and inserting the expression for the electric potential

A0 = −Q

r
, (1.22)

one finds that the energy (where the sign discriminates between particles and
antiparticles) is

E =
eQ

r
±
√

A(r)2p2r + A(r)

(
µ2 +

L2

r2

)
. (1.23)

This expression generalises the formula for flat spacetime E = ±
√

µ2 + p2 to
a black hole background.

It is possible to pin down the conserved energy of particle 3 when it crosses
the horizon r+ of the Reissner-Nordström black hole (assuming that the con-
dition Q < M for a regular horizon is fulfilled), i.e. the limit r → r+ of E3.
The expression for E3 is

E3 =
e3Q

r+
+ |pr| , (1.24)

where pr = grrpr = A(r)pr has a finite limit on the horizon and the absolute
value of pr comes from the limit of a positive square-root. Now remembering
that δM = E3 and δQ = e3, the expression above can be re-written as

δM =
QδQ

r+(M,Q)
+ |pr|, (1.25)

and from the positivity of |pr| follows the inequality

δM ≥ QδQ

r+(M,Q)
. (1.26)

Inequality (1.26) spells out the irreversibility of black holes energetics. Indeed,
there can exist two types of process: reversible ones in which a particle of
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charge +e with |pr| = 0 is absorbed for which the inequality (1.26) is saturated;
and irreversible ones for which it is a strict inequality. Reversible processes
are clearly quite peculiar and difficult to obtain, therefore one expects that
irreversibility will occur in most black holes processes. The problems of re-
versibility of process in black holes physics replicate in some sense the relation
between reversible and irreversible processes in thermodynamics.

The calculation performed for a Reissner-Nordström black hole can be repli-
cated in the more complex case of a Kerr-Newman black hole, yielding

δM − aδJ + r+QδQ

r2+ + a2
=

r2+ + a2 cos2 θ

r2+ + a2
|pr| (1.27)

where as before a = J/M , and the bound Q2+(J/M)2 ≤ M2 must be fulfilled.
Once again we can write the variation in mass as an inequality

δM ≥ aδJ + r+QδQ

r2+ + a2
. (1.28)

Processes for which this bound is saturated are called “reversible” because,
after having produced a change δM , δJ and δQ, it is possible to perform
a new process such that δ′J = −δJ , δ′Q = −δQ (and the corresponding,
saturated δ′M = −δM)return the system to its initial state. On the contrary,
any elementary process for which equation (1.28) holds as a strict inequality
cannot be reversed.

Christodoulou and Ruffini considered a sequence of infinitesimal reversible
changes in the state of the black hole, obtained by dropping in the black hole
particles for which pr → 0, and studied states which are reversibly connected
to some initial state with defined mass M , angular momentum J and charge
Q. Equation (1.28) simplifies to the partial differential equation for δM ,

δM =
aδJ + r+QδQ

r2+ + a2
, (1.29)

which is integrable and that has solution in the Christodoulou-Ruffini mass
formula

M2 =

(
Mirr +

Q2

4Mirr

)2

+
J2

4M2
irr

. (1.30)

The mass formula is composed of two terms: the square of the sum of the
irreducible mass and of the Coulomb energy (∝ Q), and the the rotational
energy (∝ J). Irreducible mass, defined as

Mirr =
1

2

√
r2+ + a2 (1.31)
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enters as an integration constant. To understand its role, it is useful to differ-
entiate the mass expression and insert it in (1.28). One obtains

δMirr ≥ 0 , (1.32)

where the equality holds only for reversible transformations, while the relation
holds as strict inequality for all irreversible processes.

The irreversible increase of the irreducible mass has a striking similarity to
the second law of thermodynamics. Therefore we can interpret the quantity
M −Mirr as the free energy of the black hole, i.e. the maximum extractable
energy by depleting (in a reversible) way J and Q is M −Mirr. Indeed the free
energy has both Coulomb and rotational contributions (it vanishes in the case
of a Schwarzschild black hole (J = 0 = Q)). As a consequence of this relation,
black holes can no longer be considered to be passive object since they actually
store energy - up to 29 % of their mass as rotational energy, and up to 50 %
as Coulomb energy - that can be extracted.

There exists a link between the irreducible mass and the area of the horizon
of a Kerr-Newman black hole. Indeed, the metric of a Kerr-Newman black hole,
when using r = r+ (∆ = 0 and dr = 0) for the inner geometry of the horizon,
is

dσ2 = γAB(x
C) dxA dxB

= (r2+ + a2 cos2 θ) dθ2 +
sin2 θ(r2+ + a2)2

(r2+ + a2 cos2 θ)
dϕ2 . (1.33)

Therefore the area of a timeslice of the horizon is proportional to irreducible
mass

AKN =

∫ ∫
(r2+ + a2) sin θ dθ dϕ = 4π(r2+ + a2) = 16πM2

irr . (1.34)

More generally, Hawking proved [15] a theorem stating that the area A of
successive time sections of the horizon of a black hole cannot decrease

δA ≥ 0 . (1.35)

Moreover the the sum of the area of a system of separated black holes also
cannot decreases

δ

(
∑

a

Aa

)
≥ 0 . (1.36)
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These properties are consequences of Einstein’s equations, when assuming the
weak energy condition.

Hawking’s result suggested the possibility of a formulation of “thermody-
namic laws” for black holes, in particular it suggests the possibility of defining
an entropy for black holes proportional to the area of the horizon.

While the area law is reminiscent of the second law of the thermodynamics,
the analog of the first law can be obtained by varying the mass formula (1.30)

dM (Q, J, A) = V dQ + ΩdJ +
g

8π
dA , (1.37)

where

V =
Qr+

r2+ + a2
, (1.38)

Ω =
a

r2+ + a2
, (1.39)

g =
1

2

r+ − r−
r2+ + a2

. (1.40)

V can be interpreted as the electric potential of the black hole, and Ω as its
angular velocity. The coefficient g, called surface gravity, in the Kerr-Newman
case, can be rewritten as

g =

√
M2 − a2 −Q2

r2+ + a2
, (1.41)

and is zero for extremal black holes. The surface gravity of a Schwarzschild
black hole reduces to the usual formula for the surface gravity of a massive
star, g = GM/r2S = M/(2M)2 = 1/(4M). It is also possible to prove that the
horizon has constant surface gravity for a stationary black hole, this result is
known as the “zeroeth law of black holes thermodynamics”2.

The expression (1.37), once again, suggests the possibility of interpreting
the area term as some kind of entropy.

2In the “membrane” approach to black-hole physics - that will be discussed later on -,
the uniformity of g for stationary black hole states can be viewed as a consequence of the
Navier-Stokes equation since the “surface pressure” of a black hole happens to be equal to
p ≡ g/8π.
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1.3 Black hole thermodynamics

In 1974, Bekenstein tried to push the thermodynamical analogy for black hole
physics further by taking into account quantum effects. In particular he pro-
posed Carnot-cycle-type arguments: it is possible in principle to extract work
from a black hole by slowly lowering into it an infinitesimal a box of radiation,
in this way all the energy of the box of radiation, mc2, would be converted
into work. The efficiency of this Carnot cycle is defined as

η = 1− Tcold

Thot
, (1.42)

where Tcold and Thot are respectively the two source temperatures between
which the “engine” operates. Classically, Tcold is expected to be zero and
therefore η is expected to be 1. Bekenstein observed that quantum effects
should arise modifying the classical result. Indeed the uncertainty principle
poses restriction to the size of box of thermal radiation at temperature T : since
the typical wavelength of radiation is λ ∼ 1/T , the box will have a minimum
finite size ∼ λ. From this limit on this size of the box, Bekenstein derived an
upper bound a bound on the efficiency η and therefore concluded that there
will exist a nonzero temperature of the black hole TBH 6= 0.

A second argument proposed by Bekenstein consider a reversible process
in which a particle with pr = 0 hits the horizon of a black hole at r = r+.
The absorption of such a particle should not increase the surface area of the
black hole. However, for this to be true both the (radial) position and the
(radial) momentum of the particle must be exactly fixed: namely, r = r+ and
pr = 0. This is in contradiction with limits posed by Heisenberg’s uncertainty
principle. To state this argument formally, we need the covariant component
pr of the radial momentum

pr = grrpr = A(r)pr

=
(r − r+) (r − r−)

r2
pr ≃ δr

(r+ − r−)

r2+
pr (1.43)

≃
(
∂A

∂r

)

r+

δrpr. (1.44)

It is useful to notice that the surface gravity g is proportional to the partial
derivative of A with respect to r,

(
∂A

∂r

)

r+

= 2g. (1.45)
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Therefore we can re-write the expression for pr as

pr ≃ 2gδrδpr. (1.46)

From the uncertainty relation

δrδpr ≥
1

2
~ , (1.47)

we get

pr ≥ g~ , (1.48)

Substituting the bound on pr in the expression for δM , we find the following
inequality

δM − QδQ

r+
= |pr| ≥ g~, (1.49)

which using expression (1.34) for irreducible mass, can be written as

δA ≥ 8π~. (1.50)

This result show that there is a strong limitation arising from the quantum
level on the possibility of reversible processes. A particle falling into a black
hole always produces an irreversible process that increases the area of the black
hole by a quantity of order ~. Such a process represents a loss of information -
the information about the particle - for the world outside the horizon. For this
reason, Bekenstein suggested the introduction of an entropy for black holes
[22] of the form

SBH = α̂
c3

~G
A, (1.51)

whose coefficient - which Bekenstein was not able to fixed in a unique, and
convincing, manner - had to be dimensionless and of order one, α̂ ≈ O (1)
(Bekenstein proposed α̂ = ln 2/8π).

An important consequence of the definition of an entropy for black holes is
the natural definition of a temperature

TBH =
1

8πα̂

~

c
g. (1.52)

The existence of a temperature implies the possibility that black holes may
emit radiation, contrasting the assumption about their “black” behaviour. In-
deed, soon after Bekenstein’s original suggestions, Stephen Hawking - who was
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skeptical about the possibility that black holes could radiate - in 1974 discov-
ered the universal phenomenon of quantum radiance of black holes [23] and
was capable to fix in an unambiguous way the coefficient α̂ to be

α̂ =
1

4
. (1.53)

We shall discuss the Hawking computation in detail in the next section.

1.4 Black hole quantum radiation

The surprising phenomenon of Hawking radiation, that is the thermal radia-
tion with a black body spectrum predicted to be emitted by black holes due
to quantum effects, was first proposed by Hawking in 1974 [23]. In this sec-
tion we will follow a simplified derivation due to Damour and Ruffini [24, 25],
considering for simplicity a 3 + 1-dimensional Schwarzschild black hole.

Let us consider a massless scalar field ϕ(x) propagating in a Schwarzschild
background. The Klein-Gordon equation coupled to gravity spells out

2g ϕ =
1√
g
∂µ(

√
g gµν ∂ν ϕ) = 0. (1.54)

The solutions of this equation - given the symmetries of the background -
can be decomposed into mode functions, given by the product of a Fourier
decomposition into frequencies, spherical harmonics and a radial dependent
factor, namely

ϕωℓm(t, r, θ, ϕ) =
e−iωt

√
2π|ω|

uωℓm(r)

r
Yℓm(θ, ϕ) . (1.55)

Introducing a “tortoise radial” coordinate r∗, substituting the explicit form of
the metric in the new coordinates and using the generic solution (1.55), the
Klein-Gordon equation boils down to a radial equation for uωℓm(r):

∂2u

∂r2∗
+ (ω2 − Vℓ [r(r∗)]) u = 0 , (1.56)

where the effective radial potential Vℓ has the form

Vℓ(r) =

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
+

2M

r3

)
. (1.57)



1.4. Black hole quantum radiation 17

V(r)

horizon r*

Figure 1.2: Representation of the effective gravitational potential Vℓ(r) in the
neighbourhood of a black hole. Spacetime is essentially flat both at infinity and
near the horizon. In the central region the tidal-centrifugal barrier produce a
grey body factor.

The effective potential Vℓ(r) vanishes both at r → ∞ (which corresponds to
r∗ → +∞) as the massless centrifugal potential ℓ(ℓ+1)/r2, and at the horizon
r = 2M (r∗ → +∞). Therefore, the potential is negligible in these two regions
and the solution of the wave equation is expected to behave essentially as in
flat space. The general solutions ϕ in the asymptotic region will be

ϕωℓm ∼ e−iω(t±r∗)

√
2π|ω|

1

r
Yℓm (θ, ϕ) . (1.58)

Conversely, the potential generated by the gravitational coupling is effective
only in the intermediate region where it represents a positive potential bar-
rier combining the effect of curvature and centrifugal effects. Modes generated
near the horizon must penetrate this barrier to escape to infinity, hence a grey
body factor which diminishes the amplitude of the quantum modes will appear
in the solution of the Klein-Gordon equation.

To quantize the scalar field ϕ we will follow a rather standard procedure
decomposing the field in the eigenfunctions of the Klein Gordon equation,
with coefficients given by creation and annihilation operators. In the case of a
black hole background the definition of positive and negative frequencies must
be handled with care.

Let us start reviewing the general formalism in the case of a quantum
operator ϕ̂(x) describing real massless particles in a background spacetime
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which becomes stationary both in the infinite past, and in the infinite future.
The operator ϕ̂(x) can be decomposed both with respect to some “in” basis
of modes, describing free, incoming particles,

ϕ̂(x) =
∑

i

âini pini (x) + (âini )
+ nin

i (x) , (1.59)

and with respect to an “out” basis of modes, describing outgoing particles,

ϕ̂(x) =
∑

i

âouti pouti (x) + (âouti )+ nout
i (x) , (1.60)

where {âin, (âin)+} and {âout, (âout)+} are the two sets of annihilation and
creation operators, such that

[âini , (â
in
j )

+] = δij . (1.61)

The two sets of annihilation and creation operators correspond to a decom-
position in modes which can physically be considered as incoming positive-
frequency ones (pini (x)), incoming negative-frequency ones (nin

i (x)); which can
be taken to be the complex conjugate of pini (x) in our case, outgoing positive-
frequency ones (pouti (x)) and outgoing negative-frequency ones (nout

i (x)). Mode
functions can be normalized as

(pini , p
in
j ) = δij , (pini , n

in
j ) = 0 , (nin

i , n
in
j ) = −δij , (1.62)

where ( , ) denotes the standard (conserved) Klein-Gordon scalar product

(ϕ1, ϕ2) ∼ i

∫
dσµ (ϕ∗

1∂µϕ2 − ∂µϕ
∗
1ϕ2) . (1.63)

Vacuum states |in〉, |out〉 are defined as respectively the states annihilated by
aini and aouti . The mean number of i-type “out” particles present in the vacuum
|in〉 is given by

〈Ni〉 = 〈in| (aouti )+ aouti |in〉 =
∑

j

|Tij |2 (1.64)

where Tij ≡ (pouti , nin
j ) is the transition amplitude (also named Bogoliubov

coefficients), between the incoming negative-frequency mode nin
j and the out-

going positive-frequency one pouti .

In the case of a black hole background, the application of the general for-
malism, detailed above, can be problematic since the background is not asymp-
totically stationary in the infinite future - in the interior of the black hole the
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Killing vector ∂/∂t is spacelike -, while it can be considered asymptotically
stationary in the infinite past only by ignoring the formation of the black hole.
In his work, Hawking pointed out that it is possible overcome these problems
by considering the high-frequency modes coming from the infinite past and
the outgoing modes, viewed in the asymptotically flat region and in the far
future. Outgoing modes can be unambiguously decomposed into modes with
positive and negative frequency, because, as explained above, their asymptotic
behaviour is given by a sum of essentially flat-spacetime modes as seen in
(1.58).

We want to calculate the average number of outgoing particles seen in the
|in〉 vacuum, that is the transition amplitude

∑
j |Tij |2, defined in (1.64), from

an initial negative frequency mode nin
j into a final outgoing positive frequency

one pouti , observed at infinity. To compute the sum
∑

j |Tij|2, we have to find

out what is an initial negative frequency mode nin
j . As pointed out before,

there is a physically infinite redshift between the surface of the horizon and
asymptotically flat space at infinity. Therefore, particle with finite frequency
at infinity will correspond to a wave packets with very high frequency near
the horizon, hence very localized. A second important observation is that the
near horizon geometry is regular and with a finite radius of curvature, hence
it is sensible to approximate it locally by a flat spacetime. In conclusion, the
technical issue that we need to discuss is how to describe a negative frequency
mode nin

j in a small neighbourhood of the horizon, that we can assume to be
a Minkowski flat vacuum.

Let us introduce the technical criterion, that we will use later on, for char-
acterizing positive and negative frequency modes in a locally flat space-time.
Consider, in Minkowski space, a wave packet

ϕ−(x) =

∫

C−

d4k ϕ̃(k) eikµx
µ

(1.65)

made only of negative frequencies, i.e. such that the 4-momenta kµ in the
wave packet are all contained in the past light cone C− of kµ. A convenient
technical criterion for characterizing, in x-space, such a negative-frequency
wave packet is the well-known condition that ϕ−(x) be analytically continu-
able to complexified spacetime points xµ+ i yµ with yµ lying in the future light
cone, yµ ∈ C+. If one performs a complex shift of the spacetime coordinate,
xµ → xµ + iyµ, where yµ is timelike-or-null and future-directed (yµ ∈ C+),
then, the eikµx

µ

term will be suppressed by a e−kµyµ term, where the scalar
product kµy

µ is positive because it involves two timelike vectors that point in
opposite directions (we use the “mostly plus” signature). This ensures that a
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negative-frequency wave-packet can indeed be analytically continued to com-
plex spacetime points of the form xµ + iyµ, with yµ ∈ C+.

Now we are ready to attack the calculation of the transition amplitude in
the Schwarzschild background. The first step is to eliminate the “singularity”
at the horizon r = 2M by adopting the Eddington-Finkelstein coordinates
introduced above (1.7). Near the horizon, an outgoing mode from H, which
will have a positive frequency at infinity, is given by expression (1.58) with a
minus sign in front of r∗, and with ω > 0. Introducing Eddington-Finkelstein
coordinates, this mode function can be re-written as

[ϕout
ω (v, r)]nearH ∝ e−iωv e+2iωr

(
r − 2M

2M

)i4Mω

, (1.66)

where we used

t− r∗ = t+ r∗ − 2r∗ = v − 2r∗ = v − 2r − 4M ln

(
r − 2M

2M

)
. (1.67)

The outgoing mode (1.66) appears to be singular on the horizon where oscilla-
tions have shorter and shorter wavelengths as r → 2M , and not to be defined
inside the horizon.

The local, x-space criterion for characterizing positive and negative fre-
quency modes, discussed above, can be applied - in a local frame near the hori-
zon - to the wave packet (1.66). Since the infinitesimal displacement r → r−ε,
v → v is seen to be future directed and null, this criterion finally tells us that
the following new, extended wave packet, defined by applying the analytic
continuation r → r − iε to (1.66),

nω(v, r) ≡ Nω ϕ
out
ω (v, r − iε) ∝ e−iωv e2iωr

(
r − 2M − iε

2M

)i4Mω

(1.68)

is, when Fourier analyzed in the vicinity of H, a negative frequency wave
packet. Note that the new wave packet nω(v, r) is defined also in the interior
of the black hole and that we have included a new normalizing factor Nω in its
definition in terms of the analytic continuation of the “old” mode ϕout

ω , which
had its own normalization.

The normalisation factor Nω is relevant for the computation of the Hawking
radiation. Initially modes in (1.58) were normalised as

(ϕω1ℓ1m1 , ϕω2ℓ2m2) = +δ(ω1 − ω2) δℓ1ℓ2 δm1m2 . (1.69)

The analytic continuation r → r − iε introduces, via the rotation by e−iπ of
r−2M in (r−2M)i4Mω, a factor (e−iπ)i4Mω = e+4πMω in the left part (r < 2M)
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of nω, that is

nω(r) = Nω[θ(r−2M)ϕout
ω (r−2M)+ e4πMω θ(2M − r)ϕout

ω (2M − r)] , (1.70)

where θ(x) is the Heaviside step function. The interpretation of eq. (1.70) is
that the initial negative-frequency mode nω, localised near the horizon, over
time, splits into an outgoing mode ϕout

ω (r−2M), that is observed as a positive-
frequency mode at infinity, and a second mode ϕout

ω (2M − r) that is absorbed
by the black hole.

Now the calculation of the scalar product (nω1ℓ1m1 , nω2ℓ2m2) brings a factor
|Nω|2 [1 − (e4πMω)2], where the minus sign is due to the essentially negative-
frequency aspect of ϕout

ω (2M − r) θ(2M − r). Therefore the appropriate nor-
malisation factor to get

(nω1ℓ1m1 , nω2ℓ2m2) = −δ(ω1 − ω2) δℓ1ℓ2 δm1m2 (1.71)

for a negative-frequency mode is

|Nω|2 =
1

e8πMω − 1
. (1.72)

Leaving aside, for the moment the effect of potential Vℓ(r), the transition
amplitude Tij - the scalar product between nin

j = nω1ℓ1m1 and pouti ∝ ϕout
ωℓm -

would be

(ϕout
ωℓm, nω1ℓ1m1) = Nω δ(ω − ω1) δℓℓ1 δmm1 . (1.73)

Therefore, the number of created particles (1.64) will contain |Nω|2 times the
square of δ(ω − ω1), which, by Fermi’s Golden Rule, is simply δ(ω − ω1) ×∫
dt/2π.
To take into account for the gravitational potential Vℓ(r), it is necessary

to add the grey body factor Γℓ(ω), giving the fraction of the flux of ϕout
ω which

ends up at infinity because of the effect of Vℓ(r). The final result for Hawking
radiation in a Schwarzschild black hole background is

d〈N〉
dt

=
∑

ℓ,m

∫
dω

2π
|Nω|2 Γℓ(ω) =

∑

ℓ,m

∫
dω

2π

Γℓ(ω)

e8πMω − 1
. (1.74)

A black hole radiates as if it were a black body of temperature TBH = 1/(8πM),
screened by a gray body factor Γℓ(ω).

From the Planck factor in (1.74), it is possible to find the Hawking tem-
perature,

T = ~
g

2π
. (1.75)
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This result determines the α̂ coefficient to be α̂ = 1
4
. Therefore the Bekenstein

entropy is

SBH =
A

4G~
. (1.76)

The extension of the analysis proposed to more general classes of black
holes backgrounds leads essentially to the substitution of the factor 4M by the
inverse of the surface gravity of the black hole. The Planck spectrum contains
a factor (e2π(ω−pϕΩ−eΦ)/κ−1)−1 summarising the combined effect of the general
temperature and of the couplings of the conserved angular momentum pϕ and
electric charge e to, respectively, the angular velocity Ω and electric potential
Φ of the black hole.

Hawking’s radiation is not astrophysically relevant for stellar-mass or larger
black holes, nevertheless it has been observed [24] that the combined effect of

the grey body factor and of the zero-temperature limit of (e
2π(ω−ω0)

g − 1)−1

could yield potentially relevant particle creation phenomena in Kerr-Newman
BHs, associated to the “superradiance” of modes with frequencies µ < ω < ω0,
where µ is the mass of the created particle.

1.5 Surface electrodynamic properties

The modern study of the local dynamics of black hole horizons originates from
a “holographic” description of a black hole’s properties: all of the physics of a
black hole is condensed in the description of a set of surface quantities on the
horizon - the surface of the black hole - and a set of bulk properties outside of
the horizon. This approach is called the “membrane paradigm” [21]).

A first interesting example of this holographic description pertaining to
the electromagnetic properties of charged black holes. It is possible to modify
the field equations of the electromagnetic field Fµν = ∂µAν − ∂νAµ - that
in principle is expected to permeate the whole spacetime - so as to replace
the internal electrodynamics of the black hole by surface effects. Maxwell’s
equations

∇νF
µν = 4πJµ, (1.77)

∇µJ
µ = 0, (1.78)

can be modified by introducing a fictitious field Fµν(x)ΘH, where ΘH is a
Heaviside-like step function, equal to 1 outside the BH and 0 inside. The new



1.5. Surface electrodynamic properties 23

equation for Fµν is of the form

∇ν (F
µνΘ) = (∇νF

µν)Θ + F µν∇νΘ (1.79)

where it is possible to recognise two source terms, that we can re-interpret
introducing a surface current jµH defined as

jµH =
1

4π
F µν∇νΘ , (1.80)

where the term ∇νΘ contains a Dirac δ-function which restricts it to the
horizon. If we consider a generic scalar function ϕ (x) such that ϕ (x) = 0 on
the horizon, with ϕ (x) < 0 inside the horizon, and ϕ (x) > 0 outside it, by the
properties of the Heaviside step function we get

∂µΘH = ∂µθ (ϕ (x)) = δ (ϕ (x)) ∂µϕ , (1.81)

where δ is the a Dirac delta function with support on the horizon. The modified
field equation, with the new source term, now reads

∇ν (F
µνΘ) = 4π (JµΘ+ jµH) . (1.82)

To complete the description of black hole electrodynamics it is necessary to
modify the current conservation equations. In particular, it is useful to define
a surface current density on the black hole. For this purpose it is important
to stress that there is an important subtlety in the definition of the normal
vector to the horizon, due to the fact that, as discussed before, the horizon
is a null hypersurface. Indeed, the covariant vector ℓµ such that ℓµdx

µ for
any infinitesimal displacement dxµ on the horizon has norm zero ℓµℓ

µ = 0
and therefore cannot be normalised in the usual way adopted in the Euclidian
space. In stationary axisymmetric spacetimes, ℓµ can be uniquely normalised
by demanding that the corresponding directional gradient ℓµ∂µ be of the form

∂

∂t
+ Ω

∂

∂φ
, (1.83)

with a coefficient one in front of the time-derivative term. For this reason it is
possible assume that ℓµ is normalized in such a way to that its normalization is
compatible with the usual normalization when considering the limiting case of
stationary-axisymmetric spacetimes. Therefore given any normalization, there
exists a scalar ω such that

ℓµ = ω∂µϕ, (1.84)
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hence it is possible to define a δ function on the horizon

δH =
1

ω
δ (ϕ) , (1.85)

such that

∂µΘH = ℓµδH . (1.86)

At this point it is possible to re-write the surface current in the form

jµH = KµδH, (1.87)

where we defined a black hole surface current density as

Kµ =
1

4π
F µνℓν , (1.88)

making evident that the surface current is due to the presence of the electro-
magnetic field on the horizon. The conservation of electric current now spells
out

∇µ (ΘHJ
µ +KµδH) = 0, (1.89)

which is manifestly the conservation of the sum of the bulk current ΘHJ
µ and

of the boundary current KµδH . In this way the description of electromagnetic
phenomena for black holes has be rephrased in terms of surface quantities de-
fined locally on the horizon.

It is useful to introduce some more technical tools to describe the surface
physics of black holes. Performing a change of coordinates using (advanced)
Eddington-Finkelstein-like time coordinates for which t = x0, x1 is equal to
zero on the horizon (like r−r+ in the Kerr-Newman case), and xA for A = 2, 3
denotes some angular-like coordinates. In the new coordinates the normalisa-
tion of the normal vector to he horizon takes the form

ℓµ∂µ =
∂

∂t
+ vA

∂

∂xA
. (1.90)

Expression (1.90) suggests the interpretation of vA as the velocity of some
“fluid particles” on the horizon, which can be seen as the “constituents” of a
null membrane. Following this analogy, we can - as is usually done in the study
of fluids - introduce the gradient of the velocity field, splitting it into its sym-
metric and antisymmetric parts, where the antisymmetric part is interpreted
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as a local rotation and has no consequence on the physics. The symmetric
part can be further divided into its trace and trace-free parts, namely

1

2
(∂ivj + ∂jvi) = σij +

1

d
∂ · vδij (1.91)

where d is the spatial dimension of the considered fluid - which will be d = 2
for black holes in 4-dimensions. The usual description interprets the first term
as the shear, and the second as the rate of expansion of the fluid. Analogous
quantities will be defined for black holes.

The local spacetime geometry on the horizon is described by the degenerate
metric

ds2|x1=0 = γAB

(
t, xC

) (
dxA − vAdt

) (
dxB − vBdt

)
, (1.92)

where vA = dxA/dt. γAB (t, ~x) is a symmetric rank 2 tensor, i.e. a time-
dependent 2-metric such that the horizon may by viewed as a 2-dimensional
brane. The element of area of a spatial sections St therefore can be expressed
as

dA =
√
detγABdx

2 ∧ dx3. (1.93)

One can decompose the current density Kµ into a time component σH = K0,
and two spatial components KA tangent to the spatial slices St (t = const.) of
the horizon,

Kµ∂µ = σH∂t +KA∂A (1.94)

in which ∂t = ℓµ∂µ − vA∂A so that

Kµ∂µ = σHℓ
µ + (KA − σHv

A)∂A. (1.95)

The total electric charge of the spacetime can be defined as the integral

Qtot =
1

4π

∮

S∞

1

2
F µνdSµν , (1.96)

which can be rewritten, using Gauss’ theorem, as the sum of a surface integral
on the horizon and a volume integral in between the horizon and ∞ - that can
be seen as the charge QH contained in space - of the form

QH =
1

4π

∮

H

1

2
F µνdSµν . (1.97)

The surface element can be expressed in terms of the null vector orthogonal
to the horizon ℓµ and of a new null vector nµ, transverse to the horizon and
orthogonal to the spatial sections St, that is normalised as nµℓµ = +1,

dSµν =
1

2
εµνρσdx

ρ ∧ dxσ = (nµℓν − nνℓµ) dA . (1.98)
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Using the definition of the surface current, the black hole’s charge is written
as

QH =

∮

H

σHdA, (1.99)

where σH was introduced before as the time component of the surface current.

The above definition of the charge for a black hole forces one to consider
the density σH as a charge distribution on the horizon. Therefore one can
interpret

σH = Kµnµ =
1

4π
F µνnµlν (1.100)

as the analog of the expression

σ =
1

4π
Eini (1.101)

giving the electric charge distribution on a metallic object. Extending the
reasoning by analogy to the spatial currents flowing along the surface one can
rewrite the current conservation equation (1.82) as

1√
γ

∂

∂t
(
√
γσH) +

1√
γ

∂

∂xA

(√
γKA

)
= −Jµℓµ. (1.102)

This form renders manifest the role of the surface current in “closing” the ex-
ternal current injected “normally” into the horizon in combination with an an
increase in the local horizon charge density.

The electromagnetic 2-form restricted to the horizon takes the form

1

2
Fµνdx

µ ∧ dxν |H = EAdx
A ∧ dt+B⊥dA . (1.103)

Taking the exterior derivative of the left-hand side of the above expression one
gets

∇× ~E = − 1√
γ
∂t (

√
γB⊥) . (1.104)

which relates the electric and magnetic fields on the horizon.

An analog of the Ohm’s law relating the electric field to the current can be
written in the form

EA + ǫABB⊥v
B = 4πγAB

(
KB − σHv

B
)
, (1.105)
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that can be recast as

~E + ~v × ~B⊥ = 4π
(
~K − σH~v

)
. (1.106)

From this expression it is natural to define the surface electrical resistivity for
black holes to be equal to ρ = 4π = 377 Ohm [18, 20].

1.6 Black hole surface viscosity

The holographic approach has a second interesting application to Einstein’s
equation on the surfaces of black holes. Indeed defining appropriate surface
quantities related to the spacetime connection one is able to obtain from the
equations of gravity a “surface hydrodynamics” described by a Navier-Stokes-
like equation. The path followed in defining surface electrodynamical quanti-
ties must be amended due to the non-linear nature of Einstein’s equations3.

To address the issue it is necessary to make a few more technical remarks
about the near horizon geometry. Given any hypersurface, the parallel trans-
port along some tangent direction, which we denote by ~t, of the (normalized)

vector ~ℓ normal to the hypersurface yields another tangent vector. In general
~ℓ · ~ℓ = ǫ, where ǫ will be −1 for a time-like hypersurface, +1 for a space-like
one and zero for a null hypersurface. The directional gradient of the norm of
the vector ℓ along the arbitrary tangent vector ~t will give

(∇~t
~ℓ) · ~ℓ = 0 . (1.107)

Therefore the vector (∇~t
~ℓ) must be tangent to the hypersurface. More gener-

ally there exists a linear map K, acting in the tangent plane to the hypersur-
face, such that∇~t

~ℓ = K(~t). In the case of time-like or space-like hypersurfaces,
this map is called Weingarten map and is given by the mixed-component Ki

j

version of the extrinsic curvature of the hypersurface Kij . The case of a null
hypersurface is more involved since the extrinsic curvature Kij is not uniquely
defined. In any case, there exists a mixed-component tensor Ki

j, intrinsically

defined as the Weingarten map K in ∇~t
~ℓ = K(~t).

In the coordinate system we defined above x0, x1, xA (A = 2, 3), where
the horizon is located at x1 = 0, a basis of vectors tangent to the horizon
can be defined containing the null vector ~ℓ, and the two space-like vectors

3For a detailed derivation of the results reported in this section one can refer to [2, 19,
26, 27]
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~eA = ∂A. With this basis, the Weingarten map K is fully described by the set
of equations

∇~ℓ
~ℓ = g ~ℓ, (1.108)

∇A
~ℓ = ΩA

~ℓ+DB
A~eB. (1.109)

The first equation spells the fact that ~ℓ is tangent to a null geodesic lying
within the horizon, and can be seen as a very general definition of the surface
gravity g. In the second equation, a two-vector ΩA, and the mixed component
DB

A of a symmetric two-tensor DAB, which measures the “deformation” in time
of the geometry of the horizon, are present. Tensor DAB is defined as

DAB = γBCD
C
A =

1

2

DγAB

dt
(1.110)

where where D/dt denotes the Lie derivative along ~ℓ = ∂t + vA∂A of the
degenerate metric γBC defined in (1.92). In explicit form the deformation
tensor can be written as

DAB =
1

2

(
∂tγAB + vC∂CγAB + ∂Av

CγCB + ∂Bv
CγAC

)
(1.111)

=
1

2

(
∂tγAB + vA|B + vB|A

)
. (1.112)

Here the symbol ‘|’ indicates a covariant derivative with respect to the Christof-
fel symbols of the 2-geometry γAB. The tensor is made of two parts, the ordi-
nary time derivative of γAB, and that from the variation of the generators of
velocity vA along the horizon. To interpret this object, it is useful to split the
deformation tensor DAB into a trace-less part and a trace,

DAB = σAB +
1

2
θ , γAB (1.113)

where the traceless part σAB is interpreted as a “shear tensor”, while the trace

θ = DA
A =

1

2
γAB∂tγAB + vA|A , (1.114)

is an “expansion” term. The remaining component of the Weingarten map,
namely the 2-vector ΩA, is defined as

ΩA = ~n · ∇A
~ℓ (1.115)

with ~ℓ · ~n = 1. To give this component a physical meaning it is useful to
introduce an angular momentum for the black hole.
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Let us consider, as before, an axisymmetric spacetime. There will exist a
Killing vector related to this symmetry,

~k = kµ ∂

∂xµ
=

∂

∂ϕ
, (1.116)

to which the Noether’s theorem will associate a conserved total angular mo-
mentum, which can be written as a surface integral over the 2-sphere, S∞

J∞ = − 1

8π

∫

S∞

1

2
∇νkµdSµν , (1.117)

where the surface element dSµν was defined above in the case of the charge
distribution. As before, one can transform the surface integral into the sum
of a volume integral containing the angular momentum of the matter present
outside the horizon and a surface integral over the horizon

J = Jmatter + JH . (1.118)

The second term can be interpreted as the black hole angular momentum.
Using the expression (1.98) for the surface element in terms of the vectors

ℓµ and nµ and observing that we can perform the exchange ℓν∇νk
µ = kν∇νℓ

µ

since the two vectors have zero commutator

[~ℓ,~k] = 0 , (1.119)

the black hole angular momentum JH takes the integral form

JH = − 1

8π

∫

SH

nµk
ν∇νℓ

µdA. (1.120)

We can re-write the above expression, using eq. (??), as the projection of ΩA

on to the direction of the rotational Killing vector ~k = ∂ϕ, so that we have

JH = − 1

8π

∮

S

kAΩAdA (1.121)

where kAΩA is the ϕ-component of ΩA. It is natural at this point to define a
“surface density of linear momentum” as

πA = − 1

8π
ΩA = − 1

8π
~n · ∇A

~ℓ . (1.122)

Finally we get for the total angular momentum of the black hole the expression

JH =

∫

S

πϕdA . (1.123)
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It is possible to find a dynamical equation for the local quantities defined
above by contracting Einstein’s equations with the normal to the horizon. In
this way one relates surface quantities to the flux of the energy-momentum
tensor Tµν into the horizon. By projecting Einstein’s equations along ℓµeνA,
one finds

DπA

dt
= − ∂

∂xA

( g

8π

)
+

1

8π
σB
A |B − 1

16π
∂Aθ − ℓµTµA (1.124)

where

DπA

dt
= (∂t + θ) πA + vBπA|B + vB|AπB, (1.125)

σAB =
1

2

(
∂tγAB + vA|B + vB|A

)
− 1

2
θγAB, (1.126)

θ =
∂t
√
γ

√
γ

+ vA|A (1.127)

correspond to a convective derivative, a shear and an expansion rate respec-
tively.

The equation found can be compared to the Navier-Stokes equation for a
viscous fluid

(∂t + θ) πi + vkπi,k = − ∂

∂xi
p + 2ησk

i ,k + ζθ,i + fi, (1.128)

where πi is the momentum density, p the pressure, η the shear viscosity,
σij = 1

2
(vi,j + vj,i) − Trace, the shear tensor, ζ the bulk viscosity, θ = vi,i

the expansion rate, and fi the external force density. The striking analogy
between these two equations suggests the description of a black hole’s sur-
face as a brane with positive surface pressure p = + g

8π
, external force-density

fA = −ℓµTµA which corresponds to the flow of external linear momentum,
surface shear viscosity η = + 1

16π
, and surface bulk viscosity ζ = − 1

16π
.

It is important to remark the non-relativistic character of the black hole
hydrodynamical-like equations, a quite surprising feature, in spite of the “ultra-
relativistic” nature of black holes.

1.7 Local thermodynamics of black holes

In previous sections, starting from Maxwell’s equations and Einstein’s equa-
tions, a surface resistivity and a surface shear viscosity of black holes were
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defined. On the same grounds, the existence of a local version of the second
law of thermodynamics for black holes is of particular interest. Indeed, physi-
cal systems verifying Ohm’s law and the Navier-Stokes equation are expected
to be also endowed with thermodynamic dissipative equations (the equivalent
to Joule’s law). Näıvely, the expected “heat production rate” in each surface
element dA would be of the form

q̇ = dA

[
2ησABσ

AB + ζθ2 + ρ
(
~K − σH~v

)2]
, (1.129)

where ρ is the surface resistivity, and η and ζ the shear and bulk viscosities
defined above. The corresponding local increase of local entropy s = α̂dA can
be found to be

ds

dt
=

q̇

T
. (1.130)

where T = g
8πα̂

is the local temperature on the surface of the black hole4.
A precise result can be obtained by contracting Einstein’s equations with

ℓµℓν . The projection gives the equation

ds

dt
− τ

d2s

dt2
=

dA

T

[
2ησABσ

AB + ζθ2 + ρ
(
~K − σH~v

)2]
. (1.131)

The similarity of the evolution law for the entropy found with eq. (1.129) is
quite striking, but there is a relevant difference due to the unexpected second
derivative of local entropy on the left hand side appearing with a minus sign
and a coefficient τ = g−1, that can be regarded as a time scale. This term is a
correction to usual near-equilibrium thermodynamics, which involves only the
first order time derivative of the entropy5.

In the limit of an adiabatically slow evolution of the black-hole state, eq.
(1.131) reduces to the usual thermodynamical law giving the local increase of
the entropy of a fluid element heated by the dissipation associated to viscosity
and the Joule’s law.

In the approximation of constant τ , the rate of increase of entropy is

ds

dt
=

∫ ∞

t

dt′

τ
e−

(t′−t)
τ

(
q̇

T

)
(t′) . (1.132)

In other words, the rate of increase of entropy is defined as integral of the
heat dissipation over the future. This fact points to a very peculiar feature

4Even though, as consequence of the zeroth law of black holes thermodynamics, the
surface gravity is uniform on the horizon of stationary black holes, it is, in general, non-
uniform for evolving black holes.

5An interesting observation is that for α̂ = 1/4 one gets τ = 1
2πT , that corresponds to

the inverse of the lowest “Matsubara frequency” associated to the temperature T .
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of black holes: their acausal nature. Indeed, black holes are defined as null
hypersurfaces which are evolving towards a stationary state in the far future.

An important value for the black holes physics is the ratio of the shear
viscosity η = 1/(16π) to the entropy density ŝ = s/dA = α̂, that for the
Bekenstein-Hawking value of α̂ = 1/4, is

η

ŝ
=

1

α̂16π
=

1

4π
. (1.133)

This value of the ratio η/ŝ has been found Kovtun, Son and Starinets in the
gravity duals of strongly coupled gauge theories, using the AdS/CFT corre-
spondence [28, 29].



Chapter 2

Elements of fluid dynamics

Fluid dynamics is the low energy effective description of any interacting quan-
tum field theory, in the regime in which fluctuations have sufficiently long
wavelengths. Hydrodynamics provides a statistical description on macroscopic
scales of the collective physics of a large number of microscopic constituents.
A classical reference on the subject is [31], while for a more specific discussion
of relativistic fluids one can also refer to [32].

Quantum systems in equilibrium can be described by the grand canonical
ensemble, given the temperature and chemical potentials for various conserved
charges. Observables of the system are given by correlation functions in the
grand canonical density matrix. When the system is perturbed away from
equilibrium, for fluctuations whose wavelengths are large compared to the scale
set by the local energy density or temperature, the system can be described
at a macroscopic level in terms of fluid dynamics. The variables of such a
description are the local densities of all conserved charges together with the
local fluid velocities

The intuition is that sufficiently long-wavelength fluctuations correspond to
variations that are slow on the scale of the local energy density/temperature.
Therefore, the system can be considered at equilibrium patchwise and locally
the temperature can be seen as constant. Therefore while the grand canon-
ical ensemble remains a valid approach to describe the physics locally, fluid
dynamics describes macroscopically how different local domains roughly at
equilibrium interact and exchange thermodynamic quantities.

Fluid dynamics is a quite surprising field already as a description of classical
fluids. Although classical fluid dynamics equations have been intensively stud-
ied for almost two centuries, their extremely rich phenomenology remains not
completely understood. Well known open problems are the so called “Navier-
Stokes existence and smoothness problems” [30], that is the demonstration, for
non-relativistic incompressible viscous fluids described by the Navier-Stokes
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equations, of the existence of globally regular solutions. Moreover interest-
ing phenomena such as turbulence remain to be completely clarified. The
holographic mapping of the fluid dynamical system into classical gravitational
dynamics, that will be the topic of the next chapter, could be a useful tool to
deal with open problems in both fields.

In this chapter we will start reviewing relativistic fluid dynamics [32, 33],
then we will summarise some aspects of conformally invariant fluids [34]. Fi-
nally, we will discuss the non-relativistic limit of fluid dynamics [31, 37].

2.1 Relativistic ideal fluids

Let us start by defining in a more formal way the hydrodynamic regime. In
any interacting system there is an intrinsic length scale, the “mean free path
length” ℓmfp, which constitutes the characteristic length scale of the system. In
the kinetic theory context, ℓmfp is the mean free motion of the constituents be-
tween successive interactions. The hydrodynamic regime is therefore archived
when considering description of the system on at length scales which are large
compared to ℓmfp. At this scale, microscopic inhomogeneities are sufficiently
smeared out.

The equations of relativistic fluid dynamics can be summarised as

∇µT
µν = 0 , ∇µJ

µ
I = 0 (2.1)

where the first states the conservation of the stress tensor T µν and the second
one refers to the conservation of charge currents Jµ

I , where I = {1, 2, · · · }
indexes the set of conserved charges characterizing the system. To characterize
a system it is necessary to specify the stress tensor and charge currents in terms
of the basic thermodynamic variables.

Let us consider a QFT living on a d-spacetime dimensional background
Bd with coordinates xµ and non-dynamical metric gµν . The thermodynamic
variables of the system are the fluid velocity uµ, normalized as

uµ g
µν uν = −1 ; (2.2)

the local energy density ρ and charge densities qI , that are seen as extrinsic
quantities; pressure p, temperature T , and chemical potentials µI that are
intrinsic quantities determined by the equation of state.

Let us focus first on the volume element of an ideal fluid which has no
dissipation, as seen in the reference frame where it is at rest. In this frame
Pascal’s law is expected to hold. The pressure exerted by a given element
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of fluid is the same in all directions and is perpendicular to the surface on
which it acts. The i-th component of the force acting on a surface element
df can be written as T ijdfj. Therefore in the local rest frame we can write
T ijdfj = pdfj, that is Tij = pδij. The component T 00 is the energy density ρ,
while components T 0µ, that refer to the momentum density, are zero in the
local rest frame.

Summarising, in the frame in which the ideal fluid is at rest, the energy-
momentum tensor has the diagonal form

T µν =




ρ 0 0 0 . . .
0 p 0 0 . . .
0 0 p 0 . . .
0 0 0 p . . .
...

...
...

...
. . .




(2.3)

In a generic reference frame the energy-momentum tensor that we wrote in
the rest frame will be

(T µν)ideal = ρ uµ uν + p (gµν + uµ uν) , (2.4)

where uµ is the fluid velocity. Similarly, in the local rest frame the components
of the charge current are the charge density itself .The particle flux will have a
time component given by the density of particles, while the spatial components
will form the spatial flux vector. Therefore we can write the charge current as

(Jµ
I )ideal = qI u

µ. (2.5)

Another relevant current to be defined is the entropy current, that similarly
to the charge current can be written as

(Jµ
S )ideal = s uµ, (2.6)

where s is the local scalar entropy density. The entropy current describes the
variations of entropy in the fluid. It is well known that from the conservation
equations and standard thermodynamic relations one finds that the entropy
current is conserved for an ideal fluid

∇µ (J
µ
S )ideal = 0. (2.7)

A convenient notation can be formulated by observing that the d-velocity
uµ is oriented along the temporal direction. Therefore, it is possible to use uµ

to decompose the spacetime into spatial slices with induced metric

P µν = gµν + uµ uν , (2.8)
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where P µν can be seen as projector onto spatial directions, which has the
following properties

P µν uµ = 0 , P µρ Pρν = P µ
ν = P µρ gρν , P µ

µ = d− 1. (2.9)

The ideal fluid stress tensor may be re-written in terms of the new projector
as

(T µν)ideal = ρ uµ uν + p P µν. (2.10)

2.2 Relativistic dissipative fluids

Real fluids manifest dissipative effects, resulting in the creation of entropy
consistently with the second law of thermodynamics. Indeed, in general the
conservation of entropy current does not hold. These dissipative effects op-
erate in the fluid to equilibrate it when perturbed away from a given initial
equilibrium configuration. From a microscopic point of view, dissipative effects
are due to interaction terms in the underlying QFT of which fluid dynamics
is a macroscopic description. Therefore, we expect the terms incorporating
dissipative effects in the the stress tensor and charge currents to depend on
the coupling constants of the underlying quantum field theory.

Following [34] we will introduce dissipative terms with a procedure inspired
by the usual way in which effective field theories are modeled, taking into ac-
count all possible terms that can appear in the effective Lagrangian consistent
with the underlying symmetry at the order required. In the same way, we will
introduce in the hydrodynamic approximation all possible operators - con-
structed as derivatives of the velocity field and thermodynamic variables -,
consistent with the symmetries. This procedure is quite natural in that the
hydrodynamics can be seen as an effective theory for an underlying microscopic
quantum field theory.

To clarify the approach we will follow, in preparation for the construction
to first order in the gradient expansion of the dissipative terms of the stress
tensor, we will look for all possible symmetric two tensors built out of the
gradients of the velocity field and thermodynamic variables. Clearly the con-
servation equations (2.1) - which are first order in derivatives - can be used to
simplify the expression for the first order stress tensor. In this way correction
terms can be expressed as derivatives of the velocity field alone. This process
can clearly be iterated to higher orders.
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Let us start introducing generic dissipative terms to the stress tensor, Πµν ,
and charge currents, Υµ, that we will have to determine

(T µν)dissipative = ρ uµ uν + p (gµν + uµ uν) + Πµν ,

(Jµ
I )dissipative = qI u

µ +Υµ. (2.11)

To proceed in a rather systematic way to the enumeration of dissipative
terms, it will be necessary - as we have done in the case of the ideal fluid - to
define a reference frame in which new terms will be constructed. The choice
of the frame is clearly related to the choice of the fluid velocity.

In the discussion of ideal fluids we defined a velocity field such that, in the
local rest frame of a fluid element, the stress tensor components longitudinal to
the velocity gave the local energy density in the fluid. One can make the same
requirement in the study of dissipative fluids. The corresponding gauge choice
is known as Landau frame and is defined by demanding that the dissipative
contributions be orthogonal to the velocity field, i.e.

Πµν uµ = 0 , Υµ uµ = 0 . (2.12)

The idea in adopting the Landau frame is to define the velocity field uµ to
be given by the unique (normalised) timelike eigenvector of Tµν , so that the
definition of the velocity field is tied to the energy-momentum transport in the
system. In what follows, we will work in the Landau frame and we will use
eq. (2.12) to constrain the dissipative terms of the stress tensor and charge
currents.

To warm up, we may start by considering the decomposition of the velocity
gradient ∇νuµ into a part along the velocity - given by the acceleration aµ -,
and a transverse part. The transverse part can be decomposed into a trace, the
divergence θ, and a traceless part. Symmetric components are to be identified
as the shear σµν of the fluid, while the antisymmetric components can be seen
as the vorticity ωµν . Therefore we can write the velocity gradient as

∇νuµ = −aµ uν + σµν + ωµν +
1

d− 1
θ P µν . (2.13)
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The divergence, acceleration, shear, and vorticity, have been defined1 as

θ = ∇µu
µ = P µν ∇µuν (2.14)

aµ = uν ∇νu
µ ≡ Duµ (2.15)

σµν = ∇(µuν) + u(µ aν) − 1

d− 1
θ P µν = P µα P νβ ∇(αuβ) −

1

d− 1
θ P µν (2.16)

ωνµ = ∇[µuν] + u[µ aν] = P µα P νβ ∇[αuβ] , (2.17)

and satisfy by construction the following properties:

aµ u
µ = 0 Pµν a

µ = aν , (2.18)

σµν uµ = 0 , σµρ Pρν = σµ
ν , σ µ

µ = 0 , (2.19)

ωµν uµ = 0 , ωµρ Pρν = ωµ
ν , ω µ

µ = 0 . (2.20)

Note that above and in what follow we adopt standard symmetrization and
anti-symmetrization conventions. For any tensor Fab we define the symmetric
part F(ab) = 1

2
(Fab + Fba) and the anti-symmetric part F[ab] =

1
2
(Fab − Fba)

respectively. Moreover we indicate with D the velocity projected covariant
derivative: D ≡ uµ∇µ.

As mentioned above, the conservation equation (2.1) can be used to simplify
the expression of the first order stress tensor. Useful relations can be derived
projecting the conservation equation, along the velocity field and transversally

uν ∇µ (T
µν)ideal = 0 =⇒ (ρ+ p)∇µu

µ + uµ∇µρ = 0 (2.21)

Pνα∇µ (T
µν)ideal = 0 =⇒ P µ

α ∇µP + (ρ+ p)Pνα u
µ∇µu

ν = 0 .

Given the identities (2.21) that we derived, it is possible in the definition of
dissipative terms for the stress-tensor to take into account for only symmet-
ric two tensors built from the velocity gradients. Using the Landau frame
condition, one is able to single out two candidate dissipative terms:

Πµν
(1) = −2 η σµν − ζ θ P µν , (2.22)

that appear associated with two new parameters the shear viscosity, η, and
the bulk viscosity, ζ .

1In a more compact form we can write the projectors as

Pµα P νβ ∇(α uβ) = P ρ(µ∇ρu
ν) ,

Pµα P νβ ∇[α uβ] = P ρ[µ∇ρu
ν] .
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In the same way, it is possible spoiling the conservation of charge current
to simplify the search for new terms. In particular it is possible to use the
conservation equations to eliminate the acceleration term, limiting the new
contribution to ones which are first order in the derivatives of the thermo-
dynamic variables ρ and qI and also the velocity field. Another potential
contribution arises from the pseudo-vector

ℓµ = ǫ µ
αβγ uα∇βuγ. (2.23)

This possible term will be responsible for mixing contributions with different
parity structure at first order2.

The new terms, at first order, for the charge current are

Υµ
(1)I = −κ̃IJ P

µν ∇νqJ − γ̃I P
µν ∇νρ− ℧I ℓ

µ , (2.24)

where κ̃IJ is the matrix of charge diffusion coefficients, γ̃I indicates the con-
tribution of the energy density to the charge current, and ℧I which are the
pseudo-vector transport coefficients. in terms of the temperature T and of the
chemical potential µI , the current reads

Υµ
(1)I = −κIJ P

µν ∇ν

(µJ

T

)
− ℧I ℓ

µ − γI P
µν ∇νT . (2.25)

Summing up, the stress tensor and the current of charge for a dissipative
fluid at leading order in gradient expansion are

T µν = ρ uµ uν + p (gµν + uµ uν)− 2 η σµν − ζ θ P µν ,

Jµ
I = qI u

µ − κIJ P
µν ∇ν

(µJ

T

)
− ℧I ℓ

µ − γI P
µν ∇νT . (2.26)

where the set of transport coefficients {η, ζ,κIJ , γI ,℧I} are to be determined
to completely specify the relativistic viscous fluid. In principle transport co-
efficients can be worked out from the fundamental QFT underlying the fluid
dynamic description.

The dissipative fluid’s entropy is not conserved, therefore the second law
implies that the entropy current should have non-negative divergence, i.e.

∇µJ
µ
S ≥ 0 . (2.27)

2This kind of contribution for charge current appears in fluid dynamics derived from the
AdS/CFT correspondence for the N = 4 Super Yang-Mills fluid and is linked to Chern-
Simons couplings of the bulk gauge field in the gravitational description [35, 36].
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In principle, the discussion can be extended to determine higher order
terms in derivative expansion. However, usually these terms are irrelevant in
the hydrodynamic regime. Indeed, these terms are less and less important
moving towards longer wavelengths and are therefore suppressed in low energy
description. On the contrary terms at first order are important since their
presence defines a channel for the fluid to relax back to equilibrium after a
perturbation.

2.3 Conformal hydrodynamics

In this section we will introduce conformal fluids, that can be thought of as
the low energy macroscopic description of field theories which are conformally
invariant. We will start by discussing the restriction on first order terms in the
derivative expansion of the stress-tensor for a generic dissipative fluid arising
from the requirement of conformal invariance. In the next section, we will
review the useful Weyl covariant formalism [44], before singling out operators
at second order that can appear in conformal hydrodynamics. This discussion
is motived by the construction of gravitational duals to hydrodynamics that
will be the topic of the next chapter.

Having in mind a relativistic fluid on a background manifold Bd with metric
gµν , we can consider a Weyl transformation of the metric

gµν = e2φ g̃µν , gµν = e−2φg̃µν . (2.28)

Remembering that the velocity field is normalised as uµ uµ = −1, it will scale
under a Weyl transformation (2.28) as

uµ = e−φ ũµ . (2.29)

Combining these facts one finds thate the spatial projector also transforms
homogeneously

P µν = gµν + uµuν = e−2φ P̃ µν . (2.30)

A generic tensor Qν1···νm
µ1···µn

is said to be conformally invariant if it transforms
homogeneously under Weyl rescalings of the metric (2.28) , i.e.,

Q = e−wφ Q̃ , (2.31)

where w is called conformal weight of the tensor and depends on the index
positions. To have a proper conformally invariant operator in the theory, it
is also necessary that the dynamical equations for Q remain invariant under
conformal transformations.
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Now we can address the question about additional constraints on the stress
tensor, at first order, due to conformal invariance. From the conservation
equations for the energy-momentum tensor (2.1), one finds that it transforms
homogeneously under Weyl rescalings of the metric with weight d+ 2

T µν = e−(d+2)φ T̃ µν , (2.32)

provided that its trace is zero T µ
µ = 0.

The null trace condition implies for an ideal fluid that

T µ
µ = 0 =⇒ p =

1

d− 1
ρ . (2.33)

This relation between pressure and energy density fixes the speed of sound in
conformal fluids as a function of the spacetime dimension:

cs =
1√
d− 1

.

The charge current transforms homogeneously with weight d under confor-
mal transformations, i.e.

Jµ = e−d φ J̃µ. (2.34)

The last pieces to recollect are the scaling dimensions of the thermody-
namic variables. It is possible to see that the temperature scales under a Weyl
transformation with weight 1

T = e−φ T̃ , (2.35)

and this implies from the thermodynamic Gibbs-Duhem relation, p + ρ =
s T + µI qI , that the chemical potentials µI also have weight 1. Moreover
from eq. (2.32) it follows that the energy density transforms under a Weyl
transformation as

ρ = e−dφ ρ̃ . (2.36)

Using the properties of transformation listed above, one is lead to the
following expression for the stress tensor of an ideal fluid

(T µν)ideal = αT d (gµν + d uµ uν) , (2.37)

where α is a dimensionless normalization constant fixed by the underlying mi-
croscopic conformal field theory.

The next step is to discuss dissipative corrections at first order to the ideal
fluid stress tensor. The most convenient approach, is to single out all of the
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operators at order one in the derivative expansion with the right symmetries
transforming homogeneously under conformal transformations. With a bit of
work, it is possible to show that the covariant derivative of uµ transforms
inhomogeneously, i.e.

∇µu
ν = ∂µu

ν + Γν
µλ u

λ = e−φ
[
∇̃µ ũ

ν + δνµ ũ
σ ∂σφ− g̃µλ ũ

λ g̃νσ ∂σφ
]
, (2.38)

where it is useful as an intermediate result that the Christoffel symbols trans-
form as

Γν
λµ = Γ̃ν

λµ + δνλ ∂µφ+ δνµ ∂λφ− g̃λµ g̃
νσ ∂σφ . (2.39)

From eq. (2.38) it is possible to obtain the transformation laws of fluid
dynamical quantities

θ = ∇µu
µ = e−φ

(
∇̃µũ

µ + (d− 1) ũσ ∂σφ
)
= e−φ

(
θ̃ + (d− 1) D̃φ

)
,

aν = Duν = uµ∇µu
ν = e−2φ

(
ãν + P̃ νσ ∂σφ

)
,

σµν = P λ(µ∇λu
ν) − 1

d− 1
P µν ∇λu

λ = e−3 φ σ̃µν ,

λµ = uα ǫ
αβγµ∇βuγ = e−2φ λ̃µ . (2.40)

In the last equation one uses the fact that all epsilon symbols should be
treated as tensor densities in curved space3.

From eq. (2.40) we can deduce the restrictions that one must impose
on a conformal dissipative fluid at first order. Since θ (and aµ) transform
inhomogeneously under Weyl transformations, the bulk viscosity should vanish
for a conformal fluid ζ = 0. With the same procedure, for the charge current,
it turns out that the contribution from the chemical potential and temperature
should appear in the combination µI/T . Moreover since the gradient of the
temperature P µν ∇νT transforms inhomogeneously, the coefficient of the term
in which it appears will be zero γI = 0.

Summing up, one finds that the stress tensor and the charge current, at
first order, for a viscous fluid are

T µν = α T d (gµν + d uµ uν)− 2 η σµν ,

Jµ
I = qI u

µ − κIJ P
µν ∇ν

(µJ

T

)
− ℧I ℓ

µ , (2.41)

where we have used the generalized Stefan-Boltzmann expression for the pres-
sure.

3It is possible to show [33] that the epsilon symbols scale as metric determinants i.e.,
ǫαβγδ ∝ √−g, and ǫαβγδ ∝ 1

√

−g
. Therefore the correct scaling behavior under conformal

transformations will be ǫαβγδ = e4φ ǫ̃αβγδ and ǫαβγδ = e−4φ ǫ̃αβγδ.
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2.4 Weyl covariant formulation of conformal

hydrodynamics

The Weyl covariant formulation of conformal hydrodynamics is a quite pow-
erful tool to explore second order corrections to the stress tensor [44].

On the conformal class of metrics C, defined on the background manifold
Bd, it is possible to define a derivative operator that transforms covariantly
under Weyl transformations. Let us start by defining a torsionless connection
∇Weyl, called the Weyl connection, such that for every metric in the conformal
class C there exists a connection one-form Aµ for which

∇Weyl
α gµν = 2Aα gµν . (2.42)

It is possible to define a Weyl covariant derivative Dµ as

Dµ = ∇Weyl
µ + wAµ (2.43)

or in a more explicit form

DλQµ···
ν··· ≡ ∇λQµ···

ν··· + wAλQµ···
ν···

+ (gλαAµ − δµλ Aα − δµα Aλ) Qα···
ν··· + · · ·

− (gλν Aα − δαλ Aν − δαν Aλ) Qµ···
α··· − · · · . (2.44)

The Weyl covariant derivative Dµ transforms in a covariant way under con-
formal transformations, when acting on a conformally invariant tensor. In
particular

DλQµ···
ν··· = e−wφ D̃λQ̃µ···

ν··· , (2.45)

in other words, the Weyl covariant derivative of a conformally invariant tensor
transforms homogeneously with the same weight as the tensor itself.

From the definition, it follows that the Weyl connection is metric compat-
ible

Dαgµν = 0 , (2.46)

since w = −2 for gµν .
Requiring that the new derivative of the fluid velocity is transverse and

traceless
uαDαu

µ = 0 , Dαu
α = 0 . (2.47)

the connection one-form Aµ is uniquely determined as

Aµ = uλ∇λuµ −
1

d− 1
uµ∇λuλ ≡ aµ −

1

d− 1
θ uµ . (2.48)
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Once the Weyl covariant derivative has been defined, one is lead to define
an associated curvature as the commutator between two covariant derivatives.
In this case, the standard procedure, can be followed keeping in mind some
subtleties that we are going to describe. For a given covariant vector field
Vµ = e−wφṼµ , it is possible to define a Weyl-invariant Riemann curvature
tensor Rµνλσ and a Weyl-invariant field strength Fµν as

[Dµ,Dν]Vλ = w Fµν Vλ −Rµνλ
α Vα , (2.49)

where
Fµν = ∇µAν −∇νAµ , (2.50)

and

Rµνλ
α = Rµνλ

α + ∇µ [gλνAα − δαλAν − δανAλ]−∇ν

[
gλµAα − δαλAµ − δαµAλ

]

+
[
gλνAβ − δβλAν − δβνAλ

] [
gβµAα − δαβAµ − δαµAβ

]

−
[
gλµAβ − δβλAµ − δβµAλ

] [
gβνAα − δαβAν − δανAβ

]
. (2.51)

The Weyl-invariant Riemann curvature tensor can be rewritten in the more
compact form

Rµνλσ = Rµνλσ + 4 δα[µgν][λδ
β
σ]

(
∇αAβ +AαAβ −

A2

2
gαβ

)
− Fµν gλσ , (2.52)

where Fµν is the field strength for the Weyl connection defined above.
Both the Riemann tensor Rµνλσ and the field strength Fµν are invariant

under Weyl tranformations

Rµνλ
α = R̃µνλ

α , Fµν = F̃µν . (2.53)

There are relevant differences between the Weyl covariant Riemann tensor and
the ordinary one in the symmetries they have:

Rµνλσ +Rµνσλ = −2Fµν gλσ ,

Rµνλσ −Rλσµν = δα[µgν][λδ
β
σ] Fαβ − Fµν gλσ + Fλσ gµν ,

Rµανβ V
α V β −Rναµβ V

α V β = −Fµν V α Vα . (2.54)

In analogy with the ordinary case, given the Riemann tensor one can define
a Ricci tensor

Rµν ≡ Rµαν
α (2.55)

= Rµν − (d− 2)
(
∇µAν +AµAν −A2gµν

)
− gµν∇λAλ −Fµν ,
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and a Ricci scalar

R ≡ Rα
α = R − 2(d− 1)∇λAλ + (d− 2)(d− 1)A2 , (2.56)

that transform as

Rµν = R̃µν , R = e−2φR̃ . (2.57)

A general class of tensor that appears in the study of conformal manifolds,
are the the Weyl-covariant tensors that are independent of the background fluid
velocity. A relevant example of this class of operators is the Weyl curvature
Cµνλσ, that can be defined as the trace free part of the Riemann tensor. For
d ≥ 3 it is

Cµνλσ ≡ Rµνλσ + 4 δα[µgν][λδ
β
σ]Sαβ = Cµνλσ −Fµνgλσ = e2φ C̃µνλσ (2.58)

where we introduced Sµν , the Schouten tensor, defined as

Sµν ≡ 1

d− 2

(
Rµν −

Rgµν
2(d− 1)

)

= Sµν −
(
∇µAν +AµAν −

A2

2
gµν

)
− Fµν

d− 2
= S̃µν . (2.59)

The Weyl Tensor Cµνλσ = Cµνλσ + Fµνgλσ defined in eq. (2.58) is a conformal
tensor. Moreover, it turns out that Cµνλσ has the same symmetry properties
as the Riemann Tensor Rµνλσ, i.e.

Cµνλσ = −Cνµλσ = −Cµνσλ = Cλσµν (2.60)

Cµαλ
α = 0 . (2.61)

From equation (2.61), it follows that Cµανβ u
α uβ is a symmetric traceless and

transverse tensor.
Given the Schouten and the Weyl curvature tensors, one can recast other

curvature tensors in terms of these new tensors:

Rµνλσ = Cµνλσ − δα[µgν][λδ
β
σ]Sαβ ,

R = 2(d− 1)Sλ
λ

Rµν = (d− 2)Sµν + Sλ
λgµν ,

(2.62)

2.5 Conformal dissipative fluids

Now we can use the Weyl covariant formalism to provide a classification, up
to the second order in the derivative expansion, of the operators that could



46 Elements of fluid dynamics

appear in the stress tensor of a conformal dissipative fluid. Second order term
will be relevant in the discussion of holographic duals of conformal fluids.

Let us start by writing the conservation equations for the stress tensor in
terms of the new covariant derivative, i.e.

DµT
µν = ∇µ T µν + wAµ T

µν +
(
gµαAµ − δµµ Aα − δµα Aµ

)
T αν

+
(
gµαAν − δνµ Aα − δνα Aµ

)
T µα

= ∇µ T
µν + (w − d− 2)Aµ T

µν −Aν T µ
µ

= ∇µT
µν , (2.63)

where inhomogeneous terms cancel out, remembering that T µ
µ = 0 and w =

d + 2. In the presence of a conformal anomaly, that can be present for CFTs
on curved manifolds in even spacetime dimensions, the dynamical equation for
Tµν spells out

DµT
µν = ∇µT

µν +Aν
(
T µ

µ −W
)
= 0 , (2.64)

where W is the trace anomaly.

Given the definition of the Weyl covariant derivative, it is possible also to
rewrite the building blocks of the stress tensor at first order in the covariant
formulation

σµν = D(µuν) , ωµν = −D[µuν] , (2.65)

which have weight w = 3.

To introduce second derivative terms, we need to pin down all of the pos-
sible two derivative operators that transform homogeneously under conformal
transformations. The fist kind of term we can have are those that involve the
squares of the first derivative operators, i.e.

σµ
α σ

να = e−4φ σ̃µ
α σ̃

να , ωµ
α ω

να = e−4 φ ω̃µ
α ω̃

να , σµ
α ω

να = e−4φ σ̃µ
α ω̃

να .
(2.66)

Moreover there exist also two derivative terms built from the fluid velocity.
The possible terms of this kind are

DµDνu
λ = Dµσν

λ +Dµων
λ = e−φD̃µD̃ν ũ

λ , (2.67)

Dλσµν = eφ D̃λσ̃µν , (2.68)

Dλωµν = eφ D̃λω̃µν . (2.69)

An other kind of second order terms is one which involves the temperature
T and various chemical potentials µI . After some effort, it turns out that all
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of the possible operators in this group are

Dµ

(µI

T

)
= D̃µ

(
µ̃I

T̃

)
,

DµT = e−φD̃µT̃

DλDσ

(µI

T

)
= D̃λD̃σ

(
µ̃I

T̃

)

DλDσT = e−φ D̃λD̃σT̃ .

(2.70)

In addition to the terms listed above, there is a one last term to consider,
obtained by contracting the curvature tensors in the Weyl tensor (2.58) with
two velocity vectors

Cµανβ u
α uβ = C̃µανβ ũ

α ũβ (2.71)

that is a symmetric, traceless and transverse tensor.

Having classified all possible operators that can enter in the construction
of dissipative terms for a viscous conformal fluid, it is possible to proceed in
isolating the terms that will be useful later on. In particular, for sake of sim-
plicity, we will construct a dissipative generalisation of a conformal fluid with
no conserved charges. For this choice, there are five possible symmetric trace-
less tensors which transform homogeneously under Weyl rescalings at second
order:

T
µν
1 = 2 uαDασµν , T

µν
2 = Cµανβ u

α uβ, (2.72)

T
µν
3 = 4 σα〈µ σν〉

α, T
µν
4 = 2 σα〈µ ων〉

α, (2.73)

T
µν
5 = ωα〈µ ων〉

α. (2.74)

We summarise all the symmetric traceless tensors which transform homoge-
neously under Weyl rescalings up to the second order in table 2.1.

Having completed the exploration of possible dissipative terms up to the
second order, we are finally able to write the correction to the stress tensor
for a conformal viscous fluid that, for simplicity, we will assume to have no
conserved charge. The general contributions to the stress tensor are:

T µν
(0) = αT d (gµν + d uµ uν)− 2 η σµν

Πµν
(1) = −2 η σµν

Πµν
(2) = τπ ηT

µν
1 + κTµν

2 + λ1 T
µν
3 + λ2 T

µν
4 + λ3 T

µν
5 . (2.75)

Where {η, τπ, κ, λi} for i = {1, 2, 3} is a set of six transport coefficients char-
acterizing the viscous fluid.
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First order: σµν

Second order: T
µν
1 = 2 uαDασµν

T
µν
2 = Cµανβ u

α uβ

T
µν
3 = 4 σα〈µ σ

ν〉
α

T
µν
4 = 2 σα〈µ ω

ν〉
α

T
µν
5 = ωα〈µ ω

ν〉
α

Table 2.1: Symmetric and homogeneous traceless operator for a conformal
viscous non-charged fluid up to the second order.

2.6 Nonrelativistic limit of fluid dynamics

In this section we will discuss, following [4], the non-relativistic scaling limit
of the fluid dynamical equations of a non-charged fluid (we will not assume,
for the moment, conformal invariance), i.e

∇µT
µν = 0 , (2.76)

with
T µν = ρuµuν + pP µν − 2ησµν − ζθP µν + . . . (2.77)

where p is the pressure4, ρ the energy density, η the shear viscosity, ζ the
bulk viscosity of the fluid, to the incompressible non-relativistic Navier-Stokes
equations

∂~v

∂t
+ ~v · ∇~v = −~∇p+ ν∇2~v + ~f (2.78)

~∇ · ~v = 0 (2.79)

where ~v is the fluid velocity, p the fluid pressure, ν the shear viscosity and ~f
an external forcing function.

In particular, we will discuss the non-relativistic limit

δx ∼ 1

Tǫ

δt ∼ 1

Tǫ2

vi ∼ ǫ

δp ∼ T dǫ2

ǫ → 0

(2.80)

4In this section p will indicate the relativistic pressure and p the nonrelativistic one.
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where δx is a spatial length scale, δt the temporal scale while vi and δp have
to be seen as estimates of the magnitude of velocity and pressure fluctuations
on a configuration of fluid at rest and in equilibrium.

The meaning of this limit can be understood by remembering that it is
necessary to scale to long distances to be in the fluid dynamical regime. Time
intervals should scale like spatial intervals squared, as it is easy to realise
looking at the dispersion relation for shear waves, ω = iνk2 . These two scalings
determine the scaling law for velocities. Finally the pressure fluctuations are
to be scaled such that they cannot accelerate the fluid velocities outside this
scaling limit.

Let us start by considering the flow of a fluid on a spacetime with a metric
that can be cast in the form

Gµν = gµν +Hµν , (2.81)

where Hµν is an arbitrary small fluctuation of a background metric gµν that
we want to write as5

gµνdx
µdxν = −dt2 + gijdx

idxj . (2.82)

The fluid flow on the background space equipped with the metric Gµν can
be reinterpreted as a forced flow on the space with metric gµν [4], mapping
the velocity field ũµ on the space Gµν to a velocity field uµ on gµν . In con-
structing the map the normalisation of the velocity field u2 = ũ2 = −1 must
be maintained.

The fluid velocity ũµ on the space Gµν can be written as

ũµ =
1√
V 2

(
1, ~V

)
, (2.83)

where ~V is the d− 1 spatial vector with components V i. V µ is a d component
object with components (1, ~V ) and V 2 is GµνV

µV ν .
A perturbative expansion of the velocity ũµ at the first order in the small

fluctuation Hµν gives

ũµ = uµ + δuµ + . . .

uµ =
1√

1− gijV iV j

(
1, ~V

)
(2.84)

δuµ = −uµu
αuβHαβ

2

5This form of the metric gµν can be seen as a simply a choice of coordinate system, for
a large class of metrics.
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where we have expressed the series in terms of uµ, the new velocity of the fluid
referring to the metric gµν . The idea that we want to follow is to consider
terms in which Hαβ appears as contributions to an effective forcing function
in the non-relativistic Navier-Stokes equation (2.78).

We want to consider Hαβ as a small amplitude and long distance fluctuation
on a uniform fluid at rest - it is always a solution to the equations of fluid
dynamics on the space with metric gµν . The fluid at rest will be described as
a fluid with pressure p0, energy density ρ0 on a manifold that is “close” to gµν .
We set the components of the fluctuation to

H00 = ǫ2h00(ǫx
i, ǫ2t)

H0i = ǫAi(ǫx
i, ǫ2t)

Hij = ǫ2hij(ǫx
i, ǫ2t)

and we assume consistently that the velocity and pressure satisfy

V i = ǫvi(ǫxi, ǫ2t)

p− p0

ρ0 + p0

= ǫ2p(ǫxi, ǫ2t)
(2.85)

where ǫ is a parameter arbitrarily small and one can define a covariant vector
vµ = (1, vi). The normalisation of the pressure fluctuations, ρ0 + P0, has been
introduced for future convenience. Energy density ρ and viscosity ν also scale
in a similar fashion.

The conservation equations are expected to reduce to the classical Navier-
Stokes equations in this limit. Let us start by considering the temporal com-
ponent of ∇µT

µν , we get

∇µT
µ0 = ǫ2

[
ρe
(
∇iv

i
)]

+O(ǫ4)

ρe = ρ0 + p0
(2.86)

therefore, for ǫ → 0, this equation reduces to

∇iv
i = 0, (2.87)

where ∇i is the covariant derivative with respect to the purely spatial metric
gij. Spatial components of the conservation equations, after some manipula-
tion, can be cast in the form

∇µT
µi = ǫ3

[
ρe∇ip+ ρe∇µ

(
vivµ

)

−2η∇j

(
∇jvi +∇ivj

2
− gij

~∇ · ~v
d− 1

)
− ζ∇i

~∇ · ~v − f i

]
+O(ǫ5) (2.88)
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where the forcing function f is defined as

f i = ρe

(
∂ih00

2
− ∂0Ai −

∂j(
√
gAiv

j)
√
g

+ vj∂iAj

)
. (2.89)

The coefficient of ǫ3 can be rewritten in a more transparent form. We begin
using the expression

∇iv
i =

∂i(
√
gvi)

√
g

= 0 ,

to get

∇ip+ ∂0v
i + ~v.∇vi − ν

(
∇2vi +Ri

jv
j
)
=

∂ih00

2
− ∂0A

i + F i
jv

j (2.90)

where we defined a field strength Fij = ∂iAj − ∂jAi associated to the vector
field Ai, and a kinematical viscosity ν = η/ρe of the fluid. It this then possible
to redefine variables, splitting the gauge field Ai into its pure curl and pure
divergence parts, i.e.

Ai = ai +∇iχ , (2.91)

where ∇ia
i = 0, and one finds

fij ≡ ∂iaj − ∂jai = Fij . (2.92)

It is also useful to define an effective pressure

pe = p− 1

2
h00 + χ̇. (2.93)

In terms of the new variables, equation (2.88) becomes

∇ipe + ∂0vi + ~v.∇vi − ν
(
∇2vi +Rijv

j
)
= −∂0a

i − vjfji , (2.94)

which is indeed the Navier-Stokes equation with a forcing function generated
by an effective background electromagnetic field on the effectively charged
fluid.

In the case of a charged fluid, the discussion follows the same track, adding
the set of conservation equations for conserved charges (2.1). It turns out that,
in the non-relativistic limit, these equations lead to supplementary conditions
under which the fluid velocity is divergence-free.

A point that it is useful to assess regards how Cauchy conditions for the
relativistic fluid are transmitted to the non-relativistic fluid. The Cauchy data
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of the relativistic dynamical equations consist of d real functions of space: the
value of the pressure field and the value of the d−1 independent velocity fields
defined on an initial timeslice 6. In the case of the non-relativistic incompress-
ible Navier-Stokes equations, one can observe that the derivative of eq.(2.94)
results in the condition

∇2pe = −∇iv
j∇jv

i − vivjRij +∇i

[(
−νRi

j + f i
j

)
vj
]
, (2.95)

that determines the pressure of the fluid as a function of the fluid velocity.
Therefore, the set of independent data necessary to determine the flow of the
fluid is given by d−2 real functions that parameterize an arbitrary divergence
free velocity field. Indeed, two of the degrees of freedom of the equations of
relativistic fluid dynamics are projected away in the scaling limit. One can see
that these two degrees of freedom correspond the fluctuations of the pressure
and the divergence of the velocity7.

2.7 Nonrelativistic symmetries for conformal

fluids

As we have discussed in the previous section, the Navier-Stokes equations may
be obtained as the scaling limit of any relativistic equations of fluid dynamics.
For the purpose of our work we are interested in particular in conformal fluids
due to their connection with gravity. Therefore it is interesting to assess in
which form the conformal symmetry descends to a symmetry of the Navier-
Stokes equations, in the non-relativistic scaling limit we proposed above.

A dilatation consists of a diffeomorphism

(x′)µ =
xµ

λ
, T ′ = T , (u′)µ =

uµ

λ
, (g′)µν = λ2gµν ,

associated with a Weyl transformation

x̃µ = (x′)µ , g̃µν =
(g′)µν
λ2

, ũµ = λ(u′)µ , T̃ = λT .

The compound action is therefore:

x̃µ =
xµ

λ
, g̃µν = gµν , ũµ = uµ, T̃ = λT. (2.96)

6Since the fluid conservation equations are of first order in time, the Cauchy data of the
problem does not include the time derivatives of all these fields.

7As observed in [4], at the linearized level these two degrees of freedom combine together
in sound mode fluctuations. Hence the physical fact behind the reduction of Cauchy data
in the non-relativistic limit is that sound waves are projected out in the scaling limit
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This action is a symmetry of the equations of conformal relativistic fluid dy-
namics, but it is not a symmetry of the Navier-Stokes equations. Indeed,
kinematical viscosity ν in the Navier-Stokes equations, is proportional to 1

T
,

hence it is not invariant under dilatation transformations. However as was
shown in [4], it is possible to modify dilatation transformations into a true
symmetry of the Navier-Stokes equations by “absorbing” the transformation
of ν into the “anomalous” transformations of time and velocity.

Let us start by considering special conformal transformations. The scaling
law for the velocity and temperature fields, under a special conformal transfor-
mation, may be obtained by combining a diffeomorphism with the appropriate
Weyl transformation. For an infinitesimal conformal transformation one gets

δxµ = −2c.xxµ + x2cµ

δuµ = −2 [xµcν − xνcµ] uν − δxν∂νu
µ (2.97)

δT = 2c.xT − δxν∂νT.

To verify the covariance of local equations under these symmetry transforma-
tions, one has to omit the terms proportional to δxµ∂µ, using the following
expression for the derivative’s transformation

δ (∂β) = 2 [cβx.∂ − xβc.∂ + x.c∂β ] .

Under transformation (2.97), the conformal stress tensor becomes

δT µν = 2d(c.x)T µν+2(xλcµ−xµcλ)T ν
λ +2(xλcν−xνcλ)T µ

λ −δxλ∂λT
µν . (2.98)

Therefore, given the derivative’s transformation, any identically traceless stress
tensor is invariant under special conformal transformations.

Special conformal transformations (2.97) give rise to an additive shift in
the temperature fluctuation, δT , proportional to x · cT0. In order that this
shift respects the ǫ2 scaling of δT one has to scale c0 ∝ ǫ4 and ci ∝ ǫ3. In this
way the transformations (2.97) read

δt = 0

δxi = −t2ci

δvi = −2cit+ t2cj∂jv
i (2.99)

δT = 2(−c0t+ cixi)T + t2cj∂jT.

(2.100)
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To verify the covariance of the conservation equations under these transfor-
mations, one has to omit the terms proportional to t2cj∂j and to supplement
their action with the following derivative transformation

δ (∂t) = 2tci∂i δ (∂i) = 0 .

The symmetry generated by c0 acts trivially. Indeed it does not act on
coordinates or velocities, but merely generates a shift, linear in time, of the
pressure. On the contrary, the symmetries generated by ci act nontrivially.
Under this transformation one gets

δpe =
δp

dP0
= 2c · x ,

and therefore
δ∂ipe = 2ci .

Finally δ(v̇i+v ·∇vi) = −2ci. Hence, the viscous term - which was responsible
for the change in Navier-Stokes equations - is unchanged under the redefined
transformation. The Navier-Stokes equations are invariant under a conformal
symmetry group.

We can conclude this section, for sake of completeness, by giving few more
details on the conformal symmetry group.

The group generators of this group are the dilatation D, special conformal
symmetries Ki, Galilean boosts Bi, the generator of time translations (energy)
H , momenta Pi and spatial rotations Mij . The action of these generators on
velocity fields is given by

Dvj = (−2t∂t − xm∂m − 1) vj

Kiv
j = −2tδij + t2∂iv

j

Biv
j = δij − t∂iv

j

Hvj = −∂tv
j

Piv
j = −∂iv

j

Mikv
j = δijv

k − δkjv
i − (xk∂i − xi∂k)v

j

(2.101)

While the following commutation relations among generators hold:

[D,Ki] = −3Ki [D,Bi] = −Bi [D,H ] = 2H

[D,Pi] = Pi [D,Mij] = 0 [Mij , Pk] = −δikPj + δjkPi

[Mij , Kk] = −δikKj + δjkKi [Mij , Bk] = −δikBj + δjkBi

[Mij , H ] = 0 [Ki, Pj] = 0 [Ki, Bj] = 0

[Ki, H ] = −2Bi [H,Bj ] = −Pi

(2.102)
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In addition to the relevant symmetries we enumerated above, the Navier-
Stokes equations have, as noted before, an infinite dimensional group of trivial
symmetries that act as a shift of the pressure by an arbitrary function of time.
These are indeed symmetries since only gradients of the pressure enter the
Navier-Stokes equations and trivial because the pressure is not really an inde-
pendent variable, as we discussed above. The action of symmetry generators
on the pressure is

Dpe = (−2t∂t − xm∂m − 2) pe

Kipe =2xi + t2∂ipe

Bipe =− t∂ipe

Hpe =− ∂tpe

Pipe =− ∂ipe

Mikpe =− (xk∂i − xi∂k)pe.

(2.103)

These generators acting on the pressure do not yield the commutation
relations, indeed they have additional terms. However spatial derivatives of
the pressure field correctly transform according to the algebra (2.102). For
this reason, the symmetry algebra (2.102) is not represented on the pressure
field itself, but only on its spatial derivatives.
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Chapter 3

Fluid dynamics from gravity

In this chapter we give a short review of the construction of gravity solutions
dual to arbitrary fluid flows proposed in [4]. A detailed and comprehensive
exposition of the subject can be found in [34]. As pointed out in the first
chapter, the application of hydrodynamic concepts to black holes is part of
the core intuition of the membrane paradigm [21, 25], wherein one modeled
the black hole horizon by a membrane equipped with fluid like properties.
However, in this approach the connection to fluid dynamics is an analogy,
and therefore provides a qualitative understanding of the physical behaviour
of black holes via a simpler fluid model. On the contrary, the fluid-gravity
correspondence - an example of the AdS/CFT correspondence - provides a
duality between the hydrodynamic description and the gravitational dynamics.
Indeed, the precise quantitative connection allows one to map fluid solutions
of the boundary field theory into a black hole solutions in the bulk geometric
description with regular event horizons.

The AdS/CFT correspondence conjectures a deep connection between quan-
tum field theories and theories of gravity [38, 39, 40]. The correspondence has
proved to be a powerful tool for the large N limit in which the gravitational
theory turns classical, and in a simultaneous strong ‘t Hooft coupling limit that
suppresses α′ corrections to gravitational dynamics. In this limit the conjec-
ture asserts the equivalence between the effectively classical large N dynamics
of the local single trace operators ρn = N−1TrOn of gauge theory and the clas-
sical two derivative equations of Einstein gravity interacting with other fields.
The AdS/CFT correspondence provides a one to one map from the local and
relatively simple bulk equations into unfamiliar and extremely nonlocal equa-
tions for the boundary trace operators ρn(x). The authors of [4] proposed a
construction which can simplify the extremely complicated equations on the
boundary.

Two derivative bulk theories of gravity, containing AdSd+1 ×MI as a solu-
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tion, admit a consistent truncation to the Einstein equations with a negative
cosmological constant.The only fluctuating field in this truncation is the Ein-
stein frame graviton; all other bulk fields are simply set to their background
AdSd+1 ×MI values. This fact implies the existence of a sector of decoupled
and universal dynamics of the stress tensor in the corresponding dual field
theories. Indeed, all single trace operators other than the stress tensor may
consistently be set to zero as the stress tensor undergoes its dynamics. The
dynamics of the stress tensor happens to be universal since it is governed by
the same equations of motion in each member of this infinite class of strongly
coupled CFTs.

A further simplification in the dynamics of the dual theory can be obtained
by considering the regime in which the local stress tensor varies on a length
scale that is large, at any point, compared to a local equilibration length scale
- intuitively, a “mean free path” - which is set by the “rest frame” energy
density at the same point. Under this condition, it is expected that boundary
configurations should be locally thermalized, and therefore well described by
the equations of boundary fluid dynamics. In particular, it has been proven
that the complicated nonlocal Tµν dynamics reduces to the familiar boundary
Navier Stokes equations of fluid dynamics in this long wavelength limit [4].

In [4] a perturbative procedure was proposed, in a boundary derivative
expansion, to construct a large class of asymptotically AdS5 long wavelength
solutions to Einstein’s equations with a negative cosmological constant. These
solutions are parameterized by a four-velocity field uµ(xµ) and a temperature
field T (xµ) that have to obey the four dimensional generalized Navier Stokes
equations ∇µT

µν = 0 where the stress tensor T µν(xµ) is a local functional of
the velocity and the temperature fields.

The explicit map from the space of solutions of a distinguished set of Navier
Stokes equations to the space of long wavelength solutions of asymptotically
AdSd+1 gravity was established up to second order for d = 4, 5 in [4] and than
generalized and studied in more detail in [37, 41, 42, 9, 43, 44]. In particu-
lar, in [42] it was proven that, subject to mild assumptions, these spacetimes
have regular event horizons. Successively, the construction was extended to
spacetimes of arbitrary dimensionality [5, 45].

3.1 Black branes in AdSd+1

Let us start by analysing the universal sector of a string background of the
form AdSd+1×X where X is a compact internal manifold, suitable for obtain-
ing a consistent string vacuum and whose properties will be irrelevant in the
following. Einstein’s equation of gravity with a negative cosmological constant
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Λ follow from the Einstein-Hilbert action

Sbulk =
1

16πG
(d+1)
N

∫
dd+1x

√
−G (R− 2Λ) . (3.1)

Choosing RAdS = 1, Einstein’s equations are given by

EMN = RMN − 1

2
GMNR− d(d− 1)

2
GMN = 0 (3.2)

RMN + dGMN = 0, R = −d(d+ 1), (3.3)

where GM,N is the bulk metric, EMN is the Einstein tensor and M,N =
1, . . . , d+ 11.

An obvious solution of these equations is AdS spacetime with unit radius

ds2 =
dr2

r2
+ r2 (ηµνdx

µdxν) , (3.4)

where now µ, ν = 1 . . . d.
A different solution to Einstein’s equations is the planar Schwarzschild-

AdSd+1 black brane which in standard coordinates is written as

ds2 = −r2 f(b r) dt2 +
dr2

r2 f(b r)
+ r2 δij dx

i dxj , (3.5)

f(r) = 1− 1

rd
. (3.6)

Eq. (3.5) can be seen as one-parameter family of solutions labeled by the
horizon size r+, which sets the temperature of the black hole

T =
d

4π b
. (3.7)

From the black brane solution (3.5) one can generate a d parameter family
of boosted black brane solutions by boosting the solution along the translation-
ally invariant spatial directions xi. In Schwarzschild like coordinates, the new
solution can be written as

ds2 =
dr2

r2f(r)
+ r2 (−f(r)uµuν + Pµν) dx

µdxν (3.8)

f(r) = 1− 1

(br)d
, ηµνu

µuν = −1,

Pµν = ηµν + uµuν , b =
d

4πT
,

1We adopt the convention of using upper case Latin indices {M,N, · · · } to denote bulk
directions, while lower case Greek indices {µ, ν, · · · } refer to field theory or boundary direc-
tions. Lower case Latin indices are used, instead, {i, j, · · · } to denote the spatial directions
in the boundary. Therefore we have M,N = 1, . . . , d+ 1, and µ, ν = 1 . . . d.
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where

uv =
1√

1− β2
(3.9)

ui =
βi√
1− β2

(3.10)

and the velocities βi are all constants with β2 = βj β
j, and P µν = uµuν + ηµν

is the projector onto spatial directions. The temperature T associated to this
solution is constant. The parameters which characterize the bulk solution
are now the basic hydrodynamical degrees of freedom, temperature and the
velocity of the black hole.

More generally, one can consider solution of the form (3.8) where gµν is an
arbitrary constant boundary metric of signature (d− 1, 1), and uµ is a generic
constant unit normalized d velocity, i.e.

gµνu
µuν = −1, Pµν = gµν + uµuν , b =

d

4πT
. (3.11)

Clearly the new metric is quite redundant, since a d(d+3)/2 parameter set of
metrics (3.8) are all coordinate equivalent. Indeed gµν can be sent in ηµν by an
appropriate linear coordinate transformation xµ → Λµ

νx
ν , and uµ can subse-

quently be set to (1, 0 . . . 0) by a boundary Lorentz transformation. Moreover
b can be set to one by uniform rescaling of boundary coordinates coupled with
a rescaling of r.

For our purposes it is useful, to introduce an even more redundant formu-
lation of solution (3.8), obtained with via a transformation r̃ → e−φr, i.e.

ds2 =
(dr̃ + r̃Aνdx

ν)2

r̃2f(r)
+ r̃2

(
−f(b̃r̃)ũµũνdx

µdxν + P̃µνdx
µdxν

)
(3.12)

where gµν , u
µ, and b are as defined in the previous equation, while

g̃µν = e2φ(x
µ)gµν , ũµ = eφ(x

µ)uµ, b̃ = eφ(x
µ)b, (3.13)

and φ(xµ) is an arbitrary function.
Metrics of the form (3.12) describe the same bulk geometry but can be

interpreted as distinct, though Weyl equivalent, boundary description by reg-
ulating them inequivalently near the boundary. In particular, following the
references above, spacetimes described by eq. (3.12) will be regulated on slices
of constant r̃ and consequently seen as states in a conformal field theory on a
space with metric g̃µν(x).
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The non-anomalous part of the boundary stress tensor dual to metric (3.12)
is given by

Tµν =
1

16πGAdSb̃d
(g̃µν + dũµũν) , (3.14)

which corresponds to the stress tensor of an ideal conformal fluid with a pres-
sure p = 1/(16πGAdSb

d) and without any vorticity or shear strain rate.
It is useful to observe that the velocity field is the unique time-like eigen-

vector of the stress tensor

T µ
ν u

ν =
K

bd
uµ, K = − (d− 1)

16πGAdS

(3.15)

and the inverse temperature field b is simply related to its eigenvalue.

3.2 Zeroth order ansatz for the metric

In the previous section, we described locally asymptotically AdSd+1 exact so-
lutions to Einstein’s equations (5.65) which have, as a holographic boundary
stress tensor, the ideal conformal fluid stress tensor. This is an expected result
as the solution is stationary and therefore corresponds to the global thermal
equilibrium.

Now, to describe hydrodynamics we should perturb the system away from
global equilibrium. The natural way to do this is to consider thermodynamic
variables varying along the boundary directions, that is promoting the param-
eters b (viz. the temperature T ), βi (viz. the velocity uµ) to functions of the
boundary coordinates. In particular, we want discuss solutions to Einstein
equations with slowly varying boundary stress tensors on a boundary mani-
fold that has a weakly curved boundary metric. These solutions should be
locally patch-wise equilibrated, therefore corresponding bulk solution should
approximately be given by patching together tubes of the uniform black brane
solutions, extending from local patches on the boundary into the bulk.

Let us consider a locally asymptotically AdSd+1 solution to Einstein’s equa-
tions, whose corresponding boundary stress tensor everywhere has a unique
time-like eigenvector. Let us promote this eigenvector to a function uµ(x) of
the boundary coordinates, and let us, in the same way, define the inverse of
the temperature field as b(x). Now it is useful to define in a precise way in
which sense we can consider our solution as “slowly varying”: denoting by
δx(y) the smallest length scale of variation of the stress tensor of the corre-
sponding solution at the point y, we shell consider δx(y) ≫ b(y). Actually
b(y) may be interpreted as the effective length scale of equilibration of the
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field theory at y. Similarly, we say that the boundary metric is weakly curved
if b(y)2R(y) ≪ 1 (where R(y) is the curvature scalar, or more generally an
estimate of the largest curvature scale in the problem.)

An important issue to address is the shape of the radial curves that tubes
- extending from local patches of uniform black brane on the boundary into
the bulk - will have. A seeming natural choice is to let tubes follow lines
xµ = const. in the Schwarzschild coordinates, writing the approximate bulk
metric as

ds2 =
(dr̃ + r̃Aνdx

ν)2

r̃2f(r)
+ r̃2

(
−f(b̃r̃)ũµũνdx

µdxν + P̃µνdx
µdxν

)
(3.16)

The problem with this choice is that it has been shown that it leads, in gen-
eral, to a geometry with non-regular future horizon2. Furthermore, the solution
(3.16) has a relevant issue with causality. Let us consider a variation in the
boundary metric at an arbitrary point yµ, inducing an effective force on the
fluid. The future evolution of the fluid is affected only in the the future bound-
ary light cone of yµ, that we will denote C(yµ)3. The bulk will be affected by
the variation only in the region of the space-time - B(yµ)) - that is the union
of all the tubes, that originate in the boundary region C(yµ). The natural
requirement for bulk causality is that B(yµ) must lie entirely within the fu-
ture bulk light cone of yµ. This is not the case in the geometry described by
metric (3.16), where the tubes run along lines of constant xµ in Schwarzschild
coordinates.

The appropriate choice to deal with issues of causality turns out to be to
promote the parameters of a uniform brane solution, rewritten in Eddington
Finkelstein coordinates, to slowly varying boundary functions uµ(x) and b(x).
In this way one gets the ansatz for the metric

ds2 = −2uµdx
µ (dr + r Aνdx

ν) + r2gµνdx
µdxν +

r2

(br)d
uµuνdx

µdxν (3.17)

where as before

g̃µν = e2φgµν(x), ũµ = eφuµ(x), b̃ = eφb(x), (3.18)

and gµν(x) is a weakly curved boundary metric. The reason for switching
to Eddington-Finkelstein coordinates, apart from making issues of regularity

2Examples of metrics of the form (3.16) have been discussed in [46, 47, 48].
3To be precise this would be strictly true only summing all orders in the fluid expansion.

Truncation at any finite order could lead to apparent violations of causality over length
scales of order 1/T .
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Figure 3.1: (a) Penrose diagram of the uniform black brane where the dashed
lines denote the future event horizons. (b) The shaded tube extending from
a local patches of uniform black brane on the boundary into the bulk, and
running along ingoing null geodesics, indicates the region of spacetime over
which the solution (3.17) is well approximated by a tube of the uniform black
brane. The two figures are taken from Ref. [34].

more transparent, is that for this choice tubes are chosen to run along ingoing
null geodesics and therefore B(yµ) lies entirely within the future bulk light
cone of the generic point yµ (fig. 3.1).

An important observation is that for gµν , uµ and b all constants the metrics
(3.16) and (3.17) reduce to equivalent - under a coordinate transformation -
descriptions of a uniform brane solution. On the contrary, when gµν , uµ and
b are functions of the boundaries coordinates xµ, the geometry described by
(3.16) and (3.17) are inequivalent and can differ qualitatively. Indeed, un-
der mild assumptions, the metric (3.17) presents a regular future horizon that
shields all of the boundary from all future singularities in this space.

To summarise the general picture, a given boundary patch corresponds to
an entire tube of width set by the scale of variation in the boundary. In the
Eddington-Finkelstein coordinates one has to patch together these tubes to
obtain a regular solution to Einstein’s equations and moreover this patching
can be done order by order in boundary derivatives, just as in fluid dynamics.
Therefore the metric (3.17) will be the first term in a systematic perturbative
expansion of a regular solution to Einstein’s equations. The perturbative ex-
pansion parameter is 1/bδx. The curvature scale in the metric will be assumed
to be of the same order as 1/δx.
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3.3 The perturbative expansion in gravity

The logic of the perturbative expansion of the metric has been described in
detail in [4]. Let us review the reasoning starting with the ansatz for the bulk
metric

GMN = G
(0)
MN +G

(1)
MNε+G

(2)
MNε

2 +O
(
ε3
)
, (3.19)

where ε is the parameter of the derivative expansion and G
(k)
MN is the correction

to the bulk metric at order k that is to be determined with the help of the
bulk Einstein equation. It will be shown that perturbative solutions to the
gravitation equation exist only when the velocity and temperature fields obey
certain equations of motion that will be determined in a perturbative expansion
order by order in ε

βi = β
(0)
i + ε β

(1)
i +O

(
ε2
)
, b = b(0) + ε b(1) +O

(
ε2
)
, (3.20)

where β
(m)
i and b(n) are all functions of ε xµ.

In order to give a precise meaning to the coordinates it is necessary to
adopt a choice of gauge. In [4] the “background field” gauge was adopted, i.e.

Grr = 0 , Grµ ∝ uµ , Tr
(
(G(0))−1G(n)

)
= 0 ∀ n > 0. (3.21)

A more convenient gauge choice was chosen in [5]

Grr = 0 , Grµ = uµ . (3.22)

The meaning of this choice was discussed in [9], where it was observed that,
under this gauge fixing, lines of constant xµ are ingoing null geodesics, with
the radial coordinate r being the affine parameter.

Having chosen a gauge, e. g. the second one, it is possible to substitute the
perturbative ansatzs for the metric (3.19) and for parameters (3.20) into the
bulk Einstein equations (5.65) and expand it order by order in ε. It is possible
to solve the perturbative equation recursively starting form the ansatz for the
order zero metric defined in the previous section. Let us suppose that we
have solved the perturbation theory to the (n − 1)th order, that is to have

determined G(m) for m ≤ n − 1, and have determined the functions β
(m)
i and

b(m) for m ≤ n− 2. The Einstein equation at order n that must be solved can
be written as

H

[
G(0)(β

(0)
i , b(0))

]
G(n)(xµ) = sn, (3.23)

where we indicated by H a linear differential operator of second order in the
in the variable r alone. An interesting feature of this operator is its ultralocal
nature in the field theory directions. This depends on the fact that G(n) is
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already of order εn, and every boundary derivative appears with an additional
power of ε. Indeed, it turns out that H is a differential operator only in the
variable r and is independent of xµ, that it is independent at order n of the
expansion and depends only on the values of β

(0)
i and b(0) at xµ. Hence it is

possible to solve eq. (3.23) point by point on the boundary. What changes
order by order is the source term sn that can be expressed as a local expression
of nth order in boundary derivatives of β

(0)
i and b(0), as well as of (n−k)th order

in β
(k)
i , b(k) for all k ≤ n− 1.

As observed in [9], it is convenient to organize the (d+1)(d+2)
2

equations in

(3.23) in two classes of equations: d(d+1)
2

equations determining the metric,
that we call dynamical equations, and a a second set of d equations which are
essentially constraint equations.

The constraint equations are those of first order in r derivatives and are
obtained by contracting the equations with the one-form dr

E
(c)
M = EMN ξN (3.24)

where for our considerations ξN = dr. Four of the five constraint equations,
those with a free index µ (that is with with legs along the boundary direc-
tion), have a simple interpretation: they are the equations of boundary energy
momentum conservation:

∇µT
µν

(n−1) = 0 , (3.25)

where T µν
(n−1) is the boundary stress tensor dual to the solution expanded up to

O (εn−1). Recalling that all G
(k)
MN are local functions of βi and b, it is clear that

T µν
(n−1) is also a local function (with at most n− 1 derivatives) that respects all

boundary symmetries.
The constraint equations can be used to determine b(n−1) and β

(n−1)
i , this

amounts to solving the equations of fluid dynamics at (n − 1)th order (3.25).
There is a non-uniqueness in these solutions given by the zero modes ob-
tained by linearizing the equations of stress energy conservation at zeroth
order. These may be absorbed into a redefinition of the β

(0)
i , b(0), and do not

correspond to a physical non-uniqueness.

The remaining constraints Err and Eµν are dynamical equations useful to
determine the correction that should be added to our initial metric to make it
a solution of Einstein equations. By exploiting the underlying symmetries of
the zeroth order solution, specifically the rotational symmetry in the spatial
sections on the boundary, SO(d − 1), it is possible to decouple the system
of equations into a set of first order differential operators. Performing this
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diagonalization of the system of equations one gets a formal solution of the
form:

G(n) = particular(sn) + homogeneous(H). (3.26)

At this point it is necessary to impose boundary conditions to determine a
solution uniquely. A possible choice is to require that the solution is normal-
izable such that the spacetime is asymptotically AdSd+1 and also to demand
regularity at all r 6= 0. In [4] it was proven that it is possible to require that
G(n) is appropriately normalizable at r = ∞ and non-singular at all nonzero
r, for a generic non-singular and normalizable source sn

4. Furthermore, if the
solution at order n − 1 is non-singular at all nonzero r, it is guaranteed to
produce a non-singular source at all nonzero r. This is particularly important
since implies that the non-singular sn can be inductively constructed.

3.4 Outline of the first order computation

Having described the recursive procedure for constructing a perturbative solu-
tion of Einstein equations (5.65), in this section we can give an outline of the
derivation of the metric at first order.

The zeroth order ansatz for the metric, G
(0)
MN , has been formulated in (3.17).

The equations that determine G
(1)
MN at xµ are ultralocal, consequently it is sen-

sible to solve the problem point by point. We can pick a point on the boundary
xµ = xµ

0 , which by exploiting the Killing symmetries of the background can be
chosen to be the origin. At xµ

0 we can use the local scaling symmetry to set

b(0) = 1 and pass to a local inertial frame so that β
(0)
i = 0.

Making these choices, the metric (3.17) can be expanded to the first order
in the neighbourhood of the origin

ds2(0) = 2dv dr − r2 f(r) dv2 + r2 dxi dx
i − 2 xµ ∂µβ

(0)
i dxi dr

− 2 xµ ∂µβ
(0)
i r2 (1− f(r)) dxi dv − d

xµ ∂µb
(0)

rd−2
dv2 . (3.27)

The metric (3.27) together with G
(0)
MN has a background part (the first three

terms) which is simply the metric of a uniform black brane, plus a correction
consisting of first derivatives some of which are known (the last four terms in

4These requirements do not yet completely specify the solution for G
(n)
MN , since H posses

a set of zero modes that satisfy both these requirements. A basis for these zero modes is ob-
tained by differentiating the d parameters class of solutions (3.8) with respect to parameters

βi and b. These zero modes correspond to infinitesimal shifts of β
(0)
1 and b(0) and therefore

may be absorbed by redefining these quantities [4].
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(3.27)) and the reminder of which are to be determined.

We now need to make an ansatz for the metric correction at O (ε), G
(1)
MN ,

which we wish to determine. As was pointed out in the previous section one can
exploit the SO(d − 1) spatial rotation symmetry at xµ

0 to decompose modes

into various representations of this symmetry. Modes of G
(1)
MN transforming

under different representations decouple from each other by symmetry. We
have the following decomposition into SO(d− 1) irreducible representations:

scalars: G(1)
vv , G

(1)
vr ,
∑

i

G
(1)
ii ,

vectors: G
(1)
vi ,

tensors: G
(1)
ij . (3.28)

Einstein’s equations can be solved sector by sector. In the scalar sector, one
finds that the constraint equations imply that

1

d− 1
∂iβ

(0)
i = ∂vb

(0) , (3.29)

while in the vector sector we have

∂ib
(0) = ∂vβ

(0)
i . (3.30)

These two equations are equations of energy momentum conservation.
The differential operators entering in the dynamical equations for the func-

tion F defining the terms G
(1)
MN are of the form

vector : Hd−1F =
d

dr

(
1

rd−1

d

dr
O
)

tensor : Hd(d+1)
2

F =
d

dr

(
rd+1 f(r)

d

dr
O
)

(3.31)

where the index of the operator H is the representation label of the SO(d− 1)
rotational symmetry. The scalar sector involves some mixing between different
fields and is slightly more involved. As expected the H operators are simple
differential operators in the radial variable alone (the form of the differential
operator remains invariant in the course of the perturbation expansion) and
can be inverted to find the function F once the source sn is specified.

Extending this procedure, the calculation can in principle be carried out to
any desired order in the ε expansion. Clearly it is necessary to compute at any
given order the source terms sn. In addition one always has to ensure that the
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lower order stress tensor conservation equations are satisfied. For instance, in
order for the source terms which appear in the determination of G

(2)
MN to be

ultra-local at our chosen boundary point xµ
0 , we have to ensure that the first

order fluid equations of motion are satisfied.

3.5 Outline of the second order computation

Once the procedure has been implemented at first order, it is then possible to
move on to find a solution to Einstein’s equation at the second order. Before
proceeding, it is necessary to pause for a moment to notice that the first order
computation was performed as a Taylor expansion in the neighbourhood of a
special point xµ that we chose as the origin. This was enough to obtain G

(1)
MN ,

while in order to solve the second order problem it is necessary to ensure oneself
that the first order constraint is solved to the second order in Taylor expansion
of the fields b(0) and β

(0)
i about the xµ that we chose. Therefore the proper

requirement is
∂λ∂µT

µν
(0)(x

α) = 0 , (3.32)

this is equivalent to requiring that T µν
(0) satisfies the conservation equation to

the order ε2 before attempting to find the second order stress tensor. In gen-
eral the right procedure would have been to satisfy the conservation equation
globally, however the ultralocality of the set-up allows one to have less strin-
gent requirements, that amounting to checking that conservation holds only
at the order at which we are working.5

Once we have checked the requirement (3.32), it is possible to reexpress
Einstein equations schematically as

H

[
G(0)(β

(0)
i , b(0))

]
G(2)(xµ) = sa + sb, (3.33)

where for convenience the source term was written as a sum of the pieces.
sa is a local functional of β

(0)
i and b(0) up to the second order in field theory

derivatives. Terms entering in sa originated from two field theory derivatives
acting on the metric G

(0)
MN or one field theory derivative acting on G

(1)
MN . sb

arises from first order derivatives of the velocity and temperature corrections
β
(1)
i and b(1). The second part of the source term is new with respect to the

first order computation.

5A good way to rephrase this requirement is to say that before proceed to the second
order expansion it is necessary to control that the background defined with the first order
calculation solve the first order fluid dynamics.
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Having defined the new source terms, the second order step of the pertur-
bative calculation proceeds similarly to the first order computation6.

3.6 Weyl covariance of the metric

An important aspect of the bulk metric dual to fluid dynamics is that it has
to transform covariantly under the Weyl transformation [9]. Under the gauge
choice (3.22) the bulk metric can be cast in the general form

ds2 = −2uµ(x)dx
µ(dr + Vν(r, x)dx

ν) +Gµν(r, x)dx
µdxν (3.34)

where Gµν is transverse to the velocity field uµ, i.e.,

uµGµν = 0. (3.35)

All the Greek indices are raised and lowered using the boundary metric gµν
defined by

gµν = lim
r→∞

r−2
[
Gµν − u(µVν)

]
(3.36)

and uµ is the unit time-like velocity field in the boundary, i.e., gµνuµuν = −1.
Let us consider a bulk diffeomorphism of the form r = e−φr̃ supplemented

by a scaling in the temperature b = eφb̃, where φ = φ(x) is defined as a function
of the boundary co-ordinates. Components of the metric scale as

uµ = eφũµ, (3.37)

Vµ = e−φ
[
Ṽµ + r̃ ∂µφ

]
, (3.38)

Gµν = G̃µν and (G−1)µν = (G̃−1)µν (3.39)

dr + Vνdx
ν = e−φ(dr̃ + Ṽνdx

ν). (3.40)

Therefore we conclude that consistency demands that Vµ shall transforms
like a connection under a Weyl transformation while Gµν remains invariant.
These properties of the metric components yield a prescription for constructing
these two objects as appropriate sums of objects with the right transformation
properties under Weyl scaling. Therfore Gµν will be a linear sum of Weyl
invariant forms, while Vµ− rAµ will be a linear sum of Weyl-covariant vectors
with weight unity. The form of the coefficients is not determined by symmetry
requirements and have to be fixed by direct calculation.

6A detailed derivation of the results for d = 4, 5 at first and second order can be found
in the original work [4]
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3.7 The metric dual to hydrodynamics

Following the procedure described in the previous sections up to the second
order, one find the metric dual to the hydrodynamics on the boundary. In this
section we report the results of the calculation that yield, up to second order,
a map identifying fluid solutions in the boundary field theory with black brane
solutions in the bulk geometry.

The metric can be cast in different forms, using different conventions. For
the sake of completeness we give in the following a brief overview of some of
them.

A very neat and explicit form is

ds2 =− 2uµdx
µ (dr + r Aνdx

ν) +
[
r2gµν + u(µSν)λu

λ − ωµ
λωλν

]
dxµdxν

+
1

(br)d
(r2 − 1

2
ωαβω

αβ)uµuνdx
µdxν

+ 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
dxµdxν

− 2(br)2
[
K1(br)

σαβσ
αβ

d− 1
Pµν +K2(br)

uµuν

(br)d
σαβσ

αβ

2(d− 1)

−L(br)

(br)d
u(µP

λ
ν)Dασ

α
λ

]
dxµdxν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ

]
dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]
dxµdxν , (3.41)

Where the functions appearing in the metric are defined by

F (br) ≡
∫ ∞

br

yd−1 − 1

y(yd − 1)
dy, (3.42)

H1(br) ≡
∫ ∞

br

yd−2 − 1

y(yd − 1)
dy, (3.43)

H2(br) ≡
∫ ∞

br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−3dy
[
1 + (d− 1)yF (y) + 2y2F ′(y)

]
(3.44)

=
1

2
F (br)2 −

∫ ∞

br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−2 − 1

y(yd − 1)
dy, (3.45)

K1(br) ≡
∫ ∞

br

dξ

ξ2

∫ ∞

ξ

dy y2F ′(y)2, (3.46)
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K2(br) ≡
∫ ∞

br

dξ

ξ2
[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+
(
2(d− 1)ξd − (d− 2)

) ∫ ∞

ξ

dy y2F ′(y)2
]
, (3.47)

L(br) ≡
∫ ∞

br

ξd−1dξ

∫ ∞

ξ

dy
y − 1

y3(yd − 1)
. (3.48)

The integral functions have the following asymptotics [5]:

F (br) ≈ 1

br
− 1

d(br)d
+

1

(d+ 1)(br)d+1
+

#

(br)2d
+ . . . , (3.49)

H1(br) ≈
1

2(br)2
− 1

d(br)d
+

1

(d+ 2)(br)d+2
+

#

(br)2d
+ . . . , (3.50)

H2(br) ≈
1

2(br)2
− 1

d(br)d

∫ ∞

1

yd−2 − 1

y(yd − 1)
dy, (3.51)

K1(br) ≈
1

2(br)2
− 2

d(d+ 1)(br)d+1

+
2

(d+ 1)(d+ 2)(br)d+2
+

#

(br)2d
+ . . . , (3.52)

K2(br) ≈ −(d− 3)(d− 1)

2(d+ 1)(br)2
+

2(d− 2)

d(br)

+
1

d(2d− 1)(br)d
+

#

(br)d+2
+ . . . , (3.53)

L(br) ≈ − 1

d(d+ 2)(br)2
+

1

(d+ 1)(br)

− 1

(d+ 1)(2d+ 1)(br)d+1

− 1

2(d+ 1)(d+ 2)(br)d+2
+

#

(br)2d
+ . . . . (3.54)

The metric (3.41) can be formulated in an equivalent form using the equal-
ity

Sµλu
λ = − 1

d− 2
Dλω

λ
µ +

1

d− 2
Dλσ

λ
µ −

R
2(d− 1)(d− 2)

uµ + . . . . (3.55)
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The resulting expression for the metric is

ds2 = −2uµdx
µ (dr + r Aνdx

ν) + r2gµνdx
µdxν

−
[
ωµ

λωλν +
1

d− 2
Dλω

λ
(µuν) −

1

d− 2
Dλσ

λ
(µuν)

+
R

(d− 1)(d− 2)
uµuν

]
dxµdxν +

1

(br)d
(r2 − 1

2
ωαβω

αβ)uµuνdx
µdxν

+ 2(br)2F (br)

[
1

b
σµν + F (br)σµ

λσλν

]
dxµdxν − 2(br)2

[
K1(br)

σαβσ
αβ

d− 1
Pµν

+K2(br)
uµuν

(br)d
σαβσ

αβ

2(d− 1)
− L(br)

(br)d
u(µP

λ
ν)Dασ

α
λ

]
dxµdxν

− 2(br)2H1(br)

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ

]
dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν − σµ
λωλν

]
dxµdxν . (3.56)

We will instead use the much more compact form (3.34) that renders ex-
plicit the Weyl symmetries, adopting the Weyl covariant formalism - with a
slight redefinition of the integral functions - that is

ds2 = GMN dXM dXN

= −2 uµ(x) dx
µ (dr + Vν(r, x) dx

ν) +Gµν(r, x) dx
µ dxν , (3.57)

where the fields Vµ and Gµν are functions of r and xµ which admit an expansion
in the boundary derivatives

Vµ = rAµ − Sµλ u
λ − v1(b r)P

ν
µ Dλσ

λ
ν + uµ

[
1

2
r2 f(b r)

+
1

4
(1− f(b r)) ωαβ ω

αβ + v2(b r)
σαβ σ

αβ

d− 1

]
, (3.58)

Gµν = r2 Pµν − ω λ
µ ωλν + 2 (b r)2 g1(b r)

[
1

b
σµν + g1(b r) σ

λ
µ σλν

]

− g2(b r)
σαβ σ

αβ

d− 1
Pµν − g3(b r)

[
T1µν +

1

2
T3µν + 2T2µν

]

+ g4(b r) [T1µν + T4µν ] . (3.59)

The tensor Gµν is transverse, since it is built out of operators that are orthog-
onal to the velocity, and it can be inverted via the relation (G−1)

µα
Gαν = P µ

ν .
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The new integral functions are defined in terms of the old ones as

g1(br) = F (br), g2(br) = 2 (rb)2K1(br),

g3(br) = (br)2H1(br), g4(br) = (br)2H2(br),

v1(br) =
2

(br)d−2
L(br), v2(br) =

1

2 (br)d−2
K2(br). (3.60)

Finally, we recall the following definitions (that are reported in table 2.1)

T
µν
1 = 2 uαDασµν ,

T
µν
2 = Cµανβ u

α uβ ,

T
µν
3 = 4 σα〈µ σν〉

α ,

T
µν
4 = 2 σα〈µ ων〉

α ,

T
µν
5 = ωα〈µ ων〉

α . (3.61)

3.8 The boundary stress tensor

The dual stress tensor corresponding to the metric at the second order pre-
sented in the previous section can be determined quite straightforwardly using
the holographic prescription in [49, 50]. To perform the computation one has
to define a regularisation of the asymptotically AdSd+1 spacetime at some cut-
off hypersurface r = Λc and consider the induced metric on this surface, which
up to a scale factor involving Λc is our boundary metric gµν . The holographic
stress tensor is given in terms of the extrinsic curvature Kµν and metric data
of this cut-off hypersurface

Kµν = gµρ ∇ρnν (3.62)

where nµ is the outward normal to the surface. Now, for asymptotically AdS5

spacetimes the prescription in [50] is

T µν = lim
Λc→∞

Λd−2
c

16πG
(d+1)
N

[
Kµν −K gµν − (d− 1) gµν − 1

d− 2

(
Rµν − 1

2
Rgµν

)]
.

(3.63)
Implementing this procedure, one is able to determine the dual stress tensor

corresponding to the metric in the previous subsection

Tµν = p (gµν + duµuν)− 2ησµν

− 2ητω
[
uλDλσµν + ωµ

λσλν + ων
λσµλ

]

+ 2ηb

[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d− 1
Pµν + Cµανβu

αuβ

]
(3.64)

(3.65)
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where

b =
d

4πT
, p =

1

16πGAdSbd
, (3.66)

η =
1

16πGAdSbd−1
, τω = b

∫ ∞

1

yd−2 − 1

y(yd − 1)
dy. (3.67)

Substituting the standard entropy density, one gets

η

s
=

1

4π
, (3.68)

the celebrated ratio of shear viscosity to entropy density [28].

3.9 Horizon location for the dual metric

A last point to assess is the regularity of the horizon of the black brane metrics
that we have derived7. The event horizon H+ of a given spacetime is defined
as the boundary of the past lightcone of future null infinity. This is a for-
mal statement of the physical fact that the spacetime events inside the event
horizon of the black hole cannot communicate to the asymptotic region. The
future null infinity I+ is the set of points which are approached asymptotically
by null rays which can escape to infinity and it is time-like for asymptotically
AdS spacetimes. Since H+ is the boundary of a causal set, it is a null surface
which is, in particular, generated by null geodesics in the spacetime.

The event horizon of the spacetimes dual to the hydrodynamics on the
boundary is the unique null hypersurface that tends, at late times, to the known
event horizons of the late time limit of our solutions. As seen above, the metric
we found can written, in the gauge grr = 0, grµ = −uµ, in the form (3.57) that
makes explicit the invariance under boundary Weyl transformations.

Let us suppose that the event horizon is given by the equation

S ≡ r − r
H
(x) = 0, (3.69)

where r
H

is the radial position of the horizon. The vector ξA normal to the
horizon is defined by the one-form

dS = ξAdy
A = dr − ∂µrHdx

µ , (3.70)

that can be written in a manifestly Weyl covariant form

ξAdy
A = dS = (dr + Vλdx

λ)− κµdx
µ . (3.71)

7In this section we will follow the derivation proposed in [5].
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Also its dual normal vector can be written in Weyl covariant form as

ξA∂A = GAB∂AS∂B = nµ(∂µ − Vµ∂r)− uµκµ∂r

= nµ [∂µ + ∂µrH
∂r] = nµ [∂µ]r=r

H

. (3.72)

In the above expression we introduced two new Weyl-covariant vectors κµ =
e−φκ̃µ and nµ = e−φñµ defined via the expressions

κµ ≡ ∂µrH
+ VµH

nµ ≡ uµ − (G−1
H )µνκν .

(3.73)

The subscript H indicates that the functions are to be evaluated at the event-
horizon.

The induced metric on the horizon Hµν(x) is defined as

ds2H =
[
GAB(y)dy

AdyB
]
r=r

H
(x)

≡ Hµν(x)dx
µdxν , (3.74)

where the boundary coordinates xµ have been used as the coordinates on the
event horizon. Therefore we have

Hµν = Gµν − u(µκν) (3.75)

and the null-condition on the horizon, [GAB]Hξ
AξB = Hµνn

µnν = 0 corre-
sponds to

(G−1)µνκµκν = 2uµκµ . (3.76)

Now it is possible to construct a Weyl-covariant derivative expansion8 for
r
H
, i.e.

r
H
=

1

b
+ b
(
h1σαβσ

αβ + h2ωαβω
αβ + h3R

)
+ . . .

= r(0)
H

+ r(2)
H

+ . . . (3.77)

8As noted in [5] since there is no first order Weyl-covariant scalar, there are no corrections
to r

H
at the first order in the derivative expansion. A detailed classification of the possible

Weyl-covariant tensors is contained in [9].
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Computing κµ one gets

κµ = Dµb
−1 − Sµλu

λ − 2LHP
ν
µDλσ

λ
ν

+ uµ

[
1

4
ωαβω

αβ +
K2H

2(d− 1)
σαβσ

αβ +
d

2b
r(2)
H

]
+ . . .

nµ = uµ − b2P µν
[
Dνb

−1 − Sνλu
λ − 2LHDλσ

λ
ν

]

√
detd−1GH =

1

bd−1

[
1 + (d− 1)br(2)

H
+

b2

2
ωαβω

αβ − b2K1Hσαβσ
αβ

]

bd−1nµ
√

detd−1GH =

[
1 + (d− 1)br(2)

H
+

b2

2
ωαβω

αβ − b2K1Hσαβσ
αβ

]
uµ

− b2P µν
[
Dνb

−1 − Sνλu
λ − 2LHDλσ

λ
ν

]

(3.78)

Now substituting the expression for κµ in (3.76), and after some manipu-
lations, one finds the position of the event horizon as

r
H
=

1

b
+ b
(
h1σαβσ

αβ + h2ωαβω
αβ + h3R

)
+ . . . (3.79)

where

h1 =
2(d2 + d− 4)

d2(d− 1)(d− 2)
− K2H

d(d− 1)

h2 = − d+ 2

2d(d− 2)
and h3 = − 1

d(d− 1)(d− 2)

(3.80)

and K2H is

K2H =

∫ ∞

1

dξ

ξ2
[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+2
(
(d− 1)ξd − (d− 2)

) ∫ ∞

ξ

dy y2F ′(y)2
]
. (3.81)

3.10 Boundary entropy current

Dissipative fluids are characterized by entropy production. On the other side of
the duality, for black holes at equilibrium there is a natural definition of entropy
associated with the area of the event horizon which is the usual Bekenstein-
Hawking entropy of a back hole. Unfortunately, in general, when we consider
deviations from equilibrium, there is no unambiguous notion of entropy. In-
deed, the substantial requirement for the entropy current is to satisfy the
second law

∇µJ
µ
S ≥ 0 , (3.82)
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and it is possible, in principle, to adopt any local function having positive
divergence to characterize the irreversibility of the fluid dynamical flow. The
only constraint is that the candidate Boltzmann H-function must agree with
the thermodynamic notion of entropy in global equilibrium. However since in
the case of stationary black holes, as discussed in the first chapter, the area of
the event horizon is associated the entropy of the dual field theory, it seems
quite natural to associate the entropy of the field theory with the area of the
event horizon9.

In the previous section the geometry of a regular future event horizon
H+ for the spacetimes dual to boundary fluid dynamics was derived. It is
possible, starting from the entropy associated to the area of this horizon, to
define an entropy current directly for the field theory in the boundary. To this
end, consider spatial sections of the event horizon, which are co-dimension
two surfaces in the spacetime, which we label as H+

v . We are working in
a coordinate chart where the coordinates αi for i = {1, · · ·d − 1} define a
chart on the spatial section and we use as an affine parameter, the boundary
coordinate v, to propagate these surfaces forward along the horizon generator
ξA. On the surface H+

v it is natural to define a (d−1)-form whose integral gives
the area of the spatial section. The entropy of the black hole will be - assuming
that the null energy condition satisfied - proportional to this area. Using the
Bekenstein-Hawking formula, in terms of the area of the event horizon, the
entropy density is found to be

s =
1

4G
(d+1)
N

1

bd−1
, b =

d

4π T
. (3.83)

To get the entropy current of the field theory, one has to pull the entropy
of the black hole back to the boundary. In [42] the authors proposed that one
pull-back the area form on the horizon using radially ingoing null geodesics,
which provide an isomorphism between the spatial sections on the boundary
and the corresponding H+

v onH+. The general procedure detailed in [42] yields

9In [34] it has been noticed that this point is quite delicate. Indeed, a key feature of
the event horizon is its “teleological nature”, i.e., the fact that the entire future evolution
of the spacetime is needed in order to determine its location. This may clash with the
attempts to determine the horizon perturbatively. Associating an entropy current with the
event horizon may lead to a non-local and acausal definition of entropy [51]. Moreover in
the case of the conformal soliton flow [52], a simple hydrodynamic flow on R

d−1,1, it was
shown that the event horizon area does not capture the entropy of the dual field theory
[53]. Therefore under certain one should use the area of apparent horizons (more precisely
dynamical horizons), to define the entropy current.
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the boundary entropy current

Jµ
S =

√
det

(n)
d−1H

4GAdS

nµ (3.84)

=

√
det

(n)
d−1H

4GAdS

[
uµ − (G−1

H )µνκν

]
. (3.85)

To define det
(n)
d−1H one has to split the boundary co-ordinates xµ into (v, xi).

After this split, the components of the nµ are further split into (nv, ni). We
denote the d − 1 dimensional induced metric on the constant v submanifolds
of the event horizon by hij. Finally, one can define

√
det

(n)
d−1H =

√
detd−1h

nv
√−detg

(3.86)

where gµν is the boundary metric and the expression on the right hand side
has been assumed to be pulled back from the horizon to the boundary via the
ingoing null-geodesics.

Following this procedure one finds that the entropy current takes the form:

Jµ
S = s uµ + s b2 uµ

(
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3R

)

+ s b2
(
B1Dλσ

µλ +B2 Dλω
µλ
)
+ · · · (3.87)

where s is the entropy density and A1,2,3, B1,2 are arbitrary numerical co-
efficients. Requiring positivity of the divergence one finds that two of the
coefficients must solve the following linear constraint

B1 + 2A3 = 0 . (3.88)

An interesting result is that the entropy current in d dimensions is a Weyl
covariant vector of weight d. This is consequence of the fact that the entropy
density scales like the inverse spatial volume, since the total entropy is dimen-
sionless, and the velocity field scales according to (3.40). Using the geometric
data of the space-time described by the metric (3.57) the coefficients are fixed
to be

A1 =
2

d2
(d+ 2)−

(
1

2
g2(1) +

2

d
v2(1)

)
, A2 = − 1

2 d
,

B1 = −2A3 =
2

d (d− 2)
, B2 =

1

d− 2
. (3.89)
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We conclude this section by observing that, writing the divergence of the grav-
itational entropy current as

DµJ
µ
S =

2 η

T

(
σµν +

1

2

[
d

4π T
(1 + A1 d)− τπ

]
uαDασµν

)2

+ · · · , (3.90)

which is accurate up to third order in the derivative expansion, it is possible to
check that it satisfies the requirement of non-negative divergence at this order.

3.11 The gravity solution dual to hydrodynam-

ics in the non-relativistic regime

In chapter 2 we discussed the non-relativistic scaling limit ofthe hydrodynamic
equations. In particular it was shown that, under this scaling, the incompress-
ible non-relativistic Navier-Stokes equations are equivalent to the relativistic
equations of fluid dynamics dual to gravity up to O(ǫ3). In this section we
will report some results about the gravitational dual to a solution of the non-
relativistic Navier-Stokes equations constructed as a small fluctuation about
a black brane background that solves all of Einstein’s equations up to order
O(ǫ3) [4].

In computing the bulk metric up to O(ǫ3), it turns out that only contribu-
tions from the zeroth order and the first order in the derivative expansion of
the gravitational solutions of are relevant. Keeping in mind the discussion in
section 2.7, the metric up to first order in derivatives is

ds2 = ds20 + ds21 (3.91)

where

ds20 = −2uµdx
µdr +

1

bdrd−2
uµuνdx

µdxν + r2gµνdx
µdxν

ds21 = −2ruν

(
uα∇̄α

)
uµdx

µdxν

+
2

d− 1
r
(
∇̄αu

α
)
uµuνdx

µdxν + 2br2F (br) σµνdx
µdxν

and σµν , b, and T can be expanded as

σµν =
1

2

(
∇̄µuν + ∇̄νuµ

)
(3.92)

+
1

2

(
uν

(
uα∇̄α

)
uµ + uµ

(
uα∇̄α

)
uν

)
− 1

d− 1

(
∇̄αu

α
)
(uµuν + gµν)

b =
d

4πT
= b0 + δb (3.93)

T = T0 + δT. (3.94)
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∇̄ denotes the covariant derivative with respect to the full boundary metric
Gµν which is equal to a background gµν plus perturbation Hµν , while T0 is the
temperature of the background black brane.

Contributions of the metric in which the derivative ∇̄ appears can be re-
written as covariant derivatives of the d− 1 velocity vi and the metric pertur-
bation Ai = H0i with respect to the spatial part of the background metric gij,
i.e.

∇̄iuj = ∇ivj +O(ǫ4)

∇̄iu0 + ∇̄0ui = ∂0(vi + Ai)−
1

2
∂ih00 −

1

2
∂i(vjv

j)− vjFij +O(ǫ4)

∇̄µu
µ = ∇jv

j +O(ǫ4)

uµ∇̄µu0 = O(ǫ4) (3.95)

uµ∇̄µui = ∂0(vi + Ai)−
1

2
∂ih00 + (vj∇j)vi − vjFij +O(ǫ4)

Fij = ∂iAj − ∂jAi.

Now ∇ is the covariant derivative with respect to the background metric gij.
The raising and lowering of the i, j indices is to be performed using the metric
gij. To simplify the expression of σµν in (3.96) the constraint ∇iv

i = 0 has
been used.

Substituting in the metric, the first order part takes the form

ds21 = b0r
2F (b0r) (∇ivj +∇jvi) dx

idxj − 2b0r
2F (b0r)v

j (∇ivj +∇jvi) dt dx
i

+ 2r

(
∂0(vi + Ai)−

1

2
∂ih00 − vjFij + (vj∇j)vi

)
dt dxi +O(ǫ4)

(3.96)

where the first term is of order ǫ2 and the last two terms are of order ǫ3. The
constraint equation ∇iv

i = 0, was used to cancel out contributions from the
scalar sector.

Also the zeroth order metric can be expanded in powers of ǫ. One finds
that to solve Einstein equation up to order ǫ3, it is sufficient to expand the
zeroth order metric up to order ǫ2 in the fluctuations. The result is

ds20 =
1

bd0r
d−2

dt2 + r2
(
−dt2 + gijdx

idxj
)
+ 2dt dr

− 2

bd0r
d−2

(Ai + vi) dt dx
i − 2 (Ai + vi) dx

idr

+
1

bd+1
0 rd−2

(
−d δb+ vjv

j − h00

)
dt2

+
1

rd−2
(Ai + vi) (Aj + vj) dx

idxj −
(
−vjv

j + h00

)
dt dr

(3.97)
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where the first line is of order ǫ0, the second line is of order ǫ1 and the third
and the fourth are of order ǫ2.

It is possible to show by a direct calculation that the proposed metric
solves Einsteins equations up to the third order in ǫ, provided that the velocity
and temperature fields above obey the incompressible Navier-Stokes equations
(2.78) [4].

An important observation arises from the equation that determines δT (and
hence δb)

∇2T

T0
= −∇iv

j∇jv
i − vivjRij +∇i

[(
−νRi

j + F i
j

)
vj
]
+

1

2
∇2h00 − ∂0(∇.A) .

δT is a spatially nonlocal but temporally ultralocal functional of the velocity
fields vi. Therefore, even though the bulk metric at xµ is determined locally as
a function of temperatures and velocities at xµ, it is not determined locally as
a function of velocities at xµ. This nonlocality is a consequence of the infinite
speed of sound in the scaling limit.
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Chapter 4

Matter and Gravity

In this chapter we will discuss some techniques and issues that are relevant to
the study of black holes and singular hypersurfaces in gravity.

In particular we will start by reviewing various possible energy conditions
that enter in black holes physics [54, 55]. Then we discuss the issue of the
violation of the loosest among these condition, the null energy condition, and
its physical consequences [56, 57, 58].

Later on we will introduce some geometric notions useful in the description
of hypersurfaces and in particular the extrinsic curvature. These concepts will
be used in applying Israel’s seminal work on singular hypersurfaces [11] to the
configuration that we will present in the next chapter.

4.1 Energy conditions

In general relativity, an energy condition is one of various alternative conditions
which can be applied to the matter content to define some of its properties.
Since almost every spacetime is a possible solution to Einstein’s equations
for some particular choice of energy-momentum tensor Tµν , it is important to
understand what general restrictions can hold on the energy-momentum of a
physical system and which are their implications. Indeed, energy conditions
play a critical role in the study of black holes and cosmological singularities,
entering in important theorems such as the no hair theorem and the laws of
black hole thermodynamics [54, 55]. Moreover, even though a violation of an
energy condition does not necessarily imply a pathology in a physical system,
the violation of the null energy condition has been related to the insurgence
of instabilities and superluminal propagation (one can see e.g. [56, 57, 58]).

Let us start with the weak energy condition.
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Weak energy condition: The energy-momentum tensor at each point p
on a manifold M, p ∈ M, obeys the inequality

Tµνw
µwν ≥ 0 , (4.1)

for any timelike vector w in the tangent space at p, w ∈ Tp. By continuity this
will also be true for any null vector w ∈ Tp.

The weak energy condition is equivalent to the statement that the energy
density of any matter distribution, as measured by any observer in spacetime,
must be nonnegative. Indeed, for an observer whose world line at p has unit
tangent V , the local energy density is TµνV

µV ν .

Following [54], we will explore more in depth the meaning of this assump-
tion using the fact that it is possible to cast the 4-dimensional stress tensor Tµν

in four canonical forms, with respect to an orthonormal basis {e0, e1, e2, e3}.

Type I T µν =




ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3


 (4.2)

In this case, the stress tensor has a unique timelike eigenvector (unless ρ = −pi,
(i = 1, 2, 3)). ρ is the energy-density measured by an observer whose world
line has unit tangent vector e0 at p, while the three eigenvectors pα are the
pressures in the three spacelike direction spanned by ei (i = 1, 2, 3)1. The
energy-momentum tensor can be cast in this form for fields with non-zero rest
mass and for some zero rest mass fields, except those of the Type II.

Type II T µν =




ν + κ ν 0 0
ν ν − κ 0 0
0 0 p1 0
0 0 0 p2


 ν = ±1 (4.3)

In this case, the stress tensor has a double null eigenvector (e0 + e1). The
stress tensor has this form in the case of radiation traveling in the direction
e0 + e1. In this case p1, p2 and κ are zero.

1As discussed in chapter 2, if the stress tensor is that of a perfect fluid, then the pressures
in the spacelike directions are equal p1 = p2 = p3 = p.
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Type III T µν =




ν 0 0 0
0 −ν 1 1
0 1 −ν 0
0 1 0 p


 (4.4)

The stress tensor of this type has a triple null eigenvector (e0 + e1). Actually
there is no observed field of this kind.

Type IV T µν =




0 ν 0 0
ν −κ 0 0
0 0 p1 0
0 0 0 p2


 κ2 < 4ν2 (4.5)

This stress tensor corresponds to the case in which there is no timelike or null
eigenvector. No field of this type has been observed.

The week energy condition holds for type I under conditions

ρ ≥ 0 ρ+ pi ≥ 0 for i = 1, 2, 3 ; (4.6)

and for type II if

p1 ≥ 0 , p2 ≥ 0 , κ ≥ 0 , ν = +1 ; (4.7)

while it does not hold for type III and IV.

Dominant energy condition (A): The energy-momentum tensor at
each p ∈ M, obeys the inequality

Tµνw
µwν ≥ 0 , (4.8)

for any future directed timelike vector w ∈ Tp, and −T µ
ν w

ν is a future directed
non-spacelike vector.

The dominant energy condition embodies the notion that matter should
flow along timelike or null worldlines. It may also be interpreted stating that
to any observer the local energy density should appear nonnegative and the
local energy flow should be non-spacelike. It is possible to restate the domi-
nant energy condition as:

Dominant energy condition (B): In any orthonormal basis the energy
dominates the other components of the stress tensor

T 00 ≥ |T µν | for any (µ, ν) . (4.9)
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This condition holds for type I if

ρ ≥ 0 − ρ ≤ pi ≤ ρ for i = 1, 2, 3 ; (4.10)

while it holds for type II under the conditions

ν = +1 , κ ≥ 0 , 0 ≤ p1 ≤ κ for i = 1, 2 ; (4.11)

and again it does not hold for type III and IV. Therefore the dominant energy
condition, in addition to requirement of the weak energy condition, states that
the pressure should not exceed the energy density.

Strong energy condition: The energy-momentum tensor at each p ∈ M,
obeys the inequality (

Tµν −
1

2
Tgµν

)
wµwν ≥ 0 , (4.12)

for any future directed normailsed timelike vector w ∈ Tp.

Since the Einstein equation implies

Tµν −
1

2
Tgµν =

1

8π
Rµν (4.13)

the strong energy condition is a statement about the Ricci tensor.
The strong energy condition holds in type I for

ρ+

3∑

i=1

pi ≥ 0 , ρ+ pi ≥ 0 for i = 1, 2, 3 , (4.14)

and for Type II if

ν = +1, κ ≥ 0, p1 ≥ 0, p2 ≥ 0 . (4.15)

It is useful to notice that this condition does not imply the weak one.

In presence of a cosmological constant term, the strong energy condition is
known as the null convergence condition. In this case the statement is simply
modified to (

Tµν −
1

2
Tgµν +

1

8π
Λgµν

)
wµwν ≥ 0 . (4.16)
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The conditions for type one now are

ρ+

3∑

i=1

pi −
1

4π
Λ ≥ 0 , ρ+ pi ≥ 0 for i = 1, 2, 3 , (4.17)

and for Type II read

ν = +1, κ ≥ 0, p1 ≥ 0, p2 ≥ 0, p1 + p2 −
1

4π
Λ ≥ 0 . (4.18)

The weakest requirements on the stress tensor are formulated in the null
energy condition.

Null energy condition (NEC): The energy-momentum tensor at each
p ∈ M, obeys the inequality

Tµνk
µkν ≥ 0 , (4.19)

for any future directed null vector k ∈ Tp.

The null energy condition holds for type I under the condition

ρ+ pi ≥ 0 for i = 1, 2, 3 , (4.20)

and for type II if

ν = +1, ν + κ+ pi ≥ 0 i = 1, 2 . (4.21)

It is easy to convince oneself that the null energy condition is implied
by both strong and weak conditions, while the weak one is implied by the
dominant energy condition. Relations among different energy conditions are
summarised in the following diagram:

Strong E.C.

Dominant E.C. =⇒ Weak E.C.




 =⇒ Null E.C.

In table 4.1 we summarise energy conditions and their associated con-
straints on type I stress tensors. The discussion above - that we carried on in
4 dimensions - can be easily generalised to higher dimensional spaces.
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Name Statement Conditions for Type I

Weak Tµνw
µwν ≥ 0 ρ ≥ 0, ρ+ pi ≥ 0

Dominant −T µ
ν w

ν future directed ρ ≥ 0, |ρ| ≥ pi
Strong

(
Tµν − 1

2
Tgµν

)
wµwν ≥ 0 ρ+

∑3
i=1 pi ≥ 0, ρ+ pi ≥ 0

Null Tµνk
µkν ≥ 0 ρ+ pi ≥ 0

Table 4.1: Energy conditions.

4.2 Violation of the null energy condition

Energy conditions are typically fulfilled by classical fields. However it is well
known that they can be violated by quantized matter fields. The most com-
mon example is the Casimir vacuum energy between two conduction plates
separated by a distance δ

ρ = − π2

720

~

δ4
. (4.22)

In this kind of situation ione usually formulates an averaged version of
the energy conditions. Indeed, for each of the energy conditions listed in the
previous section it is possible to formulate a corresponding averaged version.
Average energy condition requirements of non-negativity must hold only on
average along the flowlines of the appropriate vector fields. For example the
averaged null energy condition states that the integral along a null geodesic γ
of Tµνk

µkν must be non-negative

∫

γ

Tµνk
µkνdλ ≥ 0 . (4.23)

This condition holds for noninteracting scalar and electromagnetic fields in
arbitrary quantum states; this is true even though Tµνk

µkν may be locally
negative.

Even though, in some cases energy conditions are violated (e.g. the strong
energy condition may be violated in some inflation scenarios), it is generally
believed that any well behaved physical systems should respect at least the
null energy condition. In various settings it has been been shown that the
violation of the null energy condition results in the insurgence of instabilities
in the system sourcing Tµν [56, 57].
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For example, in [57] the authors showed that classical solutions of both
minimally and non-minimally coupled scalar-gauge models which violate the
null energy condition are unstable. Moreover it was also proven that perfect
fluids which violate the NEC are unstable. Finally quantum states in which
the expectation of the energy-momentum tensor violates the NEC cannot be
the ground state, including models with fermions. On the basis of these re-
sults, it seems that physically interesting cases of violation of the null energy
condition are likely to be ephemeral.

In [58] the authors studied systems of derivatively coupled scalar fields with
coordinate dependent condensates, without taking into account gravitational
back-reactions. In this setting it was suggested that a violation of the null
energy condition does not strictly imply instabilities - such as ghosts or imag-
inary frequencies - in the system. Indeed, it was proven that there may exist
an acceptable effective field theory with a positive definite Hamiltonian for
quadratic perturbations around a background whose energy momentum vio-
lates the null energy condition. It turns out that a necessary feature of such
a model is the anisotropy of the background and the presence of superlumi-
nal modes. More generally it was suggested that for systems that are either
isotropic or do not feature superluminality, a violation of the null energy con-
dition always implies an unescapable instability. In the next chapter we will be
interested in two nonisotropic backgrounds which both violate the (averaged)
null energy condition on a hypersurface.

4.3 Some notions on hypersurfaces

Let us introduce some notation and some concepts related to the study of
hypersurfaces in General Relativity [59]. We will introduce concepts in four
dimensions. These can be readily generalised to higher dimensions.

Consider a curve parametrised by a parameter τ on a four-dimensional
Riemannian manifold M of class C4. The covariant derivative of a smooth
vector function Aµ defined on this curve will be denoted (we adopt the notation
of [33]) as:

DAµ(τ)

Dτ
=

dAµ

dτ
+ AλΓµ

λν

dxν

dτ
. (4.24)

If Aµ(u, v) is defined on a two-space xµ = xµ(u, v), the standard definition
of the Riemann tensor spells out

[
D

Dv
,
D

Du

]
Aµ = Rµ

νλκA
ν ∂x

λ

∂u

∂xκ

∂v
, (4.25)
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Now, let us consider a smooth hypersurface Σ in M with unit normal

n · n = ε(n) =

{
+1 spacelike n
−1 timelike n

. (4.26)

An infinitesimal displacement on the hypersurface can be expressed in
terms of the intrinsic coordinates ξi as

ds = e(i)dξ
i , (4.27)

where e(i) are a natural set of independent tangent vectors associated with the
intrinsic coordinates ξi. In terms of the system of coordinates {xµ} defined on
V , the vector e(i) can be expressed as

eµ(i) =
∂xµ

∂ξi
. (4.28)

In what follows we will write explicitly 4-dimensional indices only when nec-
essary, otherwise leaving them implicit to avoid confusion.

Given a tangent vector function lying in the hypersurface, it is possible to
define intrinsic components as

A = Ai · e(i) , (4.29)

The scalar product of this vector with the base vector e(j) is

(A · e(j)) = Ai(e(i) · e(j)) = Aigij = Aj , (4.30)

where the metric three tensor gij was introduced.
The covariant derivative of the vector A in the direction e(i) is

(4)∇e(i)A =(4) ∇iA =(4) ∇e(i)(ejA
j) = ej

∂Aj

∂xi
+ ((4)Γµ

jieµ)A
j (4.31)

where we used the notation “(4)” to make evident the dimension of the space-
time in which objects are defined. Indeed, the above definition has components
“out of the hypersurface”.

To get a covariant derivative defined intrinsically to the 3-dimensional hy-
persurface it is necessary to project the above derivative orthogonally onto Σ.
In this way one gets

Ah|i ≡ eh ·(3) ∇e(i)A =
∂Ah

∂xi
− AmΓm,hi . (4.32)
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The connection Γm,hi in three dimensions can be expressed in terms of the
basis vector and of the metric 3-tensor gij = e(i) · e(i)

(3)Γm,hi = e(m) ·(3) ∇ie(h) . (4.33)

Given this definition, it is evident that intrinsic covariant derivatives and the
associated intrinsic Riemann 3-tensor Ri

jmn do not depend on the nature of
the embedding and are therefore invariant under changes of the embedding
space that preserve the intrinsic metric on Σ.

We are now in a position to define the notion of extrinsic curvature, that
can be seen as a description of the curvature of a slice of the 3-geometry relative
to that of the 4-geometry. This is measured by the covariant variation (4)∇in
of the unit normal. In components the extrinsic curvature is defined2 by

(4)∇in = K j
i e(j). (4.34)

Taking the scalar product of this definition with the basis vector e(m) and
remembering that

e(m) · n = 0

by definition, we get

Kim = K j
i gjm = em · ∂n

∂ξi
= −n · ∂em

∂ξi
= −n · ∂ei

∂ξm
= Kji , (4.35)

that spells out the symmetry properties of Kij .
The Gauss-Weingarten equations can be derived directly form (4.33) and

(4.35)
∂ei
∂ξi

= −ε(n)Kijn+ Γh
ije(h) . (4.36)

It is possible to work out a different expression relating the extrinsic cur-
vature to the standard Riemann tensor. Particularly useful are the equations
of Gauss and Codazzi:

(4)Rαβγδe
α
(a)e

β
(b)e

γ
(c)e

δ
(d) =

(3) Rabcd +KacKbd −KbcKad , (4.37)

(4)Rαβγδn
αeβ(b)e

γ
(c)e

δ
(d) = Kbd|c −Kbc|d . (4.38)

Equations (4.38) can be contracted using respectively gbcgad and gbd and
observing that

gbceβ(b)e
γ
(c) = gβγ − ε(n)nβnγ . (4.39)

2In the definition of Kij we adopt the sign convention of [11], which is opposite to that
in [59]
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The contracted versions of the equations of Gauss and Codazzi are

−2ε(n)(4)Gαβn
αnβ =(3) R +KabK

ab −K2 , (4.40)
(4)Gαβe

α
(a)n

β = Kb
a|b −K|a , (4.41)

where K = gabKab and all terms are independent of the xµ coordinates.

Consider now a 3-tensor field Sab living on the hypersurface Σ, it is possible
to define an associated 4-dimensional discontinuous vector 4-tensor as

Sαβ =

{
Sabeα(a)e

β
(b) on Σ

0 off Σ
, (4.42)

then we have
∇µS

αβ = eα(a)S
ab
|b − ε(n)SabKabn

α (4.43)

where ∇µ is the standard covariant derivative defined on the coordinates xµ.

4.4 Singular hypersurfaces

in General Relativity

An important issue in gravitational theory is the formulation of correct junc-
tion conditions at surfaces of discontinuity. These surfaces can be characterised
by a jump discontinuity in the density, such as boundary layers or shock waves;
or by the fact that the density become infinity, as happens for surface layers.
In Newtonian gravitation, one has to set a system of coordinates which has to
be a priori well defined, supplemented by the appropriate continuity and jump
conditions connecting the potential and its first derivatives across the surface.
In Einstein’s theory of gravitation, the issue is more complicated. Indeed, the
smoothness of the gravitational potential gαβ is determined by the smooth-
ness of the physical conditions and by the smoothness of the coordinates one
chooses to describe the space-time manifold [11]. The problem is therefore
made more subtle by the necessity of distinguishing between the physical dis-
continuity and spurious “bumps” that may arise from an unhappy choice of
coordinates.

Let us define in a more precise form the classification of surfaces of dis-
continuity. Let us focus on a hypersurface Σ which separates the spacetime
in two four-dimensional manifolds V − and V +. Moreover we assume that V −

and V + are both of class C4 and contain Σ as part of their boundaries. The
normal n to Σ, that we can choose to be directed from V − to V +, is assumed
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to be spacelike everywhere. Let K−
ij and K+

ij be the two extrinsic curvatures
of Σ associated respectively with embeddings V − and V +.

Given extrinsic curvatures, we can give a definition of singular hypersur-
faces independent of the choice of four-dimensional coordinates. We define,
singular hypersurfaces of higher order surfaces Σ for which everywhere

K−
ij = K+

ij , (4.44)

and singular hypersurfaces of order one or histories of a surface layer as those
surfaces Σ for which

K−
ij 6= K+

ij . (4.45)

In particular, (the histories of) boundary layers are part of the class of the
singular hypersurfaces of higher order that contain also all of the regular hy-
persurfaces.

The case of boundary surfaces can be rapidly assessed. From eq. (4.41) we
find

Gαβn
αnβ
∣∣− = Gαβn

αnβ
∣∣+ , Gαβe

α
(a)n

β
∣∣− = Gαβe

α
(a)n

β
∣∣+ , (4.46)

where we considered the limits of the function Gαβn
αnβ and Gαβe

α
(a)n

β at

Σ from V + and V −, and we used the fact that the expressions (4.41) have
a continuous right hand side across Σ. Equations (4.46) establish identities
between terms that may be evaluated distinctly in two independently chosen
4-dimensional coordinate systems on V − and V +. It is interesting to notice
that there is no requirement about the continuous matching of charts xα

− and
xα
+ on Σ. The only requirement about the two charts is that, given the set of

intrinsic coordinates ξi, the equations of Σ

xα
− = f(ξ1, ξ2, ξ3) , xα

+ = gα(ξ1, ξ2, ξ3), (4.47)

must be formulated in terms of two C4 functions fα, gα.

The case of a surface layer is more interesting. We start by defining the
non-vanishing 3-tensor

γij = K+
ij −K−

ij . (4.48)

In terms of γij it is possible to define the surface energy tensor of the layer,
as3

8πSij = −γij + gijγ
k
k . (4.49)

3As before we set the Newton constant and the speed of light in vacuum equal to one,
G = c = 1.
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Eq. (4.49) can be reformulated as

γij = −8π

(
Sij −

1

2
gijS

)
, (4.50)

where S = S k
k .

For a surface layer in vacuo Gαβ = 0 both in V − and V +, therefore equa-
tions (4.41) are reduced to constraints on the extrinsic curvature:

(3)R +K±
abK

ab
± −K2

± = 0 , (4.51)

(K±)ba|b −K±
|a = 0 . (4.52)

After some manipulations eq (4.52) can be recast as the following group of
constraints:

Sab
|b = 0 , (4.53)

K̃b
a|b − K̃|a = 0 , (4.54)

K̃abS
ab = 0 , (4.55)

(3)R + K̃abK̃
ab − K̃2 = −16π2(SabS

ab − 1

2
S2) , (4.56)

where

K̃ab
1

2
(K+

abK
−
ab) , K̃ = gabK̃ab . (4.57)

Given two independent charts on V − and V +, respectively xα
− and xα

+, we
can define, using eq. (4.42), 4-dimensional extensions S±

αβ of Sab in the two
domains V ±. Hence, we can reformulate condition (4.53) using relation (4.43)
as

eα(a)∇βS
β
α

∣∣± = 0 , nα∇βS
β
α

∣∣± = −K±
abS

ab . (4.58)

Finally, using equations (4.50) and (4.55) we find

nα∇βS
β
α

∣∣+ + nα∇βS
β
α

∣∣∣
−

= 0 , (4.59)

nα∇βS
β
α

∣∣+ − nα∇βS
β
α

∣∣∣
−

= 8π

(
SabS

ab − 1

2
S2

)
, (4.60)

that can be seen as the relativistic analogues of the Newtonian formula for the
normal components of mechanical force due to self-attraction of the two faces
of a plane layer of surface density σ:

σF− · n = −σF+ · n = 2σ2 . (4.61)
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The tangential force, on the contrary cancels out, in agreement with the first
equation of (4.58).

We can conclude this section by giving a heuristic argument for the def-
inition of the surface energy tensor (4.49). Let us consider a layer of finite
thickness ε separating the two vacuum regions V − and V + and having respec-
tive boundaries Σ− and Σ+. It is useful to introduce Gaussian coordinates xα,
based on Σ− by setting xi = ξi, and letting x0 equal the geodesic distance
normal to Σ−, taken with sign plus or minus respectively for points in V + and
V −. With these coordinate, the equations for Σ± are respectively x1 = 0 and
x1 = ε. Moreover, for a 3-space x1 = cost., one finds the following expression
for the extrinsic curvature

Kij =
1

2

∂ (4)gij
∂x1

, (4.62)

while
(4)Rij =

∂Kij

∂x1
+ Zij , (4.63)

where Zij is defined as

Zij =
(3) Rij −KKij + 2Kh

i Khj . (4.64)

At this point it is possible integrate Einstein’s field equation over the layer

Rαβ = −8π

(
Tαβ −

1

2
gαβT

)
. (4.65)

Remembering expression (4.63) one gets

−8π

∫ ε

0

(
Tαβ −

1

2
gαβT

)
dx1 = K+

ij −K−
ij +

∫ ε

0

Zijdx
1 . (4.66)

In the limit ε → 0, for given values of K±
ij , if Kij remains bounded in the layer

then the integral of Zij over the layer will converge to zero. Hence Sij defined
in (4.49) is

Sij = lim
ε→0

∫ ε

0

Tijdx
1 , (4.67)

or in other words, Sij is the integral of the stress tensor Tij over the surface
layer.
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Chapter 5

The Surface Layers Dual to
Hydrodynamic Boundaries

The AdS/hydrodynamics correspondence provides a 1-1 map between large
wavelength features of AdS black branes and conformal fluid flows, so long as
the fluid variables are constant over distances large compared with the inverse
temperature. For example progress towards gravity duals of shock waves and
vortices has appeared in Refs. [60] and [61]. A case of particular interest is
represented by gravity duals to turbulent flows. Turbulence is generic in fluid
flows under a wide range of conditions. The dual of these fluid conditions then
provides some condition on a gravity solution under which it to generically
decays into a turbulent configuration. An example of such a situation was
presented in Ref. [9]. It would of course be interesting to characterize the
gravity duals of turbulent flows, and of the conditions under which turbulence
may be expected. In hydrodynamics, even the most basic scaling laws are
altered by turbulence. If gravitational solutions near, for example, spacelike
singularities (where indeed chaotic evolution is expected [7]) or certain event
horizons do generically decay to turbulent solutions, it would be difficult to
overstate the potential consequences for, for example, the horizon problem.

Perhaps the best understood turbulence is steady state turbulence, in
which energy is injected into a system at the same rate at which it dissipates.
Richardson’s cascade model [8] of steady (3+1)-dimensional turbulence is as
follows. Energy is injected into a system at large characteristic distance scales,
for example, a lake warms the air. This creates large vortices, which decay
into smaller vortices. Thus the energy flows to smaller distance scales. At suf-
ficiently small distance scales, higher order derivative terms in the equations
of motion become relevant, such as viscosity terms. These lead to dissipation
of the energy in sufficiently small vortices. Thus energy cascades from the long
length scale in which it is introduced, down to the dissipation scale.



98 The Surface Layers Dual to Hydrodynamic Boundaries

To realize steady state turbulence, one needs to inject energy into a sys-
tem. There are two principal ways to do this. First, one may deform the
fluid via external perturbations. Second, one may apply boundary conditions,
for example one may consider fluid flow in a pipe or wind tunnel. The first
approach was applied to the AdS/hydrodynamics correspondence in Ref. [9],
where it was argued that a laminar fluid flow and the dual gravity solution
decay to turbulent configurations. This approach has the disadvantage that
solutions are quite complicated, due to the necessarily inhomogeneous forcing
and to the geometric implementation of the forcing on the gravity side.

In what follows we will take a preliminary step towards a realization of
the second approach to creating steady state turbulence, we will investigate
boundary conditions in the AdS/hydrodynamic correspondence. For simplic-
ity, we will consider nonrelativistic, incompressible flows. Consider the surface
which separates a solid object from such a fluid. The normal velocity of the
fluid into the solid must vanish. If furthermore the fluid is viscous, as fluids in
the AdS/hydrodynamics correspondence are [2], then the tangential relative
velocity of the fluid must also vanish.

What does this correspond to on the gravity side? The answer to this
question is not necessarily unique, one may define a dual and then attempt to
understand its dynamics. One interesting case, which is already sufficient to
generate turbulence, is a solid which is a thin, infinite sheet with a stationary
fluid on the left side and a moving fluid on the right. In this case a natural
choice would be to consider the gravity duals of both fluids and then to attempt
to glue them together. Equivalently one may choose to think of the entirety
of the left side as a solid wall, filling the left half of spacetime, and a liquid
filling the right half. The wall is stationary and so one chooses the dual to
be a stationary black brane in half of AdS. Whatever one chooses to think,
the logic is that one imposes that the left half of the gravity dual be a static
black brane in AdS, and that the right side be the gravity dual given by the
prescription of Ref. [4].

So how does one glue these two vacuum gravity solutions together? Clearly
there are many inequivalent choices. One possibility is to simply attach them
and then use the Israel matching conditions [11] to determine the stress tensor
on the surface layer that separates the two sides. This is equivalent to letting
the gravitational solution continuously interpolate between the two solutions
over a finite distance d and then taking the limit as this distance tends to zero.
While there are many ways of performing this interpolation, so long as the
extrinsic curvature is kept finite, they all lead to the same stress tensor as the
interpolation distance d → 0.

Another possibility is to let the fluid configuration continuously interpolate
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between the two solutions, and then take the dual using the prescription of
Ref. [4]. As the fluid is not a solution of the Navier-Stokes equation in this
region, the dual will not be a solution of the vacuum Einstein equations in this
region. Instead it will solve Einstein’s equations with a nonvanishing stress
tensor supported on a surface layer. The ultralocality of the duality map
implies that the vacuum Einstein equations will however be solved way from
the surface layer. In this case, one cannot take the interpolation distance d to
zero, because the dual is not defined when derivatives are large with respect to
the inverse of the temperature T . Thus the minimum size of d will be of order
1/T . Again there are many inequivalent ways of performing the interpolation.
But we will see that, at least for the quantities at we are able to calculate,
when d is large with respect to 1/T , the difference between these prescriptions
is suppressed by powers of dT and so, like Israel’s method, there is a single
answer.

The perhaps surprising result is that the two methods yield bulk stress ten-
sors which differ by a finite amount. They did not need to agree, indeed one is
derived at small d and the other for large d. The reason that they disagree is as
follows. The construction of the metric from the fluid flow proceeds order by
order in the derivatives of the fluid’s velocity. The boundary conditions imply
that the velocity of the fluid is the same on both sides of the wall, however the
first derivatives differ. Therefore, whatever regularization scheme one uses on
the fluid side, the second derivative of the velocity diverges at small d. This
means that the metric corrections derived using the map of [4] will diverge at
small d, invalidating the finiteness assumption in Israel’s derivation. In fact,
we will see that the disagreement between the two calculations of the stress
tensor differ only in these higher derivative terms. Of course the fluid map is
not defined at small d, as it yields a divergent series, and so no divergences
appear within the range of validity of either approach.

We will begin in Sec. 5.1 by describing the flow of interest. The velocity
will be kept sufficiently arbitrary to allow a general interpolation between the
flows on the two sides of the wall, and in Sec. 5.2 the näıve gravity dual will
be calculated using the prescription of [4]. We will see that those higher order
derivative corrections which we calculate are indeed suppressed by factors of
dT . Then in Sec. 5.3 we will calculate the bulk stress tensor of the interpo-
lation between the two gravity solutions. First it will be calculated for the
interpolation dual to a continuously interpolating fluid flow. It will be seen
that contributions from the second derivative of the velocity are d-independent,
while higher order contributions are suppressed by powers of dT . Thus the re-
sult is independent of the interpolation scheme when d is sufficiently large. The
stress tensor will then be calculated directly from the Israel matching condi-
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tions on the two solutions of the vacuum Einstein equations. It will be seen
that the two stress tensors agree up to terms corresponding to a divergence
in the extrinsic curvature at small d, and that only the second stress tensor
contains a nonvanishing stress.

5.1 The Flow

5.1.1 The ansatz

We will consider a hydrodynamic flow in 4-dimensional Minkowski space, using
a (−,+,+,+) metric. To highlight the essential features of the boundary
condition, we will consider the simplest possible flow. The liquid will only
move in the y direction, with a velocity v = v(x) that only depends on the
coordinate x. The velocity will be taken to be small, and we will drop all terms
which are quadratic in v. In fact, as described in Refs. [37, 61] we will work
in the nonrelativistic, incompressible limit. More precisely, we will show that
our flow satisfies both the full relativistic equations of motion at order O(v)
and also the incompressible Navier-Stokes equation.

We will set c = 1. The conformal fluid which is dual to Einstein gravity
with a negative cosmological constant is very particular. Being conformal, all
of its transport coefficients may be expressed in terms of a single dimensionful
quantity, such as the temperature T , and certain constants which may be
calculated from the gravity dual. In the case at hand for example the shear
viscosity η, pressure p and density ρ have been found in Ref. [4]

η =
π2

16GN
T 3, p =

π3

16GN
T 4, ρ =

3π3

16GN
T 4 (5.1)

where GN is the dual Newton’s constant.

The relativistic velocity 4-vector u is, to linear order in v, simply

uµ = (
1√

1− v2
, 0,

v√
1− v2

, 0) ∼ (1, 0, v, 0). (5.2)

We will be interested in the fluid velocity in three regions, as illustrated in
Fig. 5.1. First, on the left, where v = 0. Second, we will be interested in the
velocity on the right, where v will be linear in x. We will show momentarily
that this is a solution to the hydrodynamic equations of motion and so will be
dual to a vacuum solution of Einstein’s equations. Finally, we will be interested
in an interpolating region where v will be arbitrary and we will not impose
the equations of motion, therefore the dual metric will not solve the vacuum
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x=0 x=d

v(x)

x

“wall”
“interpolating

region”

Figure 5.1: The fluid velocity v is in the y direction, and it depends on the x
coordinate. On the left the fluid is stationary, on the right the fluid velocity
is linear. These two regions solve the fluid equations of motion at linear order
in v. There is an interpolating region of width d, which must be larger than
the inverse temperature, in which v does not satisfy the equations of motion.
v and its first derivative v′ are continuous at x = 0 and x = d.

Einstein equations but, like any metric, will solve Einstein’s equations with
some stress tensor.

Clearly the left, v = 0, satisfies the fluid equations of motion. We will now
verify that the region on the right satisfies the relativistic equations of motion,
which are simply the conservation of the stress tensor

0 = ∂µT
µν . (5.3)

In accordance with the usual fluid approximation [31], we will work at large
enough distance scales that only the velocity v and its first derivative v′ need
be considered in the stress tensor. This approximation in general is problem-
atic, leading for example to superluminal propagation [62]. However, as we
will be interested in velocities well below the speed of light, no problems will
arise. Later, when we will consider the interpolating region, where the second
derivative may be large, we will make no such approximation. We will con-
sider the bulk stress tensor to higher order, calculating all terms up to two
derivatives and several terms up to three or four derivatives to check that they
are subdominant. However we do not impose that the interpolating region
satisfies the equations of motion, indeed that would lead to a vanishing bulk
stress tensor.
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5.1.2 Relativistic and nonrelativistic equations of mo-

tion

As discussed in Chapter 2 (see Sec. 2.3), dropping all higher derivatives of the
velocity and using the fact that the fluid is conformal to eliminate the bulk
viscosity and replace ρ with 3p, the hydrodynamic stress tensor is

T µν = p(ηµν + 4uµuν)− 2ησµν (5.4)

where the shear strain rate σµν is defined as

σµν = P µαP νβ∂(αuβ) −
1

3
∂λu

λP µν . (5.5)

Here parenthesis denote, as usually, symmetrization with a factor of one half
and P µν is the projector onto the spacelike directions in the reference frame of
the fluid

Pµν = ηµν + uµuν =




v2

1−v2
0 v

1−v2
0

0 1 0 0
v

1−v2
0 1

1−v2
0

0 0 0 1


 . (5.6)

Substituting the velocity ansatz (5.2) into the definition (5.5) one easily
finds the shear strain at linear order in v

σµν ≃




0 0 0 0
0 0 1

2
v′ 0

0 1
2
v′ 0 0

0 0 0 0


 . (5.7)

The constants of proportionality (5.1) in this particular fluid can then be
inserted into the general formula (5.4) for T µν to express the stress tensor in
terms of the temperature T and the velocity v

T µν =
π3T 4

16GN




3 0 4v 0

0 1 − v′

πT
0

4v − v′

πT
1 0

0 0 0 1


 . (5.8)

The velocity only depends on the coordinate x. Let us choose boundary
conditions so that the temperature T also only depends on x. Then the equa-
tions of motion (5.3) are simply

0 = ∂xT
xν . (5.9)
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However all of the components T xν are constants except for T xx and T xy.
Therefore the only nontrivial equation of motion at linear order in v is

0 = ∂xT
xx + ∂xT

xy =
π3T 3

4GN

T ′ − π2

16GN

∂x(T
3v′). (5.10)

When v is linear in x, its second derivative vanishes. Therefore this equation
of motion, the conservation of momentum in the y direction, implies that the
temperature is constant. More precisely it implies that (∂T )/T is negligible in
this approximation. In light of the relations (5.1) this is consistent with the
incompressibility assumption that we have imposed on our fluid.

Therefore we recover the fact that at sufficiently small velocities, a constant
temperature and a y-velocity which is linear in x solve the equations of motion
(5.3). Intuitively this is clear. Further to the right, the fluid is moving faster.
Therefore the viscous force on a unit of fluid exerted by the faster fluid on
its right (in the +x direction) will accelerate it in the +y direction, whereas
the slower fluid on its left will exert a viscous force that decelerates it. A
steady flow occurs when these two forces cancel, which implies that the second
derivative of the flow vanishes. Had there been a temperature gradient, then
the viscosity to density ratio would also have been stronger on one side by
(5.1), and so this balance could only be maintained by introducing a second
derivative of the velocity.

Clearly a linear velocity also satisfies the nonrelativistic Navier-Stokes equa-
tion for an incompressible, Newtonian fluid

ρ(∂tvk + (v · ∂)vk) = −∂kp+ ν∇2vk. (5.11)

In fact, each term vanishes independently. Note that the vanishing of the ∂p
term is not merely a consequence of incompressibility. In incompressible flows
it may be of the same order as the viscous term. It vanishes in this case
because this provides a solution to (5.11) and it is consistent with the various
nonrelativistic, small gradient and incompressible limits taken above.

In conclusion, we have considered fluid flows with an x-dependent velocity
v in the y direction. We have verified that, to linear order in v, these satisfy
both the relativistic and nonrelativistic equations of motion when v is linear in
x and the temperature T is constant. Our flows of interest will have v = 0 on
the left, v linear on the right and an interpolating region inbetween. Thus the
equations of motion will be satisfied on the left and the right but not in the
interpolating region, leading to a dual gravity solution which solves Einstein’s
vacuum equations on the left and right, but inbetween requires material de-
scribed by a nontrivial stress tensor. We have also found formula (5.6) and
(5.7) for the projector P µν and the shear tensor σµν for general functions v,
and so these results may be applied to the interpolating region.
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Clearly if the fluid velocity is linear over a large enough distance, it will
eventually approach the speed of light and the nonrelativistic approximation
will break down. Therefore our analysis is only relevant near the boundary.
The solution may be made global by introducing a second boundary, such that
the velocity is constant on the other side of the second boundary. We will see
below that the stress tensor on the second boundary, to linear order in v, will
be minus the stress tensor of the first boundary. Of course at higher orders one
may expect an attraction between the two boundaries, and so this solution will
not be stationary. The underlying assumption in this note is that the walls
on the gravity side are built of a solid which remains fixed. The fact that the
null energy condition is violated may be a sign that such a material would be
inconsistent, as some null energy violating configurations lead to superluminal
propagation or instabilities [57], although some do not [63], in which case this
configuration should only be considered over a sufficiently short timescale. It
may be that this timescale is never sufficient for turbulence to develop.

5.2 The Gravity Dual

In Chapter 3 we gave a detailed presentation of the AdS/hydrodynamics cor-
respondence, that yields a black brane metric dual to arbitrary flows in very
particular conformal fluids, which for example obey the relations (5.1). If the
flow satisfies the hydrodynamic equations of motion (5.3), the dual satisfies the
vacuum Einstein equations, in this case with a negative cosmological constant.

5.2.1 A note on ultralocality

As mentioned in the construction of the gravity dual to a generic conformal
fluid, the correspondence, at least in the incarnation in Refs. [4] and [5], is
ultralocal. It is useful at this point to explain a bit further what this means.
Consider the set of ingoing null geodesics which run from the boundary to the
black brane horizon. Clearly each point in the bulk is on precisely one such
geodesic. Also each point on the boundary is on one such geodesic. Therefore
these geodesics can be used to associate a fixed single boundary point to each
bulk point. This association is not one to one, there is an entire geodesic worth
of bulk points associated to each boundary point.

To implement the map, one identifies the boundary with the Minkowski
space on which the fluid lives. The metric and its derivatives at a point in the
bulk are determined entirely by the fluid velocity and temperature and their
derivatives at the associated boundary point. One does not need to know the
behavior of the fluid elsewhere. This is the ultralocality of the correspondence.
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In particular, the fact that the fluid satisfies the hydrodynamic equations of
motion on the left and right (at x < 0 and x > d) implies that the dual metric
will satisfy the vacuum Einstein equations on the left and right, so long as
the characteristic distance over which these quantities vary is greater than the
inverse temperature.

Our fluid does not satisfy the hydrodynamic equations of motion at 0 <
x < d. This means that the dual gravitational configuration will not satisfy
the vacuum Einstein equations, instead it will only satisfy Einstein’s equations
with a nonzero stress tensor, which we will calculate in Sec. 5.3.

This ultralocality is somewhat different from the ultralocality that one
encounters in classical field theories, or in the BKL limit of gravity theories,
in that the bulk geometry is ultralocal in terms of null and not temporal
evolution. This ingoing null identification identifies the temporal evolution of
the fluid with outward radial evolution for the gravity theory. That is to say,
the metric at larger radii but the same time is determined by the fluid in the
future but at the same location. In particular, a timeslice of the bulk geometry
is determined by the evolution of the boundary fluid during a fixed interval of
time. This interval is of order the inverse temperature, and so no appreciable
evolution may occur during this interval if the temperature is large enough
for the correspondence to hold. In this sense any fixed timeslice of the gravity
dual contains only as much information as a fixed timeslice of the fluid, despite
being one dimension greater.

As each event in the fluid is identified with an inward null geodesic in the
bulk, the metric corresponding to this event appears to be falling towards the
black hole at the speed of light. This is not at all to say that there is a Killing
vector in the inward null direction, the metric changes in that direction, but
in a fashion which is fixed by the map. Thus a disturbance on the boundary
creates gravity waves which fly inward at the speed of light to the horizon.
Similarly, pasting together an infinite sequence of bulk timeslices which are
separated by time intervals 1/T , one obtains a pattern which falls from the
boundary in to the horizon at the speed of light. Although each individual
timeslice is too small to see any evolution, the entire pattern is dual to the
entire history of the flow. Like a movie reel, the pattern in turn allows one to
reconstruct the gravity dual, as it contains the timeslices.

One may use this identification to speculate on the gravitational dual of
decaying turbulence. For example, the inverse cascade of decaying (2+1)-
dimensional turbulence consists of a chaotic period during which the fluid is
subjected to random external forces followed by a relaxation period, charac-
terized by the merging of well-separated vortices [64, 65]. This would then
be dual to a kind of forest of gravity waves falling from the boundary to the
horizon, beginning when the boundary is subjected to a random perturbation.
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First the canopy, representing the chaotic period, falls out of the boundary
into the horizon. When the external perturbation is turned off, it is followed
by the branches representing the vortices, and then the branches merge into
trunks as the vortices merge. The usual cascade [66, 67] in (3+1)-dimensional
turbulence may be similarly described, but when the boundary is randomly
perturbed, the trunk falls out first. This leads to the rather bizarre observa-
tion that black brane geometries in AdS4 and AdS5 respond very differently
to random perturbations of their boundaries. Needless to say, it would be in-
teresting to make this picture precise, or to see whether it is inconsistent with
the various approximations involved in the duality.

5.2.2 The metric

We will now calculate the metric dual to the flow (5.2) using the map in Ref. [4]
with the simplified notation of Refs. [5, 34]. This map takes regions in which
the flow satisfies the fluid equations to regions in which the metric satisfies the
source-free Einstein equations. Acting on the region in which the fluid does
not satisfy the hydrodynamic equation, the map is not known to have any
special properties other than continuity, which will produce an interpolation
between the vacuum Einstein metrics on the two sides. Therefore the choice of
this map corresponds to a rather arbitrary choice of interpolation. However we
will see that this interpolation has two nice properties. First, it is reasonably
independent of the interpolating velocity function chosen. In particular, the
third and higher derivatives of the velocity will yield contributions to the inte-
grated stress tensor which are suppressed by powers of dT , while the leading
contribution is independent of d. Second, the resulting stress tensor is simpler
than the Israel stress tensor, it will have zero stress, whereas Israel’s stress
tensor has shear stress.

Ultralocality in the ingoing null direction implies that the simplest co-
ordinates in which to express the metric are Gaussian null coordinates, in
which r parametrizes the ingoing null lines. In these coordinates, the bulk
5-dimensional metric (3.57) corresponding to an x-dependent 4-dimensional
fluid flow is [5]

ds2 = GMNdX
MdXN = −2uµ(x) dx

µ (dr + Vν(r, x) dx
ν) +Gµν(r, x)dx

µdxν

(5.12)
where, up to second derivatives in v, Vν and Gµν are defined as

Vν = rAµ − Sµλu
λ − v1(br)P

ν
µDλσ

λ
ν

+ uµ

[
1

2
r2
(
1− 1

(br)4

)
− 1

4(br)4
ωαβω

αβ + v2(br)
σαβσαβ

d− 1

]
(5.13)
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and

Gµν = r2Pµν−ωλ
µωλν+2(br)2g1(br)

[
1

b
σµν + g1(br)σ

λ
µσλν

]
−g2(br)

σαβσαβ

d− 1
Pµν

− g3(br)

[
T1µν +

1

2
T3µν + 2T2µν

]
+ g4(br)[T1µν + T4µν ] . (5.14)

The functions that appear in this definition were introduced in Sec. 3.7, (one
can refer also to the Appendix).

Eq. (5.12) is the bulk metric dual to a fluid flow in an arbitrary curved
space. The fluid is conformally invariant, and the conformal invariance has
been used to write the metric in a compact form using objects which trans-
form covariantly under the conformal symmetry. We are interested in a flat
boundary, and so many of these objects will vanish. In fact, since u only de-
pends on x, but only has nonvanishing components in the t and y directions,
even the gauge field for a Weyl transformation will vanish

Aµ = uλ∇λuµ −
1

d− 1
uµ∇λuλ = 0 (5.15)

as uλ∇λuµ = 0 and ∇λu
λ = 0. This implies that the Weyl-covariant derivative

reduces to the ordinary derivative

Dµ = ∂µ . (5.16)

The Weyl-covariant Schouten tensor S (defined in eq. (2.59)) is propor-
tional to the Weyl-covariant curvature of the boundary. As the Weyl-covariant
derivative is just the ordinary derivative, this is just the ordinary curvature.
As the boundary is Minkowski space, the curvature vanishes, and so the Weyl-
covariant Schouten tensor also vanishes

Sµν = 0 . (5.17)

Similarly the Weyl-covariant Weyl curvature C is the sum of the ordinary Weyl
curvature and the curvature of the Weyl tensor (see eq. (2.58)), which both
vanish and so

Cµνλσ = 0 . (5.18)

The vorticity ω does not vanish, however like the shear strain σ it is of first
order in v. Therefore ω2, ωσ and σ2 terms are all of order O(v2) and so do
not contribute at order O(v). Thus only the third and fourth terms of (5.13)
contribute to Vµ. The third term is easily evaluated

Dλσ
λ
ν = ∂λσ

λ
ν = ∂xσ

x
ν ≃




0
0

1
2
v′′

0


 . (5.19)
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Adding the third and fourth terms one finds Vµ at order O(v)

Vµ ≃ v1(br)




0
0

1
2
v′′

0


 +




1
0
v
0




1

2

(
r2 − 1

b4r2

)
. (5.20)

The functions T, reported in Table 2.1, are easily expressed in terms of the
shorthand notation <>, which symmetrizes and contracts with the projectors
Pµν . The first two are identically zero, while the second two are of order O(v2)

T1µν = 2uαDασµν = 0 (5.21)

T2µν = Cµανβu
αuβ = 0 (5.22)

T3µν = 4σα〈µσν〉
α ∼ 0 (5.23)

T4µν = 4σα〈µων〉
α ∼ 0. (5.24)

Therefore only the first and third terms of (5.14) contribute to Gµν

Gµν ≃ r2




0 0 v 0
0 1 0 0
v 0 1 0
0 0 0 1


+ br2g1(br)




0 0 0 0
0 0 v′ 0
0 v′ 0 0
0 0 0 0


 . (5.25)

Finally, inserting Eqs. (5.20) and (5.25) into (5.12), one finds the final form
of the metric [10]

ds2 = −r2
(
1− 1

b4r4

)
dt2 − 2dtdr +

(
2

v

b4r2
+ v1(br)v

′′
)
dtdy

+ r2(dx2 + dy2 + dz2) + 2r2b g1(br)v
′dxdy − 2vdydr (5.26)

where b = 1/πT and the functions v1 and g1 are defined in Eqs. (5.69) and
(5.70). Using the basis (t, x, y, z, r), we may write the metric in matrix form
as

gµν =




−
(
r2 − 1

b4r2

)
0 v

b4r2
+ 1

2
v1(br)v

′′ 0 −1
0 r2 r2b g1(br)v

′ 0 0
v

b4r2
+ 1

2
v1(br)v

′′ r2b g1(br)v
′ r2 0 −v

0 0 0 r2 0
−1 0 −v 0 0




while the inverse metric is

gµν =




0 0 − v
r2

0 −1

0 1
r2

− b g1(br)v′

r2
0 0

− v
r2

− b g1(br)v′

r2
1
r2

0 v1(br)v′′

2r2
+ v

0 0 0 1
r2

0

−1 0 v1(br)v′′

2r2
+ v 0 r2 − 1

b4r2




.
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5.2.3 Christoffel symbols

In Sec. 5.3 we will see that the leading contribution to the stress tensor comes
from the second derivative of the velocity. Contributions at that order come
from the second derivative of the velocity in the curvature, which in turn
contains contributions from first and second derivatives of the velocity in the
Christoffel symbols, as well as from Christoffel symbols which are velocity inde-
pendent as these are multiplied by velocity-dependent terms when calculating
the curvature. We will now calculate all of the Christoffel symbols up to first
order in v, v′ and v′′, although the v terms will not contribute to the stress
tensor.

We will begin with the terms at order O(v0), these are just the Christoffel
symbols of the static black brane

Γt
tt = −

(
r +

1

b4r3

)
, Γr

tt = r3 − 1

b8r5
,

Γt
xx = Γt

yy = Γt
zz = r, Γr

tr = Γr
rt = r +

1

b4r3
,

Γx
xr = Γx

rx =
1

r
, Γy

yr = Γy
ry =

1

r
,

Γz
zr = Γz

rz =
1

r
, Γr

xx = Γr
yy = Γr

zz = −
(
r3 − 1

b4r

)
. (5.27)

The new terms, at order O(v), are

Γt
ty = Γt

yt =
1

4
b v′1(br)v

′′ − v

b4r3
,

Γx
yr = Γx

ry =
v′

2r2
+

b2

2
g1(br)v

′

Γy
tt =

(
r +

1

b4r3

)(
v1(br)v

′′

2r2
+ v

)
,

Γy
tx = Γy

xt =
v′

2b4r4

Γy
xx = bg1(br)v

′′ − vr − v1(br)v
′′

2r
,

Γy
tr = Γy

rt =
v

r
+

1

4

v′1(br)bv
′′

r2

Γy
xr = Γy

rx =
1

2
b2g′1(br)v

′ − v′

2r2
,
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Γy
yy = Γy

zz = −rv − v1(br)v
′′

2r

Γr
ty = Γr

yt =

(
r2 − 1

b4r2

)(
v

b4r3
− 1

4
bv′1(br)v

′′

)
,

Γx
ty = Γx

yt = − v′

2b4r4

Γr
yr = Γr

ry =
v

b4r3
− 1

4
bv′1(br)v

′′ +
v1(br)v

′′

2r
+ vr,

Γt
yr = Γt

ry = −v

r

Γr
xy = Γr

yx = −1

2
r2v′ −

(
r2 − 1

b4r2

)(
rb g1(br)v

′ +
1

2
r2b2 g′1(br)v

′

)

Γt
xy = Γt

yx =
1

2

(
v′ + 2rb g1(br)v

′ + r2b2 g′1(br)v
′
)
. (5.28)

5.2.4 The Riemann tensor and the Ricci tensor and
scalar

Using the Christoffel symbols one can now easily compute the Riemann tensor.
The order O(v0) terms again are just those of the static AdS black brane

Rtrtr = 1− 3

b4r4
(5.29)

Rtxtx = Rtyty = Rtztz = r4 − 1

b8r4
(5.30)

Rtxrx = Rtyry = Rtzrz = r2 +
1

b4r2
(5.31)

Rxyxy = Rxzxz = Ryzyz = −r4 +
1

b4
. (5.32)

The bulk stress tensor is entirely determined by the contributions to the
Riemann tensor which do not solve the fluid equations of motion, as it is these
that do not solve the vacuum Einstein equations. If v is a constant, this yields
the boosted black brane, which satisfies the vacuum Einstein equations. If v
is linear, then again this is a solution of the linear order fluid equations as we
have checked above, and therefore as we will check below v′ will not contribute
to the gravitational stress tensor at order O(v). Therefore the first nontrivial
contributions to the stress tensor arise from the Riemann tensor at linear order



5.2. The Gravity Dual 111

in v′′ (v = v′ = 0)

Rtrty = −1

2

(
1 +

1

b4r4

)
v1(br)v

′′ (5.33)

Rxrxy =
v′′

4

(
2 + 2v1(br) + 2b2r2 g′1(br)− brv′1(br)

)
(5.34)

Rzrzy =
v′′

4
(2v1(br)− brv′1(br)) (5.35)

Ryxtx = − v′′

4b4r2
(2 + (b5r5 − br)v′1(br)) (5.36)

Ryrtr =
v′′

4

(
v′1

b

r
− b2v′′1

)
. (5.37)

As a check on our calculation, we will also calculate the contributions to
the various tensors at linear order in the nondifferentiated velocity v

Rtxyx = Rtzyz =
1

b4

(
1− 1

b4r4

)
v (5.38)

Rtytr = −
(
r2 +

1

b4r2

)
v (5.39)

Rtryr =

(
1− 3

b4r4

)
v (5.40)

Rxyxr = Rzyzr =

(
r2 +

1

b4r2

)
v (5.41)

and in v′

Rtxty = (b3r3 + b7r7 + (b8r8 − 1)(2g1(br) + brg′1(br)))
v′

2b7r4
(5.42)

Rtxyr = (−2 + b4r4 + (b5r5 + br)(2g1(br) + brg′1(br)))
v′

2b4r3
(5.43)

Rtyxr = −(2 + b4r4 + (b5r5 + br)(2g1(br) + brg′1(br)))
v′

2b4r3
(5.44)

Rtrxy = − 2v′

b4r3
(5.45)

Rxzyz = −(b3r3 + (b4r4 − 1)(2g1(br) + brg′1(br)))
v′

2b3
(5.46)

Rxryr = −1

2
b2rv′(2g′1(br) + brg′′1(br)) . (5.47)

The Ricci tensor is now easily calculated. Again the order O(v0) terms are
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those of the static black brane solution

Rtt = 4r2 − 4

b4r2
(5.48)

Rtr = Rrt = 4 (5.49)

Rxx = Ryy = Rzz = −4r2 . (5.50)

Contributions to the stress tensor will arise from the v′′ terms, (v = v′ = 0)

Rty = Ryt = − v′′

4b4r4
(2 + 4(1 + b4r4)v1(br) + (b5r5 − br)(v′1(br) + brv′′1(br)))

(5.51)

Rry = Ryr =
v′′

4r2
(2 + 4v1 + br(2br g′1(br)− v′1(br) + brv′′1(br)) . (5.52)

The terms in the Ricci tensor proportional to v are those of a rigidly boosted
black brane

R
(v)
ty = − 4v

b4r2
, R(v)

yr = 4v (5.53)

which provides an exact solution both to the hydrodynamic equations and to
Einstein’s equations with a negative cosmological constant. Again the terms
linear in v′ yield a solution to the fluid equations and so Einstein’s equations,
although only to linear order O(v)

Rxy = −(8b3r3g1(br) + (5b4r4 − 1)g′1(br))
v′

2b2r
. (5.54)

Using the large r asymptotic expansions of Ref. [5]

g1 ∼
1

br
− 1

4b4r4
+ . . . (5.55)

v1 ∼ − 1

12b4r4
+

2

5b3r3
+ . . . (5.56)

we find that the asymptotic behaviors of the v′′ terms in the Ricci tensor are

Rty ∼
13

10

v′′

b3r3
(5.57)

Rry ∼
1

5

v′′

b2r4
. (5.58)

The Ricci scalar is
R = −20 . (5.59)

There is no contribution at order O(v) to the Ricci scalar. This is guaranteed
for any solution of the vacuum Einstein equations with cosmological constant
Λ = −6, and so there could not have been any corrections from the v and v′

terms. There are no corrections from the v′′ terms at linear order because the
corresponding components of the inverse metric are themselves of order O(v),
and so the contributions to the Ricci tensor are of order O(v2).
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5.2.5 Contributions to the Ricci tensor at O(v(3)) and

O(v(4))

Before continuing with the calculation of the bulk stress tensor, we will pause
to discuss some of the approximations that we have made. We have made two
truncations. First, we have calculated everything at order O(v). As we are
working in units in which c = 1, v is small for nonrelativistic speeds and so
this is a valid approximation in a region in which the flow is sufficiently slow.

A more dangerous truncation is that of higher derivatives of the velocity.
The gravity/hydrodynamics correspondence is a one to one map between grav-
itational and fluid solutions in a derivative expansion. More precisely, the kth
order map relates the truncation of the fluid equations to k derivatives and
that of the gravity equations to (k + 1) derivatives. The iterative procedure
described in Ref. [4] in principle determines this map for all k, however in
practice this map has only been determined to order k = 2. In other words,
it provides a metric as a function of v, v′ and v′′, however a perfect matching
with Einstein’s equations would require also corrections involving the higher
derivatives v(k) which are not known.

General arguments based on dimensional analysis suggest that these correc-
tions become smaller at higher k. In general one expects that each derivative
leads to a contribution which is subdominant by a factor of T l with respect the
previous derivative, where l is the distance scale of the derivative. Ideally one
would like to check this claim for all terms with, say, three or four derivatives.
However this would require a knowledge of the map at orders k = 3 and k = 4.

The map at order k = 2, which we have used, does produce some terms
in the curvature which depend on the third and fourth derivatives of v. In
this subsection we will verify that two of these have the expected convergence
scaling, and determine the corresponding condition on our fluid flow. In other
words, we determine a necessary condition for the derivative expansion to
apply to our flow.

The Ricci tensor components Rxy and Rty have corrections from the third
and fourth derivatives of the velocity respectively

R(3)
xy = −v(3)(x) (brv′1(br) + v1(br))

4r
(5.60)

R
(4)
ty = −v(4)(x)v1(br)

4r2
. (5.61)

We want to determine the condition under which R
(4)
ty is subdominant to R

(3)
xy .

As the higher derivatives of v define an interpolating function between two
solutions over an interval of length d, each derivative is larger than the previous
one by about 1/d. In other words, ∂x ∼ 1/d.
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To test the subdominance of R
(4)
ty , it is sufficient to compare it to the similar

term in R
(3)
xy , which contains v1. The ratio of these terms is

R
(4)
ty

R
(3)
xy

∼ v(4)(x)

rv(3)(x)
∼ 1

rd
(5.62)

therefore the fourth order term is subdominant if d ≫ 1/r in the entire bulk.
The bulk extends from the horizon at r = 1/b = πT to the boundary at r = ∞.
Therefore convergence requires

d ≫ 1

πT
. (5.63)

This fourth order term is suppressed by πdT with respect to the third order
term, in line with the above expectations from dimensional analysis. This
means that the gravity duality procedure is only convergent when d is suf-
ficiently large. Of course, the duality never yields a solution of the vacuum
Einstein equations, and so one may argue that its convergence is immaterial.
Nonetheless, it is only well-defined as a series when d satisfies (5.63).

5.2.6 The static black brane solution

As a check on our calculation and conventions, we recover that the static
(v = 0) black brane satisfies the vacuum Einstein equations with cosmological
constant Λ = −6

Rµν −
1

2
Rgµν =




6
b4r2

− 6r2 0 0 0 −6
0 6r2 0 0 0
0 0 6r2 0 0
0 0 0 6r2 0
−6 0 0 0 0




. (5.64)

5.3 Two Calculations of the Stress Tensor

In this section we will calculate the bulk stress tensor of the surface layer in-
terpolating between the vacuum gravity solutions using two different methods,
corresponding to two different metrics. First, we will apply the duality map
of Ref. [4] to a fluid flow which interpolates between the two solutions, the
stationary solution on the left and the linear velocity solution on the right.
In this case, as we have seen, the interpolating region is necessarily larger
than the inverse temperature. Next, we will directly interpolate between the
gravitational solutions using the Israel matching conditions [11]. This method
requires the interpolating region to be very thin, and uses the assumption that
in this limit the extrinsic curvature remains bounded.



5.3. Two Calculations of the Stress Tensor 115

5.3.1 Interpolating between the hydrodynamic flows

The duality map of Ref. [4] takes a fluid flow and yields a dual metric. This
dual metric solves the vacuum Einstein equations when the fluid flow satisfies
the hydrodynamic equations of motion (5.3). If the flow does not satisfy the
equations of motion, the dual metric does not satisfy the vacuum Einstein
equations. Thus apparently there is no benefit in using this map over any
other map. However we will use the map, and observe the consequences. The
resulting dual metric will necessarily solve Einstein’s equations with some value
of the stress tensor

8πGNTµν = Rµν −
1

2
Rgµν + Λgµν . (5.65)

We will determine this value.

We saw in Eq. (5.64) that there is no contribution to the stress tensor at
order O(v0). We have argued that, at order O(v), the dominant contributions
to the stress tensor are proportional to v′′. These are easily found from (5.65)
to be

Tty =
v′′(x) (4 (b4r4 − 1) v1(br)− br (b4r4 − 1) (v′1(br) + brv′′1(br))− 2)

32πGNb4r4

(5.66)

Try =
v′′(x) (4v1(br) + br (2brg′1(br)− v′1(br)− brv′′1(br)) + 2)

32πGNr2
. (5.67)

There appears to also be a contribution proportional to v′

Txy = −v′(x) (br ((b4r4 − 1) g′′1(br) + 3br) + (5b4r4 − 1) g′1(br))

16πGNb2r
. (5.68)

At order v′ one expects no contributions to the stress tensor, as a solution with
a linear velocity satisfies the fluid equations at order O(v). Therefore a non-
trivial contribution would be in contradiction with the gravity/hydrodynamics
correspondence. We will see shorty that this contribution is in fact equal to
zero.

The functions v1(r) and g1(r) are defined as

v1(r) =
2

r2

∫ ∞

r

dx x3

∫ ∞

x

dy
y − 1

y3(y4 − 1)
(5.69)

g1(r) =

∫ ∞

r

dx
x3 − 1

x(x4 − 1)
. (5.70)
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Integrating we [5] obtain analytical expressions for v1(r) and g1(r)

v1 = −1

4
+

r

2
+

1

8r2
(r4 − 1)

(
log

(r2 + 1)

(r + 1)2
+ 2 tan−1(r)− π

)
(5.71)

g1 =
1

4

(
log

(
(1 + r)2(1 + r2)

r4

)
− 2 tan−1(r) + π

)
. (5.72)

The derivatives of these expressions are

g′1 =
1

2

(
r

r2 + 1
− 1

r2 + 1
+

1

r + 1
− 2

r

)
(5.73)

g′′1 = − r2

(r2 + 1)2
+

r

(r2 + 1)2
+

1

2(r2 + 1)
+

1

r2
− 1

2(r + 1)2
(5.74)

and

v′1 = − 1

4r3
(
πr4 + 2

(
r4 + 1

)
log(r + 1)− 2

(
r4 + 1

)
tan−1(r)

−4r3 + 2r2 −
(
r4 + 1

)
log
(
r2 + 1

)
+ π
)

(5.75)

v′′1 = − 1

4r4(r + 1) (r2 + 1)

(
3 log

(
r2 + 1

)
+ π(r + 1)

(
r2 + 1

) (
r4 − 3

)

+
(
r(r + 1)

(
r4 + r2 − 3

)
− 3
)
r (2 log(r + 1)

− log
(
r2 + 1

))
− 2(r + 1)

(
r2 + 1

) (
r4 − 3

)
tan−1(r)

−2
(
2r4 + r3 + r2 + r + 3

)
r2 − 6 log(r + 1)

)
. (5.76)

The explicit formula Eqs. (5.73) and (5.74) for the derivatives of g1 can be
combined to show that

r
((
r4 − 1

)
g′′1(r) + 3r

)
+
(
5r4 − 1

)
g′1(r) = 0 . (5.77)

This combination is proportional to formula (5.68) for Txy, therefore

Txy = 0 (5.78)

and there are no contributions proportional to v′.
Similarly one may evaluate the combination of functions that appears in

Try

r (2rg′1(r)− rv′′1(r)− v′1(r)) + 4v1(r) + 2 = 0 . (5.79)
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This implies that
Try = 0 (5.80)

leaving only Tty, the momentum in the y direction. Thus the bulk stress tensor
contains no stress, only momentum.

We may use the exact expressions for the functions g1 and v1 to simplify
the only nonvanishing component of the stress tensor [10]

Tty = − v′′(x)

16πGNb3r3
. (5.81)

Using the fundamental theorem of calculus, this may be integrated over the
interpolating region to obtain

∫ d

0

dx Tty = − v′

16πGNb3r3
(5.82)

where v′ is the derivative of the velocity in the region x > d. In particular, at
this leading order the integrated stress tensor of the surface layer is independent
of the interpolation and independent of d. Of course it still depends on the
map that we used to generate the dual metric.

Had the v′ term been the dominant contribution, the stress tensor would
have been constant, and so the integral would be have proportional to d.
Similarly a v(3) term would have led to a stress tensor proportional to 1/d, and
higher powers of v to other scalings. Therefore it is somewhat nontrivial that
the leading contribution to the integrated stress tensor is in fact d-independent.
Clearly this d-independence is desirable, as d is not a physical quantity but
merely an artifact of the scheme that we used to regularize the divergent second
derivative of the fluid velocity.

The bulk stress tensor does not satisfy any of energy conditions we discussed
in Sec. 4.1, not even the null energy condition. As the only nonvanishing
component is Tty, the only nonvanishing product of a null vector w and the
stress tensor is

w⊥Tw = 2wtTtyw
y. (5.83)

As Tty is already of order O(v), at order O(v) one need only consider the terms
in w of order O(v0). That is to say, w only needs to be null with respect to
the static black brane metric. Consider for example the null vectors w±

wt
± = r, wy

± = ±r

√
1− 1

b4r4
. (5.84)

The product (5.83) is

w⊥
±Tw± = ∓ v′′(x)

8πGNb3r

√
1− 1

b4r4
(5.85)
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which is nonzero. However w+ and w− yield opposite signs, as incidentally
do the two choices of signs of v. Therefore at least one of these will yield
a negative product, and so the bulk stress tensor does not satisfy the null
energy condition. This may or may not mean that no external matter may be
consistently added which produces such a surface layer.

5.3.2 Israel’s matching conditions on the gravity duals

We will now calculate the bulk stress tensor in a different geometry. Following
Ref. [11] and discussion in Sec. 4.4, we will consider the vacuum Einstein
solution corresponding to a static fluid on the left and that corresponding to
a linear velocity flow on the right. These solutions will be glued together
by interpolating continuously between the two metrics over a distance d and
taking the limit d → 0 such that the extrinsic curvature remains bounded.
In Ref. [11], Israel has shown that the resulting configuration contains two
solutions separated by a surface layer whose bulk stress tensor is independent
of the interpolation used.

Following Ref. [11], the first step in the calculation of the stress tensor is
the definition of the unit normal vector to the hyperplane

nµ = {0, r, 0, 0, 0} , (5.86)

which satisfies the normalization condition

nµg
µνnν =

1

r2
(nx)

2 = 1 . (5.87)

The surface layer Σ extends along all of the directions except for the x direction.
A basis of tangent vectors to Σ is

ds = e(i)dx
i (5.88)

where

e(t) = {1, 0, 0, 0, 0} (5.89)

e(y) = {0, 0, 1, 0, 0} (5.90)

e(z) = {0, 0, 0, 1, 0} (5.91)

e(r) = {0, 0, 0, 0, 1} . (5.92)

In terms of these tangent vectors the extrinsic curvature may be calculated as

Kij = e(j) · ∇jn =
∂nj

∂xi
− nmΓm,ji =

∂nj

∂xi
− nmΓ

m
ji . (5.93)
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On the left, where the fluid is static (v = 0), substituting (5.27) into (5.93)
one finds no extrinsic curvature K(−)

K
(−)
ty = −rΓx

ty = 0 (5.94)

K(−)
yr = −rΓx

yr = 0 . (5.95)

On the right, where the fluid velocity is linear, the Christoffel symbols of
Eq. (5.28) yield a nontrivial extrinsic curvature K(+).

K
(+)
ty = −rΓx

ty =
v′

2b4r3
(5.96)

K(+)
yr = −rΓx

yr =
v′

2r

(
1 + b2r2g′1(br)

)
. (5.97)

The tensor γij (4.48) is defined to be the difference between the extrinsic
curvatures on the two sides of the surface layer

γij = K
(+)
ij −K

(−)
ij . (5.98)

The bulk stress tensor integrated over x is equal to the tensor Sij, defined by

−8πGNSij = γij − gijγ
m
m . (5.99)

The expression (5.99) for the integrated bulk stress tensor was derived in
[11] for a 4-dimensional space with no cosmological constant. While several fac-
tors in the derivation change in our current 5-dimensional situation, Eq. (5.99)
remains unchanged. The cosmological constant term yields a contribution pro-
portional to the integral of Λ times the metric integrated over the thickness d
of the surface layer. As the metric is taken to be finite, this term vanishes in
the d → 0 limit.

The trace of γ is O(v2), therefore (5.99) yields the integrated bulk stress
tensor

Sty = − v′

16πGNb4r3
(5.100)

Syr = − v′

16πGNr

(
1 + b2r2g′1(br)

)
. (5.101)

These are equal to the integrals over the x direction1 of the stress tensors T (1)

of Subsec. 5.3.1 at order k = 1, in other words, without the v1 term that

1Note that, following Ref. [11], the measure of this integral must be that of x rescaled to
normal coordinates. Therefore the integral contains an additional factor of r =

√
gxx.
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entered into the metric (5.2.2) multiplied by v′′ [10]

T
(1)
ty = − v′′

16πGNb4r4
(5.102)

T (1)
yr = − v′′

16πGNr2
(
1 + b2r2g′1(br)

)
. (5.103)

The v1 terms arose from the dualization of the interpolating region, which did
not satisfy the equations of motion. It therefore cannot enter into the Israel
calculation, which uses only the solutions of the vacuum Einstein equations.
Indeed, the v1 terms in (5.2.2) are singular in the limit d → 0 as v′′ diverges
as 1/d, and therefore the boundedness of the extrinsic curvature assumed in
Israel’s derivation fails for the metric interpolation (5.2.2).

Like the stress tensor (5.81) calculated by interpolating the hydrodynamic
flow, the Israel stress tensor does not satisfy the null energy conditions. Again,
to linear order in v, one may consider vectors which are null with respect to the
static black brane metric. Therefore, again one may consider the null vectors
w± of Eq. (5.84). As Tty is, at least for any finite d, equal to that of Subsec. 5.3.1
divided by the positive combination br, the sign of the inner product (5.85) is
unchanged. Therefore the null energy condition is also violated by this stress
tensor.

The main difference between the two stress tensors is then that Tyr does
not vanish for the Israel tensor. Remembering that in our Gaussian null coor-
dinates the r direction is the sum of a spatial and temporal piece, the spatial
component implies that there is a nonzero stress. More precisely, while both
Israel’s thin surface layer and the thick fluid surface layer have a nonvanishing
y momentum, the Israel surface layer also has a flux of this y momentum in
the radial direction, from the boundary into the horizon of the black brane.
As the black brane is infinite in the x direction, this is not problematic for the
time-independence of the solution.



Conclusions & future directions

Turbulence often arises as a result of the boundary conditions placed on a fluid.
As a preliminary step towards an understanding of turbulence in gravity, we
have proposed two gravitational duals of such boundaries. Both of these duals
involve the addition of a surface layer of matter, with a certain stress tensor.
These proposals are in a sense trivial, as the dynamics of the duals is defined
not by any known equations of motion, but by the duality map itself. It remains
to be shown whether such matter can exist. For example, even if the equations
of motion which it obeys can be found, the existence of a UV completion of
the matter theory may be fundamentally obstructed as in Ref. [68]. Or the
failure of the null energy condition may imply that, whatever the ultraviolet
theory may be, the wall simply disintegrates before it has any significant effect
on the fluid.

Of course, an ultraviolet completion is not necessarily a prerequisite for
learning something interesting about whatever the gravitational dual to tur-
bulence may be. After all, no ultraviolet completion of Einstein gravity is used
in this correspondence. The surface layer implies the existence of equations
of motion which are distinct from the Einstein vacuum equations and perhaps
pathological. However the interesting part of the fluid, the turbulent part, is
not at the wall. For example, if we consider the motion of a fluid in a pipe, the
flow may be turbulent throughout the interior of the pipe. The ultralocality
of the duality map implies that, at a distance greater than 1/T from the pipe,
the vacuum Einstein equations are still satisfied by the gravity dual. Thus in
a sense the ultralocality decouples the problem of understanding turbulence in
gravity from the problem of defining a gravity dual of a boundary.

Besides trying to characterize the gravitational dual of turbulent flow, the
other interesting question is to find the gravitational dual of the conditions
under which turbulence can occur. In nonrelativistic, incompressible flows,
turbulence is expected when the product of a system’s characteristic scale L
times the characteristic velocity v of a fluid is much greater than the kine-
matic viscosity. In Ref. [9], the authors claim that for the conformal fluids
dual to AdS black branes, turbulence is expected when LTv ≫ 1, where T



122 The Surface Layers Dual to Hydrodynamic Boundaries

is the temperature of the fluid. The AdS/hydrodynamics correspondence is
expected to be reliable at scales L such that LT ≫ 1. Therefore since v < 1,
it appears that whenever turbulence is expected, LT > LTv ≫ 1 and so the
correspondence can be trusted at least for quantities that vary over a distance
L. (3 + 1)-dimensional turbulence is characterized by vortices of various sizes
from L down to the dissipation scale [8]. Thus the duality appears to be reli-
able at least for the largest vortices in a turbulent flow. The dissipation scale
is a function of L, T and v, and so in principle one may determine whether or
not the duality is reliable for vortices all of the way down to this scale and so
for the entire flow.

Understanding the gravity duals of turbulent flows, as described above,
may yield new insights into the dynamics of black branes in AdS space, per-
haps revealing a surprising difference between branes in AdS4 and AdS5, or
indicating that generically they come with funnels attached as in Refs. [69].
The main weakness of this program is the dependence on asymptotically AdS
geometry in the duality map of Ref. [4]. There was no such restriction in the
original correspondence of Ref. [2], nor in other identifications of black holes
and viscous fluids such as the blackfold program of Refs. [70, 71] and the Wilso-
nian identification of Ref. [72]. An extension of turbulence to asymptotically
Minkowski space could relate (3+1)-dimensional fluid dynamics to wealth of
studies of asymptotically Minkowski 5d black objects, such as Refs. [73]. More
importantly, relaxing the asymptotically AdS condition may mean that fluid
mechanics, perhaps in only 2+1 dimensions, has something to teach us about
real world gravity.



Appendix A

Conventions & Notation

We work in the (− + + . . .) signature. µ, ν denote space-time indices, i, j =
1 . . . k label the k different conserved charges. The dimension of the spacetime
in which the conformal fluid lives is denoted by d. In the context of AdS/CFT,
the dual AdSd+1 space has d+ 1 spacetime dimensions.

We adopt standard symmetrization and anti-symmetrization conventions.
For any tensor Fab we define the symmetric part as

F(ab) =
1

2
(Fab + Fba) (A.1)

and the anti-symmetric part as

F[ab] =
1

2
(Fab − Fba) . (A.2)

We also use D to indicate the velocity projected covariant derivative:

D ≡ uµ∇µ . (A.3)

For any two tensor T µν we denote the symmetric traceless projections trans-
verse to the velocity field as:

T 〈µν〉 = P µα P νβ T(αβ) −
1

d− 1
P µν P αβ Tαβ . (A.4)

A.1 Integral functions

We list in the following the two different conventions on integral functions
entering in the second order metric dual to fluid solutions on the boundary.
The definitions adopted in many works (e.g. [5]) are
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F (br) ≡
∫ ∞

br

yd−1 − 1

y(yd − 1)
dy, (A.5)

H1(br) ≡
∫ ∞

br

yd−2 − 1

y(yd − 1)
dy, (A.6)

H2(br) ≡
∫ ∞

br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−3dy
[
1 + (d− 1)yF (y) + 2y2F ′(y)

]
(A.7)

=
1

2
F (br)2 −

∫ ∞

br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−2 − 1

y(yd − 1)
dy, (A.8)

K1(br) ≡
∫ ∞

br

dξ

ξ2

∫ ∞

ξ

dy y2F ′(y)2, (A.9)

K2(br) ≡
∫ ∞

br

dξ

ξ2
[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+
(
2(d− 1)ξd − (d− 2)

) ∫ ∞

ξ

dy y2F ′(y)2
]
, (A.10)

L(br) ≡
∫ ∞

br

ξd−1dξ

∫ ∞

ξ

dy
y − 1

y3(yd − 1)
. (A.11)

Definitions adopted in [34] are

g1(br) ≡
∫ ∞

br

yd−1 − 1

y(yd − 1)
dy, (A.12)

g2(br) ≡ 2 (rb)2
∫ ∞

br

dξ

ξ2

∫ ∞

ξ

dy y2F ′(y)2, (A.13)

g3(br) ≡ (br)2
∫ ∞

br

yd−2 − 1

y(yd − 1)
dy, (A.14)

g4(br) ≡ (br)2
∫ ∞

br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−3dy
[
1 + (d− 1)yF (y) + 2y2F ′(y)

]

(A.15)

v1(br) ≡
2

(br)d−2

∫ ∞

br

ξd−1dξ

∫ ∞

ξ

dy
y − 1

y3(yd − 1)
. (A.16)

v2(br) ≡
1

2 (br)d−2

∫ ∞

br

dξ

ξ2
[
1− ξ(ξ − 1)F ′(ξ)− 2(d− 1)ξd−1

+
(
2(d− 1)ξd − (d− 2)

) ∫ ∞

ξ

dy y2F ′(y)2
]
, (A.17)

and therefore one can easily move across definitions noticing that
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g1(br) = F (br), g2(br) = 2 (rb)2K1(br),

g3(br) = (br)2H1(br), g4(br) = (br)2H2(br),

v1(br) =
2

(br)d−2
L(br), v2(br) =

1

2 (br)d−2
K2(br). (A.18)

A.2 List of symbols adopted

We summarise in table A.1 some of the symbols we adopted. The relevant
equations defining symbols are denoted by their respective equation numbers
appearing inside parenthesis.

Symbol Definition Symbol Definition
d dimensions of spacetime p, p Pressure
s Proper entropy density ρ Energy density
T Fluid temperature µI Chemical potentials of the fluid
ζ Bulk viscosity η Shear viscosity measured at
qI charge density zero shear and vorticity
γ̃I Contr. en. density to charge curr. ℧I Pseudo-vector transport coeff.

κ̃IJ Matrix of charge diffusion coeff.
T µν Energy-momentum tensor Jµ

S Entropy current
Jµ
i Charge currents uµ Fluid velocity (uµuµ = −1)

gµν Spacetime metric Pµν Projection tensor, gµν + uµuν

aµ Fluid acceleration (2.15), (2.40) ϑ Fluid expansion (2.14), (2.40)
σµν Shear strain rate (5.7) and (2.40) ωµν Fluid vorticity (2.17), (2.40)
ℓµ See (2.23) and (2.40)
Dµ Weyl-cov. deriv. (2.43) and 2.44) Aµ See (2.48)
∇µ Lorentz-covariant derivative Γµν

λ Christoffel connection
Rµνλ

σ Riemann Curvature Rµνλ
σ See(2.52)

Fµν ∇µAν −∇νAµ R See (2.56)
Rµν , R Ricci tensor/scalar Rµν See (2.56)

Gµν Einstein tensor Cµνλσ , Weyl Curvature (2.58)
Sµν , Schouten tensor (2.59) Cµνλσ See (2.58)
Sµν See (2.59) T

µν
i See Table 2.1

Table A.1: List of principal symbols & definitions adopted.
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d’Etat, Université Pierre et Marie Curie, Paris VI, 1979. available (see
files these1.pdf to these6.pdf) on http://www.ihes.fr/˜damour/Articles/

[3] S. W. Hawking and J. B. Hartle, “Energy And Angular Momentum Flow
Into A Black Hole,” Commun. Math. Phys. 27 (1972) 283.

[4] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani,
“Nonlinear Fluid Dynamics from Gravity,” JHEP 0802 (2008) 045
[arXiv:0712.2456 [hep-th]].

[5] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and
A. Sharma, “Conformal Nonlinear Fluid Dynamics from Gravity in Arbi-
trary Dimensions,” JHEP 0812 (2008) 116 [arXiv:0809.4272 [hep-th]].

[6] A. M. Polyakov, “Conformal turbulence,” arXiv:hep-th/9209046.

[7] V. A. Belinsky, I. M. Khalatnikov and E. M. Lifshitz, “Oscillatory ap-
proach to a singular point in the relativistic cosmology,” Adv. Phys. 19
(1970) 525.

[8] L.F. Richardson, “Weather Prediction by Numerical Process.” Cam-
bridge: Cambridge University Press, 1922.

[9] S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri,
S. P. Trivedi and S. R. Wadia, “Forced Fluid Dynamics from Gravity,”
JHEP 0902 (2009) 018 [arXiv:0806.0006 [hep-th]].

[10] J. Evslin and G. Ricco, arXiv:1009.0175 [hep-th].



128 BIBLIOGRAPHY

[11] W. Israel, “Singular hypersurfaces and thin shells in general relativity,”
Nuovo Cim. B 44S10 (1966) 1 [Erratum-ibid. B 48 (1967) 463] [Nuovo
Cim. B 44 (1966) 1].

[12] R. Penrose, “Gravitational collapse: The role of general relativity,” Riv.
Nuovo Cim. 1 (1969) 252 [Gen. Rel. Grav. 34 (2002) 1141].

[13] D. Christodoulou, “Reversible and irreversible transforations in black hole
physics,” Phys. Rev. Lett. 25 (1970) 1596.

[14] D. Christodoulou and R. Ruffini, “Reversible transformations of a charged
black hole,” Phys. Rev. D 4 (1971) 3552.

[15] S. W. Hawking, “Gravitational radiation from colliding black holes,”
Phys. Rev. Lett. 26 (1971) 1344.

[16] J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black
hole mechanics,” Commun. Math. Phys. 31 (1973) 161.

[17] R. S. Hanni and R. Ruffini, “Lines of Force of a Point Charge near a
Schwarzschild Black Hole,” Phys. Rev. D 8 (1973) 3259.

[18] T. Damour, “Black Hole Eddy Currents,” Phys. Rev. D 18 (1978) 3598.

[19] T. Damour, in: “Surface Effects in Black Hole Physics”; Proceedings of
the Second Marcel Grossmann Meeting on General Relativity, (edited by
R. Ruffini, North Holland, 1982) pp 587-608; available (see file surfaceef-
fects.pdf) on http://www.ihes.fr/˜damour/Articles/

[20] R. D. Blandford and R. L. Znajek, “Electromagnetic Extractions Of En-
ergy From Kerr Black Holes,” Mon. Not. Roy. Astron. Soc. 179 (1977)
433.

[21] K. S. . Thorne, R. H. . Price and D. A. . Macdonald, “Black holes: the
membrane paradigm,” New Haven, USA: Yale Univ. Pr. (1986) 367p

[22] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333.

[23] S. W. Hawking, “Particle Creation By Black Holes,” Commun. Math.
Phys. 43 (1975) 199 [Erratum-ibid. 46 (1976) 206].

[24] T. Damour and R. Ruffini, “Black Hole Evaporation In The Klein-Sauter-
Heisenberg-Euler Formalism,” Phys. Rev. D 14 (1976) 332.

[25] T. Damour, “The entropy of black holes: A primer,” arXiv:hep-
th/0401160.



BIBLIOGRAPHY 129

[26] E. Gourgoulhon, “A generalized Damour-Navier-Stokes equation ap-
plied to trapping horizons,” Phys. Rev. D 72 (2005) 104007 [arXiv:gr-
qc/0508003].

[27] E. Gourgoulhon and J. L. Jaramillo, “A 3+1 perspective on null hyper-
surfaces and isolated horizons,” Phys. Rept. 423 (2006) 159 [arXiv:gr-
qc/0503113].

[28] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly inter-
acting quantum field theories from black hole physics,” Phys. Rev. Lett.
94 (2005) 111601 [arXiv:hep-th/0405231].

[29] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum
Field Theory,” Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240
[hep-th]].

[30] C. Fefferman, “Existence and smoothness of the Navier-Stokes equation”,
Clay Millenium Problems (2000).

[31] L. Landau and E. Lifshitz, “Fluid Mechanics: Course of Theoretical
Physics”, Vol. 6, Butterworth-Heinemann, 1965.

[32] N. Andersson and G. L. Comer, “Relativistic fluid dynamics: Physics
for many different scales,” Living Rev. Rel. 10 (2005) 1 [arXiv:gr-
qc/0605010].

[33] S. Weinberg, “Gravitation and Cosmology, Principle and applications of
the General Theory of Relativity”, John Wiley & Sons, 1972.

[34] rang M. Rangamani, “Gravity and Hydrodynamics: Lectures on the
fluid-gravity correspondence,” Class. Quant. Grav. 26 (2009) 224003
[arXiv:0905.4352 [hep-th]].

[35] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, “Fluid dynamics
of R-charged black holes,” JHEP 0901 (2009) 055 [arXiv:0809.2488 [hep-
th]].

[36] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Lo-
ganayagam and P. Surowka, “Hydrodynamics from charged black branes,”
arXiv:0809.2596 [hep-th].

[37] S. Bhattacharyya, S. Minwalla and S. R. Wadia, “The Incompress-
ible Non-Relativistic Navier-Stokes Equation from Gravity,” JHEP 0908
(2009) 059 [arXiv:0810.1545 [hep-th]].



130 BIBLIOGRAPHY

[38] J. M. Maldacena, “The large N limit of superconformal field theories and
supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys.
38, 1113 (1999)] [arXiv:hep-th/9711200].

[39] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory cor-
relators from non-critical string theory,” Phys. Lett. B 428, 105 (1998)
[arXiv:hep-th/9802109].

[40] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math.
Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[41] M. Van Raamsdonk, “Black Hole Dynamics From Atmospheric Science,”
JHEP 0805, 106 (2008) [arXiv:0802.3224 [hep-th]].

[42] S. Bhattacharyya et al., “Local Fluid Dynamical Entropy from Gravity,”
JHEP 0806, 055 (2008) [arXiv:0803.2526 [hep-th]].

[43] S. Dutta, “Higher Derivative Corrections to Locally Black Brane Metrics,”
JHEP 0805, 082 (2008) [arXiv:0804.2453 [hep-th]].

[44] R. Loganayagam, “Entropy Current in Conformal Hydrodynamics,”
JHEP 0805, 087 (2008) [arXiv:0801.3701 [hep-th]].

[45] M. Haack and A. Yarom, “Nonlinear viscous hydrodynamics in various
dimensions using AdS/CFT,” JHEP 0810 (2008) 063 [arXiv:0806.4602
[hep-th]].

[46] A. Chamblin, S. W. Hawking and H. S. Reall, “Brane-World Black Holes,”
Phys. Rev. D 61, 065007 (2000) [arXiv:hep-th/9909205].

[47] P. Benincasa, A. Buchel, M. P. Heller and R. A. Janik, “On the supergrav-
ity description of boost invariant conformal plasma at strong coupling,”
Phys. Rev. D 77, 046006 (2008) [arXiv:0712.2025 [hep-th]].

[48] A. Buchel and M. Paulos, “Second order hydrodynamics of a CFT
plasma from boost invariant expansion,” Nucl. Phys. B 810, 40 (2009)
[arXiv:0808.1601 [hep-th]].

[49] M. Henningson and K. Skenderis, “The holographic Weyl anomaly,”
JHEP 9807 (1998) 023 [arXiv:hep-th/9806087].

[50] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter
gravity,” Commun. Math. Phys. 208 (1999) 413 [arXiv:hep-th/9902121].



BIBLIOGRAPHY 131

[51] P. M. Chesler and L. G. Yaffe, “Horizon formation and far-from-
equilibrium isotropization in supersymmetric Yang-Mills plasma,” Phys.
Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053 [hep-th]].

[52] J. J. Friess, S. S. Gubser, G. Michalogiorgakis and S. S. Pufu, “Expand-
ing plasmas and quasinormal modes of anti-de Sitter black holes,” JHEP
0704, 080 (2007) [arXiv:hep-th/0611005].

[53] P. Figueras, V. E. Hubeny, M. Rangamani and S. F. Ross, “Dy-
namical black holes and expanding plasmas,” JHEP 0904, 137 (2009)
[arXiv:0902.4696 [hep-th]].

[54] S. W. Hawking and G. F. R. Ellis, “The Large scale structure of space-
time,” Cambridge University Press, Cambridge, 1973

[55] R. M. Wald, “General Relativity,” Chicago, Usa: Univ. Pr. ( 1984) 491p

[56] S. D. H. Hsu, A. Jenkins and M. B. Wise, “Gradient instability for w¡-1,”
Phys. Lett. B 597 (2004) 270 [arXiv:astro-ph/0406043].

[57] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, “Null energy condi-
tion and superluminal propagation,” JHEP 0603 (2006) 025 [arXiv:hep-
th/0512260].

[58] R. V. Buniy and S. D. H. Hsu, “Instabilities and the null energy condi-
tion,” Phys. Lett. B 632 (2006) 543 [arXiv:hep-th/0502203].

[59] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” San Fran-
cisco 1973, 1279p

[60] S. Khlebnikov, M. Kruczenski and G. Michalogiorgakis, “Shock waves in
strongly coupled plasmas,” arXiv:1004.3803 [hep-th].

[61] J. Evslin and C. Krishnan, “Vortices in (2+1)d Conformal Fluids,”
arXiv:1007.4452 [hep-th].

[62] N. Andersson and G. L. Comer, “Relativistic fluid dynamics: Physics
for many different scales,” Living Rev. Rel. 10 (2005) 1 [arXiv:gr-
qc/0605010].

[63] P. Creminelli, M. A. Luty, A. Nicolis and L. Senatore, “Starting the uni-
verse: Stable violation of the null energy condition and non-standard
cosmologies,” JHEP 0612 (2006) 080 [arXiv:hep-th/0606090].



132 BIBLIOGRAPHY

[64] R. H. Kraichnan, “Inertial ranges in two dimensional turbulence”, Phys.
Fluids 10 (1967) 1417-1423.

[65] J. C. McWilliams, “The vortices of two-dimensional turbulence,” J. of
Fluid Mech., 219 (1990) 361-385.

[66] A. N. Kolmogorov, “The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers”. Proceedings of the USSR
Academy of Sciences 30 (1941) 299-303.

[67] A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbu-
lence””. Proceedings of the USSR Academy of Sciences 32 (1941) 16-18.

[68] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi,
“Causality, analyticity and an IR obstruction to UV completion,” JHEP
0610 (2006) 014 [arXiv:hep-th/0602178].

[69] V. E. Hubeny, D. Marolf and M. Rangamani, “Black funnels and
droplets from the AdS C-metrics,” Class. Quant. Grav. 27 (2010) 025001
[arXiv:0909.0005 [hep-th]].

[70] R. Emparan, T. Harmark, V. Niarchos and N. A. Obers, “Essentials of
Blackfold Dynamics,” JHEP 1003 (2010) 063 [arXiv:0910.1601 [hep-th]].

[71] R. Emparan, T. Harmark, V. Niarchos and N. A. Obers, “New Horizons
for Black Holes and Branes,” JHEP 1004 (2010) 046 [arXiv:0912.2352
[hep-th]].

[72] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, “Wilsonian Approach
to Fluid/Gravity Duality,” arXiv:1006.1902 [hep-th].

[73] R. Emparan and H. S. Reall, “A rotating black ring in five dimen-
sions,” Phys. Rev. Lett. 88, 101101 (2002) [arXiv:hep-th/0110260].
A. A. Pomeransky and R. A. Sen’kov, “Black ring with two angular
momenta,” arXiv:hep-th/0612005. H. Elvang and P. Figueras, “Black
Saturn,” JHEP 0705, 050 (2007) [arXiv:hep-th/0701035]. J. Evslin and
C. Krishnan, “Metastable Black Saturns,” JHEP 0809, 003 (2008)
[arXiv:0804.4575 [hep-th]]. H. Iguchi and T. Mishima, “Black di-ring and
infinite nonuniqueness,” Phys. Rev. D 75, 064018 (2007) [Erratum-ibid.
D 78, 069903 (2008)] [arXiv:hep-th/0701043]. J. Evslin and C. Krish-
nan, “The Black Di-Ring: An Inverse Scattering Construction,” Class.
Quant. Grav. 26, 125018 (2009) [arXiv:0706.1231 [hep-th]]. K. Izumi,
“Orthogonal black di-ring solution,” Prog. Theor. Phys. 119, 757 (2008)
[arXiv:0712.0902 [hep-th]]. H. Elvang and M. J. Rodriguez, “Bicycling



BIBLIOGRAPHY 133

Black Rings,” JHEP 0804, 045 (2008) [arXiv:0712.2425 [hep-th]]. R. Em-
paran and H. S. Reall, “Black Holes in Higher Dimensions,” Living Rev.
Rel. 11, 6 (2008) [arXiv:0801.3471 [hep-th]]. J. Evslin, “Geometric En-
gineering 5d Black Holes with Rod Diagrams,” JHEP 0809, 004 (2008)
[arXiv:0806.3389 [hep-th]].


