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Abstract

More and more stringent and unique mission requirements motivate to ex-

ploring solutions, already in the preliminary mission analysis phase, going far

beyond the classical chemical-Keplerian approach.

The present dissertation deals with the analysis and the design of highly

non linear orbits arising both from the inclusion of different gravitational

sources in the dynamical models, and from the use of electric system for

primary propulsion purposes.

The equilibrium of different gravitational fields, on one hand, permits

unique transfer solutions and operational orbits, on the other hand, the high

thrust efficiency, characteristic of an electric device, reduces the propellant

mass required to accomplish the transfer. Each of these models, and even

better their combination, enables trajectories able to satisfy mission require-

ments not otherwise met, first of all to reduce the propellant mass fraction

of a given mission.

The inclusion of trajectory arcs powered by an electric thruster, providing

a low thrust for extended duration, makes essential the use of optimal control

theory in order to govern the thrust law and thus design the required transfers

so as to minimizing/maximizing specific indexes.

The goal is, firstly, to review the possible advantages and the main limits

of dynamical models and, afterward, to define methodologies to preliminary

design non-Keplerian missions both in interplanetary contexts and in the

Earth-Moon system.

Special emphasis is given to the study of dynamical systems through

which the main features of the Circular Restricted Three Body Model (the

first one among the non-Keplerian models) can be identified, implemented

and used. Purely ballistic solutions enabled by this model are first indepen-

dently explored and after considered as target orbits for electric thrusting

phases.

Electric powered arcs are used to link ballistic phases arising from the bal-

ancing of different gravitational influences. This concept is applied both for

the exploration of planetary regions and for interplanetary transfer purposes.

Together with low thrust missions to selenocentric orbits designed taking into

account both the Earth and the Moon gravity, also transfer solutions toward

periodic orbits moving in the Earth-Moon region are presented. These are

designed considering electric thrusting arcs and ballistic segments exploring

for free specific space regions.

In brief, theoretical models deriving from dynamical system theory and

from optimal control theory are employed to design non conventional orbits

in non linear astrodynamics models.



Sommario

Requisiti di missione sempre più stringenti e particolari spingono ad esplorare

soluzioni, fin dalle fasi preliminari dell’analisi di missione, che vanno ben oltre

il classico approccio impulsivo-Kepleriano.

Il presente lavoro tratta l’analisi ed il progetto di orbite altamente non lin-

eari che emergono sia dall’inclusione di diverse fonti gravitazionali nel modello

dinamico, sia dall’impiego di sistemi primari di propulsione elettrici.

Da un lato l’equilibrio di più campi gravitazionali consente soluzioni di

trasferimento ed orbite operative uniche nel loro genere, dall’altro l’elevata

efficienza propulsiva, tipica di un propulsore elettrico, riduce la massa di

propellente necessaria per realizzare il trasferimento. Ognuno di questi due

modelli, ed ancor meglio la loro combinazione, definisce traiettorie in grado

di rispettare requisiti di missione non altrimenti soddisfabili, primo fra tutti

quello di ridurre la massa di propellente richiesta per una specifica missione.

L’inclusione di fasi della traiettoria propulse da un sistema elettrico, che

fornisce una bassa spinta per una durata prolungata, rende indispensabile la

teoria del controllo ottimo per governare la legge di spinta e quindi realizzare

il trasferimento minimizzando/massimizzando specifici indici.

L’obiettivo è, in primo luogo, quello di riesaminare i possibili vantaggi e

limiti di questi modelli dinamici per poi definire metodologie per la proget-

tazione preliminare di missioni non-Kepleriane sia in contesti interplanetari

che nel sistema Terra-Luna.

Particolare enfasi viene data allo studio dei sistemi dinamici mediante

il quale le principali caratteristiche del Modello Ristretto a Tre Corpi (il

primo fra i modelli non-Kepleriani) possono essere identificate, implementate

e quindi sfruttate. Le soluzioni balistiche che derivano da questo modello sono

esplorate dapprima in maniera indipendente e successivamente considerate

come orbite obiettivo per fasi propulse.

Archi propulsi elettricamente sono utilizzati per connettere fasi di volo

balistico che nascono dal bilanciamento di diverse influenze gravitazionali.

Tale concetto viene applicato sia per l’esplorazione di regioni planetarie che

per trasferimenti interplanetari. Assieme a missioni a bassa spinta verso

orbite selenocentriche progettate considerando sia l’attrazione gravitazionale

della Terra che della Luna, sono presentate anche soluzioni per trasferimenti

verso orbite periodiche che si muovono nel sistema Terra-Luna. Queste ultime

sono costruite considerando archi di volo propulso e fasi balistiche che portano

naturalmente ad esplorare specifiche regioni dello spazio.

In breve, strumenti derivanti dalla teoria dei sistemi dinamici e dalla

teoria del controllo ottimo sono impiegati al fine di progettare missioni non

convenzionali in modelli astrodinamici non lineari.
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Chapter 1
Introduction

The trajectory design is a constitutive part of each space mission and it is one

of the basic aspects since the preliminary mission planning phase. The fulfill-

ment of all the mission targets results only by an adequate mission analysis

and design, usually aimed at saving as much spacecraft resources as possible

to accomplish the required path. The mission goals and the probe perfor-

mance are the main mission analysis driving factors. The trajectory provides

several fundamental parameters (e.g. propellant mass fraction, transfer time,

radiation absorbtion dose, illumination conditions and so on) required for the

complete system design. This results in an iterative process where the mission

analysis plays a fundamental role, in depth it is constrained and constrains

the scientific payload and the overall mission architecture.

1.1 Non-Keplerian Trajectories

The modern space mission concepts are becoming more and more ambitious.

Mission requirements, costs, duration, payload constraints and so on, evolve

requiring trajectories more challenging and complex.

This can be faced by “violating” the two body assumptions and going

beyond classical models for a clever exploitation of the dynamical environ-

ment ruling the motion of the spacecraft. Taking into account, beside the

main gravity force source, all the forces acting on the spacecraft, results in

highly non linear dynamics. Although the nature of the perturbing accelera-

tions can be extremely various, additional gravitational influences and small

magnitude propulsion forces are sufficiently powerful and useful to design un-

conventional missions. An adequate exploitation of one of these two forces,

or, even better of their combination, can result in innovative trajectories

able to satisfy specific mission concepts, e.g. extremely low propellant usage,
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specific illumination conditions or unique space locations.

From a propulsion point of view, space trajectories can be basically di-

vided into three main classes. The first one are ballistic trajectories, where

the on board propulsion subsystem does not play any role and only the nat-

ural dynamical environment drives the probe. Then there are high thrust

trajectories, where the spacecraft propulsion subsystem is able to give an

almost instantaneous impulse (much shorter than the mission duration) and

much stronger than the local gravity force. This impulse is usually provided

by means of a chemical thruster while, before and after, only the natural dy-

namics act on the probe. Thirdly, also the so called Low Thrust Trajectories

have to be considered, where the propulsion subsystem acts for times of the

same order of the whole mission duration providing an acceleration with a

magnitude comparable with the local gravity. In this last case it is clear that

the path of the probe is defined not just by the natural dynamics, but also by

the active control given by the low thrust engine. Due to the current power

generation performance, these small accelerations are typically provided by

electric thrusters.

Historically, high thrust missions have been widely used; they represent

the origin of the space exploration. Recently, however, low thrust missions

are becoming more popular as they demand mass consumptions smaller than

chemical thrusters to obtain the same total mission impulse. Nevertheless

they usually require longer transfer times and need to be carefully designed

already in the preliminary mission phase.

In the design of such trajectories the optimization plays a fundamental

role, as it has to satisfy the mission requirements and it has to provide a

criterion to choose a specific path among all the possible choices, the one

minimizing or maximizing specific performance indexes. Such as the transfer

time, usually longer when a low thrust strategy is adopted, or the propellant

mass, usually higher when a chemical thruster is considered. The propellant

mass is directly related to the specific characteristics of the thruster employed

and it influences the whole spacecraft mass, especially at launch.

On the other side, the gravity is the main force always acting on the probe,

independently of its on-board propulsion capabilities. All bodies act at the

same time on each point of the space by means of their gravity field that

obeys (as the Newton universal gravitation law states) to the inverse-square

law. This determines the orbits of any natural body and, from a mission

analyst’s point of view, the main forces acting on the probe.

The historical approach of classical celestial mechanics is to study the

motion of a body subject to just one gravity field at a time. The closest

and/or more massive body is the responsible of the gravity field and the re-
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sulting equations of motion can be integrated in closed form. This is the

Keplerian model that still remains the main choice for classical preliminary

mission analysis. However, in this way all the other gravity effects have to be

compensated, as they represent deviations from the nominal path. Moreover

with this approach only conic orbits (resulting from the Keplerian model)

can be designed and many of the advantages of the real dynamical environ-

ment can not be identified nor exploited. The actual main limit is that the

Keplerian model is not suitable for the design of trajectories characterized

by extended arcs where two or more gravitational accelerations balance.

The next natural step is to consider not just one attractor, but at least

a couple of them. This can be done by taking into account a center body

and a gravitational perturbation, or considering simultaneously two massive

attractors. In this way, also when applying several simplifications (leading to

the so called Circular Restricted Three Body Problem) the resulting equations

of motion can not be integrated anymore. Dynamical system theory can be

exploited to describe many features that result very useful both for transfer

purposes and for nominal operational orbits. Just as an example, closed

orbits around massless points can be found in this case; something completely

impossible with the Keplerian approach.

One step further, with increasing complexity, is to consider in the circular

restricted three body model another attractor acting as gravitational pertur-

bation, this is the idea of the Four Body Models (e.g. BiCircular Model).

It is worth nothing that also the application of the classic Patched Conic

Approach is a preliminary step toward the inclusion of more than one gravity

field. In fact, the changing of the main body at a given point, is just a way

to consider more than a single attractor during the mission (although not at

the same time) and this is very useful to design close passages with massive

bodies.

There are, however, several other influences acting with significant mag-

nitude on specific orbits; these are effects like Sun radiation pressure, bodies

oblateness, drag and so on. All of these, although crucial for real mission ap-

plications, can be neglected in the preliminary mission analysis phase. This

applies unless the specific application is heavily affected by one of these per-

turbations; for instance the atmospheric drag can not be neglected for a

low Earth orbit, not even in preliminary analyses. However, these cases are

not investigated in the present work, while special emphasis is given to the

consequences of gravitational perturbations.

For instance, in these sophisticated frameworks it is possible to highlight

methods to gain energy without any use of the on-board propulsion resources.

The so called Resonant configurations arise, where the spacecraft and the
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perturber mean motion are coupled. These are very useful as can be used

to “steal” a bit of the energy of the perturbing body for extended times and

properly modify the orbit when the spacecraft is still far from the origin of

perturbation, i.e. from a planet/moon. On the other hand, when the probe

and the perturber are much closer than the probe and the main attractor,

this “energy-stealing” process is modeled by the classical swing-by concept

and thus by means of the patched conic approach.

These innovative approaches take advantages of the nonlinearities arising

by considering a N -body dynamics. The idea is to exploit such dynamics,

including their chaotic aspects, to design missions neither conceivable with

the classical celestial mechanics methods or transfers less expensive (with

respect to a given performance parameter) than the standard ones. These so

called Low Energy Trajectories require, typically, a total velocity change for

the whole mission smaller than a two body (like Homann or Patched Conics)

approach. This is the basic reason motivating the exploitation of multi body

regimes, as the combined influences of more gravity forces can reduce the

spacecraft on-board resources to be allocated to accomplish a given task.

All in all, the classic mission analysis approach employs a Keplerian model

with impulsive transfers and it is still a natural benchmark for each space

mission. Nevertheless more complete dynamics, like Three (or more) Body

Models, possibly coupled with electric thrusting arcs, give rise to completely

new mission analysis concepts, Non-Keplerian Trajectories, that can be ex-

plored in order to improve specific mission aspects.

This innovative approach has in the low thrust propulsion scheme its

technological innovation and in the more bodies models a better exploitation

of the natural forces acting on the probe. This combination is often referred

as Low Energy - Low Thrust missions.

1.2 Mission Analysis Trends

Already in the seventies the space exploration began to employ innovative

concepts based on non-Keplerian models with approaches able to satisfy novel

mission requirements[1]. The goal of this section is not to give a complete

list of all the non classical missions, but to give an idea of the trend in the

mission analysis from the seventies on.

The first real application involving a non-Keplerian orbit dates back to

the late seventies. The mission ISEE-3 was sent to a periodic orbit around

a Sun-Earth libration point to investigate about the interaction of the solar

wind and the Earth magnetosphere[1]. This point is an equilibrium point

between the Sun and Earth gravity approximately located 1.5e6 km far from

the Earth. Many others missions were planned and flew towards libration
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point orbits, like the WIND[2] or WMAP and others are in operation or

under investigation like SOHO, JWST, GAIA and LISA Pathfinder[1][3]. The

unique positions of these libration points are particularly appealing; they are

quite far from the physical perturbations of a massive body (e.g. tides or

drag), have quasi constant Earth distance for communications and can easily

satisfy requirements of constant Sun illumination/shielding[3].

Nevertheless, only in 1990 there was the first transfer designed consid-

ering non-Keplerian models. The idea of Sun perturbed trajectories and

weak capture was used to rescue the Japanese mission HITEN that reached

successfully the Moon[4]. More sophisticated methods, borrowed from the

dynamical field theory, were lately used to carefully design other non con-

ventional missions[5], like the GENESIS, designed to reach a periodic orbit

around a Sun-Earth libration point to collect samples of solar winds and

bring them back on Earth[6]. The whole path was completed with less that

100 m/s of deterministic chemical impulse since ballistic trajectories, enabled

by the balancing of Sun and Earth gravity fields, were exploited[6].

Although in the beginning the electric thrusters were used only for station-

keeping and small maneuvers, many missions equipped with an electric device

as main propulsion system were successfully launched. The first interplan-

etary probe powered by an electric device was the NASA Deep-Space 1[7],

launched in 1998. This probe exploited an ion thruster to reach the asteroid

Braille and subsequently the comet Borrelly. After this mission, many others

low thrust equipped missions were planned and launched, like the asteroid

sample return mission Hayabusa or the ongoing DAWN towards the main

asteroid belt[7]. Of course, beside these, there are also missions equipped (or

foreseen to be) with electric thruster for drag compensation, control systems

or fine pointing, like GOCE, GAIA or LISA[3][8].

Finally, also the combination of these two innovative mission approaches

has been employed in the SMART-1 mission[7], a small mission for advanced

research in technology that reached the Moon in 2006 using an electric Hall

effect thruster and Moon resonances[8]. Moreover, the same combination

is still under investigation for the Bepi Colombo mission, an interplanetary

mission towards Mercury. Its trajectory is conceived by employing low thrust

arcs in combination with several gravity assists and a final ballistic capture

at the Mercury arrival[3][8].

Thus, more and more missions were and are planned by directly consid-

ering completely non-Keplerian approaches. This gives an idea of the current

approaches to non conventional mission analysis and design; nevertheless, the

classical Keplerian model coupled with chemical impulses remains a valuable

working option.
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1.3 Goal and Outline

The goal of the present work is to combine the low energy and the low thrust

concept. This is done by exploring the relevant features of the underlying

dynamical models together with control theory elements before to address

several specific applications. A theoretical understanding is mandatory before

considering particular mission applications that represent test cases of the

capabilities of these non canonical mission analysis schemes.

The applications presented make use, depending on the case, of more

than one gravity fields and/or low thrust propulsion strategies. Several ap-

plications are presented, both restricted to planet-moon systems, and in the

interplanetary framework. These applications must be intended as design

methodologies for non-Keplerian missions in initial mission design phases.

Thus, the main outcome of the present work is to provide design schemes for

low thrust transfers in dynamical regimes ruled by more than one body.

As said, when a low thrust scheme is involved, the optimization of the

thrust law becomes a fundamental part of the trajectory design, so these ap-

plications have to be intended as optimal solutions, at least locally. Actually,

the main aim is to design feasible solutions in complicated dynamical models

and this means that the resulting transfers do not represent the absolute min-

ima for a specific problem. They are, instead, feasible solutions minimizing,

into a suitable neighborhood of solutions, a specific performance index.

Employing dynamical system theory, the main features of the restricted

three body model are deviated and computed before to be used in practical

mission design concepts. The work is not supposed to give detailed theoreti-

cally explanations, but an overview of the main theoretical tools required to

model such a kind of trajectories.

In the second Chapter the dynamics of the circular restricted three body

model are derived from the general N -body model and are analyzed. In the

Chapter three several useful characteristics of this model are derived from

theoretical analyses and framed in mission analysis contexts. In the fourth

Chapter elements of the control theory are given and applied to two/three

body basic examples. In the Chapter five two applications of non-Keplerian

mission analysis are presented in a planetary-moon realm and for an inter-

planetary transfer, while in the sixth Chapter low thrust missions in the

Earth-Moon circular restricted three body system are proposed.



Chapter 2
Dynamical Models

In the beginning of space exploration, chaos used to be considered as an

undesirable side effect in the design of any space mission. This happened

because the extreme sensitivity to any change in the initial conditions makes

hard to predict the trajectory flowing and imposes strict requirements on the

mission control. However, it was soon realized[9][10] that it is possible to take

advantage from chaotic behaviors to design a space path. This results in low

energy trajectories, usually requiring long orbital arcs to patch together ex-

tremely carefully. They involve many parameters to tune and are difficult to

model with the classical celestial mechanics approaches. Thus, the discovery

of the chance to control the chaos opened a wide range of possibilities and new

approaches in the celestial mechanics. All of these non-Keplerian approaches

are enabled by models far beyond the classical two body model. The circular

restricted three body model is the fundamental more-body setting enabling

a wide set of non conventional orbits and providing a theoretical background

to understand them.

In this chapter a survey of the dynamical models used through the whole

work is given. The basic characteristics of the N -body model are outlined

together with its main limitations for an analytical approach. Thus, the

three body model, in its full version and with the introduction of the re-

stricted hypothesis is introduced. For this model the equations of motion,

the stationary points and the constant of the motion are derived in construc-

tive ways. Finally, also an overview of the complex dynamics arising in the

model is presented in order to use this theoretical background in the following

chapters.

The general definition of the N -body model, its features and its specifi-

cation to the case of three masses follows[11][12]. The fundamental reference

for the circular restricted three body model is[13], furthermore the derivations
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presented follow also[14][15]. For the dynamical system section the read can

refer to[16].

2.1 The N-body Problem

The Newton inverse square law is the foundation of each model to study the

motion of a body in space. The main force always acting in any point of

the space is the gravity; it is always attractive, directly proportional to the

bodies masses and inversely to the square of their distance.

Let us considerN bodies moving in the Euclidean space IR3 only under the

influence of their mutual gravitational interaction. Combining the Newton’s

second law and the universal gravitation law, the Newtonian Formulation of

the problem reads[11]:

mi~̈qi = −Gmi

N∑
j=1

j 6=i

mj

||~qi − ~qj ||3
(~qi − ~qj) (2.1)

where G is the universal gravitation constant, ~qi the position vector of

the mass mi and the dots are the derivatives with respect to time, which is

the independent variable.

The gravity is a conservative force, so also the equivalent potential for-

mulation of the N -body problem can be given by defining the negative grav-

itational potential U (also called the self potential), depending only on the

product of the masses and their mutual distance[12]:

mi~̈qi = − ∂U
∂~qi

where U =

N∑
j=1

j 6=i

Gmimj

||~qi − ~qj ||
(2.2)

Eq. (2.1) represents a set of 6n equations of the first order (3n of the

second order) and rules the motion of each of the N bodies under the grav-

itational influence of the other N -1 bodies. The sum of this relation should

be extended to all the bodies in the universe making a rigorous analysis

impossible.

Defining q = {~q1, ~q2, . . . , ~qN} ∈ IR3n, the set of generalized positions,

and M = diag(3×m1, . . . , 3×mN ), the vectorial form of Eq. (2.2) reads:

M q̈ +∇U(||q||) = 0 (2.3)

A particularly convenient expression of any mechanical problem is the

Hamiltonian Formulation [11], also used later on for the circular restricted

three body problem (cfr. Sec. 2.2.2). Since the Newton equations involve
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the second derivative of positions with respect to time, it is possible to de-

fine the first derivatives as new variables to reduce the order of the system.

These are the velocities or, equivalently in the Hamiltonian formulation, the

conjugate momenta: ~pi = mi~̇qi. Defining p = {~p1, ~p2, . . . , ~pN} ∈ IR3n,

the vectorial form of the relation giving the momenta with respect to the

positions derivatives is: p = M q̇[12].

What makes this formulation extremely convenient is that the equations

of motion take a very easy form, independent of the specific dynamical system

under consideration. These are the so called canonical equations:

q̇ = Hp

ṗ = −Hq
⇒ ż = J∇zH =

(
0 I
-I 0

)
∇zH (2.4)

where the subscripts identify the derivatives, ∇ the gradient operator,

z = [q,p] and J is a 4x4 square block matrix, the Symplectic Matrix 1, with

I the unity matrix and 0 the null matrix.

Here H is the Hamiltonian and it is an equivalent of the total energy of

the system given by the combination of the kinetic and potential energy:

H =
N∑
i=1

||~pi||2

2mi
− U =

1

2
pTM−1p− U (2.5)

Specifying the canonical equations for the N -body problem[12]:

q̇ = M−1p ⇒ ~̇qi =
∂H

∂~pi
=
~qi
mi

;

ṗ = Uq ⇒ ~̇pi = −∂H
∂~qi

=
N∑
j=1

j 6=i

mimj(~qj − ~qi)
||~qi − ~qj ||3

; (2.6)

It is worth nothing that the potential U is a continuous function and,

in particular, it is Lipschitz continuous; this allows the application of the

Cauchy theorem that assures the existence and uniqueness of the solution.

In both formulations, the N -body problem results in a system of 6n first

order equations, so a complete set of 6n-1 time independent integrals, i.e.

quantities conserved during a generic trajectory, plus a time dependent one

would be required in order to solve the problem[12].

In any mechanical conservative system the total energy of the system (or,

equivalently, the Hamiltonian) is always an integral of the motion[11]. To

1A Symplectic Matrix M is a non singular square 2nx2n matrix satisfying the relation:
MTΛM = Λ. Where the superscript T indicates the transpose and Λ = [0 In;−In 0] is a
skew symmetric matrix with In nxn identity matrix.
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check the invariance of the Hamiltonian it is sufficient to verify the vanishing

of its time derivative:

dH

dt
=
dH

dq
q̇ +

dH

dp
ṗ =

dH

dq

dH

dp
+
dH

dp

(
−dH
dq

)
= 0 (2.7)

Setting ~ΥN = m1~q1 + . . . + mN~qN , that is the center of mass of the

system, and ~ L = ~p1 + . . . + ~pN the total linear momentum, the application

of the canonical equations Eq. (2.6) lads to:

~̇ΥN = ~ L, ~̇ L = 0, ~̈ΥN = 0 (2.8)

so ~ΥN = ~ L0t + ~ΥN (t = 0) and ~ L = ~ L0 are time invariant constants

of motion; as vectorial relations they constitute six integrals of motion. The

conservation of the linear momentum provides the conservation of the motion

of the center of mass, specifying the uniform motion of this point.

Defining now ~O =
∑N

1 ~qi∧~pi the total angular momentum and computing

its time derivative, it results in:

~̇O =

N∑
1

~̇qi ∧ ~pi +

N∑
1

~qi ∧ ~̇pi = 0 (2.9)

where Eq. (2.6) have been exploited. This means that the angular mo-

mentum represents other three scalar integrals of motion.

Thus, besides the Hamiltonian, also the total angular and linear momenta

are integrals of motion. Since these are vector quantities, they result respec-

tively in three and six linear independent constants of motion[11]. These ten

integrals are independent, i.e. they form a system in involution (the Poisson

brackets2 between two of them are zero). Moreover the Bruns-Poincaré theo-

rem[17] states that do not exist any other first integrals linearly independent

of these.

These ten first integrals are sufficient to completely specify the motion

of a Two Body Model (or Keplerian Model), studying the motion of a body

subject to only one gravitational influence at a time3. This holds as, given

an autonomous canonical system with n degrees of freedom endowed with n

2Considering two functions in IR2n, F (p, q), G(p, q) the Poisson Brackets between them
are defined as:

{F,G} =

n∑
j=1

( ∂F
∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
It is a bilinear map defined on a smooth differential manifold. This operator is linear, skew
symmetric and satisfies the Jacobi identity and the Leibnitz rule.

3This model was introduced already in the 1600 by J. Kepler in his works Astronomia
nova and Harmonices Mundi where the three Kepler’s laws are also stated.
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first integrals in involution, the Liouville theorem[16] assures the integrability

of such a system (and offers a way to compute the solution)[18].

In fact, considering Eq. (2.1) restricted to N = 2, it follows that twelve

constants of motion are required to solve the problem. Considering these ten

first integrals of motion, there remain only two constants to completely deter-

mine the motion[19]. This approach results in a completely integrable model,

composed by Keplerian orbits given by conic sections and the two remaining

integration constants reduce to the trajectory and the time integral[11].

Let us write down the equations of motion for a two body model in

cartesian coordinates:

m1~̈q1 = −∇U(ρ); m2~̈q2 = −∇U(ρ) (2.10)

where ρ = |~ρ| = |~q2 − ~q1| is the distance between the two masses (i.e.

the position of m2 with respect to m1) and U is the self potential introduced

in Eq. (2.2). Introducing a transformation of coordinates such that ~Υ2, the

system center of mass, is given by ~Υ2 = (m1~q1 + m2~q2)/(m1 + m2); the

equations of motion reduce to:

~̈Υ2 = 0; µ̃~̇ρ = −∇U(ρ) with µ̃ =
m1m2

m1 +m2
(2.11)

From these equations it is straightforward to conclude that:

• the center of mass moves of rectilinear uniform motion;

• the motion of m1 with respect to m2 is exactly the same we would

observe if m1 is fixed and it exerts on a massless m2 a force of potential

U(ρ) = G(m1 +m2)/ρ.

None of the two masses is privileged in this model and the choice of ~ρ

is based on the idea to study the motion of one of the two masses from an

observer posed on the other one[11]. To refer the motion of both masses to

the center of mass it is sufficient to perform just a translation and it results,

beside a scale factor, in the same motion observed by a system of reference

posed on one of the two masses.

This is the explicit representation of the integrals of motion for the two

body model resulting in the two integration constants, determined by the

initial conditions, required to solve the problem by quadratures[12].

The next logical step after the Keplerian approach is the inclusion of

another body. Including another gravity source would involve the sum in

Eq. (2.1) up to three, so the first integrals required would be eighteen.

Nevertheless the ten first integrals discussed for the general N -body problem
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do not depend on the number of bodies involved[17]. This means that, already

dealing with three attractors, there are eight missed constants of motion.

This is sufficient to state that the resulting Full Three Body Problem is

not integrable; i.e. the solution (the shape of the trajectory) can not be

obtained by means of explicit integration operations[17].

Of course, the initial position and velocity conditions provide all the in-

formation required to obtain a single solution of the problem. This is assured

again by the Cauchy theorem, since the Newtonian mechanic is deterministic.

Thus, the initial conditions allow the computation of the motion of a specific

path, but they do not provide enough information for general solutions.

Although the general problem of the three bodies presents these theo-

retical limits, there are some particular initial configurations that allow the

determination of general solutions.

A given configuration ~rc = [~q1, ~q2, ~q3]T is defined a central configuration

if it collapses homotetically (orientation preserving) on its center of mass

when the three masses are released at rest[20]. It is the best situation that

can be present in a dynamical system without any fix point (like the N -body

problem) as these are configurations changing only by symmetries.

This situation is equivalent to the existence of a constant ϕ < 0 such that:

ϕmi~qi =
∑

imimj/||~qj − ~qi||3 (~qj − ~qi) for i, j = 1, 2, 3 and i 6= j (to avoid

collisions resulting in singularities). In other words, in this case there exist

solutions where the acceleration is proportional to the positions: ~̈qi = ϕ~qi.

Since the acceleration can be expressed by means of the derivatives of the

self potential U (Eq. (2.2)), it follows that M−1∂U/∂q = ϕq.

Defining I = M−1
∑

i<jmimj ||~ρij ||2 = qTMq as the moment of inertia

of the whole system, with algebraic manipulations[20] and considering that

U is a homogeneous potential of degree -1, it is possible to define a central

configuration by:

∂U

∂q
+ ϕ

∂I

∂q
= 0 ⇒

∑
j

mj

( 1

ρ3
ij

+
ϕ

M

)
~ρij = 0 (2.12)

where ~ρij = ~qj − ~qi and ρij = ||~ρij || (indeed a generalization of ρ intro-

duced in Eq. (2.10)).

In this formulation ϕ behaves like a sort of Lagrange multiplier, in fact

the equality 2.12 is an extremum for the potential U under the condition that∑
jmj~ρij/M = const[21]. Thus, a central configuration is a critical point of

the potential constrained on surfaces of constant moment of inertia (these

can also be reduced to unit spheres).

For non-collinear configurations, the vectors ~qj and ~qi are linearly inde-

pendent and so the coefficient of the sum in Eq. (2.12) has to vanish. This
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results in a solution where the three masses lies at the vertices of an equi-

lateral triangle (Lagrange, 1772)[22]. Thus, the three masses form at each

instant a rigid equilateral triangle rotating with constant angular velocity

within its circumscribing circle.

On the other hand, it is possible to have the vector ~ρij equal to zero, this

is the case when the three masses are moving along a straight line (Euler,

1767)[23]. This solution is a special situation since it does not correspond to

an extremum of the potential, but the additional constraint that the three

masses move on the same line has to be imposed.

Central configurations change by similarities and each body moves, ac-

cording to Keplerian motion, on a specific conic with the same eccentricity

of all the other bodies paths. In this situation, when e = 1 the orbits are

parabolic and the motion is homotetic (the masses move along straight lines

towards/from the center of mass), while, for e = 0 the motion is along circles

and the configurations change only by isometries (the masses move on three

circles that can be all scaled by the same factor).

Variational methods give an additional general solution in the special

case that the three masses are equal and move in the same plane. This

solution foresees the three bodies chasing one each other along an eight-

shaped curve[21]. This solution explores a combination of the two previous

solutions, as at some time instants the three bodies are aligned or one of

them sits at the midpoint of the segment defined by the other two[19].

Central configurations arise also in the general N -body problem and,

imposing additional constraints on the path followed by the masses (e.g.

planarity, symmetry, similarity and so on), it is also possible to identify par-

ticular general solutions for the 4/5-body problems[24].

However, what we are interested in is often the motion of something

much smaller than the bodies causing the gravity fields. We are talking

about spacecraft, asteroids, or even planets if compared with stars. Bodies of

this kind can be considered massless from a gravitational point of view, i.e.

their gravity (directly proportional to their mass) is too weak to influence

the motion of bodies many orders of magnitude more massive.

This leads to the restricted assumption, where the problem is reduced to

the study of a “massless” body moving under the gravitational influence of

other N -1 bodies[22]. It is easy to see that for an arbitrary value of N also

the restricted N -body problem can not be analytically integrated (although

it is again numerically integrable), while when N = 2 the problem reduces

to the Keplerian problem[19].

It is worth nothing that the application of the restricted hypothesis to the

two body model affects only the mass-dependent constant of the potential
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term (U(ρ)) that changes from m1 +m2 to only m1 (assuming m1 >> m2).

2.2 The Restricted Three Body Problem

Restricting the general Eq. (2.1) to the situation N = 3, we are dealing with

the well known full three body model.

Let us specify the equations of motion of the N -body problem to the

case of three masses (each identified by a subscript number) in an inertial

Euclidean reference frame, where the position vectors are represented by
~Ri = [Xi, Yi, Zi]

T and Ri−j is the norm of the distance between the bodies i

and j:

~̈R1 = −Gm2
(~R1 − ~R2)

R3
2−1

−Gm3
(~R1 − ~R3)

R3
3−1

;

~̈R2 = −Gm1
(~R2 − ~R1)

R3
1−2

−Gm3
(~R2 − ~R3)

R3
3−2

;

~̈R3 = −Gm1
(~R3 − ~R1)

R3
1−3

−Gm2
(~R3 − ~R2)

R3
2−3

; (2.13)

To apply the restricted hypothesis, the moving mass m3 has to be much

smaller than the other two, the primaries m1 and m2: m3 � (m1,m2)[13].

Moreover, also the two primaries have different masses, although both much

larger than the test particle. This hypothesis (m3 = 0) causes the last term

on the right hand side in the first two equations to vanish, resulting in the

decoupling of the motion of the two primaries[13].

This model is intended to study the behavior of a test particle moving

in the gravity filed of a very massive body, m1, but perturbed by another

attractor, m2, that is not the main attractor but an additional gravitational

perturbation. This means that we are considering a situation where: m1 >

m2 � m3.

The decoupling of the motion of the primaries is the natural result of the

restricted hypothesis, since in this way the motion of the two massive bodies

obeys to the Keplerian model and it is completely predictable. What we

are interested in is the last equation of Eq. (2.13) describing the motion of

the massless body under the gravitational fields of the two primaries. This

equation houses in itself the essence of the Restricted Three Body Model [13].

As it is, the last vectorial equation in Eq. (2.13) is time dependent as the

distances of m3 from the primaries are function of the time[11]: ~R1 = ~R1(t)

and ~R2 = ~R2(t).

Given a couple of rotating objects, it is always convenient to study the

motion in a reference frame rotating with the two objects so that these appear
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at rest. Of course, this is straightforward only when the primaries are moving

in circular orbits, as in this case the angular velocity is constant. Otherwise

(like in the Elliptic Restricted Three Body Problem) the rotating frame have

to be pulsating, i.e. with an angular velocity variable as function of the radius

along an ellipse (this makes the resulting model non-autonomous even in a

rotating frame).

For this reason the easiest assumption, among all the possible conic paths

the two primaries have to follow, is that these bodies are moving along cir-

cular orbits around their common center of mass. The resulting model is the

Circular Restricted Three Body Model (CR3BP), also known in its planar

version, assuming the three bodies moving in the same plane (PCR3BP)[13].

The first obvious question is if such a problem is integrable. The natural

approach, following the already mentioned Liouville theorem on integrable

systems, is to search for first integrals of the problem[17]. To briefly follow

this approach a short excursion into the integrability of a dynamical system

is mandatory (cfr. also Sec. 2.4).

A dynamical (Hamiltonian) system results Liouville Integrable (or Com-

pletely Integrable) on the domain B ⊂ IR2n if there exists a canonical diffeo-

morphism ω : B → D ×Tn, where D ⊂ IRn and Tn is a n-dimensional torus,

such that the transformed Hamiltonian H̃= H ◦ ω−1 does not depend on the

Angles: H̃(I,Θ) = K(I)[25]. Here K is a generic function K : D → IR and

(I,Θ) are the Action-Angle variables (cfr. also Sec. 3.2.2). Thus, the sys-

tem is integrable if it can be transformed into a new canonical coordinates4

system where it depends only upon the new momenta, I [18].

If these new momenta are everywhere independent and the energy surfaces

compact, it is possible to choose the conjugate variables of the momenta (like

p is the conjugate of q), Θ, as periodic in the range [0, 2π][25]. These are the

Action-Angle variables. Considering these variables, the dynamical system

can be written as:

İ = 0 ⇒ I = const

Θ̇ =
∂H

∂I
= Ω(I) (2.14)

In other words, if a system can be posed in Action-Angle variables it is in-

tegrable (in the Arnol’d sense)[25]. This means that an integrable Hamiltonian

system in Action-Angle variables depends only on the Actions: H(Θ, I) =

H0(I). For any integrable system the motion takes place on n-dimensional

4A Canonical Transformation is a change of coordinates that preserves the Hamiltonian
form of the dynamical equations, although it might not preserve the Hamiltonian. Actually
it preserves the Poisson brackets.



2.2 The Restricted Three Body Problem 16

tori with I = const, and the orbits wind around these tori with frequencies

Ω(I) depending on the specific torus. When the frequency is not resonant,

i.e. does not exist any integer vector m such that m ·Ω = 0,Ω 6= 0, then the

motion is dense on the torus. In this situation, in fact, the trajectories wind

on the torus without repeat the same track[16].

A quasi-integrable Hamiltonian system[26] is a system with Hamiltonian

in the form: H(Θ, I) = H0(I) + εH1(Θ, I) + .... Where ε is the small per-

turbative parameter and H1 is again a Hamiltonian depending periodically

on the Angles. The CR3BP can be stated as a quasi-integrable system[26],

where the perturbation is due to the smaller primary that perturbs an exactly

Keplerian motion due to the larger one5 (cfr. Sec. 3.2.2).

To investigate about the integrability of a quasi-integrable system, the

idea is to search for a sequence of canonical transformations close to the

identity that makes also H1 independent of the Angles, at least up to a given

order in ε[25]. In this way, at the second ε order, the new Hamiltonian would

read: H(Θ, I) = H0(I)+εH̃1(I)+ε2H̃2(Θ, I)+ ... with H̃1 of the order of the

unit, usually given by the average of H1 over the Angles. When this operation

is successful up to a given ε order, the part of the new Hamiltonian depending

only on the Actions is the integrable approximation of the dynamics up to

that ε order[27].

In principle this approach can be iterated up to any ε order; however,

Poincaré proved[27] that if H0 is not degenerate (det ∂2H0(I)/∂I2 6= 0) and

H1 can be expanded in Fourier series with a finite number of vanishing co-

efficients, then the Hamiltonian system is not integrable[26]. This actually

means that, in general, the convergence radius of the series shrinks down for

increasing ε order.

This is due to the fact that H1 can be posed as function of the only Ac-

tions only if the Ω(I) are non-resonant. The resonance, or near resonance,

conditions reflect in the occurrence of denominators, in the series coefficients,

that are proportional to the resonance conditions. This means that can arise

(and accumulate during the series development) denominators that become

closer and closer to zero as the frequencies tend to be rational dependent.

This is the well known problem of small denominators that creates topologi-

cally distinct regions of the motion[15][25].

The non convergence of the Fourier series is the case of the CR3BP that

results non integrable, neither in its planar version. In the sense that does

not exist any other first integral functionally independent of the Hamilto-

5This is not true for the degenerate case when m2 is negligible. This is the Keplerian
situation and the model is an integrable Hamiltonian system since the Hamiltonian turns
out to be dependent only on one Action.
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nian. So, also for this relatively simple model, it is not possible neither solve

the equations of motion nor completely describe the general behavior of the

solutions.

However it has to be mentioned that Sundmann[28], in the early nineties,

proved that actually exists a solution of the restricted three body problem

exploiting a uniformly converging infinite series of powers of t1/3. The so-

lution holds in the whole plane, once singularities are removed through the

regularization process, since the radius of convergence is affected by the dis-

tance to the nearest singularity. This result is not in contradiction with what

Poincaré stated since it uses not “Weierstrass-kind series” (the ones normally

used in celestial mechanics), but extremely slowly converging series[28]. To

have a sufficient accuracy with this method a number of coefficient of the

order 10800000 must be used making this approach, outstanding from a theo-

retical point of view, useless in any practical application[13].

2.2.1 Synodic, Non Dimensional Reference System

Thus, the motion of the massless body is studied in a rotating frame where

m1 and m2 appear at rest. This rotating (synodic)[13] frame is centered in the

center of mass of the two primaries that lie along the x -axis and is rotating

with constant angular velocity around the z -axis of the system, parallel to

the angular momentum vector of the two primaries.

Figure 2.1: Inertial and synodic barycentric frames.

In this reference system, in order to have a circular motion for the pri-

maries around the common center of mass, there have to be a balancing
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between gravitational and centrifugal forces. The centrifugal forces depend

on the distances of the primaries form the center of mass, while the gravity

is function of the product of the two masses and the total distance between

them. Using the Gauss formulation for the gravitational law6 and naming

the distances according to Fig. 2.1:

k2 m1 m2

l2
= m2 a n

2 = m1 b n
2 →

 k2 m1 = a n2 l
k2 m2 = b n2 l
k2 (m1 +m2) = n2 l3

(2.15)

where k =
√
G (when G is expressed in proper units) is the gaussian

gravity constant and n is the orbital mean motion.

A suitable set of units can be chosen in order to simplify the problem

in this reference frame[13]. Defining a proper system of units, the angular

velocity of the primaries ω (or, equivalently n) and consequently the one of

the reference frame, can be chosen unitary. Such a system of units is defined

by:

• the distance between the primaries as Unit of Distance [DU = dm1-m2 ];

• the sum of the primaries masses as Unit of Mass [MU = m1 +m2];

• the angular velocity of the primaries equal to one. This results in a

Unit of Time [TU ] such that the period of revolution around the center

of mass is 2π.

This means that ω = 1, n = 1 and G = 1 (or, equivalently k = 1).

Accordingly, from Eq. (2.15), also the positions of the primaries along the

x -axis result defined in inverse proportion to their masses (in MU): a = m1

and b = m2.

Since the sum of the masses is unitary, the mass parameter of the system

is simply defined as the non dimensional mass of the small primary[13]:

µ =
m2

m1 +m2
(2.16)

This gives m2 = µ, the mass of the small primary in non dimensional

units and, analogously, m1 = 1− µ from the definition of MU. The value of

µ ranges from 0, if the small primary can be neglected and resulting the two

body model, to 1/2 if the two masses are equal.

6It was introduced by Gauss in his work Theoria motus corporum coelestium in section-
ibus conicis solem ambientum in the 1800 where he developed the methods of the Least
Squares to predict the orbits of Ceres using three complete observations of G. Piazzi.
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This parameter is sufficient to univocally characterize a CR3BP model

using the equivalence between masses and positions given by: a = µ and

b = 1−µ. Only the convention about the location of the small primary along

the positive or negative x -axis direction has to be added. If not differently

stated, m2 is assumed to lie on the positive side of the x -axis in this work,

like in Fig. 2.2.

2.2.2 Equations of Motion

The aim is to study the motion of m3 in the CR3BP rotating system, so the

equations of motion have to be derived in such a frame where the coordinates

are identified by ~r = [x, y, z]T and the dotted are the corresponding non

dimensional time derivatives.

Figure 2.2: CR3BP synodic barycentric reference frame.

The rotation of the reference system introduces in the equations of motion

two terms of apparent forces: the centrifugal and the Coriolis one. In rotating

coordinates, the third of Eq. (2.13) reads[13]:

d2~r

dt2
+ 2ω ∧ d

~r

dt︸ ︷︷ ︸
CoriolisForce

+ ω ∧ (ω ∧ r)︸ ︷︷ ︸
CentrifugalForce

+Gm1
~r−~r1

||~r−~r1||3
+Gm2

~r−~r2

||~r−~r2||3
= 0

(2.17)

here ~r denotes the distance of the infinitesimal mass, or of the primaries

if with subscript, relative to the center of the rotating frame.

With the convention chosen for the units and for the frame, the two

primaries are located in: ~r1 = [−a, 0, 0]T = [−µ, 0, 0]T and ~r2 = [b, 0, 0]T =

[1− µ, 0, 0]T , see Fig. 2.2.
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The distances of m3 from the two primaries are, indeed[13]:

r2
1 = (x+ µ)2 + y2 + z2

r2
2 = [x− (1− µ)]2 + y2 + z2 (2.18)

Replacing these distances, and all the quantities in non dimensional units,

in Eq. (2.17), it reads by components:

ẍ− 2ẏ − x = −(1− µ)
x− x1

r3
1

− µx− x2

r3
2

ÿ + 2ẋ− y = −(1− µ)
y

r3
1

− µ y
r3

2

z̈ = −(1− µ)
z

r3
1

− µ z
r3

2

(2.19)

It is worth nothing that the last equation does not present any trace of

the rotation of the frame, since the z -axis is also the spin axis. This results

in the decoupling of the out-of-plane motion.

The synodic frame preserves also the potential nature of the gravity law.

So, the equations of motion can still be expressed by means of a potential

function[13]. Indeed, the gravity potential, Eq. (2.2), has to be slightly

modified to include also the centrifugal force:

Ω(x, y, z) = −1

2

(
x2 + y2

)
− (1− µ)

r1
− µ

r2
− 1

2
µ (1− µ) (2.20)

Here the first term results from the centrifugal force, the second and the

third ones are the effect of the gravitational potentials of m1 and m2 and the

last one is just a constant offset[29]. Thus, the right hand side of the system

(2.2.2) can be replaced by the derivatives of this potential with respect to

the proper coordinate.

The plot of this potential function, also called the Effective Potential or

the Modified Potential is represented in Fig. 2.3 where the two “wells” are

due to the two primaries and extend in direct relation with their masses.

This system allows only the energy integral, given by the sum of kinetic

and potential energy. However, due to the rotation of the reference system,

also a centrifugal part is taken into account, resulting in the energy integral

in the rotating frame:

E(x, y, z, ẋ, ẏ, ż) =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ Ω(x, y, z) (2.21)

It is extremely interesting to observe, and is also used later on to describe

special orbits enabled by this model, that these equations show also some

symmetries[13]:



2.2 The Restricted Three Body Problem 21

Figure 2.3: Effective Potential for the Earth-Moon system.

• with respect to the x-y plane: [x(t), y(t), z(t)]→ [x(t), y(t),−z(t)];

• with respect to the x-z plane and negative times: [x(t), y(t), z(t)] →
[x(−t),−y(−t), z(−t)];

• replacing µ with 1−µ: [x(t), y(t), z(t), µ]→ [−x(t),−y(t), z(t), 1− µ].

So far, we derived the equations of motion of the CR3BP by means of

a series of assumptions, changes of coordinates and units from the N -body

problem. There are, however, at least another couple of approaches that is

worth to underline.

Lagrangian Approach

The motion of a point under a given force field from one point to another

has to maintain stationary the Lagrangian of the system. This statement

is expressed by the well known Euler-Lagrange Equations, that for a generic

Lagrangian L and generic generalized coordinates ~qi read[13]:

d

dt

∂L

∂~̇qi
=
∂L

∂~qi
i = 1, 2, . . . , n (2.22)

The Lagrangian is just another expression of the energy of the system

given by the difference between kinetic and potential energy. The expression
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of these two quantities in an inertial frame is[14]:

L(~R, ~̇R) =
1

2

(
Ẋ2 + Ẏ 2 + Ż2

)
︸ ︷︷ ︸

Kinetic term

+
1− µ
R1

+
µ

R2
+

1

2
µ (1− µ)︸ ︷︷ ︸

Potential term

(2.23)

withR2
1 = [X + µ cos t]2+[Y + µ sin t]2+Z2 andR2

2 = [X − (1− µ) cos t]2+

[Y − (1− µ) sin t]2 +Z2 the distances of m3 from the two moving primaries.

Since the Euler-Lagrange Equations are invariant under coordinate trans-

formations, it is possible to replace the expression of L in rotating coordinate

by means of the transformation[14]: X
Y
Z

 = At ·

 x
y
z

 ;

 Ẋ

Ẏ

Ż

 = At ·

 ẋ− y
ẏ + x
ż

 (2.24)

where At is the time dependent transformation matrix representing the

rotation around the z -axis, given by:

At =

 cos t − sin t 0
sin t cos t 0

0 0 1

 (2.25)

Applying this transformation, the Lagrangian takes the form:

L(~r,~̇r) =
1

2

[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
︸ ︷︷ ︸

Kinetic term

+
1− µ
r1

+
µ

r2
+

1

2
µ (1− µ)︸ ︷︷ ︸

Potential term

(2.26)

where the time dependent distances between m3 and the two primaries

in Eq. (2.23) are replaced by the time independent distances of Eq. (2.18).

Specifying the Euler-Lagrange equations, Eq. (2.22), with this expression

of the Lagrangian, Eq. (2.26), it is possible to write down the equations of

motion in compact form as:

ẍ− 2ẏ = −Ωx

ÿ + 2ẋ = −Ωy

z̈ = −Ωz (2.27)

where the subscripts indicate derivatives and the potential, including both

a centrifugal and a potential part, is the same of Eq. (2.20), the Effective

Potential. The expression obtained for the equations of motion is exactly

the same of the system (2.2.2), demonstrating the equivalence of the two

approaches.
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Hamiltonian Approach

Another equivalent and powerful way to derive the equations of motion for

the CR3BP is following the same Hamiltonian approach like for the N -body

problem[12] (cfr. Sec. 2.1).

The partial derivatives of the Lagrangian with respect to the derivatives

of the generalized positions (~qi) are the conjugate momenta ~pi of the test

particle. This is the Legendre Transformation [16] expressed by: ~pi = ∂L/∂~̇qi.

Whenever known the Lagrangian of the problem, by means of this transforma-

tion, the Hamiltonian can be obtained by: H(~qi, ~pi) =
∑3

i=1 ~pi~̇qi−L(~qi, ~pi).

Restricting to the motion of m3, the generalized coordinates are, in this

case, the position coordinates in the rotating frame: ~q3 = ~r = [x, y, z]T , while

the conjugate momenta play the role of the velocities of the massless body:

~p3 = ~p3(~r,~̇r).

Thus, the Hamiltonian (that represents, like L, just another expressions

of the total energy) for the moving body can be expressed as:

H(~q3, ~p3) =
1

2

[
(px + y)2 + (py − x)2 + p2

z

]
+ Ω(x, y, z) (2.28)

Once the expression of the Hamiltonian is known, the canonical equations

(Eq. (2.6)) give the equations of motion by means of simple derivatives:

ẋ =
∂H

∂px
= px + y ṗx = −∂H

∂x
= py − x− Ωx

ẏ =
∂H

∂py
= py − x ṗy = −∂H

∂y
= −px − y − Ωy

ż =
∂H

∂pz
= pz ṗz = −∂H

∂z
= −Ωz (2.29)

All the three approaches are equivalent and lead to autonomous equations

of motion in the rotating frame defining equivalent six dimensional phase

spaces.

2.2.3 The Integral of the Motion

The total energy is an integral of the motion for any newtonian system,

and also the Lagrangian and the Hamiltonian are integrals of motion for

the relevant formulation. The invariance of the Hamiltonian can be easily

checked by means of its time derivative, Eq. (2.7). Let us compute now the

following time derivative:

1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
= ẋ (2ẏ − Ωx) + ẏ (−2ẋ− Ωy) + ż (−Ωz) =

d

dt
(−Ω)

(2.30)
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This means that defining J , the so called Jacobi Integral, as the sum of

(ẋ2 + ẏ2 + ż2) and 2Ω, it is possible to obtain a quantity conserved along

the motion[13]. This is the definition of first integral, but it can not be a

new integral of the CR3BP as only the total energy is allowed (cfr. Sec.

2.2). There exists, in fact, a relation between J and E (equivalently H in the

proper coordinates), Eq. (2.21), given by:

J (x, y, z, ẋ, ẏ, ż) = −2Ω(x, y, z)− (ẋ2 + ẏ2 + ż2) = −2E (2.31)

A very interesting conclusion about the motion of the test particle can be

drawn by the relation 2.31. The first term depends only on the position of m3

relative to the two primaries, while the second part only on the velocity of this

massless body. Since the motion of a body is allowed only where its kinetic

energy is positive, the regions where −2Ω−J < 0 are forbidden regions. The

value of J depends on the initial conditions (zero subscript) that determine

both a specific energy value and zones where the motion can take place[13].

The boundaries of these forbidden regions, the Hill Regions, are given by the

equality J(x0, y0, z0, ẋ0, ẏ0, ż0) = −2Ω(x, y, z) defining zero velocity surfaces.

The projections of these curves in the two dimensional position space are the

so called zero velocity curves. In Fig. 2.4 these curves are represented for the

Earth-Moon mass parameter (µ = 0.0121506683) for increasing J values.

Figure 2.4: Zero velocity curves for increasing energy values for the Earth-
Moon system.

The specific value of J actually sticks a specific height on the graph of

the Effective Potential, so the zero velocity curves are level sets (isolines)
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of this potential function, i.e. slices of the plot of Fig. 2.3. These surfaces

represent a sort of barriers through which solutions with a specific value of

the Jacobian constant can not pass. This defines also regions, closed or not

depending on the initial energy, where the motion is confined.

All the initial conditions are constrained to evolve in the six dimensional

phase space, on the five dimensional hypersurface defined by the invariance

of the Jacobi integral. This Manifold (general term to identify any surface of

arbitrary dimensions), embedded in a six dimensional space is defined by:

M(µ, J) = {[x, y, z, ẋ, ẏ, ż] ∈ IR6|J(x, y, z, ẋ, ẏ, ż) = J(x0, y0, z0, ẋ0, ẏ0, ż0)}
(2.32)

where the zero subscript denotes again the initial state.

For the planar case the Jacobi constant define a three dimensional surface

embedded in a four dimensional space where the motion is constrained to

evolve.

A very important feature of the planar problem that the spatial CR3BP

does not have, is the possibility to reduce the flow to a two dimensional map.

This can be done by setting a surface of section with a fix coordinate. This

coordinate and the three dimensional energy surface reduce the phase space

to be two dimensional. Each iteration of the flow from the section to itself

produces a first return map completely characterizing the flow. This method

has been introduced by Poincaré[30] to qualitatively study the behavior of a

dynamical system and the corresponding sections are often called Poincaré

Sections (cfr. Sec. 3.3-3.6).

The Jacobi constant, beside its role to identify regions of feasible mo-

tion, can be also used to derive a relationship between the osculating orbital

parameter of an object before and after a gravitational encounter with a mas-

sive one. This results in the Tisserand Parameter that has been successfully

employed to re-identify comets whose orbits have been heavily deflected by

a planet7.

Since for µ = 0 the CR3BP reduces to the classical two body model

(cfr. Sec. 2.2.1) the phase space is divided by the value of the Keplerian

energy, Ek = −1/(2a). When this energy is negative the orbits are bounded

7This parameter was introduced by F. F. Tisserand in his work Traité de mécanique
céleste (1889-1896). It is a re-interpretation of the Jacobi integral that relates the classical
orbital parameter before and after a gravitational encounter. It reads:

a−1 + 2
√
a(1− e2)ρ−3 cos(i) = const

where a, e, i are the semi-major axis, eccentricity and inclination and ρ the distance be-
tween the primaries. It holds far from the encounter (before and after) and represents an
expression to relate the pericenter and the period before and after a gravitational encounter.
Thus, it also offers a useful tool to design sequences of gravity assists.
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(circular or elliptic), while for zero or positive values the motion is unbounded

(parabolic or hyperbolic)[14]. The initial conditions fix the specific energy

value, and the set of all of these energy surfaces foliate (like onion layers) the

whole phase space, as this is a completely integrable model (cfr. Sec. 2.4).

2.2.4 Libration Points

As for any dynamical system, the left hand side of the equations of motion

vanishes only in the stationary (equilibrium) points of the system; i.e. loca-

tions where a body placed at rest remains indefinitely.

Form Eq. (2.27), the accelerations are zero when the partial derivatives

of the effective potential vanish. This means that the points where the slope

of Ω (Fig. 2.3) is horizontal are rest points of the vector field.

In the CR3BP the accelerations vanish in five points[13], as can be seen in

Fig.2.3. Three are collinear with the two primaries and the other two forming

an equilateral triangle with them. These Libration Points (or Lagrangian

Points although Euler discovered the first three of them[23]) are named with

L1,L2,L3 for the three collinear and L4,L5 for the two equilateral.

Regardless the planar of spatial version of the model, the equilibrium

points are always located in the x-y plane, like in Fig. 2.5.

Figure 2.5: Earth-Moon libration point positions in the synodic frame with
the zero velocity curves associated to their energy values.
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Computing the energies corresponding to these five points from Eq. (2.31),

it is possible to see that for all the values of µ, unless µ = 0 where the five

energies are equal, EL1 < EL2 < EL3 < EL4 = EL5 = −1.5, or equivalently,

in terms of Jacobi constant, JL1 > JL2 > JL3 > JL4 = JL5 = 3.

Also the location along the x -axis of the equilibrium points changes with

µ as presented in Fig. 2.6. This happens since changing µ means to change

the ratio of the two masses and consequently also the locations where the

two gravitational influences balance. The black vertical line represents the

mass parameter value of the Earth-Moon system, one of the highest µ for a

real meaningful system.

Figure 2.6: Dependence on µ of the x coordinate of the libration points (left)
and their energy (right).

Moreover, observing the trend of the zero velocities curves for increasing

energy values, it is easy to see the “gate-like” behavior[14] of the equilibrium

points (see also Fig. 2.5 where the zero velocity curves are plotted for the

first three libration points energies, and for an energy close to the one of the

equilateral points).

With reference to Fig. 2.7, the regions where the motion is allowed (white

zones) evolve according to the energy value and this evolution passes through

the equilibrium points.

Starting from a situation where orbits around the two primaries can not

be connected (upper left plot) and increasing the energy value, indeed, up

to EL1 , the closed regions (Realms) around m1 and m2 connect (upper right

plot). Thus a body in orbit around one of the primaries can pass orbiting

the other one. Increasing again the energy value also the gate associated to

L2 opens (lower left plot) and the moving body can now move also in the

outer space, far from the primaries. For further increasing values, the gate
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Figure 2.7: Regions allowed for the motion (white) for increasing energy val-
ues (form the upper left corner) for the Earth-Moon system.

corresponding to L3 (lower right plot) opens, making m3 free to jump directly

from the outer realm to the m1 realm without passing through the m2 realm.

For even higher energy values, only a narrow region around the equilateral

points is forbidden and afterwards, for very high energies, the whole space

is allowed for the motion. This results from the fact that L4 and L5 are the

maximum points of the Effective Potential.

Obviously, the most interesting case, form a mission design point of view,

is when JL2 > J > JL3 because this is the minimum energy configuration

allowing the passage among all the three realms. However, if only a transfer

between the two primaries is sought, JL1 > J > JL2 is sufficient.

These points are stationary solutions in the rotating frame, so there has to
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be a balancing between gravitational and centrifugal forces. Thus these points

must lie where these two forces equal. The centrifugal force is linear with the

distance from the origin of the reference frame, while the gravity changes by

means of a parabolic law with the distances from the two primaries, see Fig.

2.8. The intersections of these curves give the location of the equilibria.

Fig. 2.8 holds for the

Figure 2.8: Intersection points between the centrifu-
gal (red) and gravitational (blue) force to
locate the collinear equilibria.

three collinear equilibrium

points and it is clear that

these points are alternatively

placed between the two pri-

maries; the other two are

out from the x -axis at equal

distances from the two pri-

maries. To exactly locate

the collinear points, it is

easy to start imposing y =

0 in the expression of Ω

and check where its first

derivative vanishes, since to

have stationarity ~̇r = ~̈r =

0 has to be satisfied[14]:

Ω(x, 0) = −1

2
x2 − (1− µ)

||x+ µ||
− µ

||x− 1 + µ||
⇒

d

dx
Ω(x, 0) = δ5 ∓ (3− µ) δ4 + (3− 2µ) δ3 − µδ2 ± 2µδ − µ = 0 (2.33)

where δ = x + 1 − µ is the distance from the small primary (m2). The

second one of Eq. (2.2.4) results in a fifth order equation with three real

solutions which are the locations of the collinear points. From the analysis of

the signs of the terms of Eq. (2.2.4), it is possible to derive, in another way,

that the three real solutions must be located in the intervals ]−∞,−µ[, ]−
µ, 1− µ[, ]1− µ,∞[, i.e. spaced out by the primaries.

Numerical solutions have to be sought for the quintic equation, although

series expansions are available as function of the Hill radius[31] (Rh = (µ/3)1/3)

which gives a first order approximation of the locations of L1 and L2
[13] (cfr.

App. A).

To locate the equilateral points, instead, it is sufficient to compute the

derivative Ωy, equating this to zero and replace the expression in the Ωx = 0:
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d

dy
Ω(x, y) = 1− 1− µ

r3
1

− µ

r3
2

= 0 ⇒ d

dx
Ω(x, y) =

1

r3
1

− 1

r3
2

= 0 (2.34)

In this way Ωx = 0 implies: r1 = r2. Replacing this last relation again in

Ωy = 0 results in r1 = r2 = 1. This means that the two equilibrium points

must be located in the intersection of two unitary circumferences centered in

the primaries. The points satisfying this relation form an equilateral triangle

with the two primaries: x = −µ+ 1/2, y = ±
√

3/2[11].

The derivative of Ω with respect to z is zero if and only if z = 0 which

assures that the equilibrium points are always in the x-y plane.

To investigate about the stability of the equilibrium points, the sign of the

second derivative of the Effective Potential has to be studied. d2Ω(x, 0)/dx2

results always concave, demonstrating that the collinear points are unstable

for all the values of the mass parameter; this implies a saddle component

in the linearized phase space around those points (see Sec. 2.2.5). The

same conclusion can be drawn intuitively observing a section of the effective

potential, Fig. 2.9, where the “diverging” directions are given by the shape

of the potential function[14].

On the other side, the equi-

Figure 2.9: y = 0 section of the Effective Po-
tential, it shows the concavity of
this function in the three collinear
equilibrium points.

lateral points are stable until the

mass parameter reaches a critical

value[13] µRouth ' 0.0385208965,

also called Routh critical mass pa-

rameter. Afterwards they desta-

bilize, i.e. for the critical Routh

mass parameter they change their

linear stability[32].

The existence of L4/L5 has a

special meaning in the Sun-Jupiter

system, as there are two set of bod-

ies located in these points. The set

anticipating by 60 deg the Jupiter

position is named Greeks, while the set following Trojans. Jupiter orbit is

not exactly circular (eccJ ≈ 0.05), the actual motion is affected by many

perturbations and these bodies might have been captured (with suitable ini-

tial conditions), so the actual motion is a slow libration around the exact

equilibrium point in tadpole or horseshoe orbits (due to stable nature of L4

and L5). Trojan-kind bodies have been also found near the equilateral points

of Mars, Neptune and Saturn moons. For the Earth-Moon system in these

locations only an overabundance of dust (Kordylewski cloud) is present.
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It is worth noting that the unstable component of L3 is much smaller than

the one associated with the other two collinear points (since the perturber is

much far away) and the natural outcome is that the dynamics leading to/off

this point is quite mild[33].

It is possible to show that there are no new equilibrium points neither in

elliptic problem[13] nor in the Hill problem[31], a local approximation of the

motion near the small primary (see also App. A).

2.2.5 Equilibrium Regions

To study the phase portrait in the neighborhood of a libration point, the first

approach is to investigate the linear behavior of the flow. It has been already

demonstrated (cfr. Sec. 2.2.4) that the collinear points are unstable, while

the triangular ones are stable up to a critical µ value, much larger than any

physical meaningful system.

Let us move the origin of the reference frame into the generic Li =

[x0, 0, 0]T collinear equilibrium point and Taylor expand the equations of mo-

tion (generically g) up to the first order: g(x0+δx) = g(x0)+∂g(x)/∂x|x=x0∂x+

O(δx2). The resulting system of linear differential equations can be written

as[34]:

ẍ− 2ẏ − ax = 0

ÿ + 2ẋ+ by = 0

z̈ + cz = 0 (2.35)

where a = 1+2c, b = c−1 and c = µ/(1−µ−x0)3 +(1−µ)/(µ+x0)3. In

this linearized approach the energy and the Hamiltonian take the forms[14]:

El =
1

2

(
ẋ2 + ẏ2 + ż2 − ax2 + by2 + cz2

)
Hl =

1

2

[
(px + y)2 + (py − x)2 + p2

z − ax2 + by2 + cz2
]

(2.36)

As everything is referred to the libration point, surfaces with El = Hl = 0

are energy surfaces passing through the equilibria.

Like for the non linear equations of motion, the out-of-plane motion is de-

coupled from the in-plane one. The last equation of system (2.35) represents

a harmonic oscillator and can be analytically solved to define the out-of-plane

eigenvalues (or, equivalently, eigenfrequencies): λ5,6 = ±iωz = ±i
√
c.

The x and y components of the in-plane motion are still coupled, but

in the linear approximation also these ones can be analytically solved[13].

To solve this linear system, it is required to write it down in matrix form

and compute the characteristic equation p(λ). This is a bi-quadratic relation
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with four solutions (λi with i = 1, ..., 4) that are the eigenvalues of the linear

problem. This means:

p(λ) = λ4 + (2− c)λ2 + (1 + c− 2c2)⇒
λ1,2 = ±

√
−β1 +

√
β2

1 + β2
2 ∈ R

λ3,4 = ±i
√
β1 +

√
β2

1 + β2
2 ∈ Z

(2.37)

where β1 = 2 − c/2, β2 =
√

(2c+ 1)(c− 1) and the first subscript is

intended to be the positive root. Since, for the instability, it is sufficient that

at least one of the eigenvalues has a positive real part (time diverging forward

in time), this leads to the same conclusion that the collinear libration points

are unstable[13][14].

Moreover, exploiting in this linear approach the behavior of the eigenvec-

tors, the whole phase space can be characterized around a collinear libration

point[35]. Indeed the general solution of the linear system (2.35) can be ex-

pressed as:

x(t) = A1e
λt +A2e

−λt +A3 cos ωt+A4 sin ωt

= A1e
λt +A2e

−λt +Ax cos (ωt+ ϕ)

y(t) = −k1A1e
λt + k1A2e

−λt − k2A3 sin ωt+ k2A4 cos ωt

= −k1A1e
λt + k1A2e

−λt − k2Ax sin (ωt+ ϕ)

z(t) = A5 cos νt+A6 sin νt

= Az cos (νt+ ψ) (2.38)

where λ = λ1, ω = λ3, ν = λ5, Ai(i = 1, .., 6) are arbitrary constants

(actually amplitudes related to the initial conditions) and the two constants

are k1 = (2c+ 1−λ2
1)/2λ1 and k2 = (2c+ 1 +λ2

3)/2λ3. The second equalities

in the system (2.38) are only a rewriting of the oscillatory parts in terms of

planar (Ax, ϕ) and orthogonal (Az, ψ) amplitudes and phases.

It is easy to see that, if the aim is to find only periodic solutions, the

amplitudes related to the exponential terms have to be taken equal to zero.

This results in a set of [x(t), y(t), z(t)]T harmonic functions depending only on

amplitudes and phases[34]. On the other hand, the component associated with

A1 is the unstable one, as it leads far from the equilibrium point exponentially

fast, and the one associated with A2 is the stable one.

As the out-of-plane motion is still decoupled, to have an exactly three

dimensional periodic solution the eigenfrequencies ω and ν should be equal,

otherwise quasi-periodic motion results. This is not the general case, so to

find such a kind of solutions non linear terms must be involved in order to

use their contribution to obtain this eigenfrequencies matching.
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In brief, Eq. (2.38) underlines the typical behavior in a neighborhood of

a collinear libration point[35]. It is given by the combination of two periodic

motions, one outside the x-y plane and the other one living in this plane,

together with an aperiodic component exponentially diverging forward and

backward in time[34]. This is expressed by the product center x center x

saddle.

Of course, a clever selection of the initial conditions leads to select only

some constants, Ai, and results in specific periodic or aperiodic motions. This

is the core idea exploited to generate specific kinds of motion (Sec. 3.1-3.2).

To understand the phase space around the collinear libration points from

a topological point of view, it is interesting to approach the problem by means

of another change of coordinates. Let us define a new reference frame centered

into the generic collinear libration point with the eigenvalues as axes[34]. The

linearized canonical equations of motion take a very easy form:

q̇1 = λq1 ṗ1 = −λp1

q̇2 = ωp2 ṗ2 = −ωq2

q̇3 = νp3 ṗ3 = −νq3 (2.39)

Such a system is again analytically solvable and the same centers and

saddle behaviors can be identified. The general solutions of Eq. (2.39) are:

q1(t) = q0
1e
λt

p1(t) = p0
1e
−λt

q2(t) + ip2(t) = (q0
2 + ip0

2)e−iωt

q3(t) + ip3(t) = (q0
3 + ip0

3)e−iνt (2.40)

where 0 refers to the initial conditions. The decoupled q1, p1 equations

represent the exponential motion, while the complex conjugate variables q2, p2

and q3, p3 are the periodic in-plane and out-of-plane harmonic oscillators,

with eigenfrequencies ω and ν.

In this reference system the first integral, Eq. (2.36), takes the form:

El = λq1p1 +
ω

2

(
q2

2 + p2
2

)
+
ν

2

(
q2

3 + p2
3

)
(2.41)

and it must remain constant (El = ε > 0) during the motion. Moreover,

in this linear version, also the single elements involved in the definition al El
are locally constant quantities8.

The already mentioned center x center x saddle behavior is topologically

understandable looking separately at the pi-qi planes, like in Fig. 2.10.

8Let us consider an autonomous Hamiltonian system with three degrees of freedom
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Figure 2.10: center x center x saddle behavior of the flow in the neighborhood
of a collinear equilibrium point.

To define the region of validity of the linear approximation, an Equilibrium

Region have to be defined around the generic collinear lagrangian point[34]

such that the particle can not move more than a constant c > 0 far away from

the center point. In the eigenvectors referred frame this results in |p1−q1| < c,

as the center components define bounded orbits (circles in the proper plane)

like in Fig. 2.10. The boundaries of the Equilibrium Region are defined by the

outermost hyperbola (depending on the energy value ε): q1p1 = ε/λ, given

by the saddle directions, while the two other sides are given by the segments

p1 − q1 = ±c, the maximum distance allowed to bound this region[35].

Thus, this Equilibrium Region is homeomorphic to the product of a four

dimensional spherical surface, resulting from the linear energy conservation

Eq. (2.41), and an interval, i.e.[14]:

λ

4
(p1+q1)2+

ω

2
(p2

2+q2
2)+

ν

2
(p2

3+q2
3) = ε+

λ

4
(p1−q1)2 x |p1−q1| ≤ c (2.42)

Each point in the q1-p1 plane corresponds to a circle of given radius

in the other planes (actually a three dimensional spherical surface in the

Equilibrium Region given by ω/2
(
q2

2 + p2
2

)
+ ν/2

(
q2

3 + p2
3

)
= ε − λq1p1).

where there exists a non-degenerate equilibrium point with a hyperbolic component. The
linearized equations read like Eq. (2.40) and are obtained considering only the second
order terms in H. The Moser Theorem [14] states that, beside H, these equations admit
also the product of the saddle components p1q1 and the square of the norm of the center
ones |z2/3|2 = p22/3 + q22/3 as integrals of motion. The non linear equations admit analogous

local integrals, i.e. there exist power series beginning with p1q1 and p22/3 + q22/3 converging
in some neighborhood of the equilibrium point. A special case is the Conley formulation
where the center variables are complex[35].
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Since p1q1 is a local integral of the motion in this region (element of Eq.

(2.41) and cfr. also Sec. 3.2.2), the motion in this plane describes hyperbolic

paths: p1q1 = const. If such a constant is positive the branches are able to

move from a distance c on one side of the origin to the same distance on the

other side[35]. It is clear, since now, that these are the only kinds of orbits

able to cross the Equilibrium Region. If this constant is less than zero the

branches start and end on the same side of the equilibrium point[14], so they

can not cross the region, see Fig. 2.10.

The center point of the q1-p1 plane represents completely harmonic so-

lutions, this corresponds to the situation ω/2
(
q2

2 + p2
2

)
+ ν/2

(
q2

3 + p2
3

)
= ε

which is homeomorphic to a three dimensional spherical surface of periodic

and quasi-periodic (bounded) orbits. The saddle component is zero and it is

the case when A1 = A2 = 0 in Eq. (2.38), in this situation three scenarios

are possible[35].

If Ax 6= 0 and Az = 0 the point is the center also of the q3-p3 plane and

the motion is confined to be periodic in the q2-p2 plane. These are the well

know Planar Lyapunov Orbits [13].

The other possible situation is when Ax = 0 and Az 6= 0, with this

condition the resulting motion is periodic only in the vertical plane resulting

in the Vertical Lyapunov Orbits [36] (figure-eight-shaped).

This is summarized in the well know Lyapunov’s Centre Theorem [36] stat-

ing that each center in any Hamiltonian system gives rise to a family of peri-

odic solutions with periods tending to the eigenfrequencies of the planar and

vertical center (ω, ν) when approaching to the equilibrium point.

Moreover, if at the same time Ax 6= 0 and Az 6= 0 the resulting motion is

the combination of two harmonic oscillators. The general situation is when

ω/ν is irrational, in this case the motion is quasi-periodic, giving rise to the

so called Lissajous Orbits. A special situation is when the two frequencies

are equal; in this case the motion is exactly periodic both in the planar and

in the vertical plane. The resulting Halo Orbits [37] are generated when the

amplitudes are large enough to allow the non linear terms to produce equal

eigenfrequencies.

A completely different situation arises isolating the saddle part; i.e. choos-

ing the initial conditions such that Ax = Az = 0[38]. In this case the motion

takes place only in the q1-p1 plane. The Unstable Manifold W u results from

A1 6= 0 and A2 = 0 where the solution is moving far from the center point,

while the Stable Manifold W s, when A2 6= 0 and A1 = 0, points towards the
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periodic motion[38]. These behaviors result from q1p1 = 0 so:

ν

2

(
q2

2 + p2
2

)
+
ω

2

(
q2

3 + p2
3

)
= ε, q1 = 0 Stable Manifold

ν

2

(
q2

2 + p2
2

)
+
ω

2

(
q2

3 + p2
3

)
= ε, p1 = 0 Untable Manifold (2.43)

Thus, each manifold is composed by two branches, a positive and a neg-

ative one, depending on the sign of the non zero saddle component, i.e.

W u
+, q1 > 0, W u

−, q1 < 0, W s
+, p1 > 0, W s

−, p1 < 0. The branches defined

by the minus subscript flow from left to right in the q1-p1 plane, while the

ones with the plus subscript from right to left, by convention[14]. It is worth

noting that the manifolds correspond topologically to four cylinders asymp-

totic to the periodic solution.

Solutions with q1p1 = const > 0 are situations where the cylinders cross

the boundary of the two-sphere in the same emi-sphere[34]. This means that

it is possible to have orbits transiting from one region to another of the phase

space. This is again the“gate-like”behavior of the collinear equilibrium points

reflecting in these Transit Orbits through the Equilibrium Region[38]. This

situation is the same resulting from A1A2 < 0 in Eq. (2.38).

The last category of solutions is composed by those with A1A2 > 0, i.e.

q1p1 = const < 0. In this case the orbits can not cross the boundaries of the

Equilibrium Region and are trapped in the region where they came from. In

this case orbits born around one of the two primaries or in the exterior region

can not switch their realm of motion. These are Non-Transit Orbits [38].

In summary, the motion results from the combination of two kinds of

dynamic. The center parts generating periodic solutions and the saddle one

giving rise to hyperbolic orbits, see Fig. 2.11. There are two kinds of asymp-

totic orbits tending towards and winding off from the periodic solutions.

These orbits lie on tube-like structures, the manifolds, that are asymptotic

solutions acting as separatrices between two completely different kinds of

motion, both for the planar and the spatial version of the model[39]. Orbits

inside the manifolds are transit orbits, able to cross the Equilibrium Region

and move from one realm to another; orbits living outside these structures

are confined into one realm, see Fig. 2.11. It is important to observe that

the transit orbits have to jump from the interior of the stable to the interior

of the unstable manifold; from the stable to the unstable linear subspaces.

From the center components of the solutions (2.40) it is possible to see

that, considering qi + ı pi with i = 2, 3 a complex number, the change in the

argument is proportional to the time required for the mapping to go from

the domain to the range, and it is possible to show that this time tends to

infinity as the orbit approaches to the manifolds[14]. This means that orbits
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Figure 2.11: Schematic representation of the flow in the Equilibrium Region.

close to the manifolds tend to follow their same dynamics in terms of time

and passing/non-passing behavior.

Let us conclude stressing that the whole analysis is based on behavior

of the linear subspaces and to actually compute these families the complete

CR3BP equations must be propagated.

2.3 Restricted Four Bodies Models

The patched conic approach is the classical way to approximate the motion

into a N -body model. This is done by splitting the motion of a massless

body into pieces and considering only one attractor at a time. This chain

of two body models is patched on surfaces (the Spheres of Influence, similar

to the Hill radius[31]) identified by the order of one gravity acceleration with

respect to the other. This model does not represent the real dynamics when

the approaching to this “discontinuity” takes place with very low relative

velocity. In this case, the moving body spends long times into a region where

none of the two gravitational accelerations is dominating.

The CR3BP results enough accurate to study the motion in the space

nearby a planet perturbed by its moon (e.g. Earth-Moon), or in the so-

lar system considering only the Sun and Jupiter (99.9% of the whole solar



2.3 Restricted Four Bodies Models 38

system mass) or the Sun and another relevant planet. Nevertheless, for a

body moving further far away from the planet-moon distance or in regions

where additional perturbations drastically change the dynamical regimes, it

does not provide an adequate description of the motion. It is clear that the

motion of a body orbiting around Earth-Moon L2 can not be modeled with-

out taking into account the Sun; any interplanetary path toward the outer

planets suffers, at least, from the Jpiter/Saturn gravitational perturbations.

A sort of Restricted Four Body Model can be outlined to model the motion

of a massless body in the gravity fields of other three massive attractors. A

possible approach is the so called Bi-Circular Model (BCM)[14]. In this model

the spacecraft motion is studied as in the CR3BP but also the perturbation of

an additional attractor, moving in circular motion around the center of mass

of the other two primaries, is considered. The motion of the three massive

bodies takes place in the same plane.

It is worth noting that this model in non-coherent[39], i.e. the three pri-

maries does not obey to the Newton gravity law, as the motion of the addi-

tional perturber is forced to be circular around the other two, although this

can be a quite realistic approximation in many situations.

Furthermore, the presence of an additional attractor sweeps away all the

useful features of the CR3BP. Libration points, Jacobi integral, manifolds

and Lyapunov/Halo orbits do not exist anymore. The absence of a first inte-

gral and of equilibrium points (impossible in non autonomous Hamiltonian

systems, like the BCM) changes drastically also the space portrait.

Similarly to the CR3BP, in the BCM the motion is studied in a synodic

non dimensional frame in which two of the primaries appear at rest. This

frame is depicted on the left of Fig. 2.12[14].

Differently from the CR3BP the mass parameter µ of the smaller pri-

mary is no more sufficient to describe the entire system, also the mass of

the perturbing body (mp) is required. Moreover, the resulting equations of

motion are non-autonomous, due to the presence of the additional revolving

perturber, also in the synodic frame[39].

Nevertheless, the equations of motion can be still written with the partial

derivatives of a sort of modified effective potential (Ω4) on the right hand

side:

ẍ− 2ẏ = ∂Ω4/∂x

ÿ + 2ẋ = ∂Ω4/∂y

z̈ = ∂Ω4/∂z (2.44)

This modified effective potential (like the one in Eq. (2.20)) takes into

account the gravitational attraction of the two main primaries, the centrifugal
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Figure 2.12: Left: the BCM reference frame. Right: Modified Effective
Potential slices for a representative system where µ = 1e-2,
µp = 5e-3 placed at 135 deg and ρp = 1.2 DU.

acceleration due to the rotating frame, and the time-depending gravitational

attraction of the perturbing body. It reads[14]:

Ω4 =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ)︸ ︷︷ ︸

ΩCR3BP

+
µp
r3
− µp
ρ2
p

(x cos Θp + y sin Θp)︸ ︷︷ ︸
Additional Perturbation

(2.45)

where µp = mp/(m1 +m2), the relative distances are given by Eq. (2.18)

and r3 =
√

(x− xp)2 + (y − yp)2 + z2.

The subscript p denotes the quantities related to the additional perturber

and the distances of the moving particle with respect to this body are given

by: xp = ρp cos Θp, yp = ρp sin Θp with ρp the distance of mp from the center

of mass of m1 and m2.

Accordingly, the main difference of this system with respect to the CR3BP

is the time dependence of the effective potentials[39], i.e. Ω4 = Ω4(x, y, z,Θp)⇒
Ω4 = Ω4(t). In the right plot of Fig. 2.44 slices of a snapshot of Ω4 at a given

time instant are represented, the geometry of these sort of zero velocity curves

varies in time since the small “hole” due to mp moves.

The time dependence is introduced by the angular position of mp in the

reference frame rotating with the other two primaries: Θp = Θp(t = 0)+∆ω t,

with ∆ω the apparent angular velocity of mp in the system rotating with m1



2.4 Dynamical System Elements 40

and m2.

This is a more general model from which the classical CR3BP can be

derived, just by setting µp equal to zero; moreover, if also µ is zero again the

two body model is obtained.

Another possible approach to model the motion under three gravity fields

is to consider two bodies moving in circular orbits around a central, more

massive mass. This results in the so called Concentric Circular Model which

is again non-coherent and non-autonomous[40].

2.4 Dynamical System Elements

As shown, the motion in the CR3BP can not be analytically predicted, but

exploiting the linear approximation (actually using this as initial guess for

numerical procedures) it is possible to define a set of useful special orbits.

Nevertheless this model remains a chaotic model, where each small change

in the initial conditions results in completely different paths.

Let us conclude this chapter underling, from a mathematical point of view,

the deep reasons generating regular and chaotic behaviors in the CR3BP.

These ideas are exploited in Sec. 3.1-3.2 to compute periodic orbits, man-

ifolds and later on transfer trajectories. The CR3BP represents a complex

dynamical system exhibiting different kinds of behaviors due to the pres-

ence of a small perturbation to an integrable system and to the presence of

equilibria of different nature.

Instead of addressing the classical CR3BP, the main feature of any dy-

namical system of this kind can be found in an easier example, the Standard

Map (Chirikov-Taylor map)[41]. It is actually a discretization that transforms

the time continuous pendulum model into a time discrete map. It results in

a combination of elementary functions that shows a complex dynamics with

chaotic phenomena. The dynamics of the Standard Map is ruled by[42]:

xk+1 = xk − h2 sin xk + yk
yk+1 = yk − h2 sin xk

⇒ ς 7→ χ(ς), ς = (xk, yk) (2.46)

where h is the time step used for the discretization and the application of

the Standard Map is represented, in general, by χ. It is interesting to stress

since now that if h = 0 the system corresponds to a simple rotation on the

unitary annulus[41]. That is a conservative discrete dynamical system (the

determinant of its Jacobian is +1) with 2π periodicity both in x and y.

Independently from the h value, the system presents two fix points ς0
j , i.e.

points such that χ(ς0
j ) = ς0

j . These two points are ς0
1 = (0, 0) and ς0

2 = (π, 0).

The Jacobian matrix in ς0
1 has, for h < 2 two complex eigenvalues with

unitary modulus; it is an elliptic equilibrium point.
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On the other hand, in ς0
2 the eigenvalues of the Jacobian are real and, as

the determinant is unitary, one is larger and the other smaller than 1; it is a

hyperbolic equilibrium point. This means that the application χ is stable in

ς0
1 and unstable in ς0

2 .

In Fig. 2.13 a hyperbolic point of the ς0
2 kind is represented together with

the stable and unstable manifolds emanating from it, W s and W u. These

manifolds are tangent to the local stable and unstable eigen-spaces, Es and

Eu so that a linear combination of these spans the whole linear (tangent)

space in the fix point.

In other words, a hyper-

Figure 2.13: Stable and Unstable manifolds ema-
nating from a hyperbolic equilibrium
point.

bolic equilibrium point has a

saddle component, while an

elliptic one has not[41]. The

dynamics near these fix points

are the same described in Sec.

2.2.4-2.2.5, where the equilat-

eral libration points are ellip-

tic points and the collinear ones

are hyperbolic.

Iterating the Standard Map,

Eq. (2.46), for many initial

conditions and assuming a fix

value of h, completely differ-

ent behaviors around the two

equilibrium points result (the same approach is used considering the CR3BP

model in Sec. 3.6).

Near the hyperbolic fixed point the orbits seem to fill a chaotic region,

i.e. any specific pattern in the iterations of the map is absent. Although a

unique definition of chaos does not exist, it can be visualized here as an aperi-

odic long-time behavior arising in a deterministic dynamical system (like the

Standard Map) that exhibits a sensitive dependence on initial conditions[18].

On the other side, initial conditions near the elliptic equilibrium point

seem to arrange on Moser invariant curves, i.e. curves such that the iterates

of the map shift just their location changing the angular location remaining

on these closed lines. In this case a sort of “ordered regions” appears in

the map iterations. Moreover, also closed curves with periods larger than

one appear. These curves are closed lines filled alternatively for different

iterations of the map and are arranged around higher order periodic points

(e.g. (0, π)). For increasing values of h, the measure of these ordered curves

decreases and the measure of the chaotic region increases (see also later on).
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These different behaviors are depicted in the phase portraits of the Stan-

dard Map in Fig. 2.14. In the picture four values of the “perturbation” h

are used, the above mentioned behaviors can be appreciated better for the

intermediate values.

Figure 2.14: Phase portraits of the Standard Map for h = 0.5, 1.0, 1.5, 2.0
from the upper left corner.

In a dynamical system, a separatrix is a phase curve that separates the

phase space into two distinct regions. For the Standard Map, the separa-

trices occur at the angular momentum where the oscillations give way to

rotations[41]. Actually a separatrix is an invariant manifold of the hyperbolic

point. Within the separatrix the motion is oscillatory, whereas the outside

corresponds to motions with the pendulum continuously turning through cir-

cles[18] (this is exactly the behavior described for the tube-like structure in

Sec. 2.2.5).

Let ς0 be a hyperbolic fixed point for the application χ : IR2 → IR2 and

A the matrix of the linearized system in ς0. Hence there exist a regular and

injective curve γ : IR→ IR2 such that[16]:

• γ(0) = ς0;

• the speed γ′(0) is an eigenvector of A with eigenvalue λ;

• the image of the curve is an invariant set, i.e. χ(γ(s)) = γ(s1) where

s1 = s1(s) a continuous function;
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• limk→±∞ χ
k(γ(s)) = ς0.

If the eigenvalue of A, λ, is larger than one and the limit tends to −∞,

the separatrix is an unstable separatrix. Otherwise, if the eigenvalue of A

is smaller than one and the limit tends to +∞, the separatrix is a stable

separatrix.

To define the behavior of the separatrices at infinity, it is possible to

approximate a piece of these by means of the linearized subspaces in the

hyperbolic equilibrium. As the separatrix is tangent to the linear subspace

in ς0, the real eigenvalues, λs/u of the Jacobian evaluated in the hyperbolic

point, corresponding to the eigenvectors vs/u (where s is the stable one and

u the unstable), give the approximate stable or unstable direction of the

separatrix. Choosing a ε > 0 small, a point ςs/u = ς0 + εvs/u does not

belong to the separatrix, but it is ε-close to it[25]. Thus its (linear) image will

be also ε-close to the separatrix in the form χ(ςs/u) = ς0 + λs/uεvs/u + o(ε).

So, the segment joining these two points is an approximation of the true

separatrix[18]. The approach can be reiterated for a sufficient number of

iterations to obtain an approximation of the whole separatrix. This linear

mapping is exploited in Sec. 3.2.1 to produce numerically the manifolds

introduced in Sec. 2.2.5

Since the separatrices are injective curves these can not intersect them-

selves, otherwise the uniqueness existence theorem (Cauchy-Lipschitz theo-

rem) would not held anymore. Nevertheless, it is possible for a separatrix

to intersect the other one. In this case the intersection point belongs, at

the same time, to the stable and unstable subspaces of the linearized sys-

tem around a hyperbolic equilibrium. These are the well known Homoclinic

Points [30]. A homoclinic point is doubly asymptotic as it tends toward the

same ς0 both forward and backward in time (cfr. Sec. 3.3). Moreover, if the

two separatrices are linearly independent in the homoclinic point, i.e. their

combination can span the whole linear subspace in that point, the intersec-

tion is transversal [29]. All the iterates of a homoclinic point are homoclinic

and they constitute an homoclinic orbit, and if the first homoclinic point is

transversal the whole homoclinic orbit is transversal.

On the other hand, a phase curve connecting two different hyperbolic fix

point is an heteroclinic orbit (cfr. Sec. 3.4).

Thus, two separatrices or meet in a hyperbolic fix point or connect the

stable and unstable manifolds of two different hyperbolic fix points.

If ℘ is the homoclinic point and ℘′ is ahead of ℘ along the stable manifold

and ℘
′′

along the unstable one, the mapping of these two points, χ(℘′) and

χ(℘
′′
) must be ahead of the mapping of the homoclinic point χ(℘)[30], like

depicted in Fig. 2.15. This can happen only if the manifolds loop back and
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cross again the other one in a new homoclinic point. It is equivalent to the

consideration that the homoclinic point belongs to both separatrices, and its

image as well. This is schematic represented in the left side of Fig. 2.15.

Thus, once the two separatrices cross they will fold to get another cross.

This process takes place indefinitely and, if the first intersection is transversal,

also the others are[25].

Figure 2.15: Left: schematic representation of the homoclinic tangle. Right:
homoclinic tangle of the saddle point of the Standard Map after
few (up) and 15 iterations (down).

Moreover, as the map is area preserving[41] (the determinant of the lin-

earized system is unitary) and the distance between the iterates decreases,

the curves must extend further before to get the intersection with the other

one. In this way the loops become longer and thinner, with the homoclinic

points closer and closer. This forms a sort of network of curves that intersect

infinitely many times in a small disk around the homoclinic point[30]. This

phenomenon is referred as the homoclinic tangle and it represents the dynam-

ical origin of the chaos. To give an idea of the complex situation described,

in the right hand side of Fig. 2.15 the global interweave of the hyperbolic

fix point of the Standard Map is represented. The figure has been produced

with a time step of 1 and a perturbation of 1e-10. In the upper right plot

only the first eight intersections of the separatrices are represented, while in

the lower right plot the whole tangle after 15 iterations is shown. The center
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point of the plots is the homoclinic point9.

So far we discussed the behavior of the Standard Map (intended as rep-

resentative application of a generic Hamiltonian system[41] subject to a small

perturbation) considering a fix, not too high, value of the parameter h in Eq.

(2.46).

In 1954 Kolmogorov[43] laid the basis of the general theory of perturbed

dynamical systems filling the gap left by Poincaré about quasi-integrable

Hamiltonian system[25]. The core question to answer was if the foliation of

the phase space represented by the invariant tori (like the role of Ek ins Sec.

2.2.3) was destroyed by a small perturbation of the dynamical system. The

Poincaré’s answer was positive for rational tori (where the eigenfrequencies

ratio has rational value). Thus, in a perturbed Hamiltonian system all the

rational invariant tori vanish and just a finite number of periodic solutions

survives. Many years later it was proven[43] also the fate of the irrational

tori.

This laid the foundations of the so called Kolmogorov-Arnol’d-Moser

(KAM ) theory dealing with small perturbations of completely integrable

Hamiltonian dynamical systems[16][26].

As observed in Sec. 2.2, a quasi-integrable system can be posed as:

H(Θ, I) = H0(I) + εH1(Θ, I) + ... and the relevant canonical equations (in

place of Eq. (2.14)) governing its dynamics are:

İ = −ε∂H1

∂Θ
(Θ, I)

Θ̇ = ωI + ε
∂H1

∂I
(Θ, I) ω :=

∂H0

∂I
(I) (2.47)

ω is often referred as the frequency map. If ε = 0, the Actions I, slow

variables, are constants, whereas the Angles Θ, fast variables, move linearly

on the tori I = const and the resulting motion is quasi-periodic.

The main result of the KAM theory is that, for a perturbation ε which is

analytic and small, most of the invariant tori are not destroyed by the pertur-

bation, but are just deformed[26]. Thus, the motion of the quasi-integrable,

non-degenerate (cfr. Sec. 2.2) system is quasi periodic and fill everywhere

densely a deformed torus. This holds only for those KAM tori with a suffi-

cient non rationality of their eigenfrequencies. This last condition is known

as the Diophantine Condition. Considering a generic γ > 0 the set of the

9This has been discovered by Poincaré that depicted in his mind this phenomenon
without any computer and without trying to trace the homoclinic tangle on a paper. In
this sense he discovered the chaos using the CR3BP as dynamical system. The chaotic
phenomena originating from this behavior are quite conventional in any conservative non
integrable dynamical system.
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γ-diophantine frequencies is given by[18]:

Ωγ = {ω̃ ∈ Ω : |k · ω̃| ≥ γ

||k||n∞
∀k ∈Zn} (2.48)

Thus, only the tori with frequencies belonging to Ωγ survive.

In the example of the Standard Map the parameter h2 plays the role

of perturbative parameter. Thus if it is zero the phase space is completely

foliated by invariant tori (Fig. 2.14 would be a collection of horizontal lines),

while for increasing values of h some stability regions, represented by the

KAM tori, take place around the fixed elliptic points and their size decreases

for increasing perturbation values until the whole space is covered by the

chaotic see[16]. This trend is represented in Fig. 2.14.

Summarizing, the case of the Standard Map is an area-preserving appli-

cation of the unitary annulus to itself. The unperturbed map, restricted to

a given circle (I = const), results in a standard rotation with rotation angle

depending on the specific torus (consequence of the non degeneracy condi-

tion). For the non resonant cases the images of the points on a given circle

fill densely the circle. Otherwise, for resonant cases, the images are periodic

and the tori are not completely filled. These last tori do not survive to the

introduction of a small perturbation.

Finally, concerning the stability of a perturbed Hamiltonian system (thus,

the one of the CR3BP), the most outstanding result is represented by the

Nekhoroshev Therem [18]. It provides an exponential estimate of the time sta-

bility of a quasi-integrable non-degenerate Hamiltonian system. Actually it

states that the confinement of the Action variables holds for times propor-

tional to the inverse of the non-integrability parameter (T ∼ 1/ε). As usually

ε is very small, this leads to the concept of the“Nekhoroshev stability regime”,

that is a regime of chaotic orbits but with stable motion over very long times.

This approach has been successfully applied to several bodies of the asteroid

main belt.



Chapter 3
CR3BP Model Investigation and Exploitation

After centuries of theoretical analysis, the circular restricted three body

model was actually considered a valuable alternative to design specific space

paths, as it allows many unique orbits to be defined. The deep exploitation

of this model is still object of research and many trajectories designed in this

framework were based only on heavy numerical computations. One of the

first missions, instead, designed by considering a “manifold approach” and

thus exporting the theoretical CR3BP characteristics to the real space envi-

ronment, was the Genesis[6][44]. It was sent to a periodic orbit around the

Sun-Earth L1 (nominal operational orbit neither conceivable with another

model) flowing along its stable manifold. Moreover, the solar wind samples

here collected were brought back on Earth by means of the unstable manifold

of this orbit exploiting also a heteroclinic connection to obtain a day-light

reentry.

In general, the current direction in the mission analysis is to search for

convenient trajectories enabled by a specific model considering a dynamical

system approach[45]; this results in first guess transfers to be refined in full

force models.

In this Chapter, periodic orbits enabled by the CR3BP are derived by

means of analytic guesses, numerical schemes and continuation procedures.

Ballistic trajectories, moving towards/from equilibrium points and connec-

tions of these, are computed in order to be used later on as mission analysis

options. Indicators of the chaotic regime existent in the CR3BP are presented

and applied. The resonance idea is introduced and used to observe resonance

transitions as well as to obtain exact resonant orbits.

For the computation of Halo orbits and manifolds, the derivation in[14][1]

is followed. Here also the basics of the homoclinic/heteroclinic connections

can be found. A global analysis of the periodic orbits and relevant stability



3.1 Periodic Orbits 48

considerations can be found in[46][42]. For the Poincaré sections, the analysis

of their domain and the resonance transitions the reader can refer to[47][48].

3.1 Periodic Orbits

The motion of a particle in a given dynamical system is defined periodic if

its position and velocity repeats after a given time interval[46][49].

To generate a periodic solution in the framework of the CR3BP, the stan-

dard approach is to produce high order non-linear analytical approximations

to be used as initial conditions in numerical schemes[15].

3.1.1 Periodic Orbits around Libration Points

As explained in Sec. 2.2.5, the periodic orbits around a collinear libration

point can be divided into planar/vertical Lyapunov (if only one periodic

motion is taken into account)[36], Lissajous orbits (when the in-plane and

the out-of-plane eigenfrequencies are different)[42] and Halo orbits (when the

two eigenfrequencies match)[37]. Following this subdivision, it is clear that

the Lissajous are quasi-periodic orbits, while all the other types are exactly

periodic solutions.

The Lissajous orbits have four degrees of freedom represented by the pla-

nar and vertical amplitudes (related to initial conditions) and the two initial

phases[42], i.e. Ax, Az, ϕ and ψ in Eq. (2.38) together with A1 = A2 = 0.

These orbits are bounded by the invariant KAM tori around the libration

points. Their analytic initial guess is still given, at the first order, by the

integration of the linearized equations, Eq. (2.38), and at higher orders by

methods like the ones described in this section for the Halo orbits. Their nu-

merical construction, instead, is quite challenging due to the non periodicity

of these solutions. The numerical approach aims firstly at the identification

of target positions at given time instants. Afterwards the position conti-

nuity among those points is satisfied with velocities discontinuities that are

subsequently reduced by means of an iterative process.

However, it is worth stressing that the four dimensional center manifold

around a collinear equilibria (cfr. Sec. 2.2.5) is occupied, for an energy value

enabling the existence of Halo orbits, by quasi-periodic orbits of two different

families: the Lissajous family around the vertical Lyapunov orbits (always

present) and the Quasi-Halo Orbits around the Halo orbits (that appear with

the inherent Halo). These quasi-periodic orbits reside on invariant tori (cfr.

Sec. 2.4) about the corresponding periodic orbit[50].

In this work Lissajous/quasi-Halo orbits are never used as target orbits;

thus, let us focus on exactly periodic solutions to describe how these can

be implemented analytically and numerically. The method is outlined for
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the three dimensional Halo orbits; the extension to the Lyapunov case is

straightforward.

Halo orbits appear when the non linear terms allow ν = ω (cfr. Eq.

(2.39))[51]. The solutions of the linear equations of motion can be written,

restricting to the periodic component, for this situation. Following a La-

grangian approach, L can be expanded in series of Legendre polynomials and

the recursive relationships of these polynomials can be exploited to produce

high order analytic approximations of the motion. In this way third order

approximations for the Halo orbits are available from Richardson[51].

Another way to generate periodic solutions employees the Lindstedt-

Poincaré method[52][25]. In this case, the idea is to find a parameter altered

by the perturbation and expand the dependent variable and this parameter

in power of the perturbation. The gravitational potential is expanded in

power series and frequency corrections are introduced in order to get rid of

the secular (unbounded) terms. This approach is more precise and allows the

derivation of all kind of invariant objects[42].

The approach used in this work refines the initial guess of periodic so-

lutions obtained by a “Richardson approach”[53] by means of a Differential

Correction Procedure. This is essentially a Newton method using the analytic

expansion as initial seed and taking into account the real dynamical field[54].

The main proprieties exploited to compute the periodic solutions are their

symmetries, like outlined in Sec. 2.2.2. If, at a given time instant, the state

of the system is such that the velocity is perpendicular to the radius vector,

the corresponding configuration is a so called Mirror Configuration. If at

two separate epochs two mirror configurations occur, the resulting orbit is

periodic[49]. This assures that two mirror configurations are sufficient for

the existence of a periodic solution. Thus, imposing to reach another mirror

configuration starting from a given one is a condition to compute a periodic

orbit.

In the CR3BP there exist two kinds of symmetries: A symmetry if the

corresponding solution is symmetric with respect to an axis (m3 crosses the

x -axis with perpendicular velocity) and P symmetry if it is symmetric with

respect to a plane (when the crossing is through a plane with perpendicular

velocity). Moreover, there exist also doubly-symmetric Solutions given by the

combination of A and P symmetries[55].

The intersection of a Halo orbit with the x-y plane is a mirror config-

uration of the P kind since these solutions are symmetric with respect to

the x-y and x-z planes. The P-symmetry with the x-y plane is exploited to

compute the periodic solutions, while the symmetry with respect to the x-z

plane defines the Northern family, Halo orbits with a maximum excursion of



3.1 Periodic Orbits 50

the z-amplitude in the positive z semi-axis, and the Southern family, with

maximum z excursion below that plane.

A mirror configuration is identified by an initial state in the form: ~x0 =

{x0, 0, z0, 0, v0, 0}. If after a semi-period (T1/2 with T the orbital period)

the state of the flow is of the kind ~xt = {x∗, 0, z∗, 0, v∗, 0}, another mirror

configuration is found and the Halo orbit is computed[55].

The Newton method computes iteratively the corrections to the orbital

period and to the initial conditions so that the required final state is ob-

tained. The differential correction scheme works as a first order expansion

of the flow that, propagated from the analytic approximation, at the next

intersection with the x-z plane results, in general, in the form: Φ
(
~x0, T1/2

)
=

{x̃, 0, z̃, ũ, ṽ, w̃}. Denoting Φ(~x0, t) the trajectory of the system with ~x(t0) =

~x0, i.e. Φ(~x, t) : ~x0 7→ ~x(t) that is the flow map of the dynamical system1.

Thus, the aim is to find the corrections ∆ = {∆x, 0,∆z, 0,∆v, 0} and ∆t

such that Φ
(
~x0 + ∆, T1/2 + ∆t

)
= ~xt. This can be done by means of a first

order Taylor expansion:

Φ
(
~x0 + ∆, T1/2 + ∆t

)
= Φ

(
~x0, T1/2

)
+

[
∂Φ
(
~x0, T1/2

)
∂~x

]
·∆+

∂Φ
(
~x0, T1/2

)
∂t

·∆t

(3.1)

The unknowns of this equation are the components of ∆ and ∆t. The

matrix Ω(~x, t) = ∂Φ/∂~x is the so called State Transition Matrix. It is worth

nothing that this matrix Ω, evaluated after one period of the periodic orbit,

is called the Monodromy Matrix M (cfr. Sec. 3.1.3). The Eq. (3.1) can be

written by components as:

M {∆x, 0,∆z, 0,∆v, 0}T + f (Φ) ∆t = {x∗, 0, z∗, 0, v∗, 0}T − {x̃, 0, z̃, ũ, ṽ, w̃}T

(3.2)

where f (Φ) = ∂Φ/∂t. This results in three equations (the non trivial

ones) in four unknowns: ∆x,∆z,∆v and ∆t.

This indeterminacy is a consequence of the presence of a family of so-

lutions where the specific Halo orbit is embedded in. In any Hamiltonian

system the periodic solutions present as a family and a parameter (resulting

in a specific energy value) has to be chosen in order to extract a specific

solution from this family2.

1The flow map satisfies the equations of motion (~̇x = f(~x)):

dΦ(~x0, t)/dt = f(Φ(~x0, t)), Φ(~x0, t0) = ~x0

2In general, around a fixed point of a Hamiltonian system, with eigenvalues in the
form ±ωi and under suitable non-resonance conditions for the remaining eigenvalues λi,
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Setting ∆z = 0 the procedure establishes an iterative technique to correct

the initial analytic guess with a new condition: ~xnew0 = ~xold0 + ∆ until the

mirror condition is reached after half-period.

This differential correction procedure requires the propagation of time

derivatives of the monodromy matrix (with initial conditions M(t = 0) = I)

together with the equations of motion. This results in 36 + 6 equations for

the Halo orbits and 16 + 4 for the planar Lyapunov ones.

This holds as the state transition matrix, hence of the monodromy ma-

trix, solves the initial values problem defined as: Ω̇(~x, t) = Df(~x) Ω(~x, t) with

Ω(~x, t0) = In, where Df(~x) is the Jacobian of the generic dynamical system

~̇x = f(x) and In is the nxn identity matrix. As Df(~x) is time dependent, it

can not be solved analytically so that it usually requires the numerical prop-

agation of the additional n2 equations representing the elements of Ω(~x, t).

The Richardson seed and the numerically corrected orbits are presented

for a set of Southern Halos (left) and planar Lyapunov orbits (right) around

L1 in the Sun-Earth system in Fig. 3.1.

Figure 3.1: Analytical seed (green) and numerical differential correction
(blue) of southern Halos (left) and planar Lyapunov orbits (right)
around L1 in the Sun-Earth system.

The Halo orbits span a z -amplitude of [1e4:5000:1e5] km with a Jacobi

constant in the range [3.0008314, 3.0008342]. On the other side, the Lyapunov

orbits presented have the same range [1e4:5000:1e5] km as x -amplitude and

they span a J of [3.000885, 3.0009008]. It is also possible to observe from

Fig. 3.1 that, in this energy range and for this µ value, the analytic initial

there exist a one-parametric family of periodic orbits emanating from the equilibrium with
limiting period 2π/ω. This is the Lyapunov’s Centre Theorem [36] (cfr. also Sec. 2.2.5).
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guess resulting for the planar case is much better than the one for the three

dimensional solutions. Indeed it is almost impossible to distinguish between

the analytic and numeric Lyapunov orbits.

To compute the planar Lyapunov family, the corresponding condition to

solve the indeterminacy of the system, Eq. (3.2), is to set ∆x = 0 and solve

for the two remaining unknowns. In this case the symmetry with respect to

the x -axis is exploited and any size of orbit can be computed up to Earth

collisions, see Fig. 3.2.

It is worth underlining that the non linear terms play a growing role for

increasing amplitudes and the corresponding orbits are much more distorted

as can be observed looking at the whole family of L1-L2 Halo and planar

Lyapunov orbits shown in Fig. 3.2 for the Earth-Moon system.

Figure 3.2: Northern L1/Southern L2 Halo (left) and L1/L2 Lyapunov fam-
ilies (right) in the Earth-Moon system.

Finally, the Richardson approximation can also be derived for the vertical

Lyapunov orbits related to the situation ω = 0 in Eq. (2.38). In this case,

only the vertical amplitude parameterizes these orbits that (as the planar one

for the Lyapunovs) represent a subset of the Lissajous orbits with Ax = 0.

These, or more commonly close Lissajous, are very useful to have a good

polar coverage of the small primary or for telescope missions that can move

beyond the primaries plane where most of the dust is concentrate.

3.1.2 Global Periodic Orbits

Beside the periodic solutions close to the collinear libration points analyzed

so far, the CR3BP gives rise to a whole set of periodic orbits in the phase
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space. These can be identified by means of Continuation Procedures starting

from the basic sets of periodic solutions (i.e. the planar and vertical families)

emanating from the libration points and increasing a parameter of the system.

In this way have been computed the Earth-Moon Halo and Lyapunov families

presented in Fig. 3.2.

The main idea of this procedure is to compute the set of solution of:

F (x) = 0, F : IRn+1 → IRn. These are under-determined systems (one more

unknown than equations) and, away from the singularities, the set of solutions

is a nD manifold embedded in a (n+ 1)-dimensional space.

Let us suppose to have a solution (tilde state) of this kind of problem

with a dependence on a parameter that we wish to vary: F (x̃) = 0; x̃ =

(ỹ, λ̃), F : IRn × IR→ IR, y ∈ IRn, λ ∈ IR.

The idea is to slightly perturb this parameter in order to obtain a new

solution of the system. Of course, a variation of λ̃ gives a new point that is

not solution of the problem, but it is close to, so several predictor-corrector

methods can be used to approach such a problem. The general scheme is

to use the previously known point as initial guess for a zero finding method

(e.g. Newton method) in order to define the new solution. This results in a

continuation curve that gives the evolution of the zeros of the system F with

respect to a variation of the parameter λ[56].

Usually, the variation of the parameter gives a new point which is not

solution of the original problem, but it is close to it in the form F (ỹ, λ̃+ δλ̃).

The classical approach is to use a sort of Newton method for the augmented

problem[57]:

F (y, λ) = 0

λ− (λ̃+ δλ̃) = 0 (3.3)

Each zero finding procedure requires an initial guess within the basin of

attraction of the zero to converge. Thus, if the continuation curve presents

a sudden fold, the previous initial guess of the parameter can be very poor

and outside the basin of attraction, so there are no guarantees that the zero

finding procedure converges.

Moreover, when a small variation of the continuation parameter causes a

sudden qualitative change of the behavior of the system a bifurcation point

occur[18]. In this situation a new branch of solutions arises and the two solu-

tion curves have to be continued independently[55]. A bifurcation is a situa-

tion where a very small change in the continuation parameter of a dynamical

system suddenly generates completely different solutions, both topologically

and qualitative. The bifurcation is a sort of separation of the behaviors of

the dynamical system in different parts and it is often related to the chaos
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onset[58].

Therefore, the main limit of this classic Natural Continuation Method is

that it does not take into account the actual shape of the continuation curve

so it may fail in a fold of this curve. Furthermore, it requires a continuation

parameter explicitly present in the equations of motion, and this is not the

case for the CR3BP.

The Pseudo Arc-length Method [58] is a natural improvement of the previ-

ous method where the new value of the continuation parameter is determined

by the geometry of the curve by means of an approximation of its arc-length.

The resulting problem can be stated as[57]:

F (x1) = 0

(x1 − x0)T ẋ0 = δs (3.4)

Where ẋ0 is the unit tangent to the continuation curve in the point x0

and δs is the step size adapted along the curve (to assure the convergence of

the Newton method) and approximating the arc-length along the curve[59].

Figure 3.3: Schematic ideas of the Natural Continuation procedure (left) and
of the Pseudo Arc-length one (right).

The CR3BP equations of motion, Eq. (2.2.2), do not present any nat-

ural parameter to perform the continuation procedure, so they have to be

re-written to introduce an unfolding term to allow the parametrization of

the family of periodic solutions[60]. The continuation is performed on this

unfolding parameter that breaks the symmetry of the solutions and must be

zero (within the numerical precision) when a periodic solution is found.
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Moreover, the application of the Pseudo Arc-length method to detect

periodic solutions in the CR3BP requires first of all the computation of one

periodic orbit of the planar and vertical Lyapunov family that are the two

basic families of periodic solutions emanating from the libration points[57].

The approach here implemented consists of the continuation of a planar

and a vertical Lyapunov orbit around each libration point and store each

bifurcation point found. Afterwards these bifurcation points are further con-

tinued and the new set of bifurcation points found are stored to reiterate the

process. The procedure ends when the family which is going to be computed

is identified as already stored or an impact with one of the primaries occurs.

This procedure has been implemented using the software AUTO[61].

A complete diagram of the initial conditions in the position space, giving

rise to a generic periodic orbit in the Earth-Moon CR3BP is represented in

Fig. 3.4. All the emanating bifurcations curves are presented in the real

position space (left) and in a schematic version (right). The withe balls are

the bifurcation points and each family is computed until it crashes with one of

the primaries, it grows to infinity or it bifurcates into another family. These

results show a good agreement with[59].

Figure 3.4: Real (left) and schematic (right) bifurcation diagram for the
Earth-Moon CR3BP. Each curve is a continuation curve of pe-
riodic orbits emanating from one of the five equilibria.

As representative families computed with this approach, the L3 Halo or-

bits and the L4-L5 vertical orbits are presented in Fig. 3.5 and 3.6. The

L3 Halos arise again from a bifurcation of the L3 planar Lyapunov family,

like for the L1 and L2 inherent Halos. They end with Earth impacts and

can reach approximately two times the Earth-Moon distance as out-of-plane

amplitude. Their period can vary in the range [4.7, 6.3] TU with a Jacobi

constant in [2.5, 4.5].

On the other hand, vertical orbits of the triangular points can transit from
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Figure 3.5: Family of L3 Halo orbits in the Earth-Moon system.

one to the other elliptic equilibrium point. These constitute by themselves

two of the basic families emanating from the triangular libration points and

are symmetric with respect to the x-y plane. Thus, they can reach approx-

imately the Earth-Moon distance above and below the Moon orbital plane.

They have a Jacobi constant in the range [−0.9, 3] and a quite narrow period

variation around 6.3 TU.

In general, the most important bifurcation phenomenon in the CR3BP is

the one generating the Halo orbits. As said, these arise from a bifurcation of

the planar Lyapunov family when the amplitudes are large enough to allow

non linear terms to produce equal eigenfrequencies (cfr. Sec. 2.2.5). In this

situation, around a single Halo, also the relevant invariant torus filled by

quasi-Halo appears. In Fig. 3.2 also the last Lyapunov orbits, generating the

Halo families, are represented.

In the global bifurcation diagram of Fig. 3.4 there are some general

aspects to stress. The L1 Halo family, differently from the other Halo fami-

lies, does not crash on one primary but it is linked to the vertical family of

L4 − L5
[59]. Furthermore, there is a continuous and direct transition among

the vertical Lyapunov orbits of L3 − L4 − L5. Finally, there are periodic

orbits passing twice in the Moon vicinity. These kinds of solutions are quite

attractive from a mission analysis point of view and are considered for the

application presented in Sec. 6.3.
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Figure 3.6: Family of L4-L5 vertical orbits in the Earth-Moon system.

3.1.3 Stability of Periodic Orbits

Bearing in mind that a detailed analysis of the stability conditions is beyond

the scope of this work, let us conclude this exploration of periodic solutions

in the CR3BP with few comments about their stability.

Let us consider a reference trajectory ~x(t) = Φ(~x0, t) (cfr. Sec. 3.1.1)

and a trajectory starting slightly away from this one. It has perturbed

initial conditions in the form ~x0 + δ~x0 and thus its time evolution reads:

δ~x(t) = Φ(~x0 + δ~x0, t) − Φ(~x0, t). Measuring the displacement at a given

time t̄ and expanding it at the first order in Taylor series, it reads: δ~x(t̄) =

∂Φ(~x0, t̄)/∂~x0 δ~x0 +O(δ2~x0). The matrix ∂Φ(~x0, t̄)/∂~x0 satisfying this rela-

tion is the state transition matrix introduced in Sec. 3.1. Replacing t̄ with

the period T of a periodic solution, the monodromy matrix is obtained and

the evolution of a small perturbation in the nearby of a periodic solution is

approximated at the first order. This is particularly important as, according

to Poincaré[30], in a chaotic system are the periodic solutions that organize

the phase space as they constitute the “bones” of each organized structure.

A general dynamical system with T -periodic coefficients is defined by:

~̇x = A~x with A(t + T ) = A(t). In this case, the set of all solutions can

be expressed as the product of a T -periodic matrix and a solution matrix

with constant coefficients3. This is the core of the Floquet theory[62] that

3The Floquet Theorem[62] states that the state transition matrix (Ω(t)) can be expressed
as: Ω(t) = P (t)eQt where P (t) is T -periodic and Q is a constant matrix that has as eigenval-
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gives the solution of a linear differential system with periodic coefficients

as linear combination, with non constant coefficients, of exponentials of the

characteristic multipliers, λ. These characteristic multipliers are actually

the eigenvalues of the monodromy matrix (cfr. Sec. 3.1.1) after one period

T [62] and are given by λ = eαT , with α the characteristic exponents. This

means that these exponents rule the stability of the solution that is given

by the study of the behavior of the periodic solutions at the end of one

period or, equivalently, after an iteration of the Poincaré map (of which the

characteristic exponents are eigenvalues as well) from a section plane to itself.

Thus, to study the linear stability of a periodic orbit, it is sufficient to

study the multipliers at the end of one period. As a periodic orbit repre-

sents a fix point on a suitable Poincaré section transverse to the flow, its

stability can be analyzed directly on the surface of section linearizing the

first return map around the fix point corresponding to this periodic solution.

In the (P)CR3BP the section is (2)4-dimensional and the linearized map is

a (2x2)4x4 symplectic matrix (cfr. Sec. 2.1). Thus, it has eigenvalues of the

form η and 1/η; the stability index is defined as s = η + 1/η[42].

Furthermore, for a periodic orbit in a Hamiltonian system there is a uni-

tary eigenvalue with algebraic multiplicity of two (the second one arising from

the symplectic behavior of the map) corresponding to the periodic motion

(the so called non-degenerate eigenvalues).

Thus, two stability indices can be defined in the three dimensional prob-

lem (4 conjugate eigenvalues left beside the two unitary ones). If s1 < 2,s2 <

2 and both are real, the corresponding periodic orbit is linearly stable. One

of these is the measure of the in-plane stability, while the other one of the

vertical stability[42].

There are many kinds of bifurcations (cfr. Sec. 3.1.2) determined by

the motion (resulting from the continuation of a system parameter) of the

Floquet multipliers in the complex plane[18]. For a continuous dynamical

system the crossing of the unit circle of these multipliers is index of a change

in the stability of the family of solutions. Floquet multipliers larger than one

represent instability while ones smaller represent stability[62]. Since these are

always in conjugate pairs and two are unitary, a given periodic orbit in the

CR3BP can be stable or linearly unstable of order one or two.

In general, a bifurcation occurs when a single real, or a pair of com-

plex conjugate multipliers passes through the unitary circle in the complex

plane[18]. The point and the direction of the cross determine the specific bi-

furcation kind. A bifurcation can change the stability of the solution in three

ues the characteristic exponents of the periodic orbit over one orbital period. Furthermore,
Ω(kt) = Mk where M is the monodromy matrix, M = Ω(T ).
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basic ways[63], see Fig. 3.7:

• a pair of multipliers moves along the unit circle, collide at +1 (si = +2)

on the real axis and continue moving along the real axis. It is a Tangent

Bifurcation (also called Saddle-Node, since there is a saddle and a node

annihilating each other) that leads to a change in the stability of the

solution with creation (Pitchfork Bifurcation) or not (Cyclic-Fold Bi-

furcation) of a new family of solutions. Particularly important are the

Pitchfork bifurcations, these are associated with the stability change

of a symmetric solution whereas the new solutions break this symme-

try. There are two types of pitchfork bifurcations, supercritical and

subcritical. The first one loses stability by emanating a pair of stable

asymmetric orbits and the subcritical form loses stability by absorbing

a pair of unstable asymmetric orbits[46];

• a pair of multipliers moves along the unit circle, collide at −1 (si = −2)

on the real axis and continue to move along the real axis. It is a Pe-

riod Doubling Bifurcation and the new family has twice the period of

the original one. Again, there are two kinds of period-doubling bifur-

cations, the supercritical and the subcritical. The supercritical type

loses stability by emanating a stable period-doubled orbit whereas the

subcritical one loses stability by absorbing an unstable period-doubled

orbit[46]. This is one of the classical routes leading a regular system to a

chaotic behavior through a period doubling cascade that, for increasing

energy, looses any kind of periodicity of the solution;

• two pairs of complex conjugates eigenvalues collide on the unit circle off

from the real axis and continue moving in the complex plane. This is

a so called Secondary Hopf Bifurcation. In general this situation leads

to a new family of invariant tori around the original periodic solution.

There are several others bifurcation phenomena[63] that usually generate

a new family without changing the order of linear instability of the original

family but resulting in different qualitative behaviors. In particular, the sit-

uation of two eigenvalues crossing the imaginary axis on the complex plane,

the Hopf Bifurcation. Also the situation when they collide on the real axis

(out from the unit circle) and then move in the complex plane, the so called

Modified Secondary Hopf Bifurcation, does not change the linear instability

of the orbit[46]. Finally, a transcritical bifurcation is a particular local bifur-

cation, characterized by the passage of an eigenvalue through the imaginary

axis. In this case the stability of a stable and an unstable fix points (periodic

orbits) is exchanged, but no new families are generated.
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Figure 3.7: From left to right schematic representation of: Tangent, Period
Doubling and Secondary Hopf Bifurcation.

As representative cases of these bifurcations, let us follow the evolution in

the complex plane of a generic periodic orbit, in Fig. 3.8, of the Earth-Moon

CR3BP.

The energy range of this kind of orbits is quite small (the Hill regions

are closed also in L1) and it has been found, together with many others,

by means of a grid search[64] of P-symmetric (Sec. 3.1.1) initial conditions.

For each of these initial states the differential correction scheme described

in Sec. 3.1.1 has been applied and, for procedures converging in less than

25 iterations, the resulting orbit considered as an initial seed to continue.

The test periodic orbit of Fig. 3.8 has initial conditions (in non dimensional

units): [1.3677, 0, 0.0500, 0,−0.5664, 0]. This is a doubly symmetric periodic

orbit presenting three mirror configurations, two P symmetries and one A

symmetry[46].

Figure 3.8: Views of a P-symmetric, 1-linearly unstable periodic orbit in the
Earth-Moon system.

In this case, quite far from the two primaries, a local natural continu-

ation procedure has been carried out on the out-of-plane initial amplitude,

exploiting at each step the previous, lower inclined, initial conditions. A step
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of 0.003 DU has been used to change the out-of-plane amplitude, for 700 or-

bits centered around the nominal seed. The family range has approximately

36 days of period and spans a Jacobi constant range [3.09, 3.43].

This particular family exhibits a remarkable pitchfork bifurcation for J ≈
3.16, see Fig. 3.9. At this energy two eigenvalues collide in +1 along the real

axis and start moving long it. Thus, the stability index presents a new

branch and the family gains an order one linear instability. Beside the two

unitary ones, the other two eigenvalues not involved in the bifurcation keep on

moving along the unit circle, i.e. the other stability index remains constant.

The continued family together with the motion of the Floquet multipliers

and the stability indexes evolution is shown in Fig. 3.9.

Figure 3.9: Form the seed of Fig. 3.8: in the upper left corner the motion of
the characteristic multipliers for different energies; in the upper
right corner the evolution of the stability indexes and in the lower
row three views of the continued branch of the periodic family.

A different behavior presents, instead, the orbit depicted in Fig. 3.10.

This orbit, obtained with the same method described above, presents two P

symmetries and moves again quite far from the two primaries. The eigen-

values of this orbit are all real, two larger than one and two smaller. This

solution has initial conditions of [−2.0605, 0, 0.300, 1.3664, 0], J = 3.441 and

period of ≈ 21.6 days.
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Figure 3.10: Views of a P-symmetric, 2-linearly unstable periodic orbit in the
Earth-Moon system.

The same brute-force continuation procedure has been carried out con-

sidering this as the initial seed for 1300 orbits centered around this solution.

The period remains approximately the one of the original seed, while the

Jacobi constant changes in [3.38, 5.29]. In this case there are two stability

indexes larger than one for low values of the Jacobi constant. However, in-

creasing the energy, there are a couple of eigenvalues keep on moving along

the real axis and consequently one stability index growing in time. On the

other hand, there is a couple of eigenvalues colliding in +1 and start moving

along the unit circle. This is represented by a second stability index that

decreases in time until it assumes magnitude +2. Thus, the family gains one

order of linear stability. These two indexes, together with the motion of the

characteristic multipliers (and close up of the regions of interest) are shown

in Fig. 3.11

As shown, bifurcation phenomena with possible corresponding change in

linear stability of the periodic solution can also be recognized by the two

critical values (±2) of the stability indexes[42]. For si = +2 (λ = 1) the

resulting periodic orbit has the same period of the set of periodic solutions

the new branch bifurcates from. On the other hand if s = −2 (λ = −1), the

new periodic orbit has a period double of the original orbit. Between these

two critical values there exist other possible bifurcation situations where the

period of the new branch is a multiple period of the emanating one.

If si > 2, si ∈ IR (hyperbolic case), there is a stable/unstable manifold

of the periodic orbit tangent to the λi direction[42]. This is the case of the

collinear points and is exploited to generate the inherent manifolds (Sec. 3.2).

If si < 2, si ∈ IR (elliptic case), it means that λi = cos ρ + ı sin ρ that

represents a one dimensional family of periodic solutions. These are invariant

under linearization of the flow (first order mapping given by M) around the

fix point and ρ is their rotation number. Rational values of ρ correspond to

bifurcations of families of periodic orbits. For ρ = 0 and ρ = 2π, the stability
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Figure 3.11: Form the seed of Fig. 3.10: in the upper left corner the motion of
the characteristic multipliers for different energies; in the upper
right corner the evolution of the stability indexes and in the lower
row three views of the continued branch of the periodic family.

index assumes the two critical values (parabolic case)[42].

The first crossing of s = 2 for the planar Lyapunov family is the pitchfork

bifurcation giving rise to the Halo orbits (cfr. Sec. 2.2.5). For any Lyapunov

orbit before the critical bifurcation point, there is one unstable eigenvalue,

a stable one and four center eigenvalues. Two of these are unitary and the

other two lies on the unit circle. Approaching to the critical amplitude (i.e.

energy), the two eigenvalues on the unit circle move towards one and at

s = +2 there are four unitary eigenvalues. Afterward there are other two

eigenvalues moving along the real axis so that the resulting Halo family and

the original Lyapunov, after this bifurcation, are 2-linearly unstable[65].

3.2 Manifolds

The qualitative study of any dynamical system is based on the detection of

invariant objects such that a given orbit evolves in time constrained to belong

to one of those[30]. The Invariant Manifolds belong to this class of objects

and are a powerful tool, both to study the behavior of a dynamical system

and to preliminary design purposes[1]. The most important application of

the invariant manifold theory to the mission design is the exploitation of the
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saddle component associated with the three collinear points, in particular

with L1 and L2
[14]. The L3 dynamics is quite slow and its location quite far

to represent a valuable mission analysis option, however also some approaches

to reach this point, in the Sun-Earth CR3BP have been developed[33].

There exists a stable and an unstable manifold winding, respectively, on

or off, for positive times, the periodic solution as well as from an unstable

equilibrium point since in both cases a (very large) saddle component exists.

3.2.1 Manifold Globalization Procedure

Let us start with the computation of the invariant manifolds associated with

the equilibrium point[1]. With this aim it is sufficient to perturb the initial

state from the equilibrium position along the hyperbolic directions. This

Manifold Globalization Procedure requires the propagation, under the full

CR3BP equations, of initial conditions on the saddle component of the flow

around an unstable equilibrium point[66].

These directions are given by the eigenvectors associated with the real

eigenvalues of the matrix of the linear system (Eq. (2.35)), ~us/u. An equi-

librium position is shifted on one of these by means of the application of

a small perturbation. This perturbation is applied along the positive and

negative directions and the corresponding initial state is propagated for-

ward/backward in time to compute the unstabe/stable manifold. This means

that: ~x
W s
Li

0 = ~xe ± d~us has to be backward integrated to compute the stable

manifold, while ~x
Wu
Li

0 = ~xe ± d~uu gives, by forward integration, the unstable

manifold associated with the generic collinear point ~xe. The double sign for

each situation gives the positive and negative branch and d > 0 is the small

perturbation.

Figure 3.12: One dimensional manifolds of L1 in the Sun-Jupiter system.



3.2 Manifolds 65

Considering the Sun-Jupiter system (µ = 9.5369e-4), the two branches

of these one dimensional stable and unstable manifolds of L1 and L2 are

depicted in Fig. 3.12 and 3.13.

This approach results in invariant “lines”, actually one dimensional man-

ifolds, associated with a generic unstable point. It is interesting to observe

that the one dimensional manifolds of L2, as well as the two dimensional

ones of a periodic orbit around this point, after performing several revolu-

tions in the m2 realm are able to move into the m1 realm. This holds as the

energy level assures that the L1 gate is already open (cfr. Sec. 2.2.4) and

the CR3BP dynamics lead W
s/u
L2 to pass very close to L1 experiencing its

unstable dynamics.

Figure 3.13: One dimensional manifolds of L2 in the Sun-Jupiter system.

One of the most representative applications of the CR3BP to a real system

comes out from the observation of orbit of the comet P/Oterma[6]. This comet

experiences a transition from a 2:3 Jupiter resonant orbit to a 3:2 resonance.

This transition brings the comet from the outside to the inside of the Jupiter

orbit and the crossing follows exactly the chain resulting from the linking of

L1 and L2 one dimensional manifolds of the Sun-Jupiter system[67].

A manifold associated with a periodic solution is a hyper-surface made

out of a collection of orbits. These are the asymptotic orbits dividing pass-

ing and non-passing trajectories through the Equilibrium Region (cfr. Sec.

2.2.5). This is obvious for the planar problem (due to the three dimensional

constraint introduced by the Jacobi constant) and has been demonstrated[66]

also for the spatial version, where the manifolds under consideration are as-

sociated with Halo orbits.

The computation of the manifolds pertinent to a periodic orbit follows

a similar approach like the computation of the one dimensional manifolds.
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Initial conditions on the saddle component of the flow around a periodic orbit

have to be identified. The main difference is that the matrix of coefficients

is replaced by a linear approximation of the flow[1][14]. This linear mapping

is again represented by the monodromy matrix introduced in Sec. 3.1.1:

~x→ ~x0 +M (~x− ~x0).

Thus, once M associated to a periodic solution has been obtained, the

manifolds are given by the propagation of a small perturbation, d > 0, along

the directions of the stable/unstable Floquet multipliers, i.e. the eigenvectors

of M , ~vs/u, after one period. The initial conditions are given by: ~x
W s
p.o.

0 =

~x0 ± d~vs for the backward propagation to compute the stable manifold and

~x
Wu
p.o.

0 = ~x0± d~vu forward propagating for the unstable manifold. Here ~x0 is

any initial condition lying on the center part of the flow in the neighborhood

of an unstable equilibrium point, e.g. a point of a Lyapunov/Halo orbit. The

whole invariant manifolds are given by the envelope of the paths obtained by

this procedure repeated for all the values of ~x0.

In Fig. 3.14 and 3.15 the two branches, one in the inner/outer realms and

the other one in the m2 realm are represented for two Lyapunov orbits with

the same energy (J = 3.0331) around L1 and L2 in the Sun-Jupiter system.

Figure 3.14: Two dimensional manifolds of L1 with J = 3.0331, for the Sun-
Jupiter system in the inner and in the Jupiter realm.

The value of d has to be small in order to introduce an error not larger

than the linear approximation validity, but not so small to not fall in the

asymptotic behavior of the manifold; this depends on the mass parameter of

the specific system.

Due to the complex nature of non-Keplerian motions, the underlying dy-

namical systems can be only partially treated by means of theoretical tech-
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Figure 3.15: Two dimensional manifolds of L2 with J = 3.0331, for the Sun-
Jupiter system in the outer and in the Jupiter realm.

niques. Thus, several numerical approaches have been developed to exploit

the structures enabled by these models. Beside the manifold globalization

procedure here implemented, the set oriented approach deserves to be men-

tioned[68]. In this method the invariant manifolds, that are actually invariant

sets of the CR3BP, are computed by means multilevel subdivision procedures.

The phase space is dived into boxes and many short term propagations are

performed in order to identify the boxes belonging to the invariant object and

the ones to discharge. This approach is particularly useful to detect intersec-

tions among manifolds, especially in high dimensions, and has been applied

also to non conventional interplanetary trajectories[69]. Similar approaches

can also be used to extract statistical information and for optimization pur-

poses.

3.2.2 Normal Forms to Compute Invariant Manifolds Near and
Far the Libration Points

Another approach for the computation of the invariant manifold is based

on a more mathematical technique. The idea is to compute a higher order

approximation of the flow[70] and restricting to the hyperbolic directions.

This can be done by approaching the CR3BP as a perturbed version of the

Kepler problem.

The procedure here outlined tends to apply several transformations to

the PCR3BP Hamiltonian to produce an approximate expression analytically

integrable in two domains: near and far from a libration point[71]. The planar

version of the problem is used and the first libration point is considered.

Let us recall the Hamiltonian formulation of the problem, Eq. (2.28),
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that for the PCR3BP can be written in a m1 centered frame as:

H0(~R, ~̇R, t, T ) := T+
| ~̇R|2

2m
−mm1

1

|~R
(2)
|
+mm2(~R· ~R2(t))−mm2

1

|~R− ~R2(t)|
(3.5)

where ~R2(t) is the time dependent position of the smaller primary and T

the time conjugate variable. This is defined with respect to the symplectic

form4 d~R∧ d~̇R + dt∧ dT (small and capital letters are intended as conjugate

variables and ∧ is the cross product) and with m > 0 free parameter. This

parameter is actually related to the perturbative parameter and in this form

the perturbation theory can be applied. In a perturbative formulation the

motion of the massless body m3 is determined by the main gravity field of

m1, but perturbed by another gravitational attraction due to m2. so the

perturbation intensity is proportional to the small primary mass. This is,

indeed, also the reason why a given CR3BP system is defined only by means

of the small primary mass, the mass parameter introduced in Sec. 2.2.1.

The perturbative parameter can be rephrased as: ε := mm2 = m(1 −
m2) = m(1 −M) and m chosen as m = M−2/3. However, in this way it is

not clear the magnitude of the parameter ε, which has to be much smaller

than the large mass determining the main gravity filed. With this aim, let

us introduce: M = 1 − δ3 that makes clear that the perturbation δ is much

smaller than the mass M . The relations between these two parameters are:

ε = M−2/3(1−M) = (1− δ3)−2/3δ3

δ(ε) = 3
√
ε− 2

9

3
√
ε4 +O(

3
√
ε7) (3.6)

where the second one can be obtained by inverting the first one and

expanding δ(ε).

Now the aim is to perform several manipulations to transform the Hamil-

tonian in a suitable form for the subsequent normalization procedure. For

this purpose Delaunay-Poincaré Variables are introduced[26].

To apply the Delaunay coordinates, two preliminary steps are required.

The Hamiltonian has to be re-written in polar coordinates ((r, ϕ̃), (R, Φ̃)) and

then made time independent. This is the equivalent of the change of reference

4A symplectic form is a 2-form (a map taking 2-dim vectors and returning a number)
which is closed on a smooth manifold M and non-degenerate. A 2-form between u, v ∈ IR2

is the determinant of [u1 v1, u2 v2], i.e. the area defined by the two vectors. It is a
skew-symmetric, non-degenerate bilinear form and a vectorial space endowed with this is a
symplectic vectorial space. All the canonical transformations are defined on such a kind of
spaces.



3.2 Manifolds 69

system from the inertial to the rotating one. The resulting Hamiltonian reads:

Hspc(R, r,Φ, ϕ) :=
R2

2m
+

Φ2

2mr2
− mM

r
−Φ + εr cosϕ− ε 1√

r2 + 1− 2r cosϕ
(3.7)

So far all the transformations are symplectic and it is already possible to

identify the perturbative contributes. The last two terms are ε proportional,

so they have to be small everywhere to consider the gravity of m2 a perturba-

tion. However, the rightmost term blows up when the angular variable ϕ = 0

and r = 1. This is the situation when the test particle collides with the small

primary; when m3 is too close to m2 the dynamics can not be considered

as determined by m1 and perturbed by m2 and the described perturbative

approach can not be applied.

Originally developed for the two body problem (which results completely

integrable in this form), the Delaunay variables[17] are applied to the CR3BP

to transform the system into a quasi-integrable system (cfr. Sec. 2.4).

This means that there exists a canonical transformation such that: ΨD :

(L, `,G, g) → (R, r,Φ, ϕ) is implicitly [16] defined by the generating function

S(L,G, r, ϕ)5.

The resulting Hamiltonian takes the form of a nearly integrable system:

HD(L, `,G, g) := − 1

2L2
−G︸ ︷︷ ︸

IntegrablePart

+ εr cosϕ− ε 1√
r2 + 1− 2r cosϕ︸ ︷︷ ︸

PerturbativePart

, (3.8)

The Delaunay coordinates are actually Action-Angle variables (cfr. Sec.

2.2). Thus, the problem must be stated in these variables to investigate

about its integrability (cfr. Sec. 2.1 and 2.4). A Hamiltonian depending

only on the Action variables is exactly integrable since they remain constant

through the motion and only the relative Angles vary filling the tori[26]. L,G

are Actions, while `,g are the Angles variables. The Delaunay variables are

implicitly defined, i.e r = r(L, `,G) and ϕ = g + v with v = v(L, `,G) the

true anomaly. These abstract variables have a physical meaning and can be

related to the classical orbital parameters[13]:

5A generating function is a sort of passage between two sets of canonical variables. In
general a transformation g : (p, q) → (P,Q) is canonical if PdQ − pdq = dS for a suitable
generating function S. There exist four basic kinds of generating functions involving a
mixture of “old” and “new” variables. The Delaunay’s one reads:

S(L,G, r, ϕ) =

∫ √
−m

4M2

L2
+

2m2M

r
− G

r2
dr +Gϕ
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• L = m
√
Ma, it is related to the semi-major axis a;

• ` = u− e sinu, it is the mean anomaly satisfying the Kepler equation;

• G =
√

(1− e2)L, |G| is the module of the angular momentum;

• g is the argument of pericenter.

The integrable part of Eq. (3.8) is composed by two terms. The first one

is the Keplerian Hamiltonian, it is analytically integrable and also degenerate

since it depends only on one Action although there are two of such variables.

The second term of the integrable part results from the rotation of the system

of reference[26].

The Hamiltonian obtained at this step, Eq. (3.8), suffers from a singu-

larity which appears for zero eccentricity (e =
√

1−G2/L2); the Poincaré

variables are introduced to remove this lack. This is done by means of the

two step canonical transformation:

ΨPt :

(
(Λ,Γ), (λ, h)

)
→
(

(L,G), (`, g)

)
⇒

{
Λ = L, Γ = L−G
λ = `+ g, h = −g

ΨPaa :

(
(Λ, η), (λ, ξ)

)
→
(

(Λ,Γ), (λ, h)

)
⇒

{ √
2Γ cosh = η√
2Γ sinh = ξ .

(3.9)

such that Γ = (η2 + ξ2)/2. The first transformation is just a translation

and the second one is symplectic preserving the 2-form dΓ ∧ dh = dη ∧ dξ.
Combining all the transformations introduced ΨDP : ((Λ, η), (λ, ξ)) →

(~R, ~̇R) the Hamiltonian takes the nearly integrable form:

HDP = − 1

2Λ2
− Λ +

η2 + ξ2

2
+ εP (Λ, η, λ, ξ; ε) (3.10)

where the first two terms represent again the integrable part. The per-

turbative term, is a quite complicate expression composed by two parts:

εP := P1 + P2

P1 = δ3(1− δ3)−1/3Λ2

[
cos(λ+G0)− η√

Λ
F1 +

− ξ√
Λ
F1

(
sin(λ+G0)

η√
Λ
F1 + cos(λ+G0)

ξ√
Λ
F1

)
F2

]
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P2 = −δ3(1− δ3)−2/3

{
1 + (1− δ3)2/3Λ4

[
1− 2 cos(λ+G0)

η√
Λ
F1 +

2 sin(λ+G0)
ξ√
Λ
F1 + cos2(λ+G0)

η2

Λ
F 2

1 + sin2(λ+G0)
ξ2

Λ
F 2

1 +

−2 cos(λ+G0) sin(λ+G0)
ηξ

Λ
F 2

1

]
− 2(1− δ3)1/3Λ2

[
cos(λ+G0) +

− η√
Λ
F1 −

ξ

Λ
F 2

1

(
sin(λ+G0)η + cos(λ+G0)ξ

)
F2

]}−1/2

(3.11)

The first one, P1, is of order δ3 everywhere so it is bounded independently

on the specific region of the phase space, while the second part, P2, is bounded

only far away from the singularity. There are regions where P2 blows up to

infinity and thus it does not represent anymore a perturbative term and

the perturbative theory can not be applied. This is the consequence of the

singularity already stressed in Eq. (3.7) and it highlights the necessity to

define a region of validity for the current approach.

The first libration point, L1, is an equilibrium point of the original Hamil-

tonian, so it has to be an equilibrium point also for the transformed one. Its

coordinates in these new variables are:

ΛL1 = LL1 = 1− 2
3
√

3
δ +

37

6
3
√

32
δ2 − 175

27
δ3 +O(δ4), λL1 = 0, ξL1 = 0,

ηL1 = −
√

2(LL1 −GL1) = − 3
√

32δ +
7

3
√

32
δ2 − 355

72
δ3 +O(δ4) (3.12)

Normal forms are a standard tool in Hamiltonian mechanics used to study

the dynamics in a neighborhood of invariant objects, like equilibrium points,

periodic orbits or invariant tori[70]. From a theoretical point of view, they

provide nonlinear approximations of the dynamics in a neighborhood of the

invariant object. From a more practical point of view, they can be used as a

computational method to obtain very accurate approximations of the flow by

taking the normal form up to a suitable finite order[72]. This is the classical

approach and it is applied to the CR3BP considering the Hamiltonian in

Delaunay-Poincaré variables, Eq. (3.10), and L1.

To perform the normalization procedure around L1 the Hamiltonian has

to be re-written by considering that the variables are centered in the libration

point and are δ-close to it:

Λ =ΛL1 + δΛ̂ = 1 + (Λ1 + Λ̂)δ + Λ2δ
2 +O(δ3), λ = λL1 + δλ̂ = δλ̂,

η =ηL1 + δη̂ = (η1 + η̂)δ + η2δ
2 +O(δ3), ξ = ξL1 + δξ̂ = δξ̂ (3.13)
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The resulting Hamiltonian expanded in δ, reads:

HL1(Λ̂, η̂, λ̂, ξ̂; δ) = C̄−27

2
Λ̂2+

3

2
λ̂2−5

2
η̂2+

13

2
ξ̂2+12Λ̂η̂+6λ̂ξ̂+δP (Λ̂, η̂, λ̂, ξ̂; δ)

(3.14)

with C̄ generic constant defined by initial conditions (non influential as

are the derivatives of H involved in the canonical equations). At this point

the first step is to put the quadratic terms of H (the ones resulting in the

linear approximation) in a suitable form. With this aim, the following lemmas

hold[71]:

• There exists a linear canonical change of coordinates that puts the

unperturbed quadratic part of HL1 in diagonal form, i.e. exists: Φ0 :

(p̃, q̃, z̃, ˜̄z)→ (Λ̂, η̂, λ̂, ξ̂), such that:

H∗(p̃, q̃, z̃, ˜̄z) := HL1 ◦ Φ0 = λ0pq + ω0zz̄ + δP (p, q, z, z̄; δ) (3.15)

• Fix an integer j0 > 0 and let H∗2 be the quadratic part of H∗. Then for

δ small enough there exists a canonical transformation δ-close to the

identity: Φδ : (p, q, z, z̄)→ (p̃, q̃, z̃, ˜̄z), such that:

H∗2 ◦ Φδ = h2(p, q, z, z̄) = λ(δ)pq + ω(δ)zz̄ (3.16)

where λ(δ) =
∑j0

j=0 λjδ
j , ω(δ) =

∑j0
j=0 ωjδ

j .

These lemmas perform the diagonalization of the quadratic part of the

Hamiltonian for all orders in δ, i.e. they put the second order part in the

form h2 = λ(δ)pq + ω(δ)zz̄, where for δ = 0 the unperturbed coefficients are

intended[70]. These unperturbed coefficients are the 0-order approximations

in the perturbative parameter and are the same eigenvalues introduced, for

the spatial case, in the linear energy expression of Eq. (2.41). These series

are the ones stated by the Moser Theorem (cfr. Sec. 2.2.5) beginning with

quadratic terms of the center and saddle components.

The Hamiltonian is now in the form: H =: H∗ ◦Φδ = h2 +H3 +H4 + . . .,

where Hk, k ≥ 3 is a polynomial of degree k in (p, q, z, z̄). The aim is now to

cancel out as many terms as possible for increasing order of the polynomial

Hk
[71][73].

The approach is outlined for the cubic terms that have the structure:

H3 =
∑

m+n+a+ā=3Hm,n,a,ā(δ) p
mqnzaz̄ā. To erase terms, a generating func-

tion X of known structure (third order in this case, X3), but unknown co-

efficients is introduced with the aim to detect the coefficients such that the

resulting combination H ◦X1
X3

cancels out as many terms as possible. X1
X3

is the flow at time one of X3 that is nothing else than a Hamiltonian[18].
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This approach works since the Liouville theorem states that the flow of a

Hamiltonian system is volume preserving at each time[16].

The mathematical approach to this transformation is to use the Lie Se-

ries [74] and iteratively solve for the unknown coefficients of the function

X3 =
∑

m+n+a+ā=3Xm,n,a,ā(δ) pmqnzaz̄ā. The Lie Series is an approximation

of the composition between H and X3 as sum of coefficients LjX3
of increasing

order in j. These coefficients can be obtained by combining the third order

part of the Hamiltonian with the generating function by means of the Poisson

Brackets (cfr. Sec. 2.1): {F,G} := ∂pG∂qF−∂q G∂pF+i(∂zG∂z̄F−∂z̄G∂zF )

preserving, in this case, the symplectic structure: idz ∧ dz̄ + dp ∧ dq.
In equations:

H [1] := H ◦X1
X3

=

∞∑
j=0

LjX3

j!
= H + {H,X3}+

1

2
{{H,X3},X3}+ . . .

= h2 + [H3 + {h2,X3}] + [H4 + {H3,X3}+
1

2
{{h2,X3},X3}] + . . .

=: h2 +H
[1]
3 +H

[1]
4 + . . .

Thus, the goal is to have X3 such that:

H3 + {h2,X3} = 0 ⇒∑
m+n+a+ā=3

{
Hm,n,a,ā + [λ(m− n) + iω(a− ā)]Xm,n,a,ā

}
pmqnzaz̄ā = 0(3.17)

This equation is known as the Homological Equation that has to be solved

for the coefficients Xm,n,a,ā. It is obvious that this equation can be solved

only if it is invertible, so when the coefficient of the unknown is different from

zero:

χm,n,a,ā :=


−Hm,n,a,ā

λ(δ)(m− n) + iω(δ)(a− ā)
if m 6= n or a 6= ā

0 if m = n and a = ā

(3.18)

In this specific case, of course, the second situation is never possible as

m + n + a + ā = 3 and this is true for all the odd order polynomials of the

Hamiltonian. However if the k-order terms are of even order, the terms with

m = n and a = ā of order k must be kept. This results in a Hamiltonian of the

form H = h2 + h4 + h6 + h8 + . . . where hk =
∑

2m+2a=k hm,m,a,a(pq)m(zz̄)a.

In this way pq and zz̄ are integrals of motion for the truncated Hamilto-

nian and the stable manifold takes the form [p0, 0, 0, 0], while the unstable

manifold can be written as [0, q0, 0, 0]. It has to be stressed that the vari-

ables (p, q, z, z̄) are different from the original (p, q, z, z̄) since they result from
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the application of all these canonical transformations to the original set of

variables.

These two new first integrals are not linearly independent of the linearized

energy integral, Eq. (2.36); in particular these are its two part (the saddle

and the center one) in the planar version of the model.

So far we worked δ-close to L1 to obtain an analytic approximation of

the invariant manifolds up to an arbitrary order, this is comparable with

some other works[73][50]. The aim now is to define an approximation of the

dynamics in a not yet investigated region, i.e. to put the Hamiltonian in a

suitable normal form in a region far from L1
[71]. The same Lie Series approach

is used and, similarly, the goal is to define a set of canonical transformations

accomplishing the task.

To work far from the equilibrium point, let us recall the Hamiltonian in

Delaunay-Poincaré variables, Eq. (3.10), and apply the symplectic transfor-

mation:
√

2z = η+ iξ,
√

2z̄ = η− iξ, often referred as the complexification of

H. The Hamiltonian now reads:

H(0) := h(0)(Λ, zz̄) + εP (Λ, λ, z, z̄; ε), h(0)(Λ, zz̄) := − 1

2Λ2
−Λ + zz̄ (3.19)

This complexification is introduced in order to allow the estimation of

the perturbation. In particular, analyzing the order of each perturbative

contribution in Eq. (3.11), it turns out that the perturbation is bounded into

the domain[71]:

D :=
{

(Λ, λ, z, z̄) s.t. 0 < |1− Λ| < µ , |z|, |z̄| ≤ µ , λ̄ < λ < 2π − λ̄
}

(3.20)

where µ > 0 small and ε � µ. This means that inside D a perturbative

approach can be applied.

The main differences of this normal form with respect to the previous one

is that this is a partial normal form, only in z, z̄. This is a transformation

that is local in z, z̄ with Λ close to 1. This choice makes possible to keep the

variable λ of order 1 in [λ̄, 2π− λ̄], namely to have an analytic approximation

of the Hamiltonian in a suitable region far from equilibria. A drawback of this

method is that the homological equation is no more an algebraic equation,

but it becomes an Ordinary Differential Equation.

It is like to normalize the Hamiltonian only in the Actions allowing the

Angles to remain large. In that way it is possible to move away from the

libration point with the normalization procedure. This process requires the

normalization only in a couple of conjugated variables.

The perturbation coefficients P can be expanded in the variables and
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considering that this is analytic also in ε:

P =
∑
j≥0

εjP (j)(Λ, λ, z, z̄), P (j)(Λ, λ, z, z̄) =
∑
a,ā≥0

P
(j)
a,ā(Λ, λ)zaz̄ā (3.21)

The generating function with unknown coefficients we are searching for

has exactly the same structure as Eq. (3.21), but P (j) is replaced by χ(j) and

P
(j)
a,ā by χ

(0)
a,ā.

Considering again the flow at time one of the Hamiltonian εχ(0), X1
εχ(0) ,

the Lie Series method, at the 0-step, reads:

H(1) := H(0) ◦X1
εχ(0) = h(0) + ε[P (0) + {h(0), χ(0)}] +O(ε2) (3.22)

To simplify the terms in the square brackets, namely the first order terms

in ε, we reduce again to the homological equation in the form:

[. . .] =
∑
a,ā≥0

[
P

(0)
a,ā (Λ, λ) + i(a− ā)χ

(0)
a,ā(Λ, λ)−

(
1

Λ3
− 1

)
∂λχ

(0)
a,ā(Λ, λ)

]
zaz̄ā

(3.23)

This equation has to be solved for the unknown coefficients χ
(0)
a,ā, i.e.: P

(0)
a,ā (Λ, λ) + i(a− ā)χ

(0)
a,ā(Λ, λ)−

(
1

Λ3
− 1

)
∂λχ

(0)
a,ā(Λ, λ) = 0 a 6= ā

χ
(0)
a,a(Λ, λ) = 0 a = ā

(3.24)

The only difficulty in solving this ODE is the degeneration close to Λ =

1[71]. The canonical transformation is given by the flow at time one of the

Hamiltonian χ(0). It is analytic in a suitable complex neighborhood of the

domain D.

Applying χ(0) the Hamiltonian takes the form:

H(1) = H(0) ◦X1
εχ(0) = f0(Λ)+zz̄+εg1(Λ, λ, zz̄)+O(ε2) f0(Λ) := − 1

2Λ2
−Λ

(3.25)

Like before, by means of this approach we gain that zz̄ is an integral of the

motion for the truncated Hamiltonian. Thus, also in this case, it is possible

to obtain two first integrals independent in involution and this is sufficient to

state (and compute in the outlined way) that the system is locally integrable

(cfr. Sec. 2.1).

Both approaches have been implemented[71] and the relevant coefficients

detected up to order 15 for the normal form near the L1 libration point and

up to order 5 for the one far away. The main numerical issue to take care is

that the application of the Lie method quickly generates thousands of quite
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complicated coefficients[73] thus time consuming to compute and to store.

The numerical way adopted is based on the Lie-Deprit triangle [75].

All in all, the approach proposed presents two approximations, by means

of truncated series, that can be analytically integrated to define the behav-

ior of the flow near and far the equilibrium points of the PCR3BP and, in

particular, it gives analytic expressions of the stable/unstable manifolds.

3.3 Homoclinic Orbits

Intersecting the images of the manifolds on a proper Poincaré section, it is

possible to construct orbits winding to and off from the same periodic orbit

(as well as from two different ones, cfr. Sec. 3.4). These are the so called

Homoclinic Orbits that are double asymptotic to the same periodic (unstable)

orbit (cfr. Sec. 2.4).

It has been proven that there exist homoclinic orbits in the interior and

exterior realm and that the formers flow in counterclockwise sense while the

others in clockwise direction[38][34]. Analytical proofs exist only for transver-

sal symmetric homoclinic orbits at the first intersection of stable and unstable

manifold in the inner realm[29], while in the exterior realm and for more en-

counter points there are only numerical explorations confirming the existence

of these orbits[14]. Moreover these orbits result to be transversal and, since

these are given by the intersection of the stable and unstable manifold of

the same periodic solution, this implies that also the stable and unstable

manifold intersect transversally (cfr. Sec. 2.4)6.

Let us consider the Sun-Jupiter system and a periodic orbit around L1

with an Jacobi constant of 3.0380. Once the relevant Lyapunov orbit has

been computed, it is possible to globalize the inherent manifold with the

procedure outlined in Sec. 3.2.1. Considering a section located on the x -axis

in the inner realm, it is possible to store the image of the stable and unstable

manifold on that section, therefore build their Poincaré section. A point lying

in the intersection of these images is a point that move towards the periodic

solution for positive times (on the stable manifold) and also for negative times

(on the unstable manifold)[14]. This is the same concept introduced for the

homoclinic points in Sec. 2.4.

A symmetric homoclinic connection in the inner realm is presented in

Fig. 3.16 where the initial conditions are represented by the bold circle on

the Poincaré section plane. Keep on integrating and considering not just

the first intersection but the nth with the section plane, it possible built

homoclinic orbits performing more than a single loop in the inner realm.

6A given intersection is called transversal if at that point the tangent subspaces of the
stable/unstable manifold span the complete tangent subspace at the point.
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Figure 3.16: L1 Homoclinic connection for the Sun-Jupiter system in the in-
ner realm; on the left on the Poincaré section plane and on the
right in the position space.

It has been proven that the set of µ for which there are symmetric homo-

clinic orbits (with a generic number of cuts) is discrete[29].

A similar approach can be also used to build homoclinic connections in

the m2 realm. In this case the branches of the manifolds to consider are

the negative ones, i.e. the parts flowing towards m2. Again, the intersections

with a section located on the x -axis, provide initial conditions winding to and

off from the same periodic orbit. In Fig. 3.17 the two symmetric homoclinic

connections resulting from the first cut of the stable and unstable manifold

of a Lyapunov orbit around Sun-Jupiter L1 are shown.

The two initial conditions are again indicated with the bold circles in the

leftmost plot and the one with the smaller x results in the homoclinic orbit

experiencing the closer Jupiter passage.

All the initial conditions for symmetric homoclinic orbits are on the vx = 0

axis.

3.4 Heteroclinic Orbits

Let us consider now the same methodology of the previous section to design

ballistic solutions moving to and off from two different periodic orbits for

positive and negative times; the Heteroclinic Orbits. This means defining an

orbit that is on the stable manifold of a periodic (unstable) orbit and on the

stable one of another periodic solution[76].

In this case not just a single periodic orbit is required and the stable

and unstable manifolds have to be generated both for a L1 Lyapunov orbit
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Figure 3.17: L1 Homoclinic connections for the Sun-Jupiter system in the
Jupiter realm; on the left on the Poincaré section plane and on
the right in the position space.

and for a L2 one. Locating a section along the y-axis, in the negative semi-

plane at x = 1 − µ, the image of the stable manifold of a periodic orbit

can be stored together with the one of the unstable manifold of the other

orbit. In this situation the intersection between these two images results in a

solution moving for free between the two Lyapunov orbits. The selected plane

maximizes the number of intersections of the manifolds for values of µ and J

producing manifolds performing a limited number of revolutions around m2

before escaping[14].

Considering again the Sun-Jupiter system and J = 3.03569, the first

image of the stable manifold of the relevant L1 Lyapunov does not intersect

the one of the unstable manifold of the L2 Lyapunov. Thus, to design a

heteroclinic connection with this value of µ and J , the second cut of the

manifolds has to be computed. In Fig. 3.18 the first and second images

of the L1-stable and L2-unstable manifolds are plotted together with the

resulting symmetric heteroclinic connection. It is worth nothing that in this

case the energy associated with the two periodic solutions, corresponding to

the manifolds energy, has to be the same in order to consider the intersection

of both branches on the same section as an initial condition to propagate

forward and backward.

Also these heteroclinic connections are transversal, since again the inter-

section between manifolds is transversal; this is confirmed only by means of

numerical explorations, although also tangential situations can appear[39].
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Figure 3.18: L1-L2 Heteroclinic connection for the Sun-Jupiter system in the
Jupiter realm; on the left on the Poincaré section plane and on
the right in the position space.

Moreover, the sum of the cuts of both manifolds must be an even positive

integer number and the number of revolutions around m2 is one half of the

sum of the cuts minus one[71]. Since for the case of Fig. 3.18 the second

intersection of the manifolds with the section plane is required, the result-

ing heteroclinic orbit performs one full revolution around the small primary.

Keep on intersecting, heteroclinic orbits performing more revolutions around

m2 can be designed. It has to be pointed out, however, that the shape of

the images of the manifolds become more and more complex and, due to the

chaotic behavior of the model, there is a maximum number of cuts resulting

in initial conditions enough accurate to propagate backward and forward to

obtain homoclinic or heteroclinic connections (this increasing sensitivity is

also observed designing the target ballistic trajectory in Sec. 6.1).

Due to the symmetry of the problem a reverse heteroclinic connection,

going from a Lyapunov L1 orbit to a Lyapunov L2 orbit, is just the reflection

of the trajectory of Fig. 3.18 with respect to the x -axis. Considering together

these two heteroclinic connections result in a symmetric heteroclinic cycle

moving back and forth between the two periodic solutions.

3.5 Transit Orbits

Once the existence of a generic homoclinic and heteroclinic connection has

been, at least numerically, proven, it is possible to combine these two dy-

namics to obtain a homoclinic-heteroclinic cycle. This is a net of ballistic
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connections between L1 and L2 passing through the three realms. To design

such a net, the same energy value has to be assumed for the homoclinic and

heteroclinic connections.

Besides the motion on the surface of these manifolds also the motion

into their interior gives useful hints about the dynamics in the CR3BP. As

observed in Sec. 2.2.5, an orbit flowing inside these tubes is able to transit

from one realm to another, so an initial condition lying in the intersection of

two manifolds inherits the dynamics of both. With these considerations, it

is possible to design orbits with prescribed itineraries[14][40].

Let us assume again the planar case and an energy level assuring that

the motion among the three realms is possible. The only kind of orbits able

to transit through the m2 realm are the ones into the intersection of the

L2-unstable and L1-stable manifold for exterior to interior transitions and in

the opposite way for interior to exterior transitions. Considering the Sun-

Jupiter system and J = 3.0331, the stable and unstable manifolds of L1

and L2 intersect on a Poincaré section located at x = 1 − µ at the first cut

(differently from the example of Fig. 3.18). This means that there exist

heteroclinic connections performing no revolutions around Jupiter and the

points in the intersection region are the only ones passing through the Jupiter

realm for this energy value and this mass parameter. Fig. 3.19 presents the

intersection of L2-stable and L1-unstable manifolds on the section plane and

a couple of initial conditions resulting in a 0-loop heteroclinic connection and

in a transit orbit. In particular, this passing orbit is able to flow from the

inner realm to the Jupiter one and finally into the outer realm.

Such a kind of orbits are also “robust” in the sense that initial conditions

near the assigned one follow the same path as these are expected to lie also

into the intersection region.

This analysis outlines global structures to exploit to design orbits with

prescribed interior-m2-exterior sequences just considering two dimensional

maps. The manifold intersections can involve more than one cut and the in-

tersection area has to be mapped forward up to the next intersection with the

interior of the manifold satisfying the prescribed passage. This is a classical

problem of symbolic dynamics [29].

Finally, it is interesting to observe that several CR3BP can be coupled

together and the manifold structures for each system computed. The inter-

section in the phase space of these nets defines a sort of “dynamical channels”

where a massless body can move for free from one system to another.



3.6 Poincaré Sections 81

Figure 3.19: L1-L2 transit orbit and Heteroclinic connection for the Sun-
Jupiter system in the Jupiter realm; on the left on the Poincaré
section plane and on the right in the position space.

3.6 Poincaré Sections

The phase space can reveal very important features of any dynamical system

that are often hardly identifiable by looking at orbits in the position space.

A powerful tool to disclose the structures of the phase space is the use of

hyper-planes that intersect transversally the flow. For the PCR3BP these

Poincaré sections (cfr. Sec. 2.2.3 and 3.3-3.5) are essential tools for a global

study of the orbits where this can be done by means of two dimensional maps.

In the planar problem, the Jacobi integral identifies a three dimensional

manifold in the four dimensional phase space where the motion has to take

place[48]. This manifold is the low dimensional version of Eq. (2.32):

M (µ,C) =
{

(x, y, ẋ, ẏ) ∈ R4| J (x, y, ẋ, ẏ)− J (x0, y0, ẋ0, ẏ0) = 0
}

(3.26)

Let us consider now the intersection with a fix suitable plane placed in

the phase space of the kind:

γ = {(x, y, ẋ, ẏ) ∈ R4| y = 0, ẏ > 0} (3.27)

This is a plane with a fix y component that is intersected transversally

by the flow, i.e. the local linear subspaces of the flow are not tangent to the

plane.

The domain of the intersection between the energy manifold and the plane

γ can be analytically defined by considering that J−1(J |0) ∩ γ = {x, ẋ ∈
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R2| F (x, ẋ) > 0} results in a square root, representing the velocity associated

with the coordinate fixed by the plane location, that can not be negative[47].

This means that:

ẏ = F (x, ẋ) =

√
x2 +

2(1− µ)

|x+ µ|
+

2µ

|x+ µ− 1|
+ µ(1− µ)− ẋ2 − J |0 (3.28)

where J |0 = J(x0, y0, ẋ0, ẏ0) is the value of the Jacobi constant fixed

by the initial conditions. The positiveness of the square root results in an

inequality involving the coordinate not fixed and the relative velocity: ẋ <

φ(x, J |0).

Summarizing, one coordinate is fixed by the location of the section, one

is obtainable by the energy integral and the other two lie in one plane within

the region delimited by the validity of Eq. (3.28). All the intersections of the

flow with such a plane have to lie within this domain. It is worth stressing

that this domain depends on the energy level J |0, therefore for increasing

energy values it is possible to define the evolution of these regions. For the

Earth-Moon system, a three dimensional representation of a Poincaré section

placed in y = 0 is showed in Fig. 3.20. Here also the evolution of its sections

for increasing Jacobi constant values is plotted. Again the gate-like behavior

of the libration points is recognizable.

Moreover, the representation of the flow on this hyperplane makes also

possible to visualize the region where the Keplerian energy of the moving

body referred to the small primary is negative[47]. In this subset both the

invariant tori, composed by the periodic orbits surrounding the small primary,

and what is referred as the Weak Stability Boundary (WSB)[77][78] lie.

The WSB is defined as a boundary set between the stable and unstable

motion relative to the small primary in the phase space. The concept of

stability is here intended as a given (fixed a-priori) number of closed orbits

performed around m2 before leaving its realm. This concept was heuristically

introduced in the beginning of the ninenties[4] and subsequently related to

dynamical system theory. In particular, by means of numerical explorations,

it was suggested that the WSB is bounded by the stable manifolds of periodic

orbits, with the same energy level, around the two collinear libration points

near m2
[78].

To obtain a specific Poincaré section, it is possible to iterate a set of initial

conditions, starting from the section plane and store the relevant components

of the state when the flow intersects transversally again that plane. These

sections have to be produced numerically to understand the behavior of the

global orbit structure.

Let us consider 1000 initial conditions in the Earth-Moon PCR3BP to

integrate forward for 500 time units (≈ 2300 days). A Poincaré section is
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Figure 3.20: Energy evolution of the y = 0 Poincaré sections domain. In a
three dimensional view and with slices for four energy values.

constructed on the plane y = 0 placed in the Earth realm on the Moon side

with J = 3.160. This value corresponds to an energy sightly higher than EL2
so that the motion among all the three realms is allowed.

The phase space portrait represented in Fig. 3.21 highlights a set of

completely different behaviors.

An exactly periodic orbit is represented by a point in this section. These

points are surrounded by regions where the orbits are quasi-periodic and their

images lie on closed curves[25] (cfr. Sec. 2.4). These form resonance islands

where the eigenfrequencies of the orbit are somehow coupled with the ones of

the model. Since the CR3BP is a perturbed Hamiltonian system (resulting,

in proper coordinates a quasi-integrable model, cfr. Sec. 2.1 and 3.2.2), these

persisting invariant structures are the well known KAM tori[25]. For these

objects the eigenvalues ratio is enough irrational (actually diophantine, cfr.

Sec. 2.4) to allow them to survive when a small perturbation is applied to

an integrable Hamiltonian system.

The region nearby the Moon is filled with these tori resulting in closed

orbits around it. The resonance islands are located in the Earth realm and
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Figure 3.21: Earth-Moon Poincaré section on the y = 0 plane with J =
3.160.

represent orbits repeating indefinitely the same path. Finally, these reso-

nances, of different orders, are surrounded by chaotic orbits represented by a

sea of random points, revealing the chaotic nature of the CR3BP.

3.7 Resonances

In order to complete this exploration of the model, let us carry out a brief

analysis on the resonances in the context of the PCR3BP.

There are several kinds of resonances. These can be grouped in orbit-orbit

resonances, involving relations between the motion of the centers of mass of

two bodies, and spin-orbit resonances, where the motion around the center

of mass of one body is coupled with the gravitational perturbation exerted

by another attractor. The orbit-orbit resonances can be secular, involving

precession phenomena, and of mean motion where the periods of two bodies

are coupled[49]. The most famous mean motion resonance in the solar system

is the Great Inequality involving Jupiter and Saturn. Only mean motion

resonances are analyzed in this section.

Mean motion resonances result form the interaction in regular time in-

tervals between celestial bodies where these periodic perturbations have cu-

mulative effects during the motion. On the other hand, if these gravitational

perturbations would be out of phase their effect would cancel out without

change the orbital motion of one of the bodies.
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For the CR3BP, in the case µ = 0 (cfr. Sec. 2.2.3), the reference frame is

still rotating with unitary angular velocity (ω = 1) and centered in m1. If the

initial Keplerian energy of the massless body is negative it revolves in ellipses

with mean angular velocity ω̄ = 2π/T , where T is the ellipse period. When

the ratio ω̄/ω is rational the motion of m3 is resonant with a hypothetic

small primary m2. Nevertheless, when this ratio is irrational the motion is

quasi-periodic, even studied in the rotating frame.

The fundamental resonance condition is the commensurability between

the orbital periods (T ) of two generic bodies (1 and 2); their ratio can be

expressed as the ratio of two small integers: pT1 = qT2
[47].

Resonance Hopping

In the CR3BP framework, the resonance condition is transformed in a relation

between the period of the moving bodym3 (no subscript), T = 2πa3/2/
√

1− µ,

and the period of m2, T2 = 2π. This results in a condition that the semi-

major axis a of the moving body m3 has to satisfy to represent a resonant

orbit[48].

Another fundamental relation, in the planar model, is derived by tak-

ing into account that the m2 gravitational influence is maximized when the

moving body lies on its apogee. In this situation also the velocity of m3 is

the lowest one and this can result in temporary captures caused by m2. So,

there is an initial value of the longitude of periapsis ω assuring that after

p revolutions, m3 lies at the apogee of its m1 centered orbit in conjunction

with m2.

Assuming, without losing in generality, that the moving body starts on

the perigee of the orbit, the previous considerations result in[48]:

a =

(
q

p

)2/3

(1− µ)1/3, ω0 = π

(
1− q

p

)
, ν0 = 0 (3.29)

Where the classical two body relations are considered for the definition of

the orbital period requiring the transformation of the phase space coordinates

from the synodic barycentric frame into the inertial one centered in m1.

Since the natural way to identify a resonance condition is to observe the

behavior of the semi-major axis, in order to better understand this phe-

nomenon also in the CR3BP, a map translating positions and velocities into

a set of classical orbital elements is required[48]: (x, y, ẋ, ẏ)→ (a, e, ω, ν) with

e the eccentricity and ν the true anomaly. The explicit representation of this

map reads[47]:
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x = r cos(ω + ν)− µ ẋ = ṙ cos(ω + ν)− rν̇ sin(ω + ν) + r sin(ω + ν)

y = r sin(ω + θ) ẏ = ṙ cos(ω + ν) + rν̇ sin(ω + ν)− r sin(ω + ν)
(3.30)

with r = a(1 − e2)/(1 + e cos ν), ν̇ = (a(1 − e2)(1 − µ))(1/2)/r2 and

ṙ = (ae(1− e2)ν̇ sin ν)/(1 + e cos ν)2.

The inverse of this map can be applied to the previous Poincaré section

represented in Fig. 3.21 and the semi-major axis (constant) corresponding

to the nominal resonance conditions superimposed. Fig. 3.22 shows the map

in semi-major axis vs longitude of periapsis.

Figure 3.22: Semi-major axis vs longitude of periapsis map of the Poincaré
section presented in Fig. 3.21. Also the nominal resonant semi-
major axes are overlapped.

It is clear that the regular islands in the phase space are located exactly

where the resonances take place. The size of the ordered regions is an indica-

tor of the size of the inherent KAM torus. The probability to get trapped into

one of these resonances, on in the other way the effort to get out, increases

for increasing size of these resonance islands. Also the resonance order can

be revealed by the number of centers of these ordered regions.

Considering again the map (x, y, ẋ, ẏ) → (a, e, ω, ν), Eq. (3.30), and the

ideal resonance condition of Eq. (3.29), it is clear that each initial condition

in this new set of variables has only one free parameter: the eccentricity e.



3.7 Resonances 87

Thus, only this value is required to parameterize each initial condition for a

resonant orbit.

Varying this value it is possible to identify specific orbits temporarily

captured or in close passage with m2. These can be considered as initial

conditions to propagate in order to obtain an encounter with m2 when its

gravity perturbation is high and the particle velocity is small and thus possi-

bly resulting in (temporary) captures in the m2 WSB. After this encounter,

however, the m1 gravity can become again dominating pushing the body to

escape from the m2 realm.

Let us restrict to the Earth-Moon system and numerically propagating

initial conditions given by Eq. (3.29) considering a 2:1 resonance with ec-

centricity varying from 0 to 0.95 with step of 0.01. The resulting trend of

the selenocentric distance and of the Jacobi constant evolution is plotted for

changing eccentricity in Fig. 3.23. It is important to point out that changing

the initial eccentricity results in the change of the energy of the orbit, i.e.

J = J(e), depicted on the right of Fig. 3.23.

Figure 3.23: Minimum Moon distance and Jacobi constant for varying eccen-
tricity for the 2:1 resonance in the Earth-Moon system.

Form the trend of the minimum Moon distance with respect to the ec-

centricity (on the left of Fig. 3.23), it is possible to select initial conditions

highly perturbed by the Moon, but performing completely different paths. In

particular a couple of behaviors can be highlighted; a “soft” resonance tran-

sition with some time spent around the Moon and a sudden variation of the

resonance status.

The first kind of behavior can be obtained by considering e = 0.1762,

corresponding to a not-too-close Moon passage. This specific value results

in a path temporarily captured by the Moon. The time-varying specifical

mechanical energy is less than zero for a while (≈ 20 days) and, afterward, the

trajectory is shifted close to a 3:1 resonance, value non a-priori identifiable,

see Fig. 3.24.
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Figure 3.24: 2:1 resonance hopping with temporary Moon capture for e =
0.1762 in the Earth-Moon system.

This phenomenon is referred as weak capture in the Moon WSB[48] and,

in general, to obtain this kind of solutions, the initial eccentricity has to be

quite small. As we are working with a chaotic model, a small change in the

eccentricity reflects in significant differences in the circumlunar phase and,

in particular, it allows the Moon impact to be avoided. Of course, a small

maneuver during the temporary capture can stabilize the selenocentric orbit.

Again from the analysis of Fig. 3.23, a sudden resonance hopping from the

original 2:1 resonance can be obtained by considering an initial condition with

e = 0.505 resulting in a very close (but not impact) Moon passage, see Fig.

3.25. Thus, an orbit starting close to the 2:1 resonance is, at the first Moon

encounter, suddenly shifted to another resonances, firstly 1:3 and afterward

1:4. Of course, the magnitude of the jump results from the periselenium

distance and can be controlled, again, by means of the eccentricity. The

values used for Fig. 3.25 has been chosen by considering the small non-

impact peak around e = 0.5 in Fig. 3.23.

Finally, it is also worth stressing that the resonant conditions given in Eq.

(3.29) are exact only if the mass parameter is zero, while they represent just

approximations in the CR3BP. This is clear observing the oscillations around

the nominal resonant semi-major axes in the evolution of the osculating semi-

major axes in Fig. 3.24 and 3.25 (rightmost plots).

Exact Resonances

As outlined in the previous section, Eq. (3.29) do not provide exact resonance

relations in the CR3BP. The aim of this section is to refine these resonance

conditions in order to define actual resonant orbits not experiencing any

resonance shifting, also in the CR3BP. To compute exact resonances in the

PCR3BP a numerical scheme has been implemented to identify the actual

resonance conditions starting from the nominal approximations.
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Figure 3.25: 2:1 resonance hopping to external resonances for e = 0.505 in
the Earth-Moon system.

The fundamental problem is to consider the relations derived by a classical

two body approach, still valid when another attractor is taken into account.

The Keplerian orbital period is not the real one for an orbit in the CR3BP.

This means that the classical resonance definition can not be used as it is

based on the two body orbital periods of the moving body and of another

attractor (T1, T2).

Thus, the goal is to determine the new orbital period and, from this, the

semi-major axis which assures resonance conditions. The idea is to consider

an orbit as resonant if it is in the same relative conditions with respect to

the main attractor at the end of p periods.

A Nelder-Mead simplex scheme[79] has been used to implement a zero

finding procedure to correct the two body approximation on the semi-major

axis in order to obtain an orbit ending in its initial position in the phase

space. This means that, as the synodic frame is considered, the moving body

is in the same conditions with respect to m2 after the p periods.

The main limit of this approach is that it results valid just in a range of

the possible resonances. When the semi-major axis is too small, the m2 grav-

ity is not really significant so the µ = 0 approximation is still valid and no

numerical corrections are required (the corrected semi-major axis turns out

to be the guessed one). On the other side, in resonances involving too large

values of the semi-major axis, the m2 gravity is too strong and the chaotic

regime prevents the convergence of the numerical method. As practical ex-

planation of this range, this method works in the Earth-Moon system from

a 4:1 resonance (a ≈ 1.5e5 km) up to 7:5-4:3 resonances, depending on the

initial eccentricity guess.

As an example, the 5:2 resonance is presented in Fig. 3.26, where the

semi-major axis has been correct from a = 207835 km to a = 208150 km.
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In the same figure the two body resonance (nominal a) in the rotating and

inertial frame is shown in the first two plots form the upper left corner.

The third plot shows the evolution of the nominal a (constant) and the one

corrected into the CR3BP. In the fourth and fifth plots, the exact resonance

in the Earth-Moon CR3BP in the rotating and inertial frame is presented.

Finally, in the lower right corner also the two body energy value is presented;

it has the same trend of the semi-major axis as it has a linear dependence on

this.

Figure 3.26: 5:2 Exact Resonance in the synodic (first column) and in the
inertial (second column) frame for the Earth-Moon system. Also
the trends of the semi-major axis (upper right corner) and of the
energy (lower right corner) is shown.

Let us conclude this analysis stressing that these exactly resonant orbits

do not experience the resonance hopping observed in the Sec. 3.7, but they

repeat indefinitely the same path. To avoid to fall into the Moon WSB or in

close Moon passages the computations have been done by assuming a generic

initial longitude of periapsis different from the value of Eq. (3.29).

3.8 Chaos and Lyapunov Exponents

One of the fundamental tools to study the behavior of a dynamical system in

its chaotic regime are the Lyapunov Exponents. These are used to measure

how fast nearby trajectories are converging or diverging in time; this is a char-

acterization of the global behavior of a dynamical system. A chaotic regime

is represented by a positive value of the Lyapunov Exponent that results in
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exponentially fast time diverging nearby trajectories; it is an indication of

the stochastic component of the model[80].

The idea is to study the evolution of a small difference δ~x between two

nearby solutions. This can be done by exploiting the exponential solution of

a system of first order differential equations. Thus, given a generic dynamical

system, ~̇x = f(~x, t), we are interested in studying its linearized version (the

variational equations, cfr. Sec. 3.1.1): δ~x = Ω(t, t0)δ~x(t0), where Ω(t, t0)

is again the state transition matrix. Since this matrix is a linear operator

representing the evolution of a small perturbation, the Lyapunov Exponent

(Λ) can be expressed as[81]:

Λ = lim
n∆t→∞

1

n∆t
ln||Ω(n∆t+ t0, t0)|| (3.31)

The operator norm, in the IR4 Eucledian space, can be defined as the

maximum eigenvalue of the norm of a linear operator[80], as the operator

norm gives the maximum stretching of the perturbation under the action of

the linear operator (in this case the state transition matrix). Thus, defining

Ξ =
√

Ω(n∆t+ t0, t0)ΩT (n∆t+ t0, t0), χ its eigenvalues, and stopping the

computation after n time steps (instead of taking the limit), Eq. (3.31) can

be locally approximated by:

λ =
1

n∆t
ln(Max[χ Ξ]) (3.32)

These are the so called Local Lyapunov Exponents (LLE) and qualify the

effects that an external force has on the orbit in a given time interval. This

approach provides an easily computable value that gives qualitatively how

the stability varies along an orbit[80].

Periodic Orbits around L1 and L2

One of the easiest applications of this concept is to compute the value of the

Local Lyapunov Exponent along a periodic orbit around a libration point[81].

Let us suppose to have two Halo orbits around L1 and L2 in the Earth-Moon

system and to compute the value of λ after a time period of one day. The

magnitude of the LLE indicates the effect that a perturbation exerts over one

day. First of all a Halo orbit around L1/L2 has to be computed. This can

be done with the procedure sketched in Sec. 3.1.1 considering, arbitrarily, a

vertical amplitude of 300 km.

A periodic orbit around L2 presents only one peak in the Moon closest

point, see Fig. 3.27. Of course, the lower value of the LLE can not be zero

since the CR3BP remains a chaotic model. The direction of arrows in Fig.

3.27 does not have any physical meaning, while their length represents the

scaled value of the LLE.
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Figure 3.27: Local Lyapunov Exponent for an Earth-Moon L2 Halo orbit; on
the left the magnitude of the LLE along the orbit and on the
right its time behavior.

A periodic orbit around L1 is, instead, more interesting as it is located

between Earth and Moon so it suffers from both influences, with maxima in

different locations. This results in the two peaks of Fig. 3.28. The higher one

is due to the Earth, while the lower one to the Moon and both are located in

the points of the Halo closer to the relative primary.

Changing the Az amplitude for both Halos does not result in a remarkable

changing neither of the trend of the LLE nor of their values. This holds

unless the periodic orbit becomes so distorted to pass extremely close to one

primary; in this degenerate case only one and very high peak is present.

Of course, changing the time interval after which the LLE are computed

changes their value (the perturbation acts for a longer period), but the shape

of the evolution remains the same as well as the number of peaks and their

meaning. The general trend observed is a diminution of the height of these

peaks for increasing times; i.e. the difference between peaks and valleys in

Fig. 3.27 and 3.28 becomes smaller. Both the peaks due to the Earth and to

the Moon decrease, however, with a ∆t of the order of half period, the peaks

due to the Moon are no more detected. For decreasing time intervals the

magnitude of the LLE increases and the width of the peaks reduces around

the closer Halo-primary point.

In brief, this analysis shows that there are points along the Halo orbits

(or any other periodic orbits around Li) where the gravitational perturbation

of one of the primary is higher, so the orbit is more sensible to any other
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Figure 3.28: Local Lyapunov Exponent for an Earth-Moon L1 Halo orbit; on
the left the magnitude of the LLE along the orbit and on the
right its time behavior.

perturbation. For instance these could be the right points to apply an impulse

for station keeping maneuver or where the navigation uncertainties have to

be reduced[81].

Form a practical point of view, it is well known that maneuvers on Halo

and Lissajous orbits are more effective when they take place near the line

connecting the two primaries[81].

It is worth stressing that the CR3BP is still the dynamical model, there-

fore no other forces, besides the two primaries, are considered. Taking into

account a full ephemeris model would result in a completely different trend

of the LLE, nevertheless their higher values still reveal the more “sensible”

points of an orbit[44].

Small Primary’s Realm

Another worth application of the same concept is the characterization of the

phase space around m2. Let us restrict again to the Earth-Moon PCR3BP

with the idea to define a grid of initial conditions around the Moon and

compute the value of the LLE of each point after a given time span.

It is expected that the points more perturbed, so with higher values of

the LLE are more unstable, so these can be captured/ejected more easily

by means of the combination of the gravitational forces. Locally, in the m2

realm, any initial condition can be expressed by means of the correspondent

condition on an osculating ellipse around the Moon. Considering only posi-
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tive velocities, i.e. osculating retrograde motions around the Moon, for the

departing osculating ellipses, the initial conditions in the classical PCR3BP

reference frame can be expressed as[78]:

x = 1− µ+ r2 cos θ ẋ = r2 sin θ − v2 sin θ

y = r2 sin θ ẏ = −r2 cos θ + v2 cos θ (3.33)

where r2 = a(1−e) is the pericenter distance from the small primary and

v2 =
√
µ(1 + e)/r2 is the pericenter velocity.

Fixing an eccentricity value and defining a grid on the initial semi-major

axis (a) and the departing angle (θ, measured counterclockwise form the

positive x-axis), it is possible to associate the LLE to each point around m2

by means of Eq. (3.32).

In Fig. 3.29 the LLE values are presented for a grid with zero eccen-

tricity and computed after a time interval of 5 days. The stable points are

represented by the valleys, while the higher the peaks the more unstable the

relevant initial conditions are. The reference frame is centered in the small

primary.

Figure 3.29: Moon realm characterization by means of the LLE for e = 0.

Considering the same approach, an interesting comparison can be done

with results obtained for a quite high eccentricity values. In Fig. 3.30 the

characterization of the m2 realm associated with an initial eccentricity of

0.70 is presented. It is worth nothing that although the general shape of the

stable region looks similar, the magnitude of the LLE is much different. In
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particular it increases for increasing eccentricity as the aposelenium moves

far from Moon and thus it can be easily perturbed by Earth.

Figure 3.30: Moon realm characterization by means of the LLE for e = 0.70.

In the a-θ representation it comes out that the LLE are higher, for a given

a, when the angle is 180 deg, and this is clear as in this situation the initial

condition lies along the x -axis on the side of the larger primary. Moreover, the

height of the peaks increases for increasing a values. Nevertheless, there are

regions with very low LLE values also when the magnitude of a is relatively

large, these regions are very close to the Moon and are composed by points

trapped into the invariant tori.

The approach presented closely follows the definition of Weak Stability

Boundary, where the aim is to define the boundary between the m2 escaping

trajectories and the ones captured into the KAM invariant tori.

The representation by means of LLE of this region has the advantage that

no“stability concept”has to be introduced and the number of revolutions does

not have to be a-priori defined, but only the time after which the LLE has to

be computed remains arbitrary. Nevertheless also this approach represents

an algorithmic characterization of this region of the phase space.



Chapter 4
Optimal Control

Some of the most useful tools, already in the initial mission analysis phases,

derive from optimal control theory. It permits to choose a specific path

among multiple possibilities, and it reflects the optimality concept sought in

the specific mission. For instance, dealing with human space missions it is

extremely important to reduce the transfer time as much as possible, while

for a cargo mission would be useful to limit the propellant mass so that a

larger part of the total mass can be allocated for the equipments. A selection

criteria is fundamental especially in the preliminary mission analysis where

the number of free parameters is quite high and a criterion to pick out a

specific trajectory has to be defined.

In the Chapter the basics of optimal control theory are presented for low

thrust mission analysis. Also applications involving two/three-body dynam-

ics are presented in order to show how the optimization schemes work. The

approaches here presented are also the basics of the applications proposed in

the following chapters.

The general definition of the direct and indirect optimization schemes

follows[82][83] and[84] is the fundamental reference for the electric propulsion.

The results of the indirect method in the two body cases can be compared

with[85][86] while the hybrid scheme refers to[87][88].

4.1 The Optimal Control Problem

Let us assume to have a generic dynamical system whose equations depend,

beside on the states also on a control (~u): ~̇x = f(~x, ~u, t) with t > 0, ~u ∈
U ⊂ IRn, f : IRn × U → IRn. In this situation the state of the system (~x(t))

depends instantaneously on the value of ~u(t).

The goal of an optimal control problem is to define the time law of a
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control so that a given scalar performance index (J) is minimized/maximized.

This is a typical formulation for a continuous system and usually there is

a set of initial (subscript 0), final (subscript f) and path constraints that

the resulting optimal trajectory has to satisfy. The performance index is

composed, in general, by a term depending on the final state and another one

depending on the state and the control along the path[89]. The mathematical

formulation of the problem is:

Minimize J = φ(~xf , tf ) +

∫ tf

t0

L(~x, ~u, t)dt

~̇x = f(~x, ~u, t)

g(~x, ~u, t) ≥ 0

Ψ0(~x0, t0) ≥ 0

Ψf (~xf , tf ) ≥ 0 (4.1)

The performance index expressed in the form of Eq. (4.1) is called in the

Bolza Form, where J is composed of the Mayer Term (the first one) and of

the Lagrange Term (the second one), involving the integral along the path of

the Lagrangian of the problem, L. This last term becomes a sum in case of

discrete dynamical systems, moreover only one of these terms can be zero. J

can be also expressed only by means of the Mayer or of the Lagrange term.

The three formulations are theoretically equivalent; it is sufficient to expand

the state vector with another variable (and relevant differential equation)

representing the evolution of the term neglected in the definition of J .

A typical constraint for low thrust missions to be satisfied along the path

(g) is that the control has a limited operative range, e.g. 0 ≤ ||~u(t)|| ≤ ~uMAX .

Seldom this problem can be solved analytically and usually a numerical

scheme has to be considered to obtain the solution. There are two main

methods, Direct and Indirect.

4.1.1 Direct Methods

As the name suggests, these methods solve directly for the unknowns control

variables. The approach does not require nothing more that the equations of

motion, boundary conditions and constraints, but it is necessary to resort to

efficient solvers of non linear and constrained algebraic equations with many

variables and many constraints. This is the reason why they require more

computational power and grew up with the modern computers in the late

seventies[83].

The problem is transformed, by means of a transcription procedure, into

a constrained nonlinear programming problem (NLP) and the time law ~u(t)

is approximated by a discrete time evolution of the control[82]. Basically, the
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transcription procedure is a discretization of the problem that results in an

approximation of the original continuous problem. This leads to a sort of

sub-optimal solution, but usually the error introduced by the discretization

process is much smaller than the error introduced by the model.

The basic idea is to define a grid of time intervals and evaluate both the

state and the constraints only at the knots of this discrete problem[83]. Direct

methods can be divided into Direct Shooting and Direct Collocation methods,

depending on the presence of an explicit numerical integration of the states.

Direct Shooting methods born originally to solve the Two Point Bound-

ary Value Problem (TPBVP). They require the numerical integration of the

trajectory and the control is evaluated in order to“hit the target”. The target

is, in this case, the error between the obtained state at the knots and the

required one. ~u(t) is computed only in the mesh points and then interpolated

among these; also the path constraints are discretized and satisfied only in

the mesh points. The optimization parameters are the initial state and the

control vector evaluated in the mesh points. An improvement of this method

is the so called multiple shooting, that introduces intermediate points among

the knots of the mesh where the integration is re-started. Otherwise the tra-

jectory can be started from both sides of the interval and also the error at

an intermediate match point considered; these are the shooting to a fitting

point methods.

In Direct Collocation methods, ~u(t) is intrinsically continuous, but ap-

proximated using a piecewise continuous polynomial between two consecutive

mesh points. These polynomials have to satisfy (collocate) the dynamics be-

tween the knots. Thus, the control parameters are the values of the state

and of the control in the grid points[82]. In this case at each knot there is

both a right and a left control value since discontinuities are allowed in the

points between the polynomial approximations of the state. Each integration

step is actually a segment on which the values of the state and of the control

have to be determined. One of the most used approximations is based on

the Hermite polynomials and the Simpson rule to approximate the integral.

Also the trapezium rule is widely used. These methods are faster than the

previous ones and have a larger convergence radius, as the number of param-

eters and constraints increases. They are also numerically robust, although

the computational effort increases for increasing transcription accuracy, i.e.

with the increasing of the number of control parameters.

On the left of Fig. 4.1 a schematic view of a direct shooting phase, with

a single state and a single control, is represented. The initial condition of the

state remains an optimization parameter and the control is discretized into n

mesh points, resulting in a vector of optimization parameters. On the right
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Figure 4.1: Schematic view of the single shooting method (right) and of the
direct collocation method (left) for a system with a single state
and a single control.

side of Fig. 4.1, a scheme of the direct collocation method is shown with a

single discretized state and control. In general the state is continuous, while

right and left control values are considered (empty and filled rectangles) for

the control. The control continuity can be imposed by means of additional

constraints.

Summarizing:

• in a shooting approach there is an explicit integration of the dynamical

equations that eliminates the state variables using algebraic conditions.

Controls are parameterized and collocated while states are propagated;

• in a transcription approach the state of the system is a variable and

this represents a sort of implicit integration of the equations of motion.

It is required that the states satisfy the constraints resulting from the

integration. Both control and state are parameterized.

An initial guess is required in both approaches, although an important

property of direct methods is their numerical robustness, so the “quality” of

the initial set of control variables is not so crucial for the convergence of the

method.

After the transcription procedure, the optimal control problem is trans-

formed into a NLP, not involving anymore the dynamics of the original prob-

lem. A set of nonlinear algebraic constraints (c) has to be solved over a set of

unknown variables together with an objective function to maximize/minimize

(F )[83][82]. Also boundaries on the domain where the extremum has to be
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found can be present (~x ∈ [~xL, ~xU ]). Thus, the problem is stated as:

Minimize F (~x) f : IRn → IR

cL ≤ c(~x) ≤ cU

~xL ≤ ~x ≤ ~xU (4.2)

where, in general, ~x ∈ IRn and c(~x) ∈ IRm with m ≤ n. The set of

constraints can be divided into the ones that are strictly satisfied, ci(~x) > 0

that are inactive and the ones that define the bounds of the constraints,

ci(~x) = 0, that are actually the active ones. Therefore, once the active set of

constraints is known, it is possible to get rid of the inactive set and simplify

the problem by considering only equality constraints.

The necessary conditions to solve this problem come out from the La-

grange theory of constrained maxima. In particular, the Lagrangian of the

problem is defined as: L(~x, ~λ) = f(~x)− ~λ
T
c(~x), that is a scalar function of

n variables and m multipliers ~λ. The necessary conditions a point has to

satisfy to be the constrained optimum are that it is a stationary point of the

Lagrangian with respect to all of its dependencies.

This results in a non linear system that can be solved by means of a

Newton iteration scheme to compute the correction (∆~x,∆~λ) to apply to an

initial guess to move one step toward a stationary solution, i.e. it gives the

searching directions. In matrix form this means[89]:[
HL −GT

G 0

]{
∆~x

∆~λ

}
=

{
−g
−c

}
(4.3)

where g = ∇xF is the gradient of the objective function F (~x), G is

the Jacobian of the equality constraint vector c(~x) = 0 and HL = ∇2
xF −∑m

i=1 λi∇2
xci is the Hessian of the Lagrangian in x.

The linear system of Eq. (4.3) is referred as the Karush-Kuhn-Tucker

system and gives the necessary conditions to solve a NLP[89][90].

It is worth nothing that this is equivalent to minimize the quadratic form

1/2 (∆~xTHL∆~x) + gT∆~x subject to the linear constraints G∆~x = −c. This

approach is often referred as Quadratic Programming (QP) problem, also in

its Sequential version (Sequential Quadratic Programming, SQP)[91].

4.1.2 Indirect Methods

Indirect methods aim to solve the optimal control problem by considering

the variation of an augmented performance index including the equations of

motion and the constraints over the states and the controls. These methods

are based on the Calculus of Variations, begun in the ’600 with Newton, and

on the Pontryagin’s Minimum Principle, stated in the sixties[92].
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Indirect methods require a deep mathematical understanding of the spe-

cific problem and often slightly variations in the dynamics or in the con-

straints result in a completely different optimal solution.

The Lagrange constrained minimum theory allows the computation of

the minimum (maximum) of a specific function, f(~γ), subject to some con-

straints, g(~γ), defining an augmented function, F (~γ), that includes both

by means of some coefficients ~ν, the Lagrange Multipliers: F (~γ) = f(~γ) +

~νTg(~γ).

A stationary point of F corresponds to a stationary point of f , so from

∂F/∂~γ = 0 it is possible to compute ~γ to replace in g(~γ). This leads to

the equations for the Lagrange multipliers that can be solved (seldom ana-

lytically) and replaced into f to obtain the maximum of the function or into

∂F/∂~γ to have the value of ~γ that maximizes f .

In our case the goal is to define the optimal value of the control (~u∗) that

maximizes the objective function J satisfying the constraints of the problem

(cfr. Eq. (4.1)). This results in the optimal trajectory, ~x∗, depending on

~u∗. To apply the Lagrange constrained minimum theory, the augmented

functional Ĵ , to be minimized, has to be defined. Referring to the problem

stated in Eq. (4.1) it reads:

Ĵ = φ (~x(tf ), tf )+~νT ·Ψ (~x(tf ), tf )+

∫ tf

t0

{
L (~x, ~u, t) + ~λ

T
·
[
~f (~x, ~u, t)− ~̇x

]}
dt

(4.4)

where the Lagrange multipliers are different for the discrete final con-

straints, ~ν, and for the continuous ones, ~λ, the costate or adjoint variables.

Eq. (4.4) can be integrated by parts obtaining[83]:

Ĵ = Φ + ~λ
T

(tf ) · ~xf + ~λ
T

(t0) · ~x0 +

∫ tf

t0

[
Hx + ~̇λT · ~x (t)

]
dt (4.5)

where Φ = φ + ~νT · Ψ is a function taking into account the Mayer term

augmented with the final constraints. Depending on the explicit dependence

of the Mayer term on the final time, it is possible to classify Open Time

Problems (φ(~xf )) and Fix Time Problems (φ(~xf , tf )). Moreover, in Eq. (4.5),

H is again the Hamiltonian of the problem:

H = L (~x, ~u, t) + ~λ
T
· f (~x, ~u, t) ⇒ H = H(~x, ~u, ~λ, t) (4.6)

It is interesting to observe that this definition is strictly related to the

definition of the functional J and contains both terms only in the Bolza

formulation.
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The basic idea of the calculus of variations is to study the consequences on

the functional of an infinitesimal variation of the control. With this end, let

us consider a δ~u and its effects on δ~x and δĴ . This last one can be expressed

as[83]:

δĴ =
[(

Φx − ~λ
T
)
· δ~x

]
tf

+
[
~λ
T
· δ~x

]
t0

+Φ̇dtf+

∫ tf

t0

[(
Hx + ~̇λT

)
· δ~x +Hu · δ~u

]
dt

(4.7)

where Φ̇ = (∂Φ/∂t)t=tf + Φx · ~̇x is the total derivative of Φ at the final

time.

In order to avoid that a variation of the control results also in a variation

of the state, it is possible to choose the Lagrange multipliers such that the

coefficients of δ~x(t) and δ~x(tf ) vanish. This results in the well known Euler-

Lagrange equations that define the time evolutions of the costate:

~̇λT = −Hx ≡ −Lx − ~λ
T
· fx

~λ
T

(tf ) = Φx(tf ) = φx(tf ) + ~νT ·Ψx(tf ) (4.8)

Now, the system of differential equations is expanded in order to propa-

gate simultaneously both the equations of motion and the costate evolution,
~̇λT = −Hx.

Usually the initial state of the problem is fixed so its variation is zero, i.e.

it is not required to constrain the initial state of the multipliers. The final

state, instead, can be free of fixed.

The optimality conditions come out form the stationarity of the aug-

mented functional, i.e. δĴ = 0. For an arbitrary value of δ~u and δtf in Eq.

(4.7); this is possible only if the following first order necessary conditions are

satisfied:

Hu = 0 = Lu + ~λ
T
· fu

Φ̇ = 0 (4.9)

The first one of Eq. (4.9) is the condition to impose on the Hamiltonian

to satisfy the optimum conditions, while the second one is a condition that

makes sense only for open time problems (otherwise it reduces to the banal

identity 0 = 0)[90]. It is referred as the transversality condition representing

the final time boundary conditions for the costate[91].

Moreover, the first order condition represented by Hu = 0 assures only the

stationarity of the Hamiltonian so second order conditions are required to as-

sure that this is a minimum/maximum point. This requires the computation

of second order derivatives of the augmented functional with respect to the
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control, For minimization problems this results in the well known Legendre-

Clebsh conditions[90]: ∂2H/∂~u2 > 0. Here > 0 denotes a positive definite

matrix and the sign has to be inverted if the aim is to solve a maximization

problem.

The first one of Eq. (4.8), together with the Legendre-Clebsh conditions,

is a particular application of the Pontryagin’s minimum principles stating, in

general, that the optimal control law ~u∗ can be written as[92]:

~u∗ = argmin
~u∈U

H(~x, ~u, ~λ, t) (4.10)

This means that the optimal control vector must instantaneously min-

imize H; it is a sort of constrained minimization at each time instant. In

another way, the optimal solution lies in the hyperplane where the first deriva-

tive of H is zero, the second one is positive and ~u is in its domain[91].

It is worth nothing that actually the principle involves only the part of

the Hamiltonian that depends on the control, the remaining part has simply

zero derivatives.

For fix time problems the infinitesimal variation of the functional becomes:

δĴ =
[
~λ
T
· δ~x

]
t=t0

+

∫ tf

t0

[Hu · δ~u] dt (4.11)

Hu is the impulsive response for J ; i.e. keeping ~x(t0) constant ed evolving

the dynamics, an unitary impulse in δ~u at t1 produces δĴ = Hu(t1). More-

over, at the initial time ~λ
T

(t0) = Ĵx(t0), i.e. the multipliers value at the

initial time is the gradient of J with respect to ~xt0 .

In open time problems (typical application to find minimum time trans-

fers) the final state is itself objective of optimization. This results in an

additional condition to impose on H. It is like to solve many fix time prob-

lems and choose the one satisfying also the transversality condition on the

Hamiltonian, i.e. also the condition Φ̇ = 0 (cfr. Eq. (4.9)) has to be consid-

ered[91]. It reduces to:

Φ̇ =

(
∂Φ

∂t
+
∂Φ

∂~x
~̇x

)
t=tf

= Φtf + ~λ
T

(tf ) · f = Φtf +H = 0 ⇒[
∂φ

∂t
+ ~νT ·

∂Ψf

∂t
+H

]
t=tf

= 0 (4.12)

Usually for an open time problem J = φ(~x(tf ), tf ) = tf and Ψtf =

0 and consequently the transversality condition takes the very easy form:

1 + H(tf ) = 0. Therefore, in this case, the time interval satisfying the final

transversality condition on the Hamiltonian has to be found.
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The second one of Eq. (4.8) gives the value of the costate at the final

time. Bearing in mind that it has always to be avoided to over-constrain the

problem, the minimum number of λi have to be fixed on tf and the states

let free at the final time simply require that λxi |t=tf = 0, with λxi a generic

multiplier associated with the state xi. For fix time problems, generally, the

performance index to be minimized is the mass consumption J = mprop that

results in λm|t=tf = −1. On the other hand, for an open time problem,

where J = tf , λm|t=tf = 0, where λm is the costate of the mass. In both

cases the optimal control problem results in a Mayer formulation that is also

computationally advantageous.

Usually the constraints ~ν are not imposed directly as they are automati-

cally satisfied by the costate at the final time, if non special boundaries are

imposed; i.e. ~λ(tf ) = ~ν.

In practice, indirect methods reduce the optimal control problem to the

problem:

~̇x = f(~x, ~u, t)

~̇λT = −Hx ≡ −Lx − ~λ
T
· fx

Hu ≡ Lu + ~λfu = 0

Ψ0(~x0, t0) = 0

Ψf (~xf , tf ) = 0

~λ
T

(tf ) = φx(tf ) + ~νT ·Ψx(tf ) (4.13)

That is a two point boundary value problem that requires the identifica-

tion of the inial values of the Lagrange multipliers such that the dynamics of

the system, the Euler-Lagrange equations, the optimal conditions, the final

conditions and the transversality conditions are satisfied.

It is worth nothing that a TPBVP time independent admits a first integral

that turns out to be again the Hamiltonian.[91]

The solution of a TPBVP requires again to apply numerical techniques to

modify the initial guesses for the unknowns initial costate. Usually a shooting

approach is used; i.e. the initial guess is propagated in order to have an“error”

to minimize. In its basic version it involves a reduced number of variables

but it is very sensitive with respect to the accuracy of the initial guess.

Exactly like observed in Sec. 4.1.1, it is possible to improve it by considering

a multiple shooting approach or shooting to a fitting point. Both methods

increase the numerical stability of the problem and reduce the sensibility with

respect to the initial guess.

Thus, the major problem to solve this resulting TPBVP is to supply an

initial guess of the unknowns. This has to be enough accurate to lie already in
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the region of the optimum and such that the solution does not diverge. The

adjoint variables do not have any specific physical meaning and the system

is quite sensitive with respect to any small variation of their values.

Bearing in mind that the idea is to use these methods in low thrust paths,

at least a couple of remarks are mandatory.

If the control is scalar and the Hamiltonian is linear with the control,

the optimum time law is described by an instantaneous jump of the control

between the two extremes of its domain. This situation is usually referred as

bang-bang strategy and it applies to the case of a switch variable controlling

if an electric thruster is operating or not.

In particular, considering a condition like: ~̇x = F ~x(t)+G~u(t), the Hamil-

tonian takes the form: H = ~λ
T
· [F ~x(t) +G~u(t)]. Assuming now that ~u = u

is a scalar with values in a given domain u ∈ [uL, uU ], it follows that u has to

assume the lowest value allowed when the coefficient deriving from ∂H/∂u

is lower than zero and the highest one when this coefficient is positive; i.e

H(u) = coeffu ⇒ coeffu∗ ≤ coeffu. This is the bang-bang strategy defined

by:

u∗ =

{
uL, if S > 0

uU , if S ≤ 0

The function ruling the switch, S = ~λ
T
·G, is called the switch function

and the conditions have to be inverted if the performance index is maximized.

The adjoint velocity vector deserves special attention. ~λ~v is the so called

primer vector [93] and in case of chemical transfers it has been proven that

four necessary conditions have to be verified for the optimality of the solution.

The primer and its derivatives have to be continuous everywhere, any impulse

must be supplied along the primer, its modulus is one during any ballistic arc

and the time derivative of the primer has to be zero when a chemical impulse

is applied.

For the electric transfer case, the primer plays again a very important

role as it turns out that, during the powered arcs, the thrust has to be

aligned with it. This results as the thrust direction â appears in the velocity

derivatives that are coupled, in the Hamiltonian, with the primer. It results

in the scalar product â ·~λ~v that has to be minimum in the optimal conditions

and this happens when the thrust direction is along the primer and opposite

to it: â = −~λ~v. Minimizing the performance index the thrust direction must

be opposite to the primer, while it has to be exactly along the primer for

maximization problems.
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4.1.3 Global Methods

Both direct and indirect approaches are suitable for the identification of local

minima. However, the optimization of low thrust trajectories (as well as

many other optimization problems) presents many local minima. Thus, for

the identification of the global minimum some global optimization approaches

have to be considered.

Usually these are stochastic methods presenting a very large convergence

region and are widely used in early steps of the optimization process. These

methods are often used to obtain an initial guess to supply to a local direct or

indirect optimizer. The more common methods are the so called evolutionary

methods that are based on the evolution of a population of possible solutions

and a sort of selection of the best individuals[94].

The Genetic Algorithms (GA) are a typical example of such methods

and are the ones used in this work (cfr. Sec. 5.2). Although a detailed

explanation is beyond the scope of the present dissertation, the main ideas

are briefly recalled in this section.

These methods are actually based on the natural selection concept. An

initial random population of individuals is defined within the range of the

admissible controls and it is evolved. This means that for each individual

a fitness function (basically a merit value) is defined in order to drive the

better individuals to survive. The optimum is given by the combination of

parameters that makes a specific individual the one with the best fitness

value.

From a given generation, the next one is obtained by considering the

mechanisms of the biological evolution[94]. For instance, a single individual

can change by means of mutations, where a random part of a specific in-

dividual is changed randomly in order to obtain a new individual that can

result better or worse of the original one. Two individuals can give a new one

using coupling and selection mechanisms; “parents individuals” are merged

in order to get ”children” with associated new fitness values. There are sev-

eral other operators that can work,[94] the most relevant are: the crossing

over, where the best part of the heritage of two parents is merged together;

the elitism, where the better individuals pass directly to the next generation

without any selection criteria; the migration, where a part of the population

evolves separately. Moreover there are many other related approaches based

on evolutionary methods, like Ant Colony, Differential Evolution or Particle

Swarm, to name just a few of them.

It is worth nothing that these are heuristic methods and, although there

are several numerical confirmations of their ability to find good solutions of

complex problems, there are few theoretical results about their convergence.
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One of the most critical points in GA optimization is to define a stop condi-

tion. This can be the maximum number of generations, the maximum number

of evaluation of the fitness function or similar. In this work, the maximum

number of generations without any improvement in the best individuals (stall

generations) has been used.

4.2 Low Thrust

While a classical chemical burn is an impulse acting on a time scale much

shorter than the one of the whole mission, a low thrust engine acts on ex-

tended arcs for a time of the same order of the mission duration. Low thrust

transfers are characterized by increased transfer times, but reduced propel-

lant mass consumption if compared with the chemical ones.

Without go into detailed explanations of the physical mechanisms in-

volved in an electric thruster, it is sufficient to think the electric thrust as

the acceleration of a propellant mass by means of electric heating or electro-

magnetic forces. The mechanisms can be of electrothermal, electromagnetic

or electrostatic nature[84].

The main feature of an electric thruster is the high velocity of the ex-

haust gas, ve. This is related to a characteristic parameter of the thruster,

its specific impulse Isp, by means of a scale factor. This factor is conven-

tionally chosen as the Earth gravity acceleration at sea level: ve = Isp g0.

The specific impulse for an electric thruster is usually one order of magni-

tude higher than the one of a chemical thruster; approximately in the range

Isp ∈ [1000, 7000] s[84]. The power to thrust ratio of these electric devices

is quite high so, with the current satellite onboard power capabilities, these

thrusters can provide quite low thrusts (thus the correspondence between

electric thrust and low thrust), roughly in the range [1e-4, 5e-1] N. The

thrust T can be modeled by means of the specific impulse and the available

power through a thrust efficiency ηT
[84], see Eq. (4.14).

The inclusion of a low thrust device results in an additional perturbative

term on the right hand side of the equations of motion. The acceleration aT
due to the thruster acts at each time step with a magnitude given by the

thrust over the instantaneous mass ratio. Moreover, the mass consumption

ṁ is determined only by the thruster by means of its thrust and its specific

impulse. This represents an additional differential equation to integrate at

each time step during the thruster working phases. In equations:

T =
2 ηT P

Isp g0
ṁ = − T

Isp g0
aT =

T

m0 − ṁ t
(4.14)

where g0 = 9.81 m/s2 is the Earth gravity acceleration used as non di-
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mensionalizing factor and the last equation is valid for a continuous operating

thruster.

A reference value considered as the cost of a specific mission is the ∆v

that represents the velocity change that could be obtained in a rectilinear

uniform path with the same propellant amount required to accomplish a spe-

cific mission/manouvre considering the same thruster. This can be obtained

by means of the Tsiolkovsky formula (or Rocket Equation)1, Eq. (4.15),

which is basically an application of the second Newton law to a body subject

to thrust[95]. Inverting this equation also the final mass and the propellant

mass consumption can be defined as function of the ∆v:

∆v = Isp g0 log
m0

mf
⇒

mf

m0
= e−∆v/Ispg0 ,

mprop

m0
= [1− e−∆v/Ispg0 ]

(4.15)

The propellant mass consumption of an electric device is much smaller

than the one of a chemical thruster, but not of one order of magnitude.

On the other hand its specific impulse is one order of magnitude larger and

thus the resulting ∆v for an electric mission is usually higher than the one

of a chemical mission. This reflects the fact that an electric device has to

accelerate also the propellant it will use later on, limiting its efficiency. This

effect is known as Gravity Losses [95]. In other words, an electric thruster is

able to produce high total impulse missions with limited mass consumptions,

in particular with mass consumptions smaller than a chemical thruster.

Moreover, as already outlined, the inclusion of the low thrust propulsion

requires, already in the preliminary mission analysis phase, some kind of

optimization because the thrust magnitude and direction are unknowns and

continuously varying along arcs of the path.

4.3 Two Body Application: Low Thrust Earth-Mars
Transfers

As a basic application of the indirect method described in Sec. 4.1.2, let us

consider an Earth-Mars interplanetary transfer. Only the heliocentric part

of the transfer is addressed and zero escape and arrival hyperbolic excesses

are considered (C3 = 0).

A polar reference frame ~x = [r, θ, u, v] is used and the initial and final

positions are fixed on two circular orbits with radii equal to the average

semi-major axes of the two planets (1 and 1.523 AU). The standard planar

1Developed by K. Tsiolkovsky in his pioneering work The Exploration of Cosmic Space
by Means of Reaction Devices published in 1903. In the early 20th Tsiolkovsky theorized
several aspects of space flight, of which he is considered the father, of the rocket propulsion
and he was one of the first men to conceive the space elevator.
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two body dynamics, with the inclusion of the low thrust acceleration terms,

in polar coordinates reads:

ṙ = u θ̇ =
v

r

u̇ =
v2

r
− µ�/r2 +

τ T (P )

m(t)
cosφ︸ ︷︷ ︸

ar

v̇ = −u v
r

+
τ T (P )

m(t)
sinφ︸ ︷︷ ︸

aθ

ṁ = −τṁp(P ) (4.16)

where ar and aθ are the radial and tangential components of the acceler-

ation vector, τ the thruster switcher and µ� is the Sun gravitational param-

eter. Both the thrust T (P ) and the propellant mass consumption ṁp(P ) are

modeled by means of polynomial dependencies on the available power P .

The elements of the control vector ~s = [φ, P, τ ] are the planar thrust

angle φ, the input power P and the switching function τ ∈ {0, 1}, to take

into account the possibility of ballistic arcs.

The Lagrange multipliers ~λ = [λr, λθ, λu, λv, λm] are included in the prob-

lem by considering the Hamiltonian:

H =
∑
i

~λx(i) ~̇x(i) = λr u+λθ
v

r
+λu (

v2

r
−µ�
r2

+ar)−λv (
u v

r
−aθ)−λm τṁp(P )

(4.17)

The λi differential equations are obtained from λ̇i = −Hx(i), Eq. (4.8),

and read:

λ̇r = λθ
v

r2
+ λu (

v2

r2
− 2µ�

r3
− ∂ar

∂r
)− λv (

u v

r2
+
∂aθ
∂θ

) λ̇θ = 0

λ̇u = −λr + λv
v

r
λ̇v = −λθ

r
− 2λu

v

r
+ λv

u

r

λ̇m =
1

m
(λu ar + λv aθ) (4.18)

These Euler-Lagrange equations, Eq. (4.18), together with the dynamical

equations, Eq. (4.16), constitute a system of ten nonlinear and coupled dif-

ferential equations. These two systems have to be integrated simultaneously

and the Pontryagin minimum principle, Eq. (4.10), gives at each integration

step the control laws for the elements of the control vector ~s.

It turns out that the optimal thrust direction has to be always aligned

with the primer vector (cfr. Sec. 4.1.2), i.e. the optimal instantaneous value

of φ, φ∗, is given by[92]:

∂H

∂φ
= 0 ⇒ cos φ∗ =

−λu√
λ2
u + λ2

v

, sin φ∗ =
−λv√
λ2
u + λ2

v

(4.19)
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It is worth nothing that as written Eq. (4.19) are intended to be used to

minimize the performance index. In the case of maximization problems the

signs, deriving from the Legendre-Clebsh conditions, must be inverted (cfr.

Sec. 4.1.2) as well as the sign of the functional J .

The optimal value of the switcher, τ∗, follows the bang-bang strategy

explained in Sec. 4.1.2, with the switch function f :

τ∗ =

{
0, if f ≤ 0

1, if f > 0
with f =

T (P )

m
(λu cosφ+ λv sinφ)− λmṁp(P )

As one of the optimal control parameters is the input power of the

thruster, the propellant mass consumption and the thrust of the device are

expressed only as functions of this power P . In other words, the Isp in not

taken directly into account, but empirical polynomial expressions are consid-

ered to define Isp(P ).

The optimal law for the input power P ∗ results from ∂H/∂P = 0 and it

depends on the specific polynomial expression of T (P ). Assuming a quadratic

polynomial dependence from P both for the thrust (T (P ) = aP 2+bP+c) and

for the propellant mass consumption (mp(P ) = dP 2 + eP + f), the optimum

law reads[85]:

P ∗ =


κ, if q2 < 0 ∩ κ ∈ [PMIN PMAX]

PMIN, if q2 < 0 ∩ κ < PMIN or q2 > 0 ∩ κ > (PMIN + PMAX)/2

PMAX, if q2 < 0 ∩ κ > PMAX or q2 > 0 ∩ κ < (PMIN + PMAX)/2

where q2 = a (λu cos φ+λv sin φ)/m−λmd, q1 = b (λu cos φ+λv sin φ)/m−
λme and κ = −q1/(2 q2).

Such polynomial expressions are available for instance for the PPS-1350

engine[85]. This thruster is assumed to work in a bounded range of powers,

so the input power is limited by PMIN = 460 W and PMAX = 1500 W. In this

interval, these coefficients take the values:

T (P ) = 4.68︸︷︷︸
c [mN]

+ 60.94︸ ︷︷ ︸
b [mN/kW]

P + (−5.1)︸ ︷︷ ︸
a [mN/kW2]

P 2

ṁp(P ) = 1.935︸ ︷︷ ︸
f [mg]

+ 2.545︸ ︷︷ ︸
e [mg/kW]

P + (−0.3716)︸ ︷︷ ︸
d [mg/kW2]

P 2 (4.20)

Within this framework, the indirect optimization method is applied twice.

In a first step to minimize the mission transfer time, therefore J = tf is the

index to minimize. In a second step also the propellant mass for a given

transfer time is subject to minimization, i.e. the objective function is the

propellant mass: J = mprop.
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The problem is completed by the physical boundary conditions on the

states. The initial and final radii are the ones of Earth and Mars and the

initial and final velocities are only tangential and equal to the circular veloc-

ities of the planets. The initial spacecraft mass is intended at the boundary

of the Earth Sphere of Influence (SoI) (rSoI |⊕ = r⊕�(m⊕/m�)2/5).

The final value of λm has to be 0 for minimum time problems and -1 for

minimum mass problems (cfr. Sec. 4.1.2). The position along the heliocentric

martian orbit where the encounter takes place is left free and this results in

λθ(t = tf ) = 0. Furthermore, for the time minimization several fixed time

problems, with different transfer durations, are solved and among these the

one satisfying also the transversality condition on the Hamiltonian is chosen.

It is worth nothing that the problem has polar symmetry and accordingly

the departure angular position on the Earth orbit is not considered in the

control vector. It has been assumed, without losing of generality, along the

x -axis, i.e. θ0 = 0.

In equations, for the minimum time problem the final conditions the TP-

BVP has to satisfy are:

r(tf ) = rMars, u(tf ) = 0, v(tf ) =
√
µ�/rMars, λθ(tf ) = 0, λm = 0

(4.21)

together with the transversality condition enforced on the Hamiltonian:

H(tf ) = −1. While for the minimum mass in fix time problem these condi-

tions are given by:

r(tf ) = rMars, u(tf ) = 0, v(tf ) =
√
µ�/rMars, λθ(tf ) = 0, λm = −1

(4.22)

The equations of motion are integrated in their non dimensional form with

a tolerance of 1e-9 and the TPBVP has been solved with similar accuracy.

The final states result from the numerical integration and a numerical scheme

varies the initial values of ~λ to satisfy Eq. (4.21) or (4.22).

As an example, two minimum time Earth-Mars transfers, different only

because their initial masses, are presented in Fig. 4.2.

Since in this case minimum time transfers are sought, the variable τ is

always 1, i.e. the thruster never switches off and the power is always at the

maximum of the admissible interval. Accordingly, the mass consumption is

linear in time. A summary of these parameters is presented in Fig. 4.3.

For an initial mass of 700 kg, the propellant mass fraction is the 31% and

the minimum transfer time is 515 days. On the other had, for an heavier

spacecraft with an initial mass of 1000 kg, the 32% of propellant is required

and the transfer time is 751 days; results in perfect agreement with[85].

This method shows fast convergence and limited computational time once

a sufficiently accurate initial guess for the costate is supplied.
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Figure 4.2: M0 = 700 kg (left) and M0 = 1000 kg (right) Earth-Mars mini-
mum time transfers in the heliocentric polar reference frame.

Figure 4.3: Power and τ , thrust angle and mass consumption evolutions for
M0 = 700 kg (first row) and M0 = 1000 kg (second row) Earth-
Mars transfers. Trajectories in Fig. 4.2.

Considering the same planar, polar, two body model, also minimum mass

trajectories for fixed transfer times can be computed. To achieve this goal a

mission time larger than the minimum one has been assumed. In this case

the final condition on the Hamiltonian is not required (fix time problem) and

the transversality condition on λm has to be satisfied (cfr. Eq. (4.22)).

The first case (Fig. 4.4, left) represents an Earth to Mars transfer with
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Figure 4.4: M0 = 300 kg (left) and M0 = 350 kg (right) Earth-Mars mini-
mum mass transfers in the heliocentric polar reference frame. The
two fixed times are respectively 300 days and 400 days.

an initial mass of 300 kg completed in 300 days. The optimal control strategy

results in the classical thrust-coast-thrust strategy and the 40% of the initial

mass (≈ 120 kg) is consumed.

The second case, on the right hand side of Fig. 4.4, shows a similar

transfer where the initial mass is supposed to be 400 kg and the transfer

time is fixed to 350 days. In this case the 35% of the initial mass has to

be allocated for the propellant (≈ 140 kg) and again the thrust-coast-thrust

strategy results from the optimization scheme. Also in this case the results

are in agreement with[85].

As before, also these minimum mass transfers examples are completed

with the plots of the time behaviors. In 4.5 the thrust laws and the instan-

taneous mass are shown for both cases.

Let us conclude these examples by stressing that the planar two body

dynamics and the exactly circular orbits for Earth and Mars are quite strong

assumptions. Nevertheless the same approach works fine also in more com-

plete settings considering a three dimensional two body model, ephemeris

and power decreasing with the heliocentric distance[86].

4.4 Three Body Application: Low Thrust Heteroclinic
Transfers

Let us now sketch a similar approach considering the CR3BP dynamics.
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Figure 4.5: Power and τ , thrust angle and mass consumption evolutions for
M0 = 300 kg (first row) and M0 = 350 kg (second row) Earth-
Mars transfers. Trajectories in Fig. 4.4.

In Sec. 3.4 the possibility to obtain heteroclinic connections between two

Lyapunov orbits without any thrust requirement has been explained. How-

ever, if in the relevant Poincaré section only the positions of two manifolds

match, a chemical impulse must be applied in this point in order to obtain

the matching also between the two velocities. In this way non-zero cost hete-

roclinic transfers are obtained. The chemical impulse to apply is simply given

by the vectorial difference between the two velocities.[40]

Let us consider now the coupling of two different three body systems.

Such a kind of single burn heteroclinic connections can still be designed be-

tween two manifolds of two different periodic orbits of the two models. For

instance, between the stable manifold of a Lyapunov around L2 in the Sun-

Earth system and the unstable manifold of a L1 Lyapunov of the Earth-Moon

system. It has been proven[14] that in this situation free transfers does not

exist, unlike from the L1-L1 case.

Thus, the idea is to refine one of these non-zero cost transfers by replacing

the chemical burn with a low thrust arc. It is like to spread the chemical

impulse along a small trajectory segment. This is designed again by means

of an indirect method and the electric powered arc is guessed straddle on the

section plane. In the low thrust refined connections the orbits belonging to

the Sun-Earth and Earth-Moon manifolds are kept fixed. So the same original

trajectories on both manifolds are linked by a low thrust arc, computed in

the Sun-Earth model.
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In this case the elements of the control vector ~s are:

• the initial departing time from the Sun-Earth manifold, i.e. when the

thruster is switched on after a certain time spent on the manifold;

• the duration of the powered phase, computed in the Sun-Earth model;

• the arrival time, backward propagated from the target Earth-Moon

Lyapunov that represents the time spent on the target manifold;

• the 5 Lagrange Multipliers (λx, λy, λu, λv, λm) ruling the TPBVP.

The costate associated with the mass has been introduced as the thruster

has, in general, the possibility to switch off. However, the initial guesses

investigated are too near to the Poincaré section, so the thrusting time is not

that long and the behavior is the thruster always on.

In this case, it is not possible to derive the optimal conditions for all the

elements of the control vector, as it is not possible to compute the derivatives

of the Hamiltonian with respect to some components of ~s. For instance, no

analytical relations exist between the time spent on a give manifold and H.

Thus, a direct minimization of the performance index is attempted and

the adjoints are only used to compute the instantaneous optimum of the

thrust direction. This results in a hybrid method [96][88] that turns out to be

extremely useful to include in the control vector also elements that do not

admit any analytical expression of the optimal control laws[33].

The powered version of the CR3BP equations of motion are required,

specified for the Sun-Earth system (µ = 0.30404234e-5). These are essentially

the equations of motion, Eq. (2.27), with the usual additional acceleration

term due to the thruster (in the same fashion of the two body powered

equations, Eq. (4.16)). These read:

ẍ− 2ẏ = Ωx + ax

ÿ + 2ẋ = Ωy + ay

z̈ = Ωz + az

ṁ = −τ ||~T||/(g0Isp) (4.23)

with ~a = ~T/m, ~T = [Tx, Ty, Tz]
T and where the last equation takes into

account the mass decreasing (cfr. Eq. (4.14)). It is worth nothing that in

this case the thrust does not have any explicit dependence, in particular it is

not a function of the power like in Sec. 4.3.

Although the aim of the current section is to define a low thrust hete-

roclinic connection between two planar Lyapunov orbits, the complete three
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dimensional case of the Hamiltonian is here presented for shake of complete-

ness. It takes the form:

H =
[
2v + x− (1− µ)(x+ µ)

r3
1

− µ(−1 + x+ µ)

r3
2

+
Tx
m

]
λu +

[
− y(1− µ)

r3
1

+

− yµ

r3
2

− 2u+ y +
Ty
m

]
λv +

[
− z(1− µ)

r3
1

− zµ

r3
2

+
Tz
m

]
λw + uλx + vλy

+ wλz +
τT

Isp g0
λm (4.24)

Again by means of the Euler-Lagrange equations, Eq. (4.8), the evolution

of the adjoints in the CR3BP synodic frame is computed:

λ̇x = λw

[
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1

]
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λ̇u = 2λv − λx
λ̇v = −2λu − λy
λ̇w = −λz

(4.25)

The optimal thrust direction is along the primer vector and the adjoint

variables control also the value of τ by means of the bang-bang strategy;

the specific dynamics do not change the general optimum laws derived in

Sec. 4.1.2. The optimal value of all the other elements (i.e. durations) can

not be determined by the minimum principle and these are simply iteratively

changed in the solution of the TPBVP[87][97]. The aim is to minimize the pro-

pellant mass consumption and satisfy the final physical non linear constraint

that the error between the obtained final state at the end of the thrusting
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phase and the target one[33], that is the point determined by the arrival time

on the Earth-Moon manifold, is zero.

The whole trajectory, as seen in the Sun-Earth frame (left) and in the

Earth-Moon one (right), is shown in Fig. 4.6. Here the original trajectory is

represented by the red curve, for the Sun-Earth trajectory on the manifold,

and the blue curve, for the trajectory on the Earth-Moon manifold. The

refined trajectory is represented by the magenta line (superimposed to the

red path up to the thruster switching on), the cyan line (superimposed to

the blue path up to the thruster switching off) and the brown line where the

thruster is operating.

Figure 4.6: Low thrust heteroclinic connection between Sun-Earth L2 and
Earth-Moon L1; in the Sun-Earth synodic frame (left) and in the
Earth-Moon one (right).

All the computations have been done in the Sun-Earth rotating frame,

moreover in this case the small primary of both system has been assumed

located on the negative x -axis.

A test spacecraft with an initial mass of 1000 kg has been used together

with Isp = 2000 s and T = 0.5 N. With these data, the low thrust hetero-

clinic connection requires an electric ∆v ≈ 351 m/s, that corresponds to a

∆m ≈ 17.7 kg. Considering a chemical impulse of Isp|ch = 320 s, it is possi-

ble to compare these results with the chemical case, both in terms of mass

consumption and ∆v (given by the vectorial difference of manifolds velocity

on the Poincaré section). As explained in Sec. 4.2, the low thrust refined

trajectory presents a lower mass consumption and a higher ∆v. Although the

electric thruster requires approximately 30 m/s of additional ∆v with respect

to the chemical case (≈ 351 instead of ≈ 320 m/s), it saves approximately
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80 kg of propellant mass (≈ 17.7 instead of ≈ 97 kg).

As the low thrust arc has been guessed very close to the discontinuity (the

vertical dashed line in Fig. 4.6), this kind of transfers has to be considered

only locally optimal. In the sense that a global search of the optimum region

has been not performed and making the low thrust arc free to start/end on

a different trajectory of the manifolds could result in shorter powered phases

and consequently less expansive transfers realizing the same heteroclinic con-

nection.

The time behaviors of the mass, thrust angles, heliocentric position and

velocity are presented in Fig. 4.7 with the same color convention of Fig. 4.6.

Figure 4.7: Thrust angle, mass, instantaneous radius and velocity for the low
thrust heteroclinic connection between Sun-Earth L2 and Earth-
Moon L1.

It has to be stressed that the Earth-Moon manifold is not integrated in

the Sun-Earth system, but just a coordinate transformation between the two

systems is performed. This causes the trajectories composing this manifold

to have different energies in the Sun-Earth system.

4.5 Considerations

Some considerations about the use of the hybrid algorithm are here appropri-

ate. This approach allows maintaining a low number of variables if compared

with direct methods and at the same time allows the inclusion of other ele-
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ments in the control vector beside the initial values of the adjoint variables.

In this scheme, instead of implementing a root finding procedure to satisfy

the resulting TPBVP including all the optimality constraints, a numerical

direct minimization of the performance index is sought.

Nevertheless, it has to be stressed that this approach might not satisfy the

final transversality conditions deriving from indirect methods. These condi-

tions are an integral part of the optimal control problem and consequently a

hybrid approach does not have any analytical proof of the optimality of the

solution obtained.

This method resembles a sort of single shooting approach where the

thruster control laws are parameterized by the initial value of the Lagrange

multipliers. The direct minimization of the performance index subject to

physical constraints replaces the analytic optimal control law. This is re-

quired as in the control vector are included also elements for which it is not

possible to derive analytic conditions for the stationarity of the Hamiltonian.

Thus the minimization of the functional is given by iterative procedures and

the optimal control laws are only used to parameterize the evolution of the

adjoint ruling the thruster behavior.

In this sense the applications presented are only to be intended as feasible

solutions presenting a numerical minimum of a given index into a neighbor-

hood of other feasible solutions around them.



Chapter 5
Low Energy, Low Thrust Deep Space

Missions

Real verifications of the CR3BP, like comets orbits or particular families of

asteroids around Sun-planet equilibrium points, brought to change the solar

system view. Instead of considering a set of independent, almost circular

heliocentric orbits governed only by the Sun attraction, the solar system is

better understandable looking it as a net of gravity forces balancing and

dominating one each other depending on the regions. This approach is par-

ticularly useful also from a mission analysis point of view as the path of a

probe can be designed by exploiting this net. Interplanetary low energy mis-

sion have been already proposed[47] as well as operational phases designed

within the three body model, like the tour of the Jupiter’s moons[40].

In this section, an example of one dimensional manifolds connected by

electric propulsion is presented in order to design a small tour of the Uranus

moons. This operational phase is supposed to be the last part of an inter-

planetary low power transfer[98] designed in the CR3BP. Furthermore, also

an application of a manifold to manifold transition is presented. This pas-

sage is intended to design an Earth-Mars transfer and the energy required to

move away from the Sun-Earth manifold up to get into the Sun-Mars one is

supposed to be provided by an electric thruster.

5.1 Low Thrust Transition between one dimensional
Manifolds

The conjunction, by means of low thrust arcs, of one dimensional manifolds

associated with different three body models is presented as first naive appli-

cation of the combination of manifold and low thrust in the framework of
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non Earth-Moon mission scenarios. This is carried out to perform a moons

tour and the Uranus moon system is chosen as workbench. This is a novel

space mission profile, already proposed in other contexts[40][14], that takes

advantage both from multi-body regimes and from the low thrust character-

istics. With this approach, the planetary moons can be explored for longer

times if compared with the classical (multi) swing-by approach[99]. Further-

more, the intricate net of their gravitational fields can be exploited to reduce

the mission propellant mass requirement in combination with low thrust arcs

enabling to move from a ballistic phase to another.

The Uranus system provides a very interesting dynamical environment

because its five main moons are sufficiently massive, with almost circular

and coplanar orbits and near enough to form several three body models with

the planet acting as principal body.

The main purpose of this section is to define a methodology to design a

tour within the Uranus system that visits each of its main moons including

a temporary capture around each of them obtained by a ballistic arrival and

departure arc.

The trajectory proposed starts with a ballistic approach arc towards the

outer moon, Oberon, and ends with a stable orbit around Uranus with a

radius smaller than the inner moon, Miranda, mean orbital distance. During

the complete transfer, closed orbits around Oberon, Titania, Umbriel, Ariel

and Miranda (the five main moons from the outmost to the closer one with

respect to Uranus) are executed[100]. This would enable scientific studies of

these moons for a duration considerably longer if compared with single or

multiple fly-bys[99].

The tour is computed within several PCR3BPs, based on which the stable

and unstable manifolds associated with the libration points (one dimensional)

of each system are computed. The connection of two generic states, respec-

tively on an unstable and on a stable manifold, enables the passage from one

system to the other[101]. This transition requires an energy change provided

by the electric device. Here low thrust arcs (or alternatively ballistic arcs

among multiple chemical impulses) are mandatory as there are no intersec-

tions in the position space among the manifolds of the various systems.

The problem is decoupled in several PCR3BP composed by Uranus and

one moon at a time. The forbidden regions of each system have to be open

to allow the transit from the exterior realm, through the moon realm to the

inner realm where the stable manifold of the next PCR3BP is targeted.

The lowest energy value that permits the transit from the outer realm,

traversing the moon region, into the inner realm is the one associated with

L2. Therefore, the manifolds used for this application, and thus the energy
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level, are the ones associated with this point. These can be computed as

explained in Sec. 3.2.1.

In Fig. 5.1 the Hill regions (left) and the one dimensional manifolds of

each Uranus-moon system (right) are represented, each in the proper rotating

frame. The energy level used to obtain the picture is EL2 of the Uranus-

Miranda system, the lowest one considered as this system has the lower value

of the mass parameter (cfr. App. A).

Without losing generality, the Uranus-Oberon system is considered the

reference one and for the tour computation everything is transformed into

this system.

Figure 5.1: Uranus-Oberon/Titania/Umbriel/Ariel/Miranda Hill regions
(left) and one dimensional manifolds (right) each as seen in the
proper synodic barycentric frame.

The low thrust arcs are modeled by adding on the right hand side of the

usual PCR3BP equations, Eq. (2.27), an additional perturbative term of the

form: ~a = ||~a|| cosα T̂ + ||~a|| sinα N̂, Eq. (4.23), split into the tangential

T̂ and normal N̂ directions. The modulus ||~a|| includes a switch function τ ;

this, together with the thrust angle α, are elements of the control vector.

The computation of the L2 stable manifold (the one leading from the exte-

rior to the moon realm and then into the inner one) requires the propagation

of the initial conditions for a time span beginning at the end of the powered

phase of the previously considered transfer. The propagation is performed

backward for a time that identifies the duration for which the spacecraft lies

on the stable manifold. The duration of this time span (tmani) and the initial
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position of the relative moon (θ) are terms of the control vector.

Furthermore, the exit

Figure 5.2: Control vector elements for the Oberon-
Titania transfer.

time from the previously

considered, unstable man-

ifold of L1 (t0) is also con-

sidered as a term of the

control vector together with

the duration of the pow-

ered phase (tel), not a-priori

defined.

In this case the thrust

laws (α, τ) are included in

the control vector by a time

discretization of the propul-

sion phase. It has been di-

vided into n-mesh points

and at each knot the thrust

modulus and angle are con-

sidered as elements of the control vector. The thrust law between two con-

secutive mesh points is then interpolated in a linear way. A fixed number of

knots, n = 10, has been arbitrarily chosen for normal transfers where this is

doubled for long propulsion phases (Titania-Umbriel and Ariel-Miranda) to

limit the computational time.

Thus, the complete control vector is composed by the three durations, one

angle representing the initial phase of the target moon and two n-dimensional

arrays. So the control ~u is a (2n+4)-dimensional vector. The complete con-

trol vector is schematically presented, for the first Oberon-Titania transition,

in Fig. 5.2

Each transit has to be accomplished by using the minimum propellant

mass and with the constraint that the final state of the propulsion phase

matches with the initial state of the L2 stable manifold of the target moon.

This results in a NLP solved by means of a SQP approach[102]. In order to

constrain the computational time, a tolerance of 5% has been imposed on the

phase distance of the conjunction states.

This kind of approach (a sort of direct shooting explained in Sec. 4.1.1)

is quite dependent on the initial guess and a high computational load can

result if the initial guess is very poor or if it lies on the boundary of the

feasible region. It is worth nothing that the value of the small perturbation

d, introduced in Sec. 3.2.1, has been subject of few numerical iterations

in order to obtain a value corresponding with a minimum altitude not less
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than 50 km above the surface of each moon (thus d changes depending on

the specific PCR3BP). Moreover, this value affects also the number of closed

orbits around each moon and the associated duration of the unstable ballistic

capture.

5.1.1 The Moon Tour

Considering an initial mass of 500 kg, Isp = 3200 s, P |const = 1000 W and

ηT = 0.5, the resulting tour is represented in Fig. 5.3, on the left in the

Uranus-Oberon rotating frame and on the right in the Uranus centered sys-

tem. This tour can be performed in approximately 957 days and it requires

only 35 kg of propellant mass, corresponding to the 7% of the total spacecraft

mass. With the considered thruster characteristics this means a total ∆v of

2.26 km/s.

Figure 5.3: Uranus moons tour in the Uranus-Oberon frame (left) and in the
Uranus inertial one (left). In blue the ballistic phases, in green
the powered ones.

The transition from Oberon to Titania requires only a relatively short

propulsion phase of approximately 56 days due to the close proximity of the

two moons and their similar physical characteristics. On the other hand, the

transition to Umbriel and Miranda requires approximately 150 and 128 days

respectively, the longest ones. This is explained by the large radial and

physical difference with respect to the previous system.

To complete the description, the trend of some relevant parameters, e.g.

the instantaneous position and velocity referred to Uranus and the spacecraft

mass, together with a detail of the Titania capture phase (the others are

similar) are presented in Fig. 5.4.
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Figure 5.4: Left: time evolution of position, velocity and mass for the Uranus
moon tour. Right: details of the Titania ballistic capture phase.

5.1.2 Earth-Uranus Transfer

This tour has been thought as the last part of an interplanetary mission of

a small spacecraft equipped with Radioisotope Thermoelectric Generators

(RTGs)[103]. Since these modules work better and better as the heliocentric

distance is increased, the target Uranus has been chosen after a trade off

between the transfer time and the propellant mass consumption[104]. The

interplanetary transfer is assisted by a high energy launch, providing the

spacecraft with a high departure velocity to maintain acceptable transfer

times. Following the launch, the electric propulsion is used to decelerate the

spacecraft up to the Uranus capture and subsequent tour beginning[98][105].

The departure angular phase along the circular heliocentric Earth orbit

(i.e. the launch date) and the departure excess energy have a strong effect

on the shape of the trajectory[106][107]. An erroneous selection of the initial

position or of the excess energy might render the transfer unfeasible or with an

excessively long duration[108]. Following launch, the electric propulsion must

modify the velocity in all three dimensions in order to adhere the imposed

final conditions. In particular, considering a heliocentric cartesian frame, it is

worth nothing that the initial state is in the x-y plane, whereas the final state,

which corresponds with the start of the Uranian tour, is in the x-z plane, due

to the high inclination of the Uranus spin axis tilted of 97.77 deg with respect

to the ecliptic plane (the moon orbits are approximately onto the Uranus

equatorial plane). The Sun-Uranus CR3BP has been used (µ = 4.3528e-5),
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although this model has to be considered only as a heavy approximation

since at least Jupiter/Saturn have to be taken into account for such long

interplanetary transfers.

The iterative scheme computes both the in-plane and the out-of-plane

thrust components, while minimizing the time required to reach the final

state. Initially a gradient method is applied to generate a sufficiently ac-

curate initial guess for a subsequent forward shooting method. The latter

method requires an accurate guess at t = t0, which is obtained by the for-

mer, more robust, optimization scheme[91]. To maintain the mission duration

into a reasonable range, the transfer time has been considered as functional

to minimize and a limit on the final mass after the interplanetary transfer is

imposed indirectly.

The whole interplanetary path, using the chemical escape and the elec-

tric capture, is presented in Fig. 5.5 with the in-plane and the out-of-plane

motion.

Figure 5.5: Interplanetary Earth-Uranus transfer; on the left in the x-y and
on the right in the x-z, with exaggerate out-of-plane scale.

In Fig. 5.5 the gradient solution (blue) and the forward shooting one

(red) are superimposed. The first one is slightly more expensive than the

second one especially because it performs a larger out-of-plane excursion. The

gradient sub-optimal path is used only as initial guess for the forward shooting

that results in a lower propellant mass consumption with approximately the

same transfer time. The out-of-plane thrust angle is extremely moderate, due

to the fact that the velocity component along z at the final state is relatively

small and the distance of 19.2 AU is available to achieve this starting from
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planar conditions.

In Fig. 5.6 a detail of the electric capture phase (black line) in represented.

It starts from the forward shooting solution when this reaches the Uranus

Sphere of Influence. During this phase the energy of the spacecraft gradually

decreases leading to a closure of the Hill regions with consequent capture of

the probe. In addition, the spacecraft is aligning its position and velocity

with the requirements imposed by the planetary tour.

Considering an initial mass

Figure 5.6: Electric capture (black line) detail in
the Uranus realm, from its Sphere of
Influence.

of 900 kg[109] launched with a

C3 = 130 km2/s2 (data suit-

able, for instance, for an At-

las V launcher equipped with

a Star 48V upper stage), this

transfer takes approximately

9.14 years to reach the Uranus

Sphere of Influence requiring

292.7 kg of propellant mass.

Afterwards, ≈ 2.56 years, with

83 kg of mass consumption, are

required to de-spiralling until a high elliptic uranian orbit is achieved[103].

5.2 Low Thrust Halo to Halo Interplanetary Transfers

The core idea of this section is to investigate about the possibility to ap-

ply a low thrust propulsion strategy to interconnect ballistic trajectories on

invariant manifolds associated with multiple circular restricted three body

systems[68]. Sun-planet three body models can be considered to compute

arrival and departure ballistic trajectories[5] and the electric propulsion used

to interconnect these trajectories.

A remarkable advantage of this approach in terms of mission design is

that it allows to detect connection trajectories also if a direct intersection of

the ballistic arcs (i.e. manifolds) on a given Poincaré section does not exist.

Once two ballistic trajectories have been computed and propagated up

to the surface of section, an intersection in the position space corresponds to

initial conditions to propagate forward and backward to obtain the connec-

tion. The vectorial difference in velocity on the surface of section represents

the chemical impulse to supply in that point (cfr. Sec. 3.3-3.5). This method

has been used to design several transfer trajectories in the CR3BP frame-

work[76][39], but it is not applicable if there are no intersections between the

manifolds in the position space (cfr. Sec. 4.4). This lack of intersections is

well known for the CR3BP formed by the Sun and all the inner planets, while
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for the outer planets the manifolds intersect and this results in low energy

paths that asteroids and small bodies can follow to move around the solar

system[69].

The ability of the electric thruster to provide the energy change required

to transit the spacecraft between the manifolds of two systems appears suit-

able also in this context. Moreover, the inclusion of low thrust arcs provided

by an electric propulsion system results in a further propellant mass saving

if compared with the chemical alternative. Intrinsically associated with the

low thrust propulsion, however, are the extended arcs between the manifolds

during which the thrust must be continuously provided.

The considered approach, see Fig. 5.7, consists of a first ballistic escape

phase along the departing planet unstable manifold followed by the powered

phase which modifies the spacecraft energy so that upon thrust completion

the spacecraft adheres the phase space conditions enabling the insertion on

the destination stable manifold. Here a second ballistic phase follows, where

the CR3BP dynamics of the target Sun-planet system guide the spacecraft

onto a periodic orbit around the libration point of the target planet[110].

Figure 5.7: Low thrust Halo to Halo interplanetary transfer; a stable and an
unstable manifolds of two different three body systems are linked
by means of an electric powered arc.

To design the thrusting phase an active control of the thrust parameters

is required, in order to obey the final conditions imposed by the manifold dy-

namics. The in-plane and the out-of-plane control angles have to be computed

together with the behavior of the electric thruster where also the possibility

of coasting phases can be taken into account.

It has to be stressed since now that such a kind of interplanetary tra-

jectories can be used to transfer a spacecraft or a cargo from a near Earth
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station (e.g. on a periodic orbit near L1) to a similar station near the target

planet. These transfers seem especially useful for scientific exploration mis-

sions with major constraints on the propellant mass, in order to maximize

the allocation of the on board resources to the scientific equipment, rather

than on the transfer time[5].

5.2.1 Design Strategy

The dynamics of the spacecraft are studied within different models depend-

ing on the distance from the main attractors. In particular, the approximate

dynamics associated with the two primaries Sun-departing/arrival planet are

considered during the ballistic escape and capture phases, while a more com-

plete dynamics, by taking into account all the three attractors, is used during

the interplanetary powered phase.

The basic dynamics employed is again the CR3BP outlined in Sec. 2.2,

during the escape and capture phases, while, in order to define a more ac-

curate and realistic dynamics, during the powered interplanetary phase the

BCM scheme is considered (cfr. Sec. 2.3). In this case the additional per-

turber is one of the two planets, moving along a circular path around the

center of mass of the other two primaries, i.e. the Sun and the other planet.

The perturbation of this additional body is not considered during the

permanence on the Sun-planet manifold because the distance of the spacecraft

with respect to the other small primary is very large and the other planet’s

gravity can be neglected. This allows the computation of libration points,

periodic orbits and manifolds because the CR3BP model is considered.

With this idea, the CR3BP equations are used only in their ballistic

version for the phases on the manifolds, while the BCM is used together with

the low thrust terms. Accordingly on the right hand side of Eq. (2.44) an

additional acceleration term appears:

ẍ− 2ẏ = ∂Ω4/∂x+ ax

ÿ + 2ẋ = ∂Ω4/∂y + ay

z̈ = ∂Ω4/∂z + az (5.1)

where the Ω4 is the modified effective potential of Eq. (2.45). These

accelerations have the form of Eq. (4.14), i.e. ai = τ T/m â(i), where τ

is the thruster switch variable and â represents again the unit acceleration

vector.

The power available for the electric thruster is supposed to be provided by

a solar electric device, therefore a natural diminution of the power available

with the heliocentric distance is considered. Considering an initial fix power

in a heliocentric orbit of radius 1 AU, the inverse square law is considered for
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the power decrease. Thus, the effective available power for the thruster (from

which the mass consumption and the thrust are computed by means of Eq.

(4.14)) scales as P = Pin/r
2. It is worth nothing that in this expression (as

in the following equations) the units are already non dimensional and thus

the heliocentric Earth distance is unitary.

The first step to perform in order to apply the outlined procedure, is to

compute a specific periodic orbit around the proper libration point for a given

energy value. The specific libration point depends on whether the transfer is

sought toward an inner planet, where the periodic orbit has to be computed

around L1 of the Sun-departing planet system, or toward an outer planet,

where the interesting point is L2. The energy value of this orbit, actually

related to its amplitude, can be a given value that satisfies some of the mission

requirements or can be an element of the control vector. Once this periodic

orbit has been defined (cfr. Sec. 3.1.1), the relevant unstable manifold for

the departing phase has to be propagated (cfr. Sec. 3.2). In a specular

fashion also the arrival periodic orbit and the inherent stable manifold has

to be computed.

In order to define a more realistic procedure, Halo orbits and relevant

manifolds are considered, but the extension to the planar case with Lyapunov

orbits is straightforward. Thus the specific orbits are chosen (a-priori or

resulting from the numerical scheme) by selecting a specific value of their

out-of-plane amplitude, Az.

The combination low energy - low thrust better exploits its capabilities

when a reduction of the propellant mass consumption is sought instead of

the transfer time. Thus, in order to design the transfer, the objective is to

minimize the propellant mass fraction consumed during the mission subject

to the constraint that the final position of the thrusting phase matches the

final conditions of the ballistic capture backward propagated from the final

position on the target Halo orbit. It has to be stressed that, as also the

possibility of a thruster switch off is considered, the minimization of the

propellant mass is not equivalent to minimize the duration of the powered

phase.

The hybrid approach (outlined in Sec. 4.4) results very useful for mixed

optimal problems, like in this case, in which only a part of the elements of

the control vector admits an explicit derivation of the optimal laws. Thus,

the thrusting strategy applied during the interplanetary powered phase is

computed by an indirect approach, using elements of the calculus of varia-

tions, although a direct minimization of the performance index is attempted

to include also other elements in the control vector.

Optimal control theory is applied to derive the thrust angles and the
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thruster on/off control laws (resulting in the primer direction and bang-bang

strategy explained in Sec. 4.1.2), however also other search variables are

included in the control vector and the resulting two point boundary value

problem is solved by a sequential quadratic programming method[83]. This

means that the resulting trajectory is, first of all, a feasible solution of the

given problem and it presents also a local minimum of the mass consumption

if compared with close solutions.

To apply the calculus of variations and the minimum principle, the Hamil-

tonian of the problem is required in order to derive the Euler-Lagrange equa-

tions (cfr. Sec. 4.1.2) in the framework of the BCM. In similar fashion like

Sec. 4.4, the Hamiltonian reads H =
∑

i
~λx(i) ~̇x(i) with i = [x, y, z, u, v, w,m]

and from this the evolutions of the multipliers, Eq. (4.8), are ruled by:

λ̇x = λv

[
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2âyTτ(x+ µE)

mr4
1

]
+ λu

[1− µE
r3

1

− 1 +
µE
r3

2

− 3µE(−1 + x+ µE)2

r5
2

+

−3(1− µE)(x+ µE)2

r5
1

+
µM
r3

3

− 2 cos θM (x−RM cos θM )µM
r4

3

+

−3(x− ρM cos θM )2µM
r5

3

+
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λ̇z = λw
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2âzTτz

mr4
1

]
+ λu

[
− 3zµE(−1 + x+ µE)

r5
2

− 3z(1− µE)(x+ µE)

r5
1

+

−2zµM cos θM
r4

3

− 3z(x− ρM cos θM )µM
r5

3

+
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1
(5.2)

It is worth noting that the derivation of the adjoint equations takes into

account also the decrease of the power with the heliocentric radius, this causes

the presence of terms due to the thrust in the differential equations for the

Lagrange multipliers associated with the positions. Moreover also the adjoint

equation for the Lagrange multiplier associated with the mass has to be

considered as this variable is required in the Hamiltonian for the derivation

of the τ optimum law.

The permanence on the unstable departing manifold (t1), the duration

of the thrusting phase (t2), the permanence on the stable arrival manifold

(t3), the initial position of the perturber in the synodic frame (θP ), the z -

amplitudes of the arrival (Aza) and departure (Azd) orbits and the angular

positions on both orbits (νa, νd) are considered as variables. Thus, the com-

plete control vector is composed by three times, one angle, two angle-like

variables (identifying the departure and arrival positions), one seven dimen-

sional vector (for the adjoint ~λ) and two Az amplitudes. These angle like

variables are actually the elapsed times, within the period of the Halo orbits,

identifying the specific trajectory on the manifold.

The problem is stated as a non-linear programming problem and solved

again by means of a SQP method that updates the fourteen search variables

trying to minimize the performance index and satisfying the constraints. The

SQP approach, however, results in some local solutions close to the initial

guess supplied; in order to overtake this limitation and correctly identify the

region of the global minimum also a comparison with a genetic algorithm

search is performed.



5.2 Low Thrust Halo to Halo Interplanetary Transfers 133

For the statement of the genetic algorithm approach the same structure

of the local optimization can be used but the final constraints are imposed

directly in the fitness function by means of two (one for the error on positions

and one for the error on velocities) weights. This means that the function

to be minimized is composed by the propellant mass and weighted errors on

the final state at the end of the electric powered phase. These errors are in

non dimensional units and the two weights are usually close to the unit with

the one associated to the velocity error slightly larger (≈ 2).

Moreover, also side constraints on the elements of the control vector must

be considered in order to “guide” the evolution of the initial population. This

is chosen as uniformly distributed over the search space defined by bound-

aries on the various elements of the control vector, assuring in this way the

feasibility of the solution.

5.2.2 Earth-Mars: A Study Case

The described procedure can be applied to a representative case where an

interplanetary Halo to Halo low thrust transfer is addressed between Earth

and Mars.

It has to be noted that, using the BCM as general dynamical model and

simply tuning the mass parameters of the three bodies, also the Earth escape

phase and the Mars capture one, can be studied like in the CR3BP where

only the primaries, respectively Sun-Earth and Sun-Mars, are considered.

For the interplanetary BCM phase the principal system chosen is the Sun-

Earth CR3BP where the Mars gravitational perturbation is added. In this

case the approach requires three additional assumptions if compared with the

classical CR3BP:

• the Sun-Earth system and the Sun-Mars system are coplanar. It is

justified by the low inclination of the martian orbit which is inclined

only 1.85 deg above the ecliptic plane;

• Mars moves on a closed orbit around the Sun-Earth center of mass. It

is justified by the small value of µEarth = 0.30404234e-5 that puts the

origin of the rotating frame inside the Sun;

• the orbit of Mars is circular. This is the main assumption since the

eccentricity of Mars is ≈ 0.09 and this can introduce some differences

when trajectories computed in this BCM are exported into ephemeris

models.

Considering the geometry of the problem under investigation, as it is a

transfer toward an outer planet, it is obvious that the escape phase must be

sought by exploiting the unstable manifold associated with a Sun-Earth L2
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Halo orbit, while the capture phase must lie on the stable manifold associated

with a L1 Sun-Mars Halo orbit (µMars = 3.2257e-7).

The first step is to compute the relevant Halos. Considering the amplitude

as the independent variable (cfr. Sec. 3.1.1), the complete trends of the other

two amplitudes and of the period required to complete one of these orbits

are plotted in Fig. 5.8, for the Mars and the Earth case.

Figure 5.8: Trends of the planar amplitudes and period for Halo orbits around
Sun-Earth L2 (upper row) and Sun-Mars L1 (lower row).

Once the two ranges of initial and final conditions are known, the inherent

manifolds have to be generated in order to obtain all the dependencies of the

performance index from the elements of the control vector.

The propellant mass is the performance index of the minimization prob-

lem and a preliminary GA (cfr. Sec. 4.1.3) optimization procedure is consid-

ered together with a local hybrid scheme (cfr. Sec. 4.4).

For the preliminary global optimization phase, boundaries are imposed on

the durations of the three phases (respectively [0.5, 2.5] years, [0.5, 1.5] years,

[0.5, 2.5] years) and on the out-of-plane amplitudes of the initial and final

Halo orbits ([1e4, 1e5] km). The angle like variables can span the whole [0, 2π]



5.2 Low Thrust Halo to Halo Interplanetary Transfers 135

range and no side constraints on the values of the Lagrange multipliers have

been fixed. A population of one hundred individuals has been arbitrarily

chosen and ten stall generations are used as stop condition.

Along with the genetic algorithm optimization, also a comparative grid

search has been performed. The elements of the control vector have been

systematically varied, one at a time keeping everything else fixed. The corre-

sponding value of the performance index augmented with the error between

the obtained and the target final state has been computed. This augmented

functional results to be linear only with respect to some elements of the con-

trol vector, see Fig. 5.9. In particular, it is minimized by a thrusting time

of 0.5 years (the lower bound considered for this variable), a departure time

of 2.5 years and an initial Mars angle of 120 deg. The trend with respect

to the arrival time is quite smooth even though it is minimum for 2.5 years.

The augmented functional is relatively independent of the initial and final

positions and from the two Az amplitudes that result just in some small local

differences. This is obvious as the effects of these two parameters are only

small variations in the final positions of the two phases to match. Thus, the

optimal value resulting from the genetic algorithm approach is expected to

be into this range, at least for a part of the control vector.

Figure 5.9: Values of the propellant mass plus the error in the final state for
a grid search on the elements of the control vector. Form the top
left corner the grid search is performed on the departure time,
arrival time, thrusting time and Earth-Mars initial relative angle.
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In the following both local results (a) and global ones (b) are derived;

moreover, based on the results of the global approach some local results are

computed by considering the output of the global approach as initial guesses

for the local one (c).

Some parameters have been chosen for the spacecraft in the Earth Halo

orbit (initial conditions): Isp = 3000 s, m0 = 1000 kg, ηT = 0.55 and accin =

3.4e-4 m/s2. Based on these fixed values the control vector has been updated,

from an initial guess, in order to minimize the functional and satisfy the final

constraints (in the phase space) to end the powered arc on the Sun-Mars L1

stable manifold. The equations of motion have been numerically integrated

in non dimensional units (with a variable step integrator with tolerance of

1e-9) for variable time spans.

Two approaches are followed: a Simple Approach where the out-of-plane

amplitudes of the two Halo orbits are considered constant and are removed

from the control vector. This approach can be useful for particular missions

with fixed initial and/or final conditions. On the other hand, in a Complete

Approach the two amplitudes are re-included in the control vector and the

optimization scheme is applied as described in Sec. 5.2.1.

Of course, changing the initial and final Halo amplitudes in the Simple

Approach results in different transfers. A set of representative cases is sum-

marized in Tab. 5.1, where solutions for an intermediate value of Az, in the

chosen range, are given.

Optimization Az Halos Final Transfer
Approach Amplitudes [km] Mass [kg] Time [years]

a 5e4 767 2.82
b 5e4 774 3.69
c 5e4 771 2.66

Table 5.1: Comparison of results for Az = 5e4 km in the Simple Approach
methodology

It is important to underline that the solutions obtained by the genetic

algorithm never exactly satisfy the conditions required for the manifold tran-

sition, so the subsequent local optimization is always needed. Thus, the

results of the global method (b) for the propellant mass and the total trans-

fer time must be intended as indicative results identifying only the region of

the global minimum.

For the Complete Approach, the solutions obtained from a global (b) and

a local-by-global (c) approach can be compared only with solutions obtained

with a randomly guessed Az (as in this case the departing orbits can not

have the same z -amplitude). Some results of this Complete Approach are
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summarized in Tab. 5.2.

Optimization Az Halos Final Transfer
Approach Amplitudes [km] Mass [kg] Time [years]

a 4e4 791 3.93
a 6e4 786 4.53
b 772 4.59
c 795 4.16

Table 5.2: Comparison od results for the Complete Approach methodology

In the approaches involving a global search, b and c, also the guess for

the Halo amplitudes is included as uniformly distributed, within the chosen

range, in the initial GA population.

It is worth noting that solutions obtained by using the global (b), and

the subsequent local (c), scheme are quite close to local solutions (a) both

in the Simple and in the Complete Approach. In fact, the final masses are

comparable and also the total transfer time range is quite narrow. This

latter result is mainly dependent on the arrival time (permanence time on

the stable Sun-Mars manifold) which is the parameter most varying in this

analysis. The similarity in the mass propellant requirement confirms that the

thrusting time is of the same order, approximately one year.

The general behavior of the thruster on/off variable results always in a

thrust-coast-thrust strategy, usually considered as the optimal strategy (cfr.

Sec. 4.3), although it has not been a-priori imposed.

In order to show a general Earth-Mars transfer between two Halo orbits,

let us present a mission application of the described method. In particular

the example refers to the solution of the Complete Approach with an initial

guess of two Az amplitudes of 4e4 km.

The trajectory, as seen in the Sun-Earth frame where these two bodies

appear at rest, is represented in the left hand side of Fig. 5.10, while on

the right side the trajectory in the Sun-Mars frame is plotted. It is worth

nothing that the manifold of the moving planet, in each frame, appears as

a set of lines wrapping around the heliocentric circular orbit of the planet.

The ballistic phases are represented by black lines and superimposed to the

inherent manifold.

In Fig. 5.10, the electric powered phase is plotted with the golden line

and the coast arc, resulting from the τ control law, in magenta. Details of

the departure and arrival periodic orbits are presented in Fig. 5.11, where

also the specific departing/arrival trajectory on the unstable/stable manifold

is highlighted with the black bold line.

The solution, as it appears in the inertial heliocentric frame is plotted
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Figure 5.10: Earth-Mars Halo to Halo transfer in the Sun-Earth (left) and
Sun-Mars (right) rotating frame.

Figure 5.11: Earth escape (left) and Mars capture (right) details. The effec-
tive orbit is presented with the bold black line superimposed to
the relevant manifold.

in Fig. 5.12. It is interesting to observe that, in this perspective, the two

Halo orbits (as well as part of the departing/approaching trajectory) result

in approximately circular heliocentric orbits with radii very similar to the one

of the planet that, during the permanence on these orbits, is always visible.

This can increase the scientific outcome of such missions, as this period can

be usefully exploited for observations or to collect data.
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In the right hand side of Fig. 5.12 also the out-of-plane motion is plotted

in a false scale to make it visible.

Figure 5.12: Planar and three dimensional (on the right with false out-of-
plane scale) views of the Earth-Mars transfer in the heliocentric
inertial frame.

To complete the description of this test case also the trends of some

parameters of interest, like the thrust angles and the thruster switch on/off,

are shown in Fig. 5.13. The overshadow zones are phases where the electric

device is not operating; these are always in the middle of the powered arc,

i.e. the optimal thrust profile includes an intermediate coasting arc.

It is worth noting that, although the out-of-plane thrust component is

very small if compared with the in-plane components, this control is manda-

tory in order to match the two ballistic phases associated with the intrinsically

three dimensional Halo orbits.

In the example presented, the solutions converges to an Az amplitude for

the Earth Halo of 12278.9 km and of 11955.1 km for the Mars Halo. The time

on the departing manifold is 1.31 years, followed by 0.89 years of thruster op-

erational phase and afterward by 1.73 years spent on the Mars manifold. The

initial angular phase of Mars in the Sun-Earth frame is 264.9 deg. Overall, the

Halo to Halo transfer is accomplished in 3.93 years after which approximately

791 kg are delivered into the target Halo.

Finally, also the time evolutions of the position and velocity with respect

to the Sun-Earth and the Sun-Mars system are shown in Fig. 5.14.

It is interesting to observe the role of the Sun, the Sun-Earth and the Sun-
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Figure 5.13: Control laws for the Earth-Mars transfer; the shaded zones are
where the coasting phase takes place.

Figure 5.14: Instantaneous radius and velocity in the Sun-Earth (upper row)
and Sun-Mars (lower row) system.

Earth-Mars gravity attractions acting along the thrusting phase; i.e. after

the time spent onto the Earth unstable manifold up to the insertion into the

Mars stable one.

In Fig. 5.15 the propellant mass required to complete the transfer is
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plotted against the number of attractors considered. Some numerical experi-

ments have been performed by considering both the Simple and the Complete

version of the control vector.

The resulting trend is

Figure 5.15: Propellant mass vs. attractor number for
the Simple and Complete Approach.

an increasing of the pro-

pellant mass with the num-

ber of the attractors. It

is worth nothing that the

guessed angular position

of Mars is crucial not just

for the full BCM model,

but also for the other mod-

els as the final conditions

to be satisfied strongly de-

pend on this angle. The

error in propellant mass

resulting from a strong sim-

plification of the dynamic environment (only the Sun) is ≈ 20 kg, which is

≈ 15% of the total propellant mass requirements.

Furthermore, comparing these results with the same transfer computed

considering a constant available electric power (P = Pin|const) and no control

on the thruster on/off (τ |const = 1) there is a saving of the 10% of the

propellant mass[111]. Performing the preliminary global approach leads to a

saving of 1.5 years on the maximum transfer time detected, also if this is not

the function directly minimized.

The propellant mass fraction computed for the various transfers results

always slightly larger than the 20% with a transfer time of the order of 3-

4.5 years; these data appear suitable only for cargo-like missions, rather than

for human Earth-Mars missions.

Finally, it is interesting to observe that the present strategy allows also

the transfer between two orbits around two planets as it is sufficient to replace

the conditions on the manifolds with conditions inside the two manifolds.



Chapter 6
Novel Mission Scenarios in the Earth-Moon

System

It has been already outlined that the inclusion of low thrust arcs leads to

an improvement of the payload mass fraction although this approach usually

requires longer transfer times with respect to high thrust cases. This is not

a big deal for unmanned missions and it represents a valuable alternative

especially in the Earth-Moon system[45]. Moreover, in the framework of the

CR3BP it is also possible to couple these low thrust phases with low energy

ballistic transfers obtaining consequently further propellant mass reductions.

The Earth-Moon system represents one of the closest dynamical envi-

ronments where the CR3BP can be applied. Its mass parameter is one of

the largest µ for any physical system, although it is worth nothing that the

dynamics in Earth neighborhoods are only roughly approximated by this

model. In actual missions the Sun influence, the atmospheric drag and the

Earth oblateness exert significant influences on the motion and the trajecto-

ries resulting from the CR3BP must be intended as first guesses to be refined

in full force models.

The first real application of the three body concept to an actual transfer

was, in the early nineties, the rescue of the Japanese mission HITEN1 by

means of a low energy, Sun perturbed trajectory[4].

In this chapter some innovative mission scenarios in the Earth-Moon sys-

tem are proposed. The first one exploits a combination of the low energy and

1This mission was designed to serve as relay for another spacecraft sent to the Moon.
Due to a communication loss, the moon mission failed and it was proposed to send the
HITEN spacecraft to the Moon. However, the on board propellant was not sufficient to
reach a lunar orbit by means of classical transfers. Accordingly the new trajectory was
designed by exploiting the Sun perturbation and the Moon WSB.
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low thrust concepts in order to design an electric escape from a geocentric

orbit up to a ballistic trajectory flowing in the Moon neighborhoods. Af-

terwards, trajectories from geocentric to selenocentric orbits are addressed

by exploiting low thrust escapes, capture phases and coasting arcs in the

CR3BP. Finally, an application of an electric powered mission toward a pe-

riodic orbit enabled only by the CR3BP is explored by outlining the unique

advantages resulting from this combination.

6.1 Low Thrust Transfer to a Manifold Chain

As outlined in Sec. 2.2.5-3.2, there exists a set of ballistic trajectories leading

toward a collinear point. The aim of this example is to design a transfer from

a geocentric orbit to the Moon neighborhoods with a naive exploitation of

this kind of trajectories.

Bearing in mind the geometry of the problem, see Fig. 6.1, it is clear

that, departing from Earth, the insertion into the stable manifold of a peri-

odic orbit inherent to L1 is an advantageous way to move toward the Moon

neighborhoods. The CR3BP characteristics can be exploited to design a low

thrust escape from a departing geocentric orbit to reach a specific trajectory

on the stable L1 manifold. This particular trajectory on the manifold can be

chosen in order to obtain a specific lunar or cislunar exploration phase[45].

In this section, an example of a possible selection of this path and the

required thrusting phase to reach specific initial conditions for the ballistic

continuation is shown.

The application employees a heteroclinic chain between two periodic Lya-

punov orbits. It is derived by the intersection of the L1 unstable manifold

and the L2 stable one in the Moon realm, in a similar fashion like Sec. 3.4.

This sequence is exploited in order to permit to reach the target Lyapunov

by means of its stable manifold, from this moving along the L1 Lyapunov

and hereafter shifting to the heteroclinic connection toward the L2 planar

Lyapunov. Thus the final target orbit is actually a periodic orbit around

Earth-Moon L2
[112]. All of these transits are ballistic; therefore the Jacobi

constant does not change along the whole chain. The planar version of the

Earth-Moon CR3BP is considered. Of course, it is not obvious that the two

manifolds of these orbits intersect in the section plane at the first cut (cfr.

Sec. 3.4).

Thus, the first step to design such a kind of missions is to define two

planar Lyapunov orbits around L1 and L2 with the same value of the Jacobi

constant. Bearing in mind that these orbits are parameterized according to

their planar amplitude (cfr. Sec. 3.1.1), once one of the two amplitudes,

around L1 or L2, is chosen, the corresponding Jacobi constant is fixed. With



6.1 Low Thrust Transfer to a Manifold Chain 144

this value, the Ax resulting in a Lyapunov orbit with the same value of

Jacobi constant around the other equilibrium point, can be identified by a

zero finding method (e.g. Newton procedure).

Choosing for L1 Ax = 1e4 km results in J = 3.17135754 that corresponds

to an orbit with Ax = 9260 km around L2. The selection of the first ampli-

tude, and consequently of the value of J , is somehow arbitrary, but it can be

selected according to specific mission requirements, such as communications,

eclipses and so on.

As outlined in Sec. 3.4, between these two periodic orbits there exists a

family of heteroclinic connections. What we are interested in are the ones

departing from the L1 Lyapunov and going toward the L2 Lyapunov, as the

scope is to reach L1 by means of the branch of its stable manifold flowing in

the Earth realm.

Considering again (cfr. Sec. 3.4) the second cuts of both manifolds on

the Poincaré section located in x = 1 − µ, it is possible to define the initial

condition of a heteroclinic connection between the two Lyapunov orbits. The

selection of the second cut is mandatory as at the first one the manifolds

images do not intersect. Furthermore it is sought as at least a single loop

around the Moon is intended to be performed for demonstrative purposes.

The initial condition selected corresponds to a symmetric solution, see Fig.

6.1.

Figure 6.1: Initial condition on the intersection of the second cuts of the
L1 unstable and L2 stable manifolds (left) and corresponding
symmetric, one-Moon-loop Heteroclinic orbit (right).

The initial condition detected in this way assures only to reach the two

Lyapunov orbits and, depending on the numerical accuracy, to perform at
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least one revolution on these. However, the dynamics in this region of the

phase space are extremely sensible with respect to a slight variation of the

initial conditions and thus iteratively varying the decimal digits of the initial

condition it is possible to obtain a trajectory that, backward in time, performs

one revolution of the L1 Lyapunov before to escape along its stable manifold

in the Earth realm. It has to be stressed, that the saddle component of the

collinear points is several orders of magnitude larger than the others, so any

escape from the Lyapunov follows these tube-like structures. Nevertheless

only some peculiar trajectories arriving from these manifolds are able to

perform the Lyapunov to Lyapunov heteroclinic transition.

Of course, in order to have a more realistic initial state, once the initial

condition on the section plane has been correctly updated, it is possible to

propagate it backward up to the first y = 0 intersection along the negative

x -axis (the first one in the Earth realm) and consider this as initial state for a

complete forward propagation. Considering an integration tolerance of 1e-12

for a variable step integrator and performing the integration in non dimen-

sional units, the initial condition corresponding to the required trajectory is:

~x = [−0.321737254242, 0, 0.824975718586,−1.632131399635]. The resulting

trajectory flows along the L1 stable manifold, performs a revolution on the

L1 Lyapunov, moves along the heteroclinic connection toward L2 and per-

forms also more than one revolution on this orbit. In Fig. 6.2 this “Manifold

chain” is shown for a time span of 29 days (15 TU) together with the trends of

the instantaneous radius and velocity referred to the usual CR3BP synodic

barycentric frame.

6.1.1 GTO to Manifold Chain Transfer

Once the target trajectory has been selected, the aim is to define a low thrust

strategy to reach this initial condition[112]. This is the definition of a transfer

toward specific final conditions, that could also have been the ones of a one

dimensional manifold or any other specific target state fixed in advance.

A standard GTO (200x35768 km) has been assumed as departing orbit.

It is supposed that 500 kg small scientific spacecraft has to be delivered at

the beginning of the ballistic phase and at this point it is supposed to be

equipped with an electric thruster able to provide Isp = 2000 s and an initial

acceleration of 7.13e-4 m/s2.

The whole powered phase, Eq. (4.23), is computed backward from the

target state, this is due to the extreme sensitivity of this condition. Con-

sidering a forward computation, in fact, these conditions would result in an

error hard to satisfy with the very high required accuracy.

The thrusting phase is defined by means of the thrust direction, governed

by the initial (in a backward perspective) values of the Lagrange multipliers
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Figure 6.2: Trajectory (left) and radius and velocity evolution (right) for the
Earth-Moon “Manifold chain” (L1 stable manifold-L1 Lyapunov-
L1 unstable manifold-L2 stable manifold-L2 Lyapunov).

(cfr. Sec. 4.1.2), and its duration. Thus, the target point has been considered

fixed and only the thrust direction and its duration are a-priori unknowns.

The resulting transfer and the ballistic chain of Fig. 6.2 are represented

in Fig. 6.3 in a rotating frame (left) and geocentric inertial one (right).

Figure 6.3: GTO to “Manifold chain” transfer and subsequent ballistic prop-
agation. In the Earth-Moon barycentric frame (left) and in the
geocentric inertial one (right).

The design of this solution aims to minimize the propellant mass con-

sumption satisfying final non linear constraints. The final error to minimize
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is the distance between the obtained geocentric osculating semi-major axis

and eccentricity with respect to the target ones. These are the ones of the

GTO, ie. atarget = 24362 km and ecctarget = 0.73.

The explanation of this application is completed by the trend of some

parameters of interest. In Fig. 6.4, the time backward evolutions of the mass,

of the position and velocity, of the geocentric eccentricity and semi-major axis

are shown. In these last two graphs also the target values, extremely close

to the last points of the plots, are represented. The error on the final semi-

major axis and eccentricity is of the order of 1e-5 on the norm of the two

differences (distances in non dimensional units). This is the real advantage

of the backward propagation as this final error can be easily satisfied with

quite high accuracy (resulting only in a slightly different departing GTO) in

regions where any small error on the flow is less critical.

Figure 6.4: Backward evolution of mass, position and velocity, geocentric ec-
centricity and semi-major for the trajectory of Fig. 6.3.

The solution shown is a local minimum that requires less than two months

of continuous thrusting and a mass consumption on 80 kg to reach the be-

ginning of the ballistic phase. Of course, such a mission does not make any

sense considering the two body dynamics and it would be much more expan-

sive (representative comparisons in Sec. 6.2 and Sec. 6.3.1) if performed by

chemical means.
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6.2 Optimal Earth-Moon CR3BP Low Thrust Trajec-
tories

The idea of this section is to design low thrust transfer trajectories from a

given geocentric orbit to a selenocentric one, considering the three dimen-

sional three body dynamics.

As general stated, the transfer analysis requires a continuous thrusting

phase from a Low Earth Orbit (LEO) up to a Low Lunar Orbit (LLO).

However, the first Earth spiraling out phase aims only at gaining energy so

that the most efficient solution is the tangential thrust. This is also required

in order to quickly transit through the Van-Allen belts, donuts of energetic

charged particles (plasma) held in place by the Earth magnetic field, that

cause significant damages to all electrical on board equipments, including

the thruster and the power generation system.

Thus, the interesting part of the mission design is from a quite high

altitude geocentric orbit up to the LLO insertion. A Geostationary Earth

Orbit (GEO) has been chosen as starting orbit. It is worth nothing that this

does not mean that it is actually required to reach a GEO before to start the

LLO low thrust transfer (which wouldn’t be a clever choice), but that a sort

of constant offset to the propellant mass consumption and to the transfer

time has to be added to the results of the present analysis.

In the early sixties Edelbaum[113] assumed a constant acceleration magni-

tude (i.e. constant mass) to define the optimum low thrust transfer between

two circular inclined orbits. Considering only the tangential and the normal

acceleration components, these assumptions allow linearizing the Lagrange

Planetary Equations[11] around a circular orbit and compute a closed form

solution of the optimal trajectory[95]. Only the out-of-plane thrust angle is

considered as control variable for the maximum inclination change and this

results in a piecewise constant function switching signs at the nodal points.

Moreover, it turns out to be equivalent to minimizing the transfer time for a

given inclination and semi-major axis change.

This approach leads to the“Edelbaum equation”for constant acceleration,

circle to circle, inclination change (∆i) transfer:

∆v =

√
v2

0 + v2
f − 2v0vf cos

π

2
∆i (6.1)

where v0 and vf are respectively the circular velocities along the initial

and final orbits. Since the acceleration (acc) is constant, also the transfer

time (∆t) can be easily computed from the ∆v: ∆t = ∆v/acc.

In this way, it is possible to avoid to propagate (and optimize) the first

spirals from a LEO to GEO. The propellant mass fraction and the transfer
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time required to reach a GEO-like orbit can be computed by means of this

analytic approximation and the actual transfer design starts from this orbit.

To give an idea, let us compute the cost required to reach the GEO from

an equatorial LEO, with 200 km altitude. A numerical propagation with

tangential thrust, always on, ends with ecc ≈ 0.05 (indeed, almost circular)

and requires a ∆vnumLEO-GEO = 4.88 km/s, computed by using the Tsiolkovsky

equation, Eq. (4.15), with Isp = 2500 s. The Edelbaum approach, consid-

ering no inclination change, results in ∆vEdeLEO-GEO = 4.7 km/s and thus not

really different although the strong assumption of constant mass. Avoiding to

compute these first tangentially powered spirals saves hours of computational

time in an iterative scheme that evaluates hundreds of times the objective

function.

So, in order to improve the convergence properties of the method and re-

duce the computational load, the minimum mass transfers are computed from

the GEO to a LLO. To the results, a mass and a time offset, approximated

by the Edelbaum approach, have to be added.

The trajectories are computed by using the classical CR3BP dynamical

model, but using a polar rotating frame centered in one of the primaries de-

pending on the specific mission segment. Those equations have been derived

by replacing in the dynamical equations, Eq. (2.27), the usual cartesian-polar

transformation and solving for the new set of variables: [ρ, θ, ψ, vρ, vθ, vψ].

Where ρ is the radial distance from the center of the reference frame, θ and

ψ are respectively the in-plane and out-of-plane angles measured counter-

clockwise from the x -axis and from the equatorial plane, and vρ, vθ, vψ are

the associated velocities.

The equations of motion in a rotating spherical frame centered in one of

the primary are summarized in Eq. (6.2). Here the upper signs, the first

subscript of µ and R =
√
D2 + ρ2 − 2Dρ cos θ cosψ have to be considered

for the Earth escape phase, while the lower signs, the second µ subscript and
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R =
√
D2 + ρ2 + 2Dρ cos θ cosψ for the Moon capture phase:

ρ̇ = vρ

θ̇ =
vθ
ρ

secψ

ψ̇ =
vψ
ρ

v̇ρ =
v2
θ

ρ
+
v2
ψ

ρ
+
ρω2

2
+ 2vθω cosψ +

1

2
ρω2 cos 2ψ −

ρµm/e

R3
−
µe/m

ρ2
+

µm/e cosψ cos θ

D2
±
Dµm/e cosψ cos θ

R3

v̇θ = −vρvθ
ρ
− 2vρω cosψ + 2vψω sinψ ∓

µm/e sin θD

R3
−

µm/e sin θ

D2
+
vθvψ tanψ

ρ

v̇ψ = −
vρvψ
ρ
− 2vθω sinψ − ρω2 cosψ sinψ −

µm/e sinψ cos θ

D2
∓

Dµm/e sinψ cos θ

R3
−
v2
θ tanψ

ρ
(6.2)

where µe = 1−µ, µm = µ and ω the angular velocity of the rotating frame,

unitary in the usual non dimensional coordinates. This set of equations

results in the CR3BP dynamics centered in one of the two primaries and

consequently a further coordinate transformation is required to transit from

one system to the other.

Earth centered coordinates are used to model the escape phase, while the

Moon centered ones are used in the selenocentric capture phase for a better

modeling the dynamics in this region[114].

Eq. (6.2) are presented in their ballistic form, but during the thrusting

arcs additional acceleration terms have to be added on the right side, these

terms take the form: k̂T/(m0−ṁ t), where k̂ is the unit vector along [ρ, θ, φ].

6.2.1 Thrust-Coast-Thrust Approach

The whole transfer is divided a-priori into three phases. A first Earth spi-

ralling out phase is followed by a ballistic translunar coasting phase ruled

only by the CR3BP dynamics. After this phase the last de-spiralling phase is

performed in order to acquire the target LLO that represents a mission spe-

cific requirement. Of course, the durations of these three phases, represented

in the example of Fig. 6.5, are not known and thus these are included in the

control vector.

The subdivision of the mission into these three phases is considered in

order to “simulate” the classical bang-bang strategy and to keep the option

to obtain also fast solutions, easily derivable from the elimination of the in-
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termediate ballistic phase. Furthermore in this way, depending on the initial

guess provided for the duration of the coasting phase, it is possible to ob-

tain “long” and “short” solutions spending respectively a long or a short time

in coasting. “Long” solutions can easily explore also the geospace far from

the Moon, which remains however the final target, without any additional

propellant mass requirement.

The Earth escape phase and

Figure 6.5: GEO-LLO CR3BP low thrust trans-
fer. The three phases, thrust-
coast-thrust, are presented with
three different colors.

the ballistic (if present) phase are

forward propagated by means of

the Earth centered polar equa-

tions, Eq. (6.2), while the Moon

capture phase is backward prop-

agated from the target LLO by

using the selenocentric equations

(Eq. (6.2)). The two states have

to match at a given point. This

match point is chosen to be on

the boundary of the Sphere of

Influence of the Moon (in CR3BP

units: rSoI |moon = (µ/(1 − µ))2/5). It is interesting observing that the

Sphere of Influence is an intrinsically two body concept, also the Hill sphere

(rh = (µ/3)1/3) could have been used, leading to similar results.

Thus, the forward segment and the backward propagated one have to

match at the boundary of the Moon SoI. This results in a vector (∈ IR6)

of errors to be nullified representing the constraints of the minimization

scheme[114]. The initial and final geocentric and selenocentric orbits are in-

puts of the specific transfer, but the starting point (where the thruster is

switched on/off) along these orbits is not a-priori imposed.

Again a hybrid method (cfr. Sec. 4.4) is used, where the optimal profile of

the two powered phases is ruled by the evolution of the Lagrange multipliers,

and a direct minimization of the performance index, i.e. the propellant mass

fraction, is sought at each iteration step[88].

In order to compute the control laws for the two electric phases by means

of the primer vector (cfr. Sec. 4.1.2), the evolutions of the Lagrange multipli-

ers [λρ, λθ, λψ, λvρ , λvθ , λvψ ] are required. These can be computed by taking

the partial derivatives with respect to the proper state variable (cfr. Eq.

(4.8)) of the Hamiltonian of the problem.
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This procedure results in:

λ̇ρ = λθ
vθ
ρ2

secψ + λψ
vψ
ρ2

+ λvρ

[v2
θ

ρ2
+
v2
ψ

ρ2
− ω2

2
− 1

2
ω2 cos 2ψ +

µm/e

R3
+

−
3µm/e

R5
(ρ∓D cos θ cosψ)2 −

2µe/m

ρ3

]
+

λvψ

[
ω2 cosψ sinψ −

vρvψ
ρ2

∓
3Dµm/e sinψ cos θ

2R5
(2ρ∓ 2D cos θ cosψ)−

v2
θ tanψ

ρ2

]
+

λvθ

[
− vρvθ

ρ2
∓

3Dµm/e sin θ

2R5
(2ρ∓ 2D cos θ cosψ) +

vθvψ tanψ

ρ2

]
λ̇θ = λvρ

[µm/e cosψ sin θ

D2
+

3Dµm/eρ cosψ sin θ

R5
(D cos θ cosψ)

∓ρ±
Dµm/e cosψ sin θ

R3

]
+

λvθ

[µm/e cos θ

D2
±
µm/eD cos θ

R3
−

3D2µm/eρ

R5
cosψ sin2 θ

]
+

λvψ

[
−
µm/e sin θ sinψ

D2
−

3D2ρµm/e

R5
cos θ cosψ sin θ sinψ

∓
Dµm/e sin θ sinψ

R3

]
λ̇ψ = λvρ

[
ρω2 sin 2ψ +

µm/e cos θ sinψ

D2
±
Dµm/e cos θ sinψ

R3
+

2vθω sinψ +
3Dµm/eρ cos θ sinψ

R5
(D cos θ cosψ ∓ ρ)

]
+

λvθ

[
− 2vψω cosψ −

vθvψ sec2 ψ

ρ
− 2vρω sinψ+

−
3µm/eD

2ρ cos θ sin θ sinψ

R5

]
− λθ

vθ secψ tanψ

ρ
+

λvψ

[
2vθω cosψ + ρω2 cos2 ψ +

v2
θ sec2 ψ

ρ
±
Dµm/e cos θ cosψ

R3
+

µm/e cos θ cosψ

D2
− ρω2 sin2 ψ −

3µm/eD
2ρ cos2 θ sin2 ψ

R5

]
λ̇vρ = −λρ + λvθ

[vθ
ρ

+ 2ω cosψ
]

+ λvψ
vψ
ρ

λ̇vθ = λvρ

[
− 2vθ

ρ
− 2ω cosψ

]
+ λvψ

[
2ω sinψ +

2vθ tanψ

ρ

]
+

λvθ

[vρ
ρ
−
vψ tanψ

ρ

]
− λθ

secψ

ρ

λ̇vψ = −λvρ
2vψ
ρ

+ λvψ
vρ
ρ
−
λψ
ρ

+ λvθ

[
− 2ω sinψ − vθ tanψ

ρ

]
(6.3)

As the thruster is considered always on during the two spiralling phases,

the λm evolution is not required because it is involved only in the computation

of the switch function τ , not considered in this case.
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Thus, for each propulsion phase the equations of motion, Eq. (6.2), are

propagated together with the adjoint equations, Eq. (6.3), and the instanta-

neous optimal thrust direction is given by: â = −~λ~v/||~λ~v|| with the velocity

vector composed by ~v = [vρ, vθ, vψ].

The control vector is a vector ∈ IR17 containing the two sets of initial

conditions of the adjoints, three times (the durations of the three phases), and

two angular variables characterizing the departing and arriving anomalies.

The SQP[102] method has been used to minimize the propellant mass and

to satisfy the match constraints. The differential equations are integrated in

non dimensional units by means of a variable step integrator with an absolute

and relative tolerance of 1e-9.

6.2.2 Earth-Moon Transfer Examples

A test spacecraft has been considered with an initial acceleration in GEO of

7.6453e-4 m/s2, m0 = 1000 kg and Isp = 2000 s. With these fix values various

iterations have been performed with increasing inclination of the target LLO

(one of the most critical parameters) and with different initial guesses on the

length of the three phases and of the Lagrange multipliers.

The departing orbit is defined in terms of [aE , eccE , inclE , ωE ,ΩE ], the

departing true longitude νE is not fixed in advance. For the GEO case, it

reduces to: [aE = 35768 km, eccE = 0, inclE = 0 deg], ωE and ΩE are not

defined neither required. The arrival LLO, in a similar fashion, is defined by

means of [aM , eccM , inclM , ωM ,ΩM ] that are inputs depending on the specific

test case, while the arrival true anomaly νM (or the equivalent anomaly) is

not a-priori fixed, but found by the numerical scheme.

Two typical results are presented in Fig. 6.6, where a “short” transfer

towards a circular, 25 deg inclination selenocentric orbit is represented, and

in Fig. 6.7 where a ”long” solution to a circular, 45 deg inclined target orbit

is shown. Both final lunar orbits have aM = 5000 km but different ΩM .

The “short” transfer of Fig. 6.6 takes 41 days and delivers in the target

LLO 885 kg of mass. The Earth escape phase takes 27 days and consumes

92 kg of propellant mass, obviously the largest part. After, the coasting phase

takes for approximately one week and finally 6 days and 22 kg are required

to reach the 25 deg inclined target LLO.

The “long” transfer of Fig. 6.7 requires 59 days and delivers in the target

LLO 872 kg of mass. Thus, in this case, the transfer is 13 kg more expansive

than the “short” solution of Fig. 6.6 and its transfer time is 20 days longer.

The Earth escape phase takes 29 days and consumes 98 kg of propellant mass,

again the largest part for the whole trajectory. After, the coasting phase takes

approximately 20 days and finally 9 days and 30 kg are required to reach the

45 deg inclined LLO.
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Figure 6.6: Three views and mass evolution of a GEO to LLO“short”solution
(aM = 5000 km, eccM = 0, ΩM = 90 deg, inclM = 25 deg).

The main difference of the “short” and “long” solution lies in the length

of the ballistic arc, related to the whole transfer time, while the propellant

mass consumption is not significantly affected by this difference.

Moreover, if the transfer time is the mission driving factor, also solutions

without any ballistic phase can be obtained. As the transfer has been divided

a-priori into three phases, simply setting zero the duration of the ballistic

phase and removing this from the iteration scheme results in a thrust-thrust

solution. Here the first powered phase, still in Earth centered frame, is in-

tended for the escape and the second one for the lunar capture. This kind

of transfers are usually approximately 10% more expensive in terms of pro-

pellant mass fraction if compared with the thrust-coast-thrust strategy here

presented.

The current analysis lacks of a global optimization and thus the resulting

transfers have to be intended only as locally minimum propellant solutions; a

complete different guess of the elements of the control vector can result (for

converging simulations) in more/less expensive solutions. This is a classical

issue of each local optimization scheme, in particular of the hybrid one. For

the present analysis the initial guesses have been generated by means of a

grid of initial conditions, in particular on the durations of the three phases

that can vary from few weeks up to few months.

In Fig. 6.8 and Fig. 6.9 the evolutions of some interesting parameters are

shown. The Lagrange multipliers vary quite a lot during the transfer and the
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Figure 6.7: Three views and mass evolution of a GEO to LLO“long”solution
(aM = 5000 km, eccM = 0, ΩM = 0 deg, inclM = 45 deg).

magnitude of the one associated with the radial direction is usually two or

three orders of magnitude larger than the others, both for the Earth escape

and the Moon capture phase. The geocentric position and velocity respect

the same color convention of the trajectories in Fig. 6.6 and Fig. 6.7. Also

the evolution of the in-plane and out-of-plane thrust angles is shown where

they exhibit the typical evolution given by the spirals of low thrust arcs.

Solutions up to 80 deg of inclination of the LLO have been obtained, al-

though the numerical sensitivity with respect to the initial guess (especially

for the adjoints) increases for increasing inclinations. For increasing inclina-

tions of the target LLO, the result of a previous transfer with lower inclM
has been used as initial guess; this resemble a sort of continuation procedure.

Its main limit is that in a chaotic system, like the CR3BP, the dynamics

can change abruptly but still giving a converging solution with a completely

different escape/ballistic/capture phase. This issue is present especially in

the electric Moon capture phase and a very small step in inclM is required

to drive the solution to converge with the same dynamics of the initial guess.

In Fig. 6.10 an application of such continuation procedure for a Earth-

Moon low thrust transfer is shown. It presents a lunar swing-by during the

capture phase. This swing-by can be the last part of the powered phase or it

can take place during the electric de-spiralling. On the left, Fig.6.10(a), the

first planar trajectory used as “initial seed” of the procedure is plotted and on

the right, Fig. 6.10(b), the continuation carried out on the LLO inclination
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Figure 6.8: Time evolutions of geocentric radius, velocity and thrusting angles
for the transfer of Fig. 6.6.

up to inclM = 50 deg is shown. The continuation could still be carried on but

a very small change in the target inclination (continuation step) is required

as the Moon swing-by tends to disappear.

From Fig. 6.10(b)), it comes out that the role of the out-of-plane motion

results in a slightly more expensive transfer, where only the 0.4% of additional

propellant, if compared with the planar solution, is required to reach a 50 deg

inclined LLO[88]. In Fig. 6.10(b), moreover, it is shown also the transfer time

required to reach the LLO for increasing inclinations. This does not change

significantly at least until the dynamics used in the transfer (in this case a

short ballistic phase and the lunar swing-by) remain the same.

For a planar case (inclM = 0), it is possible to deliver more than the 92%

of the initial mass in a 5000 km circular LLO. For the three dimensional case

this value also depends on the orientation (actually ΩM ) of the target LLO

besides from the initial guesses, for the adjoints and for the durations.

This method is very effective to design a generic preliminary geocentric-

to-selenocentric transfer where the initial and/or the final orbits have to stick

some specific mission requirements. Starting from a GEO (or GEO-like) orbit

up to a circular lunar orbit, thousands of kilometers above its surface, requires

a transfer time that can span a quite large range. It can vary from slightly
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Figure 6.9: Time evolutions of geocentric radius, velocity and thrusting angles
for the transfer of Fig. 6.7.

more than one month to more than three months and depends, in particular,

on the duration of the coasting phase. A longer ballistic phase allows also

exploring different regions of the geospace while shorter and slightly more

expensive transfers are obtainable simply considering a thrusting-thrusting

solution without any coasting phase. The Earth escape phase takes at least

25 days while the moon capture can be obtained in at least 5 days.

Finally, the same approach can also be used to design low thrust transfers

between two geocentric/selenocentric orbits. However, in this context, the

resulting control laws given by this approach are not very accurate, especially

when the starting and the ending orbits differ for a high ∆i and a large

number of revolutions is required.

6.3 Low Thrust Transfer To Backflip Orbits

The scope of this last section is to design a low thrust transfer from a Low

Earth Orbit to a “useful” periodic orbit in the Earth-Moon CR3BP. A useful

periodic orbit is here intended as one that moves both in the Earth-Moon

plane and out of this plane without any requirements of propellant mass. This

is achieved by exploiting a particular class of periodic orbits (Sec. 3.1.2), the

Backflip Orbits.
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Figure 6.10: Left: GEO to LLO (aM = 5000 km, ΩM = 90 deg, inclM =
0 deg) transfer with a lunar swing-by in the capture. Right:
continuation procedure carried out on the inclM showing the
trend of the whole transfer time (up) and of the propellant mass
consumption (below).

The unique characteristics of this class of periodic solutions allow the

design of an almost planar transfer from a geocentric orbit and the use of the

Backflip intrinsic characteristics to explore the geospace out of the Earth-

Moon plane. The main advantage of this approach is that periodic plane

changes can be obtained by performing an almost planar transfer. In order

to save propellant mass, so as to increase the scientific payload of the mission,

a low thrust transfer is considered. This foresees a thrusting phase to gain

energy from a departing circular geocentric orbit and a second thrusting phase

to match the state of the target Backflip orbit, separated by an intermediate

ballistic phase[115].

This results in a combined application of a low thrust manoeuvre and of

a periodic solution in the CR3BP to design a new class of missions to explore

the Earth-Moon neighborhoods in a quite inexpensive way. In addition, a low

thrust transit between two different Backflip orbits is analyzed and considered

as a possible extension of the mission proposed.

The plane change is one of the most expensive manoeuvres to perform

during a space transfer and the idea to exploit some gravitational encounters

to change the orbital plane has been already applied successfully in several

missions, especially in an interplanetary framework (e.g. Ulysses, Cassini).
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Despite that, what can be very useful is if such kinds of encounters are

periodic and non powered. Moreover, an additional advantage is if the grav-

itational encounters move a small body alternatively from an in-plane arc to

an out-of-plane one. This means that the powered transfer towards such a

kind of trajectories can be obtained without any (or with a very small) plane

change and the periodicity assures the repeatability of a closed trajectory

with the advantage of the exploration of completely different regions (planar

and inclined in the same path).

The CR3BP offers a suitable framework to model such a kind of scenario:

• the moving body is subjected to the gravitational influence of a primary

and of a perturbing body that is used for the double plane change;

• the motion can be studied in a reference frame where the two bodies

appear at rest and this means that the gravitational encounters take

place always at the same position;

• in this model several periodic orbits, arising from bifurcations of some

basic families, satisfy such kind of characteristics and can serve as the

initial and final conditions for the transfer orbits considered here.

In the early eighties the concept of the Double Lunar Swing-by was pro-

posed[116]. It states that there exists a class of trajectories for which a first

swing-by sends the spacecraft from the Earth-Moon orbit plane to an off-

plane orbit, such that there will be a second Moon encounter. The latter,

in turn, returns the spacecraft to the initial Earth-Moon orbit plane. The

double lunar swing-by trajectories were used by the HITEN and GEOTAIL

missions[116][117] for geomagnetic tail exploration, which utilized direct (pro-

grade) orbits and almost in-plane trajectories between lunar swing-bys.

The Backflip trajectories expand the idea of the double lunar swing-by[117]

as periodic orbits satisfying the concept of the double lunar swing-by. It was

used, for the first time, ten years later during the WIND mission2.

Again, a convenient choice to significantly reduce the propellant mass

fraction required to reach this orbit is to consider a non conventional propul-

sion strategy. The electric thrust provides fuel efficient solutions to obtain

high total impulse trajectories with more favorable mass ratios than for the

2The main goal of such a mission was the analysis of Earth’s magnetic tail, plasma sheet,
energetic particle composition and magnetic field in the geospace[2]. To achieve this goal
the mission, after its nominal operations phase in a Lissajous orbit around Sun-Earth L1,
was extended so as to further investigate as broadly as possible the space around Earth.
The resulting trajectory predominantly explored the equatorial region, but the only data
collected significantly out of the Earth-Moon plane were obtained by exploiting Backflip
orbits.
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chemical case. This motivates the idea to use the low thrust approach to

reach this kind of trajectories in the Earth-Moon CR3BP.

Moreover, a subset of the Backflip orbits (Sec. 3.1.2) is here investigated.

The presence of a part of the Backflip trajectories lying close to the Earth-

Moon plane can be further advantageous as it means that the transfer can

be obtained as an almost planar transfer. Thus, a further propellant mass

saving is achievable.

The dynamical model considered is one more time the CR3BP in its

ballistic version for the Backflip orbits and for the coasting transfer phases,

Eq. (2.27). For the powered segments the usual inclusion of the thrust

acceleration and the further equation to model the mass decrease are taken

into account, Eq. (4.23).

Let us identify the Backflip branch extrapolating the set of periodic orbit

emanating from L1 from the bifurcation diagram of Fig. 3.4.

Figure 6.11: Earth-Moon L1 Bifurcation diagram.

Fig. 6.11 represents the continuation curves corresponding to the set of

periodic orbits emanating from Earth-Moon L1. In this bifurcation diagram

each point of the curves represents the projection in the position space, of an

initial condition resulting in a periodic orbit (cfr. Sec. 3.1.2). These periodic

orbits are divided into families, each arising from successive bifurcation points
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of the planar and vertical Lyapunov families. In Fig. 6.11, it is possible to

identify the planar Lyapunov orbits (grey line), the vertical Lyapunov orbits

(green line), the Halo orbits (brown line), the axial orbits (cyan line) and the

Backflip orbits (violet line).

This last family is the one that is here used to design the application

proposed. It arises from a bifurcation point of the vertical Lyapunov family

associated to L1 and ends with Moon impacts. Each orbit of this kind is

composed by two arcs connected by a lunar swing-by and, depending on

the specific orbit of the family, one of these can be almost planar. For the

symmetries of the CR3BP (cfr. Sec. 2.2.2) there exists a Northern family

(where the maximum out-of-plane excursion is above the Earth-Moon plane)

and a Southern one (below that plane).

Figure 6.12: Earth-Moon Backflip family. Northern family (upper row) and
Southern family (lower row).

Several orbits of the Northern and Southern family are shown in Fig. 6.12.

These are parameterized with respect to their period in the range [28, 49] days

with a step size that is not constant but adapted along the continuation curve,

according to the pseudo-arc length method (cfr. Sec. 3.1.2).

6.3.1 Transfer Design

The steering angles time history is derived by utilizing the necessary con-

ditions from optimal control theory (cfr. Sec. 4.1.2). During the thruster

working phases the equations of motion and the equation for the mass con-

sumption are integrated forward together with the adjoint equation for the

Lagrange multipliers (cfr. Sec. 4.1.2). These control the thrust direction by

means of Eq. (4.25). No thruster switch on/off has been considered during a
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specific thrusting phase and accordingly the Lagrange multipliers associated

with the mass does not play any role (like in Sec. 6.2.1).

Moreover, in the control vectors also other elements that do not have any

analytic expression of the control laws are embedded. These are typically the

duration of the thrusting phase or angular positions along the initial/final

orbit. The specific set of elements of the control vector depends on the

specific trajectory segment.

This results again in the hybrid scheme where a direct minimization of

the propellant mass is attempted at each iteration step, while the analytic

optimal thrust direction is considered from optimal control theory.

Furthermore, some non linear constraints must be fulfilled by the solution:

in particular the final state of the transfer must match a state (in the phase

space) of the target Backflip.

Nelder-Mead[79] and SQP approaches have been used to solve such prob-

lem, and both result in local solutions which are “near” the initial guess

supplied. No global optimization has been performed on the following tra-

jectories, but the initial guess for the elements of the control vector results

from a grid search, in particular on the durations of the three phases[115].

The first convergence criterion to be respected is that the error on the final

constraints must be smaller than a given threshold (cfr. Sec. 6.3.2). The

iterations have been stopped when the value of the objective function and/or

the error on the final constraints reached hundreds of stall iterations without

any improvement. Non-convergence phenomena present quite rarely for rea-

sonable durations of the three phases, while they can be quite frequent for

extremely long or short thrusting or ballistic phases. In this way the values

of the boundaries (cfr. Sec. 6.3.2) within which define the grid of initial

conditions have been defined.

The transfer design follows three steps: the identification of suitable initial

and final conditions, a basic mission profile and a proposed possible exten-

sion. Thus, the whole application proposed is presented in two sections: a

basic mission profile, describing the transfer from GEO to Backflip, and a

possible mission extension, where the transfer between two Backflip orbits is

addressed.

Initial and Final Conditions

Although the general aim is to design a low thrust transfer from a LEO to a

Backflip orbit, the first part LEO-GEO is removed from the transfer design

since it requires an almost tangential thrust because the main aim is to gain

energy to move away from Earth. It does not need any specific optimization

analysis and it can be also performed chemically or by the launcher. Again

it can be considered as a sort of constant offset to add to results obtained
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with the current approach (like in Sec. 6.2).

Some fixed characteristics are assumed for the spacecraft in the departing

GEO; in particular, an initial mass of 1000 kg, an initial acceleration of 7.65e-

4 m/s2 and a constant specific impulse of 2000 s.

Again a preliminary Edelbaum analysis[113], can be performed to get an

idea, analytically approximated, of the cost required for this phase of the

transfer, Eq. (6.1). Considering a 300-1000 km altitude LEO orbit, the ∆v

required to reach a GEO is in the range 4.71-4.32 km/s that can be performed

chemically (Isp|ch = 320 s) consuming a propellant mass of the order of the

70% of the initial mass. Assuming the same specific impulse of the test

spacecraft here considered, to have 1000 kg in GEO the required mass in

LEO is 1270-1254 kg, therefore the propellant mass consumption is of the

order of the 20% of the initial mass.

It is worth noting that the selection of a GEO orbit is somewhat arbi-

trary; another circular orbit of smaller radius or, with slight modifications,

an elliptic one (like a GTO) could be also considered as starting orbit.

To address the feasibility of the method, the target orbit is selected within

the Northern Backflip family. The transfer design can easily extend to an

orbit of the Southern family with minor changes. The target orbit has been

a-priori imposed and not included in the iterative scheme. This has been

done to avoid the convergence towards a completely useless orbit (from an

operational point of view; for instance, one with an extremely large or small

out-of-plane excursion or passing too close to the Moon surface) and to let

the freedom to satisfy specific mission requirements about the maximum out-

of-plane amplitude to explore.

The target Backflip is required to have an almost planar arc (in order

to have the maximum exploitation of the characteristics of these orbits) and

it has to reach a z -amplitude of the order of one half of the Earth-Moon

distance (≈ 1.9e5 km). This last requirement is a test case with a significant

out-of-plane excursion (larger than the WIND mission case[2]). Nevertheless,

the same approach here outlined can be also used for other constraints on

the out-of-plane amplitude. The candidate target Backflip orbit is shown in

Fig. 6.13. It has approximately 32 days of period.

The main drawback of Backflip orbits satisfying these two requirements

(and not impacting the Moon) is that they move in clockwise directions,

namely these are retrograde orbits so, during the transfer the electric thruster

must accomplish also the inversion of motion from a prograde GEO orbit.

The low thrust transfer here presented does not change significantly also

considering target orbits nearby the chosen one. These have a range for

the z-component of [1.5-2.3]e5 km , the range of the Jacobi constant is ap-
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Figure 6.13: Three views of the target Backflip orbit with an out-of-plane
excursion of 0.5 DU .

proximately [-0.8,-0.4] and the range of periods is approximately [29-35] days.

Some of these orbits are represented in Fig. 6.14.

It is worth noting that choos-

Figure 6.14: Range of Backflip orbits with
characteristics similar to the tar-
get one chosen.

ing the target Backflip orbit does

not mean that the inlet point is a-

priori assigned, so it is included in

the control vector by means of an

angle-like variable that is actually

the elapsed time on the ballistic

solution. Thus the Backflip orbit

is reintegrated, starting from an

initial condition located on the x-

z plane, for a variable time (repre-

sented by this variable) up to the

electric powered phase. The zero

of this angle-like variables has been

assumed on the y = 0 intersection of the Backflip orbit along the negative

x -axis, since here the out-of-plane component is very small and the point is

far from the lunar swing-by, so the scheme is numerically more stable.

Transfer from GEO to Backflip

The whole GEO-Backflip transfer is composed by three phases. It has been

a-priori divided into arcs representing a thrust-coast-thrust strategy, two

powered phases (phases 1 and 3) separated by a ballistic phase (phase 2).

Phase 1 is aimed to gain energy and spiral out from the GEO, Phase 2 is

considered to save propellant mass, and Phase 3 is designed to perform the

inversion. Each powered phase (subscript 1 and 3) has six unknown initial

conditions for the Lagrange multipliers (identifying the thrust direction) and
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unknown duration (~λ, t). Moreover, also the departure true longitude (θ0) is

unknown as well as an angle-like variable (θf ) identifying the target condi-

tion on the Backflip orbit. Finally, also the duration of the ballistic phase is

unknown (t2). This means that the complete control vector is composed by:

~u = [~λ1, t1, t2, ~λ3, t3, θ0, θf ] ∈ IR17.

The elements of this control vector are updated in order to obtain the

transfer (i.e. to satisfy the final non linear constraints that the final state of

Phase 3 matches a point on the target Backflip) with the local minimum of

mass consumption.

Transfer between Backflips

As proposed extension to the basic mission profile, a low-thrust transit be-

tween two Backflip orbits is considered next. A transfer between a Northern

and Southern family has been selected as the mission goal, although the

approach will work the same for transfers between Northern and Northern,

Southern and Northern, or Southern and Southern families. Thus, this sec-

tion presents, as possible mission extension, a low thrust transfer from a

Northern Backflip to a Southern one; it is just a test case and the approach

presented works also for other combinations of Backflip orbits.

The approach follows closely the previous one and also in this case the

target orbit in the Southern family has been a-priori selected. The require-

ments are the same as before, but in this case an out-of-plane (below the

Earth-Moon plane) amplitude required is of the order of 70% (2.7e5 km) of

the Earth-Moon distance, to explore the generality of the methodology.

The main difference along the almost planar arc of the Northern and

Southern Backflip is the different z-component which is slightly positive for

the Southern family and slightly negative for the Northern family. This means

that, in scale, the importance of the out-of-plane thrust angle is higher than

in the GEO to Backflip transfer.

In this case only a single thrusting phase is required and the elements

of the control vector are the initial conditions of the associated six La-

grange multipliers, the duration of this phase and the angle-like variables

identifying the initial (θ0) and final conditions (θf ) along, respectively, the

Northern and the Southern Backflip. Thus, the complete control vector is:

~u = [~λ, t, θ0, θf ] ∈ IR9.

It is important to observe that the angle-like variables are always guessed

(here as before) along the almost planar arcs of the Backflip orbits in order

to try to perform the transfer with the minimum plane change possible. As

before, this control vector has been used in the hybrid optimization scheme

to solve the minimum problem and satisfy the final constraints that the final

state of this thrusting phase matches a state of the Southern Backflip.
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6.3.2 Results

As no global optimization has been performed, several trajectories can be

obtained from the described approach changing the initial conditions for the

control vectors and allowing the convergence of the optimization scheme to

settle to different outcomes. This has been done for a grid of few tens of

uniformly spaced initial guesses, where the duration of the three phases has

been changed respectively within the ranges: [20, 40]-[0, 30]-[10, 30] days. On

the other hand, the angle-like variables have been always guessed in a range

around zero to obtain almost planar transfers.

The equations of motion have been forward propagated in non dimen-

sional units with a variable step integrator with a relative and absolute tol-

erance of 1e-9 and with similar accuracy also the final non linear constraints

have been satisfied. This results in trajectories that exactly match the tar-

get Backflip, after the thruster is switched off, up to three Moon encounters.

After the third one, indeed, a slight deviation of the two paths (the obtained

Backflip and the target one), of the order of tens kilometers, takes place

suggesting that for real applications some correction manoeuvres must be

planned.

A couple of typical trajectories obtained are shown in Fig. 6.15 in planar

and side views in the usual Earth-Moon barycentric synodic frame. The first

row presents a very short ballistic phase and it is the best solution found,

the minimum of the mass consumption. The lower row presents a completely

different dynamics, in particular a significantly longer ballistic phase, and it

represents the upper bound of the mass consumption found (worse case) in

the range of the initial guesses tested to start the procedure.

For the best trajectory depicted in Fig. 6.15 (the upper one), the evo-

lution of the instantaneous position and velocity are plotted in Fig. 6.16,

while the in-plane and the out-of-plane thrust angles, together with the mass

consumption are represented in Fig. 6.17.

It is worth noting that approximately 100 kg are required for the Earth

spiralling out phase and around 70 kg for the inversion of the motion. The

ballistic phase duration changes from 5 up to 28 days. The Earth escape

phase takes, in both cases, approximately one month, while the inversion of

motion spans form 19 up to 24 days.

For the mission extension the solutions found are in a very narrow range

in terms of propellant mass and transfer time; in this case minimum time

trajectories are also minimum mass trajectories. This happens because the

transfer time is more or less the same (less than one day of difference) and

guessing the two angle-like variables always along the almost planar arc of

the Backflips, results just in a translation of similar powered arcs.
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Figure 6.15: GEO to Backflip transfers. First row: smaller propellant mass
transfer found in x-y and x-z views. Second row: costly transfer
found in x-y and x-z views (rotating frame).

A typical transfer of this kind is shown in Fig. 6.18, as seen in a synodic

barycentric frame (upper row) and in a geocentric inertial reference (lower

row); also the trends of the instantaneous mass and of the thrust angles are

presented in Fig. 6.19.

The GEO to Backfip transfer can be accomplished in 52-81 days with a

mass consumption of 168-178 kg. It is worth noting that solutions of minimum

mass are not, differently from the Backflip to Backflip transition, solutions of

minimum time, in particular minimizing the mass requires the minimization

of the two powered phases.

The initial mass guessed in the Northern Backflip (that determines the

initial acceleration for the Backflip-Backflip transfer) is of 800 kg, namely

slightly lower than the actual worst case obtained for the basic mission profile;
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Figure 6.16: Position and velocity evolutions for the less expensive transfer
(upper row of Fig. 6.15).

Figure 6.17: Thrust angles and instantaneous mass for the less expensive
transfer (upper row of Fig. 6.15).

this has been done in order to let a mass clearance for correction manoeuvres

during this operational phase.

For the Backflip-Backflip transitions the motion does not need any in-

version as both the departure and the arrival orbits are retrograde. The

proposed mission extension can be performed in 6.5-7.3 days and with 22.5-
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Figure 6.18: Backflip to Backflip transfer. First row: x-y and x-z views in
the Earth-Moon rotating frame. Second row: x-y and x-z views
in the geocentric inertial frame.

24 kg of propellant mass[115].

Thus, a complete mission can be composed with low thrust, almost planar

arcs from a GEO to a Backflip and, after an arbitrary time, also a Backflip

to Backflip transfer can be designed again by means of an almost planar low

thrust arc. In summary, less than 3 months and 180 kg are required for the

worse transfer found by testing several initial guesses, especially for the dura-

tion of the three phases. To achieve the additional Backflip-Backflip transfer

approximately one week and 25 kg of propellant are required. Transfers of

this kind can be performed towards another Backflip orbit and/or more than

once during the entire mission, as the propellant requirement is very small.

It is worth noting that there is also another family of periodic orbits
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Figure 6.19: Thrust angles and instantaneous mass for the Backflip-Backflip
transfer. Trajectory in Fig. 6.18.

with similar characteristics arising from a bifurcation of the planar family of

Lyapunov orbit when their amplitude grows up to the order of the Earth-

Moon distance[118][66].

Of course, the approach remains the same also if the bodies under inves-

tigation are different from Earth and Moon. Finally, it has to be stressed

that the CR3BP is only a starting point to design such a kind of mission.

For real applications, non deterministic manoeuvres are required to correct

the trajectory in a full force model where the circular restricted three body

assumptions represent only low order approximations.



Chapter 7
Conclusions

The main goal of this thesis was the investigation and the exploitation of

capabilities enabled, already in the early mission analysis phase, by non-

Keplerian models. Multi body regimes give rise to unique transfer options

and operational orbits whose efficiency and flexibility can be further extended

by considering the inclusion of low thrust propulsion strategies.

The direction followed in this work starts from the general N -body dy-

namics with special emphasis to the three body model and from this to the

circular restricted one. Once this model has been defined, its theoretical anal-

ysis reveals the presence of equilibrium points, periodic orbits around them

and ballistic solutions moving to/from these. All of these features have been

numerically computed, starting from analytic initial guesses, and analyzed.

Dynamical system theory is a valuable help to identify these structures

and it has been exploited also to investigate about global periodic orbits,

their stability and normalization procedures. Moreover, the useful tool of the

Poincaré section has been used to analyze homoclinic and heteroclinic orbits

as well as resonance conditions and transitions with general understanding

of this phenomenon in the Earth-Moon system.

Up to this point, purely ballistic solutions have been defined and ex-

ploited, however, in order to design a complete mission, thrusting phases are

required. These arcs have been supposed to be powered by electric devices

able to provide low thrust for extended duration. This methodology results in

lower propellant mass fractions and higher transfer times if compared with

chemical solutions. This has been tested both for interplanetary transfers

and Earth-Moon trajectories.

As the inclusion of low thrust arcs is sought, optimal control theory be-

comes a valuable help. Indirect and hybrid methods are theoretically derived

and presented in some test cases, in two and three body dynamics.
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Thus, transfer solutions involving manifolds and low thrust phases are

presented. In the beginning considering one dimensional manifolds among

different three body systems in order to design a small tour of the Uranus

main moons, and afterwards considering two dimensional manifolds associ-

ated with Halo orbits of the Sun-Earth and Sun-Mars systems. All of these

ballistic trajectories are successfully exploited in order to design a sort of

patched manifold transfers where the energy change required to move from a

system to another is provided by the electric thruster.

Finally, also several applications in the Earth-Moon system are presented.

The easiest one is a low thrust transfer from a GTO to a ballistic orbit lead-

ing towards the Moon neighborhoods and exploring its realm for free. Ex-

emplificative Earth to Moon trajectories are presented with initial and final

orbits that can be fixed by specific mission requirements. The whole trans-

fers have been divided into the thrust-coast-thrust sequence and computed

considering again the Earth-Moon three body dynamics. Finally, low thrust

transfers towards doubly plane change periodic orbits are presented. These

orbits, arising in the Earth-Moon three body system, offer unique possibilities

of exploration of the geospace out from the Moon orbital plane and, beside

to be less expansive if performed electrically, transfers of this kind are hardly

conceivable by means of chemical thrusters.

The applications here presented tend to follow increasing complexity and

to motivate comparisons with the classical chemical-Keplerian model. Ad-

vantages of these innovative solutions, measured in terms of propellant mass

and mission feasibility, are highlighted through the whole work. The last

application, in particular, represents a mission completely beyond the limits

of the classical mission analysis approach.

All in all, the theoretical background and the applications presented out-

line methodologies to preliminary design and analyze non-Keplerian missions,

stressing their advantages both in terms of on board requirements and flexi-

bility.



Appendix A
Parameter Values

The location of the three collinear points can be found by computing the

three real roots of the quintic equation, Eq. (2.2.4), in the intervals x < −µ,

−µ < x < (1 − µ) and x > (1 − µ) that correspond respectively to L3, L1

and L2.

However, the location, with respect to the small primary, of the first two

collinear points can be approximated by the series expansions[13]:

δ1 = rh

(
1− 1

3
rh −

1

9
r2
h + . . .

)
, δ2 = rh

(
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1

3
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1

9
r2
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)
(A.1)

where δ1 holds for L1, δ2 for L2 and rh =
(µ

3

) 1
3 is the Hill radius. Thus,

the location of the first two collinear points in the usual synodic barycentric

frame is given by: xL1 = 1− µ− δ1 and xL2 = 1− µ+ δ2.

This holds as L1 and L2 are, at the first order, located where the m1

and m2 gravity accelerations balance the centrifugal force. The Hill’s work

on the lunar motion[31] brought to a first order approximation of the CR3BP

model in the neighborhoods of the small primary. The main assumptions are

that µ� 1 and the terms of order O(µ2) can be neglected. This results in a

re-writing of the CR3BP equations, Eq. (2.27), where the effective potential,

Eq. (2.20), is replaced by:

ΩH =
3

2
x̄2 − µ

∆

being the origin of the frame m2. This means that x = 1 + x̄ and y = ȳ,

where r2
2 = ∆ = x̄2 + ȳ2 and r2

1 = 2x̄+ 1 are the approximate distances from

the two primaries. When ∂UH/∂x̄ = 0, a first order approximation of the

location of L1 and L2 can be obtained. This happens when 3∆3 = µ, that

leads to the definition of the Hill radius ∆ = rh. Thus at the first order L1
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and L2 are located at the same distance, given by the Hill radius, from m2.

From the same linearized approach also a first order approximation of the

Jacobi constant is available. It results, for L1 and L2 in JL1−L2 = 34/3µ2/3.

In a similar fashion, also δ3, the distance between L3 and the larger

primary (xL3 = −µ− δ3), can be approximated by the series expansion[13]:

δ3 = 1− ν
(

1 +
23

84
ν2 + . . .

)
, ν =

7

12
µ (A.2)

In general, the accuracy of these series is quite high already at low orders,

moreover the smaller µ is, the closer the analytical value to the numerical

solution of the quintic equation is.

The values of the mass parameters, distance units [DU] and time units

[TU] for some three body systems of interest is summarized in Tab. A.1 with

the numerically computed locations of their collinear equilibria.

System µ DU [km] TU [sec] L1 [DU] L2 [DU] L3 [DU]

Sun-Jupiter 9.537e-4 7.784e8 5.9563e7 0.93238 1.06881 -1.00040
Sun-Earth/Moon 3.04042e-6 1.49598e8 5.0759e6 0.98999 1.01007 -1.00000
Earth-Moon 0.12151e-1 3.844e5 3.9716e5 0.83737 1.15527 -1.00506
Sun-Mars 3.2257e-7 2.27937e8 9.4395e6 0.99525 1.00476 -1.00000
Sun-Venus 2.4476e-6 1.08209e8 3.0898e6 0.99067 1.00938 -1.00000
Jupiter-Io 4.6869e-5 421700 2.4339e4 0.97513 1.02519 -1.00002
Jupiter-Europa 2.5278e-5 671034 1.7876e5 0.97976 1.02046 -1.00001
Jupiter-Ganymede 7.7938e-5 1070410 9.8320e4 0.97059 1.02984 -1.00003
Jupiter-Callisto 5.6874e-5 1882710 2.3322e5 0.97355 1.02681 -1.00002
Uranus-Oberon 3.4792e-5 583519 1.8539e5 0.97750 1.02277 -1.00002
Uranus-Titania 4.0703e-5 435910 1.1970e5 0.97630 1.02400 -1.00002
Uranus-Umbriel 1.3853e-5 266300 5.7157e4 0.98343 1.01673 -1.00001
Uranus-Ariel 1.5584e-5 190020 3.4452e4 0.98277 1.01740 -1.00001
Uranus-Miranda 7.6075e-7 129390 1.9358e4 0.97084 1.02959 -1.00003

Table A.1: Physical constants and collinear libration point locations for some
three bodies systems

The transformation from dimensional to non dimensional units can be

easily performed by dividing the distances with DU and the times with TU;

the opposite way works the inverse transformation.
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[15] Gómez, G., Jorba, A., Masdemont, J. J., and Simó, C., Dynamics
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and Control in Bifurcation Problems,” Int. Journal of Bifurcation and

Chaos, Vol. 1, No. 3, 1991, pp. 493–520.



BIBLIOGRAPHY 180

[57] Dichmann, D. J., Doedel, E. J., and Paffenroth, R. C., “The compu-

tation of periodic solutions of the 3-Body problem using the numerical

continuation software AUTO,” in: “Libration Point Orbits and Appli-

cations”, eds. World Scientific, 2003.

[58] Keller, H. B., Numerical Solutions of Bifurcation and Nonlinear Eigen-

value Problems, Application of Bifurcation Theory , Academic Press,

Washington, 2nd ed., 1977.

[59] Doedel, E. J., Romanov, V., Paffenroth, R. C., Keller, H. B., Dichmann,

D. J., Galan-Vioque, J., and Vanderbauwhede, A., “Elemental periodic

orbits associated with the libration points in the Circular Restricted 3-

Body Problem,” Int. Journal of Bifurcation and Chaos, Vol. 17, 2007.
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Universidad de Sevilla, Spain, 2003.

[61] Doedel, E. J., “AUTO, a program for the automatic bifurcation analy-

sis of autonomous Systems,” Congressus Numerantium, 30 , Vol. 1981,

pp. 265–284.

[62] Floquet, G.,“Sur les équations différentielles linéaires á coefficients péri-
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