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Abstract

Virtual execution environments (VEE) such as the Java Virtual Machine (JVM)
and the Microsoft Common Language Runtime (CLR) have been designed when the
dominant computer architecture featured a Von-Neumann interface to programs:
a single processor hiding all the complexity of parallel computations inside its de-
sign. Programs are expressed in an intermediate form that is executed by the VEE
that defines an abstract computational model in which the concurrency model has
been influenced by these design choices and it basically exposes the multi-threading
model of the underlying operating system. Recently computer systems have in-
troduced computational units in which concurrency is explicit and under program
control. Relevant examples are the Graphical Processing Units (GPU such as Nvidia
or AMD) and the Cell BE architecture which allow for explicit control of single pro-
cessing units, local memories and communication channels. Unfortunately programs
designed for Virtual Machines cannot access to these resources since are not available
through the abstractions provided by the VEE. A major redesign of VEEs seems to
be necessary in order to bridge this gap. In this thesis we study the problem of ex-
posing non-Von Neumann computing resources within the Virtual Machine without
need for a redesign of the whole execution infrastructure. In this work we express
parallel computations relying on extensible meta-data and reflection to encode in-
formation. Meta-programming techniques are then used to rewrite the program into
an equivalent one using the special purpose underlying architecture. We provide a
case study in which this approach is applied to compiling Common Intermediate
Language (CIL) methods to multi-core GPUs; we show that it is possible to access
these non-standard computing resources without any change to the virtual machine
design.
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Introduction

I.1 Research problem

Over the last decade the performance of computation devices has steadily grown.
In general-purpose processors (CPUs), the number of cores1 in a processor has in-
creased rapidly following Moore’s Law as applied to traditional microprocessors. The
multi-core paradigm has become the primary method for providing performance im-
provements. However, sequential performance is limited by three factors or “walls”:
power, memory and Instruction Level Parallelism (ILP). Power is a “wall” because
heat dissipation has reached a physical limit. It gets worse as gates get smaller,
meaning a significant increase in clock speed without expensive cooling is not pos-
sible without a breakthrough in the technology of materials [2]. Memory is a “wall”
because memory performance improvement lags increasingly behind the processor
one [3]. ILP is a limit because sequential performance acceleration using ILP has
stalled due to two reasons: the success of speculative execution is difficult to predict,
and ILP causes an increase in power consumption without linear speedup in appli-
cation performance. Patterson [4] expressed the relationship between sequential
performance and these limitations with the following formula

brick wall for sequential performance = power wall + memory wall + ILP wall

The solution adopted by major CPU vendors places multiple cores onto a sin-
gle die to exploit TLP2. These issues have encouraged researchers to explore other
execution models that match the intrinsic constraints of the underlying VLSI3 tech-
nology and the parallelism in emerging applications [5].
One result of this exploration is an increasing interest in special-purpose architec-
tures, e.g. graphics hardware (GPUs) [6] and Cell BE [7], and in hybrid solutions
e.g. the Intel Larrabee [8] now called Knights Corner.

The need for efficient real-time specialized processing of 3D meshes silently intro-
duced an architecture model designed for computer games in ordinary PCs, called

1Cores are multiple copies of a processor that are placed onto a single die to exploit Thread
Level of Parallelism (TLP).

2Thread Level Parallelism
3Very Large Scale Integration
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GPU. It breaks with conventional Von-Neumann architectures and programming
models, because it explicitly exposes parallel programming interfaces in a general
purpose system in the form of a Single Instruction Multiple Data (SIMD) processor.

Commodity graphics hardware has evolved tremendously over the last years.
It started with basic polygon rendering via 3dfx’s Voodoo Graphics in 1996, and
continued with custom vertex manipulation four years later. The GPU has improved
to a full-grown graphics-driven processing architecture with a speed-performance
approx.750 times higher than a decade before (1996:50mtex/s, 2006:36,8btex/s).
This makes the GPU evolve much faster than the CPU, which became approximately
50 times faster in the same period (1996:66 SPECfp2000, 2006:3010 SPECfp2000)
[9]. Figure I.1 shows the GPU performance over the past ten years and how the
gap between CPU and GPU performances grows wider. Experts believe that this
evolution will continue for the next five years at least.

Figure I.1: The performance increase of GPUs and CPUs over the last decade (using the “texels

per second” metric).

As the name implies, the GPU was initially designed for accelerating graphical
tasks. For instance, the real-time 3D visual effects, e.g. interactive cinematic light-
ing system [10, 11], demanded by games, cinematography and other interactive 3D
applications, require efficient hardware-based rendering [12].

However, GPUs were soon being exploited for performing non-graphical compu-
tations, for instance, the work of Lengyel et al. uses GPUs to compute robot motion
[13], the CypherFlow project by Kedem and Ishihara exploits GPU to decipher en-
crypted data [14], and a GPU-based computation of Voronoi diagrams has been
presented by Hoff et al. [15]. Nevertheless, most of the general-purpose algorithms
implemented for GPUs stay in the academic field and have not yet found their
way into industrial software engineering. The primary reason is that GPU-based
application development is much more complex, mainly because the developer has
to be an expert in two domains: the application domain, and computer graphics.
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This approach has been influenced by the entertainment and special-effects indus-
try, where software developers create the so-called “rendering engine” and graphics
artists use the engine to create the so-called “shader programs” that compute visual
phenomena. Most of the existing GPU-based development systems are founded on
this programming model, e.g. RenderMan [16], Interact-SL [17], and Cg [18].

However, these development systems are ill suited for expressing general purpose
computations. Being domain specific languages, they require the programmer to
perform morphism from his own problem space to the CG problem space. This
requires to encode the input in a CG friendly way and to decode the output of a
program that must be equivalent to that needed in the original problem space.

Furthermore, because CPU and GPU-based code is developed in different pro-
gramming languages, additional binding code is required to “glue” the different
functionalities together. This means that changing the graphics-oriented program-
ming model and corresponding GPU development tools may significantly reduce
development complexity. For this reason since 2005 the two major GPU vendors,
Nvidia and AMD, have proposed fully programmable processing units, called Gen-
eral Purpose GPU (GPGPU), that support non-graphics development frameworks,
such as Nvidia CUDA [19], AMD CAL [20], and AMD Brook+ [21]. However, they
still separate between CPU and GPU-based code.

The increasing flexibility of GPUs has enabled many applications outside the
original narrow tasks for which GPUs were originally designed, but many applica-
tions still exist for which GPUs are not (and likely never will be) well suited. Word
processing, for example, is a classic example of a “pointer chasing” application,
dominated by memory communication and is difficult to parallelize.

This presents a set of challenges in algorithm design. One problem facing the
designers of parallel and distributed systems is how to simplify the writing of pro-
grams for these systems and to augment the adaptivity of software to current, as well
as, future architectures. Proposals range from automatic program transformation
systems [22, 23, 24, 25, 26] that extract parallelism from sequential programs, to
the use of side-effect-free languages [27, 28, 29, 30], to the use of languages and sys-
tems where the programmer must explicitly manage all aspects of communication,
synchronization, and parallelism [20, 19, 31]. The problem with fully automatic
schemes is that they are best suited for detecting fine grain parallelism because pro-
grammers do not fully describe the semantics of a domain, depriving the translator
of high level optimizations, besides explicit parallel programming may complicate
the programming task.

The need for flexibility is not related to GPU programming only but also for
execution environments. In particular, in the last few years research interest has
been progressively increasing in Virtual Execution Environments (VEEs), such as
Java Virtual Machine (JVM) [32] and .NET Common Language (CLR) [33]. VEEs
are appreciated for many reasons, such as program portability across different archi-
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tectures, the ability to monitor program execution, which has proven important to
enforce security aspects, the tailoring of execution onto specific architectures, and
certain capabilities such as dynamic loading and reflection, which allow programs
to adapt their execution depending on several environment factors, including the
underlying computing architecture.

VEEs abstract aspects of the host execution environment by interposing a layer
that mediates program execution through dynamic examination and translation of
the program’s instructions before its execution on the host CPU, as illustrated on
Figure I.2. In VEEs’ design was inspired by mid-90’s architectures, single CPU with
Von Neumann model dominating the scene when they emerged, making it harder
to exploit the computing power made available by new special-purpose processors,
such as GPUs and Cell BE, in a seamless way.

Figure I.2: The CLR’s Multiple Instructions Multiple Data computational model is different

from the GPUs’ SIMD one. How does a JIT compiler can map these models?

In fact, the Just-In-Time (JIT) compiler module of a virtual machine can hardly
exploit the power of these non-conventional processing units, since the program is
expressed in an intermediate language (IL) for an abstract computation system not
providing explicit representation for them. Nevertheless, there are ways to access
these new computing processors by exposing specific services that bypass the VEE
services.

The diverging gap between the abstract definition of the computing system and
the actual architecture may significantly affect the ability of VEE programs to really
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exploit the computing power of modern systems, possibly undermining the whole
approach eventually abandoning it altogether and losing the many benefits that come
with these VEEs. An alternative may be an acceptance that the real scope of these
virtual execution environments cannot eventually avoid the need for an underlying
layer of software, that coordinates pre-written software exploiting these capabilities
through VEE interoperability services, as it was for Visual Basic programmers when
their world was limited to the available set of C++ based COM components.

I.2 Problem statement

This thesis focuses on the problem of exposing non-conventional computing devices
to VEE programs without changing the VEE base definition. Even though the
problem may be tackled for specific computing devices such as GPUs or Cell BE, we
will consider it from a broader perspective of exposing models of parallel computing
into VEEs using a general and consistent approach showing that there is no need
for a general redesign of these execution environments to adapt to non-conventional
computing systems.

I.3 Research scope

To assist the reader, we summarize the key boundaries from the outset.

Models of parallel computation

Modern microprocessor architectures have considerably changed from the past: from
the classical Von Neumann architecture to the current SIMD architecture of the
GPU and the multi-core architecture of the Cell BE microprocessor. Each one of
these microprocessors is completely different from the other in computational, mem-
ory and programming models. For these reasons, on expression of computational
models at VEE level of abstraction, we considers two classes of parallel execution
models based on shared and distributed memory respectively. Indeed, our work is
not tailored to a specific architecture or execution model.

Parallelism exploitation

Indeed, the correct and efficient design of parallel programs requires to consider
several different concerns, that are difficult to separate during program development.
How the computation is performed using processing elements (such as processes and
threads), and how these communicate, are non-functional aspects of a program since
they do not contribute to define the result of the computation but only how it is
performed.
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• Existing approaches
Several complementary approaches may help programmers achieve the con-
struction of parallel applications.

A way to deploy concurrency without need of change in the programming
model encapsulate concurrency together with domain knowledge in common
reusable library components [34, 35, 36]. For example, Tarditi et al. [37] have
developed a library, named Accelerator, that uses data parallelism to program
GPUs for general purpose uses under .NET CLR. The main advantage is that
no aspect of the GPU is exposed to the programmers, only high level data-
parallel operations: the programmer must use specific data(-parallel) types to
program the GPU instead of the CPU. This technique can work very well,
although use of multiple such libraries in the same program requires better
synchronization and resource management techniques than are currently avail-
able.

Another approach integrates concurrency and coordination into traditional
languages. To build parallel applications, traditional sequential languages are
extended with new features to allow programmers to explicitly guide program
decomposition into parallel subtasks, as well as provide atomicity and isola-
tion when those subtasks interact with shared data structures [38, 31, 39, 29,
19, 20]. For instance, IBM X10 [29] extends the Java sequential core lan-
guage with non-functional aspects (e.g. place, activities, clocks, (distributed,
multi-dimensional) arrays, etc.) to expose a “virtual shared-memory multi-
processor” computational model.

A different technique raises semantic level to eliminate explicit sequencing.
Parallelism can be more effectively exploited by avoiding procedural languages
and using domain-specific systems based on rules or constraints [27, 21, 40, 41,
28]. Programming styles that are more declarative specify intent rather than
sequencing of primitives and thus inherently permit parallel implementations
that leverage the concurrency and transaction mechanisms of the system. For
instance, the RapidMind Development Platform [42] allows developers to use
standard C++ to create concurrent/parallel applications that run on GPUs,
the Cell BE, and multi-core CPUs. It provides a single unified programming
model, adding types and procedures to standard ISO C++ and relying on a
dynamic compiler and run-time management system for parallel processing.
OpenGL [43] and DirectX10 [44] is another successful domain-specific declar-
ative API for graphics workloads. Many more systems have been proposed
in the long history of parallel programming and we will discuss those more
relevant to our work throughout the dissertation.

• Our approach
To efficiently develop general-purpose applications that are accelerated by the
special-purpose architectures, a different approach is needed with respect to
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those emerging for specific systems such as Nvidia CUDA and AMD CAL on
GPUs: the software developer creates the complete “software” that contains
code for the main and special-purpose processors at the same time. This means
that there is a single development environment, where the same programming
language is used to define CPU and, for instance, GPU-based code side by side,
and no binding code is required that connects the variables of the different
processor platforms.

Subscribing the “separation of concerns” concept, typical of Aspect Oriented
Programming (AOP) [45], we recognize the importance in our solution of us-
ing proper tools to program the non-functional aspects related to parallelism
exploitation, e.g. optimizations, communication and synchronization manage-
ment, etc. We propose a set of types and meta-data that can be used by pro-
grammers to consciously “suggest” how a parallel application can be automati-
cally derived from the code. This is different from the standard AOP approach
where join points are defined using patterns, making the programmer unaware
of program transformation details that will be applied afterwards. Our un-
derlying assumption is that the programmer can make better granularity and
partitioning decisions, while the compiler can correctly manage synchroniza-
tion. Since those types and meta-data express the main features of a parallel
execution model, our meta-program, called 4-Centauri, can derive how to
compile source code to exploit a special-purpose architecture capabilities, as
shown in Figure I.3.

Figure I.3: The 4-Centauri compiler: first a IL code is parsed to find out through annotations,

which part will execute on a CPU and which will execute on GPU, if available; then two layer of

abstraction in code manipulation are given: one more generic used for basic class file manipulation

that leverages the CLR, and one more specific for GPU intermediate code (e.g. Nvidia PTX)

generation that leverages the Nvidia CUDA driver.

This way it is possible to preserve the illusion of the system directly executing
the program as the programmer wrote it, with no user-visible optimizations.
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This constraint has several consequences that distinguish our work from other
optimizing compiler implementations:

– Programmers are free to edit any procedure at the CLI level, keeping in
mind which is the execution model of their implementation.

– Programmers are able to understand the execution of the program and
any errors in it solely in terms of the source code and the source language
constructs. This requirement on the debugging and monitoring interface
to the system disallows any internal optimizations that would shatter
the illusion of the implementation directly executing the source program
as written. Programmers should be unaware of how their programs get
compiled or optimized.

– The programmer should be isolated even from the mere fact that the
programs are getting compiled at all. No explicit commands to com-
pile a method or program should ever be given, even after programming
changes. The programmer just runs the program.

4-Centauri is a compiler prototype developed as proof-of-concept. Since it
is a prototype, we limit our consideration of computational models to the
special-purpose one provided by GPUs.

Virtual Execution Environment

Although VMs in the form of abstract machines have been around for a long time
(since the mid-1960s) [46, 47], the advent of Java has made them a common tech-
nique for implementing new languages, particularly those intended for use in hetero-
geneous environments. One of the reasons of this success is due to the (extensible)
reflection model provided by VEEs. They enable dynamic access to the representa-
tion of the application, and allow the program to change its behavior while running
depending on its current execution state [48, 49]. This dissertation describes an
extension to a particular class of run-time support that we call Strongly Typed Ex-
ecution Environment (STEE) whose relevant members are Sun JVM and Microsoft
CLR.

Strongly Typed Execution Environment (Model). A STEE provides an ex-
tensible type system and reflection capabilities. It guarantees both that types can
be established at run-time, and values are only accessed by using the operators de-
fined on them. STEE has information about running programs, such as the state
and liveness of local variables in a method; all extant objects and object references,
including reachability information. Examples of STEE are the Common Language
Infrastructure (CLI), the Common Language (CLR) and the Java Virtual Machine
(JVM).
We limit our consideration of STEE to CLI because:
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• CLI is the standard ECMA 335 [1].

• CLI is language neutral and enables multi-language applications to be devel-
oped. To assist this interoperability, a Common Type System (CTS) [1] is
defined together with a Common Language Specification (CLS) [1] a set of
rules that each component of the application must obey.

• there is a world-wide community of developers that uses CLI, in particular its
implementations CLR, under Windows, and Mono, under Linux systems.

I.4 Research contributions

The main contributions of this thesis are:

• We show how to express the main features of the above mentioned models at
VEE level without making any changes neither to the VEE design nor to its
modules (e.g. JIT).

• We provide a feasible mapping between main models of parallel computations
and that exposed by the VEE such as CLI, so that this work is not tailored
to neither a specific architecture nor a single execution model.

• We introduce a meta-program, named 4-Centauri, that translates a Common
Intermediate Language (CIL) [1] program into a modern, mass-market, special-
purpose architecture intermediate language program, such as Nvidia PTX.
The goal is to provide a single and unified programming model without losing
expressiveness, forcing the use of a single source language or changing the
design of the VM itself.

Since we are interested in defining suitable mappings between abstract parallel
computing models and VEEs resources we give a formal specification for each fun-
damental model of parallel computation useful to understand if and how it can be
exposed into the execution environment in a consistent way. These specifications will
be well-suited to study their main features, by using the Abstract State Machines
(ASM) framework.

I.5 Organization and Reading plans

The thesis is structured as follows:

• Chapter 1 surveys the main models of parallel execution highlighting their
computational, memory, and execution aspects that are most relevant for our
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purposes. For each of them, a formal specification is given by using the Ab-
stract State Machine (ASM) method, a mathematically well-founded frame-
work for system design and analysis. To make this thesis self-contained, a
basic introduction to ASM is provided in this chapter.

• Chapter 2 provides a basic introduction to the Virtual Execution Environment
(VEE) design and capabilities, in particular of a special type of VEE, named
Strongly Typed Execution Environment (STEE). Therefore, it reviews existing
approaches for exposing underlying architecture features to STEEs level. It
introduces our approach based on types and meta-data, and, for each model
of parallel execution, presents a mapping on the CLI leveraging ASM model
defined in the previous chapter. In particular, it focuses on GPGPUs mapping
on CLR, providing a formal definition and a proof of correctness of it.

• Chapter 3 reviews different approaches to parallel programming that have been
studied and have inspired our solution. In particular, our discussion focuses on
GPGPUs existing main programming languages: Nvidia CUDA, AMD CAL,
Nvidia PTX and AMD IL.

• Chapter 4 introduces our implementation of the mapping between GPGPUs
and CLR, named 4-Centauri. This meta-programming tool is able to trans-
late Common Intermediate Language (CIL) to Nvidia PTX language lever-
aging special meta-data provided by programmers. A detailed description of
4-Centauri design and main features are provided. At the end of this chapter,
some examples of compilation are presented.

• Chapter 5 provides the evaluation of the 4-Centauri compiler by using a
classical algorithm in graphics.

• Chapter 6 presents the conclusions of this thesis and discusses future work.



Chapter 1

Models of execution

While new hardware architectures offer much more computing power, they make
writing software that can fully benefit from the hardware much harder. In scientific
applications, improved performance has historically been achieved by having highly
trained specialists modify existing programs to run efficiently as new hardware be-
came available. However, rewriting programs is far too costly, so most organizations
focused on rewriting small portions only of the mission critical programs called
Kernels . In the optimal case, mission-critical applications spent 80%-90% of their
execution time in these Kernels , which represent a small percentage of the appli-
cation code. This rewriting was time consuming, and organizations had to balance
the risk of introducing subtle bugs into well-tested programs against the benefit of
increased speed at every significant hardware upgrade. All bets were off if the or-
ganization did not have the source code for the critical components. In contrast,
commercial vendors have become accustomed to a world where all existing programs
get faster with each new hardware generation. Software developers could confidently
build new innovative software that barely run on the then current hardware, know-
ing that it would run quite well on the next generation machine at the same cost.
This will no longer occur for sequential codes, but the goal of new software develop-
ment tools must be to retain this very desirable characteristic as we move into the
era of many-core computing. Designers of parallel algorithms for modern computers
have to face at least four sources of considerable challenges. First, the underlying
computational substrate is much more intricate than it is for conventional sequential
computing, thus the design effort is much more onerous. Second, the resulting algo-
rithms have to compete with and outperform existing sequential algorithms that are
often better understood and highly optimized. Third, the ultimate reward of all this
effort is limited, at best a speedup of a constant factor: the number of processors.
Fourth, machines differ, and speedups obtained on one machine may not translate
to speedups on others, resulting in a design effort that may be substantially wasted.
A good computational model can simplify the complicated work of the software
architect, algorithm designer and program developer while mapping their work ef-
fectively onto real computers. Such a computational model is sometimes also called
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Bridging model [50]. The bridging model between the sequential computer and al-
gorithm designer/program developer is the Von Neumann [51] and RAM (Random
Access Machine) Model [52]. However, no commonly recognized bridging models are
found between parallel computer and parallel programs, and no other model exists
that can map a user’s parallel program so smoothly onto parallel computers as the
Von Neumann and RAM Model do. This situation is largely due to the immature
parallel computer design that should take into account many different architectures
for parallel computers that change rapidly each year.

Skillicorn presents three requirements for a model of parallel computation [53]:

• architecture independence, a model is general enough to represent a range of
architecture types;

• congruence over an architecture, the real costs of execution on that architecture
are reflected at the model level;

• intellectual manageability, a model must abstract away from the task of spec-
ifying and managing the parallelism.

There are several levels at which a model of parallel computation may exist, that
are classified by McColl [54].

In the following sections, we examine models principally identified as cost model
in the McColl’s classification. For each model we developed a formal representa-
tion of its datapath. Our ground model is uniform to architectural features such
as the register-file size, the datapath width, the instruction set, etc. We focus on
describing how different models of parallel computation access memory. Therefore,
we abstract all the instructions that are not related to memory management. We
consider that the computational task of a processor is specified as an ordered se-
quence of instructions. The execution of the instructions follows a state transition
semantics, therefore the models described in following sections behave like a finite
state machine. Each execution phase is reflected in our ground models by control
states. For these reasons our formal representations are based on the Abstract State
Machines (ASM) method.

As proven in [55, 56, 57], ASMs have introduced a software design and analysis
method which provides the right level of abstraction to capture the essential charac-
teristics of existing architectural models and to describe them in a simple, uniform
manner that clearly defines functionalities.

The method bridges the gap between non-HPC1 programmers understanding
and formulation of real-world architectures and the deployment of their algorithmic
solutions by code-executing machines on changing platforms (i.e. special-purpose

1High Performance Computing
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architectures). It covers within a single conceptual framework both design and anal-
ysis, for procedural single-agent (e.g. single processor CPU) and for asynchronous
multiple-agent systems (e.g. multi-core CPU and many-core GPUs).

1.1 A brief introduction to the Abstract State

Machines

ASMs represent a mathematically well founded framework for system design and
analysis introduced by Gurevich as Evolving Algebras [58]. At the end of ’90 Börger
and Stärk in [56] have applied ASMs to the software engineering allowing to build
models in a faithful and objectively checkable manner. Therefore, using ASMs
is possible to turn descriptions expressed in application domain (e.g. model of
parallel computations) into precise abstract definitions, which we were comfortable
to manipulate as a semantically well-founded form of pseudo-code over abstract
data.

1.1.1 Basic (single-agent) ASM

The ASMs are defined in [55, 56]. A brief summary is presented here in order to
make the thesis self-contained.
An basic (single-agent) ASM is a transition system which transforms structures of
a given signature, i.e. finite sets of so called transition rules of form

if Condition then Updates

where the Condition is a closed predicate logic formula of the underlying signature
without free variables, whose interpretation evaluates to true or false. Updates is
a finite set of assignments of the form f(t1,...,tn) := t whose execution is to be
understood as changing (or defining if there was none) in parallel the value of the
occurring functions f at the indicated arguments to the indicated value. The notion
of ASM states is the notion of mathematical structures where data come as abstract
objects, i.e. as elements of sets (also called domains or universes, one for each cat-
egory of data), which are equipped with basic operations and predicates.
In any given state, first all parameters ti, t are evaluated to their values, say vi, v,
then the value of f(v1,...,vn) is updated to v which represents the value of f(v1,...,vn)
in the next state. Such pairs of a function name f and an argument (v1,...,vn) are
called locations, location-value pairs (loc,v) are called updates.
An ASM computation step in a given state consists in executing simultaneously all
updates of all transition rules whose guard is true in the state, if these updates are
consistent, in which case the result of their execution yields the next state. In the
case of inconsistency the computation does not yield a next state. A set of updates
is called consistent if it contains no pair of updates with the same location, i.e. no
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two elements (loc,v),(loc,v
′
) with v 6= v

′
.

Simultaneous execution is enhanced by the following notation to express the simul-
taneous execution of a rule R for each x satisfying a given condition ϕ:

forall x with ϕ
R

where ϕ is a Boolean-valued expression that determines which x is/are applica-
ble, and R a rule. Typically, x will have some free occurrences in R which are bound
by the respective quantifier.
Similarly non-determinism can be expressed by rules of the form

choose x with ϕ
R

where ϕ is a Boolean-valued expression and R a rule. The meaning of such an
ASM rule is to execute rule R with an arbitrary x chosen among those satisfying
the selection property ϕ. If there exists no such x, nothing is done. It is possible to
use combinations of where , let , if - then -else , etc. which are easily reducible
to the above basic definitions. When dealing with multi-agent systems we use sets
of agents each executing its own ASM.

1.1.2 Control State ASM

In the rest of the thesis we use a special class of ASMs, called control state ASMs,
which allows one to define machines providing the main control structure of Finite
State Machines (FSMs) synchronous parallelism and the possibility to manipulate
data structures. A control state ASM is an ASM whose rules are all of the following
form:

if ctl state = i then
if cond1 then

rule1
ctl state := j1

...
if condn then

rulen
ctl state := jn

The finitely many control states ctl state ∈ 1,...,m resemble the so-called ‘internal’
states of FSMs. In a given control state i, these machines do nothing when no
condition condj is satisfied.
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1.1.3 ASM Multi-agents

In [56] the single-agent ASMs are extended to two kind of multi-agent ASMs: syn-
chronous (sync ASM) and asynchronous ASMs (async ASM), which support mod-
ularity for design of large systems. A multi-agent synchronous ASM is defined as a
set of agents which execute their own basic ASMs in parallel, synchronized using an
implicit global system clock. Semantically async ASM is equivalent to the set of all
its constituent single-agent ASMs, operating in the global states over the union of
the signatures of each component. The practical usefulness of sync ASMs derives
from the possibility of equipping each agent with its own set of states and rules and
of defining and analyzing the interaction between components using precise inter-
faces over common locations.
An asynchronous ASM is given by a family of pairs (a,ASM (a)) of pairwise different
agents, elements of a possibly dynamic finite set Agent, each executing its basic
ASM ASM (a). A run of an async ASM, also called a partially ordered run is a
partially ordered set (M,<) of moves (execution of rules) m of its agents satisfying
the following conditions:

• finite history: each move has only finitely many predecessors, i.e. for each
m ∈M the set {m′|m′

< m} is finite;

• sequentiality of agents: the set of moves {m|m ∈M,a performs m} of every
agent a ∈ Agent is linearly ordered by <;

• coherence: each finite initial segment X of (M,<) has an associated state
σ(X), i.e. the result of all moves in X with m executed before m

′
if m < m

′
,

which for every maximal element m ∈ X is the result of applying move m in
state σ(X −m).

The moves of the single agents can be atomic or durative, but for simplicity the
preceding definition of distributed runs assumes actions to be atomic. Multi-agent
ASMs provide a theoretical basis for a coherent global system view for concurrent
sequential computations of single agents, each executing its own sequential ASM, at
its own pace and with atomic actions applied in its own local states, including input
from the environment as monitored functions.

The relation between global and local states is supported by the use of the
reserved name self in functions and rules to denote the agents which are executing
the underlying “same” but differently instantiated basic or sync ASM, similar to
the use of this in object-oriented programming to denote the object for which the
currently executed instance method has been invoked.

1.2 Models of Sequential execution

Before examining models of parallel execution, a brief introduction is made of RAM,
the simplest model of sequential execution, providing the background from which
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the models of parallel execution were developed. After RAM, we will present RAML

that extends the RAM ASM model with race condition managements rules.

1.2.1 RAM

The random-access machine (RAM) models the essential features of the traditional
sequential computer. The RAM is modeled by a Finite State Machine, a central
processing unit, (CPU). It implements a fetch-and-execute cycle in which it alter-
nately reads an instruction from a program stored in the random-access memory
and executes it. In the RAM model there are two types of memory that differ in
size and access speed: a register-file RF , that is a very fast memory but it has a
small number of storage units, and a random-access memory, that is slower than
RF but it has a large number of storage units. All operations are performed by the
CPU on data stored in its registers.

Definition 1.2.1. The RF is the single processor local memory that can be accessed
by only one agent at a time.

A CPU typically has a set of instructions, such as arithmetic and logical ones,
memory load and store ones for moving data between memory locations and regis-
ters, etc. A RAM program is a finite sequence of assembly language instructions.
A valid program is one for which each jump instruction goes to an existing label.
We assume for simplicity of exposition and without loss of generality that the last
instruction of code is Halt. Since we are not interested here in what a CPU com-
putes during its execution, our view of use and assignment actions is simple: an
assignment action changes the value of either a memory unit or a register, and a use
action does nothing; for this reason we introduce the NOP macros.

ASM ground model

We start by developing a simple abstract mathematical model, called M, of the RAM
processor architecture, which is the starting point for the stepwise formalization of
other processor architectures. In our model we define the following universes:

• UnitAddr is a memory unit2.

• Val is the data held in either a memory unit or a register.

• Register is the finite set of registers in the RF .

• OpCode = {Halt,Other,Load,Store,Lock,UnLock,Send,Receive}.

• Instruction is the instruction set of a processor3.

2Based on the real architecture, a memory unit can be either a location, page, or segment.
3In literature this set is also called Instruction Set Architecture (ISA)
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• ValidInstr = {Halt,Other,Load,Store}. This is the sub-set of instruc-
tions that can be executed by the current machine M.

• Executor ⊆ Agent, a sub-set of all possible agents. Each agent, called
executor, executes a list of instructions selected from the Instruction set.

And we introduce the following functions:

• static

– op : Instruction→ OpCode returns the opcode of a given instruction.

– memUnitAdr : Instruction → UnitAddr returns the address of the
given instruction.

– value : Instruction → Val returns the value of a given instruction’s
operand.

• controlled

– regfile : Register→ Val returns the value held in the given register

– mem : UnitAddr→ Val returns the value held at the given address

• monitored

– legal : Instruction × Executor → Boolean returns true if a given
executor executes a given instruction ∈ ValidInstr at all points in time.

We define two functions for memory access because of cost difference in access
time required for different types of memory.

The main rule of M provides a formal model of the RAM processor fetch-and-
execute cycle:

M(e) ≡
case state(e) of

Fetch : FETCH (e)
Execute : EXEC (currinstr(e), e)

where currinstr holds the current instruction that is executed by an executor e,
and state holds the current state of M. We have defined two macros, FETCH and
EXEC , one for each phase of the fetch-and-execute cycle. When state(e) is equal to
FETCH , M non-deterministically chooses the next instruction to execute. The state
is updated to Execute such that in the next run M will execute the EXEC macro.
Following are the rules for both macros:
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FETCH(e) ≡
choose instr in Instruction with legal(instr, e) in

currinstr(e) := instr
state(e) := Execute

Which instruction is selected depends on the result given by the legal function.
This function guarantees that, given a e ∈ Executor, M(e) never computes any
instruction /∈ ValidInstr.

EXEC(instr, e) ≡
case op(instr) of

Halt : HALT(e)
Store : STORE(memUnitAdr(instr), val(instr), e)
Load : LOAD(memUnitAdr(instr), reg(instr), e)
Lock : LOCK(memUnitAdr(instr), e)
UnLock : UNLOCK(memUnitAdr(instr), e)
Send : SEND(d, value, e)
Receive : RECV(s, destReg, e)
Other : NOP

To move data between memory units and RF in a RAM processor, there are
two memory instructions: load and store. Reading data means to access a memory
unit at the address held in a register and load it in another register. Writing data
means to store data in a memory unit at the address held in a given register. This
is formalized in the following two rules:

LOAD(adr, reg, e) ≡
regfile(reg, e) := mem(adr)
state(e) := Fetch

STORE(adr, value, e) ≡
mem(adr) := value
state(e) := Fetch

In this RAM model the other macros do not change the state of M.

LOCK(adr, e) ≡
NOP

UNLOCK(adr, e) ≡
NOP

SEND(d, value, e) ≡
NOP

RECV(s, destReg, e) ≡
NOP

HALT(e) ≡
state(e) := idle

When M executes the Halt macro, the control state is updated to idle. This
means that no more updates to the M’ state will be performed. The assumption for
the initial state of M is:

• state(e) := Fetch

• currinstr(e) := undef
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1.2.2 RAML: RAM ASM model with race conditions man-
agement

In this section we refine the basic single-core architecture of the RAM model consid-
ering a multiple threads running on the same processor. In this scenario, multiple
executors act concurrently, therefore we must introduce new rules to manage syn-
chronization problems; i.e. conflicts on shared resources which could result when
concurrent executors access the same memory units at the same time. For this
reason:

1. we extend the ValidInstr universe with two instructions, Lock and UnLock,
such that the new set of valid instructions is:

ValidInstr = {Halt,Other,Load,Store,Lock,UnLock}

2. we define three new functions:

• owner : UnitAddr→ Executor

returns the executor that has obtained a lock on a given memory unit
address

• lockcnt : UnitAddr × Executor→ Integer

counts the number of locks required by a given executor on a unit of
memory. For lockcnt there is a injective function succ (the successor
function) such that succ(lockcnt) is a natural number.

• locked : UnitAddr × Executor→ Boolean

where

locked(adr, e) =

{
true lockcnt(adr,e) > 0

false otherwise

3. we define two new macros, LOCK and UNLOCK , that are used by executors
to acquire and release locks on a given address. They are formalized in the
following two rules:

LOCK(adr, e) ≡
if owner(adr) = e then

lockcnt(adr, e) := lockcnt(adr, e) + 1
state(e) := Fetch

else
if owner(adr) = undef then

owner(adr) := e
lockcnt(adr, e) := 1
state(e) := Fetch
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In the second else branch, the state(e) := Execute such that in the next run
the Lock instruction will be executed continuously until the owner(adr) is
either equal to e or undef .

UNLOCK(adr,e) ≡
if owner(adr) = e then
if lockcnt(adr, e) = 1 then

owner(adr) := undef
lockcnt(adr, e) := lockcnt(adr, e)− 1

state(e) := Fetch

where the dynamic function lockcnt the number of times an agent has to
exit the Lock before it is released, and owner returns the executor that has
obtained the current lock.

The main rule of M and both the FETCH and EXEC macros remain unchanged in
this model.

Data transfer from to memory

To avoid race conditions for each memory access the processor must first check
whether or not an executor has already requested a lock on a given address. This is
done by calling the static function locked :

LOAD(adr,reg,e) ≡
if locked(adr, e) then

regfile(reg, e) := mem(adr)
state(e) := Fetch

STORE(adr,value,e) ≡
if locked(adr, e) then

mem(adr) := value
state(e) := Fetch

In both macros, if a given adr is locked by another executor, the state(e) :=
Execute, such that in the next M runs the lock test will continue to be performed,
until the lock on that adr will be released.

The assumption for the initial state of M is:

• state(e) := Fetch

• currinstr(e) := undef

• owner(adr) := undef , for all adr ∈ UnitAddr

• lockcnt(adr,e) := 0, for all adr ∈ UnitAddr and e ∈ Executor

There is an important theorem to state about synchronization management.

Theorem 1.2.2. Let e ∈ Executor, and let adr ∈ UnitAddr, UNLOCK(adr, e)
does not release a lock that e has not acquired on adr before.

Proof. Since the LOCK (adr, e) will update the control state variable state(e) to
Fetch, and execute the next instruction, iff e acquires a lock on adr.
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1.3 Models of Parallel execution

Having introduced the main models of sequential execution, this section surveys
a selection of models of parallel execution. Parallel computation models can be
classified into two categories according to the memory model of their target parallel
computers: shared and distributed memory models [59, 60]. For each model we
highlight three fundamental aspects: memory and synchronization management,
and communication cost.

1.3.1 Shared memory

PRAM

With the success of the RAM model for sequential computation, a natural way to
model parallel computation is to extend this model with parallel processing capa-
bility: P independent processors that share one common global memory pool. Such
parallel computational model, named PRAM, was first proposed by Fortune and
Wyllie [61]. It consists of an unbounded number, P, of processors working syn-
chronously. Execution may be in either SIMD4 or MIMD5 mode, thus with a single
or multiple flows of control respectively.

Synchronization. The RAM processor can execute instructions concurrently in
unit time and in lock-step with automatic and free synchronizations.

Memory levels. Each processor is a RAM machine with a set of registers rather
than a local memory. All processors share an unbounded global memory, via which
they communicate. With the only memory being the global memory, this is a one-
level memory model.

Memory access. Concurrent access to the global memory is allowed and only
takes one unit of time to be finished. There are several variations of the PRAM model
[59] which make different assumptions on concurrent memory access arbitration
mechanism. The less restricted variation is the CRCW PRAM model, which allows
concurrent read and concurrent write to the same memory unit with a mechanism
for arbitrating (Priority, Common and Arbitrary) simultaneous writes to the same
unit. By restricting the simultaneous write to one processor, the CREW PRAM
model was proposed in [61]. In such a model, simultaneous read to the same unit
was still allowed while only one processor may attempt to write to a unit. The most
restricted form of the PRAM model is the EREW PRAM model, which requires
that no two processors can simultaneously access any given memory unit.

4Single Instruction, Multiple Data
5Multiple Instruction Multiple Data
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Advantages. Algorithm designers can focus on the fundamental computational
difficulties and on the logical structure of parallel computations required to solve
the problem. It is easy to program because it is a simple extension of the RAM
model: the instruction set is composed of the RAM one plus a global read and
write. It hides issues like reliability, synchronization, message passing, and other
machine-related problems. The basic work measure is the product of the time to
perform the algorithm and the number of processors used. This model provides a
total expressibility, since there are no constraints on the forms of computation and
communication which may be performed.

Disadvantages. It does not take into account the latency and bandwidth costs
of communication. There is no abstraction from managing many parallel threads
and synchronization. Since the PRAM is too abstract for realistic implementa-
tion, there are several variants that take into account different aspects of parallel
architecture: asynchrony (APRAM [62] and Asynchronous PRAM [63]), memory
contentions management (Module Parallel Computer [64]), latency (LPRAM [65]
and BPRAM [66]), and hierarchical parallelism (YPRAM [67]).

ASM ground model. The PRAM model extends the RAML one with two more
memory access rules. PRAM considers three different memory access rules: EREW
(as for RAML), CREW and CRCW. For each of these we define different LOAD
and STORE macros. In the last two rules, the management of read and read/write
respectively is left to programmers.

• EREW (Exclusive Read, Exclusive Write)
LOAD(adr,reg,e) ≡
if locked(adr, e) then

regfile(reg, e) := mem(adr)
state(e) := Fetch

STORE(adr,value,e) ≡
if locked(adr, e) then

mem(adr) := value
state(e) := Fetch

• CREW (Concurrent Read, Exclusive Write)

LOAD(adr,reg,e) ≡
regfile(reg, e) := mem(adr)
state(e) := Fetch

STORE(adr,value,e) ≡
if locked(adr, e) then

mem(adr) := value
state(e) := Fetch

• CRCW (Concurrent Read, Concurrent Write)
LOAD(adr,reg,e) ≡

regfile(reg, e) := mem(adr)
state(e) := Fetch

STORE(adr,value,e) ≡
mem(adr) := value
state(e) := Fetch

The main rule of M as well as the FETCH and EXEC macros and the initial state
remain unchanged in this model.
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H-PRAM

The Hierarchical PRAM (H-PRAM) model, proposed by Heywood and Ranka [68],
consists of a collection of individual synchronous PRAMs that operate asynchronously
from one another. A hierarchy relation defines the organization of synchronization
between independent PRAMs. Suppose we have P-processor H-PRAM. At level 1
of the hierarchy, which is the view of the model before an algorithm executes its first
step, there is a single P-processor synchronous PRAM. Allowable instructions are
all PRAM instructions plus one: the partition instruction. It splits the P processors
into disjoint subsets (along with a corresponding disjoint block of shared memory
that is private to it). Each subset of processors is a synchronous PRAM operat-
ing separately from the others. This is seen as level 2 of the hierarchy. When the
algorithm terminates, a sub-PRAM waits until all of the algorithms on the other
sub-PRAMs terminate: this is supposed to be implemented by a synchronization
step on the sub-PRAMs which follows every partition step. When the synchro-
nization step on the sub-PRAMs finishes, the next step of the P-processor PRAM
algorithm at level 1 begins. Each of the algorithms in level 2 is designed with a
parameterized number of processors, so from its vantage point it is at level 1 of a
hierarchy. partition steps can be used here to create level 3 of the hierarchy. This
process may continue recursively until partitioning is no longer possible.

Memory levels. This model exposes a multiple-level memory model, since the
hierarchy of synchronous PRAMs is dynamically configurable.

Memory access. There are two variants of the H-PRAM:

1. Private H-PRAM. The partition instruction splits the shared memory propor-
tionately along with the processors, such that each sub-PRAM has its own
private contiguous block of shared memory disjoint from the shared memo-
ries of the other sub-PRAMs. This implies a multi-level hierarchical memory,
where access time in a sub-PRAM to its private block of shared memory is a
function of the size of the sub-PRAM, thus taking into account the increased
locality within a sub-PRAM.

2. Shared H-PRAM. The shared memory is not partitioned, thus each sub-PRAM
shares the global memory.

Synchronization A hierarchy relation defines the organization of synchronization
between independent PRAMs and how the individual PRAM algorithms run on the
sub-PRAMs. There are two types of synchronization:

• α-synchronization, occurring between the processors of a PRAM instruction
step. When all processors are running a sequence of local computations it is
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unnecessary for them to α-synchronize with each other until a communication
is required.

• β-synchronization, occurring between the sub-PRAMs at the end of a partition
step. This cost can be ignored if it will not dominate the computation plus
communication cost.

Both types are functions of the numbers of processors being synchronized (i.e. sub-
PRAMs size). It is important to consider that synchronization costs need not be
accounted for in a model since they can be subsumed into the costs of communication
operations being synchronized [69].

Communication H-PRAM is parameterized by latency. This cost is a function of
the number of processors being communicated amongst, and defined by, the specific
underlying architecture.

Advantages. This model accounts for and provides abstract control over commu-
nication and hierarchical parallelism, thus being more reflective of various parallel
architectures and communication locality. The H-PRAM is architecture indepen-
dent , despite not accounting for communication bandwidth. Moreover, it partially
abstracts from the expression of parallelism, communication and synchronization
through its use of the hierarchy.

Disadvantages. Despite satisfying Skillicorn’s requirements more than simpler
models, the cost formula can be complicated, as shown in [59].

ASM ground model. The H-PRAM model extends the PRAM model with the
possibility of processors and memory partitioning. This adds a constraint on mem-
ory accessibility: a sub-PRAM accesses its partition of the global memory only.
Therefore, a check on accessibility must be performed before every memory load/s-
tore. This is formalized by the following static function:

legalPartition : Executor × UnitAddr × LEVEL→ Boolean

legalPartition(e, adr, level) =


true if e and adr are relative to the same sub-PRAM

at a given level

false otherwise

Moreover, the definition of legal function must be changed as follows:

legal : Instruction × Executor→ Boolean
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legal(instruction, e) =


true if instruction ∈ ValidInstr and

legalPartition(e,memUnitAdr(instruction))

false otherwise

Both synchronization types are already formalized by functions and macros in-
troduced in the RAML model. The initial state and other macros remain unchanged
in this model.

1.3.2 Distributed memory

There are several parallel computational models assuming a distributed memory and
communication by message passing paradigm.

Bulk-Synchronous Process

The BSP model proposed by Valiant [70] attempts to bridge theory and practice
with a more radical departure from the PRAM. A BSP parallel computer requires:

• P processors/memories components;

• a router that delivers point-to-point messages between pairs of components;

• facilities for barrier synchronization.

Computations in BSP consist of a sequence of supersteps with periodicity L. In
each superstep each component is allocated a task consisting of a combination of
computation steps using data available locally before the start of the superstep, and
message transmissions, which are not guaranteed to have completed until the next
superstep.

Memory levels. BSP differentiates memory that is local to a processor from that
which is remote, but it does not differentiate network proximity. Therefore, this is
a two-level memory model, allowing the use of strict locality.

Synchronization After each period of L time units, called τ , a global check is
performed to ensure all components have finished one superstep. The cost of wait
steps is subsumed in the cost L of synchronizing up to P processors. In general, L
is determined empirically from timings by running benchmarks.

Communication All communications are implemented as bulk synchronizations,
that includes point-to-point messages. The BSP model posits bandwidth limitation
on the algorithm through limiting the maximum messages that can be sent/received
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in each superstep, h = L/g, where g is the minimum time gap between messages.
The time step Ts taken for a single superstep can be expressed as follows:

Ts = Max
L<i<P

(wi) + Max
L<i<P

(hi ∗ g) + L (1.1)

where i ranges over processes, wi is the local computation time and hi is the number
of message send/receive of process i. BSP specifies no particular topology only the
general communication characteristics indicated by L and g. All processors are seen
as being equally distant, so equally costly to communicate with.

Advantages. The BSP model is architecture independent and is essentially con-
gruent. A BSP programming library, called BSPlib [71], provides the SIMD par-
allelism and primitives for bulk synchronous remote memory access and message
passing.

Disadvantages. The BSP model has strong requirements on the capability of la-
tency hiding in the design and implementation of a parallel algorithm. BSP model
does not abstract from the expression of parallelism, nor does it abstract from syn-
chronization.

ASM ground model. The BSP ASM model modifies the PRAM one with fea-
tures related to distributed memory and bulk synchronization. In this model each
executor runs on a different RAM processor. An executor can access values residing
in locations either in its local or remote memory units. In the former case, the rules
performed are the same as the RAM model’s. In the latter case, executors exchange
data values through message passing that is formalized with two new instructions:
Send and Receive. The new set of valid instructions is:

ValidInstr = {Halt,Other,Load,Store,Send,Receive}.
In order to formalize the global check at the end of a superstep, we add a new

control state, called Wait , the SYNC macro, and the following monitored function:

globalCheckingT ime =

{
true if τ ends

false otherwise

Therefore the new main rule of M is:

M(e) ≡
if globalCheckingT ime then state(e) := Wait
else case state(e) of

Fetch : FETCH (e)
Execute : EXEC (currinstr(e), e)
Wait : SYNC (e)
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This global check is constrained in time since it must be executed after each
period τ of L unit times.

SYNC(e) ≡
forall executor in Executor with executor 6= e

if state(executor) = Wait then
state(e) := Execute

Only when all executors are synchronized, a new superstep starts.

Neither new computation steps nor new message transmissions are performed at
the end of τ . The control state is updated to Wait such that all executors must
wait for each other in a global synchronization.
The data movement instructions must be changed in order to consider the bulk
synchronization and that different actions are required whether a data is in a local
or in a remote memory unit. This is formalized with the following function:

isLocal : UnitAddr × Executor→ Boolean

that returns true if a given address is the local memory of a given executor.
Therefore, the new rules for LOAD and STORE macros are:

LOAD(adr,reg,e) ≡
if isLocal(adr, e) then

regfile(reg, e) := mem(adr)
state(e) := Fetch

else
RECV(owner(adr), regfile(reg, e), e)

STORE(adr,value,e) ≡
if isLocal(adr, e) then

mem(adr) := value
state(e) := Fetch

else
SEND(owner(adr), value, e)

We abstract from communication details by the introduction of the message
queue, called recvBuffer, where executors both store (enqueue) and load (dequeue)
messages. The maximum length of recvBuffer is h as stated by this model defini-
tion. Before sending data values, an executor must check whether the destination
can receive them or not, that is, recvBuffer is not full. Since we consider block-
ing communication instructions, if recvBuffer is full, that executor must wait (i.e.
state(e) = Execute) until at least one position is free.
No more communications are performed if globalCheckingTime is true. This is for-
malized with the following two macros:

RECV(s,destReg,e) ≡
if ¬s.recvBuffer.isEmpty then
destReg := s.recvBuffer.Dequeue()
state(e) := Fetch

SEND(d,value,e) ≡
if ¬d.recvBuffer.isFull then

d.recvBuffer.Enqueue(value)
state(e) := Fetch
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LogP

In 1993 Culler et al. proposed the LogP model [72], an asynchronous model of a
distributed-memory multi-computer in which processors communicate by point-to-
point messages. This model assumes that the parallel algorithms will need to be
developed with a large amount of data elements per processor, and that the high
latency and communication overhead, as well as limited bandwidth, will continue
to be a problem. It is derived from BSP, resolving perceived problems with BSP’s
performance at router saturation. The main parameters of the model are: L (the
latency of message passing); o (overhead of processor involved in message prepara-
tion and processing); g (the minimum time interval between successive messages,
its inverse is essentially the bandwidth of the communication); P (the number of
computers in this model). Thus, it is different from the BSP model with its addi-
tional parameter o, and different meaning of parameter L and g. L in LogP actually
measures the latency of message passing, reflecting the nature of asynchronous ex-
ecution. Usually with these four parameters, it is not easy to design algorithms on
the LogP model.

Memory levels. LogP is a two-level memory model providing scope for strict
locality.

Synchronization The model is asynchronous, i.e., processors work asynchronously
and the latency experienced by any message is unpredictable, but it has L upper
bound in the absence of stalls.

Communication It is assumed that the network has a finite capacity such that at
most L/g messages can be in transit from any processor or to any processor at any
time. If a processor attempts to transmit a message that would exceed this limit, it
stalls until the message can be sent without exceeding the capacity limit. Because of
variations in latency, the messages directed to a given target module may not arrive
in the same order as they are sent. The basic module assumes that all messages are
of small size. All processors are seen as being equally distant, so equally costly to
communicate with.

Advantages. The LogP is architecture independent and it is essentially congruent.

Disadvantages. This model specifies the performance characteristics of the inter-
connection network, but does not describe the structure of the network. Indeed, it
provides no scope for accounting for the lower communication costs between close
processors. LogP does not abstract from parallelism, synchronization and commu-
nication due to its asynchrony and greater degree of flexibility.
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ASM ground model. The LogP ASM model extends the PRAM one with fea-
tures related to distributed memory. In this model each executor runs on a different
RAM processor. An executor can access values residing in locations either in its
local or remote memory units. In the former case, the rules performed are the same
as those of the RAM model. In the latter case, executors exchange data values
through message passing that is formalized with two new instructions: Send and
Receive. The new set of valid instructions is:

ValidInstr = 〈Halt,Other,Load,Store,Send,Receive〉

The data movement instructions must be changed in order to consider that
different actions are required whether a data is in a local memory unit or in a
remote one. This is formalized with the following function:

isLocal : UnitAddr × Executor→ Boolean

that returns true if a given address is the local memory of a given executor.
Therefore, the new rules for LOAD and STORE macros are:

LOAD(adr,reg,e) ≡
if isLocal(adr, e) then

regfile(reg, e) := mem(adr)
state(e) := Fetch

else
RECV(owner(adr), regfile(reg, e), e)

STORE(adr,value,e) ≡
if isLocal(adr, e) then

mem(adr) := value
state(e) := Fetch

else
SEND(owner(adr), value, e)

We abstract from communication details by the introduction of the message
queue, called recvBuffer, where executors both store (enqueue) and load (dequeue)
messages. The maximum length of recvBuffer is L/g as stated by this model defi-
nition. Before sending data values, an executor must check whether the destination
can receive them or not, that is, recvBuffer is not full. Since we consider blocking
communication instructions, if recvBuffer is full, that executor must wait (state(e)
= Execute) until at least one position is free.
This is formalized with the following two macros:

RECV(s,destReg,e) ≡
if ¬s.recvBuffer.isEmpty then

destReg := s.recvBuffer.Dequeue()
state(e) := Fetch

SEND(d,value,e) ≡
if ¬d.recvBuffer.isFull then

d.recvBuffer.Enqueue(value)
state(e) := Fetch

1.4 Model of GPGPUs

In this section we define an ASM model of a real, mass-market architecture: the
GPGPU. The GPGPU architecture does not present a new model of parallel ex-
ecution. It is a special variant of the Private H-PRAM (recall Section 1.3), since
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GPGPUs’ cores are partitioned in a set of sub-PRAM, called CTA on Nvidia GPUs,
such that each sub-PRAM has its own private contiguous block of shared-memory
disjoint from the other ones in other sub-PRAMs. However, all sub-PRAM are equal
in number of RAM and can not be changed at run-time. Moreover, as for the BSP
when a given program P (i.e. Kernel) ends its execution a global check (i.e. bulk
synchronization) is performed to ensure all sub-PRAM running P have finished.

Following the same approach of previous sections we provide an overview of its
computational and architecture model, highlighting fundamental aspects, such as
memory and synchronization management, and the communication cost. Moreover,
we present GPGPUs implementations provided by the two main vendors: Nvidia
and AMD. After that, we explain its formalization using the ASM model. In our
explanation we follow a top-down approach, from the GPGPU computational model
to its architecture model.

1.4.1 The computational model

GPUs vendors have introduced the unified shader architecture to support pro-
grammable shaders that can be used to express computations other than 3D graph-
ics. GPU vendors create a programming toolchain capable of scheduling computa-
tions similar to those used for 3D shading (data-stream computations) on GPGPUs
cores. A GPGPU is a compute device capable of executing a very large number of
threads in parallel (to not be confused with operating system threads). It operates
as a co-processor to the main CPU, or host. More precisely, a portion of an appli-
cation that drives the computation of each core is commonly known as a shader (in
the traditional 3D terminology) or Kernel (a term to stress the will to go beyond
3D graphics).

GPGPUs from both Nvidia and AMD vendors provide a computational model
that has one master process executing on the CPU and driving one or more devices
(GPUs); thus a GPU is a sophisticated co-processor of the CPU. A device is a set
of computational processors capable of running Kernels , that is connected to two
memory sub-systems: the CPU RAM, called remote in this context, and one local to
the GPU. The master process can read and write to both local and remote memories
of any device, and it is capable of querying the status of the completion of these
tasks (i.e. reads and writes).

The program inputs and outputs can be set up to reside either in local or remote
memory. The parallel computation is invoked by setting up one or more outputs
and specifying a domain of execution for this output. In the case of a device having
multiple processors (such as a GPU device), a scheduler distributes the workload
region to various SIMD processors on the device. It is possible to schedule different
Kernels on a GPGPU at once, allowing different input streams to be processed by
a single application. Each physical processor in the GPGPU can execute a group of
threads together called wavefront or warp.
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Branch diversion

The effectiveness of an SIMD pipeline is based on the assumption that all threads
running the same Kernel program expose identical control-flow behavior. In other
words, a warp executes one common instruction at a time (i.e. single instruction
counter), so full efficiency is realized when all threads of a warp agree on their exe-
cution path. If threads of a warp diverge via a data-dependent conditional branch,
the warp serially executes each branch path taken, disabling threads that are not
on that path, and when all paths complete, the threads converge back to the same
execution path. Branch divergence occurs only within a warp; different warps exe-
cute independently regardless of whether they are executing common or disjointed
code paths.

Nvidia

The batch of threads that executes a Kernel is organized as a grid of cooperative
thread arrays, called Cooperative Thread Arrays (CTA), also called thread block,
as shown in Figure 1.1. Each thread has a unique thread identifier within the
CTA. Programs use a data parallel decomposition to partition inputs, work, and
results across the threads of the CTA. Each CTA thread uses its thread identifier
to determine its assigned role, assign specific input and output positions, compute
addresses, and select work to perform. The thread identifier is a three-element vector
tid, (with elements tid.x, tid.y, and tid.z ) that specifies the threads position within
a 1D, 2D, or 3D CTA. Each thread identifier component ranges from zero up to the
number of thread ids in that CTA dimension. Each CTA has a 1D, 2D, or 3D shape
specified by a three-element vector ntid (with elements ntid.x, ntid.y, and ntid.z ).
The vector ntid specifies the number of threads in each CTA dimension. Each CTA
has a unique CTA identifier (ctaid) within a grid of CTAs. Each grid of CTAs has a
1D, 2D , or 3D shape specified by the parameter nctaid. Each grid also has a unique
temporal grid identifier (gridid). Threads may read and use these values through
predefined, read-only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid.

Threads are an abstraction provided by the programming infrastructure. At a
lower level, the graphics hardware schedules the array of threads into the pool of
physical processors until the input data is eventually processed. It is possible to
schedule different Kernels on a GPU at once, allowing different input streams to be
processed by a single application.

Threads within a CTA execute in SIMT (single-instruction, multiple-thread)
fashion in groups called warps. A warp is a maximal subset of threads from a single
CTA, such that the threads execute the same instructions at the same time. Threads
within a warp are sequentially numbered. The warp size is a machine-dependent
constant. Typically, a warp has 32 threads. The number of warp in execution at
the same time is dependent on the active register usage of a Kernel . However,
optimization of register usage only yields performance gains through better memory
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Figure 1.1: Nvidia GPU Computational model. A cooperative thread array (CTA) is a set of

concurrent threads that execute the same kernel program. A grid is a set of CTAs that execute

independently.

latency hiding. If the warp is not supported by a suitable number of active registers,
the hardware will spill thread data into memory having a significant impact over
performance.

Threads within a CTA can communicate with each other using a fast-shared
memory. To coordinate the communication of the threads within the CTA, one can
specify synchronization points where threads wait until all threads in the CTA have
arrived. Threads in different CTAs can communicate and synchronize with each
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other only, but only using atomic functions and accessing in global memory, that is
2 order of magnitude slower than shared memory, thus with an important impact
over performance.

When a host program invokes a Kernel grid, the blocks of the grid are enumerated
and distributed to multiprocessors with available execution capacity, called Stream
processors. The threads of a thread block execute concurrently on one Stream
processor. As thread blocks terminate, new blocks are launched on the vacated
Stream processors.

AMD

AMD GPGPU’s computational model [20] is equivalent to Nvidia one, since arrays of
input data elements stored in memory are mapped onto a number of SIMD engines,
which execute Kernels to generate one or more outputs that are written back to
output arrays in memory. The stream processor schedules the array of threads onto
a group of threads processors, until all threads have been processed. Subsequent
Kernels can then be executed, until application completes. Wavefronts are composed
of quads, which are groups of 2x2 threads in the domain. Quads are processed
together. If there are non-active threads within a quad, the processor that would
have been mapped to those threads are idle. The main difference is related to the
level of abstraction for Kernel threads organization. AMD hides every details of it,
therefore programmers specify only the domain of execution, no other controls on
execution configuration is provided.

1.4.2 The memory model

While the specific resources available in a given target GPU will vary, the kinds of
resources will be common across platforms, and these resources are abstracted in
the GPGPU memory model through state spaces and data types. A state space is a
storage area with particular characteristics. All variables reside in some state space.
A variable declaration describes both the variables type and its state space.

The characteristics of a state space include its size, addressability, access speed,
access rights, and level of sharing between threads:

• registers are fast storage locations. The number of registers is limited, and
will vary from platform to platform. When the limit is exceeded, register
variables will be spilled to memory, causing changes in performance.

• The global state space is a memory that is accessible by all threads. For
any thread all addresses in global memory are shared. It is not sequentially
consistent, thus there can be race conditions between threads. Therefore,
developers must adopt lock-free and wait-free style programming.
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• The local state space is a private memory for each thread to keep its own
data. It is typically standard memory with cache. The size is limited, as it
must be allocated on a per-thread basis.

• The shared state space is a region of memory shared between a sub-set of
threads. An address in shared memory can be read and written by any thread
in the same sub-set.

Different implementations are provided by the two main GPUs vendors.
For instance, on Nvidia platforms, threads may access data from multiple mem-

ory spaces during their execution, as illustrated in Figure 1.2

Figure 1.2: Nvidia Memory Hierarchy.

Each thread has a private local memory. Each thread block (CTA, see Figure 1.1)
has a shared memory visible to all threads of the block and with the same lifetime
as the block. Finally, all threads have access to the same global memory. There are
also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces
are optimized for different memory usages. Texture memory also offers different
addressing modes, as well as data filtering, for some specific data formats. The
global, constant, and texture memory spaces are persistent across Kernel launches
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by the same application. Both the host and the device maintain their own local
memory, referred to as host memory and device memory, respectively, as shown in
Figure 1.3.

Figure 1.3: Architectural view of data transfer between CPU and GPU (with averaged observed

bandwidth)

The device memory may be mapped and read or written by the host, or, for
more efficient transfer, copied from the host memory through optimized API calls
that utilize the devices high-performance Direct Memory Access (DMA) engine.

1.4.3 The architecture model

One of the main differences between GPUs and CPUs is that the former devote
greater fraction of their transistor to arithmetic units, whereas CPUs devote them
to cache. It is expected that this difference will continue in the future. This means
that programmers will need to manage data locality much more carefully on fu-
ture GPUs than they do on today’s CPUs. Indeed, memory and communication
models are the most important aspects of any parallel architecture, thus different
processors have different design solutions. An architecture such as Cell BE has a
non-cached, non-coherent6 shared memory, so all data transfers between a core’s

6It is not guaranteed the consistency of data stored in local caches of a shared memory.
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small private memory and the global memory must be orchestrated through explicit
memory-transfer commands. GPU architectures have two levels of non-coherent lo-
cal memory (on-chip and off-chip). They cannot be accessed directly from the CPU,
but only using dedicated hardware and executing dedicated instructions.
Therefore, three elements of an architecture model we are interested in: the structure
of processor, the memory model and the CPU-GPU communication model.

AMD Stream Processor

The latest stream processor from AMD is called Cypress. As shown in Figure 1.4,
Cypress has 20 SIMDs, each of which has 16 of what AMD calls Thread Processors
(TP) inside it. Each of those TPs has 5 execution units, a branch prediction unit

Figure 1.4: AMD Cypress architecture building blocks.

and a set of general purpose registers. Of the five units in each in each TP, there
are four units which can handle a limited number of instructions per clock cycle and
a fifth special function’ unit. The four “standard” FPUs can handle the following
instructions per clock cycle:
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• Four 32-bit FP MAD

• Two 64-bit FP MUL or ADD

• One 64-bit MAD

• Four 24-bit Int MUL or ADD

The fifth “special function” unit is a superset of the other execution units in
each TP but it can also handle more complex calculations such as integer division
and bit shifting.

The command processor (CP) fetches command stream and data from dedicated
registers mapped in CPU RAM, allowing the master process to drive the current
device. The CP is DMA capable, so it can interact with host RAM without CPU
arbitration. The Thread Generator (TG) is responsible for getting thread operations
and data into the right formats for TPs (e.g. arranging data for optimal access),
before passing down a thread batch for the dispatch hardware to execute. When
TG completes, the Ultra-Threaded Dispatcher processor (UTDP) dispatches ready
threads, which can be variable size in terms of objects, to SIMD engines for further
processing. Each SIMD has a dedicated Fetch Unit that is responsible for requesting
data from the memory controller and loading registers with returned data out of the
cache.

On AMD platform the wavefront is a group of threads executed in lockstep on
a single SIMD engine. A full wavefront contains up to 64 threads.

Memory. AMD equips each SIMD engine with one 8 KB L1 cache for storing
texture and vertices, and one 32 KB local data store, called Local Data Shared, that
is entirely under the programmer’s control. These two caches enable the TPs in the
same SIMD engine to communicate to each other and share data without having
to resort to off-die memory. For data sharing between threads executed on TPs
of separate SIMDs, there’s the Global Data Share, a 64 KB memory that is not
exposed by the AMD Stream SDK [20] yet, thus it’s up to the compiler to figure out
how to best use it. In order to manage the inter-SIMD interaction, AMD Cypress
includes Global Synchronization Registers, which means that programmers will can
implement a synchronization primitive like a semaphore on a global level in the
future.

Moreover, there is a second level in the cache hierarchy, a shared 512 KB (ag-
gregate) L2 cache divided into 4 modules of 128 KB each which are accessed via a
1024-bit crossbar sitting between themselves and the L1s.

In an effort to satisfy requirements with regards to memory transfer correct-
ness specific to GPGPUs, AMD Cypress supports the Cyclic Redundancy Checking
(CRC) [73] to memory transfers.

The CPU processor units do not directly access GPU local memory; instead they
issue memory requests through dedicated hardware units. There are two ways to
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access memory - cached and uncached. Aside from caching, the main difference
between the two is that uncached memory supports writes to arbitrary locations
(scatter), whereas cached memory writes allow outputs to the associated domain
location of the thread only.

Finally, AMD Cypress supports up to a total of 4 GB of GDDR5 DRAM memory
on board.

CPU-GPU communication. All communication and data transfers between the
system and GPU happen over the PCI-Express (PCI-e) channel, as shown in Figure
1.3. Transfers from the system to the GPU occur through the DMA engine. This
DMA unit can run asynchronously from the rest of the GPU allowing parallel data
transfers when the GPU array is busy running a previous GPU Kernel . Applications
can request a DMA transfer from AMD CAL using special routines which allow
copying data buffers between remote and device local resources.

nVidia GF100

The GF100 or Fermi based GPU is a MIMD array of SIMD processors, partitioned
into Graphics Processing Clusters (GPCs), as illustrated in Figure 1.5. GPCs exe-
cute worked assigned by the GigaThread Engine scheduler, that is also responsible
for creating and dispatching thread blocks in parallel. This scheduler is one of the
most important technologies of the GF100 architecture because it allows to execute
multiple Kernels of the same application on the GPU at the same time. However,
Kernels from different application contexts still run sequentially.

Each GPC is armed with its own Raster Engine interfacing with up to four
Stream Multiprocessors (SMs).

A SM comprises 32 CUDA cores (see in Figure 1.6). As described in [74], a
CUDA core executes a floating point or integer instruction per clock through a fully
pipelined integer arithmetic logic unit (ALU that supports full 32-bit precision for
all instructions) and floating point unit (FPU that supports the IEEE 754-2008
floating-point standard). Therefore, GF100 provides the fused multiply-add (FMA)
instruction for both single and double precision arithmetic.

Moreover, each SM has 16 load/store units (LD/ST), allowing source and desti-
nation addresses to be calculated for sixteen threads per clock. Supporting units load
and store the data at each address to cache or DRAM. Special Function Units (SFUs)
execute transcendental instructions such as sin, cosine, reciprocal, and square root.
The SFU pipeline is decoupled from the dispatch unit, allowing the dispatch unit
to issue to other execution units while the SFU is occupied.

Each SM features two warp schedulers and two instruction dispatch units, allow-
ing two warps to be issued and executed concurrently. GF100’s dual warp scheduler
selects two warps (of 32 threads each), and issues one instruction from each warp to a
group of sixteen CUDA cores, sixteen load/store units, or four SFUs. Because warps
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Figure 1.5: Block diagram of the Nvidia GF100 GPU

execute independently, GF100’s scheduler does not need to check for dependencies
from within the instruction stream.

Nvidia arms also each SM with a PolyMorph engine. This refers to a five stage
piece of fixed-function logic that works in conjunction with the rest of the SM
to fetch vertices, tessellate, perform viewport transformation, attribute setup, and
output to memory. In between each stage, the SM handles vertex/hull shading and
domain/geometry shading. From each PolyMorph engine, primitives are sent to the
Raster Engine, each capable of eight pixels per clock (totaling 32 pixels per clock
across the chip).

The general specifications and features of a compute device depend on its com-
pute capability [19]. Devices with the same major revision number are of the same
core architecture. The major revision number of devices based on the Fermi archi-
tecture is 2. Prior devices are all of compute capability 1.x.

Memory. Each of the 16 SMs has its own 64KB shared memory/L1 cache pool,
which can either be configured as 16 KB shared memory/48 KB L1 or vice versa.
This shared memory keeps data as local as possible, facilitating extensive reuse of
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Figure 1.6: Nvidia Streaming Multi-processor architecture.

on-chip data, and greatly reduces off-chip traffic. Moreover, GF100 features a 768
KB unified L2 cache that services all load, store, and texture requests. This cache
is read/write and fully coherent compared to previous Nvidia GPUs’ versions where
L2 cache was read-only. Finally, Nvidia GF100 supports up to a total of 6 GB of
GDDR5 DRAM memory on board.

GF100 provides the Single-Error Correct Double-Error Detect (SECDED) ECC
[75] based protection of data in memory. This corrects any single bit error in hard-
ware as the data is accessed. In addition, SECDED ECC ensures that all double bit
errors and many multi-bit errors are also be detected and reported so that the pro-
gram can be re-run rather than being allowed to continue executing with bad data.
Fermis register files, shared memories, L1 caches, L2 cache, and DRAM memory are
ECC protected.

CPU-GPU communication. A host interface connects the GPU to the CPU
via PCI-Express. Transfers management is the same of AMD GPUs.



1.4. MODEL OF GPGPUS 31

1.4.4 ASM ground model

In this section we define a new ASM ground model for GPGPUs, based on ASM
models presented in Section 1.3 and on GPGPUs memory model features. The
memory access rule is the same of PRAM CRCW. For instance, on Nvidia GPUs, this
is stated in Appendix G “Compute Capabilities” (CC) of the CUDA Programming
guide [19]. For CC 1.x devices the specification states ”if two addresses of a memory
request fall in the same memory bank, there is a bank conflict and the access has
to be serialized. The hardware splits a memory request with bank conflicts into as
many separate conflict-free requests as necessary, decreasing throughput by a factor
equal to the number of separate memory requests. If the number of separate memory
requests is n, the initial memory request is said to cause n-way bank conflicts. If
a non-atomic instruction executed by a warp writes to the same location in shared
memory for more than one of the threads of the warp, only one thread per half-warp
performs a write and which thread performs the final write is undefined.”. Whereas,
having CC 2.0 devices, the specification states “A bank conflict only occurs if two or
more threads access any bytes within different 32-bit words belonging to the same
bank. If two or more threads access any bytes within the same 32-bit word, there
is no bank conflict between these threads: For read accesses, the word is broadcast
to the requesting threads; for write accesses, each byte is written by only one of the
threads (which thread performs the write is undefined). ”

In the GPGPU ASM model we define the following universes:

• UnitAddr is a memory unit.

• Val is the data type held in either memory or register.

• Register is the finite set of registers in the RF .

• OpCode = {Halt,Other,Load,Store}.

• Instruction is the instructions set of a processor.

• ValidInstr = {Halt,Other,Load,Store}.

• Executor ⊆ Agent, agent that execute a list of instructions selected from
Instruction set.

and we introduce the following functions:

• static

– op : Instruction→ OpCode returns the opcode of a given instruction.

– memUnitAdr : Instruction → UnitAddr returns the address of the
given instruction.
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– value : Instruction → Val returns the value of a given instruction’s
operand.

– isGlobal : UnitAddr → Boolean returns whether a given address is in
global memory or not (i.e. shared memory).

• controlled

– regfile : Register→ Val returns the value held in the given register

– mem : UnitAddr→ Val returns the value held at the given address

• monitored

– legalPartition : Executor × UnitAddr→ Boolean

legalPartition(e, adr) =

{
true if e and adr are relative to the same sub-PRAM

false otherwise

– legal : Instruction × Executor→ Boolean

legal(instruction, e) =


true if instruction ∈ ValidInstr and

legalPartition(e,memUnitAdr(instruction))

false otherwise

– canAccess : UnitAddr × Executor→ Boolean

that returns true if for some management of concurrency a given executor
can access a given address. If the access to a given adr is not possible,
what must be done is left undetermined in the model through the use of
choose rule.

The main rule of M that provides a formal model of the GPGPU is the same of BSP
model:

M(e) ≡
case state(e) of

Fetch : FETCH (e)
Execute : EXEC (currinstr(e), e)
Wait : SYNC (e)

where the macros are formalized with the following rules:
FETCH(e) ≡
choose instr in Instruction with legal(instr, e) in

currinstr(e) := instr
state(e) := Execute

and



1.4. MODEL OF GPGPUS 33

EXEC(instr, e) ≡
case op(instr) of

Halt : HALT(e)
Store : STORE(memUnitAdr(instr), val(instr), e)
Load : LOAD(memUnitAdr(instr), reg(instr), e)
Lock : LOCK(memUnitAdr(instr), e)
UnLock : UNLOCK(memUnitAdr(instr), e)
Send : SEND(d, value, e)
Receive : RECV(s, destReg, e)
Other : NOP

where

LOCK(adr, e) ≡
NOP

UNLOCK(adr, e) ≡
NOP

SEND(d, value, e) ≡
NOP

RECV(s, destReg, e) ≡
NOP

HALT(e) ≡
state(e) := Wait

This global check must be performed whenever a processor ends its computation.

SYNC(e) ≡
forall executor in Executor with executor 6= e
if state(executor) = Wait then

state(e) := idle

Only when all executors finish, their results can be transferred to the CPU.
As introduced in Section 1.4.3, GPGPUs have two levels of memory other than RF

. Which memory is accessed does not change how the M’s state is updated. For this
reason we modify memory load and store macros as follows:

LOAD(adrS,adrD,e) ≡
if isGlobal(adrD) then
if canAccess(adrS, e) and canAccess(adrD, e) then

mem(adrD) := mem(adrS)
state(e) := Fetch

else
choose s ∈ Fetch,Execute in

state(e) := s
else

regfile(reg, e) := mem(adrS)
state(e) := Fetch
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STORE(adr,value,e) ≡
if canAccess(adr, e) then

mem(adr) := value
state(e) := Fetch

else
choose s ∈ Fetch,Execute in

state(e) := s

The assumption for the initial state of M is:

• state(e) := Fetch

• currinstr(e) := undef



Chapter 2

Expressing concurrency paradigms
on VEEs

Each model presented in the previous section tries to act as a bridging model between
real architectures and parallel programming. As result, there are many different
programming environments, each of which is specialized in a specific domain. In
this thesis we do not formulate a bridging model but provide an approach to express
each model on a VEE to overcome the diverging gap between the actual architectures
and the abstract view offered by VEEs. The mapping between them must preserve
the semantic and represents barriers implicitly using known VEE semantic elements
already perceived by the programmers. Therefore, in this chapter we give an answer
to the following questions:

1. Is it possible to expose underlying architecture features at the VEE level by
using standard semantic objects of VEEs (e.g. static and instance fields, meth-
ods, etc.)? If yes, how?

2. Using those features exposed at VEE level, is it possible to express mapping
between execution models introduced in Chapter 1 and a VEE, such as the
CLI?

In the following sections, firstly we present a brief summary of VEEs’ main design
features and capabilities in order to make the thesis self-contained.

2.1 Virtual Execution Environment: design and

capabilities

VEEs provide adaptable software suitable for today’s rapidly changing, heteroge-
neous computing environment, since they makes aspects of the host execution en-
vironment virtual by interposing a layer that mediates program execution through
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dynamically examining and translating a program’s instructions before they are ex-
ecuted on the host CPU. The ideas of VEEs along with intermediate languages
and language independent execution platforms have attracted researchers for a long
time. Well known examples include UCSD P-code [76], AS-400 [77], hardware em-
ulators such as VMWare [78] and Xen [79], semi-platform independent programming
language such as the Sun’s JVM [32] and more recently Microsoft’s Common Lan-
guage Infrastructure (CLI) [1]. The main reasons why researchers are looking at
alternative implementation paths for native compilers:

• Portability. By using an intermediate language n languages on m platforms
can be implemented by n + m translator instead of n * m translators.

• Efficiency. By delaying the translation to a specific native platform as much
as possible, the execution platform can make optimal use of the knowledge
of the underlying architecture, or even adapt to the dynamic behavior of the
program.

• Security. High-level intermediate code is more amenable to deployment and
run-time enforcement of security and typing constraints than low level binaries.

• Interoperability. By sharing a common type system and high-level execution
environment interoperability between different languages becomes easier than
binary interoperability.

• Flexibility. Combining high level intermediate code with meta-data enables
the construction of meta-programming concepts such as reflection, dynamic
code generation, serialization, etc.

Both JVM and CLI virtual machines offer many services such as dynamic load-
ing, garbage collection, Just-In-Time (JIT) compilation that allow to provide all
features previously listed. These VMs are stack-based since their operations read
values from a stack of operands and push the result on the stack. Many well-known
languages adopt a stack-based VM: F# [80], OCaml [81], Python [82], and Muskel
[41] are examples. An alternative to stack-based VMs are register-based VMs, these
machines offer the abstraction of registers instead of a stack of operands to pass
the values to the instructions; an example of register-based VM is the machine of
Perl 6 called Parrot [83], Nvidia PTX [84], and AMD Intermediate Language [85].
Although both stack-based and register-based machines are Turing equivalent there
always is a fervent debate among the implementers of which model offer better
performance.

In this thesis we focus our attention on multi-threaded strongly-typed stack-
based VMs, such as the JVM and the CLI. In particular we are interested on the
latter’s implementations, i.e. Microsoft CLR [33] and Mono [86], because it provides
a standard specification [1] for executable code and the execution environment in
which it runs. These VEEs hold information about the program types, and their
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structures. In particular they are be able to reflect types and their methods to
running programs. Using these information is possible by a meta-program to map
differ concurrency models, as we will explain later. For these reason the CLR (and
the JVM as well) is a good example of a Strongly Typed Execution Environment
(STEE).

2.2 Strongly Typed Execution Environment

The STEE provides direct support for a set of built-in data types, defines a hypo-
thetical machine with an associated machine model and state, a set of control flow
constructs, and an exception handling model. Its execution model is type driven
and guarantees that type of values can be always established and values are always
accessed only using the operators defined on them.

2.2.1 Machine model and state

The STEE manages multiple concurrent threads of control (not necessarily the same
as the threads provided by a host operating system) [1]. A thread can be viewed as
a singly linked list of activation records, where an activation record is created and
linked back to the current record by a method call instruction, and removed when the
method call completes (either by a normal return, a tail call, or by an exception).
It is usual, but not necessary, that the activation records of a single thread are
allocated on a run-time stack. However, since the management of activation records
is abstracted away in the CLI, and to avoid confusion, we shall use the term “stack”
here exclusively to refer to the evaluation stack of the virtual machine. In this thesis
we assume this level of abstraction of the execution system as machine model, since
it hides loads of details such as registers, stack and heap implementation. Figure
2.1 illustrates the machine (global) state model, which includes threads of control,
method states, and multiple heaps in a shared address space.

Method state and the evaluation stack

Method state describes the environment within which a method executes. Associ-
ated with each method state there are: an evaluation stack (EvalS), an array of local
variables, and an array of arguments.

The EvalS contains intermediate values of the computation performed by the
executing method (the operand stack in JVM terminology). The EvalS is made
up of slots that can hold any data type. Most CLI instructions retrieve their ar-
guments from the EvalS and place their return values on the stack. Arguments to
other methods and their return values are also placed on the EvalS. The ECMA
specification [1] (partition I) states some constraints on the EvalS:
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Figure 2.1: CLI Machine State Model

1. Depth and types of each element on the EvalS, at any given point in a program
shall be identical for all possible control flow paths.

2. For every instruction the specification defines how values are pushed onto a
stack or popped off a stack.

3. Backward branch constraints. If that single-pass analysis arrives at an instruc-
tion, call it location X, that immediately follows an unconditional branch, and
where X is not the target of an earlier branch instruction, then the state of the
evaluation stack at X, clearly, cannot be derived from existing information. In
this case, the CLI demands that the evaluation stack at X be empty.

and guarantees the so-called maxstack property on the EvalS:

• Every method specifies a maximum number of items, called maxstack, that
can be pushed onto the CIL evaluation stack. By analyzing the CIL stream
for any method, it is easy to determine that number. However, specifying
that maximum number ahead of time helps a CIL-to-native-code compiler in
allocating internal data structures that model the stack and/or verification
algorithm.

The local variables and arguments arrays, like the EvalS, can hold any single data
type or an instance of a value type.

Moreover, associated with each method is meta-data that specifies:

• whether the local variables and memory pool memory will be initialized when
the method is entered;
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• the type of each argument and the length of the argument array;

• the type of each local variable and the length of the local variable array.

2.2.2 CLR compilation toolchain

Though other languages’ code can be converted to run under JVM, they don’t
acquire true cross-language capabilities. Instead, the CLR is language neutral and
enables multi-language applications to be developed. To assist this interoperability,
a Common Type System (CTS) [1] is defined together with a Common Language
Specification (CLS) [1] a set of rules that each component of the application must
obey. Finally, the language used to write the instructions is called the Common
Intermediate Language (CIL) [1]. Regardless of which high-level language you use,
the result of compilation is a managed module. A managed module is a standard
Windows portable executable (PE) file that requires the CLR to execute. The CLR
does not actually work with modules; it works with assemblies. An assembly is a
logical grouping of one or more managed modules or resource files. It represents the
smallest unit of reuse, security, and versioning. In JVM terms an assembly could
roughly be compared to a JAR file. In addition to emitting CIL, every compiler
targeting the CLR is required to emit full meta-data into every managed module.

CIL code is sometimes referred to as managed code because the CLR manages its
lifetime and execution. The CLR management includes, but is not limited to, three
major activities: type control, structured exception handling, and garbage collection.
A STEE can interpret the CIL or compile it using a Just-in-Time Compiler (JIT)
into the native code of the underlying architecture. JVM is an interpreter that could
rely on a JIT compiler to improve execution speed; CLR assumes that the CIL is
always compiled before execution. The tool chain required to run code is illustrated
in Figure 2.2.

The JIT compilation is done on demand, meaning that a method is compiled
only when it is called. The compiled methods stay cached in memory, but they can
be discarded if not used. If a method is called again after being discarded, it is
recompiled.

2.2.3 Just In Time compilation

STEE compiles the CIL code into native CPU code using the JIT. CLR (as well
as JVM) adopts a two-stage compilation. At the 1st stage, a compiler that targets
the CLR forms program files (i.e. assembly) in a standard machine independent
format containing both code (i.e. intermediate language (CIL)) and meta-data. At
the 2nd stage, the JIT compiler converts the CIL as needed during execution and
stores the resulting native code for subsequent calls. The loader creates and attaches
a stub to each one of a type’s methods when that type is loaded. On the initial
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Figure 2.2: Basic CLR toolchain: from source code to its execution.

call to the method, the stub passes control to the JIT compiler, which converts
the CIL for that method into native code and substitutes the stub with the native
code location address. The choice of representing types and code in intermediate
language form, rather than machine code, is somewhat constrained because of design
goals. Without information on types it is almost impossible to have general support
for dynamic loading of modules, thus reducing reuse of software. Furthermore, the
compiler verifies the CIL code and relative meta-data it receives as input to find out
whether the code is type safe or not, which means that it only accesses the memory
locations it is authorized to access. A key aspect of the CLR programming model
is the heavy reliance on meta-data.

2.2.4 Meta-data

Meta-data contains all the information necessary to describe and reference types
defined by the type system. The concept of program meta-data arises naturally in
those languages where programs are data, e.g. LISP. In these languages, the normal
ways to describe relationships about different pieces of data can be used equally well
to annotate programs with meta-data. However, program meta-data are common
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in more traditional languages as well, although mostly in a limited way. Recently,
the notion of program meta-data was widely used both in the design of languages
(e.g. C#, Java) and in the corresponding execution environments (.NET CLR and
JVM). These forms have important features:

• they are general purpose, i.e. the schema for their content can be defined by
the programmer, and the mechanism to set and retrieve the content is not
specific to a particular schema;

• they can be applied to generic program elements, with the programmer be-
ing able to declare specific restrictions about which class of elements can be
designated as targets;

• they have customizable lifetime and location, encompassing all the range from
source-only meta-data (as comments) to run-time meta-data (as typing infor-
mation with reflection).

On VEEs, such as CLR and JVM, meta-data provides a common interchange
mechanism for use between tools that manipulate programs (such as compilers,
debuggers, and run-time code generators (RCG), as well as between those tools
and the VEE. When types become a shared abstract ion between the execution
environment and the programming language a larger amount of information is made
available about a program to the run-time and to all the other programs interested
in code analysis. Partial evaluators and programs can even execute these binaries
with different semantics from the one of the execution environment. The simplicity
of manipulate intermediate language and meta-data makes possible code analysis
that would be hard to do in other contexts. Besides ordinary code analysis, the
fact that types are shared between execution environment and the programming
language implies that it is possible to provide libraries without implementation. The
programmer makes use of such libraries and its invocation to library methods and
types are used as placeholders into the binary format for further processing. After
compilation programs may manipulate the output looking for special patterns inside
the intermediate language, types and meta-data. The post processing may be done
for several reasons: in [87] it is done for run-time code generation; a post processor
would optimize patterns deriving from the use of domain specific operators; in [88]
a meta-program processes sequential programs in their binary form and generates
optimized parallel code; the executable is translated into an executable for a different
platform.

As stated in [1], the CLI uses the meta-data to create instances of the types
as needed and to provide data type information to other parts of the infrastructure
(such as remoting services, assembly downloading, and security). After compilation,
programs may manipulate the output looking for special patterns inside the CIL,
types and meta-data. The .NET Framework provides an easy-to-use serialization
mechanism for object implementers.
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A key aspect of the CLR model’s reflection is its extensibility. Indeed, it supports
arbitrary meta-data attributes without introducing new keywords into the program-
ming language. Together with the meta-data, required by the CLR for loading and
managing the types contained within an binary file, it is possible to store arbitrary
information in the form of Custom Attributes (CA). A CA is an instance of a class
that inherits from the Attribute class. A CA is created by invoking one of its con-
structors, though all the values used to create it must be computable at compile
time. CAs are serialized into an assembly at compile-time and ignored by the exe-
cution system. Nevertheless, the reflection API provides a means to retrieve these
attributes at run-time. Follows a custom attribute written in C# that stores some
tracking information about code modifications that you would typically record as
comments in source code:

[ Attr ibuteUsage ( Att r ibuteTarget s . Class | Attr ibuteTarget s . Method ,
Al lowMult ip le = true ) ]

public class In foTrackAttr ibute : System . Att r ibute
{

private int in fo ID ;
private DateTime modi f i cat ionDate ;
private s t r i n g developerID ;
private s t r i n g fixComment ;
public In foTrackAttr ibute ( s t r i n g nInfoID , s t r i n g nModif icat ionDate ,

s t r i n g nDeveloperID )
{

this . in fo ID = nInfoID ;
this . mod i f i cat ionDate = System . DateTime . Parse ( nModi f icat ionDate )

;
this . deve loperID = nDeveloperID ; }

public s t r i n g InfoID { get { return in fo ID ; } }
public DateTime Modi f i cat ionDate {

get { return modi f i cat ionDate . ToShortDateString ( ) ;
}}

public s t r i n g DeveloperID {
get { return developerID ; } }

public s t r i n g FixComment {
get { return fixComment ; } s e t { fixComment = value

;}}
}

}

2.2.5 Common Intermediate Language

CIL is a standard ECMA nr.335 [1] since 2005. There are several implementation of
it. The two most important are the Microsoft MSIL [89] and the Mono CIL [86].
Consider the C# code in listing 2.1.

public int Fibonacc i ( int i t e r a t i o n )
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{
int prev ious = −1;
int r e s u l t = 1 ;
for ( int i = 0 ; i <= i t e r a t i o n ; ++i )
{

int sum = r e s u l t + prev ious ;
p rev ious = r e s u l t ;
r e s u l t = sum ;

}
return r e s u l t ;

}

Listing 2.1: C# source code that computes Fibonacci numbers

When the compiler compiles the C# code in Listing 2.1, a signature for the
function is generated that looks like Listing 2.2.

. method public h idebys i g i n s t ance in t32 Fibonacc i ( in t32 i t e r a t i o n ) c i l
managed {
. maxstack 2
. l o c a l s i n i t (

[ 0 ] in t32 prev ious ,
[ 1 ] i n t32 r e s u l t ,
[ 2 ] i n t32 i ,
[ 3 ] i n t32 sum )

{

Listing 2.2: CIL resulting code, method’s signature.

Following the signature, the compiler computes slots that the execution engine
requires. The amount of stack that is allocated for the method appears right after
the signature declaration. Following the stack declaration, the compiler initializes
(if needed) and declares each of the local variables that is required to evaluate this
method. The resulting CIL looks something like the snippet of CIL code shown in
Listing 2.2. Notice that this routine requires two stack slots to execute. One of the
functions performed by the compiler is to determine how large the stack needs to
be. For this example, it has been determined that no more than two stack slots will
ever be required.

L 0001 : ldc . i 4 .m1
L 0002 : s t l o c . 0
L 0003 : ldc . i 4 . 1
L 0004 : s t l o c . 1
L 0005 : ldc . i 4 . 0
L 0006 : s t l o c . 2
L 0007 : br . s L 0017
L 0009 : nop
L 000a : l d l o c . 1
L 000b : l d l o c . 0
L 000c : add
L 000d : s t l o c . 3
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L 000e : l d l o c . 1
L 000f : s t l o c . 0
L 0010 : l d l o c . 3
L 0011 : s t l o c . 1
L 0012 : nop
L 0013 : l d l o c . 2
L 0014 : ldc . i 4 . 1
L 0015 : add
L 0016 : s t l o c . 2
L 0017 : l d l o c . 2
L 0018 : ldarg . 1
L 0019 : cgt
L 001b : ldc . i 4 . 0
L 001c : ceq
L 001e : br t rue . s L 0009
L 0020 : r e t

Listing 2.3: CIL resulting code, method’s body.

Arguments are one-based indexed and are referenced with ldarg.x . Every in-
stance method has an “invisible” argument, called Argument Zero, not specified in
the method signature: the class instance pointer, named this. Because static meth-
ods do not have such an “invisible” argument, for them argument number 0 is the
first argument specified in the method signature. Local variables are zero-based and
are referenced by ldloc.x . Listing 2.3 shows an example of the CIL code that is
used to push an argument (argument 1) onto the stack and store it in a variable
(location zero). It is important to note how the scope of variables is lost in the
CIL code. It is not always possible to reconstruct it. A possible solution is pro-
posed by Cisternino at al. in a[C#] [90]. a[C#] language extends the syntax of the
C# language to allow programmers to annotate statements and code blocks using
special custom attributes (e.g. Parallel), and retrieve them at run-time. Each of
these custom attributes defines a scope inside the CIL code. However, a dedicated
source-to-source compilation it is required to translate a[C#] code into standard
C# code.

2.2.6 Delegate

They provide a mechanism for binding to a specific method on a specific target
object. Informally, a delegate, i.e. an instance of a delegate type, is an object that
points towards an invocation list of pairs of target objects and target methods. Upon
the invocation of a delegate with a list of arguments, the methods in its invocation
list are invoked sequentially with the corresponding target object and the given
arguments, returning to the delegate caller the return value of the last method in
the list.

Delegates are used in CLR-based libraries to represent the capability of calling a
particular method. To that end, delegates are similar to a single-method interface,
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the primary difference being that interfaces require the target method’s type to
have predeclared compatibility with the interface type. In contrast, delegates can
be bound to methods on any type, provided that the method signature matches
what is expected by the delegate type.

To instantiate a delegate, a method and optionally a target object reference are
required. The latter is mandatory only when the binding is to an instance method.
The System.Delegate type provides the CreateDelegate static method for creating
new delegates that are bound to a particular method and object.

The following C# code uses the CreateDelegate method to bind a delegate to a
static method and an instance method:

/∗ Delega te d e f i n i t i o n ∗/
public de l e ga t e int BinaryOp ( int x , int y ) ;

/∗ Target c l a s s ∗/
public class MathLib {

i n t e r n a l int sum = 0 ;

public int Add( int m, int n) {
sum += m + n ;
return m + n ;

}

public stat ic int Subtract ( int a , int b)
{ return a − b ; }

}

class MyApp {
stat ic void Main ( ) {

MathLib t a r g e t = new MathLib ( ) ;

Type t t = typeo f ( MathLib ) ;
Type dt = typeo f ( BinaryOp ) ;

BinaryOp op1 = ( BinaryOp ) Delegate . CreateDelegate ( dt ,
tt , ‘ ‘ Subtract ’’ ) ;

BinaryOp op2 = ( BinaryOp ) Delegate . CreateDelegate ( dt ,
target , ‘ ‘Add’’ ) ;

}
}

Calling CreateDelegate is an indirect way to invoke the delegate type’s construc-
tor. After the CLR has instantiated and bound a delegate to a method and object,
the delegate’s primary purpose is to support invocation. In C# delegate invocation
resembles C-style function pointers:

stat ic void Main ( ) {
BinaryOp op1 = new BinaryOp ( MathLib . Subtract ) ;
int x = op1 (3 , 4) ;

}
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2.2.7 Isolation and security boundaries

As for many programming technologies and environments, such as operating sys-
tem (OS) with processes and the Java VM with the class loaders, the CLR defines
its own unique model, called Application Domain (AppDomain), for providing iso-
lation, security boundaries and resources ownership of an application from others
applications. An AppDomain is a sub-process unit of isolation for managed code,
which fills many of the same roles filled by an OS process since it provides a de-
gree of fault and security isolation, and owns resources on behalf of the programs
it executes. However, a process is an abstraction created by the OS, whereas an
AppDomain is created by the CLR. This block of memory is then passed to the
other AppDomain, which deserializes the block to produce a new object.

2.2.8 Communication inter-domain

Code in one AppDomain can communicate with types and objects contained in
another AppDomain. However, the access to these types and objects is only through
two well-defined mechanisms:

• By value. Types are marshaled by value across AppDomain boundaries. In
other words, if an object is constructed in one AppDomain and a reference
to this object is passed to another AppDomain, the CLR must first serialize
the objects fields into a block of memory. This block of memory is then
passed to the other AppDomain, which deserializes the block to produce a
new object. The destination AppDomain uses the reference to this new object.
The destination AppDomain has no access to the original AppDomains object.

• By Reference. Types that are derived from System.MarshalByRefObject can
also be accessed across AppDomain boundaries. However, access to the ob-
ject is accomplished by reference rather than by value. The .NET Remoting
infrastructure employs the services of the System.Runtime.Remoting.ObjRef
type.

2.2.9 Interoperability via the Platform Invocation Services

Managed code can easily call functions contained in DLLs using a mechanism called
platform invocation or P/Invoke (for Platform Invoke). After all, many of the
types defined in the .NET Class Library internally call functions exported from
Kernel32.dll, User32.dll, and so on. Platform invoke relies on meta-data to locate
exported functions and marshal their arguments at run time. It locates and in-
vokes an exported function and marshals its arguments (integers, strings, arrays,
structures, and so on) across the interoperation boundary as needed. The following
illustration shows this process.
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Figure 2.3: A platform invoke call to an unmanaged DLL function. Figure in the article “A

Closer Look at Platform Invoke” of the .NET Framework Developer’s Guide.

When platform invoke calls an unmanaged function, it performs the following
sequence of actions:

1. Locates the DLL containing the function.

2. Loads the DLL into memory.

3. Locates the address of the function in memory and pushes its arguments onto
the stack, marshaling data as required.

4. Transfers control to the unmanaged function.

Platform invoke throws exceptions generated by the unmanaged function to the
managed caller. When a developer uses the CLR’s P/Invoke mechanism to call a
method, it is important to understand how it is possible to monitor and control the
lifetime of an object; for instance what happen if the garbage collector decides to
move/compact the object?

The CLR provides each AppDomain with a GC handle table. This table allows an
application to monitor the lifetime of an object or manually control the lifetime of an
object. When an AppDomain is created, the table is empty. Each entry on the table
consists of a pointer to an object on the managed heap and a flag indicating how you
want to monitor or control the object. An application adds and removes entries from
the table via the System.Runtime.InteropServices.GCHandle type shown below.
The GC handle table is used mostly in scenarios when developers are interoperating
with unmanaged code. Basically, to control or monitor an object’s lifetime, you call
GCHandle’s static Alloc method, passing a reference to the object that you want
to monitor/control, and a GCHandleType, which is a flag indicating how you want
to monitor/control the object. The GCHandleType is an enumerated type that
defines two flags for monitoring (Weak and WeakTrackResurrection) and two for
controlling (Normal and Pinned) lifetime of a object. For a complete description
of the System.Runtime.InteropServices namespace see [91]. We are interested
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in Pinned flag, since it allows you to control the lifetime of an object. Specifically,
it informs the garbage collector that current object must remain in memory even
though there might be no variables in the application that refer to this object. When
a garbage collection runs, the memory for this object cannot be compacted (moved).
This is typically useful when developer want to hand the address of the memory out
to unmanaged code. The unmanaged code can write to this memory in the managed
heap knowing that the location of the managed object will not be moved due to a
garbage collection. This is used in 4-Centauri to manage lifetime of objects that
call Nvidia driver functions.

When a garbage collection occurs it marks all of the reachable objects. Then,
the garbage collector scans the GC handle table; all Normal or Pinned objects are
considered roots, and these objects are marked as well. Ate the end, the garbage
collector compacts the memory, squeezing out the holes left by the unreachable
objects, but pinned objects are not compacted (moved); the garbage collector will
move other objects around them.

When a developer call GCHandle’s static Alloc method, it scans the AppDo-
main’s GC handle table, looking for an available entry where the address of the
object he passed to Alloc is stored (e.g. Pinned), and a flag is set to whatever he
passed for the GCHandleType argument. Then, Alloc returns a GCHandle instance
back to him. A GCHandle is a lightweight value type that contains a single instance
field in it, an IntPtr, that refers to the index of the entry in the table. When the
unmanaged code calls back into managed code, the managed code would cast the
passed IntPtr back to a GCHandle and then query the Target property to get the
reference (or current address) of the managed object. When the unmanaged code
no longer needs the reference, the GCHandle’s Free method can be called, which
will allow a future garbage collection to free the object (which also invalidates the
instance by setting the IntPtr field to zero).

Actually when the CLR’s P/Invoke mechanism is used to call a method, the CLR
pins the arguments for you automatically and unpins them when the unmanaged
method returns. However, the GCHandle type must be used explicitly when it is
required to pass the address of a managed object to unmanaged code and then, the
unmanaged function returns, but unmanaged code might still need to use the object
later.

2.3 Meta-programming and Runtime code gener-

ation

In order to simplify access to special hardware through interoperability meta-program-
ming techniques can be adopted; in particular the richness of program meta-data
and the further ability to introduce custom annotations may drive the translation
process as discussed in the rest of this dissertation.
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Meta-programs are programs that manipulate other programs. Object-programs
are programs manipulated by other programs. Program generators (PG) are meta-
programs that produce object-programs as their final result. Writing programs that
write code has numerous applications.

An example of application is when programs require to pre-generate tables of
data for use at run-time. If a developer is writing a game and want a quick lookup
table for the sine of all 8-bit integers, he can either calculate each sine himself and
hand-code it, have his program build the table at startup at run-time, or write a
program to build the custom code for the table before compile-time. While it may
make sense to build the table at run-time for such a small set of numbers, other such
tasks may cause program startup to be prohibitively slow. In such cases, writing a
program to build static data tables is usually the best answer.

Another application is with large applications where many of the functions in-
clude a lot of boilerplate code. In this case a programmer can create a mini-language
that will do the boilerplate code for him and allow him to code only the important
parts. Now, if he can, it’s best to abstract out the boilerplate portions into a func-
tion. But often the boilerplate code is not so pretty. Maybe there’s a list of variables
to be declared in every instance, maybe he needs to register error handlers, or maybe
there are several pieces of the boilerplate that have to have code inserted in certain
circumstances. All of these can make a simple function call impossible. In such
cases, it is often a good idea to create a mini-language that allows developers to
work with their boilerplate code in an easier fashion. This mini-language will then
be converted into their regular source code language before compiling.

Another example of application is the programs execution optimization exploit-
ing information available at runtime. The JIT compiler is an interesting example
of that, since it compiles programs on the fly trying to produce efficient code in a
small amount of time.

Modern bytecode execution environments with optimizing just-in-time compil-
ers, such as JVM and CLR, provide an infrastructure for generating fast code at
run-time. These platforms combine the advantages of bytecode generation (ease of
code generation, portability) with native code generation (speed of the generated
code). Moreover, both VMs incorporate a bytecode verifier that detects type errors
and other flaws before executing the bytecode. While the resulting error messages
are not particularly detailed they are more useful than a program crash that happens
billions of instructions after the run-time was corrupted by flawed code generated
at run-time.

Sestoft in [49] discusses how the JVM and the CLR make portable run-time
code generation fairly easy and safe, and the generated code efficiently. This due
mainly to the simplicity of generating stack-oriented portable bytecode, the support
from bytecode verifiers, and highly optimizing just-in-time native code generators
provided by both the JVM and the CLR.

Meta-programming is often used to overcome limitations of an existing program-
ming language. Such limitations can either be performance or expressivity problems.
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For instance, in [88] a meta-program, called Particular, transforms annotated pro-
grams relying on the reflection capabilities of the CLI infrastructure. Its transfor-
mation schema allows deferring the decision on how to render parallel a sequential
program, considering the particular distributed/parallel architecture where it will
be executed. In their approach, programmers can focus on functional aspects of
the problem, relying on the well established programming toolchain for developing
and debugging. Their assumption is that custom attributes will be enough to drive
Particular in the parallelization of the program at a later stage.

2.4 Expressing architectural features

In literature, several approaches have been proposed to expose underlying archi-
tecture features at VEE level. In this section we survey the most relevant to our
work.

2.4.1 Interface

In some domains interfaces are used to expose special domain features in an abstract
way. For instance, in the distributed scenarios, distributed object technologies ex-
pose interfaces to allow objects running on a certain machine to be accessed from
applications or objects running on other machines. Just as RPC makes remote
procedures seem local, distributed object technologies make remote objects appear
local. DCOM, CORBA, Java RMI, and .NET Remoting are examples of distributed
object technologies, although they are implemented quite differently and are based
on different business philosophies. Where possible, developers can factor out lan-
guage artifacts specific to distributed programming and place them in a configuration
layer.
The .NET Remoting [92] provides an abstract approach to interprocess communica-
tion that separates the remotable object from a specific client or server application
domain and from a specific mechanism of communication. Remoting servers can
also be any type of application domain. Any application can host remoting objects
and provide its services to any client on its computer or network.

2.4.2 Custom annotation

The fundamental idea behind custom annotation consists of making data about
the code available in the executable, thus at run-time. Custom annotations are
interpreted by programs and are used for program transformation. Microsoft .NET
provides support for implementing web services by means of custom attributes.
A custom attribute named WebMethod is used to label methods that should be
exposed as web services. A minimal web service written in C# that computes the
sum of two integers is the following:
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public class WSClass
{

[ WebMethod ]
public int add ( int x , int y ) { return x + y } ;

}

Once compiled, the WSClass type does not provide any web services interface. A
different program, actually part of the Internet Information Server, is responsible for
looking up reflection information within assemblies and generating a SOAP/WSDL
interface to the method add over HTTP. A limit to the annotation model introduced
by CLI is the granularity of annotations: they can only be used on methods and
not inside to annotate code blocks. This is a pity because several programs whose
goal consists of administering and manipulating other programs would benefit from
a finer grain model for annotations. In [90] Cisternino et al. present an extension,
called [a]C#, to the C# programming language supporting custom annotations on
arbitrary code blocks or statements. The language extends the syntax of the C#
language to allow a more general form of annotation and provides a run-time library
that extends the reflection support with operations for retrieving the information
about annotations inside methods. In particular they discuss the general operations
on annotated code blocks used, which hide from the programmer the complexity of
having to manipulate CIL instructions explicitly. Their approach required a source
to source compiler, that reduces the extended model for custom annotations to the
existing one with the help of some modification to the generated CIL. They encode
information about ranges of code annotations by inserting placeholders into the
bytecode. A placeholder is a dummy method that indicates the beginning and the
end of an annotated block. Annotations are lifted onto methods and indexes are used
to preserve the binding between dummy method calls and the relative annotations.

In [88] Cisternino et al. present an extension of the [a]C#, called Particular.
They introduce two annotations, named Parallel and Process, that programmers use
to provide hints to Particular on how to transform a sequential C# program into
a parallel one. Parallel denotes the parts of the code subject to parallel execution,
and the Process denotes the specific parts that have to be included in an indepen-
dent control flow. Their approach is based on the manipulation of binary programs,
therefore Particular can adopt strategies depending on the target architecture used
for program execution. It may decide how annotations should be “better” rendered
in the final program and what mechanisms should be used (threads, processes, etc.).
The listing 2.4 shows that how to use these annotations in a sequential C# imple-
mentation of the Mandelbrot algorithm. Inserting a Process annotation inside the
for loop entails a plane will be divided into stripes, such that each worker computes
a different stripe.

public class MandelbrotFractal : IMandel{
// . . .
public void generateMandelbrot ( ) {
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[ P a r a l l e l ( ‘ ‘ Begin o f a p a r a l l e l i z a b l e b lock ’’ ) ] {
// i n i t i a l i z e Mandelbrot parameters
double gap = s i d e / sizeW ;
double bb = ymax + gap ;
double xmin = x − s i d e ∗ 0 . 5 ;
for ( int wrk id = 0 ; wrk id < n r s t r i p e s ; wrk id++) {

[ Process ( ‘ ‘ BeginofWorkerblock’’ ) ]{
// Mandelbrot a l gor i thm
double aa = xmin − gap ;
bb −= gap ;
// . . .

}
}
// update parameters f o r next p lane

}
return ;

}
}

Listing 2.4: Mandelbrot set algorithm

The basic parallelism exploitation pattern used to handle Parallel annotated
sections of code is the master/worker paradigm: a master process delivers “tasks”
to be computed to a worker, picked up from a worker pool according to a proper
scheduling strategy. The worker completely processes the task, computing a result
which is eventually given back to the master process. This process is repeated until
there are new tasks to be computed. In their approach each Process annotation leads
to the generation of a master process/thread and of a set of worker processes/threads.

Their implement a meta-program that processes the sequential CIL code and for
each annotation found it creates a method containing the CIL code of the annotated
section (taking care of ensuring the appropriate handling of variables access).

public class MandelbrotFractal : IMandel
{

// . . .
public void generateMandelbrot ( ) {

// P a r a l l e l annotat ion
Master0 ( ) ;
return ;

}

public void Master0 ( ) {
// i n i t i a l i z e Mandelbrot parameters
double gap = s i d e / sizeW ;
double bb = ymax + gap ;
double xmin = x − s i d e ∗ 0 . 5 ;
AutoResetEvent [ ] Res = new AutoResetEvent ( n r s t r i p e s ) ;

for ( int wrk id = 0 ; wrk id < n r s t r i p e s ; wrk id++) {
Res . Add(new AutoResetEvent ( fa l se ) ) ;
// . . .
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// Process annotat ion
Thread wrk = new Thread (new ThreadStart ( Worker0 ) ) ;
wrk . S ta r t ( ) ;
// Update parameters f o r next p lane

}
WaitHandle . WaitAll ( Res ) ;

}

public void Worker0 ( ) {
double aa = xmin − gap ;
bb −= gap ;
// Mandelbrot a l gor i thm
// . . .

}
}

Listing 2.5: Parallel version of the Mandelbrot set algorithm

The listing 2.5 shows C# code of parallel version of Mandelbrot algorithm that
is equivalent to CIL code produced by Particular. The Parallel annotated block
is replaced by an asynchronous method call to the correspondent (new) method,
called Master0. Moreover, Particular emits the CIL instructions needed to call the
(new) method (i.e. for reading actual parameters, to return values), called Worker0.
Every new method code and meta-data are loaded into new library referenced by
the original one.

2.4.3 Object system

Another approach to expose functional architectural features extends the object
system with special types. For instance, Accelerator [37] is a library that uses data
parallelism to program GPUs for general purpose uses under CLR. The main advan-
tage is that no low-level aspect of the GPU is exposed to the programmers, only high
level, data-parallel operations are: the programmer must use special data(-parallel)
types to program the GPU instead of the CPU. Programmers don’t need to learn
graphics APIs nor convert their applications to use graphics pipeline operations,
but can use stream programming abstractions of GPUs. The library implementa-
tion compiles the data-parallel operations on the fly into optimized GPU pixel shader
code and API calls. All other operations are evaluated on the CPU. Following is an
implementation1 of a 2-dimensional convolution using Accelerator.

us ing Microso f t . Research . DataPara l l e lArrays ;

stat ic f loat [ , ] Blur ( f loat [ , ] array , f loat [ ] k e rne l ) {
f loat [ , ] r e s u l t ;
DFPA p a r a l l e l A r r a y = new DFPA( array ) ;
FPA resu l tX = new FPA(0 f , p a r a l l e l A r r a y . Shape ) ;

1This code is Figure 2 in [37]
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for ( int i = 0 ; i < ke rne l . Length ; i++) {
int [ ] s h i f t Dir = new int [ ] {0 , i } ;
r e su l tX += PA. S h i f t ( pa ra l l e lAr ray , s h i f t D i r ) ∗ ke rne l [ i ] ;

}
FPA resu l tY = new FPA(0 f , p a r a l l e l A r r a y . Shape ) ;
for ( int i = 0 ; i < ke rne l . Length ; i++) {

int [ ] s h i f t D i r = new int [ ] { i , 0 } ;
r e su l tY += PA. S h i f t ( resultX , s h i f t D i r ) ∗ ke rne l [ i ] ;

}
PA. ToArray ( resultY , o u t r e s u l t ) ;
p a r a l l e l A r r a y . Dispose ( ) ;
return r e s u l t ;

}

The authors of Accelerator have developed a set of techniques to partition the
operations into GPU pixel shader programs, such as combining element-wise oper-
ations, combining transformation operations, etc. They have demonstrated that:

• it is possible to compile high-level, data-parallel language extensions to mass-
market parallel processors that are available today;

• it is worthwhile to explore compiling language extensions for data parallelism
for GPUs.

Moreover, Microsoft has lately introduced parallel extensions, previously called
Parallel FX, [93] to its .NET Framework technology in order to take advantage of
the many-core hardware. They run on .NET 4.0, rely on features available in C#
4.0, and provide imperative data- and task-parallelism APIs in a declarative way.
The .NET 4.0 introduces several new types:

• Data Structures for parallel programming. A set of concurrent collection
classes, lightweight synchronization primitives, and types for lazy initializa-
tion. A programmer can use these types with any multi-threaded application
code.

• Task Parallel Library (TPL) [94]. A library designed to write managed code
that can automatically handle the partitioning of the work, the scheduling
of threads on the ThreadPool, cancellation support, state management, and
other low-level details. In listing 2.6, a C# implementation of the matrix mul-
tiplication is modified by replacing the outer for loop with static Parallel.For
method, because the outer iterations are independent of one another.

us ing System . Concurrency ;

void ParMatrixMult ( int s i z e , double [ , ] m1, double [ , ] m2, double [ , ]
r e s u l t )

{
P a r a l l e l . For ( 0 , s i z e , d e l e ga t e ( int i ) {

for ( int j = 0 ; j < s i z e ; j++) {
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r e s u l t [ i , j ] = 0 ;
for ( int k = 0 ; k < s i z e ; k++) {

r e s u l t [ i , j ] += m1[ i , k ] ∗ m2[ k , j ] ;
}

}
}) ;

}

Listing 2.6: Parallel version of the Matrix multiplication algorithm

• PLINQ [95]. A library that provides a parallel implementation of LINQ to
Objects. PLINQ implements the full set of LINQ standard query operators
as extension methods for the System.Linq namespace and has additional op-
erators for parallel operations. By default, PLINQ is conservative. At run
time, the PLINQ infrastructure analyzes the overall structure of the query. If
the query is likely to yield speedups by parallelization, PLINQ partitions the
source sequence into tasks that can be run concurrently. If it is not safe to
parallelize a query, PLINQ just runs the query sequentially. If PLINQ has
a choice between a potentially expensive parallel algorithm or an inexpensive
sequential algorithm, it chooses the sequential algorithm by default. When
a programmer writes a query by invoking the ParallelEnumerable.AsParallel
extension method on the data source, as shown in listing 2.7.

var source = Enumerable . Range (1 , 10000) ;
var evenNums = from num in source . AsPara l l e l ( )

where Compute (num) > 0
s e l e c t num;

Listing 2.7: Parallel query

The AsParallel extension method binds the subsequent query operators, in
this case, where and select, to the System.Linq.ParallelEnumerable implemen-
tations.

• DryadLINQ. It is a programming environment for writing large-scale data
parallel applications running on large PC clusters. The goal of DryadLINQ
is to make distributed computing on large compute cluster simple enough for
general-application programmers too. DryadLINQ combines two Microsoft
technologies: the Dryad distributed execution engine and the .NET Language
Integrated Query (LINQ). The data model of DryadLINQ is typed .NET ob-
jects, and a DryadLINQ program is just a sequential program (written in C#,
VB, or F#) composed of LINQ queries. For instance. the following listing
is a complete implementation of the Map-Reduce computation framework in
DryadLINQ

public stat ic IQueryable<R>
MapReduce<S ,M,K,R>(this IQueryable<S> source ,
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Express ion<Func<S , IEnumerable<M
>>> mapper ,

Express ion<Func<M,K>> keySe l ec to r
,

Express ion<Func<K, IEnumerable<M>,
R>> reducer )

{
return source . SelectMany ( mapper ) . GroupBy( keySe l ec to r , reducer )

;
}

2.4.4 Quotation

In F# meta-programming is supported by means of F# quotations ( <@ @> ). The
quote operator instructs the compiler to generate data structures representing code
rather than CIL. The F# parser and type checker statically guarantee the syntac-
tic validity of quoted fragments and the typing of quoted literals. Quotations allow
capturing of type-checked expressions as structured terms. They can be interpreted,
analyzed and compiled to alternative languages. An interesting feature is that F#
quotations can also be generated programmatically at run-time.

Quotations allow heterogeneous execution of F# programs since a single program
written entirely in F# can run not only as .NET code, but also in various other
environments. They make it possible to “take” part of the program, process it and
execute it somewhere else. For example, in the following code a query comprehension
is wrapped in <@ @> marks, which allows the SQL function to analyze the F# code
and translate it to the appropriate SQL code.

l e t CustomersList =
SQL <@ { for c in ( d b . Customers )

when c . Country = "Italy"

−> c } @>

This feature is very interesting for our aims since we want to process and analyze
a high-level language implemented code and execute it where the best performance
is provided; for example, matrix operations can be executed faster on a GPU rather
than on a CPU.

2.5 Our approach: types + metadata

In the previous section emerges how STEE have a peculiar ability to treat code
as data to some extent. The number of meta-programs inspecting and managing
STEEs programs is steadily increasing relying on the presented techniques to acquire
the information required to accomplish some task. STEE API exposes the Object-
oriented design (OOD).
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Primary Object-oriented programming (OOP) concepts such as objects, classes,
inheritance, and dynamic typing were first introduced in the Simula [96] language
and were initially intended to serve specific needs of real-world modeling and sim-
ulation. Object-orientation developed further as an independent general-purpose
paradigm which strives to analyze, design and implement computer applications
through modeling of real-world objects. Many real-world objects perform concur-
rently with other objects, often forming distributed systems. Because modeling
of real-world objects is the backbone of the object-oriented paradigm and because
real-world objects are often parallel, this paradigm needs to be extended with ap-
propriate forms of parallelism. In fact, without that extension, when analysis and
design models are taken into consideration, the notion of parallelism could be thrown
away. In this case, what looked like a parallel solution is flattened into a single flow
of control, as stated by the Von-Neumann model. Besides, this activity of flattening
a concurrent model into a sequential application is far from trivial and is the major
cause of programming errors.

Software objects are conceptually similar to real-world objects: they consist of
state and related behavior. An object stores its state in fields and exposes its
behavior through methods. Classes, and their fields and methods have access levels
(e.g. static, private, public) to specify how they can be used by other objects
during execution. In the same way each model of parallel computation specifies
how different levels of memory can be used by executors, as explained in Section
1.2. Therefore, our idea is to map an access level to a level of memory, as shown in
Figure 2.4, such that programmers can express at VM level the memory hierarchy
of a model of parallel execution.

Figure 2.4: Mapping a C# class members to the GPGPU memory hierarchy.

To explain our solution, we think it is important to start from the description
of the most relevant elements in a program. Later, we specialize them for exposing
the underlying architecture features at STEE level.
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2.5.1 Definitions

Let P be a program that executes on one of the architectures introduced in Section 1.
The behavior of P is described by its code, that is a finite list of instructions accord-
ing to the programming language used to implement P. We introduce I the domain
of that programming language instructions, IL the domain of list of instructions and
T the domain of the types recognized by the underlying architecture.

P will access a sub-set of registers and a sub-set of local memory units2. More-
over, it will share data with both other programs through either a shared memory or
message passing communication. Therefore, let RG be the domain of the registers
available in the underlying architecture RF , LM the domain of the local memory
units referred to by an instruction or an instruction list, GM the domain of the
global memory units referred to by an instruction or an instruction list. We define
the domain of memory resources as union type:

MEM = RG ∪ LM ∪ GM

Moreover, we introduce COM the domain of communication units (e.g. in-
put/output register).

The number programs that can be executed simultaneously depends on the un-
derlying available processors. We introduce PR the domain of processors models:

PR =



RAM

PRAM

H − PRAM
LogP

BSP

To summarize this description in a more concise way, we introduce the following
notation for programs.

Definition 2.5.1. A program P is a tuple P ≡ IL×MEM× PR× COM.

2.5.2 Definitions for STEEs

Considering now a program PSTEE written in one of the programming languages
targeting a STEE. It exposes the Object-Oriented programming model, thus its
behavior is described by a set of methods. Let CSTEE be the domain of the classes
and METSTEE the domain of the methods, we define the follows

metSTEE : CSTEE → 2METSTEE

2A memory unit is either a page or a segment of memory. This depends on the specific archi-
tecture model implementation.
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as the function that given a class c ∈ CSTEE returns a set of all the methods mi

∈ METSTEE declared in c, defined as

metSTEE(c) = {m1,m2, ...,mn}

Then we define the following:

ηSTEE : METSTEE → ILSTEE

as the function that given a method m ∈METSTEE returns its list of instructions.

Each object maintains its state in one or more fields, in methods’ parameters
and variables defined inside methods. These parts of an object state differ for their
accessibility; while instance fields are shared between all instances of the same class,
methods’ parameters are shared only by the caller and receiver objects. In Object-
Oriented programs, developers can use different scopes for variables to define how
a community of objects can provide their services and how they can interact to
perform actions used by other members of the community. We introduce LOCSTEE

the domain of variable names defined in a method and referred to by an instruction
or an instruction list, MPRMSTEE the domain of method’s parameters, FLDSTEE

the domain of all fields variable names in a type. Therefore, we define the following
functions on these domains:

• mlocalsSTEE : METSTEE → LOCSTEE

as the function that given a method m ∈ METSTEE returns its set of local
variables;

• paramsSTEE : METSTEE →MPRMSTEE

as the function that given a method m ∈ METSTEE returns its set formal
parameters;

• fieldsSTEE : METSTEE → FLDSTEE

as the function that given a method m ∈ METSTEE returns the set of fields
referred by m;

Finally, the domain of all memory resources referred to by a method is

MEMSTEE = LOCSTEE ∪ MPRSTEE ∪ FLDSTEE

A PSTEE runs on a hypothetical machine with an associated model provided by
a STEE, e.g. Von-Neumann model. At source level, programmers design their algo-
rithms leveraging the multi-threaded architecture of a STEE. We introduce PRSTEE

the domain of threads that will execute on the STEE. We assume the function that
maps a t ∈ PRSTEE on real available processors is provided by the framework.

There are many frameworks (e.g. RMI on Java, .NET Remoting) that allow to
execute remote calls and exchange data in a distributed system. Let COMCSSTEE ⊂
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T be the domain of special classes, called remotable class, whose methods can be
invoked by remote objects (recall Section 2.2.8).

To summarize, a program that executes on a STEE is a tuple:

PSTEE ≡METSTEE ×MEMSTEE × PRSTEE × COMCSSTEE

Considering the following example where the STEE is CLR and the programming
language is C#. It provides a sequential implementation of the Mersenne-Twister
[97, 98] pseudo-random number generator, that will be used as a benchmark in
Section 5.2. The coefficients used in listing 2.8 are defined by Matsumoto and
Nishimura in [98].

public class MersenneTwister
{

/∗ Period parameters ∗/
private const int N = 624 ; // 624 l e n g t h array to s t o r e the s t a t e o f

the genera tor
private const int M = 397 ;

/∗ the array f o r the s t a t e v e c t o r ∗/
private readonly int [ ] mt = new UInt32 [N ] ;
private int mti ;

private stat ic readonly int [ ] mag01 = { 0x0 , 0 x9908b0df } ;

public int Generate ( int seed )
{

int y ;

mt [ 0 ] = seed & 0 x f f f f f f f f U ;

/∗ I n i t i a l i z e current s t a t e ∗/
for ( mti = 1 ; mti < N; mti++) {

mt [ mti ] = ( int ) (1812433253 ∗ ( mt [ mti − 1 ] ˆ ( mt [ mti − 1 ] >>
30) ) + mti ) ;

mt [ mti ] &= 0 x f f f f f f f f U ;
}

/∗ Generate N words at one time ∗/
i f ( mti >= N) {

int kk = 0 ;
for ( ; kk < N − M; ++kk ) {

y = ( mt [ kk ] & 0x80000000 ) | ( mt [ kk + 1 ] & 0 x 7 f f f f f f f ) ;
mt [ kk ] = mt [ kk + M] ˆ ( y >> 1) ˆ mag01 [ y & 0x1 ] ;

}
for ( ; kk < N − 1 ; ++kk ) {

y = ( mt [ kk ] & 0x80000000 ) | ( mt [ kk + 1 ] & 0 x 7 f f f f f f f ) ;
mt [ kk ] = mt [ kk + (M − N) ] ˆ ( y >> 1) ˆ mag01 [ y & 0x1 ] ;

}
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y = ( mt [N − 1 ] & 0x80000000 ) | ( mt [ 0 ] & 0 x 7 f f f f f f f ) ;
mt [N − 1 ] = mt [M − 1 ] ˆ ( y >> 1) ˆ mag01 [ y & 0x1 ] ;
mti = 0 ;

}

/∗ Tempering t rans format ion ∗/
y = mt [ mti ++];
y ˆ= y >> 11 ;
y ˆ= ( y << 7) & 0x9d2c5680 ;
y ˆ= ( y << 15) & 0 xefc60000 ;
y ˆ= y >> 18 ;

return y ;
}

}

Listing 2.8: C# sequential implementation of the Mersenne-Twister pseudo-random number
generator.

There is only one method, Generate ∈METCLR. It accessesmlocalsCLR(Generate) =
{y, kk} local variables, it has not parameters, paramsCLR(Generate) = {seed}, it
refers fieldsCLR(Generate) = {N,M, mt, mti, mag01} fields.

Since this example implements a sequential version of the Mersenne-Twister
algorithm, it will execute on a single RAM processor, that is PRCLR = {RAM }. No
communication with other objects is implemented, thus COMCSCLR = �. Finally,
there are no custom attributes. This description in our notation results:

MersenneTwisterCLR ≡METCLR ×MEMCLR × PRCLR × COMCSCLR

Before the execution, a PCLR must be translated into an intermediate form P
′
CLR,

that is CIL. Since the CLR types are a shared abstraction between the execution
environment and the programming language, a larger amount of information is made
available about a program to the run-time and to all the other programs interested
in code analysis and manipulation, as shown in [90, 99].

In the following sections we will leverage these CLI features to define a set of
types, meta-data, and functions that map elements of P

′
CLI to elements of another

program P
′′
CLI that will run on an architecture with a different model of parallel

execution. The equivalence between P
′
CLI and P

′′
CLI must be guaranteed by the

compiler that implements those mapping functions.

It is important to highlight that in the following sections we map an executor
defined in one ASM model (recall Sections 1.2 and 1.3) to a thread running on RAM
processor.

In chapter 4 we will provide a complete and concrete example of expressing
the GPGPU model of execution on CLI, along with a compiler 4-Centauri that
implements the mapping between those models.
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2.5.3 Expressing the RAM on the CLI

We express each memory resource in RAM model, i.e. MEMRAM = RG ∪ LM,
on the CLI as a binding between variable names of class members and elements in
MEMRAM .

Let c ∈ T be a class that we define for mapping purposes. The set of methods de-
fined in c, and given by met(c) will be the code executed on RAM. In the rest of this
thesis, we assume that for each class introduced for mapping purposes corresponds
a distinct AppDomain (recall Section 2.2.7). An AppDomain may have multiple
threads objects. These threads execute methods of objects and refer objects that
reside in exactly that AppDomain.

We introduce the following functions that bind variable names to memory units
in MEMRAM .

ρ : LOCCLI →MEMRAM

it binds method’s local names to registers ∈ RG of MEMRAM . The idea is that RAM
registers can be accessed only by the executor currently running on that processor
as well as a method’s local variable is accessed only by the thread executing that
method.

ω : MPRMCLI →MEMRAM

it binds method’s formal parameter names to registers ∈ RG of MEMRAM . As
for local variables, method’s formal parameters variables are accessed only by the
thread executing that method.

λ : FLDCLI →MEMRAM

it binds field names to local memory unit ∈ LMRAM of MEMRAM . These variables
can be accessed only by a thread running an instance of c.
Finally,

µRAM(c) =
⋃

m∈metCLI(c)

(ρ(mlocalsCLI(m)) ∪ ω(paramsCLI(m)) ∪ λ(fieldsCLI(m)))

µRAM : ID →MEMRAM

is the function that given a class c ∈ T , for each method m ∈ metCLI(c) maps
all variable names referred in m to memory resources in the RAM memory model.

µRAM(c) is applied to every methods in metCLI(c). However, through annota-
tions programmers can select a sub-set of them for mapping purposes. For this
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reason we introduce a custom attribute, called Kernel .

Meta-data. Let A be the domain of meta-data and AS the domain of a meta-data
set, we introduce the follows:

isKernelAnnCLI : METCLI → B

boolean function that given a method m ∈ METCLI is defined as

isKernelAnnCLI(m) =

{
true if m is annotated by Kernel attribute

false otherwise

Therefore, µRAM(c) is modified as follows:

µ
′

RAM(c) =
⋃

m ∈ metCLI(c)∧
isKernelAnnCLI(m)

(
ρ(mlocalsCLI(m)) ∪ ω(paramsCLI(m))
∪ λ(fieldsCLI(m))

)

2.5.4 Expressing the PRAM on the CLI

On the PRAM multiple executors act concurrently, one for each RAM processor.
They access, modify and exchange data values through a global memory. This
memory model can be mapped on the CLI as a single class instantiated by multiple
threads in the same AppDomain.

Therefore, the domain of memory resources for the PRAM memory model ex-
tends the RAM with a global memory, such that MEMPRAM = RGPRAM ∪
LMPRAM ∪ GMPRAM . For this reason we must replace the domain of all fields
FLDCLI with IFLDCLI the domain of instance field variable names in a type and
SFLD the domain of static field variable names in a type. Therefore, we add the
following functions on those new domains:

• ifieldsCLI : METCLI → IFLDCLI

given a method m ∈METCLI returns the set of instance fields referred by m;

• sfieldsCLI : METCLI → SFLDCLI

given a method m ∈METCLI returns the set of static fields referred by m.

and a binding function for each new domain:

λ : IFLDCLI →MEMPRAM
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it binds instance field names to local memory unit ∈ LMPRAM of MEMPRAM . These
variables can be accessed only by a thread executing methods of an instance of c.

σ : SFLDCLI →MEMPRAM

it binds static field names to memory units ∈ GMPRAM of MEMPRAM . The idea is
that PRAM global memory units can be accessed by all executors running on PRAM
as well as a class’s static fields are accessed by all threads executing methods of a
class.

The function that given a class c ∈ T , for each method m ∈ metCLI(c) maps all
variable names referred in m to memory resources in the PRAM memory model is:

µPRAM(c) = µRAM(c) ∪ (
⋃

m∈metCLI(c)

σ(sfieldsCLI(m)))

µPRAM : ID →MEMPRAM

Meta-data. Considering the Kernel annotation introduced in the previous sec-
tion, µPRAM(c) is modified as follows:

µ
′

PRAM(c) = µ
′

RAM(c) ∪ (
⋃

m ∈ metCLI(c) ∧
isKernelAnnCLI(m)

σ(sfieldsCLI(m)))

Example of implementation: data-parallel on PRAM

In order to give an idea of a possible implementation of formal concepts expressed
in previous sections, we provide a concrete example: data-parallel operations im-
plemented in C# but considering PRAM as execution model. In listing 2.9, we
implement a method for each data-parallel operation: Map and Reduce. Denoting
with outputs the list of resulting values, and given a list of input data, inputs =
{x1,x2,· · · ,xn}

• Map is the operation that applies a function to every element in inputs. In-
formally, we have

outputs = Map(f, [x1, x2, · · · , xn]) = [f(x1), f(x2), · · · , f(xn)]

• Reduce is the operation that collapses a set into a single value by repeated
application of some associative binary operator.

output = Reduce(⊗, [x1, x2, · · · , xn]) = x1 ⊗ x2 ⊗ · · · ⊗ xn



2.5. OUR APPROACH: TYPES + METADATA 65

/∗ Type o f v a l u e s to compute ∗/
public class Data<T>
{

T [ ] data ;
int i ndex ;

public Data ( int capac i ty ) { . . . }

public Data (T [ ] array ) {
i ndex = 0 ;
data = array ;

}

public T Current {
s e t {

i f ( index < data . Length )
data [ index ] = value ;

else
throw new ArgumentOutOfRangeException ( ) ;

}

get {
i f ( index < data . Length )

return data [ index ] ;
else

throw new ArgumentOutOfRangeException ( ) ;
}

}

public bool MoveNext ( ) {
return ++ index < data . Length ;

}

public void Reset ( ) {
i ndex = 0 ;

}

/∗ Array l e n g t h ∗/
public stat ic int GetSize ( ) { . . . }

}

/∗ A v a i l a b l e o p e r a t i o n s f o r r e d u c t i o n purposes ∗/
public enum DPOper {

Add = 1 ,
Prod = 2

}

/∗ Example o f d e l e g a t e d e f i n i t i o n ∗/
public de l e ga t e void DPD<T,K>(Data<T> [ ] outputs , Data<K> [ ] inputs ) ;

/∗ Implements data−p a r a l l e l o p e r a t i o n s ∗/
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public class DataPara l l e l<T,K>
{

/∗ Number o f cores on the u n d e r l y i n g a r c h i t e c t u r e ∗/
protected int c o r e s ;

/∗ Ins tance o f the c l a s s whom method w i l l e x e c u t e e i t h e r in a Map o
Reduce ∗/

protected Object c u r r I n s t a n c e ;

public DataPara l l e l ( Object ob ) {
c u r r I n s t a n c e = ob ;
c o r e s = System . Environment . ProcessorCount ;

}

/∗
Map spawns a thread f o r each p r o c e s s o r core . Each thread e x e c u t e s
the same method , c a l l e d jobMethod , t a k i n g a d i f f e r e n t par t o f the
input data , c a l l e d inputTh , and r e t u r n i n g r e s u l t s in a d i f f e r e n t
par t o f the output data , c a l l e d outputTh .

∗/
public v i r t u a l void Map( s t r i n g method name ,

Data<T> [ ] outputs ,
Data<K> [ ] inputs ) {

1 . DPD<T,K> jobMethod = (DPD<T,K>)Delegate . CreateDelegate ( typeo f
(DPD<T,K>) , cu r r In s tance , method name ) ;

2 . S ca t t e r input and output parameters between c o r e s threads ,
inputTh and outputTh

3 . For each thread do
3 .1 jobMethod ( outputTh , inputTh ) ;
4 . Gather output r e s u l t s

}

/∗
Reduce spawns a thread f o r each p r o c e s s o r core . Each thread
e x e c u t e s the same method , c a l l e d jobMethod , t a k i n g a d i f f e r e n t
par t o f the input data , c a l l e d inputTh , and r e t u r n i n g a s i n g l e
r e s u l t a p p l y i n g a DPoper o per a t io n on r e s u l t s from t h r e a d s .

∗/
public v i r t u a l void Reduce ( s t r i n g method name ,

DPoper operat ion ,
Data<T> [ ] outputs ,
Data<K> [ ] inputs ) {

1 . DPD<T,K> jobMethod = (DPD<T,K>)Delegate . CreateDelegate ( typeo f
(DPD<T,K>) , cu r r In s tance , method name ) ;

2 . S ca t t e r input and output parameters between c o r e s threads ,
inputTh and outputTh

3 . For each thread do
3 .1 jobMethod ( operat ion , outputTh , inputTh ) ;
4 . Gather output r e s u l t
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5 . Appl ies opera t i on on gathered r e s u l t s .
}

}

Listing 2.9: C# implementation of data-parallel operations on PRAM architecture.

The constructor takes as input an object whose method, m, will be called either
in Map or Reduce. Through .NET reflection capabilities, having both an object (e.g.
currInstance) and the name of one of its methods (e.g. method name), it is possible

to create a delegate of such method:

DPD<T,K> jobMethod = (DPD<T,K>)Delegate . CreateDelegate ( typeo f (DPD<T,K>)
, cu r r In s tance , method name ) ;

and then invoke the method:

jobMethod ( outputTh , inputTh ) ;

The number of cores available on the current underlying architecture is taken
as the maximum degree of parallelism for a PRAM. For each core, a thread is
instantiated and will execute jobMethod. This method’s parameters are two arrays,
outputTh and inputTh, which contain the partition of outputs and inputs values
assigned to the current thread. The Reduce method also takes a value of the DPOper
enumeration as input, that specifies what operation of reduction must be applied
on input elements.

A case study of our DataParallel class can be vector sum, that is implemented
in the following C# listing:

/∗ Library c l a s s t h a t implements a \ k e r n e l method , named Add , f o r
Vector sum ∗/

public class MyClass {
// . . .

/∗ Annotated f o r p a r a l l e l e x e c u t i o n ∗/
[ Kernel ]
public void Add( Data<f loat > [ ] outputs , Data<f loat > [ ] inputs ) {

outputs [ 0 ] . Current = inputs [ 0 ] . Current + inputs [ 1 ] . Current ;
}

}

/∗ General a p p l i c a t i o n ∗/
public class Program {

// . . .

stat ic void Main( s t r i n g [ ] a rgs )
{

MyClass mc = new MyClass ( ) ;
f loat [ ] A;
f loat [ ] B;
f loat [ ] C;
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/∗ Vectors i n i t i a l i z a t i o n ∗/
Data<f loat > [ ] outputs = new Data<f loat > [ 1 ] ;
outputs [ 0 ] = new Data<f loat>(C) ;
Data<f loat > [ ] inputs = new Data<f loat > [ 2 ] ;
inputs [ 0 ] = new Data<f loat>(A) ;
inputs [ 1 ] = new Data<f loat>(B) ;

/∗ D a t a P a r a l l e l computation i n i t i a l i z a t i o n ∗/
DataPara l l e l<f loat , f loat> dp = new DataPara l l e l<f loat , f loat>(mc) ;

/∗ Map f u n c t i o n i n v o c a t i o n having Kernel method ‘ ‘Add ’ ’ as input
∗/

dp .Map("Add" , outputs , inputs ) ;
}

In MyClass method Add is defined with annotation Kernel . It must implement
what is the task of a thread, as for programming languages like CUDA, Brook, CAL,
etc.

2.5.5 Expressing the H-PRAM on the CLI

In this model the same consideration made for PRAM are valid except for the
possibility of having distinct sub-PRAM. Since each sub-PRAM can be different
from the others, they can be represented by distinct classes on the CLI, thus distinct
AppDomain. Therefore, for each class a distinct variables bindings is required.
Let ASMBL be the domain of .NET assembly, we introduce the following function

partition : ASMBLCLI → CSCLI

that returns a set of classes defined in a given assembly a ∈ ASMBLCLI . All other
domains, set and functions already introduced in the PRAM mapping are still valid
for the H-PRAM model. The mapping function for the H-PRAM model that, given
an assembly a ∈ ASMBLCLI maps every variable names referred in each method
m ∈ metCLI(c) for each class c ∈ partition(a) to memory resources in the H-PRAM
memory model, is defined as follows:

µH−PRAM(a) =
⋃

c∈partition(a)

µPRAM(c)

µH−PRAM : ID →MEMH−PRAM

Considering the annotation Kernel introduced in the previous section, µHPRAM(a)
is modified as follows:

µ
′

H−PRAM(a) =
⋃

c∈partition(a)

µ
′

PRAM(c)
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2.5.6 Expressing the LogP on the CLI

Essentially LogP is a set of RAM that exchange messages. Therefore, actually LogP
memory model extends the RAM one only with resources for messages. Under .NET
remoting a message is a remotable class rc that inherits from System.Runtime.-

Remoting.MarshalByRefObject. rc is called “remotable” because its public meth-
ods can be invoked by other remote objects that reside in other AppDomains.

Let RMCCLI be the domain of remotable class instance name, we define the
following functions:

• rcls : METCLI → RMCCLI

as the function that given a method m ∈METCLI returns the set of remotable
class instances referred in m.

• ϕ : RMCCLI → COMLogP

it binds remotable class instances to communication unit ∈ COMLogP . The
idea is that those units are used only for transferring data in a distributed
system by the current executor.

The mapping function for the LogP model that, given a class c ∈ T maps every
variable names referred in each method m ∈ metCLI(c) for each class c to memory
resources, and every remotable class instances rc ∈ rclsCLI(m) to communication
resources, is defined as follows:

µLogP (c) = µRAM(c) ∪ (
⋃

m∈rclsCLI(c)

ϕ(m))

µLogP : ID →MEMLogP

2.5.7 Expressing the GPGPUs model on the CLI

There are some differences in the AMD and Nvidia implementations of the com-
putational model and memory resources design and management. However, the
following definitions are general enough to be valid for all GPGPUs.

Let PGPGPU be a program runnable on a GPGPU. Its behavior is described by a
set of functions, written in a language targeting a GPGPU, contained by a module,
that is a dynamically loadable package of device code and data, akin to DLLs in
Windows. Let FUNGPGPU be the domain of the functions, MDGPGPU the domain
of the modules, we define:

funcGPGPU : MDGPGPU → FUNGPGPU

as the function that given a GPGPU module mod ∈MDGPGPU returns a set of
all the functions fi ∈ FUNGPGPU declared inside it.
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ηGPGPU : FUNGPGPU → ILGPGPU

as the function that given a function f ∈ FUNGPGPU returns its list of instructions.

Considering state spaces introduced in Section 1.4.2 we define these domains.
Let RGGPGPU be the domain of registers in the register state space, LMGPGPU the
domain of the local memory unit in the local state space, SMGPGPU the domain
of the shared memory unit in the shared state space, GMGPGPU the domain of the
global memory units in the global state space. We define the domain of memory
resources as:

MEMGPGPU = RGGPGPU ∪ LMGPGPU ∪ SMGPGPU ∪ GMGPGPU

Moreover, we introduce COMCGPGPU the domain of the communication units, that
are input/output streams on GPGPUs.

Finally, a program that runs on a GPGPU is formalized by the following tuple:

PGPGPU ≡ FUNGPGPU ×MEMGPGPU ×GPGPU × COMCGPGPU

2.5.8 Formal definition of the CIL to GPGPU compiler

In this section we define formally the mapping function µGPGPU that applied to
classes in a program P

′
CLI as input returns an equivalent program PGPGPU . More-

over, we describe how the functions introduced in Section 2.5.4 must be changed for
a feasible mapping. In the following section we prove the correctness of µGPGPU ,
along with the definition of equivalence between P

′
CLI and PGPGPU .

Given a class c ∈ T

µGPGPU(c) =
⋃

m∈metCLI(c)

(
ρ(mlocalsCLI(m)) ∪ ω(paramsCLI(m))
∪ λ(ifieldsCLI(m)) ∪ σ(sfieldsCLI(m))

)

µGPGPU : ID →MEMGPGPU

for each method m ∈ metCLI(c), µGPGPU maps each variable v ∈MEMCLI , that
is referred in m to MEMGPGPU , i.e. a memory resource in the GPGPU memory
model (recall Section 1.4.2).

To guarantee a feasible mapping it is important to consider that due to GPGPUs
architectural constraints, only a sub-set of types in the CLI Common Type System
(CTS) can be mapped on GPGPUs types, as shown in table 2.1.
The definition of µGPGPU leverages on functions introduced in Section 2.5.4. How-
ever, they must be changed to consider the GPGPU memory model as follows:
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PTX Basic Type Name in CIL

Signed integer

.s8 int8
.s16 int16
.s32 int32
.s64 int64

Unsigned integer

.u8 unsigned int8
.u16 unsigned int16
.u32 unsigned int32
.u64 unsigned int64

Floating-point
.f32 float32
.f64 float64

Predicate .pred bool

Table 2.1: PTX and CIL types mapping.

• ρ : LOCCLI →MEMGPGPU it binds method’s local variable names to a regis-
ter ∈ RGGPGPU of MEMGPGPU with the same type.

• ω : MPRMCLI → COMGPGPU} it binds method’s formal parameter names to
special registers ∈ COMGPGPU in the parameter state space, used by GPGPUs
to communicate with the CPU.

• λ : IFLDCLI → MEMGPGPU it binds instance field names to local memory
unit ∈ LMCLI of MEMGPGPU . These variables can be accessed only by a
thread running an instance of c.

• σ : SFLDCLI → MEMGPGPU it binds static field names to memory units
∈ GMGPGPU of MEMGPGPU .

Other functions, such as metCLI , ηCLI , mlocalsCLI , paramsCLI , ifieldsCLI and
sfieldsCLI , are all provided by the CLI reflection capabilities in System.Reflection

namespace.
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Chapter 3

Parallelism exploitation

In the past many different parallel programming languages have been introduced,
all based on the following conjecture: an effective (high performance, machine in-
dependent) parallel programming language cannot be founded on the standard Von
Neumann model of sequential computation, rather must be founded on an abstract
parallel machine that reflects characteristics of real parallel architectures.

The advantage of writing sequential programs is that the code is easier to de-
bug and optimize for full speed execution than parallel programs. As a result,
many programming languages inherit this single flow of control that forces sequen-
tial programming. However, in order to benefit from rapidly improving computer
performance and to retain the “write once, run faster on new hardware” paradigm,
commercial and scientific software must switch to new software development and
system support mechanisms [100] and the latter must enable a significant portion
of the programming community to construct parallel applications.

While the architecture community has been addressing the need for more com-
puting power, techniques for parallel programming have been advancing relatively
slowly. Programming paradigms that emerged in the 1980s and 1990s, such as mes-
sage passing, are still popular. Although significant advances have been made in
raising the level of abstraction in parallel programming [41, 27, 26], parallel compil-
ers [101], and program optimization tools [102], parallel programming has remained
the province of a small number of specialists. Determining how to program a parallel
processor efficiently is a difficult task that requires the programmer to understand
many details about the computer architecture and parallel algorithms. Computer
scientists have been developing various techniques for both detecting and utilizing
parallelism.

This chapter surveys those approaches to parallel programming that have in-
spired 4-Centauri’s design and implementation.
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3.1 Why is parallel programming so difficult?

There are a number of reasons for that. First, decomposing, or mapping, data
structures and tasks in a sequential program into parallel parts is a challenge. Most
programming languages are mainly sequential, making unnatural to tackle paral-
lelism in the first place.
Second, writing parallel code that runs correctly requires synchronization and coor-
dination among processors.
Third, debugging parallel applications can be a challenging task [103]. The increased
complexity of multi-threaded programs results in a large number of possible states
that the program may be in at any given time. Determining the state of the pro-
gram at the time of failure can be difficult; understanding why a particular state is
troublesome can be even more difficult. Parallel programs often fail in unexpected
ways, and often in a nondeterministic fashion. Bugs may manifest themselves in
a sporadic fashion, frustrating developers who are accustomed to troubleshooting
issues that are consistently reproducible and predictable. Moreover, parallel appli-
cations can fail in a drastic fashion-deadlocks cause an application or worse yet, the
entire system, to hang. Users tend to find these types of failures to be unacceptable.
Finally, the most difficult task is writing efficient parallel programs, a task that
requires careful balancing between the program’s communication and computation
parts. When dealing with a single-processor architecture, the programmers try
to minimize the number of operations the processor must perform. Counting the
number of operations in a sequential application is generally straightforward, and
well-understood performance bounds exist for many algorithms. When the program
is moved to a parallel machine, minimizing the number of computations does not
guarantee optimal performance. The same is true of sequential algorithms on to-
day’s complex processors because of multi-level memory hierarchies. The problem is
heightened when moving to a parallel system. First, the theoretical speedup of the
entire program is limited by the longest serial path, as quantified by Amdahls law
[104]. Second, the speedup of parallelizable part of the program is highly dependent
on interprocessor communication. Efficiently mapping the application, or distribut-
ing parts of the application between multiple processing elements, becomes increas-
ingly important. The performance bounds of parallel algorithms depend strongly on
how the data and computation are distributed or mapped; this dependence makes it
more difficult to estimate and optimize performance. The situation is further com-
plicated because algorithmic details might change as the algorithm is moved from
a single processor to a multiprocessor machine. Often the most efficient sequential
algorithm is not the most efficient parallel one.



3.2. EXISTING APPROACHES TO PARALLEL PROGRAMMING 75

3.2 Existing approaches to parallel programming

The solution of designing a successful parallel programming paradigm can be divided
into three cases:

1. Use an existing sequential paradigm, letting the compiler to deal with concur-
rent execution.

2. Augment an existing sequential paradigm, providing information about con-
currency.

3. Create a new paradigm.

The first approach preserves the value of legacy codes, but automatic paralleliza-
tion is a very difficult task for which little progress has been made in a decade and
a half. Both the second and third approaches devalue the existing software legacy,
either requiring that existing programs be revised to incorporate the parallel con-
structs, perhaps at considerable intellectual effort, or that programs be completely
rewritten. There is no effortless solution: the second approach may introduce con-
structs that conflict with sequential semantics, while the third approach requires
that programmers learn another language and re-implement their existing code.
In all cases the greatest challenge is in enabling programmers to write machine-
independent programs despite the wide variability of parallel platforms. Clearly,
abstractions are needed to raise the level of expression away from the hardware, but
abstractions that prevent compilers from exploiting the best hardware features will
degrade performance greatly.

In all approaches a set of design decisions must be taken. The first decision
is about the optimization, that is, whether the approach is meant to optimize a
program for a sequential or a parallel architecture. In the former case, the approach
entails finding an efficient mapping into the memory hierarchy of a single-processor
machine, such as determining the optimal strategy for cache utilization. In the
latter case, the approach needs to optimize the code for a distributed memory. The
second design decision is about the support layer, that is, the software layer in
which the (automatic) distribution and optimization is implemented. Optimization
approaches tend to be implemented in either the compiler or middleware layer. If
the parallelization approach is implemented in the compiler, it does not have access
to run-time information that could significantly influence the chosen mapping. On
the other hand, if the approach is implemented in the middleware and is invoked at
run-time, it could incur a significant overhead because of the extra effort required to
collect the run-time information. The third design decision is about code analysis,
that is, how the approach finds instances of parallelism. Code analysis can be static
or dynamic. Static code analysis involves looking at the code as text and trying to
extract inherent parallelism on the basis of how the program is written. Dynamic
code analysis involves analyzing the behavior of the code as it is running, thus
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allowing access to run-time information. The fourth design decision is at what scope
the approach applies optimizations. Approaches can be local (peephole) or global
(program flow). Local optimization approaches, which find optimal distributions
for individual functions, have had the most success and are used by many parallel
programmers.

In the following sections we illustrate the main features of those languages and
libraries we have considered for designing and implementing 4-Centauri.

3.2.1 Automatic program parallelization

Many attempts in the past have been done to design and implement a compiler able
to auto-parallelize any code provided as input [22] However, most attempts failed
except for some execution patterns, such as loops.

ADAPTOR

An example of automatic data-parallelism compiler is ADAPTOR (Automatic DAta
Parallelism TranslatOR) [23]. ADAPTOR is a public domain High Performance
Fortran (HPF) [24] and OpenMP [39] Fortran compilation system. It translates
data parallel HPF programs into parallel programs using process parallelism with
message passing for distributed memory architectures or thread parallelism with
synchronization for shared memory architectures. Process and thread parallelism
can be utilized together on clusters of shared memory systems. Furthermore, ADAP-
TOR compiles OpenMP Fortran programs for shared memory system by exploiting
thread parallelism. The ADAPTOR compilation system package consists of:

• the source to source transformation tool,

• the distributed array library which is the HPF and OpenMP run-time system
that handles descriptors for arrays, sections and distributions and handles
communication and synchronization routines,

• the compiler driver.

A HPF program is compiled into an equivalent parallel program based on MPI
[31] and/or PThreads [105]. The compiler driver adaptor invokes the source-to-
source translation that generates a parallel program with explicit thread or MPI
parallelism from the HPF program. Afterwards, it invokes a native Fortran 77 or
Fortran 90 compiler to compile the generated code. Finally, the compiled codes are
linked with the LIBADP run-time system and the utilized MPI and/or Pthreads
library. While the message passing programs are well suited for distributed memory
(DM) architectures, the parallel programs based on PThreads run well on shared
memory (SM) architectures. In a similar way, HPF programs can also be compiled
for sequential machines by ignoring the parallelism, and also for clusters of shared
memory architectures by exploiting nested process and thread parallelism.
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SUIF

The SUIF (Stanford University Intermediate Format) [25] system is a compiler in-
frastructure designed to support collaborative research and development of compila-
tion techniques, based upon a program representation. It has a modular architecture
that comprises a small Kernel which implements a set of basic functions found to be
useful across all compilation passes, a number of modules loaded dynamically un-
der developers control, and a driver that controls the system operation. The SUIF
Kernel defines and implements the compiler environment that is all the user needs
to know when writing a SUIF program. The bulk of the SUIF compiler system is
structured as modules, each of which is a C++ class identified by a unique name.

The SUIF design supports high-level program analysis of C and Fortran pro-
grams. The SUIF key features are:

• modular subsystem that allows different components to be combined easily.

• extensible program representation that allows users to create new instructions
to capture new program construct semantics or new program analysis con-
cepts.There is a predefined object hierarchy to capture the program semantics,
and developers are able to refine these abstractions for their needs.

pMapper

pMapper is an automatic mapping engine originally designed to distribute MAT-
LAB programs onto parallel computers, specifically clusters. A map can be defined
with three pieces of information: grid specification, distribution description, and
processor list. Since the task of mapping the program is separated from the task
of developing the algorithm, the entity that determines the maps for the program
could be another layer of software, the pMapper.

The pMapper framework globally optimizes performance of parallel programs
at run-time. To do this, pMapper requires a presence of an underlying parallel li-
brary. For more details see [26]. This library has increased the level of abstraction
by implementing a map layer that insulates the algorithm developer from writing
complicated message-passing code. These libraries introduce the concept of map
independence, that is, the task of mapping the program onto a processing architec-
ture is independent from the task of algorithm development. Once the algorithm
has been specified, the user can simply define maps for the program without hav-
ing to change the high-level algorithm. The maps can be changed without having
to change any of the program details. The key idea behind map independence is
that a parallel programming expert can define the maps, while a domain expert can
specify the algorithm. To provide accurate mappings, we need to collect benchmark
performance data of the parallel library on the target parallel architecture.

The task of benchmarking the library is computationally intensive, making it
infeasible to collect sufficient timing data during program execution. Once the
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benchmarking data have been collected, pMapper uses them to generate maps in
an efficient manner. This process naturally yields a two-phase mapping architec-
ture. The initialization phase occurs once, when pMapper is installed on the target
architecture or, if the architecture is simulated, when the architecture parameters
are first specified. Once the timing data are collected and stored as a performance
model, they are used to generate mappings.

The mapping and execution phase is performed once for each program at run-time.
pMapper uses lazy evaluation, that is, it delays execution until necessary. This ap-
proach allows pMapper to have the greatest possible amount of information about
the program to be mapped at mapping time.

3.2.2 New programming language paradigms

ZPL

ZPL [27] is a new programming language that is especially effective for scientific and
engineering computations. It is intended to replace languages such as Fortran and
C for technical computing. It is:

• an array language. Expressions such as X +Y have been generalized to apply
to whole arrays as well as simple scalars, depending on how X and Y are
declared. Not only does ZPL save the programmer from writing many tedious
loops and specifying error prone index calculations, it enables the compiler to
identify parallelism that will speed the computation.

• machine independent programming language, meaning that ZPL programs
run well on both sequential and parallel computers. Programmers need not
concern themselves with machine specifics.

• implicitly parallel programming language. That is, although ZPL was designed
to simplify programming parallel computers, programmers do not specify how
the computation is performed concurrently. Nor do they insert interprocessor
communication. The ZPL compiler is responsible for producing parallel object
code from the source program, and for taking care of all details necessary to
exploit the target parallel computer.

• a global-view parallel language with communication cues. The programmer
writes code that largely disregards the processors that will execute it. Pro-
grammers do not write interprocessor communication commands. The details
of communication are managed by the compiler, but the programmer is readily
aware of where communication is induced. This provides a simple, but power-
ful performance model called the what-you-see-is-what-you-get (WYSIWYG)
performance model.
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Google Map-Reduce

MapReduce [28] is a programming model and an associated implementation for pro-
cessing and generating large data sets. A developer expresses the computation as
two functions: Map and Reduce. Map takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups together all interme-
diate values associated with the same intermediate key I and passes them to the
Reduce function. The Reduce function accepts an intermediate key I and a set of
values for that key. It merges together these values to form a possibly smaller set of
values. Typically just zero or one output value is produced per Reduce invocation.
The intermediate values are supplied to the user’s reduce function via an iterator.
This allows us to handle lists of values that are too large to fit in memory.

When the user program calls the MapReduce function, the following sequence of
actions occurs:

1. Input data is split into M map tasks.

2. Many copies of the program start up on a cluster of machines. One of the
copies of the program is special, called the master. The rest are workers that
are assigned work by the master.

3. Reduce phase partitioned into R reduce tasks.

4. Master assigns each map task to a free worker

(a) Tasks are assigned to workers dynamically, considering locality of data
to worker when assigning task.

(b) Worker reads task input (either from memory or local disk.

(c) Worker produces R local files containing intermediate (k,v) pairs

5. Master assigns each reduce task to a free worker

(a) Worker reads intermediate (k,v) pairs from map workers.

(b) Worker sorts and applies users Reduce operation to produce the output.

(c) User may specify Partition: which intermediate keys to which Reducers.

6. MapReduce library gathers together all pairs with the same key (shuffle/sort)

Programs written are automatically parallelized and executed on a large cluster
of commodity machines. The run-time system takes care of the details of partitioning
the input data, scheduling the program’s execution across a set of machines, handling
machine failures, and managing the required inter-machine communication.

Many different implementations of the MapReduce interface are possible. The
right choice depends on the environment. For example, one implementation may
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be suitable for a small shared-memory machine, another for a large NUMA1 multi-
processor, and yet another for an even larger collection of networked machines.

X10

X10 [29] is a statically typed object-oriented language, extending the Java sequential
core language with places, activities, clocks, (distributed, multi-dimensional) arrays
and struct types. An X10 program is intended to run on a wide range of computers,
from uniprocessors to large clusters of parallel processors supporting millions of
concurrent operations. To support this scale, X10 introduces the central concept of
place.

Conceptually, a place is a “virtual shared-memory multi-processor”: a compu-
tational unit with a finite number of hardware threads and a bounded amount of
shared memory, uniformly accessible by all threads. An X10 computation acts on
data objects through the execution of lightweight threads called activities. Objects
are of two kinds. A scalar object has a small, statically fixed set of fields, each of
which has a distinct name. A scalar object is located at a single place and stays at
that place throughout its lifetime. An aggregate object has many fields uniformly
accessed through an index and may be distributed across many places. The dis-
tribution of an aggregate object remains unchanged throughout the computation.
X10 assumes an underlying garbage collector will dispose of objects and reclaim the
memory associated with them once it can be determined that these objects are no
longer accessible from the current state of the computation.

X10 has a unified or global address space. This means that an activity can
reference objects at other places. However, an activity may synchronously access
data items only in the current place (the place in which the activity is running).
It may atomically update one or more data items, but only in the current place.
To read a remote location, an activity must spawn another activity asynchronously.
This operation returns immediately, leaving the spawning activity with a future for
the result. Similarly, remote location can be written into only by asynchronously
spawning an activity to run at that location. Throughout its lifetime an activity
executes at the same place. An activity may dynamically spawn activities in the
current or remote places.

X10 provides multiple barriers in a dynamic context, called clocks, while still sup-
porting determinate, deadlock-free parallel computation. Activities may use clocks
to repeatedly detect quiescence of arbitrary programmer-specified, data-dependent
set of activities. Each activity is spawned with a known set of clocks and may dy-
namically create new clocks. At any given time an activity is registered with zero
or more clocks. At any given step of the execution a clock is in a given phase. It
advances to the next phase only when all its registered activities have quiesced (by
executing a next operation on the clock). When a clock advances, all its activities

1Not Uniform Memory Access
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may now resume execution. Thus clocks act as barriers for a dynamically varying
collection of activities.

X10 supports annotations on classes and interfaces, methods and constructors,
variables, types, expressions and statements. These annotations may be processed
by compiler plugins.

Fortress

The Fortress [30] is a general-purpose, statically typed, component-based program-
ming language. It is mainly an object-oriented programming language, but also
provides support for a functional style. The Fortress type system is based on traits,
a feature similar to interfaces in the Java programming language, except that traits
can contain code (but no fields). Its type system integrates nominal subtyping,
generic types using “where” clauses, and it retains type information at run time to
allow type-dependent operations on generic types.

Fortress is implicitly parallel and provides constructs and annotations to serialize
execution when necessary. Even if it allows to specify when evaluation may proceed
in parallel (or rather, when it must not), Fortress does not require it to do so. As
a result, a compiler or virtual execution environment need to concern itself with
determining whether executing a program in parallel is advantageous or not. If
there are no spare processors, for example, or distributing the computation is more
expensive than doing it, or for any other reason, an implementation may execute
parallel tasks sequentially, and in any order. Fortress implements a technique called
work stealing, such that its runtime support can effectively distribute parallel tasks
to multiple processors with minimal overhead.

Since Fortress’ design is not tailored to a specific architecture, it must parallel
execution of tasks accessing shared and distributed memory. In the former case,
Fortress avoids race conditions through the support for atomic expressions2. In the
latter case, the cost of access to memory could be extremely nonuniform, so it could
be crucial to place data “near” to the processor that uses it. To manage this, Fortress
provides distributions, which specify “regions” of the machine where data resides
and computation occurs. These regions are arranged in a hierarchy that abstractly
represents the relative cost of access: computation can cheaply access data in its
own or nearby regions.

3.2.3 Extending standard design

The problem with fully automatic schemes is that they are best suited for detecting
small grain parallelism, whereas the complexity of schemes in which the programmer
is completely responsible for managing the parallel environment can overwhelm the
programmer.

2An atomic expression appears to be executed in isolation: the evaluation of an atomic expres-
sion never appears to be interleaved with operations due to other tasks.
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Mentat

The Mentat [40] philosophy on parallel computing is guided by two observations.
First, that the programmer understands the problem domain of the application and
can make better data and computation partitioning decisions than compilers can.
The truth of this is evidenced by the fact that most successfully produced parallel
applications have been hand-coded using low-level primitives. In these applications
the programmer has decomposed and distributed both the data and computation.
Second, the management of tens to thousands of asynchronous tasks, where errors
dependent on timing are easy to make, is beyond the capacity of most programmers
unless a tremendous amount of effort is expended. The truth of this is evidenced
by the fact that writing parallel applications is almost universally acknowledged to
be far more difficult than writing sequential applications. Compilers, on the other
hand, are very good at ensuring that events happen in the right order, and can more
readily and correctly manage communication and synchronization, particularly in
highly asynchronous, non-SIMD, environments.

There are two primary components of Mentat: the Mentat Programming Lan-
guage (MPL) and the Legion run-time system. MPL is an object-oriented program-
ming language based on C++ that masks the difficulty of the parallel environment
from the programmer. The granule of computation is the Mentat class instance,
which consists of contained objects (local and member variables), their procedures,
and a thread of control. Programmers are responsible for identifying those object
classes that are of sufficient computational complexity to allow efficient parallel exe-
cution. Instances of Mentat classes are used just like ordinary C++ classes, freeing
the programmer to concentrate on the algorithm, not on managing the environ-
ment. The data and control dependencies between Mentat class instances involved
in invocation, communication, and synchronization are automatically detected and
managed by the compiler and run-time system without further programmer interven-
tion. By splitting the responsibility between the compiler and the programmer we
exploit the strengths of each, and avoid their weaknesses. The underlying assump-
tion is that the programmer can make better granularity and partitioning decisions,
while the compiler can correctly manage synchronization. This simplifies the task
of writing parallel programs, making the power of parallel and distributed systems
more accessible.

MPL is an extended C++ designed to simplify the task of writing parallel appli-
cations by providing parallelism encapsulation. Parallelism encapsulation takes two
forms, intra-object encapsulation and inter-object encapsulation. In intra-object en-
capsulation of parallelism, callers of a Mentat object member function are unaware
of whether the implementation of the member function is sequential or parallel, i.e.,
whether its program graph is a single node or a parallel graph. In inter-object en-
capsulation of parallelism, programmers of code fragments (e.g., a Mentat object
member function) need not concern themselves with the parallel execution oppor-
tunities between the different Mentat object member functions they invoke.



3.2. EXISTING APPROACHES TO PARALLEL PROGRAMMING 83

Mentat objects are independent objects. Independent objects are analogous to
UNIX processes. Mentat uses an object model that distinguishes between two types
of objects, contained objects and independent objects. Contained objects are objects
contained in another objects address space. Instances of C++ classes, integers,
structures, and so on, are contained objects. Independent objects possess a distinct
address space, a system-wide unique name, and a thread of control. Communication
between independent objects is accomplished via member function invocation.

Rapid Mind

The RapidMind Development Platform (RDP) [42] is a framework for expressing
data-parallel computations from within C++ and executing them efficiently on mul-
ticore processors. It lets to specify any computation that can leverage multiple cores
within existing C++ applications. In particular, the main goal is to give develop-
ers access to the power of both the Cell BE and the GPU, but at a high level, so
they can focus on developing efficient parallel algorithms instead of managing low-
level, architecture-specific details. The RDP provides dynamic code generation for
multiple specialized hardware targets.

RDP has a C++ interface for describing computation, rather than a separate
language. The platform interface is implemented using only ISO standard C++
features and works with any ISO standard C++ compiler. It can be used just by
including a header file and linking to a library. The platform interface permits
the expression of arbitrary computation. In fact, the system includes a staged,
dynamic compiler supporting run-time code generation. This enables some novel
high-performance programming techniques above and beyond the exploitation of
parallelism.

RDP includes an extensive run-time component as well as interface and dynamic
compilation components. The run-time component automates common tasks such
as task queuing, data streaming, data transfer, synchronization, and load-balancing.
It asynchronously manages tasks executing on remote processors and manages data
transfers to and from distributed memory. This run-time component provides a
framework for efficient parallel execution of the computation specified by the main
program.

The platform uses a bulk-synchronization model that supports a conceptual sin-
gle thread of control, making debugging straightforward. The structure of the lan-
guage makes parallelism explicit, however, encouraging the development and use of
efficient and scalable parallel algorithms.

Unlike alternatives such as OpenMP [39], MPI, and threads, their parallel pro-
gramming model is portable to a wide range of parallel hardware architectures,
including vector and stream machines, such as GPUs, as well as distributed mem-
ory machines, such as the Cell BE. The system provides a strong execution and data
abstraction that is simultaneously modular, portable, and efficient.

Users of the RDP continue to program in C++ using their existing compiler.
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After identifying components of their application to accelerate, the overall process
of integration is as follows:

1. Replace types: The developer replaces numerical types representing floating
point numbers and integers with the equivalent RapidMind platform types.

2. Capture computations: While the users application is running, sequences of
numerical operations invoked by the users application are captured, recorded,
and dynamically compiled to a program object by the RapidMind platform.

3. Stream execution: The RapidMind platform run-time is used to manage paral-
lel execution of program objects on the target hardware (in this case, a GPU)

The RDP supports two execution mode: immediate mode, operations can be
executed on the host processor, and retained mode, operations are recorded and
dynamically compiled into a “program object”. These program objects can be used
as functions in the host program. In the case of GPUs, applying such a function to an
array of values automatically invokes a massively parallel computation on the video
accelerator. Data is automatically transferred to and from the video accelerator,
overlapping computation with data transfers.

OpenMP

OpenMP [39] is an API for writing shared memory parallel applications in C, C++,
and Fortran. It consists of compiler directives, run-time routines and environment
variables.

The OpenMP API uses the fork-join model of parallel execution. Multiple
threads of execution perform tasks defined implicitly or explicitly by OpenMP direc-
tives. OpenMP is intended to support programs that will execute correctly both as
parallel programs (multiple threads of execution and a full OpenMP support library)
and as sequential programs (directives ignored and a simple OpenMP stubs library).
However, it is possible and permitted to develop a program that executes correctly
as a parallel program but not as a sequential program, or that produces different
results when executed as a parallel program compared to when it is executed as a
sequential program.

An OpenMP program begins as a single thread of execution, called the initial
thread. The initial thread executes sequentially, as if enclosed in an implicit task
region, called the initial task region, that is defined by an implicit inactive parallel
region surrounding the whole program.

The code for each task is defined by the code inside the parallel construct. Each
task is assigned to a different thread in the team and becomes tied; that is, it is
always executed by the thread to which it is initially assigned. The task region of
the task being executed by the encountering thread is suspended, and each member
of the new team executes its implicit task. There is an implicit barrier at the
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end of the parallel construct. Beyond the end of the parallel construct, only the
master thread resumes execution, by resuming the task region that was suspended
upon encountering the parallel construct. Any number of parallel constructs can be
specified in a single program.

OpenMP provides a relaxed-consistency, shared-memory model. All OpenMP
threads have access to a place to store and to retrieve variables, called the memory.
In addition, each thread is allowed to have its own temporary view of the memory.
The temporary view of memory for each thread is not a required part of the OpenMP
memory model, but can represent any kind of intervening structure, such as machine
registers, cache, or other local storage, between the thread and the memory. The
temporary view of memory allows the thread to cache variables and thereby to avoid
going to memory for every reference to a variable. Each thread also has access to
another type of memory that must not be accessed by other threads, called thread
private memory.

The memory model has relaxed-consistency because a threads temporary view of
memory is not required to be consistent with memory at all times. A value written
to a variable can remain in the threads temporary view until it is forced to memory
at a later time. The OpenMP flush operation enforces consistency between the
temporary view and memory. If a thread has performed a write to its temporary
view of a shared variable since its last flush of that variable, then when it executes
another flush of the variable, the flush does not complete until the value of the
variable has been written to the variable in memory. The flush operation provides
a guarantee of consistency between a threads temporary view and memory.

Muskel

Muskel [41] is a full Java skeleton programming environment that provides stateless
task farm and pipeline skeletons. These skeletons can be arbitrarily nested, to
program pipelines with farm stages, for example, and they process a single stream of
input tasks to produce a single stream of output tasks. Muskel implements skeletons
using data flow technology and Java RMI facilities. The programmer using Muskel
can express parallel computations by simply using the provided Pipeline and Farm
classes. In order to execute the program, developers set up a Manager object. Then,
using appropriate methods, they indicate to the manager the program to execute, the
performance contract required (in this case, the parallelism degree required for the
execution), what is in charge of providing the input data (the input stream manager,
which is basically an iterator providing the classical boolean hasNext() and Object
next() methods) and what is in charge of processing the output data (the output
stream manager, providing only a void deliver (Object) method processing a single
result of the program). Finally, they can request parallel program execution simply
by issuing an eval call to the manager. When the call terminates, the output file
has been produced.

Actually, the eval method execution happens in steps. First, the application
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manager looks for available processing elements using a simplified, multicast based
peer-to-peer discovery protocol, and recruits the required remote processing ele-
ments. Each remote processing element runs a data flow interpreter. Then the
skeleton program (the main of the example) is compiled into a macro data flow
graph and a thread is forked for each of the remote processing elements recruited.
Then the input stream is read. For each task item, an instance of the macro data
flow graph is created and the task item token is stored in the proper place (initial
data flow instruction(s)). The graph is placed in the task pool, the repository for
data flow instructions to be executed. Each thread looks for a fireable instruction
in the task pool and delivers it for execution to the associated remote data flow in-
terpreter. The remote interpreter instance associated to the thread is initialized by
being sent the serialized code of the data flow instructions, once and for all, before
the computation actually starts. Once the remote interpreter terminates the exe-
cution of the data flow instruction, the thread either stores the result token in the
appropriate “next” data flow instruction(s) in the task pool, or it directly writes the
result to the output stream, invoking the deliver method of the output stream man-
ager. Currently, the task pool is a centralized one, associated with the centralized
manager.

The manager takes care of ensuring that the performance contract is satisfied.
The policies implemented by the Muskel managers are best effort. The Muskel
library tries to do its best to accomplish user requests. If it is not possible to
completely satisfy the user requests, the library establishes the closest configuration
to the one implicitly specified by the user with the performance contract. In the
current version of the Muskel prototype, the only performance contract actually
implemented is the ParDegree one, asking for the use of a constant number of
remote interpreters in the execution of the program.

3.2.4 GPGPU programming languages

GPGPUs, coupled with recent improvements in their programmability, have be-
come a compelling platform for computationally demanding tasks in a wide variety
of application domains. They are especially well-suited to address problems that
can be expressed as data-parallel computations (i.e. the same program is executed
on many data elements in parallel) with high arithmetic intensity (i.e. the ratio of
arithmetic operations to memory operations). Because the same program is exe-
cuted for each data element, there is a lower requirement for a sophisticated flow
control; and because it is executed on many data elements and has high arithmetic
intensity, memory access latency can be hidden with calculations instead of using
big data caches. Many applications that process large data sets can use a data-
parallel programming model to speed up computations: 3D rendering, interactive
cinematic lighting, video encoding and decoding, image scaling, stereo vision, and
pattern recognition.
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Stream programming model

The latest generation of GPUs from Nvidia and AMD have already taken a signif-
icant step toward the data-parallel programming model by supporting a separate
model for non-graphics computations that is more flexible than the one used for
graphics, called Stream Programming. The stream programming model exposes the
parallelism and communication patterns inherent in the application by structur-
ing data into streams and expressing computation as shader (in the traditional 3D
terminology) or Kernel (a term to stress the will to go beyond 3D graphics) that
operate on streams in SIMD fashion.
A typical stream program is composed of the following steps:

1. The developers pinpoints the data-parallel section of their applications, so it is
split into independent parallel sections, called Kernels . The input and output
of each Kernel is one or more arrays stored in the GPU’s local memory.

2. To execute a Kernel , the computation domain (or the size of the output
stream) must be specified.

3. The rasterizer generates a fragment for every element in the domain.

4. Each of the generated fragments is then processed by the active Kernel ’s
fragment program.

5. The output of the fragment program is a value per fragment.

Both Nvidia and AMD vendors provide their stream languages (e.g. AMD
Brook+ [21], AMD CAL [20] and Nvidia CUDA [19]) Currently, both AMD CAL
and Nvidia CUDA programming interfaces consist of a minimal set of extensions to
the C language, that allow the programmer to target portions of the source code for
execution on the device, and a run-time library split into:

• Host application, that performs application work, and sends commands to the
GPU using CAL/CUDA API.

• GPU Kernel , that reads input data, performs stream parallel computation
and writes output data.

• Common component, that provides built-in vector types and a subset of the
C standard library that are supported in both host and device code.

The main differences between these platforms relate to:

• Kernel implementation; AMD IL instructions are defined in both text and
binary formats so that developers can select between easier program main-
tenance (text format) and execution speed (binary format) for time-critical,
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run-time applications. The text instruction format resembles assembly lan-
guage, whereas the binary instruction format resembles machine code. In both
cases, an AMD IL compiler is required, either at compile-time or run-time, to
convert the IL instructions to machine-specific codes. Nvidia allows Kernel
coding only using CUDA (i.e. C language) thus the compiler is required at
compile-time only.

• thread hierarchy ; Nvidia CUDA divides the threads into a grid of blocks.
Threads within a block can cooperate among themselves by sharing data
through some shared memory, and synchronizing their execution to coordi-
nate memory accesses. The number of threads per block is restricted by the
limited memory resources of a processor core. AMD provides no control over
threads configuration at run-time.

• execution configuration; Nvidia gives developers support on static Kernel exe-
cution configuration. The arguments3 to the execution configuration (i.e. grid
and blocks dimension) are evaluated before the actual execution. At run-time,
it is the underlying GPU hardware in charge of schedule threads over cores.

Nvidia CUDA. CUDA is a software architecture for issuing and managing com-
putations on the GPU as a data-parallel computing device, without the need for
mapping them to a graphics API. CUDA extends C by allowing the programmer to
define special C functions (Kernels) that, when called, are executed n times in par-
allel by n different CUDA threads, as opposed to only once like regular C functions.
Each thread is contained in a thread block. Threads within a block can cooperate
among themselves by sharing data through some shared memory, and synchronizing
their execution to coordinate memory accesses. The number of threads per block is
restricted by the limited memory resources of a processor core. On the Nvidia Tesla
architecture, a thread block may contain up to 512 threads. However, a Kernel can
be executed by multiple equally-shaped thread blocks, so that the total number of
threads is equal to the number of threads per block multiplied by the number of
blocks. Programmers can specify the number of blocks and the number of threads
for each block through the first and second parameters of the Kernel function sig-
nature.
The CUDA software stack is composed of several layers: a device driver, an applica-
tion programming interface (API) and its run-time, and two higher-level mathemat-
ical libraries of common usage, CUFFT and CUBLAS. The CUDA programming
interface consists of:

• A minimal set of extensions to the C language that allow the programmer to
target portions of the source code for execution on the device.

3grid and blocks dimension that will be used to execute the function on the device, as well as
the associated stream.
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• The run-time library is split into:

– Host component, that runs on the CPU and provides functions to control
and access one or more computation devices from the host.

– Device component (Kernel), that runs on the device and provides device-
specific functions. Device-side function can be of two types: global

and device .

– Common component, that provides built-in vector types and a subset of
the C standard library that are supported in both host and device code.

CUDA introduces function type qualifiers in order to define where a function
executes, which functions can call it and which ones it can invoke:

• Executable on host, callable from the host component, host typed function
can invoke all function not typed by device .

• Executable on device, callable from the host component, global typed
function can invoke device typed function only.

• Executable on device, callable from the device component, device typed
function.

global and device typed function have several restrictions, for instance
they do not support recursion, cannot declare static variables, and cannot have a
variable number of arguments. global functions are asynchronous so they return
before the device has completed its execution. global function must specify its
execution configuration. This defines the dimension of the grid and blocks that will
be used to execute the function on the device, as well as the associated stream. It
is specified by inserting an expression of the form <<< Dg, Db, Ns, S >>> between
the function name and the parenthesized argument list, where:

• Dg specifies the dimension and size of the grid, such that Dg.x * Dg.y equals
the number of blocks being launched, whereas Dg.z is unused;

• Db specifies the dimension and size of each block, such that Db.x * Db.y *
Db.z equals the number of threads per block;

• Ns specifies the number of bytes in shared memory that is dynamically allo-
cated per block for this call in addition to the statically allocated memory;
this dynamically allocated memory is used by any of the variables declared as
an external array; Ns is an optional argument which defaults to 0;

• S specifies the associated stream; it is an optional argument which defaults to
0.
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It is important to consider the synchronization function of the Device run-time
component, usable to coordinate communication between threads of a same block.
It allows implementing reduction directly on the device, eventually avoiding useless
GPU-CPU communication. Another important feature provided is Atomic instruc-
tions. They perform read-modify-write atomic operations on one 32-bit or 64-bit
word residing in global or shared memory. The operation is atomic in the sense that
it is guaranteed to be performed without interference from other threads. These in-
structions are very important since using them make it possible to implement thread
synchronization on the global memory, thus between multiple threads of different
blocks.

We provide a trivial code in CUDA that implements the saxpy function in dou-
ble precision. The saxpy is a combination of scalar multiplication and vector ad-
dition. In order to highlight the main differences between programming languages
provided by Nvidia and AMD, and for each language the level of abstraction and
main part of it, we’ll present the same example in the following paragraphs. In list-
ing 3.1, the function saxpyCUDAKernel implements the saxpy function. blockIdx,
blockDim and threadIdx are built-in variables that return the CTA (thread block)
x-dimensional index, the dimension of the CTA, and the thread index inside a CTA
respectively.

g l o b a l void saxpyCUDAKernel ( f loat a , f loat ∗ InData1 , f loat ∗ InData2
, f loat ∗ Result ) {

int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
Result [ idx ] = InData1 [ idx ] ∗ a + InData2 [ idx ] ;

}

Listing 3.1: CUDA version of the saxpy function.

In listing 3.2 we provide the code required to setup and execute the Kernel function
implemented in listing 3.1.

int main ( int argc , char∗∗ argv ) {
f loat ∗ In i tData1 ; f loat ∗ In i tData2 ;
f loat ∗ InData1 ; f loat ∗ InData2 ;
f loat ∗ Result ; f loat ∗ HostResult ;
f loat a = 1 0 . 0 ;
unsigned int Length = 100 ;

/∗ −−−−−−− INITIALIZATION −−−−−−−− ∗/
CUT DEVICE INIT( argc , argv ) ;
cudaStream t stream ;
CUDA SAFE CALL( cudaStreamCreate(&stream ) ) ;

/∗ −−−−−−− MEMORY ALLOCATION −−−−−−−− ∗/
CUDA SAFE CALL( cudaMallocHost ( ( void ∗∗)&HostResult , Length ) ) ;
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memset ( HostResult , 0 , Length ) ;
CUDA SAFE CALL( cudaMalloc ( ( void ∗∗)&InData1 , s i z e o f ( f loat ) ∗ Length )

) ;
CUDA SAFE CALL( cudaMalloc ( ( void ∗∗)&InData2 , s i z e o f ( f loat ) ∗ Length )

) ;
CUDA SAFE CALL( cudaMalloc ( ( void ∗∗)&Result , s i z e o f ( f loat ) ∗ Length ) )

;

/∗ −−−−−−− SET INPUT VALUEs −−−−−−−− ∗/
In i tData1 = ( f loat ∗) mal loc ( s i z e o f ( f loat ) ∗ Length ) ;
In i tData2 = ( f loat ∗) mal loc ( s i z e o f ( f loat ) ∗ Length ) ;
for ( int i = 0 ; i < Length ; ++i ) {

In i tData1 [ j ] = ( f loat ) rand ( ) ; In i tData2 [ j ] = ( f loat ) rand ( ) ;
}
CUDA SAFE CALL( cudaMemcpy( InData1 , InitData1 , s i z e o f ( f loat ) ∗

Length , cudaMemcpyHostToDevice ) ) ;
CUDA SAFE CALL( cudaMemcpy( InData2 , InitData2 , s i z e o f ( f loat ) ∗

Length , cudaMemcpyHostToDevice ) ) ;

/∗ −−−−−−− RUN COMPUTE KERNEL −−−−−−−− ∗/
int n = 16 ∗ 1024 ∗ 1024 ;
dim3 threads = dim3 (512 , 1) ;
dim3 b locks = dim3 (n / threads . x , 1) ;
saxpyCUDAKernel<<< blocks , threads , 0 , stream>>>( a , InData1 , InData2

, OutData ) ;

/∗ −−−−−−− GET RESULT −−−−−−−− ∗/
cudaMemcpy( HostResult , Result , s i z e o f ( f loat ) ∗ Length ,

cudaMemcpyDeviceToHost ) ;

/∗ −−−−−−− CLEAN UP and EXIT −−−−−−−− ∗/
CUDA SAFE CALL( cudaFree ( InData1 ) ) ; CUDA SAFE CALL( cudaFree ( InData2 ) ) ;
CUDA SAFE CALL( cudaFree ( Result ) ) ; CUDA SAFE CALL( cudaFree ( HostResult

) ;
f r e e ( In i tData1 ) ; f r e e ( In i tData2 ) ;
return 0 ;

}

Listing 3.2: CUDA version of the execution setup code for saxpyCUDAKernel.

CUDA gives fine control on non-functional aspects of stream computing, such as
device management, resource management, code generation, Kernel loading and
execution. At the same level of abstraction it is possible to implement a Kernel
code. This is one of the main difference between CUDA and CAL/IL [20, 85]. In
the latter, we’ll show how the Kernel must be implemented using an assembly-like
language.

Nvidia PTX. It defines a virtual machine and ISA for general purpose parallel
thread execution [84]. PTX programs are translated at install time to the target
hardware instruction set. The PTX-to-GPU translator and driver enable Nvidia
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GPUs to be used as programmable parallel computers. High level language compilers
for languages such as CUDA and C/C++ generate PTX instructions, which are
optimized for and translated to native target-architecture instructions. The goals
for PTX include the following:

• Provide a stable ISA that spans multiple GPU generations.

• Achieve performance in compiled applications comparable to native GPU per-
formance.j

• Provide a machine-independent ISA for C/C++ and other compilers to target.

• Provide a code distribution ISA for application and middleware developers.

• Provide a common source-level ISA for optimizing code generators and trans-
lators, which map PTX to specific target machines.

• Facilitate hand-coding of libraries, performance Kernels , and architecture tests.

• Provide a scalable programming model that spans GPU sizes from a single
unit to many parallel units.

While the specific resources available in a given target GPU will vary, the kinds
of resources will be common across platforms, and these resources are abstracted
in PTX through state spaces and data types. A state space is a storage area with
particular characteristics. All variables reside in some state space. A variable dec-
laration describes both the variables type and its state space.

The characteristics of a state space include its size, addressability, access speed,
access rights, and level of sharing between threads:

• Registers (.reg state space) are fast storage locations. The number of reg-
isters is limited, and will vary from platform to platform. When the limit is
exceeded, register variables will be spilled to memory, causing changes in per-
formance. Registers may be typed (signed integer, unsigned integer, floating
point, predicate) or untyped.

• The global (.global) state space is memory that is accessible by all threads
in a context. It is the mechanism by which different CTAs and different grids
can communicate. Use ld.global, st.global, and atom.global to access global
variables. For any thread in a context, all addresses are in global memory are
shared. Global memory is not sequentially consistent, thus there can be race
conditions between threads. Therefore, developers must adopt lock-free and
wait-free style programming.

• The local state space (.local) is private memory for each thread to keep its
own data. It is typically standard memory with cache. The size is limited, as
it must be allocated on a per-thread basis. Use ld.local and st.local to access
local variables.
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• The parameter state space is used for many reasons. One of these is to pass
input arguments from the host to the Kernel . Each Kernel function definition
includes an optional list of parameters. These parameters are addressable,
read-only variables declared in the .param state space. The location of pa-
rameter space is implementation specific. Values passed from the host to the
Kernel are accessed through these parameter variables using ld.param instruc-
tions. The Kernel parameter variables are shared across all CTAs within a
grid. The address of a Kernel parameter may be moved into a register using
the mov instruction. The resulting address is in the .param state space and is
accessed using ld.param instructions.

• The shared (.shared) state space is a per-CTA region of memory for threads
in a CTA to share data. An address in shared memory can be read and written
by any thread in a CTA. Use ld.shared and st.shared to access shared variables.

In listing 3.3 we present a PTX equivalent implementation of listing 3.1.

. entry saxpyPTXKernel (
. param . f32 a ,
. param . u64 InData1 ,
. param . u64 InData2 ,
. param . u64 Result )

{
. reg . u16 %rh<4>;
. reg . u32 %r<5>;
. reg . u64 %rd<10>;
. reg . f32 %f <6>;
cvt . u32 . u16 %r1 , %t i d . x ;
mov . u16 %rh1 , %c t a i d . x ;
mov . u16 %rh2 , %nt id . x ;
mul . wide . u16 %r2 , %rh1 , %rh2 ;
add . u32 %r3 , %r1 , %r2 ;
cvt . u64 . s32 %rd1 , %r3 ;
mul . l o . u64 %rd2 , %rd1 , 4 ;
ld . param . u64 %rd3 , [ InData2 ] ;
add . u64 %rd4 , %rd3 , %rd2 ;
ld . g l o b a l . f 32 %f1 , [%rd4 +0] ;
ld . param . u64 %rd5 , [ InData1 ] ;
add . u64 %rd6 , %rd5 , %rd2 ;
ld . g l o b a l . f 32 %f2 , [%rd6 +0] ;
ld . param . f32 %f3 , [ a ] ;
mad . f32 %f4 , %f2 , %f3 , %f1 ;
ld . param . u64 %rd7 , [ Result ] ;
add . u64 %rd8 , %rd7 , %rd2 ;
s t . g l o b a l . f 32 [%rd8 +0] , %f4 ;
e x i t ;

}

Listing 3.3: PTX version of the saxpy function.
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IL gives fine control on Kernel implementations, due to the assembly level language
provided. However, this low level programming language makes it very difficult to
start write stream computations, keeping the learning curve very high.

AMD Brook+. AMD Brook+ [21] is an extension to the C language for cross-
platform stream programming as well as Nvidia CUDA; it provides syntax to rep-
resent and manipulate streams, to specify Kernels . It is an open source standard
designed to be simple to use, able to interoperate with multiple back-end, such as
DirectX and OpenGL.
The Brook+ program structure can be modeled around a graph where nodes ma-
nipulate data and arcs indicating the flow of data through the system. A node can
either restructure data or perform computations, but not both. Nodes that restruc-
ture data are referred to as stream operators, while nodes that perform computations
as Kernels . An arc (stream) connects two nodes. It does not provide any storage,
instead maps the output of one node to the input(s) of one or more other nodes.
Streams reside in GPU memory and their dimension is limited by GPU hardware
restrictions. They cannot be accessed directly by the host application program, but
stream operators must be used. All Brook+ operations are non-blocking unless syn-
chronization is needed. Synchronization is handled by the Brook+ run-time. Hence,
it is important to carefully evaluate the function calls order to have the required in-
terleaving.
During Kernel implementation, a developer must consider some restrictions due to
the Kernel nature: dynamic memory allocation is not allowed, and in general point-
ers are not supported, and neither recursion nor calls to non-Kernel functions from
within a Kernel are allowed.

In listing 3.4 we present a Brook+ equivalent implementation of listing 3.1.

ke rne l void saxpyBrookKernel (double a , double x<>, double y<>, out
double r e s u l t <>) {

r e s u l t = a ∗ x + y ;
}

Listing 3.4: Brook+ version of the saxpy function.

Vectors are denoted by using “<>” squares and the “out” keyword indicated which
parameter is the output stream of a given function: result in the example.
In order to setup and execute the saxpyBrookKernel function, the code in listing 3.5
is required. This has the same goal of listing 3.2 under Nvidia.

int main ( int argc , char∗∗ argv ) {
unsigned int Length = 100 ;
double a = 1 0 . 0 ;
double∗ InData1 ; double∗ InData2 ;



3.2. EXISTING APPROACHES TO PARALLEL PROGRAMMING 95

double∗ Result ;

/∗ −−−−−−− MEMORY ALLOCATION −−−−−−−− ∗/
InData1 = (double ∗) mal loc ( s i z e o f (double ) ∗ Length ) ;
InData2 = (double ∗) mal loc ( s i z e o f (double ) ∗ Length ) ;
Result = (double ∗) mal loc ( s i z e o f (double ) ∗ Length ) ;

/∗ −−−−−−− SET INPUT VALUEs −−−−−−−− ∗/
for ( int i = 0 ; i < Length ; ++i ) {

InData1 [ i ] = (double ) rand ( ) ;
InData2 [ i ] = (double ) rand ( ) ;

}

/∗ −−−−−−− SET DOMAIN −−−−−−−− ∗/
double indata1<Length>;
double indata2<Length>;
double r e s u l t <Length>;
streamRead ( indata1 , InData1 ) ;
streamRead ( indata2 , InData2 ) ;

/∗ −−−−−−− RUN COMPUTE KERNEL −−−−−−−− ∗/
saxpyBrookKernel ( a , InData1 , InData2 , Result ) ;

/∗ −−−−−−− GET RESULT −−−−−−−− ∗/
streamWrite ( Result , r e s u l t ) ;

/∗ −−−−−−− CLEAN UP and EXIT −−−−−−−− ∗/
f r e e ( InData1 ) ;
f r e e ( InData2 ) ;
f r e e ( Result ) ;
return 0 ;

}

Listing 3.5: Brook+ version of the execution setup code for saxpyBrookKernel.

Brook+ gives an abstract view of GPU computation, so that developers can fo-
cus only on Kernels implementation, without to consider any GPU details. This
high level programming language makes it easier to start write stream computa-
tions, keeping the learning curve low. However, all optimizations are entrusted to
underlying framework.

AMD CAL. CAL is a device-driver layer that sits on top of AMD’s Close-To-
Metal Hardware Abstraction Layer. CAL provides features like devices and resources
management, code generation, and Kernel loading and execution. The CAL pro-
gramming interface consists of:

• A minimal set of extensions to the C language that allow the programmer to
target portions of the source code for execution on the device.

• A run-time library split into:
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– Host application, that performs application work, sends commands to the
GPU using CAL API.

– GPU Kernel , that reads input data, performs stream parallel computa-
tion and writes output data.

– Common component, that provides built-in vector types and a subset of
the C standard library that are supported in both host and device code.

The computational model is processor independent and allows the user to switch
easily between directing a computation from GPU to CPU and vice versa. The
API should permit a dynamic load balancer to be written on top of CAL. A CAL
system comprises of one master process executing on the CPU and driving one or
more devices. A device is a hardware component capable of running CAL programs
(Kernels). A device has one or more computational processors. The Kernel is
executed on these processors and is implemented by using the AMD Intermediate
Language (IL). A device is connected to two memory sub-systems: local and remote.
The master process can read and write to both local and remote memory of any
device, though typically, the master has higher read and write speeds to the remote
memory of a device. The master process submits commands for execution using a
device context. The master process is also capable of querying the context for the
status of the completion of these tasks. The inputs and outputs to the program
can be set up to reside either in local or remote memory. A computation is invoked
by setting up one or more outputs and specifying a region (domain of execution)
into this output that must be computed. In the case of a device having multiple
processors (such as a GPU device), a scheduler distributes the workload region to
various SIMD processors on the device. The CAL abstraction divides commands
into two key types: device commands and context commands. The device com-
mands primarily involve resource allocation (local or remote memory). A context is
a queue of commands that are sent to a device. It is possible to have parallel queues
for different parts of the device. Resources are created on devices and are mapped
into contexts; this must be done to provide scoping and access control from within a
command queue. Each context represents a unique queue. Each queue operates in-
dependently of each other. The context commands (e.g. calCtxRunProgram) queue
their actions in the supplied context. The device does not execute the commands
until the queue is flushed; this occurs implicitly when the queue is full or explicitly
through CAL API calls. Data sharing across contexts is possible by mapping the
same resource into multiple contexts. Synchronization of multiple contexts is the
client’s responsibility.
In listing 3.6 we present a CAL equivalent implementation of listing 3.5. This is
required to setup and execute the Kernel function implemented in listing 3.7.

int main ( int argc , char∗∗ argv ) {
/∗ −−−−−−− INITIALIZATION −−−−−−−− ∗/
c a l I n i t ( ) ;
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CALuint numDevices = 0 ;
calDeviceGetCount ( &numDevices ) ;
CALdeviceinfo i n f o ;
ca lDev iceGet In fo ( &in fo , 0 ) ;
CALdevice dev i c e = 0 ;
calDeviceOpen ( &device , 0 ) ;
CALcontext ctx = 0 ;
ca lCtxCreate ( &ctx , dev i c e ) ;

/∗ −−−−−−− COMPILE & LINK KERNEL −−−−−−−− ∗/
CALdeviceattr ibs a t t r i b s ;
a t t r i b s . s t r u c t s i z e = s i z e o f ( CALdeviceattr ibs ) ;
ca lDev iceGetAtt r ibs (& a t t r i b s , 0) ;
CALobject obj ;
ca l c lCompi l e (&obj , CAL LANGUAGE IL, saxpyILKernel , a t t r i b s . t a r g e t ) ;
// Link o b j e c t i n t o an image
CALimage image = NULL;
c a l c l L i n k (&image , &obj , 1) ;

/∗ −−−−−−− MEMORY ALLOCATION −−−−−−−− ∗/
// a l l o c a t e input / output r e s o u r c e s and map them i n t o the c o n t e x t
unsigned int Length = 100 ;
CALresource InData1 = 0 ; CALresource InData2 = 0 ;
ca lResAl locLocal1D(&InData1 , device , Length , CAL FORMAT DOUBLE 1, 0)

;
ca lResAl locLocal1D(&InData2 , device , Length , CAL FORMAT DOUBLE 1, 0)

;
CALresource Result = 0 ;
ca lResAl locLocal1D(&Result , device , Length , CAL FORMAT DOUBLE 1, 0) ;
CALresource a = 0 ;
calResAllocRemote1D(&a , &device , 1 , 1 , CAL FORMAT DOUBLE 1, 0) ;
CALuint p i t ch1 = 0 , p i t ch2 = 0 ;
CALmem InMem1 = 0 , InMem2 = 0 ;

/∗ −−−−−−− SET INPUT VALUEs −−−−−−−− ∗/
double∗ f i nda ta1 = NULL; double∗ f i nda ta2 = NULL;
calCtxGetMem(&InMem1 , ctx , InData1 ) ;
calCtxGetMem(&InMem2 , ctx , InData2 ) ;
calResMap ( ( CALvoid∗∗)&f indata1 , &pitch1 , InData1 , 0) ;
for ( int i = 0 ; i < Length ; ++i ) f i nda ta1 [ i ∗ pi tch1 ] = rand ( ) ;
calResUnmap ( InData1 ) ;
calResMap ( ( CALvoid∗∗)&f indata2 , &pitch2 , InData2 , 0) ;
for ( int i = 0 ; i < Length ; ++i ) f i nda ta2 [ i ∗ pi tch2 ] = rand ( ) ;
calResUnmap ( InData2 ) ;
double∗ constPtr = NULL;
CALuint constP i tch = 0 ; CALmem constMem = 0 ;

// Map cons tant resource to CPU and i n i t i a l i z e v a l u e s
calCtxGetMem(&constMem , ctx , a ) ;
calResMap ( ( CALvoid∗∗)&constPtr , &constPitch , a , 0) ;
constPtr [ 0 ] = 1 0 . 0 ;
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calResUnmap ( a ) ;

// Mapping output resource to CPU and i n i t i a l i z i n g v a l u e s
void∗ r e s d a t a = NULL;
CALuint p i t ch3 = 0 ;
CALmem OutMem = 0 ;
calCtxGetMem(&OutMem, ctx , Result ) ;
calResMap(&res data , &pitch3 , Result , 0) ;
memset ( re s data , 0 , p i t ch3 ∗ Length ∗ s i z e o f (double ) ) ;
calResUnmap ( Result ) ;

/∗ −−−−−−− LOAD MODULE & SET DOMAIN −−−−−−−− ∗/
CALmodule module ;
calModuleLoad(&module , ctx , image ) ;
CALfunc func ;
CALname InName1 , InName2 , OutName , ConstName ;
calModuleGetEntry ( &func , ctx , module , "main" ) ;
calModuleGetName(&InName1 , ctx , module , "i0" ) ;
calModuleGetName(&InName2 , ctx , module , "i1" ) ;
calModuleGetName(&OutName , ctx , module , "o0" ) ;
calModuleGetName(&ConstName , ctx , module , "cb0" ) ;
calCtxSetMem ( ctx , InName1 , InMem1) ;
calCtxSetMem ( ctx , InName2 , InMem2) ;
calCtxSetMem ( ctx , OutName , OutMem) ;
calCtxSetMem ( ctx , ConstName , constMem ) ;
CALdomain domain = {0 , 0 , Length , 1} ;

/∗ −−−−−−− RUN COMPUTE KERNEL −−−−−−−− ∗/
CALevent event ;
calCtxRunProgram ( &event , ctx , func , &domain ) ;

// wai t f o r f u n c t i o n to f i n i s h
while ( calCtxIsEventDone ( ctx , event ) == CAL RESULT PENDING) { } ;

/∗ −−−−−−− GET RESULT −−−−−−−− ∗/
CALuint p i t ch4 = 0 ;
double∗ f outdata = 0 ;
calResMap ( ( CALvoid∗∗)& foutdata , & pitch4 , Result , 0) ;
for ( int i = 0 ; i < Length ; ++i )
foutdata [ i ∗ pi tch4 ] = (double ) ( i ∗ pi tch4 ) ;
calResUnmap ( Result ) ;

}

Listing 3.6: CAL version of the execution setup code for saxpyILKernel.

CAL gives finer control on non-functional aspects of stream computing, such as
device management, resource management, code generation, Kernel loading and
execution.

AMD IL. It is a pseudo-assembly language that can be used to develop both
graphics programs (vertex, geometry and pixel shaders) and general purpose data-
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parallel programs (Kernels). IL is designed so that programs can be developed to
run on a variety of platforms without having to be rewritten for each one. IL is a
type-less language, thus variables, parameters, etc., have no specific type and can
represent 32-bit signed integers, unsigned integers and floating point numbers, and
64-bit double precision floating point numbers (only supported when the underlying
platform supports double precision numbers) without first defining the variable type.
Number types are defined by the instruction. IL use makes optimizing the Kernels
easier, since programmers have more control over memory allocation, register and
instruction set used without requiring deep knowledge of the GPU architecture. At
the same time, similarly to all assembly languages, the learning curve is higher than
high-level languages such as C. Providing the Brook+ language for Kernels , AMD
enables non-HPC programmers to take advantage from stream processor perfor-
mance.
In listing 3.7 we present a IL equivalent implementation of listing 3.4.

const CALchar∗ saxpyILKernel =
"il_ps_2_0\n"

"dcl_input_position_interp(linear_noperspective) v0.xy__\n"

"dcl_output_generic o0.x___\n"

"dcl_cb cb0[1]\n"

"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)

_fmtw(float)\n"

"dcl_resource_id(1)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)

_fmtw(float)\n"

"sample_resource(0)_sampler(0) r0, v0.xyxx\n"

"sample_resource(1)_sampler(0) r1, v0.xyxx\n"

"mad_ieee o0.x___, cb0[0].x, r0.x, r1.x\n"

"ret_dyn\n"

"end\n" ;

Listing 3.7: IL version of the saxpy function.

IL gives finer control on Kernel implementations than Brook+, due to the assembly
level language provided. However, this low level programming language makes it
very difficult to start write stream computations, keeping the learning curve very
high.

The GPGPU compilation toolchain

The fragmentation in SIMD architectures and languages creates an interoperability
problem that hinders the wide adoption of stream computing. To run any stream
program on any stream architecture, one must develop a separate compiler for ev-
ery language and architecture pair. For these reasons, each GPUs vendor adopts
a two-level compilation approach that can mitigate the engineering complexity of
developing a new stream language: a High-Level Compiler (HLC) and a Low-Level
Compiler (LLC). The HLC accepts source code written in a stream language (e.g.
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AMD Brook+, AMD CAL and Nvidia CUDA) and the description of an architec-
ture via an abstract machine model, and it produces a mapping of logical stream
constructs to the physical resources available in the given architecture. Currently,
the mapping is expressed using APIs which are built upon the C programming lan-
guage. The high-level languages, AMD CAL and Nvidia CUDA, hide enough details
about the underlying structure of the system so that the programmer can program
GPUs without knowledge of the underlying system.

Figure 3.1: Two-level compilation approach.

Both vendors defined a low-level virtual machine model, in order to expose the
GPU as a data-parallel computing device: AMD CAL is based on the Close-to-the-
-Metal Hardware Abstraction Layer [106], whereas Nvidia CUDA is based on the
Parallel Thread eXecution (PTX).
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The LLC produces architecture-specific assembly language. The assembly-level
parallel programming languages, AMD IL and Nvidia PTX, provide capabilities
for fine-grained synchronization and data sharing across hardware threads, so that
programmers have more control over Kernels optimization. Both are a type less
language based on virtual register architecture.

OpenCL. Recently, Khronos Group, a consortium of very important companies
and institutions, has created a standard for cross-platform, parallel programming
of modern processors, such as GPGPUs and IBM Cell, called Open Computing
Language (OpenCL) [107]. It is an open industry standard for programming a
heterogeneous collection of CPUs, GPUs and other discrete computing devices or-
ganized into a single platform. OpenCL is a framework for parallel programming
and includes a language, API, libraries and a run-time system to support software
development. Using OpenCL, for example, a programmer can write general purpose
programs that execute on GPUs without the need to map their algorithms onto a
3D graphics API such as OpenGL or DirectX. OpenCL provides a low-level hard-
ware abstraction and a framework to support programming and many details of the
underlying hardware are exposed.

Its platform model consists of a host connected to one or more OpenCL de-
vices. An OpenCL device is divided into one or more compute units (CUs) which
are further divided into one or more processing elements (PEs). Computations on a
device occur within the processing elements. An OpenCL application runs on a host
according to the models native to the host platform. The OpenCL application sub-
mits commands from the host to execute computations on the processing elements
within a device. The processing elements within a CU execute a single stream of
instructions as SIMD units (execute in lockstep with a single stream of instructions)
or as SIMD units (each PE maintains its own program counter).

The execution of an OpenCL program occurs in two parts: Kernels that execute
on one or more OpenCL devices and a host program that executes on the host.
The host program defines the context for the Kernels and manages their execution.
The core of the OpenCL execution model is defined by how the Kernel execute.
When a Kernel is submitted for execution by the host, an index space is defined.
An instance of the Kernel executes for each point in this index space. This Kernel
instance is called a work-item and is identified by its point in the index space, which
provides a global ID for the work-item. Each work-item executes the same code but
the specific execution pathway through the code and the data operated upon can
vary per work-item. Work-items are organized into work-groups which provide a
more coarse-grained decomposition of the index space. They are assigned a unique
work-group ID with the same dimensionality as the index space used for the work-
items. Work-items are assigned a unique local ID within a work-group so that a
single work-item can be uniquely identified by its global ID or by a combination
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of its local ID and work-group ID. The work-items in a given work-group execute
concurrently on the processing elements of a single CU.

The execution context includes the following resources:

• Devices: The collection of OpenCL devices to be used by the host.

• Kernels : The OpenCL functions that run on OpenCL devices.

• Program Objects: The program source and executable that implement the
Kernels .

• Memory Objects: A set of memory objects visible to the host and the OpenCL
devices. Memory objects contain values that can be operated on by instances
of a Kernel .

The context is created and manipulated by the host using functions from the
OpenCL API. The host creates a data structure called a command-queue to coor-
dinate execution of the Kernels on the devices. The host places commands into
the command-queue which are then scheduled onto the devices within the context.
These include: Kernel execution commands (i.e. execute a Kernel on a device),
memory commands (i.e. transfer data to, from, or between memory objects), and
synchronization commands.

Work-item(s) executing a Kernel have access to four distinct memory regions:

• Global Memory. This memory region permits read/write access to all work-
items in all work-groups. Work-items can read from or write to any element
of a memory object. Reads and writes to global memory may be cached
depending on the capabilities of the device.

• Constant Memory: A region of global memory that remains constant during
the execution of a Kernel . The host allocates and initializes memory objects
placed into constant memory.

• Local Memory: A memory region local to a work-group. This memory region
can be used to allocate variables that are shared by all work-items in that
work-group. It may be implemented as dedicated regions of memory on the
OpenCL device. Alternatively, it may be mapped onto sections of the global
memory.

• Private Memory: A region of memory private to a work-item. Variables defined
in one work-item’s private memory are not visible to another work-item.

The application running on the host uses the OpenCL API to create memory objects
in global memory, and to enqueue memory commands that operate on these memory
objects.
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The OpenCL execution model supports data parallel and task parallel program-
ming models, as well as supporting hybrids of these two models. The OpenCL
framework allows applications to use a host and one or more OpenCL devices as a
single heterogeneous parallel computer system. The framework contains the follow-
ing components:

• OpenCL Platform layer: The platform layer allows the host program to dis-
cover OpenCL devices and their capabilities and to create contexts.

• OpenCL Runtime: The run-time allows the host program to manipulate con-
texts once they have been created.

• OpenCL Compiler: The OpenCL compiler creates program executables that
contain OpenCL Kernels . The OpenCL C programming language imple-
mented by the compiler supports a subset of the ISO C99 language with
extensions for parallelism.



104 Parallelism exploitation



Chapter 4

4-Centauri: a MSIL to NVIDIA
PTX compiler

The high-level GPU programming languages (recall Section 3.2.4) provided by both
Nvidia and AMD present those problems listed in Section 3.1. Indeed, the correct
and efficient design of GPUs parallel programs requires the consideration of sev-
eral different concerns that are difficult to separate during program development.
How the computation is performed using processing elements (such as processes and
threads), and how these communicate, are non-functional aspects of a program since
they do not contribute to define the result of the computation but only how it is per-
formed. Subscribing the separation of concerns concept, typical of Aspect Oriented
Programming (AOP) [45], we recognize the importance of using proper tools to pro-
gram the non-functional aspects related to parallelism exploitation. We propose that
programmers use meta-data to “suggest” consciously how a parallel application can
be automatically derived from the code. We will describe a proper meta-program,
called 4-Centauri, that can efficiently handle such meta-data. This is different from
the standard AOP approach where join points are defined using patterns, making
the programmer unaware of program transformation details that will be applied af-
terwards. By splitting the responsibility between the meta-program/compiler and
the programmer we exploit the strengths of them, and avoid their weaknesses. Our
underlying assumption is that the programmer can make better granularity and par-
titioning decisions, while the compiler can correctly manage synchronization. This
simplifies the task of writing parallel programs, making the power of parallel and
distributed systems more accessible.
In next section we describe the 4-Centauri’s design and implementation.

4.1 Compiling from MSIL to PTX

The 4-Centauri compiler translates a given program PCLR (as defined in Section
2.5.1) into an equivalent program PPTX (as defined in Section 2.5.7). In particular,
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4-Centauri leverages the flexibility and cost-effectiveness of the CLR to translate
MSIL codes, enriched with meta-data, into a modern mass-market special-purpose
architecture intermediate language code, the Nvidia PTX.

Of course it is possible to implement different JIT compilers that can target
special-purpose architectures. The problem is that CLR (and JVM) lacks the ability
to express special-purpose architecture features in a form that is recognizable by the
JIT module. On a standard CLR those features are hidden from the abstraction
layer provided by the CIL.

In our approach 4-Centauri uses standard mechanisms provided by CLR to
represent different parallel computations and abstract away tasks of specifying par-
allelism, communication, synchronization, etc. Moreover, we want to preserve the
illusion of the system directly executing the program as the programmer wrote it,
with no user-visible optimizations.
To achieve our goals, our technique embodies the following design features:

• Separation of control and data-intensive code. Kernels are considered
a unit of computation expressed with languages targeting CLR. They operate
on a set of input and output streams, may contain local state, and generally
encapsulate data-parallel code. Kernels can be asynchronously monitored and
controlled from a control thread running on CPU processor.

• Explicit communication via stream. The streaming nature of the com-
putation is exposed via stream abstraction. A stream is defined as an ordered
collection of values of homogeneous type through which CPUs and GPUs can
communicate.

• Implicit memory management for streaming data. The orchestration of
data movement via Direct Memory Access (DMA) as well as the GPU memory
hierarchy is hidden under the hood.

We have divided compilation, optimization, and specialization processes into
different stages by introducing a programming toolchain that controls the generation
process, as shown in Figure 4.1.

Along with 4-Centauri a domain-specific library is provided with a set of types
(e.g. HPRAMLib and LogPLib in Figure 4.1) that express different models of par-
allel execution. General application programmers can select which type to use in
function of which model of parallel execution best fit in their programs. At deploy
time, for each type selected if there is an underlying architecture that exposes the
same model of execution, 4-Centauri will translate that type’s methods into that
architecture executable code. If there is no special architectures available, those
methods will execute on CPU. In order to map models, leaving the user to code and
debug at source level, 4-Centauri operates at the intermediate level, such that all
its manipulation are transparent to developers.
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Figure 4.1: 4-Centauri software stack.

4.1.1 The philosophy

The 4-Centauri philosophy on parallel computing is the same of Mentat (recall
Section 3.2.3) since it is guided by two observations:

1. the programmer has a better comprehension of the problem domain of the
application and can make better data and computation partitioning decisions
than compilers can.

2. the design and implementation of non-functional aspects of a parallel program,
such as the management of tens to thousands of asynchronous tasks, where
timing dependent errors are easy to make, is beyond the capacity of most
programmers unless a tremendous amount of effort is expended. Compilers,
on the other hand, are very good at ensuring that events happen in the right
order, and can more readily and correctly manage communication and syn-
chronization, particularly in highly asynchronous, non-SPMD, environments.

In essence, we design our framework such that it supports users at three dif-
ferent levels of abstraction. At the higher level, general application programmers
have no access to any information about execution environment, they just make a
reference to a domain-specific library (DSLib) (see Figure 4.1) in the usual way, as
for Mentat, MapReduce, RapidMind. Eventually, they can take advantage of the
computational power of the GPUs. At this level we want to preserve the value of
legacy codes, as for ADAPTOR, SUIF and pMapper compilers, without requiring
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programmers must learn another language and must re-implement their existing
code, as for RapidMind, and OpenMP. Moreover, programmers can continue to de-
bug their programs in their sequential form, as for ADAPTOR, SUIF, pMapper,
and Mentat.

At the middle level, experts in a particular (computational) domain, but not
necessarily in computer graphics, can develop libraries (i.e. DSLib) leveraging the
stream programming model provided by our framework. At this level, architecture
details are transparent to programmers, they just use the streaming capabilities of
the underlying GPU processors exposed by a dedicated API. This is the same ap-
proach provided by X10 and Muskel on multi-core architectures.

At the lower level, experts in computer (graphics) architectures and program-
ming models can develop their own meta-program in order to map high-level code
to new architectures.

4.1.2 Two-level compilation model

4-Centauri meta-program is based on the two-level compilation model, as shown
in Figure 4.2, as for Nvidia CUDA and AMD CAL.

The high-level compiler is one of those targeting the CLR, since the idea is to
make architecture primitives available to the CLR-based program without changing
the design of the CLR itself. The low-level compilation is provided by the LLCs
(introduced in Section 3.2.4) by AMD and Nvidia. 4-Centauri is the interface
between the two levels. Therefore, 4-Centauri is composed by several modules,
three in Figure 4.1. The Meta-program exposes the API describes in the following
section, and used in the DSLibs implementation, i.e. defined at middle level of
abstraction. The Scheduler manages execution of CPU- and GPU-part of code,
mapping the execution domain expressed in the source code by DSLibs to available
underlying processing units (e.g. GPU and CPU). The Compiler translates the part
of MSIL code executed by an ”accelerator” (e.g. GPU), and passed as input by the
Scheduler, into low-level language code of the underlying architecture. In order to
execute that part of code on a new architecture, a new Compiler that targeting that
architecture must be added to the 4-Centauri framework.

Application Program Interface

Considering the GPGPU computation model introduced in Section 1.4, we define
a streaming computational model that explicitly provides the dependency between
all stream operations to each execution engine. Therefore, programmers are aware
of the additional operation costs due to engines communication via streams. To
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Figure 4.2: Two-level compilation model.

encapsulate the streaming application as transformed by a high-level compiler we
define the following logical entities:

• Stream objects are used to assign data to specific hardware locations in the
stream processors local memories and to refer to locations in the global mem-
ory (RAM) for DMA transfers. They contain an ordered collection of data
elements of a given type. From the point of view of the controlling program,
streams are accessible sequentially and implemented as a circular buffer as-
signed to a location in a memory. As shown in Listing 4.1, the Stream objects
are implemented by two generic types: InputStream<T> and OutputStream<T>,
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that inherit from Data<T> introduced in Listing 2.9. They change how data
elements are accessed. The former allows to read the next element from an
input stream, and the latter allows to write one element into an output stream.
Since Kernel entities communicate with Control entities through Stream en-
tities then kernel -annotated methods must have those types as parameters.

public class InputStream<T> : Data<T> {
public o v e r r i d e int Count ( ) { . . . }
public o v e r r i d e void Reset ( ) { . . . }
public o v e r r i d e bool MoveNext ( ) { . . . }
public T Current { . . . }

/∗ For workload d i s t r i b u t i o n purpose ∗/
public List<InputStream<T>> S p l i t ( int num array ) { . . . }

}

public class OutputStream<T> : Data<T> {
public o v e r r i d e int Count ( ) { . . . }
public o v e r r i d e void Reset ( ) { . . . }
public o v e r r i d e bool MoveNext ( ) { . . . }
public T Current { . . . }

/∗ For workload s c a t t e r i n g and g a t h e r i n g purposes ∗/
public List<OutputStream<T>> S p l i t ( int num array ) { . . . }
public void Concat ( OutputStream<T> [ ] nstream )

}

Listing 4.1: C# implementation of GPGPU streams.

In Listing 4.2 we will provide an example of these stream types in use.

• Kernel objects are used to map methods to stream processors. Programmers
can declare which methods in a data type must execute on GPGPUs. Their
code consume zero or more input streams and produce zero or more output
streams. In order to use standard mechanism provided by CLR, we have
decided to use a Custom Attributes (CA) type, rather than to introduce a
new data type for kernels. Doing this, our code is cross-platform, since CA
are ignored by the execution engine, but provided along with binary files.

public s e a l e d class Kernel : Att r ibute {
// . . .

}

By this attribute, developers annotate which methods should execute on a
GPGPU, and which implement control code.

• Controls implement control code. They can initiate, monitor, and terminate
the execution of kernels. These are transparent to programmers.
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Actually, 4-Centauri provides only one type that represents the GPGPU model
of execution, and a MSIL to Nvidia PTX compiler. However, we are working on
new types for other models, such as LogP and H-PRAM, and it is almost ready the
AMD IL Code Generator module of 4-Centauri.

Example of implementation: data-parallel on GPGPU

In order to give an idea of a possible implementation of formal concepts expressed
in previous sections, now we provide the same example of Section 2.5.4, i.e. data-
parallel operations, but this time considering the GPGPU model of execution.

In the following listing 4.2 the GPUDataParallel class implements both Map
and Reduce operations that take stream data types as arguments for scattering
input data to and gathering results from a GPU.

/∗ A v a i l a b l e o p e r a t i o n s f o r r e d u c t i o n purposes ∗/
public enum DPOper {

Add = 1 ,
Prod = 2

}

/∗ Example o f d e l e g a t e d e f i n i t i o n ∗/
public de l e ga t e void DPSTREAM<T,K>(OutputStream<T> [ ] outputs ,

InputStream<K> [ ] inputs ) ;

/∗ Implements data−p a r a l l e l o p e r a t i o n s f o r GPGPUs a r c h i t e c t u r e s ∗/
public class GPUDataParallel<T,K> : DataPara l l e l<T,K>
{

/∗ GPU c o n f i g u r a t i o n and e x e c u t i o n management r e l a t e d f i e l d s ∗/
// . . .
GPUFunction fun1 ;
GPUContext ctx1 ;
GPUModule mod1 ;

/∗ VEE−s i d e memory managements ∗/
int [ ] ptr Input ;
GCHandle [ ] gcHdInput ;

public GPUDataParallel ( Object ob ) : base ( ob )
{

/∗ I n i t i a l i z a t i o n o f : ∗/
1 . CUDADriver environment
2 . Compiler data s t r u c t u r e for code a n a l y s i s .

}

/∗ CUDADriver environment e x i t ∗/
˜GPUDataParallel ( ) {

CUDA. Exit ( job1 ) ;
}

public v i r t u a l void Map( s t r i n g method name ,



112 4-Centauri

OutputStream<T> [ ] outputs ,
InputStream<K> [ ] inputs ) {

/∗ L i s t o f c a l l s performed by the 4−Centauri on a Kernel having ’
method name ’ as name . ∗/

1 . Set up CUDADriver environment , context , load binary f i l e
and the \PTX func t i on
r e s u l t i n g from compi la t ion o f method m

2 . Sca t t e r data from CPU to GPU.
For each input stream
2 . 1 . A l l o ca t e GPU memory
2 . 2 . Copy data va lue s from current input stream to GPU

memory

3 . A l l o ca t e GPU memory for the output stream

4 . Set up CUDADriver s p e c i f i c parameters

5 . Launch GPU execut ion

6 . Gather data from GPU to CPU
}

public v i r t u a l void Reduce ( s t r i n g method name ,
DPoper operat ion ,
OutputStream<T> [ ] outputs ,
InputStream<K> [ ] inputs )

{
/∗

Map steps , having added the r e d u c t i o n op era t ion to k e r n e l code
∗/

}
}

Listing 4.2: C# implementation of data-parallel operations on GPGPU architecture.

In 4.2 we list Map steps that exploit 4-Centauri API to execute a Kernel on
a GPU. At step 1, the MSIL Kernel code is loaded and analyzed by 4-Centauri.
It scans its body to evaluate which memory resources are referred. Moreover, it
reconstructs the stack behavior and translates MSIL code to Nvidia PTX code. At
step 2 and 3, 4-Centauri performs a set of calls required to allocate memory on
a GPU and send data to it. At step 4-5, 4-Centauri configures and launches the
execution of PTX Kernel code. At the end, results are gathered from GPU and
returned to Map caller via outputs parameter.

In Section 4.2 we will describe into details which modules of 4-Centauri compiler
perform those steps. At higher level of abstraction in their application programmers
must:
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1. implement a class having at least one Kernel annotated method.

2. instantiate GPUDataParallel class.

3. invoke one of the operation provided by GPUDataParallel class, passing the
name of a Kernel defined at the point 1 as parameter.

An example of application is shown in the listing 4.3.

public class MyClass {
// . . .

[ Kernel ]
public void Add( OutputStream<T> outputs , InputStream<f loat > [ ] inputs

) {
outputs [ 0 ] . Current = inputs [ 0 ] . Current + inputs [ 1 ] . Current ;

}
}

public class Program {
// . . .

stat ic void Main( s t r i n g [ ] a rgs )
{

MyClass mc = new MyClass ( ) ;
int [ ] A;
int [ ] B;
int [ ] C;

/∗ Vectors i n i t i a l i z a t i o n ∗/
// . . .

OutputStream<int > [ ] outputs = new OutputStream<int > [ 1 ] ;
outputs [ 0 ] = new OutputStream<int>(C) ;

InputStream<int > [ ] inputs = new InputStream<int > [ 2 ] ;
inputs [ 0 ] = new InputStream<int>(A) ;
inputs [ 1 ] = new InputStream<int>(B) ;

GPUDataParalle<int , int> dp = new GPUDataParallel<int , int>(mc) ;
dp .Map("Add" , outputs , inputs ) ;

}

Listing 4.3: C# application that exploit data-parallel operations defined in listing 4.2.

The code in listing 4.3 can be compiled with a standard C# compiler. The MSIL
code obtained after the compilation is a standard one, thus it can be executed on
all standard CLR or Mono VM. At this point the code is not mapped on a GPGPU
yet. Another step is required: the 4-Centauri compiler execution.
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4.2 Organization of the compiler

As shown in Figure 4.3, the 4-Centauri system consists of the following parts:

Figure 4.3: Organization of the 4-Centauri compiler.

• Analyzer. It scans a given MSIL code looking for Kernel-annotated methods.
If there is at least one GPU available, for each Kernel found, the Analyzer
checks whether it is already compiled or not. In the former case, the Analyzer
configures the execution environment (e.g. memory allocation and initializa-
tion, context and function definition, etc.) and invokes the run-time support
to start Kernel execution. In the latter case, it scans Kernel MSIL code in
order to evaluate which resources (e.g. shared and global memory, registers,
etc.) are referred.

• Parser. It takes a MSIL code as input and builds an Abstract Syntax tree
(AST ) by using an abstract stack.

• Code Generator. It visits an AST and translates its nodes into a specific
intermediate language depending on the available underlying GPU, such as
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Nvidia PTX. Finally, it produces an executable file such that in the following
executions of the same code, no compilation step is required.

• Runtime support. It provides support for executing CPU and GPU compu-
tations, such as scattering input data, and gathering results at the end of
computation. If part of the computation is executed on a GPU, our support
performs all that is necessary to configure and execute Kernel code.

From Section 4.2.2 through 4.2.5 each of the 4-Centauri components is de-
scribed in detail.

4.2.1 Data Structures

We think it is important first to introduce the data structures that have been defined
and will be used, by 4-Centauri for compilation purposes.

• StreamArgs. It represents a stream with an associated type. As stated in
PTX specification [84] “an input/output stream is addressable either by an
integer or bit-size type register reg containing a byte address, or a sum of
register reg containing a byte address plus a constant integer byte offset.”
Therefore, in order to manage stream access, i.e. single access or in a loop
over its elements, we define the following tuple of register identifiers:

regIdentifier ≡ kReader×kIncrem×kIndexer×kLoopBound×kLoopIndex

where

– kReader register that holds the reference to the first element of the stream.

– kIncrem register that holds the amount of the increment to address the
next element of the stream.

– kIndexer register that holds the iterator over the stream.

– kLoopBound register that holds the stream length.

– kLoopIndex register that holds the loop indexer.

Actually, the last two registers are optional, since they depend on whether
there is a loop over a stream or not.

• Abstract Instruction, named AI. It is an abstract assembly-like instruction
that is not tailored to a specific GPU. An instruction is modeled as follows:

class I n s t r u c t i o n {
private OpCode op ;
private Pred i ca te pred ;
private s t r i n g [ ] operands ;
private Label l a b e l ;
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public I n s t r u c t i o n ( Pred i cate p , Label lb , OpCode o , s t r i n g [ ]
opers ) { . . . }

/∗ Return a complete i n s t r u c t i o n in the c o r r e c t syntax ∗/
public o v e r r i d e s t r i n g ToString ( ) { . . . }

}

where Predicate (e.g. p) is a guard that determines whether an instruction or
instruction block can be executed or not. It is used in control flow instructions
(e.g. setp) but also to avoid illegal execution, such as

se tp . eq . f32 p , y , 0 ; // p = ( y == 0)
@! p div . f32 ra t i o , x , y // i f y == 0 then r a t i o = x / y

OpCode is a generic operation code, Label is a branch target of an instruction,
thus for control flow purposes, and operands is a set of operands required by
an instruction.

• Kernel. It represents an abstract Kernel that is modeled as follows:

public class Kernel {
/∗ Kernel unique name ∗/
private s t r i n g name ;

/∗ Input and Output streams used by a k e r n e l ∗/
private Dict ionary<int , StreamArgs> s t reams ;

/∗ Set o f r e g i s t e r s used by a k e r n e l ∗/
private R e g i s t e r s r e g i s t e r s ;

/∗ Shared memory v a r i a b l e s used by a k e r n e l ∗/
private List<SharedMem> sharedmem ;

/∗ k e r n e l i n t e r m e d i a t e code ∗/
private List<In s t ruc t i on> streamCode ;

private int idRegs ;
private int i d P r e d i c a t e ;
public Queue<int> i dPred i ca t e ;

public int AddRegID( OperandType opt ) { . . . }
public int AddPredicate ( ) { . . . }
public int GetPredicate ( ) { . . . }
public v i r t u a l void AddSharedMem( OperandType opt , int a l i gn ,

s t r i n g name , int qta ) { . . . }

/∗ Emit the Ari thmet ic a b s t r a c t i n s t r u c t i o n ∗/
public v i r t u a l void EmitAR ( . . . ) { . . . }

/∗ Emit the Comparison a b s t r a c t i n s t r u c t i o n ∗/
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public v i r t u a l void EmitCMP ( . . . ) { . . . }

/∗ Emit the Data movement a b s t r a c t i n s t r u c t i o n ∗/
public v i r t u a l void EmitMV ( . . . ) { . . . }

/∗ Emit the Memory Load a b s t r a c t i n s t r u c t i o n ∗/
public v i r t u a l void EmitLS ( . . . ) { . . . }

/∗ Emit the Conversion a b s t r a c t i n s t r u c t i o n ∗/
public v i r t u a l void EmitCV ( . . . ) { . . . }

/∗ Emit the Contro l Flow a b s t r a c t i n s t r u c t i o n ∗/
public v i r t u a l void EmitFC ( . . . ) { . . . }

/∗ Append an a b s t r a c t i n s t r u c t i o n to the k e r n e l i n t e r m e d i a t e
code ∗/

private void Interna lEmit ( I n s t r u c t i o n i n s t r ) { . . . }
}

Using the notation introduced in Section 2.5.1, a kernel k ∈ FUNGPGPU refers
to a set of memory resources ∈MEMGPGPU , in particular a set of streams ∈
RGGPGPU , a set of registers ∈ RGGPGPU , a set of shared memory units
∈ SMGPGPU . The body of k is held in streamCode, that is the result of
applying ηGPGPU function to k.

We define methods to set/get memory resources associated with a Kernel, and
a set of emitters for each class of AIs: arithmetical-logic, comparison, data
movement, parameter access, type conversion and control flow.

• Node. It is an abstract interpretation of a MSIL instruction (AbI). It is
modeled by the following class

/∗ Base c l a s s ∗/
class Node {

protected int id ;
protected OperandInfo opcode ;
protected int reg Id ;
protected Label label ;
protected List<Node> nodes ;

public Node ( Label lab , int i d e n t i f i e r , OperandInfo opc ) { . . . }

public void AddNode(Node nd) { . . . }
public v i r t u a l s t r i n g Scan ( ) { . . . }

}

The information required on a MSIL instruction for the generation step is
summarized by the Node class fields: operation code (opcode), label (label),
a list of children nodes (nodes) required to compute the current instruction,
and the identifier of the register (regId) that will hold the result of the current
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instruction execution.
The Scan method generates the AI relative to the current AbI. To accomplish
this task, it invokes the Scan method of each child, if present, and stores its
results into a register, that will be an operand of the current AbI. We define
a set of classes that extend Node one in order to map each AbI to an AI. In
table 4.1 this mapping is defined between Node classes and MSIL instructions
sets.

MSIL instruction type Equivalent Node class
stloc NodeLSloc
ldloc NodeConst
ldarg NodeARG
ldc Ix NodeConst

conv Ix NodeCVT
call, calli, callvirt NodeCall

br NodeBRA
brtrue, brfalse NodeCONDBRA

beq, bge, bgt, ble, blt NodeFCBRA
ceq, cgt, clt NodeSetCMP

add, mul, sub, div NodeCALC

Table 4.1: Mapping of MSIL instructions and Node classes. For the sake of brevity we do not

consider efficient encoding versions of MSIL instructions. For a complete list, please see the ECMA

335, partition III [1].

4.2.2 Code Analyzer

In Figure 4.3, the Analyzer determines which underlying architectures are available
through a wrapper driver lib, that we developed as run-time support (see later in
Section 4.2.4). After that, the Analyzer disassembles all given assemblies looking for
Kernel -annotated methods. This is performed by exploiting reflection capabilities
of the CLR (recall Section 2.2.4) that implements all those functions defined in
Section 2.5.2. At this point there are two possible scenarios: either no special-
purpose architectures are available or there is at least one GPU. In the former case,
Kernel will be forced to run on a CPU, whereas in the latter case the Analyzer
performs the first step in compilation toolchain that ends with the execution of a
Kernel on a GPU.
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Kernel execution on a CPU

If no special-purpose architectures are available, the Analyzer performs the same
steps already listed for the Map method in listing 2.9, but on data streams defined
in Section 4.1. In listing 4.4 we provide an example of Map on a generic stream.

/∗ Example o f d e l e g a t e d e f i n i t i o n ∗/
public de l e ga t e void StreamDelegate<T,K>(InputStream<T> [ ] outputs ,

OutputStream<K> [ ] inputs ) ;

/∗
Map spawns a thread f o r each p r o c e s s o r core . Each thread e x e c u t e s the
same method , c a l l e d jobMethod , t a k i n g a d i f f e r e n t par t o f the input
data , c a l l e d inputTh , and r e t u r n i n g r e s u l t s in a d i f f e r e n t par t o f
the output data , c a l l e d outputTh .

∗/
public v i r t u a l void Map( s t r i n g method name ,

OutputStream<T> [ ] outputs ,
InputStream<K> [ ] inputs ) {

1 . StreamDelegate<T,K> jobMethod = ( StreamDelegate<T,K>)
Delegate . CreateDelegate ( typeo f ( StreamDelegate<T,K>) ,
cu r r In s tance , method name ) ;

2 . S ca t t e r input and output parameters between c o r e s threads ,
inputTh and outputTh

3 . For each thread do
3 .1 jobMethod ( outputTh , inputTh ) ;
4 . Gather output r e s u l t s

}

Listing 4.4: C# pseudo-code executed by the Analyzer to perform a computation on a CPU.

Specifically, the Analyzer creates a thread pool (TP) of size equal to the number of
CPU cores. It scatters data to, and waits to gather the results from the TP.

MSIL Kernel code analysis

Having at least one GPU, for each Kernel -annotated method found in each class
in a given assembly, the Analyzer checks whether it is already compiled or not, i.e.
whether an executable file with that Kernel exists or not. In the former case, the
Analyzer executes the same steps of the Map method in listing 4.2. In the latter
case, the Analyzer performs the following steps:

1. for each class c

(a) for each method m ∈ metCLR(c), if isKernelAttrCLR(m) then

i. for each stream ∈ paramsCLR(m), registers in the tuple regIdentifier
are defined and initialized

ii. call Parser to build an abstract syntax tree (AST).
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iii. call Code Generator with AST as input.

In order to scan and reconstruct the stack behavior of a method the Analyzer
leverages the CLIFileRW library [108] capabilities.

CLIFileRW library. It is a library specifically designed to read and rewrite .NET
binaries. It interacts with .NET reflection only under explicit request so large code
bases can be analyzed using it. It is built using memory mapping to avoid unnec-
essary memory allocation, data is accessed directly on the disk and CLR meta-data
tables are exposed as a set of tables using indexers. CLIFileRW provides the IL-
Cursor class, that is a linear cursor into a stream of CIL instructions. The cursor
provides a number of facilities that are needed to generate optimized streaming code,
one of which is the abstract interpretation of the operands stack that is particularly
important since we need to reconstruct the stack behavior to translate a stack-based
VM (e.g. CLR) code to a register-based VM (CAL IL or PTX) one. Indeed, knowing
the evaluation stack height it is possible to know the maximum number of registers
required for each statement.

4.2.3 Parser

The main purpose of the Parser is to build a AST having a MSIL method m as
input. It computes the following steps:

1. for each instruction instr ∈ ηCLR(m)

(a) creates an abstract interpretation of instr with all information required
to the Code Generator, and pushes it onto the abstract stack, updating
the AST.

/∗ sum − MSIL code ( source ) ∗/
. method public h idebys i g i n s t ance void Add( ) c i l managed {

. custom in s tance void [ CompileLib ] StreamDefs . Kerne l sAtt r ibute : : . c t o r
( )

. maxstack 2

. l o c a l s i n i t (
[ 0 ] in t32 a ,
[ 1 ] in t32 b ,
[ 2 ] in t32 c )

// . . .

L 0005 : l d l o c . 0
L 0006 : l d l o c . 1
L 0007 : add

// . . .
}
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/∗ Parse t r e e g e n e r a t i o n ∗/
private void ILCodeScan ( . . . ) {

switch ( op ) {
case OpCode . Ldloc : {

NodeConst node = new NodeConst ( ptxCode , labe , new OperandInfo
( c i l . op , TypesMapping ) ) ;

NodesStack . Push ( node ) ;}
break ;

case OpCode . Add :
case OpCode . Sub :
case OpCode . Div : {

Node operand1 = NodesStack . Pop ( ) ;
Node operand2 = NodesStack . Pop ( ) ;
NodeCALC calcNode = new NodeCALC ( ptxCode , labe , ( int ) c u r s o r

. Pos i t ion , new OperandInfo ( c i l . op , optype , c i l . op . Value ) ) ;

calcNode . AddNode( operand1 ) ;
calcNode . AddNode( operand2 ) ;
NodesStack . Push ( calcNode ) ; }

break ;
// . . .

}
}
// . . .

/∗ MSIL code e v a l u a t i o n ∗/
public s t r i n g EvalBody ( Stream [ ] outArg , params Stream [ ] inputArgs ) {

Stack<Node> NodesStack = new Stack<Node>() ;
// . . .
// . . .
int s tackHeight = 0 ;

for each i n s t r u c t i o n in the cur rent MSIL code
{

opcode = OpCode( i n s t r u c t i o n ) ;
int numberOfPush = GetPushOnStack ( op ) ;
int numberOfPop = GetPopOnStack ( op ) ;

ILCodeScan ( NodesStack ) ;

s tackHeight += numberOfPush − numberOfPop ;

/∗ At the end o f a statement , the operand s t a c k h e i g h t i s e q u a l to
zero ∗/

i f ( s tackHeight == 0 && NodesStack . Count > 0 )
GenerateIL ( NodesStack ) ;

}
// . . .

}
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In order to reduce the amount of memory required by the Code Generator, the
GeneratorIL is called at the end of a statement, that is a sequence of CIL instructions
such that the height of the operand stack is zero before the first instruction and it
is zero after the last instruction, which should not be a conditional branch.

Having the MSIL code for the sum of two integers as input, the Analyzer scans
it and, depending on the instruction OpCode, it determines which type of Node is
pushed onto the stack NodesStack, i.e. to the AST. These steps are shown in Figure
4.4.

Figure 4.4: 4-Centauri parser component. Given a MSIL code as input it builds parse tree

using Node data structure.

4.2.4 Code Generator

Adopting a postfix traversal, the Code Generator translates each AST node into a
PTX instruction, producing an executable program in the end. This code can be
stored in an object file or written into memory ready to be executed.

Figure 4.5: 4-Centauri generator component. Given a parse tree as input generates a PTX

code. The visit is postfix.
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The translation from CIL op-codes into PTX VM ones is not straightforward
because the PTX VM is register based whereas CLR is a stack based VM.

Some CIL (recall Section 2.2.5) instructions are translated into corresponding
register-based VM instructions, with implicit operands translated to explicit operand
registers. The new register-based instructions use one byte for the opcode and one
byte for each operand register (e.g. add).

There are a few exceptions to perform the one-to-one translation:

• Evaluation stack pop instructions are translated into nop because they are not
needed in register-based code.

• Instructions related to loading of a local variable onto evaluation stack and
storing data from evaluation stack into a local variable are translated into
move instructions.

• Stack manipulation instructions (e.g. dup) are translated into appropriate
sequences of mov instructions by tracking the state of the evaluation stack.

In the CLI, operands are pushed from local variables onto the evaluation stack before
they can be used, and results must be stored from the stack to local variables. Most
of these stack push and pop operations are redundant in our register-based run-time
as instructions can directly use local variables (registers) without going through
the stack. In the generation step, all loads and stores from/to local variables are
translated into register mov instructions.

A special consideration is required about branch. PTX instructions without a
guard predicate are executed unconditionally. Predicates are most commonly set
as the result of a comparison performed by the setp instruction. As an example,
consider the high-level code

if (i < n)

j = j + 1;

This can be written in PTX as

setp.lt.s32 p, i, n; // p = (i < n)

@p add.s32 j, j, 1; // if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control
the execution of the branch or call instructions. To implement the above example as
a true conditional branch, the following PTX instruction sequence might be used:

setp.lt.s32 p, i, n; // compare i to n

@!p bra L1; // if false, branch over

add.s32 j, j, 1;

L1:
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Driver Wrapper. In order to leverage Nvidia CUDA driver functionalities we
have developed a dedicated .NET library, called NVIDIALib, based on the .NET
platform invocation services. NVIDIALib provides a layer of code which translates
the CUDA driver un-managed C library’s interface into a compatible .NET managed
one in C#.
NVIDIALib implements a set of wrapper types, one for each of CUDA driver fun-
damental handle type as shown in table 4.2.

CUDA Object Handle Wrapper type Description
Device CUdevice Int CUDA-enabled device

Context CUcontext IntPtr Roughly equivalent to a CPU process
Module CUmodule IntPtr Roughly equivalent to a dynamic library

Function CUfunction IntPtr Kernel
Heap memory CUdeviceptr Int Pointer to device memory

Table 4.2: NVIDIALib wrapper types.

Moreover, NVIDIALib implements a set of static methods, one for each function
exposed by CUDA driver. For instance, the method

IntPtr CUDA.InitEnv(int numberOfStreams, int numberOfKernels)

wraps the routing that initializes the CUDA environment. Another example is the
following routine

void cuMemAlloc(CUdeviceptr* dptr, unsigned int bytesize)

that allocates bytesize bytes of linear memory on the device and returns dptr pointer
to the allocated memory. This is wrapped by a static method as follows

[DllImport(‘‘NVIDIALib.dll’’, ExactSpelling = true, CharSet = CharSet.Auto)]

public static extern int MAllocOnGPU([In, Out] IntPtr dptr, int bytesize);

When the CLR’s P/Invoke mechanism calls MAllocOnGPU, the CLR pins the argu-
ments automatically and unpins them when the unmanaged method returns. How-
ever, the GCHandle type must be used explicitly when it is required to pass the
address of a managed object to unmanaged code and then, the unmanaged func-
tion returns, but unmanaged code might still need to use the object later. For this
reason, the following steps are required for each GPU memory allocation

GCHandle gInp = GCHandle.Alloc(inputStream.ToArray(), GCHandleType.Pinned);

int ptrInput = CUDA.MAllocOnGPU(job, input_bytesize);

All invocation results analysis are performed in the NVIDIALib.dll library. Actually,
we have not implemented yet an exception management system. We are still working
on that.
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4.2.5 Runtime support

GPU IL Loader loads an object file to be executed. Thread scheduler. It pro-
vides run-time support on CPU-side for thread scheduling, scattering and gathering
of results, synchronization, exception handling, interfacing to external code, etc.
GPU scheduler. It provides run-time support on GPU-side for Kernels scheduling,
scattering and gathering of results, synchronization, exception handling, etc. on
GPU-side.
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Chapter 5

Evaluation

While the previous chapters presented detailed conceptional and technical descrip-
tions of 4-Centauri, this chapter evaluates its efficiency using some examples.
These are evaluated with regards to the reduction in Completion Time (CT). The
major goal of every approach that uses GPUs is a significant performance gain com-
pared to the CPU-based implementation. This is evaluated by processing datasets of
various sizes and measuring the processing run-time. Please note that these timings
exclude any data transfer between the main and the graphics processors. Moreover,
it is important to note that we execute tests with and without compilation steps
performed by 4-Centauri to evaluate how much 4-Centauri weighs on the CT of
an application. This work should be considered preliminary, since most of the efforts
in developing 4-Centauri were spent in making the meta-program infrastructure.
We expect to provide more examples in different classes of parallel applications also
using different languages targeting CLR.

The following test bed has been used for benchmarks: a notebook equipped with
Intel Core 2 Duo, 64-Bit processor running at 2.6 GHz, provided with 4 GBytes of
memory and running the Microsoft Windows 7 x64 edition Operating System. The
graphics hardware was always Nvidia’s GeForce G210M: see Table 5.1 for its main
features.

Feature Value
CUDA Cores 16

Processor clock 1.5GHz
Memory clock 800 MGHz

Memory Config 1GB
Memory interface 64 bit

Total amount of Shared memory 16KB
Warp size 32

Max # threads per block 512
CUDA Compatibility 1.2

Table 5.1: Nvidia GeForce G210M specification: main features.
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5.1 Mandelbrot algorithm

Mandelbrot set is used to refer both to a general class of fractal sets and to a
particular instance of such a set. In general, a Mandelbrot set marks the set of
points in the complex plane such that the corresponding Julia set is connected
and not computable. “The” Mandelbrot set is the set obtained from the quadratic
recurrence equation:

zn+1 = z2n + C

with z0 = C, where points C in the complex plane for which the orbit of zn does
not tend to infinity are in the set. Setting z0 equal to any point in the set that is
not a periodic point gives the same result.

5.1.1 Implementation details and results

We have implemented a parallel version of the Mandelbrot algorithm adopting
the data-parallel pattern Map. Let MandelbrotClass be the class that implements
our version of Mandelbrot algorithm. This class has a set of instance fields used
to obtain a particular Mandelbrot set; these fields will be mapped on the GPU
shared memory. Let Mandel be the Kernel annotated method that computes
a new Mandelbrot set. It refers a set of memory resources. Using notation in
Section 2.5.2, Mandel ∈ METCLR. Mandel accesses to mlocalsCLR(Mandel) =
{row, col, x, y, x0, y0, i, xtemp} local variables, ifieldsCLR(Mandel) = {samplewidth,-
sampleheight, imagewidth, imageheight, offsetX, offsetY,maxiteration} instance
fields. It has three parameters, paramsCLR(Mandel) = {rows, cols, results}. The
first two arguments are InputStream typed, whereas the last is OutputStream typed.
A C# implementation of MandelbrotClass is provided in listing 5.1.

public class MandelbrotClass
{

int samplewidth ;
int samplehe ight ;

int imagewidth ;
int imageheight ;

int o f f s e t X ;
int o f f s e t Y ;

int maxi te rat ion ;

public MandelbrotClass ( int sampleWidth , int sampleHeight , int
imageWidth , int imageHeight , int o f f s e tX , int o f f s e t Y ) { . . . }

[ Kernel ]
public void Mandel ( InputStream<f loat> rows , InputStream<f loat> co l s ,

OutputStream<f loat> r e s u l t s )
{
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int row = rows . Current ;
int c o l = c o l s . Current
f loat x = ( c o l ∗ samplewidth ) / imagewidth + o f f s e t X ;
f loat y = ( row ∗ samplehe ight ) / imageheight + o f f s e t Y ;
f loat x0 = x
f loat y0 = y
for ( int i = 0 ; i < maxi te rat ion ; i++)
{

i f ( x ∗ x + y ∗ y >= 4) {
r e s u l t s . Current = ( ( ( i % 255 f ) + 1) ;
return ;

}
f loat xtemp = x ∗ x − y ∗ y + x0 ;
y = 2 ∗ x ∗ y + y0 ;
x = xtemp ;

}
}

}

Listing 5.1: C# implementation of Mandelbrot algorithm adopting the stream programming
model.

In the host application, we instantiated the GPUDataParallel type (see Section
4.1.1, listing 4.2) and invoked its Map method passing MandelKernel method name
as argument. For our experiments we have considered images of different sizes.
Figure 5.1 shows Mandel Kernel execution CT on different processors, CPU and
GPU, using both 4-Centauri and a Nvidia CUDA implementation of Mandel, and
table 5.2 report all timings values obtained.

Image size (n) CT CPU (s) CT GPU - 1st run (s) GPU - 2nd run (s) CUDA 3.2 (CC 1.2)
64 0.054 0.51 0.231 0.27
128 0.121 0.803 0.477 0.39
256 1.283 1.329 1.064 0.94
512 5.23 2.236 1.926 2.01
1024 15.32 5.16 4.852 4.75
2048 50.822 8.317 8.015 7.793

Table 5.2: Comparison of completion times executing the Mandelbrot Kernel on a CPU dual-core

and on a GPU. In order to evaluate the overhead introduced by 4-Centauri, the CT is computed

twice, i.e. in the second run no compilation is performed. Moreover, we compared the 4-Centauri

compiled Kernel with a Nvidia CUDA implementation of it.

When compilation is done, the CT augments by an average of 298.3 ms. Since
the compilation does not depend on input data size, this overhead is constant over
different runs. Comparing the results between CPU and GPU CT, we can see that
the CPU is faster while input has a dimension of 32Kb or lower without compilation,
and of 128Kb with compilation. This is due to data transfer times between CPU
and GPU.
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Figure 5.1: Comparison of completion times executing the Mandelbrot Kernel on a CPU dual-

core and on a GPU. In order to evaluate the overhead introduced by 4-Centauri, the CT is

computed twice, i.e. in the second run no compilation is performed. Moreover, we compared the

4-Centauri compiled Kernel with a Nvidia CUDA implementation of it.k

5.2 Mersenne Twister algorithm

The Mersenne Twister (MT) is a pseudorandom number generator algorithm devel-
oped by Matsumoto and Nishimura [97, 98, 109]. Let x and a be word vectors which
are w-dimensional row vectors over the two-element field F2 = 0, 1, identified with
machine words of size w (32 bit in our implementation). The MT generates a se-
quence of word vectors, which are considered to be uniform pseudorandom integers
between 0 and 2w1. Dividing by 2w1, each word vector can be a real number in [0,
1]. For a word x with w bit width, it is expressed as the linear recurrence relation:

xk+n = xk+m ⊕ (xuk | xlk+1) • A

where n is the degree of the recurrence, m a fixed positive integer, with 1 ≤ m ≤
n, | as the bitwise or and ⊕ as the bitwise exclusive or (XOR), (xuk | xlk+1) is a
concatenation of r most significant bits of xk and w− r least significant bits of xk−1,
A is a constant w × w matrix with entries in F2. Moreover, (xuk | xlk+1) • A is the
multiplication of the concatenated bit vector by bit matrix A.

Matrix A is chosen for simplicity of computations in the form of
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x • A = xw−1, xw−2, · · · , x0 •
∣∣∣∣ 0 Iw−1
aw−1 (aw−2, · · · , a0)

∣∣∣∣
with In−1 as the (n−1)(n−1) identity matrix (and in contrast to normal matrix

multiplication, bitwise XOR replaces addition).
For the special form of matrix A, assuming w is less than or equal to machine

word size, x •A multiplication can be efficiently implemented on existing hardware.
In order to improve the distribution properties, each generated word is multiplied
by a special w × w invertible transformation matrix from the right: x → z : x • T .
A tempering matrix T is chosen so that x • T multiplication, similarly to x •A, can
be efficiently implemented with bitwise operations:

z = x ;
z ˆ= ( z >> u) ;
z ˆ= ( z << s ) & b ;
z ˆ= ( z << t ) & c ;
z ˆ= ( z >> l ) ;

where u, s, t, l are integer numbers, b and c are suitable bit masks of word size w,
and <<,>> as the bitwise left and right shifts, and & as the bitwise and. According
to the MT2203 [98], values for these coefficients are:

• (w, n,m, r) = (32, 624, 397, 31)

• a = 9908B0DF16

• u = 11

• (s, b) = (7, 9D2C568016)

• (t, c) = (15, EFC6000016)

• l = 18

5.2.1 Implementation details and results

In order to execute MT on a GPU, it is required to have a parallel version of the
code listed in 2.8. Considering to execute multiple MT generators in parallel, even
”very different” (by any definition) initial state values do not prevent the emission
of correlated sequences by each generator sharing identical parameters. To solve
this problem and to enable efficient implementation of MT on parallel architectures,
a special off-line library, named SIMD-oriented Fast MT (SFMT), for the dynamic
creation of MT parameters, was developed by Matsumoto and Nishimura in [98].
In Listing 5.2 we implements our version of the SFMT using C# and 4-Centauri
types and metadata.
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public class MTClass
{

/∗ Period parameters ∗/
private const int N = 624 ; // 624 l e n g t h array to s t o r e the s t a t e o f

the genera tor
private const int M = 397 ;

/∗ the array f o r the s t a t e v e c t o r ∗/
private readonly int [ ] mt = new UInt32 [N ] ;
private int mti ;

private stat ic readonly int [ ] mag01 = { 0x0 , 0 x9908b0df } ;

[ Kernel ]
public int MTRandomGenerate ( InputStream<int> ds MT , InputStream<int>

seed , OutputStream<int> r e s u l t s )
{

int i S ta t e , iS ta te1 , iStateM , iOut ;
unsigned int mti , mti1 , mtiM , x ;
unsigned int mt [ 1 9 ] , matr ix a ;

//Load b i t−v e c t o r A
matr ix a = ds MT . Current ;

// I n i t i a l i z e curren t s t a t e
mt [ 0 ] = seed . Current ;
for ( i S t a t e = 1 ; i S t a t e < 19 ; i S t a t e++)

mt [ i S t a t e ] = (1812433253U ∗ (mt [ i S t a t e − 1 ] ˆ (mt [ i S t a t e − 1 ]
>> 30) ) + i S t a t e ) & 0xFFFFFFFFU;

i S t a t e = 0 ;
mti1 = mt [ 0 ] ;
for ( iOut = 0 ; iOut < nPerRng ; iOut++) {

i S t a t e 1 = i S t a t e + 1 ;
iStateM = i S t a t e + 9 ;
i f ( i S t a t e 1 >= 19) i S t a t e 1 −= 19 ;
i f ( iStateM >= 19) iStateM −= 19 ;
mti = mti1 ;
mti1 = mt [ i S t a t e 1 ] ;
mtiM = mt [ iStateM ] ;

// MT recurrence
x = ( mti & 0xFFFFFFFEU) | ( mti1 & 0x1U) ;
x = mtiM ˆ ( x >> 1) ˆ ( ( x & 1) ? matr ix a : 0) ;

mt [ i S t a t e ] = x ;
i S t a t e = i S t a t e 1 ;

// Tempering t rans format ion
x ˆ= ( x >> 11) ;
x ˆ= ( x << 7) & 0x9d2c5680 ;
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x ˆ= ( x << 15) & 0 xefc60000 ;
x ˆ= ( x >> 18) ;

// Convert to (0 , 1 ] f l o a t and w r i t e to g l o b a l memory
r e s u l t s . Current = ( ( f loat ) x + 1 .0 f ) / 4294967296.0 f ;

}
}

}

Listing 5.2: C# implementation of SIMD-oriented Fast Mersenne Twister algorithm adopting
the stream programming model.

In the host application, we instantiated the GPUDataParallel type (see Section
4.1.1, listing 4.2) and invoked its Map method passing MTRandomGenerate method
name as argument. For our experiments we have considered to generate different
amount of samples. Figure 5.2 shows MTRandomGenerate Kernel execution CT on
different processors, CPU and GPU, using both 4-Centauri and a Nvidia CUDA
implementations of it, and table 5.2 report all timings values obtained.

Figure 5.2 shows MTRandomGenerate Kernel execution CT on different proces-
sors, CPU and GPU, using both 4-Centauri and a Nvidia CUDA implementation
of MT, and table 5.3 report all timings values obtained.

#Samples (x106) CT CPU (ms) CT GPU - 1st run (s) GPU - 2nd run (s) CUDA 3.2 (CC 1.2)
1 45.18 4.13 1.83 1.53
2 86.82 6.01 3.21 2.97
5 214.1 10.21 7.99 7.29
10 431.4 17.44 15.37 14.48
15 638.9 23.84 22.04 21.67
24 1064.4 37.83 35.12 34.62

Table 5.3: Comparison of completion times executing the Mersenne-Twister Kernel on a CPU

dual-core and on a GPU. In order to evaluate the overhead introduced by 4-Centauri, the CT is

computed twice, i.e. in the second run no compilation is performed. Moreover, we compared the

4-Centauri compiled Kernel with a Nvidia CUDA implementation of it.

As for the Mandelbrot test, the step of 4-Centauri compilation increases the
CT. In this case the overhead due to the compilation is by an average of 2.25 ms.
Since the compilation does not depend on input data size, this overhead is constant
over different runs. Comparing the results between CPU and GPU CT, we can
see that the CPU is always slower than GPUs because of limited number of data
transfers between CPU and GPU.
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Figure 5.2: Comparison of completion times executing the Mersenne-Twister Kernel on a CPU

dual-core and on a GPU. In order to evaluate the overhead introduced by 4-Centauri, the CT is

computed twice, i.e. in the second run no compilation is performed. Moreover, we compared the

4-Centauri compiled Kernel with a Nvidia CUDA implementation of it.



Conclusions

C.1 Thesis summary

In this thesis we addressed the problem of exposing non-conventional computing
devices to VEE programs without changing the VEE base definition. We first in-
troduced the ASM formalism we used to model parallel programming paradigms,
and then the Common Language Infrastructure that we used for our study (due to
obvious similarities the JVM could have been used and we consider our results to be
naturally extended to this platform). We discussed how the essential traits of these
paradigms can be mapped onto CLI semantic entities so that program transforma-
tion will benefit from this additional information. We finally presented 4-Centauri,
a system for transforming Kernels expressed using CLI intermediate language into
GPU IL code (in particular Nvidia PTX).

In our study we followed two research lines: we realized a meta-program capable
of compiling VEE intermediate language into GPU code as a proof of the fact that
it is actually possible to expose a very peculiar co-processor, such as the GPU as a
resource accessible to managed programs. We also discussed a more general approach
for the introduction of hints about parallel execution into VEE source programs;
in our design the programmer annotates code to provide more information about
possible parallel execution that can be exploited by meta-programs or in general by
the underlying compilation infrastructure.

A distinctive trait of our approach lies in the hinting nature of annotations,
leaving the task of their exploitation to the execution infrastructure. We see two
main benefits for this approach: users can rely on more abstract and stable notions
instead of having to follow the continuous changing of real hardware; code generators
can adapt annotated programs to different architectures and changing configurations
with a little overhead of Just in time compilation that has already proven to be viable
in this context.

Another important trait is the idea of leveraging on already existing boundaries
of semantic elements of a STEE to express significant boundaries of parallel con-
current paradigms. We followed a widely adopted pattern by STEEs programming
frameworks in which programmers are asked to develop a module with a specific
interface M whose execution is orchestrated by an orchestrator O ; the resulting
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program is O(M) where the user program is invoked from outside as is the case, for
instance, with Web applications in Java or .NET. In our case, module M is anno-
tated with parallel-related annotations that may be used by O, which is responsible
for its execution. We may even think of different orchestration modules that can be
used without any change to the source program (for instance a sequential execution
in order to simplify functional debugging).

Our work has shown that meta-data are expressive enough to support program
transformation towards processing units supporting explicit parallelism, as GPUs,
and that all the models available in literature can be represented. The implementa-
tion of a transformation system for the relevant case of GPUs testified the viability
of the approach in practice.

The 4-Centauri system was originally intended as a practical proof of the pos-
sibility to expose the full programmability of GPUs to managed programs without
needing to apply any changes to the virtual execution environment. In this respect,
it may be considered a managed counterpart of CUDA, Brook+, or OpenCL en-
vironments which allows to schedule general purpose code to the GPU subsystem.
However, we found that the 4-Centauri scheduler has the unique capability, given
a model of costs, of deciding at run-time whether to schedule a program on the
CPU or GPU depending on the nature of input data (for instance, whether it is
more convenient to pay for data transfer to the GPU memory and perform GPU
computations, or the communications overhead is such that traditional execution is
to be preferred).

C.2 Suggestions for Future Research

Although 4-Centauri shows that a mapping is possible between managed code and
GPU code, the compiler is still in a prototype state and many research and devel-
opment directions can be taken. First of all, the back-end of the compiler should
be extended to target the AMD IL used in the AMD GPUs, which is analogous
to Nvidia PTX. Moreover, it is possible to map more abstract concepts, such as
structured data types, onto the GPU code. Our work contributes to answer the
question of whether a redesign of VEEs is required or not, consequently further
work in the performance direction is now needed. 4-Centauri can be greatly im-
proved in performance, and there is room to develop new optimization techniques
for this special-purpose hardware that may eventually join the CPU in a single unit
as proposed by AMD. We are also interested in studying the set of algorithms that
can be expressed efficiently through our abstractions and possibly extend the set of
annotations. A very important research direction is the extension of the approach
to more non-conventional processing units, such as Cell BE (or in future Larrabee),
in order to understand if the approach can be generalized in practice, and in par-
ticular if the mapping between programming abstractions of CLI and the particular
processing units is really helpful for the programmer.
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