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1 Introduccion

1.1 Equivalence principles, metric theories and universal cou-
pling

The Principle of Equivalence, from the beginning, has played an im-
portant role in the development of gravitational theories: Newton him-
self dedicated a detailed discussion of it in the opening paragraphs of his
“Philosophiae naturalis principia matematica”. To Newton, the Principle
of Equivalence demanded that the “mass” of any body, namely the property
of any body (inertia) that regulates its response to an applied force, be equal
to its “weight”, that property that regulates its response to gravitation.
Bondi in 1957 coined the terms “inertial mass” (mi) and “passive gravita-
tional mass” (mp) to refer to these quantities, so that Newton’s second law
and the law of gravitation take the form

F = mia F = mpg.

The Principle of Equivalence can then be succinctly stated saying that

For any body mi = mp.

with a more precise statement it can be expressed by saying that

If an uncharged test body is placed at an initial event in spacetime and given
an initial velocity there, then its subsequent trajectory will be independent of
its internal structure and composition.

By “uncharged test body” we mean an electrically neutral body with negli-
gible self-gravitational energy.
Today Newton’s Equivalence Principle is generally referred to as the Weak
Equivalence Principle (WEP).

According to the WEP, if all bodies fall with the same acceleration in an
external gravitational field, then, to an observer in a freely falling elevator in
the same gravitational field, the bodies should be unaccelerated (assuming
that small effects due to inhomogeneities in the gravitational field can be
made as small as desired by working in a sufficiently small elevator). Thus,
insofar as their mechanical motion are concerned, the bodies will behave as
if gravity were absent.
It was Einstein who added the key element to the WEP that revealed the
path to General Relativity. Going one step further, he proposed that not
only should mechanical laws behave in such an elevator as if gravity were
absent, but so should all the laws of physics, including for example the
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laws of electrodynamics: that is, “we [...] assume the complete physical
equivalence of a gravitational field and a corresponding acceleration of the
reference system” (Einstein 1907). Thus being at rest on the surface of the
Earth is equivalent to being inside a spaceship (far from any sources of grav-
ity) that is being accelerated by its engines. From this principle, Einstein
deduced that free-fall is actually inertial motion. By contrast, in Newtonian
mechanics, gravity is assumed to be a force, so that a person at rest on the
surface of a (non-rotating) massive object is in an inertial frame of reference.
Now this is called the Einstein Equivalence Principle (EEP), and can
be expressed with the statement that

The Weak Equivalence Principle is valid and the outcome of any local non-
gravitational experiment in a freely falling laboratory is independent of the
velocity of the laboratory and its location in spacetime.

By “local non-gravitational experiment” we mean any experiment performed
in a shielded freely falling laboratory with negligible self-gravitational effects.
The EEP is essentially composed by three different parts: WEP, Local Posi-
tion Invariance (LPI) i.e. invariance under location change of the laboratory,
and Local Lorentz Invariance (LLI) i.e. invariance under velocity change of
the laboratory.

Today a third Equivalence Principle exists, which is much more re-
strictive than Einstein’s formulation: the Strong Equivalence Principle
(SEP) states that

The gravitational motion of a small test body depends only on its initial
position in spacetime and velocity, and not on its constitution. The outcome
of any local experiment (gravitational or not) in a freely falling laboratory is
independent of the velocity of the laboratory and its location in spacetime.

The first part is a version of the WEP that applies to objects that exert
a gravitational force on themselves, while the second part is the EEP re-
stated to allow gravitational experiments and self-gravitating bodies.
Some powerful consequences [1] of the SEP are that the gravitational con-
stant G must be the same everywhere in the universe, and that a fifth force
beyond the known ones is not allowed. Anyway, some physicists have criti-
cized the differences made between the EEP and the SEP because there is no
universally accepted way to distinguish gravitational from non-gravitational
experiments.
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Today, in most gravitational theories, gravitation is a curved-spacetime
phenomenon, i.e. must satisfy the postulates of “metric theories” which
state that

Spacetime is endowed with a metric gµν . The world lines of test bodies are
geodesics of that metric. In local freely falling frames, called local Lorentz
frames, the non-gravitational laws of physics are those of special relativity.

It is possible to argue that if a theory satisfies the EEP, it is a metric
theory [1].
Metric theories are equivalent to those characterized by the so called uni-
versal coupling, that is the property that all non-gravitational field should
couple in the same manner to a single gravitational field. It’s only a matter
of choosing to consider the metric gµν as a property of spacetime itself rather
than as a field over a flat spacetime. Thus metric theories can differ from
each other only in the number and type of additional gravitational fields
they introduce and in the field equations that determine their structure and
evolution. There may be other gravitational fields besides the metric which
contribute to the curvature of spacetime; nevertheless, once determined the
evolution of the metric, the only field that couples directly to matter is the
metric itself.

1.2 Schiff’s conjecture [1]

The three parts of EEP are so different in their empirical consequences
that it is tempting to regard them as independent theoretical principles.
Anyway, in 1960 Leonard Schiff conjectured that any complete, self-consistent
theory that embodies WEP necessarily embodies EEP. By a complete self-
consistent theory we mean a theory capable of predicting the results of any
experiment of interest, giving the same result through whichever method is
used.
A rigorous proof of the conjecture could give much stricter bounds to the
violation of EEP. Anyway, so far only “plausibility” arguments have been
found. One of the most elegant of these, for instance, assumes the conser-
vation of energy:

Let’s consider an idealized composite body made up of structureless test
particles bounded by some non-gravitational force, which moves sufficiently
slowly in a weak, static gravitational field to describe the motion in a quasi-
Newtonian form (so that second order terms ∼ v4, U2 can be neglected). If
U(x) is the gravitational potential and the composite body is small enough
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to be regarded as point-like, we can assume that the conserved energy func-
tion has the general form

E =MRc
2 −MRU(x) +

1

2
MRv

2 + o(v2, U).

If we assume EEP violations, the speed of light could depend on the
presence of gravity, so we don’t set c = 1. The rest energy can be written as

MRc
2 =M0c

2 − EB(x,v)

where M0 is the sum of the rest masses and EB is the binding energy
that, expanded in powers of U and v2, can be written as

EB(x,v) = E0
B+δm

ij
p Uij(x)−

1

2
δmij

I vivj

(
Uij(x) ≡

∫
d4x

ρ(x− x′)i(x− x′)j
|x− x′|3

)
.

It can be shown that δmij
p and δmij

I (called anomalous passive and iner-
tial mass tensors, which depend upon the internal structure of the body) are
possible terms that give rise to EEP violation, since a freely falling observer,
detecting the binding energy of the system, could detect the effects of his
location and velocity. Let’s prove that they give rise also to WEP violation,
through a “gedanken experiment”:
We start from n free particles of mass m0 at rest at x = h; their conserved
energy is

nm0(c
2 − U(h)).

We form a bound state and keep the energy released EB(h,0) in a reservoir
of free particles of mass m0. Now the conserved energies of the bound state
and the reservoir are respectively

[nm0c
2 − EB(h,0)][1− U(h)/c2] and EB(h,0)[1− U(h)/c2].

We let the stored particles and the bound system freely fall, with accel-
erations g = ∇U and a = g + δa respectively, until x = 0. Here we bring
the systems at rest and put into the reservoir the kinetic energies collected

−[nm0 − EB(0,v)/c
2]a · h− δmij

I gihj and − EB(h,0)g · h/c2

(some kinematic identities have been used to substitute v).
From the reservoir, that now has energy

EB(h,0)[1− U(0)/c2]− E0
Bg · h/c2 − (nm0 − E0

B/c
2)a · h− δmij

I gihj
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we extract enough energy (EB(0,0)[1 − U(0)/c2]) to deassemble the
bound system, and enough energy (−nm0g · h) to carry the n particles back
at x = h. The cycle is closed, and if energy is conserved the reservoir should
be empty. This means that we must have

EB(h,0)− EB(0,0)− (nm0 − E0
B/c

2)δa · h− δmij
I gihj = 0.

Since
EB(h,0)− EB(0,0) = δmij

p ∇Uij · h

we get

ai = gi +
δmjk

p

MR
∂iUjk −

δmij
I

MR
gj .

So, since the WEP would give ai = gi, WEP is violated unless
δmij

p = δmij
I = 0. Schiff’s conjecture, under the assumptions made, is

proved. Anyway, the whole argument is valid only in the non-relativistic
limit.

8



2 Transverse mass-less theories

2.1 What are Transverse Theories?

Einstein’s General Relativity has the property to be invariant under a
general diffeomorphism in the coordinates (Diff invariance). This property
is manifest if we get to Einstein’s equations starting from the variational
principle of the Hilbert action

S =

∫
d4x

√
−g
[
− 1

2k2
R+ Lm

]
(2.1.1)

since d4x
√
−g is a scalar for generic diffeomorphic transformations.

Here we have defined
k2 ≡M−2

P ≡ 8πG. (2.1.2)

Anyway, it is maybe not well known that, four years after writing down
the equations of General Relativity, Einstein also proposed a different set
of equations, which are the traceless part of the ones of General Relativity.
This different set of equations comes out from those theories which are now
commonly called “unimodular theories” [3], in which the determinant of the
metric g is fixed. Although Einstein never talks about an action principle
(since he was actually interested only in the equations of motion), if we
work in the variational formalism, unimodular theories constrain the allowed
unimodular variations δugαβ to be such that

δug = 0 (2.1.3)

or equivalently
gµνδ

ugµν = 0. (2.1.4)

This means that the unimodular variation can be expressed in terms of an
unconstrained variation as

δugαβ = δgαβ − 1

4
gαβgµν δg

µν (2.1.5)

so that any variation of an action can be expressed as

δS =
δS

δgαβ
δgαβ =

δS

δgαβ

(
δugαβ +

1

4
gαβgµνδg

µν
)
. (2.1.6)

Eventually, the restricted variation is just the trace-free part of the uncon-
strained variation:

δS

δugαβ
=

δS

δgαβ
− 1

4
gαβg

µν δS

δgµν
. (2.1.7)
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Hence, calculating the restricted variation of the Hilbert action we get the
equations

Rαβ −
1

4
gαβR = k2

(
Tαβ −

1

4
gαβT

)
(2.1.8)

which are exactly the second traceless set of equations proposed by Ein-
stein.
It seems that this alternative set of equations carry less information than
the well known Einstein equations, because the trace has been left out. But
Einstein himself realized in 1919 that this unimodular theory is equivalent
to General Relativity, with the Cosmological Constant appearing as an in-
tegration constant:

If we assume the energy-momentum to be covariantly conserved and using
the contracted Bianchi identity ∇νRµν = 1

2∇µR (where ∇ν are covariant
derivatives), deriving by ∇β the whole equation we get

1

4
∇αR = −k

2

4
∇αT (2.1.9)

which integrated gives

R+ k2T = constant ≡ −4Λ. (2.1.10)

Finally, if we substitute T in equation (2.1.8) we get exactly Einstein’s Gen-
eral Relativity equations:

Rαβ −
1

2
gαβR− gαβΛ = k2Tαβ . (2.1.11)

Transverse Theories [2] are a bit different from unimodular theories:
in Transverse Theories the determinant of the metric g is not fixed (it’s
dynamical), so that the variation δgαβ is not restricted by δg = 0. But the
action is invariant under transverse diffeomorphisms (TDiff) in the
sense that the gauge symmetry group of the Lagrangian is not the whole
group of diffeomorphisms, but only the TDiff group.
The TDiff group is the group of the diffeomorphisms that leave
the determinant of the metric g unchanged. We have

δg = ggµνδgµν (2.1.12)

where, at the first order, for a linear transformation

xµ −→ xµ − ξµ (2.1.13)
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we have

δgµν = ξρ∂ρgµν + gρµ∂νξ
ρ + gρν∂µξ

ρ = ∇µξν +∇νξµ (2.1.14)

with ∇µ denoting covariant derivatives. Hence, since invariance under
TDiff means that δg = 0, we must have

δg = ggµν(∇µξν +∇νξµ) = 2g∇µξ
µ = 0 (2.1.15)

i.e.
∇µξ

µ = 0. (2.1.16)

Vector fields inducing TDiff transformations can generically be repre-
sented as [4]

ξµ = ϵµνρσ∇νΩρσ (2.1.17)

where ϵµνρσ is the Levi-Civita controvariant tensor and Ωρσ is an anti-
symmetric tensor. Since ϵµνρσ is completely antisymmetric, the contraction
with the symmetric term ∇µ∇ν implies that

∇µξ
µ = ϵµνρσ∇µ∇νΩρσ = 0. (2.1.18)

Given a metric gµν , we can split it into

gµν ≡ ηµν + khµν (2.1.19)

where ηµν is the flat Minkowski metric and k2 ≡ 8πG so that the devia-
tion hµν from the flat metric can be regarded as a tensor field of dimension
one.
The former is an exact definition of hµν , so that the inverse metric can only
be written as a formal power of series

gµν = ηµν − khµν + k2hµρh
νρ − k3hµρhρσh

νσ +O(k4). (2.1.20)

When using the field hµν the indexes are always raised and low-
ered by the flat Minkowski metric.

The variation of hµν , at the lowest orders,is given by

δhµν = k−1(∂µξν + ∂νξµ) + hµρ∂νξ
ρ + hνρ∂µξ

ρ + ξρ∂ρhµν . (2.1.21)
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If we consider weak fields, we can consider only the term proportional to
k−1: at the first order we can say that TDiff transformations are those gauge
transformations

kδhµν = (∂µξν + ∂νξµ) (2.1.22)

which satisfy
∂µξ

µ = 0. (2.1.23)

2.2 Why Transverse Theories?

General Relativity is perfectly consistent as a classical theory, and in-
sofar almost every experiment surprisingly agrees with the theoretical pre-
dictions. Anyway, two are the main problems Einstein’s theory has to deal
with: (i) the difficulties to extend the classical theory to consistent renor-
malizable quantum field theories, which have been so successful in describ-
ing all the other interactions; (ii) the Cosmological Constant problem: if
the cosmological constant is the vacuum energy, why has it such a tiny
value Λ = M4

D ∼ 10−48GeV4 and isn’t it of the order of the cutoff scale
M4
P ∼ 1076GeV4?

Mainly for these reasons General Relativity is not considered the definitive
answer for Gravity, and many modifications have been considered (like for
instance String Theories). So, one of the possibilities is to modify General
Relativity postulating less spacetime symmetry, like in Transverse Theories,
which leaves us with more freedom in writing the possible actions. More
precisely, two are the main arguments that justify the interest in TDiff the-
ories:

• Consistent propagation of a massless spin-2 graviton requires only
TDiff invariance [3] [2] [5]:

In the standard “transverse-traceless gauge”, the five polarizations ϵµν
of a spin-2 symmetric tensor field must satisfy

∂µϵ
µ
ν = 0 (2.2.1)

ϵµµ = 0 (2.2.2)

where ϵµν ≡ ηµνϵµν . Thus, for a mass-less particle with four-momentum
kµ = (k, 0, 0, k), in momentum space, the five polarizations can be written
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as

ϵ×µν = e1 ⊗ e2 + e2 ⊗ e1

ϵ+µν = e1 ⊗ e1 − e2 ⊗ e2

ϵ(1)µν = k ⊗ k

ϵ(2)µν = k ⊗ e1 + e1 ⊗ k

ϵ(3)µν = k ⊗ e2 + e2 ⊗ k.

(2.2.3)

We notice that ϵ
(1,2,3)
µν are all of the form kµξν + kνξµ with kµξ

µ = 0.

First, in the mass-less case, we would like to be left with the only two
helicity-eigenstate polarizations (which are known to be ϵ+µν ± ϵ×µν). Next,
we have to deal with the infinite degeneration arising from the “little group”
problem; the “little group”, which in this case is the group of the transfor-
mations that leave the four-momentum (k, 0, 0, k) of a mass-less particle un-
changed, has three generators: Iz (rotation around the z-axis) and I0x , I0y
(boost along the x, y-axis plus a rotation around the y, x-axis to “neutralize
the aberration” coming from the boost).
Iz unitarily acts in the right way on the standard helicity polarizations
ϵ+µν ± ϵ×µν , giving only a phase e±2iθ under rotations of angle θ. But the
infinite dimensional unitary representation of the non-compact transforma-
tions I0x , I0y lead to the appearance of infinite polarizations for any given
momentum. We would like to solve the problem in a similar way as for the
abelian case of Electrodynamics, i.e. through a gauge-invariant principle.
The standard helicity polarizations transform under I0x , I0y into the other

three ϵ
(1,2,3)
µν . Moreover, I0x , I0y leave the trace ϵµµ unchanged, since the

trace is Lorentz-invariant. It is then straightforward to declare equivalent
those polarizations which are related to one another by a standard gauge
transformation

ϵµν −→ ϵµν − (kµξν + κνξµ) (2.2.4)

which leaves the trace invariant, that is such that

kµξ
µ = 0.

This way I0x and I0y become only gauge-invariant transformations, and the

three polarizations ϵ
(1,2,3)
µν become “pure gauge”.

To solve the problem only TDiff invariance is needed.

• In Transverse Theories it is possible to make the coupling of the metric
gµν to the vacuum energy Λ as small as desired:

Since TDiff transformations leave the determinant of the metric g invariant,
it is possible to substitute the term

√
−g that appears in the Hilbert action
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with an arbitrary function f(g). It means that we could write an action
with a term

Sv =

∫
d4xf(g)Λ (2.2.5)

which allows us, playing with the function f(g), to make the coupling
between the metric and the vacuum energy arbitrarily small: Λ could even
be of the order of M4

P .

2.3 TDiff quadratic Lagrangian

We are going now to analyze the linearized theory.
The most general quadratic Lorentz-invariant local Lagrangian for a free
massless symmetric tensor field hµν can be written as [2]

L = L0 + c1L1 + c2L2 + c3L3 (2.3.1)

where

L0 ≡
1

4
∂µh

νρ∂µhνρ (2.3.2a)

L1 ≡ −1

2
∂µh

µν∂ρh
ρ
ν (2.3.2b)

L2 ≡
1

2
∂µh∂νh

µν (2.3.2c)

L3 ≡ −1

4
∂µh∂

µh. (2.3.2d)

L0 is strictly needed for the propagation of a spin-2 particle.

The variation of hµν , up to total derivatives, gives

14



δL0 = −1

2
2hµνδh

µν (2.3.3a)

δL1 = (∂µ∂ρh
ρ
ν + ∂ν∂ρh

ρ
µ)δh

µν (2.3.3b)

δL2 = −1

2
(∂µ∂νh

µνδh+ ∂µ∂νhδh
µν) (2.3.3c)

δL3 =
1

2
2hδh. (2.3.3d)

For TDiff gauge transformations, (2.1.22) with the constraint (2.1.23),
we notice that

δL2 = ∂µ∂νh
µν∂ρξ

ρ + ∂µ(∂νh∂
νξµ)− ∂νh∂

ν∂µξ
µ = 0 (2.3.4a)

δL3 = −2h∂µξ
µ = 0. (2.3.4b)

So, to have TDiff invariance it’s only necessary that c1 = 1:

δL0 + δL1 = −(∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ − ∂ρ∂

ρhµν)(∂
µξν + ∂νξµ) = 0 (2.3.5)

because
(∂ρ∂µh

ρ
ν − ∂ρ∂

ρhµν)∂
µξν = ∂ρ [(∂µh

ρ
ν − ∂ρhµν)∂

µξν ]− (∂µh
ρ
ν − ∂ρhµν)∂ρ∂

µξν = 0

∂ρ∂νh
ρ
µ∂

µξν = ∂ν(∂ρh
ρ
µ∂

µξν)− ∂ρh
ρ
µ∂

µ∂νξ
ν = 0

The most general quadratic TDiff-invariant Lagrangian is then

L =
1

4
∂µh

νρ∂µhνρ −
1

2
∂µh

µν∂ρh
ρ
ν +

c2
2
∂µh∂νh

µν − c3
4
∂µh∂

µh. (2.3.6)
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2.4 Dynamical analysis

We will still work in the approximation of a linear theory.
As shown in section (2.2), the quantum theory of Gravitation is not unitary
unless the Lagrangian is invariant under TDiff. Actually, we will show that
the absence of TDiff symmetry leads to pathologies such as classical insta-
bilities or the appearance of ghosts.
Let’s use the “cosmological decomposition” for the field hµν in terms of
scalars, vectors and tensors under spatial rotations [6]:

h00 =A (2.4.1a)

h0i =∂iB + Vi (2.4.1b)

hij =ψδij + ∂i∂jE + (∂iFj + ∂jFi) + tij (2.4.1c)

with
∂iF

i = ∂iV
i = ∂it

ij = tii = 0. (2.4.2)

With this decomposition, in the generic quadratic Lagrangian (2.3.1),
scalars, vectors and tensors decouple from each other; working in momen-
tum space [2]:

• The tensor tij only contributes to L0:

Lt =
1

4
(∂µt

ij)2. (2.4.3)

• The vectors contribute only to L0 and L1:

Lv =
1

2
k2(V i − Ḟ i)2 +

1

2
(c1 − 1)(k2F i + V̇ i)2. (2.4.4)

The momenta conjugated to V i and F i are

ΠiV = (c1 − 1)(k2F i + V̇ i) (2.4.5a)

ΠiF = k2(Ḟ i − V i) (2.4.5b)

so that (2.4.4), for c1 ̸= 1, can be rewritten as

Lv =
1

2k2
Π2
V +

1

2(c1 − 1)
Π2
F . (2.4.6)
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The Hamiltonian is given by

Hv =
1

2k2
(ΠiF+k2V i)2− 1

2(1− c1)

[
ΠiV + (1− c1)k

2F i
]2
+
1− c1

2
k4F 2−1

2
k2V 2.

(2.4.7)

Because of the alternating signs, the Hamiltonian is not bounded below,
which leads to classical instability: from Hamilton’s equations we have

Π̇iF = k2ΠiV (2.4.8a)

Π̇iV = −ΠiF (2.4.8b)

which give the general oscillatory solution

|k|ΠiV + iΠiF = Cexp[i(|k|t+ ϕ0)], (2.4.9)

while taking the derivative of (2.4.5) with respect to t and using (2.4.8),
we have

V̈ i + k2V i = − c1
c1 − 1

ΠiF (2.4.10a)

F̈ i + k2F i =
c1

c1 − 1
ΠiV (2.4.10b)

which, for c1 ̸= 0 are the equations of forced oscillators with asymptotic
solution

V i + i|k|F i ∼ Cc1t

(c1 − 1)|k|
exp[i(|k|t+ ϕ0)]. (2.4.11)

The solution, which grows linearly with time, is the evidence of classical
instability.
Classical instability could be avoided setting c1 = 0. But in this case the
vectors V i and F i would decouple from each other and V i would become a
ghost, since

Lv(c1 = 0) =
1

2
k2(∂µF

i)2 − 1

2
(∂µV

i)2. (2.4.12)

Hence, the only possibility to avoid classical instabilities and ghosts is to
set c1 = 1, that is, to endow the Lagrangian with TDiff-invariance. In this
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case

Lv(c1 = 1) =
1

2
k2(V i − Ḟ i)2. (2.4.13)

The variation with respect to V i gives the constraint

V i − Ḟ i = 0 (2.4.14)

which, substituted in (2.4.13), shows that there is no vector dynamics.

• The scalar Lagrangian, with c1 = 1, is given by

Ls =
1

4

[
(∂µA)

2 − 2k2(∂µB)2 + 3(∂µψ)
2 − 2k2∂µψ∂

µE + k4(∂µE)2
]

− 1

2

[
(Ȧ+ k2B)2 − k2Ḃ2 − k2ψ2 + 2k4Eψ − k6E2 + 2k2Ḃ(ψ − k2E)

]
+
c2
2

[
(Ȧ− 3ψ̇ + k2Ė)(Ȧ+ k2B)− k2(A− 3ψ + k2E)(Ḃ − ψ + k2E)

]
− c3

4

[
∂µ(A− 3ψ + k2E)

]2
.

(2.4.15)

The variation of B gives the constraint

2ψ = (c2 − 1)(A− 3ψ + k2E) = (c2 − 1)h (2.4.16)

that, substituted back in (2.4.15), gives the simple expression

Ls = −∆c3
4

(∂µh)
2 (2.4.17)

where

∆c3 ≡ c3 −
3c22 − 2c2 + 1

2
. (2.4.18)

Hence, the scalar sector contains a single degree of freedom, proportional
to the trace.
Moreover, to avoid ghosts, we must have the condition

∆c3 ≤ 0. (2.4.19)

In the special case where
∆c3 = 0 (2.4.20)

the scalar sector disappears, and we are left only with the tensor sector.

Let’s see in the next chapter what does the condition ∆c3 = 0 mean.
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2.5 Non-linear generalizations

The simplest way to generalize TDiff theories is to mix the Hilbert action
with general functions of the determinant of the metric: since by definition
TDiff transformations leave the determinant unchanged, these functions are
also TDiff-invariant.
Hence, a general gravitational TDiff-invariant action could be of the form

S =

∫
d4x

(
− 1

2k2

)(
f1(|g|)R+ f2(|g|)gµν∂µg∂νg

)
. (2.5.1)

To extend to non-linear theories the study of TDiff-invariance we could
even make some particular choices: as seen in the previous section, in general
TDiff quadratic theories there is a supplementary scalar degree of freedom,
proportional to the trace h. Thus, the idea [7] is to split the metric degrees
of freedom into the determinant g and a new metric

ĝµν ≡ |g|−1/4gµν (2.5.2)

with fixed determinant |ĝ| = 1. Under arbitrary diffeomorphisms (2.1.13)
the new metric transforms as

δĝµν = ∇̂µξν + ∇̂νξµ −
1

2
ĝµν∇̂ρξ

ρ (2.5.3)

where ∇̂ denotes covariant derivative with respect to ĝµν , and the indexes
are raised and lowered by the new metric. Transverse diffeomorphisms are
defined as those which satisfy

∇̂µξ
µ = 0. (2.5.4)

But since |ĝ| ≡ 1, we have that Γ̂µµν = ∂ν
√

|ĝ| = 0 so that condition (2.5.4)
reduces to

∇̂µξ
µ = ∂µξ

µ + Γ̂µµνξ
ν = ∂µξ

µ = 0. (2.5.5)

Hence, under TDiff with the constraint (2.5.4) the metric ĝµν transforms
as a tensor:

δĝµν = ∇̂µξν + ∇̂νξµ (2.5.6)

and also the determinant g, as expected, transforms as a scalar:

δg = ξµ∂µg. (2.5.7)
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It can be shown [7] that the only terms which can be constructed from ĝµν
that behave as tensors are the geometric tensors R̂µνρσ and its contractions,
so that the most general TDiff-invariant action which contains at most two
derivatives of the metric takes the form:

S =

∫
d4x

(
−1

2
χ2(g, {ϕ})R̂+ L(g, {ϕ}, ĝµν)

)
(2.5.8)

where χ2 is a scalar made out of the matter fields {ϕ} and the determinant
g.
We thus notice that TDiff-invariant theories can be seen as “unimodular”
(i.e. with fixed determinant) scalar-tensor theories, where g plays the role
of an additional scalar.
The equations of motion must be calculated through a restricted variation of
the metric, since the action is composed of a metric with fixed determinant
ĝ = 1.

If we define
ḡµν ≡ χ2ĝµν (2.5.9)

so that √
−ḡ =

√
−χ8ĝ = χ4 (2.5.10)

we can go to the “Einstein frame”: the new action reads

S =

∫
d4x

√
−ḡ
[
−1

2
R(ḡµν) +

6

χ2
ḡµν∂µχ∂νχ+

1

χ4
L̄(χ, {ϕ}, ḡµν)

]
.

(2.5.11)

Anyway, we have to implement the constraint (2.5.10), that can be done
through a Lagrange multiplier Λ(x). Hence we have

S =

∫
d4x

√
−ḡ
[
−1

2
R(ḡµν) +

6

χ2
ḡµν∂µχ∂νχ+

1

χ4
L̄(χ, {ϕ}, ḡµν)

]

−
∫
d4x

√
−ḡ 1

χ4
Λ +

∫
d4xΛ. (2.5.12)

We note that the invariance under full diffeomorphisms which treat ḡµν
as a metric and χ and Λ as scalars is only broken by the last term. We can
show that this term is actually an integration constant, and not a parameter
of the Lagrangian.
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If we define the matter Lagrangian as

Lm ≡
√
−ḡ
[
6

χ2
ḡµν∂µχ∂νχ+

1

χ4
L̄(χ, {ϕ}, ḡµν)−

1

χ4
Λ

]
+ Λ (2.5.13)

the Bianchi identities applied to the pure gravitational part
√
−ḡ 1

2R(ḡµν)
give, as in General Relativity, the conservation of the energy-momentum
tensor

∇µT
µν = 0 (2.5.14)

where the energy-momentum tensor is defined as

Tµν ≡ 2√
−ḡ

δLm
δḡµν

. (2.5.15)

On the other hand, since only the last term of (2.5.13) breaks Diff-
invariance, the variation of the matter part of the action under a general
coordinate transformation is given by

δLm =
δLm
δχ

δχ+
δLm
δψ

δψ+
δLm
δΛ

δΛ+

√
−ḡ
2

Tµνδg
µν = δΛ = ξµ∂µΛ. (2.5.16)

If the equations of motion for χ, Λ and ψ are satisfied, i.e.

δLm
δχ

=
δLm
δψ

=
δLm
δΛ

= 0, (2.5.17)

since δgµν = ∇µξν +∇νξµ, after partial integration we get

ξµ(∂µΛ +
√
−ḡ∇νTµν) = 0 (2.5.18)

that is, using (2.5.14),
∂µΛ = 0. (2.5.19)
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2.6 Lorentz covariance and compensators

Usually, tensor densities of weight w are defined in such a way that
they get an extra factor of the Jacobian to the power w in the tensorial
transformation law. For instance a scalar of weight w transforms as

ϕ′(y) = D(y, x)wϕ(x) (2.6.1)

where

D(y, x) ≡ det

(
∂yµ

∂xν

)
. (2.6.2)

A particular scalar density is the determinant of the metric g, which
behaves as a scalar density of weight w = −2, that is

g(y) =

(
1

D(y, x)

)2

g(x). (2.6.3)

TDiff transformations are actually those transformations with unitary Ja-
cobian (D(y, x) = 1).
This means that as long as we assume that TDiff is the basic symmetry of
nature, we do not distinguish tensor densities from real tensors.

Now, going back to the study of transverse theories, we can for instance
take a general action of the form

S =

∫
d4x

(
− 1

2k2
f1(g)R+ fm(g)Lm(gµν , {ϕ})

)
. (2.6.4)

It should be remarked that this action is not fully covariant, unless
f1(g) = fm(g) =

√
−g, i.e. the theory is Diff-invariant.

If the action is assumed to take the form (2.6.4) in a particular reference sys-
tem with some privileged coordinates denoted by x̄µ, in general coordinates
the action reads [4]

S =

∫
d4x

1

C(x)

(
− 1

2k2
f1
(
g(x)C(x)2

)
R(x)+fm

(
g(x)C(x)2

)
Lm (gµν(x), {ψ(x)})

)
(2.6.5)

where C(x) is a scalar density of weight w = 1. This scalar density is
sometimes [8] called a compensator field, and is introduced exactly to
make the action Diff-invariant. A notorious example is the Stueckelberg
field which renders gauge-invariant massive electrodynamics.
The original theory can always be recovered setting C(x) = 1, which looks
like a particular gauge choice.
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Let’s see now what implications follow from the equations of motion of the
compensator C(x): the variation with respect to C(x) gives

− 1

C2

[
fmLm − 1

2k2
f1R

]
+

1

C

[
∂fm
∂C

Lm − 1

2k2
∂f1
∂C

R

]
= 0 (2.6.6)

that can be rewritten as[
−fm
C

+
∂fm
∂C

]
Lm − 1

2k2

[
−f1
C

+
∂f1
∂C

]
R = 0. (2.6.7)

As we shall see also in section (6.2), some problems or strong constraints rise
when we want only one sector (i.e. the gravitational or the matter part) to
have the restricted TDiff symmetry. When one sector is Diff-invariant (i.e.
f(x) =

√
|x|), its compensator equations of motion are identically satisfied:[
− f

C
+
∂f

∂C

]
L =

[
−
√

|g|C2

C
+
∂
√

|g|C2

∂C

]
L = 0. (2.6.8)

Hence, if we choose for instance only the gravitational sector to be Diff-
invariant, equation (2.6.7) becomes[

−fm
C

+
∂fm
∂C

]
Lm = 0. (2.6.9)

The solutions are given by

fm(gC
2) ∝ C (2.6.10)

which implies fm(x) =
√

|x|, i.e. also the matter sector has to be Diff-
invariant. Or else

Lm ≡ 0. (2.6.11)

As we shall see in section (6.4), Lm can be identified with the matter pres-
sure, so that only theories in which the matter is pressure-less would be
allowed.

In a similar way, if we choose only the matter sector to be Diff-invariant,
we would find that whether the gravitational part has to be Diff-invariant
as well, or the constraint R = 0.
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3 From TDiff to enhanced symmetries [2]

3.1 Diff and Weyl symmetry

We still work in the linear approximation of mass-less fields.
For particular values of the parameters c2, c3 the Lagrangian can acquire
enhanced symmetries: for instance, the case c2 = c3 = 1 corresponds to the
Fierz-Pauli Lagrangian (LFP ), which is Diff-invariant.
Starting from the Fierz-Pauli Lagrangian, through a simple non-derivative
field redefinition

hµν −→ hµν + λhηµν (λ ̸= −1/4) (3.1.1)

where the condition λ ̸= −1/4 is necessary for the transformation to be
invertible, the parameters in the Lagrangian (2.3.6) change as

{
c2 −→ c2 + 2λ(2c2 − 1)

c3 −→ c3 + 2λ(4c3 − c2 − 1) + 2λ2(8c3 − 4c2 − 1)
(3.1.2)

so that, starting from c2 = c3 = 1, the new parameters are related by

c3 =
3c22 − 2c2 + 1

2
with c2 ̸=

1

2
. (3.1.3)

This means that the condition (2.4.20) is satisfied, so that the scalar sector of
the Lagrangian is absent. Lagrangians of the form (2.3.6) with the relation
(3.1.3) between c2 and c3 are equivalent to the Fierz-Pauli Lagrangian.

Another possibility is to replace hµν in the Lagrangian (2.3.6) with the
traceless part:

hµν −→ h̃µν ≡ hµν −
1

4
hηµν (3.1.4)

which is formally analogous to (3.1.1) with λ = −1/4, but can’t be inter-
preted as a field redefinition since the trace h can’t be recovered from the
new field (3.1.4).
The Lagrangian is still TDiff-invariant, since the replacement (3.1.4) doesn’t
change the coefficients in front of L0, L1. Anyway, it becomes invariant un-
der a new Weyl transformation (WTDiff symmetry):

δhµν ≡ 1

2
ϕηµν . (3.1.5)

The WTDiff symmety is manifest, since the new field (3.1.4) is invariant
under (3.1.5).
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Using (3.1.2) with λ = −1/4 we immediately find that a WTDiff-invariant
Lagrangian must be of the form (2.3.6) with

c2 =
1

2
, c3 =

3

8
. (3.1.6)

Also in this case the condition (2.4.20) is satisfied, and there are no scalar
dynamics.

3.2 Unicity of the enhancements

Let’s show that Diff and WTDiff exhaust all possible enhancements of
TDiff symmetry for a Lagrangian of the form (2.3.1):
Since the variation of L0 (2.3.3a) involves a term 2hµν where hµν are arbi-
trary, this term can cancel with other ones only if the transformation is of
the form

δhµν = (∂µξν + ∂νξµ) +
1

2
ϕηµν (3.2.1)

for some vector ξµ and some scalar ϕ. The vector can generically be decom-
posed as

ξµ = ζµ + ∂µψ with ∂µζ
µ = 0. (3.2.2)

Then, using (2.3.3), after some calculations, we eventually find that

δL = ζν(c1 − 1)2(∂µh
µν)

+2ψ
1

2
[(c3 − c2)2h+ (2c1 − c2 − 1)∂µ∂νh

µν ]

+ ϕ
1

4
[(4c3 − c2 − 1)2h+ 2(c1 − 2c2)∂µ∂νh

µν ] .

(3.2.3)

TDiff corresponds to taking c1 = 1 and setting ϕ = ψ = 0. To enhance
the symmetry, i.e. to have invariance under transformations involving non-
vanishing ϕ and ψ, we have to cancel the terms involving ∂µ∂νh

µν and 2h:


1

2
(1− 2c2)ϕ− 1

2
(c2 − 1)2ψ = 0

1

4
(4c3 − c2 − 1)ϕ+

1

2
(c3 − c2)2ψ = 0
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that is 
2ψ =

1− 2c2
c2 − 1

ϕ

c3 =
3c22 − 2c2 + 1

2

(3.2.4)

The second equation in (3.2.4) is exactly the same as (3.1.3), so that
any Lagrangian with enhanced symmetry is equivalent to the Fierz-Pauli
Lagrangian, unless c2 =

1
2 , c3 =

3
8 , which corresponds to a WTDiff-invariant

Lagrangian.

3.3 WTDiff versus Diff symmetry

We are now going to analyze whether, at the lowest order, a WTDiff-
invariant theory is classically equivalent to General Relativity (Fierz-Pauli
Lagrangian).
We have, from the definition (3.1.4), that

LWTD(hµν) ≡ LTD(h̃µν). (3.3.1)

Since the Fierz-Pauli Lagrangian is a particular TDiff-invariant Lagrangian,
we can write

δSWTD(hµν)

δhµν
=
δSFP (h̃µν)

δh̃ρσ
δh̃ρσ

δhµν
=
δSFP (h̃µν)

δh̃ρσ

(
δρµδ

σ
ν − 1

4
ηρσηµν

)
. (3.3.2)

Both through a Weyl and a Diff transformation we can, in WTDiff or
Diff theories respectively, go to a gauge where h = 0, that is h̃µν = hµν .
Thus the WTDiff equations of motion are simply the traceless part of the
Fierz-Pauli equations of motion.
This means that a WTDiff theory is classically equivalent to Einstein’s uni-
modular theory analyzed in section (2.1). Diff and WTDiff theories differ
classically only by an integration constant.
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Let us now consider the relation between the two symmetry groups: they
act infinitesimally on hµν giving

δDhµν = ∂µξν + ∂νξµ = ∂µζν + ∂νζµ + 2∂µ∂νψ (3.3.3)

δWTDhµν = ∂µζ̃ν + ∂ν ζ̃µ +
1

2
ϕηµν (3.3.4)

where the decomposition (3.2.2) has been used, and also ∂µζ̃
µ = 0.

The intersection of the two groups is given by

∂µζν + ∂νζµ + 2∂µ∂νψ = ∂µζ̃ν + ∂ν ζ̃µ +
1

2
ϕηµν . (3.3.5)

Taking the trace and the divergence of (3.3.5) we get

2ψ = ϕ (3.3.6)

2(ζ̃µ − ζµ) = 22∂µψ − 1
2∂µϕ (3.3.7)

that yield

2(ζ̃µ − ζµ) =
3

4
2∂µψ. (3.3.8)

Taking the derivative with respect to ν, symmetrizing with respect to µ and
using (3.3.5) and (3.3.6), we finally get

∂µ∂νϕ = 0 =⇒ ϕ = aµx
µ + c. (3.3.9)

This means that not ever Weyl transformation is a Diff transformation,
but only those which satisfy (3.3.9).
Conversely, the subset of the Diff transformation that can be expressed as
a Weyl transformation are those given by [9]:

∂µξν + ∂νξµ =
1

2
∂ρξ

ρηµν (3.3.10)
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4 Massive fields

4.1 Dynamical analysis

The most general mass term that can be added to the quadratic La-
grangian (2.3.6) takes the form [2]:

Lm = −1

4
m2

1hµνh
µν +

1

4
m2

2h
2. (4.1.1)

If we set m1 ≡ 0, only the scalar degree of freedom h is given a mass;
if −m2

2 > 0 is larger than the energy scales we are interested in, the extra
scalar effectively decouples, and only the standard helicity polarizations of
the graviton are allowed to propagate.
The matter Lagrangian Lm is still TDiff invariant, since under TDiff the
variation is

δLm =
1

2
m2

2hδh = m2
2h∂µξ

µ = 0. (4.1.2)

If we allow m1 ̸= 0, in general the whole Lagrangian is not TDiff-
invariant anymore. Let’s make a dynamical analysis as in section (2.4).
Using the “cosmological decomposition” (2.4.1),

• the tensor sector becomes

Lt = −1

4
tij(2+m2

1)tij (4.1.3)

with the constraint m2
1 > 0 to avoid tachyonic instabilities.

• The vector Lagrangian is given by

Lv =
1

2
k2(V i−Ḟ i)2+1

2
(c1−1)(k2F i+V̇ i)2−1

2
m2

1

[
k2(F i)2−(V i)2

]
. (4.1.4)

The Hamiltonian, for c1 ̸= 1, is

Hv =
1

2k2
(ΠiF + k2V i)2 − 1

2(1− c1)

[
ΠiV + (1− c1)k

2F i
]2

+
1− c1

2
k4F 2

− 1

2
k2V 2 +

1

2
m2

1

[
k2F 2 − V 2

]
(4.1.5)
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which gives, as in section (2.4), tachyonic instabilities or ghosts: this
can easily be seen noticing that the contribution proportional to (V i)2 is
negative. Hence we must have c1 = 1. The vector Lagrangian is thus given
by

Lv =
1

2
k2(V i − Ḟ i)2 − 1

2
m2

1

[
k2(F i)2 − (V i)2

]
(4.1.6)

The variation of V i gives the constraint

(k2 +m2
1)V

i = k2Ḟ i (4.1.7)

so that the vector sector can be rewritten as

Lv = −1

2

(
k2m2

1

k2 +m2
1

)
F i(2+m2

1)F
i. (4.1.8)

• The scalar Lagrangian, with c1 = 1, is given by

Ls = L0
s −

m2
1

4
(A2 − 2k2B2 + 3ψ2 − 2k2ψE + k4E2) +

m2
2

4
(A− 3ψ + k2E)2

(4.1.9)

where L0
s is the mass-less scalar Lagrangian (2.4.15).

The variation with respect to B leads to the constraint

m2
1B = (1− c2)(Ȧ+ k2Ė) + (3c2 − 1)ψ̇. (4.1.10)

Further, substituting E through the trace h and defining two new variables
U and V :

k2E = h+ 3ψ −A (4.1.11a)

2A ≡ (3c2 − 1)h+ (4k2 − 3m2
1)U (4.1.11b)

2ψ ≡ (c2 − 1)h−m2
1(U − V ) (4.1.11c)

we can rewrite the scalar Lagrangian as

Ls = −∆c3
4
ḣ2 +

(3m2
1 − 4k2)m2

1

8
(V̇ 2 − U̇2) +

1

8
W (h,U, V ) (4.1.12)
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where ∆c3 is defined by (2.4.18) and

W ≡ 2
[
k2∆c3 +m2

2 − (3c22 − 3c2 + 1)m2
1

]
h2

+m4
1(k

2 − 3m2
1)V

2

−m2
1(8k

4 − 11m2
1k

2 + 6m4
1)U

2

+ 4m2
1k

2(3m2
1 − 2k2)UV

+ 2m2
1(2c2 − 1)

[
(3m2

1 − 2k2)U − 2k2V
]
h.

(4.1.13)

From (4.1.12) we see that either U or V , wheter 4k2 < 3m2
1 or

4k2 > 3m2
1, are ghosts, unless

∆c3 = 0

i.e. the only possibility to avoid ghosts in a theory with m1 ̸= 0 is
to enhance the symmetry of the kinetic term of the Lagrangian to
Diff or WTDiff : in this case h is non-dynamical and the variation of W
with respect to h gives the constraints

m2
2 = (3c22 − 3c2 + 1)m2

1, (4.1.14)

2k2V = (3m2
1 − 2k2)U. (4.1.15)

With these constraints the ghosts disappear and we’re left with only one
scalar degree of freedom.

Counting the degrees of freedom, we find, as expected, that they corre-
spond to the five polarizations of a spin-2 particle: 2 from the symmetric,
transverse and traceless tensor tij , 2 from the transverse vector F i and one
from the scalar. Anyway, the tensor, vector and scalar Lagrangians we have
written are not in a manifestly Lorentz-invariant form.
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4.2 Diff-invariant kinetic term

As seen in the previous section, to have massive fields without ghosts
or classical instabilities, the kinetic term must be invariant under Diff or
WTDiff. Let’s analyze the Diff-invariant case.
Without loss of generality, as seen in section (3.1), we can take c2 = c3 = 1.
From (4.1.14) we have the usual Fierz-Pauli relation

m2
1 = m2

2 (4.2.1)

Using (4.1.15) together with the definition (4.1.11c) we get

2k2ψ = m2
1(3m

2
1 − 4k2)U (4.2.2)

Hence, writing the whole scalar Lagrangian as function of ψ, we find

Ls = −3

4
ψ(2+m2

1)ψ (4.2.3)

4.3 WTDiff-invariant kinetic term

In the special case where the kinetic term is WTDiff-invariant, we have,
from (3.1.6), that c2 = 1

2 . Hence the last term in (4.1.13) cancels, so that
the trace of the metric doesn’t mix with U and V . The consequence is that
we the variation of h doesn’t give a constraint between U and V , and thus
the ghost in (4.1.12) is always present for m1 ̸= 0.

This means that the WTDiff theory cannot be deformed with the
addition of a mass term for the graviton without provoking the
appearance of a ghost.
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5 Coupling to the matter

5.1 Gauge fixing

In Diff theories one usually chooses the harmonic gauge:

ωµ ≡ ∂νh
ν
µ −

1

2
∂µh = 0. (5.1.1)

This gauge choice carries a free index µ, which leads to four independent
conditions, and is possible thanks to the four degrees of freedom of a generic
Diff transformation (2.1.14).
Conversely, in Transverse Theories, the TDiff restriction (2.1.16) leaves us
with only three gauge degrees of freedom. Hence, the harmonic gauge can’t
be chosen, as well as any other gauge-fixing which is linear in the momentum
kµ [2]: indeed, the most general linear gauge-fixing condition can be written
as

Mαβγhβγ = 0 (5.1.2)

with
Mαβγ ≡ a1(η

αβ∂γ + ηαγ∂β) + a2η
βγ∂α. (5.1.3)

In order to bring a generic metric hµν to the guage (5.1.2) through a
transformation (2.1.22) we must have the condition on ξµ

Mαβγhβγ = k−1Mαβγ(∂βξγ + ∂γξβ). (5.1.4)

But if only TDiff transformations are allowed, deriving with respect to
α, the constraint ∂µξ

µ = 0 gives

∂αM
αβγhβγ = k−12(2a1 + a2)2∂µξ

µ = 0. (5.1.5)

This means that in general the gauge (5.1.2) can’t be reached.

The simplest way to fix the gauge with only three independent conditions
is to impose the transversality

∂µω
µν = 0 (5.1.6)

to the antisymmetric tensor

ωµν ≡ ∂ρ(∂µhνρ − ∂νhµρ). (5.1.7)
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This is actually equivalent to projecting the harmonic gauge (5.1.1) on
its transverse part, i.e. (in momentum space)

k2θµνω
ν ≡ (k2ηµν − kµkν)ω

ν = 0. (5.1.8)

The most general quadratic TDiff Lagrangian, with the gauge-fixing and
the ghost terms, can then be written as [10]:

L = L0 + L1 + c2L2 + c3L3 + Lm + Lgf + Lgh (5.1.9)

where the gauge-fixing Lagrangian is

Lfg = Bµ∂νω
µν − 1

2
αB2

µ (5.1.10)

and the ghost Lagrangian, which decouples from the other fields, is

Lgh = −c̄µ22cµ. (5.1.11)

We notice that the auxiliary field Bµ is dimensionless, so that the gauge-
fixing parameter α must be dimensionful: we thus redefine

α ≡M4. (5.1.12)

The variation of the auxiliary field Bµ allows us to rewrite the gauge-fixing
Lagrangian as

Lgf =
1

2M4
(∂µω

µν)2 =
1

2M4
(∂µ∂ν∂ρh

νρ −2∂νh
ν
µ)

2. (5.1.13)

To conclude we just give the BRST transformations for the different
fields [10]:

δhαβ = ∂α∂
µcµβ + ∂β∂

µcµα

δBµ = 0

δc̄µ = −Bµ
δcµν = 0.

(5.1.14)

The ghost and antighost are defined from the antisymmetric two-index ones:

cµ ≡ ∂νc
νµ c̄µ ≡ ∂ν c̄

νµ (5.1.15)

so that
∂µc

µ = ∂µc̄
µ = 0. (5.1.16)
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5.2 Propagators

We work now in momentum space.
Defining first the usual transverse and longitudinal projectors

θµν ≡ ηµν −
kµkν
k2

(5.2.1)

λµν ≡ kµkν
k2

, (5.2.2)

we define the following Barnes-Rivers projectors, symmetric in (µν) ,
(ρσ) and in the exchange (µν ↔ ρσ), [11]:

P2 ≡
1

2
(θµρθνσ + θµσθνρ)−

1

3
θµνθρσ (5.2.3a)

P1 ≡
1

2
(θµρλνσ + θµσλνρ + θνρλµσ + θνσλµρ) (5.2.3b)

P s0 ≡ 1

3
θµνθρσ (5.2.3c)

Pw0 ≡ λµνλρσ (5.2.3d)

P sw0 ≡ 1√
3
θµνλρσ (5.2.3e)

Pws0 ≡ 1√
3
λµνθρσ (5.2.3f)

P×
0 ≡ P

(ws)
0 + P

(sw)
0 . (5.2.3g)

Any symmetric operator can be written as

K = a2P2 + a1P1 + awP
w
0 + asP

s
0 + a×P

×
0 (5.2.4)

whose inverse operator is given by

K−1 =
1

a2
P2 +

1

a1
P1 +

1

asaw − a2×

(
asP

w
0 + awP

s
0 − a×P

×
0

)
(5.2.5)

provided
g(k) ≡ asaw − a2× ̸= 0. (5.2.6)
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The Lagrangian (5.1.9), without the ghost piece, can be rewritten as [2]

L =
1

4
hµνK

µνρσhρσ (5.2.7)

where

Kµνρσ = (k2 −m2
1)P2 + (

1

4M4
k6 −m2

1)P1 + asP
s
0 + awP

w
0 + a×P

×
0 (5.2.8)

with

as = (1− 3c3)k
2 −m2

1 + 3m2
2 (5.2.9a)

aw = (2c2 − c3 − 1)k2 −m2
1 +m2

2 (5.2.9b)

a× =
√
3(c2k

2 − c3k
2 +m2

2). (5.2.9c)

Thus the propagator is given by

∆ = K−1 =
P2

k2 −m2
1

+
4M4P1

k6 − 4M4m2
1

+
1

g(k)

(
asP

w
0 + awP

s
0 − a×P

×
0

)
(5.2.10)

where

g(k) = (2c3 − 3c22 + 2c2 − 1)k4 − 2m2
2k

2 + 2(2c3 − c2)m
2
1k

2 +m4
1 − 4m2

1m
2
2.

(5.2.11)

5.3 Coupling to the matter

If we consider a generic coupling to the matter of the form

1

2
(λ1T

µν + λ2Tη
µν)hµν ≡ 1

2
Tµνtothµν (5.3.1)

the interaction between different sources is completely characterized by [12]:

Sint =

∫
d4kTtot(k)

∗
µν∆

µνρσTtot(k)ρσ. (5.3.2)
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If we consider conserved sources, i.e.

∂µT
µν = kµT

µν = 0 (5.3.3)

so that in the contractions of the projectors with Tµν we have

θµνT
µρ = ηµνT

µρ (5.3.4a)

λµνT
µρ = 0 (5.3.4b)

and using the traces of the projectors

tr θµν = 3 (5.3.5a)

trλµν = 1 (5.3.5b)

trP2 ≡ ηµν(P2)µνρσ = 0 (5.3.5c)

trP1 ≡ ηµν(P1)µνρσ = 0 (5.3.5d)

trP s0 ≡ ηµν(P s0 )µνρσ = θρσ (5.3.5e)

trPw0 ≡ ηµν(Pw0 )µνρσ = λρσ (5.3.5f)

trP×
0 ≡ ηµν(P×

0 )µνρσ =
1√
3
(θρσ + 3λρσ) (5.3.5g)

we find that

T ∗
totP2Ttot = λ21

(
T ∗
µνT

µν − 1

3
|T |2

)
(5.3.6)

T ∗
totP1Ttot = 0 (5.3.7)

T ∗
totP

s
0Ttot =

(
λ21
3

+ 2λ1λ2 + 3λ22

)
|T |2 (5.3.8)

T ∗
totP

w
0 Ttot = λ22|T |2 (5.3.9)

T ∗
totP

×
0 Ttot =

2√
3
(λ1λ2 + 3λ22)|T |2. (5.3.10)

Hence the interaction Lagrangian is

Lint = T ∗
tot∆Ttot =

λ21
k2 −m2

1

T ∗
µνT

µν +

(
P̃0

g(k)
− λ21

3(k2 −m2
1)

)
|T |2 (5.3.11)

where

P̃0 =
1

3
λ21aw + 2λ1λ2(aw − a×√

3
) + λ22(3aw + as − 2

√
3a×). (5.3.12)
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5.4 Massive Fierz-Pauli Lagrangian

In this case the parameters of the Lagrangian are given by

c2 = c3 = 1

and
m2

1 = m2
2.

Hence, from (5.2.11), we have that

g(k) = −3m4
1 (5.4.1)

which does not depend on the momentum k. This means that the con-
tribution of P̃0 to the interaction Lagrangian (5.3.11) corresponds only to
a contact term, which doesn’t contribute to interactions between different
sources.
We are thus only left with the term involving P2, which is

Lint =
λ21

k2 −m2
1

(
T ∗
µνT

µν − 1

3
|T |2

)
. (5.4.2)

The factor 1
3 in front of |T |2, different from the familiar 1

2 which is
encountered in linearized General Relativity, produces the well known vDVZ
discontinuity in the mass-less limit [13–15].

5.5 Full TDiff invariant Lagrangian

In this case we only set m1 = 0. From (5.2.11) we have

g(k) = 2(∆c3k
2 −m2

2)k
2 (5.5.1)

where ∆c3 is given by (2.4.20). We notice that g(k) is quartic in the
momenta, while only the terms proportional to λ1λ2 and λ22 in (5.3.12) are
quadratic in the momenta; indeed, using (5.2.9):

λ22(3aw + as − 2
√
3a×) = −2λ22k

2,

2λ1λ2(aw − a×√
3
) = 2λ1λ2(c2 − 1)k2,

1

3
λ21aw =

1

3
λ21
[
(2c2 − c3 − 1)k2 +m2

2

]
.
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Hence, decomposing g(k)−1 as

1

g(k)
=

1

2m2
2

 1

k2 − m2
2

∆c3

− 1

k2

 (5.5.2)

we find that

P̃0

g(k)
= − λ21

6k2
−

[(
λ2 +

1− c2
2

λ1

)2

+
λ21∆c3

6

]
1

∆c3k2 −m2
2

. (5.5.3)

Substituting in (5.3.11) and adding the contribution given by P2, which
is (5.4.2) with m1 = 0, we find the interaction Lagrangian:

Lint =
λ21
k2

(
T ∗
µνT

µν − 1

2
|T |2

)
−

[(
λ2 +

1− c2
2

λ1

)2

+
λ21∆c3

6

]
|T |2

∆c3k2 −m2
2

.

(5.5.4)

We can see that in this case the mass-less interaction between conserved
sources is the same as in standard linearized General Relativity, since we
find the familiar factor 1

2 in front of |T |2.
In addition there is a massive scalar interaction, with an effective squared
mass

m2
eff =

m2
2

∆c3
> 0 (5.5.5)

(since bothm2
2 and ∆c3 must be negative according to our previous analysis)

and an effective coupling

λ2eff = − 1

∆c3

[(
λ2 +

1− c2
2

λ1

)2

+
λ21∆c3

6

]
. (5.5.6)

5.6 Mass-less Diff and WTDiff Lagrangian

We already now that the mass-less quadratic Diff-invariant Lagrangian
is the lowest order of the General Relativity Lagrangian. We thus expect to
have an interaction Lagrangian

Lint =
λ21
k2

(
T ∗
µνT

µν − 1

2
|T |2

)
. (5.6.1)
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From general arguments, also in mass-less WTDiff theories, we expect to
have the same interaction Lagrangian, since Diff and WTDiff theories differ
only by an integration constant (see section 3.3), but have the same degrees
of freedom (see section 2.4).

Indeed, setting ∆c3 = 0, in both Diff and WTDiff theories, an additional
term m2

2h
2 in the Lagrangian could be thought of as the additional gauge

fixing which removes the redundancy under the supplementary Weyl or full
Diff symmetry.
With ∆c3 = 0 in (5.5.4), the second term becomes a contact term, and the
interaction, as expected, is given by (5.6.1).
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6 Matter Lagrangian and the “active”
energy-momentum tensor

6.1 Linear approximation

In the following, by (active) energy-momentum tensor (EMT) we mean
the source of gravity, i.e. the term in the equations of motion that determines
how the gravitational field is generated. To be more precise, given a generic
Lagrangian

L = Lg(gµν) + Lm({ϕ}, gµν) (6.1.1)

where Lg is the pure gravitational Lagrangian while Lm is the generic matter
Lagrangian ({ϕ} denotes the set of all non-gravitational fields), the EMT is
defined as

Tµν ≡ δLm
δgµν

. (6.1.2)

At a linear level, using the perturbation hµν upon the flat metric
(gµν ≈ ηµν − khµν), the matter Lagrangian is Lm({ϕ}, hµν) and the EMT is

kTµν ≡ − δLm
δhµν

. (6.1.3)

To make an example, let’s consider a scalar field ϕ which in a freely
falling locally inertial reference system has the Lagrangian

L0
m =

1

2
ηµν∂µϕ∂νϕ− V (ϕ). (6.1.4)

Assuming symmetry under
ϕ −→ −ϕ

to avoid classical instabilities, the allowed matter Lagrangian, up to linear
terms in h, can generically be written as [16]

Lm =
1

2
ηµν∂µϕ∂νϕ− V (ϕ)

+ k
(
−µ1

2
hµν∂µϕ∂νϕ+

µ2
4
hηµν∂µϕ∂νϕ− µ3

2
hV (ϕ)

)
. (6.1.5)
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Since the variation of the scalar field ϕ, by a linear transformation
(2.1.13), is given by

δϕ = −ξµ∂µϕ (6.1.6)

to have TDiff invariance it is necessary that µ1 = 1.
The variation with respect to ϕ gives the equations of motion for the matter
field:

−2ϕ−V ′(ϕ)+k
[
∂µh

µβ∂βϕ+ hµβ∂µ∂βϕ
µ2
2
(∂µh∂

µϕ+ h2ϕ)− µ3
2
hV ′(ϕ)

]
= 0

(6.1.7)

while the variation with respect to −hµν gives the EMT:

Tµν =
1

2
∂µϕ∂νϕ− µ2

4
ηµνη

αβ∂αϕ∂βϕ+
µ3
2
ηµνV (ϕ) (6.1.8)

We can show that in TDiff theories the active energy-momentum
tensor is generally not conserved:

∂µT
µν =

1

2
∂νϕ2ϕ− µ2 − 1

2
∂ν∂µϕ∂

µϕ+
µ3
2
∂νϕV ′(ϕ). (6.1.9)

Using equation (6.1.7) at the k0-th order to substitute V ′(ϕ) we get

∂µT
µν = −µ3 − 1

2
∂νϕ2ϕ− µ2 − 1

2
∂ν∂µϕ∂

µϕ (6.1.10)

which is in general different from 0 unless µ2 = µ3 = 1. This actually corre-
sponds to a Diff-invariant matter Lagrangian.

Depending on which symmetry characterizes the gravitational Lagrangian
Lg, consistency imposes some restrictions to the matter Lagrangian.
For instance, a WTDiff-invariant gravitational Lagrangian, which leads to
trace-less equations of motion for the gravitational part, forces also the EMT
to be trace-less:

ηµνTµν = −1

2
(2µ2 − 1)ηαβ∂αϕ∂βϕ+ 2µ3V (ϕ) = 0 (6.1.11)

i.e.  µ2 =
1

2
µ3 = 0.

(6.1.12)
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On the other hand, as we shall better see in the next section, a Diff-
invariant gravitational Lagrangian forces the matter Lagrangian to be Diff-
invariant as well.

We note that in any case the TDiff EMT does not reduce in flat
space to the canonical energy-momentum tensor (or equivalently
to the Belinfante one), which is well known to be conserved and has the
form

T canµν = ∂µϕ∂νϕ− ηµνLm. (6.1.13)

This means that in TDiff theories the EMT tensor does not convey the
Noether current corresponding to translation invariance.

6.2 Non-linear theory

A general TDiff-invariant matter action can be written in the form (see
section 2.5):

Sm =

∫
d4xfm(−g)Lm. (6.2.1)

The energy-momentum tensor is then given by

Tµν = fm(−g)
δLm
δgµν

− |g|f ′m(−g)Lmgµν . (6.2.2)

Let’s study the conservation law of the EMT, knowing that the action is
invariant under TDiff.

Since a generic TDiff transformation of the metric is given by (2.1.14)
with ξµ given by (2.1.17), TDiff invariance requires that [4]

0 = Tµνδtgµν = Tµν [ϵρα2α3α4∂α2Ωα3α4∂ρgµν

+gµρ∂ν(ϵ
ρα2α3α4∂α2Ωα3α4) + gνρ∂µ(ϵ

ρα2α3α4∂α2Ωα3α4)] .

(6.2.3)

Defining the antisymmetric tensor

ωµν ≡ ϵµνα3α4Ωα3α4 (6.2.4)
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up to total derivatives equation (6.2.3) can be rewritten as

(2∂ν∂ρT
ρ
µ − ∂µgρσ∂νT

ρσ)ωµν = 0 (6.2.5)

that is

2(∂ν∂ρT
ρ
µ − ∂µ∂ρT

ρ
ν ) = ∂µgρσ∂νT

ρσ − ∂νgρσ∂µT
ρσ. (6.2.6)

Equation (6.2.6) can be rewritten as

∂ν∂ρT
ρ
µ − 1

2
∂νT

ρσ∂µgρσ = ∂µ∂ρT
ρ
ν − 1

2
∂µT

ρσ∂νgρσ (6.2.7)

which shows the µ↔ ν symmetry of each member. This implies that

∂ρT
ρ
µ − 1

2
T ρσ∂µgρσ = ∂µΦ (6.2.8)

for some function Φ.
Using the well known formula valid for any symmetric tensor Sνµ [17]:

∇νS
ν
µ =

1√
|g|
∂ν

(√
|g|Sνµ

)
− 1

2
∂µgρσS

ρσ (6.2.9)

equation (6.2.8) can be rewritten as

∇ν

(
T νµ√
|g|

)
=

1√
|g|
∂µΦ. (6.2.10)

On the other hand, equation (6.2.6) can be rewritten as

∂ν∂ρT
ρ
µ +

1

2
∂µT

ρσ∂νgρσ = ∂µ∂ρT
ρ
ν +

1

2
∂νT

ρσ∂µgρσ (6.2.11)

whose µ↔ ν symmetry implies that

∂ρT
ρ
µ +

1

2
∂µT

ρσgρσ = ∂µΦ
′. (6.2.12)
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Finally, from (6.2.12)−(6.2.8) we find that

Φ′ − Φ =
T

2
(6.2.13)

which alone can’t ensure the conservation of the EMT.

On the other hand, if we take a Diff-invariant matter Lagrangian, the
EMT is conserved: the simple requirement of TDiff-invariance gives

0 = Tαβ(ξρ∂ρgαβ + gαρ∂βξ
ρ + gβρ∂αξ

ρ) (6.2.14)

which, up to total derivatives, conveys the fact that

0 = ∂ρgαβT
αβ − ∂βT

β
ρ − ∂αT

α
ρ = −2

√
|g|∇α

(
Tαρ√
|g|

)
. (6.2.15)

For this reason the EMT is usually defined as

TGR
µν ≡ 2√

|g|
TDiff
µν . (6.2.16)

Also if we only take a Diff-invariant gravitational Lagrangian, that is the
Hilbert Lagrangian, the EMT must be conserved: the equations of motion
read

Gµν =
2k2√
|g|
Tµν (6.2.17)

where Gµν is the Einstein tensor. But Bianchi identities ensure that

∇µG
µ
ν = 0 (6.2.18)

which also implies that

∇µ

(
Tµν√
|g|

)
= 0. (6.2.19)

Since in TDiff theories the EMT is generally not conserved, the assump-
tions made in chapter (5) on the conservation of the matter sources are only
approximations.
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6.3 The weight of energy and the Cosmological Constant
problem

We are going now to show that in Transverse Theories it is possible to
build theoretically consistent models in which the potential energy can have
a tiny weight (that is, its coupling to the gravitational field), or even models
in which the potential energy does not weigh at all [4].
Since the potential energy contains the vacuum energy, such models could
solve the direct cosmological constant problem, as anticipated in section 2.2.
Anyway, the models we are going to present are not expected to be realis-
tic, but want only to be some examples that, theoretically, could solve the
problem.

One of the possibilities could be the action (6.2.1). If we set

fm(−g) ≡ 1 (6.3.1)

the action reads

Sm =

∫
d4x

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (6.3.2)

We can see that only the kinetic energy is coupled to the gravitational
field, while the potential energy doesn’t weigh at all. The energy-momentum
tensor is

Tµν =
1

2
∂µϕ∂νϕ (6.3.3)

Only the kinetic part enters in the equations of motion.

Even a more general action than (6.2.1) could be written, giving differ-
ent couplings to the determinant of the metric g for the different terms of
the matter Lagrangian. For instance we could write

Lm = fk(−g)
1

2
gµν∂µϕ∂νϕ− fv(−g)V (ϕ) (6.3.4)

whose EMT is

Tµν =
1

2
fk(−g)∂µϕ∂νϕ−

f ′k(−g)
2

|g|gµνgαβ∂αϕ∂βϕ+ f ′v(−g)|g|gµνV (ϕ).

(6.3.5)
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The linearized form of the Lagrangian (6.3.4) is

Lm =
fk(1)

2
ηµν∂µϕ∂νϕ− fv(1)V (ϕ)

+ k

[
−fk(1)

2
hµν∂µϕ∂νϕ+

f ′k(1)

2
hηµν∂µϕ∂νϕ− f ′v(1)hV (ϕ)

]
. (6.3.6)

If we require (6.1.4) we have the condition

fk(1) = fv(1) = 1 (6.3.7)

and equation (6.3.6) becomes exactly the same as (6.1.5) with{
µ2 = 2f ′k(1)

µ3 = 2f ′v(1).
(6.3.8)

Also in this case, playing with the only function fv, we are able to give
the potential energy the desired weight.

6.4 Connections with ρ and p

If we assume the matter to be a perfect fluid, we can define the energy
density, the pressure and the velocity as [18]

ρ ≡ 1

2
gµν∂µϕ∂νϕ+ V (ϕ) (6.4.1a)

p ≡ 1

2
gµν∂µϕ∂νϕ− V (ϕ) (6.4.1b)

uµ ≡ gµν∂νϕ√
gµν∂µϕ∂νϕ

(6.4.1c)

so that

∂µϕ∂νϕ = (ρ+ p)uµuν (6.4.2)

gµν∂µϕ∂νϕ = ρ+ p (6.4.3)

2V (ϕ) = ρ− p. (6.4.4)
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Thus, if we start from a general matter Lagrangian of the form (6.3.4),
the energy-momentum tensor (6.3.5) can be rewritten as

Tµν =
ρ

2

[
fk(−g)uµuν −

(
f ′k(−g)− f ′v(−g)

)
|g|gµν

]
+
p

2

[
fk(−g)uµuν −

(
f ′k(−g) + f ′v(−g)

)
|g|gµν

]
.

(6.4.5)

In the case of General Relativity, where fk(−g) = fv(−g) =
√
−g, the

EMT (6.2.16) reduces to

TGR
µν =

2√
|g|
Tµν = (ρ+ p)uµuν − pgµν (6.4.6)

which, in flat space and in the matter rest frame, gives the well known
expression

Tµν = diag(ρ, p, p, p). (6.4.7)
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7 Particles and matter in Transverse Theories

7.1 Particle behavior

Let’s examine the consequences of the hypothesis that the matter action
is invariant only under TDiff.
Let’ start from a Lagrangian of the form (6.3.4) with

V (ϕ) = −m̂2ϕ. (7.1.1)

The equations of motion are given by

∂µ(fk(−g)gµν∂νϕ) + fv(−g)m̂2ϕ = 0. (7.1.2)

If we take a WKB expansion of the field in terms of the eikonal [19]

ϕ = Re

[
e
i
(
ψ0
h
+ψ1+...

)]
(7.1.3)

and define

m2 ≡ h2m̂2 (7.1.4)

kµ ≡ ∂µψ0 (7.1.5)

pµ ≡ ∂µψ1 (7.1.6)

then the dominant order (i.e. the geometrical optics approximation) in
formal power of h is O(h−2) and reads

fk(−g)k2 = fv(−g)m2 (7.1.7)

while the second order approximation (physical optics), of order h−1,
yields

k · p = ∂µ(fkk
µ)

2fv
. (7.1.8)

The trajectories of the particles are geodesics only if fk = fv: from equa-
tion (7.1.7) we get

k2 = m2 (7.1.9)
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and since m is a constant parameter, deriving the former equation we
have

k̇µ ≡ kα∇αkµ = 0. (7.1.10)

Hence only if fk = fv we can say that the passive gravitational mass
is the same as the inertial mass, so that the Weak Equivalence Principle is
satisfied.

7.2 Perfect fluid

For a matter Lagrangian

Lm = fm(−g)
[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
(7.2.1)

the equations of motion are

∂µ(fm(−g)gµν∂νϕ) + fm(−g)V ′(ϕ) = 0. (7.2.2)

Since for a generic vector Aµ [17]

∂µA
µ = ∇µA

µ −Aµ
∂µ

√
−g√

−g
(7.2.3)

identifying Aµ = fm(−g)gµν∂νϕ, we can rewrite (7.2.2) as

∇µ∇µϕ+ V ′(ϕ) + gµν∂µϕ∂νχ = 0 (7.2.4)

where

χ ≡ log
fm(−g)√

−g
. (7.2.5)

Now, indicating through a dot over a quantity its derivative in the di-
rection of uµ

ḟ ≡ uµ∇µf, (7.2.6)

defining the optical expansion of the timelike congruence [20]

θ ≡ ∇µu
µ, (7.2.7)
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multiplying by ∂αϕ equation (7.2.4), and using the definitions (6.4.1), we
find [19]

1

2
uα(ρ̇+ ṗ) + uαθ(ρ+ p) +

1

2
∇α(ρ− p) + uαχ̇(ρ+ p) = 0. (7.2.8)

Taking into account that

∇αp = ∇µϕ∇µ∇αϕ− V ′(ϕ)∇αϕ =
1

2
uα(ρ̇+ ṗ) + u̇α(ρ+ p)− 1

2
∇α(ρ− p),

(7.2.9)

we arrive to

uα(ρ̇+ ṗ) + uαθ(ρ+ p) + u̇α(ρ+ p)−∇αp+ uαχ̇(ρ+ p) = 0. (7.2.10)

Since uαu̇
α = 0, projecting along uα equation (7.2.10), we get

ρ̇+ (ρ+ p)(θ + χ̇) = 0 (7.2.11)

which, for a fluid verifying the equation of state p = ωρ can be rewritten
as

ρ̇+ (1 + ω)ρ(θ + χ̇) = 0. (7.2.12)

We notice that this continuity equation differs by the last term from the
one we find in General Relativity:

ρ̇+ (1 + ω)ρθ = 0. (7.2.13)

Since [20] θ = 3 ȧa , in General Relativity the continuity equation (7.2.13),
which we can rewrite as

ρ̇

ρ
= −3(1 + ω)

ȧ

a
(7.2.14)

gives the well known behavior of pressureless matter (ω = 0) and radia-
tion (ω = 1

3)

ρm ∼ a−3 (7.2.15)

ρr ∼ a−4. (7.2.16)
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Instead in transverse theories the corresponding relationship is

ρ =

(
1

a3
·

√
−g

fm(−g)

)1+ω

(7.2.17)

so that the redefined quantity

ρ′ ≡ ρe(1+ω)χ (7.2.18)

verifies the same continuity equation (7.2.13) as in General Relativity.

On the other hand, the transverse equation obtained by projecting through
the transverse projector hαβ = gαβ − uαuβ equation (7.2.10) reads

u̇β(ρ+ p) = hαβ∇αp (7.2.19)

which is exactly the same equation we find in General Relativity.
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8 Transverse Theories and experiments

8.1 Matter-graviton coupling for massive TDiff Lagrangian

Let us examine the special case where the gravitational Lagrangian is
TDiff-invariant with a massive term. As seen in section (4.1), only a mass
term

1

4
m2

2h
2

is allowed, while it must be m1 = 0.
For a conserved energy-momentum tensor coupled to gravity in the form
(5.3.1):

LI =
1

2
(λ1T

µν + λ2Tη
µν)hµν (8.1.1)

as seen in section (5.5), in momentum space the interaction between two
different sources is given by (5.5.4):

Lint =
λ21
k2

(
T ∗
µνT

µν − 1

2
|T |2

)
−

[(
λ2 +

1− c2
2

λ1

)2

+
λ21∆c3

6

]
|T |2

∆c3k2 −m2
2

.

(8.1.2)

Let’s take as an example the linear matter Lagrangian (6.1.5):

Lm =
1

2
ηµν∂µϕ∂νϕ− V (ϕ)

+ k

(
−1

2
hµν∂µϕ∂νϕ+

µ2
4
hηµν∂µϕ∂νϕ− µ3

2
hV (ϕ)

)

whose EMT is (6.1.8):

Tµν =
1

2
∂µϕ∂νϕ− µ2

4
ηµνη

αβ∂αϕ∂βϕ+
µ3
2
ηµνV (ϕ). (8.1.3)

The coupling would be of the form (8.1.1) with λ1 = −k λ2 = 0.

Unfortunately, if we take a general TDiff-invariant matter Lagrangian, as
seen in sections (6.1, 6.2) the EMT is not conserved, so that the interaction
Lagrangian should not be of the form (8.1.2) anymore.
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Anyway, for the case we are analyzing, we notice that a conserved tensor
can be defined as [16]

Θµν ≡ Tµν −
1

2
ηµν

(
1− µ2

2
ηρσ∂ρϕ∂σϕ+ (µ3 − 1)V (ϕ)

)
=

=
1

2
∂µϕ∂νϕ− 1

2
ηµν

(
1

2
ηρσ∂ρϕ∂σϕ− V (ϕ)

)
. (8.1.4)

In the particular case that µ3 = 2µ2−1 (which includes the Diff-invariant
matter Lagrangian), the EMT (8.1.3) can be written in terms of the new
one (8.1.4) and its trace:

Tµν = Θµν +
µ2 − 1

2
ηµνΘ (8.1.5)

Hence, in terms of the new EMT, the coupling to gravity is of the form
(8.1.1) with

λ1 = −k, λ2 = −k
2
(µ2 − 1). (8.1.6)

Now, the exchange of additional massive scalar degrees of freedom pro-
duces a Yukawa-like potential which is usually parameterized as [21]:

V (r) ∼ 1

r

(
1 + αe−r/λ

)
(8.1.7)

where the parameter α is the ratio between the scalar and the spin 2
couplings, while λ gives the range of the interaction, or equivalently the
mass of the scalar exchanged. In our particular case

α = −
(λ2 +

1−c2
2 λ1)

2

∆c3λ21
− 1

6
= −(µ2 − c2)

2

4∆c3
− 1

6
(8.1.8)

λ2 =
∆c3
m2

2

. (8.1.9)

We remember that, in order to avoid ghosts, one has to impose ∆c3 < 0,
so that also m2

2 < 0.
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According to [21], there are important constraints on the strength of
hypothetical Yukawa interactions for wide ranges of λ. Through (8.1.8)
and (8.1.9) it is then possible to constrain the space of parameters of the
linearized theory.
We will use figures 4, 5 and 9 of [21], which show allowed and excluded
regions for α corresponding to the ranges (10−2 ÷ 1014)m, (10−2 ÷ 10−6)m
and (10−6 ÷ 10−9)m respectively.

Figure 1: 95%-confidence-level constraints on inverse square law violating
Yukawa interactions with λ > 1cm.

Since we are just interested in general behaviors and not in accurate
results we will approximate the experimental curves by straight lines, so we
have experimentally allowed regions of the form

|α| < kλa (8.1.10)

where k and a are extrapolated from the plots in [21].
There are however four parameters to play with, i.e. µ2, m

2
2, c2 and c3.

First, it is interesting to see the order of magnitude for the mass once we fix
the values of c2 and c3. The result is plotted in Fig.4 [16].
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Figure 2: 95%-confidence-level constraints on inverse square law violating
Yukawa interactions with 1µm< λ < 1cm.

Figure 3: 95%-confidence-level constraints on inverse square law violating
Yukawa interactions with 1nm< λ < 1µm.
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Figure 4: The shadowed region shows experimentally allowed regions for
|m2

2| in m−2 and µ2 for given values of c2 and c3 expressed in terms of ∆c3
and in the range 1nm < λ < 1µm. For the dashed lines the shadowed region
has to be considered extended until the dashed lines.

It can be seen that greater values for the mass are favored, being the
lower bound around

|m2
2| ∼ 5 · 1011m−2 ∼ 0, 02 eV2. (8.1.11)

Another possibility is to fix m2
2 and µ2 and see in the plane (c2, c3)

how far from Diff-invariance we can move away, remembering that we have
always to take into account the restriction ∆c3 ≤ 0.
In the range 1nm< λ < 1µm there is no hope of seeing an experimental curve
that appreciably deviates from the parabola ∆c3 = 0, because of (8.1.9) and
the tiny value of λ. Let’s then consider ranges for greater values of λ. Some
examples of resulting plots are given in Figs 5,6 and 7, where has always been
set µ2 = 0 since other values of µ2 simply shift the experimental allowed
curves along the parabola; but the qualitative results remain unchanged.
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Figure 5: Experimentally allowed region in the plane (c2, c3), for a couple of
values of the mass, in the range 10−6m < λ < 10−2m. The plot is restricted
to the zone where the curve appreciably deviates from the parabola ∆c3 = 0.
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Figure 6: Experimentally allowed region in the plane (c2, c3), for a couple
of values of the mass, in the range 10−2m < λ < 1014m. We only show the
positive c2 branch. The parabola is indistinguishable from the c2 axis.
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Figure 7: Experimentally allowed region in the plane (c2, c3), in the range
10−2m < λ < 1014m for a very tiny mass. That allows us to see the parabola,
which was hidden in the previous figure.
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8.2 Masses in Transverse theories

In physics we can distinguish three different concepts for what is com-
monly called “mass”, with three deeply different meanings:

• The inertial mass mi is an intrinsic property of a particle, indepen-
dent of the environment, which enters in all its interactions, like other
parameters (as may be the charge, the passive gravitational mass,...).
Classically, the inertial mass is the property that regulates the re-
sponse of a body to any applied force, and it’s determined by applying
a force to an object and measuring the acceleration that results from
that force.

• The passive gravitational mass mp is a kind of “charge” of the
gravitational interaction, i.e. the property that regulates the response
of a particle to an externally given gravitational field. It is determined
by dividing an object’s weight by its free-fall acceleration.

• The active gravitational mass ma is the source of gravity, i.e. the
property of a particle that regulates the “amount” of gravitational field
generated by the particle. The gravitational field can be measured by
allowing a small test object to freely fall and measuring its free-fall
acceleration.

As already seen in section (1.1), the WEP postulates the equivalence be-
tween the inertial and the passive gravitational mass, implying universality
of the acceleration of free fall. This is one of the best established experi-
mental facts in physics, with a relative precision of at least 10−12, as quoted
in [22]. As seen in section (7.1), transverse theories with fk(|g|) = fv(|g|)
verify the Weak Equivalence Principle.

On the other hand, the equality of the active gravitational mass to the
other two lies essentially on the third of Newton’s laws, that is momentum
conservation; in this case the experimental precision seems even better. It
has indeed been recently claimed [23] that the bounds on relative violations
of Newton’s third law are ∼ 10−13.
To be specific, what is bound to be small is the difference of the quotient
of the active and passive gravitational masses for distinct bodies (dubbed 1
and 2 in the following), that is

S(1, 2) =

∣∣∣∣(ma

mp

)
1

−
(
ma

mp

)
2

∣∣∣∣ ≤ 10−13. (8.2.1)

Inequality between active and passive gravitational masses is traduced in an
unbalanced force that accelerates the center of mass of the interacting pair:
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F⃗12 = S(1, 2)Gm1
pm

2
p

r⃗12
r312

. (8.2.2)

Let’s consider now what may be the active gravitational mass in Trans-
verse Theories.
As seen in section (6.4), in Transverse theories the active EMT is given by
(6.4.5):

Tµν =
ρ

2

[
fk(|g|)uµuν −

(
f ′k(|g|)− f ′v(|g|)

)
|g|gµν

]
+
p

2

[
fk(|g|)uµuν −

(
f ′k(|g|) + f ′v(|g|)

)
|g|gµν

]
.

If we define, as in General Relativity,

T̃µν ≡ 2√
|g|
Tµν (8.2.3)

we find

T̃µν = ρ

[
fk(|g|)√

|g|
uµuν −

(
f ′k(|g|)− f ′v(|g|)

)√
|g|gµν

]

+ p

[
fk(|g|)√

|g|
uµuν −

(
f ′k(|g|) + f ′v(|g|)

)√
|g|gµν

]
.

(8.2.4)

If we want to write a scalar source of gravitation, in order to identify it
with the active gravitational mass, we can define [19]:

ma ≡ T̃µνu
µuν (8.2.5)

so that, in the case of General Relativity,

mGR
a = [(ρ+ p)uµuν − p gµν ]u

µuν = ρ. (8.2.6)
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In TDiff theories the EMT is given by (8.2.4), so that the active gravi-
tational mass is given by

ma = ρ

[
fk(|g|)√

|g|
−
(
f ′k(|g|)− f ′v(|g|)

)√
|g|

]

+ p

[
fk(|g|)√

|g|
−
(
f ′k(|g|) + f ′v(|g|)

)√
|g|

]
.

(8.2.7)

We can measure the relative difference between general relativistic and
transverse active masses through the quantity [19]

δ ≡ ma −mGR
a

mGR
a

. (8.2.8)

From (8.2.7) we get

δ =
fk(|g|)−

√
|g|√

|g|
−
(
f ′k(|g|)− f ′v(|g|)

)√
|g|

+
p

ρ

[
fk(|g|)√

|g|
−
(
f ′k(|g|) + f ′v(|g|)

)√
|g|

]
.

(8.2.9)

We notice that even in the non-relativistic cold limit where
p

ρ
≈ 0 (8.2.10)

we have

δ =
fk(|g|)−

√
|g|√

|g|
−
(
f ′k(|g|)− f ′v(|g|)

)√
|g| ̸= 0. (8.2.11)

In the special case that fk = fv ≡ fm, we have

ma =
fm(|g|)√

|g|
ρ+

[
fm(|g|)√

|g|
− 2f ′m(|g|)

√
|g|

]
p, (8.2.12)

δ =
fm(|g|)−

√
|g|√

|g|
+
p

ρ
· fm(|g|)− 2|g|f ′m√

|g|
, (8.2.13)

δ =
fm(|g|)−

√
|g|√

|g|
(
p

ρ
→ 0). (8.2.14)
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We thus must conclude that in any case, if we admit that in General
Relativity all three masses are equal, in the transverse models we are con-
sidering the active gravitational mass differs from the other two. This will
eventually lead to a violation (represented by the quantity δ) of Newton’s
third law, that must be carefully tuned up in order for it to be compatible
with experiments.
Anyway, the constraint (8.2.1) implies only

δ1 − δ2 ≤ 10−13 (8.2.15)

which does not constrain the observable δ itself.
It is nevertheless true that, because of the dependence of δ on the deter-
minant of the metric g, the ratio between ma and mp will depend on the
particular point in the spacetime. Since [19] we can identify the ratio be-
tween the active and passive gravitational mass with Newton’s constant G,
this will lead to a violation of the “constancy of constants”: that is, a vio-
lation of the SEP (see section (1.1)).
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9 Transverse Theories and experiments: the PPN
formalism

9.1 The Newtonian approximation

In the solar system gravitation is weak enough for Newton’s theory of
gravity to adequately explain all but the most minute effects: to an accuracy
of about one part in 105, light rays travel on straight lines at constant speed,
and test bodies move according to

a = ∇U (9.1.1)

where a is the body’s acceleration and U is the Newtonian gravitational
potential produced by the rest-mass density ρ0: in “geometrized” units, in
which the speed of light and the gravitational constant as measured far from
the solar system are unity, U is given by

U(x, t) =

∫
ρ0(x

′, t)

|x− x′|
d3x′ (9.1.2)

so that

∇2U = −4πρ0. (9.1.3)

The definition of “rest-mass density” is actually a bit misleading, since by ρ0
we mean a measure of the number density of baryons n, and nothing more;
it is defined as the product of n with some standard figure for the mass per
baryon (µ0) in some well defined standard state:

ρ0 ≡ nµ0. (9.1.4)

From the standpoint of a metric theory of gravity, where the metric and
the equations of motion become the primary theoretical entities, Newtonian
physics may be viewed as a first order approximation in the expansion of
the metric: if we consider a test body momentarily at rest (dxi/dt = 0) in
a static external gravitational field, from the geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 (9.1.5)

we get

ai =
d2xi

dt2
= −Γi00 =

1

2
gik∂kg00. (9.1.6)
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Far from the Newtonian system we know that, in an appropriately chosen
coordinate system, the metric must reduce to the Minkowski metric:

gµν −→ ηµν = diag(1,−1,−1,−1). (9.1.7)

Hence, in the presence of a very weak gravitational field, equation (9.1.6)
can yield Newtonian gravitation (i.e. eq. 9.1.1) only if

g00 ≈ 1− 2U, (9.1.8a)

gik ≈ −δjk. (9.1.8b)

Anyway, the Newtonian limit no longer suffices when we begin to demand
accuracies greater then a part in 105. For example, it cannot account for
Mercury’s additional perihelion shift of ∼ 5 · 10−7 radians per orbit. Thus
we need a more accurate approximation to the metric gµν , that goes beyond
Newtonian theory: that is, the “Post-Newtonian” limit.

9.2 The Post-Newtonian limit

In the solar system, in geometrized units (where U is dimensionless), the
Newtonian gravitational potential U is nowhere larger than 10−5 [1]:

U . 10−5. (9.2.1)

Planetary velocities are related to U by virial relations which yield

v2 . U. (9.2.2)

The matter making up the Sun and planets is under pressure p, but this
pressure is generally smaller than the matter’s gravitational energy density
ρU (p/ρ is ∼ 10−5 in the Sun and ∼ 10−10 in the Earth):

p

ρ0
. U. (9.2.3)

Other forms of energy in the solar system (compressional energy, radiation,
thermal energy,...) are small. We can define the specific energy density Π,
that is the ratio of other kinds of energy densities to rest-mass density:

Π ≡ ρ− ρ0
ρ0

. (9.2.4)

In the solar system, Π ∼ 10−5 in the Sun and Π ∼ 10−9 in the Earth. Hence
we can say that

Π . U. (9.2.5)
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We can thus assume that the quantities above are all of the same “order
of smallness”, denoted by ϵ, so that

U ∼ v2 ∼ p

ρ0
∼ Π ∼ 10−5 ∼ ϵ2. (9.2.6)

Moreover, since the time evolution of the solar system is governed by the
motion of its constituents, we have

∂

∂t
∼ v · ∇ (9.2.7)

which implies that

|∂/∂t|
|∂/∂x|

∼ O(ϵ). (9.2.8)

The “Post-Newtonian limit” is an expansion of the metric in a formal
power of series in ϵ, up to one order beyond the Newtonian expansion.
In this post-Newtonian expansion, terms odd in ϵ (i.e. terms whose total
number of v’s and (∂/∂t)’s is odd) like for instance∫

ρ0(x
′, t)vj(x

′, t)

|x′ − x|
d3x′ ∼ M

R
v ∼ ϵ3

change sign under time reversal (x0 → −x0), whereas terms even in ϵ do not.
Time reversal also changes the sign of g0i, but leaves g00 and gik unchanged.
Therefore, g0i must contain only terms odd in ϵ, whereas g00 and gik must
contain only even terms. Actually, this ceases to be the case when radiation
damping enters the picture, since time reversal converts outgoing waves into
ingoing waves. However, radiation damping does not come into play until
order ϵ5 beyond Newtonian limit [24].

The Newtonian expansion, as seen in (9.1.8), is given by

g00 = 1− 2U (9.2.9a)

g0i = 0 (9.2.9b)

gik = −δjk (9.2.9c)

Hence, the post-Newtonian expansion is given by

g00 = 1− 2U +O(ϵ4) (9.2.10a)

g0i = O(ϵ3) (9.2.10b)

gik = −δjk +O(ϵ2) (9.2.10c)
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How accurately does the post-Newtonian approximation agree with the
metric theory it comes from? The fractional error will be . ϵ2 in quantities
of post-Newtonian order and . ϵ4 in quantities od Newtonian order. For
instance, since almost everywhere in the solar system U . 10−6, it misrepre-
sents the deflection of light by ∼ 10−6× (post-Newtonian deflection) ∼ 10−6

seconds of arc, and it ignores relativistic deformations of the Earth’s orbit
of magnitude ∼ 10−12 × (1 a.u.) ∼ 10cm.

9.3 Gravitational potentials

Each metric theory has its own post-Newtonian expansion of the met-
ric. Despite the great differences between metric theories themselves, their
post-Newtonian approximations are very similar; actually, so similar that
one can construct a single post-Newtonian theory of gravity, that contains
the post-Newtonian approximation of every conceivable metric theory as
a special case: the most general post-Newtonian metric can be found by
simply writing down metric terms composed of all possible post-Newtonian
functionals of matter variables (Gravitational potentials), each multiplied
by an arbitrary coefficient that may depend on the cosmological matching
conditions and on other constants, and adding these terms to the Minkowski
metric to obtain the physical metric. This all-inclusive post-Newtonian the-
ory is called the Parameterized Post-Newtonian Formalism (PPN
formalism).
Unfortunately, there is an infinite number of such gravitational potentials,
so that in order to obtain a formalism that is both useful and manageable,
we must impose some restrictions to the possible terms to be considered,
guided in part by a subjective notion of “reasonableness” and in part by ev-
idence obtained from known gravitation theories. Some of these restrictions
are obvious [1]:

• Only Newtonian and post-Newtonian terms are considered, with no
higher terms.

• The potentials should tend to zero as the distance |x− x′| between
the field point x and a typical point x′ inside the matter becomes
large. This will guarantee that the metric becomes asymptotically
Minkowskian.

• The coordinates are chosen so that the metric is dimensionless.

• In our coordinate system the spatial origin and initial moment of time
are completely arbitrary, so the metric should contain no explicit refer-
ence to these quantities. This is guaranteed using functionals in which
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the field point x always occurs in the combination x− x′ where x′ is a
point associated with the matter distribution, and making all time de-
pendence in the metric terms implicit via the evolution of the matter
variables and the possible cosmological matching parameters.

• The metric functionals should be generated by the quantities defined
above

ρ0, Π, p, vi

and not by their gradients. This restriction is purely subjective, but
no reason has yet arisen to remove it.

• A final, extremely subjective constraint is that the gravitational po-
tentials should be “simple”.

We have to consider that, writing the metric as gµν = ηµν+khµν , the metric
corrections h00, h0i and hij should transform under spatial rotations as a
scalar, vector and tensor respectively.
With these restrictions in mind, we can now write down the possible terms
that may appear in the post-Newtonian metric:

• hij to O(ϵ2): it must behave as a three-dimensional tensor under
spatial rotations. Thus the only terms that can appear are:

Uδij (9.3.1)

Uij ≡
∫
ρ′0(x− x′)i(x− x′)j

|x− x′|3
d3x′. (9.3.2)

• h0i to O(ϵ3): it must behave as a three-vector under spatial rotations.
Thus it can contain only the terms:

Vi ≡
∫

ρ′0v
′
i

|x− x′|
d3x′ (9.3.3)

Wi ≡
∫
ρ′0[v

′ · (x− x′)](x− x′)i
|x− x′|3

d3x′. (9.3.4)
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• h00 to O(ϵ4): it must behave as a scalar under spatial rotations. The
only terms we shall consider are:

U2 (9.3.5)

ΦW ≡
∫
ρ′0ρ

′′
0(x− x′)

|x− x′|3
·
(
x′ − x′′

|x− x′′|
− x− x′′

|x′ − x′′|

)
d3x′d3x′ ′ (9.3.6)

Φ1 ≡
∫

ρ′0v
′2

|x− x′|
d3x′ (9.3.7)

Φ2 ≡
∫

ρ′0U
′

|x− x′|
d3x′ (9.3.8)

Φ3 ≡
∫

ρ′0Π
′

|x− x′|
d3x′ (9.3.9)

Φ4 ≡
∫

p′

|x− x′|
d3x′ (9.3.10)

A ≡
∫
ρ′0[v

′ · (x− x′)]2

|x− x′|3
d3x′ (9.3.11)

B ≡
∫

ρ′0
|x− x′|

(x− x′) · dv
′

dt
d3x′. (9.3.12)

Now, defining the superpotential χ as

χ(x, t) ≡ −
∫
ρ′0|x− x′|d3x′ (9.3.13)

we can write down the following useful relationships valid to the post-
Newtonian order:
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∂i∂jχ = −Uδij + Uij (9.3.14a)

∂0∂iχ = Vi −Wi (9.3.14b)

∂20χ = A+B − Φ1 (9.3.14c)

∂iVi = −∂0U (9.3.14d)

∇2χ = −2U (9.3.14e)

∇2(ΦW + 2U2 − 3Φ2) = 2(∂i∂jχ)(∂i∂jU) (9.3.14f)

∇2Vi = −4πρ0vi (9.3.14g)

∇2Φ1 = −4πρ0v
2 (9.3.14h)

∇2Φ2 = −4πρ0U (9.3.14i)

∇2Φ3 = −4πρ0Π (9.3.14j)

∇2Φ4 = −4πp (9.3.14k)

where also the conservation of baryon number has been used:

∂ρ0
∂t

+∇ · (ρ0v) = 0. (9.3.15)
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9.4 The standard Post-Newtonian gauge

The general PPN metric, expanded through the gravitational potentials
defined in the previous section, can be restricted by making use of the arbi-
trariness of the coordinates choice.
If we want to to retain the post-Newtonian character of the metric gµν , that
through an infinitesimal gauge transformation changes to

gµν −→ gµν −∇µξν −∇νξµ, (9.4.1)

the functions ξµ have to satisfy the conditions [1]

• ∇µξν+∇νξµ have to be post-Newtonian functions, as the ones defined
in the previous section.

• ∇µξν(x) + ∇νξµ(x) −→ 0 as |x| → +∞, so that the metric is still
asymptotically Minkowskian.

• |ξµ|/|xµ| −→ 0 as |xµ| → +∞.

The only “simple” function that has these properties is the gradient of
the superpotential ∂µχ(x). Thus, we choose

ξ0 = λ1∂0χ (9.4.2a)

ξi = λ2∂iχ (9.4.2b)

and obtain, to post-Newtonian order,

gij(x) −→ gij(x
′)− 2λ2∂i∂jχ (9.4.3a)

g0i(x) −→ g0i(x
′)− (λ1 + λ2)∂0∂iχ (9.4.3b)

g00(x) −→ g00(x
′)− 2λ1∂

2
0χ+ 2λ2Γ

i
00∂iχ. (9.4.3c)

After some calculations and using (9.3.14), equations (9.4.3) yield [1]

gij −→ gij + 2λ2Uδij − 2λ2Uij (9.4.4a)

g0i −→ g0i − (λ1 + λ2)(Vi −Wi) (9.4.4b)

g00 −→ g00 − 2λ1(A+B − Φ1)− 2λ2(U
2 +ΦW − Φ2). (9.4.4c)
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Hence, by an appropriate choice of λ1 and λ2, we can eliminate certain
terms from the post-Newtonian metric. The Standard post-Newtonian gauge
that we will adopt is the gauge in which the spatial part is diagonal and
isotropic (that is, gij contains no term Uij) and in which g00 contains no
term B. There is no physical significance in this gauge choice, but is only a
matter of convenience.
In this gauge we’re thus left with only 10 gravitational potentials in the
post-Newtonian expansion of the metric, with 10 associated parameters.

9.5 PPN metric

Henceforth, we shall adopt the Will-Nordtvedt version of the PPN for-

malism, in which the PPN metric, expanded in ϵn (kh
(n)
µν ) terms as in

(9.2.10), reads

kh
(2)
00 = −2U (9.5.1)

kh
(4)
00 = 2βU2 + ξΦW − (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

−2(3γ − 2β + 1 + ζ2 + ξ)Φ2 − 2(1 + ζ3)Φ3

−2(3γ + 3ζ4 − 2ξ)Φ4 + (ζ1 − 2ξ)A (9.5.2)

kh
(3)
0i =

1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi

+
1

2
(1 + α2 − ζ1 + 2ξ)Wi (9.5.3)

kh
(2)
ij = −2γUδij . (9.5.4)

In the Will-Nordtvedt version the parameters have been chosen in such
a way that the parameters have special physical significance [1]:

• γ measures how much space-curvature is produced by a unitary rest
mass. In GR γ = 1.

• β measures how much “non-linearity” there is in the superposition law
for gravity. In GR β = 1.

• ξ ̸= 0 is consequence of LPI violations. In GR ξ = 0.

• α1, α2, α3 measure LLI, that is, if there are preferred-frame effects.
In GR α1 = α2 = α3 = 0.

• α3, ζ1, ζ2, ζ3, ζ4 measure violations in the conservation of the four-
momentum. In GR ζ1 = ζ2 = ζ3 = ζ4 = 0.
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9.6 PPN Energy-momentum tensor

We shall consider a model in which the matter action is given by (6.2.1),
with

Lm =
1

2
gµν∂µϕ∂νϕ− V (ϕ) (9.6.1)

so that the action is

Sm =

∫
d4xfm(|g|)

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (9.6.2)

The variation with respect to gµν yields the EMT; in this case, with the
definitions (6.4.1), it is given by (6.4.5) with fk = fv ≡ fm, that is

Tµν =
fm(|g|)

2
(ρ+ p)uµuν − |g|f ′m(|g|)p gµν (9.6.3)

where, from the definition (9.2.4),

ρ = ρ0(1 + Π). (9.6.4)

In the matter rest-frame, considering that h = O(ϵ2), the components of
the EMT to the post-Newtonian order are given by

TRF00 =
fm
2
(1 + Π)ρ0 + (

fm
2

− f ′m)p+O(ϵ4) (9.6.5a)

TRF0j = O(ϵ5) (9.6.5b)

TRFij = f ′mp δij +O(ϵ4). (9.6.5c)

Since we want to work in the standard post-Newtonian gauge, we have
to change reference system. The transformation rules from the matter rest-
frame (coordinates denoted by ωβ̃) to the PPN frame (coordinates denoted
by dxα) are given in [24]:

dxα = Aα
β̃
ωβ̃ (9.6.6)

with
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A0
0̃
= 1 + v2/2 + U +O(ϵ4) (9.6.7a)

A0
j̃
= vj

[
1 +

1

2
v2 + (2 + γ)U

]
− 7

2
∆1Vj −

1

2
∆2Wj +O(ϵ5) (9.6.7b)

Aj
0̃
= vj(1 + v2/2 + U) +O(ϵ5) (9.6.7c)

Aj
k̃
= (1− γU)δjk +

1

2
vjvk +O(ϵ4) (9.6.7d)

where ∆1 and ∆2 denote some particular combinations of the PPN param-
eters.
Anyway, since we need the transformation rules for covariant components,
we calculate the inverse tensor from the equation Aµ̃αAαν̃ = δµν , finding

A0̃
0 = 1 + v2/2− U +O(ϵ4) (9.6.8a)

A0̃
j = −vj

[
1 +

1

2
v2 + (1 + 2γ)U

]
+

7

2
∆1Vj +

1

2
∆2Wj +O(ϵ5) (9.6.8b)

Aj̃0 = −vj(1 + v2/2 + γU) +O(ϵ5) (9.6.8c)

Ak̃j = (1 + γU)δjk +
1

2
vjvk +O(ϵ4). (9.6.8d)

Hence, applying the transformation

TPPNαβ = Aµ̃αA
ν̃
βT

RF
µ̃ν̃ (9.6.9)

we obtain the components of the PPN energy-momentum tensor:

T00 =
fm
2
ρ0(1 + Π + v2 − 2U) + (

fm
2

− f ′m)p+O(ϵ4) (9.6.10a)

T0j = −fm
2
ρ0vj +O(ϵ3) (9.6.10b)

Tij =
fm
2
ρ0vivj + f ′mp δij +O(ϵ4). (9.6.10c)

Expanding fm(|g|) as

fm(|g|) = fm(1) + kf ′m(1)h+O(k2) (9.6.11)
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we can rewrite the expressions (9.6.10) expanded in terms of order ϵn (T
(n)
µν ):

T
(0)
00 =

fm(1)

2
ρ0 (9.6.12a)

T
(2)
00 =

fm(1)

2

[
ρ0(Π + v2 − 2U) + p

]
+
f ′m(1)

2

[
kh(2)ρ0 − 2p

]
(9.6.12b)

T
(1)
0j = −fm(1)

2
ρ0vj (9.6.12c)

T
(2)
ij =

fm(1)

2
ρ0vivj + f ′m(1)p δij . (9.6.12d)

9.7 PPN formalism and TDiff theories: linear approximation

For the gravitational sector, let’s take the most general massless quadratic
Lagrangian 1

2 ·(2.3.6). Then the total action of the model we are considering
reads

S =

∫
d4x

[
1

8
∂µh

νρ∂µhνρ −
1

4
∂µh

µν∂ρh
ρ
ν +

c2
4
∂µh∂νh

µν − c3
8
∂µh∂

µh

+f(|g|)
(
1

2
gµν∂µϕ∂νϕ− V (ϕ)

)]
(9.7.1)

where hµν is defined by (2.1.19):

hµν = k−1(gµν − ηµν) (9.7.2)

and the indexes are always raised and lowered by the flat Minkowski metric.

Since from (2.1.20) the inverse metric gµν at the lowest order is

gµν = ηµν − khµν +O(k2) (9.7.3)

for the gravitational part we have

δLg
δgαβ

= −k−1 δLg
δhαβ

. (9.7.4)
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The variation with respect to gαβ then gives the equations of motion:

−1

4
2hαβ+

1

4
(∂µ∂αh

µ
β+∂µ∂βh

µ
α)−

c2
4
(ηαβ∂µ∂νh

µν+∂α∂βh)+
c3
4
ηαβ2h = kTαβ .

(9.7.5)

If

c2 ̸=
1

2
, (9.7.6)

using the trace of the equation, we can substitute the term ∂µ∂νh
µν and

rewrite (9.7.5) as

− 1

4
2hαβ +

1

4
(∂µ∂αh

µ
β + ∂µ∂βh

µ
α)−

c2
4
∂α∂βh+

2c3 − c22 − c2
8(1− 2c2)

ηαβ2h =

= k

(
Tαβ −

c2
2(2c2 − 1)

ηαβT

)
. (9.7.7)

We can now go to solve the equation at the lowest order.

9.7.1 00-component at the ϵ2 order

Using also (9.2.8) the equation reads

1

4
∇2h

(2)
00 +

c22 + c2 − 2c3
8(1− 2c2)

∇2h(2) = k

(
T
(0)
00 − c2

2(2c2 − 1)
T (0)

)
. (9.7.8)

Substituting the general PPN expansion of khµν given by (9.5.1) and the
expression for the EMT to the desired order, we get

−
[
1− c22 + c2 − 2c3

2(2c2 − 1)
(1− 3γ)

]
∇2U = k2fm(1)

[
1− c2

2(2c2 − 1)

]
ρ0 (9.7.9)

where

k2 = 8π (9.7.10)

because we are using geometrized units in which G ≡ 1.

In passing we notice that when the whole theory is Diff-invariant
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(c2 = c3 = fm(1) = 1), equation (9.7.9) gives the identity (9.1.3).
In the general TDiff-invariant case the possible solutions are

γ =
1

3
+

2

3
· c2(3fm(1)− 2)− 2fm(1) + 1

c22 + c2 − 2c3
(9.7.11)

or else
c22 + c2 − 2c3 = 0

fm(1)
(
1− c2

2(2c2−1)

)
= 1/2 ⇒ fm(1) =

2c2−1
3c2−2

(9.7.12)

with c2 ̸= 2
3 because otherwise the system (9.7.12) would have no solu-

tion.

9.7.2 ij-components at the ϵ2 order

The equation reads

1

4
∇2h

(2)
ij +

1

4
(∂l∂ih

l(2)
j + ∂l∂jh

l(2)
i )− c2

4
∂i∂jh

(2) +
c22 + c2 − 2c3
8(2c2 − 1)

δij∇2h(2) =

= k

(
T
(0)
ij +

c2
2(2c2 − 1)

δijT
(0)

)
(9.7.13)

that, using (9.5.1) and (9.6.12), can be rewritten as

− 1

2
γδij∇2U + γ∂i∂jU +

c2
2
(1− 3γ)∂i∂jU − c22 + c2 − 2c3

4(2c2 − 1)
(1− 3γ)δij∇2U =

= 8π
c2

4(2c2 − 1)
δijfm(1)ρ0. (9.7.14)

The equation is equivalent to


γ + c2

2 (1− 3γ) = 0

1
2γ +

c22+c2−2c3
4(2c2−1) (1− 3γ) = c2

2(2c2−1)fm(1).

(9.7.15)
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If we choose c22 + c2 − 2c3 ̸= 0, using also (9.7.11), we get the system



γ = 1
3 + 2

3 · c2(3fm(1)−2)−2fm(1)+1
c22+c2−2c3

γ = c2
3c2−2

(3c22 − c2 − 6c3 + 2)γ = c22 − c2(2fm(1)− 1)− 2c3

(9.7.16)

which has no possible solutions.
Hence, the only possible solution is to impose the constraint

c22 + c2 − 2c3 = 0. (9.7.17)

The system (9.7.15) thus becomes
γ + c2

2 (1− 3γ) = 0

1
2γ = c2

2(2c2−1)fm(1)
(9.7.18)

which yields

γ =
c2

3c2 − 2
(9.7.19)

fm(1) =
2c2 − 1

3c2 − 2
(9.7.20)

Equation (9.7.20), which is exactly the same expression given by the
second equation of (9.7.12), is not a constraint on the parameters of the
theory, but only a consequence of our choice to use the geometrized units in
which G = 1 [1]. There is no physical constraint implied.
Equation (9.7.19) gives the value of the first PPN parameter.
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On the other hand, if we want to choose c2 = 1
2 (which until now has

been excluded by (9.7.6)), from equation (9.7.5), we get

1

4
∇2h

(2)
ij − 1

4

(
∂k∂ih

(2)
kj + ∂k∂jh

(2)
ki

)
+

1

8
δij∂k∂lh

(2)
kl − 1

8
∂i∂jh

(2)

+
c3
4
δij∇2h(2) = kT

(0)
ij . (9.7.21)

Substituting the PPN expressions for hij and Tij we get

−
(
3

4
γ +

c3
2
(1− 3γ)

)
δij∇2U +

(
γ +

1

4
(1− 3γ)

)
∂i∂jU = 0 (9.7.22)

which is equivalent to
3
4γ + c3

2 (1− 3γ) = 0

γ + 1
4(1− 3γ) = 0.

(9.7.23)

The system yields

c3 =
3

8
(9.7.24)

γ = −1. (9.7.25)

The constraint on c3 means that if we want to analyze the case c2 = 1
2 ,

we are considering a WTDiff-invariant gravitational Lagrangian. Anyway, as
seen in section 6.1, a WTDiff-invariant Lagrangian imposes the constraints
(6.1.12) on the matter Lagrangian, which thanks to (6.3.8) mean that in
the matter Lagrangian fk(|g|) ̸= fv(|g|). But this is not the case we are
analyzing in our model.
Hence, hereafter we will consider only theories with


2c3 = c22 + c2

c2 ̸= 1
2 .
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9.7.3 0i-components at the ϵ3 order

The equation, using (9.7.17), is

1

4
∇2h

(3)
0i +

1

4
(∂0∂kh

k(2)
i +∂0∂ih

0(2)
0 +∂k∂ih

k(3)
0 )− c2

4
∂0∂ih

(2) = kT
(1)
0i . (9.7.26)

Inserting the general PPN expansion of the metric, the l.h.s. reads

k−1

[
1

8
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)∇2Vi +

1

8
(1 + α2 − ζ1 + 2ξ)∇2Wi

+
γ

2
∂0∂iU − 1

2
∂0∂iU − 1

8
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)∂k∂iVk

− 1

8
(1 + α2 − ζ1 + 2ξ)∂k∂iWk +

c2
2
(1− 3γ)∂0∂iU

]
. (9.7.27)

Using (9.3.14b), (9.3.14d) and (9.3.14e) so that

∂0∂iU = −1

2
∇2∂0∂iχ =

1

2
∇2(Wi − Vi) (9.7.28)

∂i∂kVk = −∂o∂iU =
1

2
∇2(Vi −Wi) (9.7.29)

∂i∂kWk = ∂i∂kVk − ∂0∂i∇2χ = ∂0∂iU =
1

2
∇2(Wi − Vi) (9.7.30)

and substituting the expression for T
(1)
0i , the whole equation (9.7.26) be-

comes

1

8
(4 +

α1

2
− 2c2 + 6c2γ)∇2Vi +

1

8
(4γ +

α1

2
+ 2c2 − 6c2γ)∇2Wi =

= −4πfm(1)ρ0vi. (9.7.31)

The solution is given by
4γ + α1

2 + 2c2 − 6c2γ = 0

1
8(4 +

α1
2 − 2c2 + 6c2γ) = fm(1).

(9.7.32)
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Inserting the value for γ given by (9.7.19), the system (9.7.32) yields

fm(1) =
2c2 − 1

3c2 − 2
(9.7.33)

α1 = 0. (9.7.34)

The relation involving fm(1) is the same found in (9.7.20) and (9.7.12),
while (9.7.34) gives the value of the second PPN parameter. This value
of α1 is the expected one, since a value of the PPN parameter α1 ̸= 0 is
consequence of theories with preferred frame-system.

Summarizing, in the linear approximation of the TDiff theory described
by the action (9.7.1), we have found that the parameters of the theory have
to obey the constraint

2c3 = c22 + c2 (9.7.35)

and the two PPN parameters

γ =
c2

3c2 − 2
(9.7.36)

α1 = 0. (9.7.37)

To find the other PPN parameters, we need to write a Lagrangian that
contains cubic terms in hµν . That’s what we are going to do in the next
section.

81



9.8 PPN formalism and TDiff theories: non-linear case

We shall now consider a model in which the gravitational action is given
by (2.5.1). Hence the total action is

S =

∫
d4x

[(
− 1

2k2

)(
f1(|g|)R+ f2(|g|)gµν∂µg∂νg

)

+fm(|g|)
(
1

2
gµν∂µϕ∂νϕ− V (ϕ)

)]
. (9.8.1)

In General Relativity we would have

f1(|g|) = fm(|g|) =
√

|g| (9.8.2)

f2(|g|) = 0. (9.8.3)

9.8.1 Cubic Lagrangian

We are going now to expand the Lagrangian in (9.8.1) up to cubic terms
in hµν , using expressions (2.1.19) and (2.1.20) to expand the metric, and
raising and lowering the indexes through the flat Minkowski metric.
We have also to expand the determinant of the metric as

g ≈ −1− kh+ k2h̃ (9.8.4)

where

h =ηµνhµν (9.8.5)

h̃ ≡h212 + h213 + h223 − h201 − h202 − h203

+ h00(h11 + h22 + h33)− h11h22 − h11h33 − h22h33. (9.8.6)

Thus a generic function f(|g|) can be expanded as

f(|g|) = f(−g) ≈ f(1 + kh− k2h̃)

≈ f(1) + kf ′(1)h+ k2
(
1

2
f ′′(1)h2 − f ′(1)h̃

)
. (9.8.7)
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Hence, the expansion of the gravitational Lagrangian

Lg =

(
− 1

2k2

)(
f1(|g|)R+ f2(|g|)gµν∂µg∂νg

)
(9.8.8)

to the deisred order and without total derivatives, is

Lg ≈
1

8
f1(1)∂µh

αβ∂µhαβ −
1

4
f1(1)∂µh

µν∂ρh
ρ
ν +

1

2
f ′1(1)∂µh

µν∂νh

− 1

8

(
4f ′1(1) + 4f2(1)− f1(1)

)
∂µh∂

µh+ k

[
−1

4
f1(1)h

µν∂ρh
σ
ν∂

ρhµσ

− 1

4
f1(1)h

µν∂ρh
σ
ν∂σh

ρ
µ −

1

8
f1(1)h

µν∂µh
ρσ∂νhρσ +

1

2
f1(1)h

µν∂µhνρ∂σh
ρσ

+
1

2
f1(1)h

µν∂ρh
ρ
µ∂σh

σ
ν −

1

2
f ′1(1)h

µν∂µh
ρ
ν∂ρh− 1

4
f ′1(1)h∂µh

νρ∂ρh
µ
ν

+
1

8
f ′1(1)h∂µh

αβ∂µhαβ +
1

4

(
2f ′1(1)− f1(1)

)
hµν∂ρhµν∂

ρh

− 1

2
f ′1(1)h

µν∂ρh
ρ
µ∂νh+

1

8

(
4f ′1(1) + 4f2(1)− f1(1)

)
hµν∂µh∂νh

+
1

2
f ′′1 (1)h∂µh

µν∂νh− 1

8

(
4f ′′1 (1) + 4f ′2(1)− f ′1(1)

)
h∂µh∂

µh

− 1

2
f ′1(1)∂µh

µν∂ν h̃ +
1

2

(
f ′1(1) + 2f2(1)

)
∂µh∂

µh̃

]
. (9.8.9)

Dividing by f1(1) in order to normalize the Lagrangian in such a way to
have correspondence with (2.3.6), we can redefine

f1(|g|) ≡
f1(|g|)
f1(1)

, f2(|g|) ≡
f2(|g|)
f1(1)

, fm(|g|) ≡
fm(|g|)
f1(1)

, (9.8.10)
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identify

c2 ≡ 2f ′1(1) (9.8.11a)

c3 ≡ 4f ′1(1) + 4f2(1)− 1 (9.8.11b)

and define

c4 ≡ −4f ′′1 (1) (9.8.11c)

c5 ≡ 4f ′2(1) (9.8.11d)

so that (9.8.9) becomes

Lg ≈
1

8
∂µh

αβ∂µhαβ −
1

4
∂µh

µν∂ρh
ρ
ν +

c2
4
∂µh

µν∂νh− c3
8
∂µh∂

µh

+ k

[
−1

4
hµν∂ρh

σ
ν∂

ρhµσ − 1

4
hµν∂ρh

σ
ν∂σh

ρ
µ −

1

8
hµν∂µh

ρσ∂νhρσ

+
1

2
hµν∂µhνρ∂σh

ρσ +
1

2
hµν∂ρh

ρ
µ∂σh

σ
ν −

c2
4
hµν∂µh

ρ
ν∂ρh− c2

8
h∂µh

νρ∂ρh
µ
ν

+
c2
16
h∂µh

αβ∂µhαβ +
c2 − 1

4
hµν∂ρhµν∂

ρh− c2
4
hµν∂ρh

ρ
µ∂νh

+
c3
8
hµν∂µh∂νh− c4

8
h∂µh

µν∂νh+
c2 + 2c4 − 2c5

16
h∂µh∂

µh

−c2
4
∂µh

µν∂ν h̃+
c3 − c2 + 1

4
∂µh∂

µh̃

]
. (9.8.12)

In General Relativity

c2 = c3 = c4 = 1 (9.8.13a)

c5 = 0. (9.8.13b)
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9.8.2 Equations of motion

The variation with respect to hαβ of the whole gravitational Lagrangian
(9.8.12) yields

δLg
δhαβ

=− 1

4
2hαβ +

1

4
(∂µ∂αh

µ
β + ∂µ∂βh

µ
α)−

c2
4
(ηαβ∂µ∂νh

µν + ∂α∂βh) +
c3
4
ηαβ2h

+k

[
1

4
∂µhαν∂

µhνβ −
1

4
∂µh

ν
α∂νh

µ
β +

1

4
(∂µhνα∂βh

µν + ∂µhνβ∂αh
µν)

− 1

8
∂αh

µν∂βhµν +
1

4
∂µh

µν∂νhαβ −
1

4
(∂αhµβ∂νh

µν + ∂βhµα∂νh
µν)

− 1

4
(∂αh

µν∂µhνβ + ∂βh
µν∂µhνα) +

c2
8
(∂αh

µ
β∂µh+ ∂βh

µ
α∂µh)−

c2
8
∂µhαβ∂

µh

+
c3 + c4

8
∂αh∂βh+

c2
8
ηαβ∂µh

νρ∂νh
µ
ρ −

3c2 − 4

16
ηαβ∂ρh

µν∂ρhµν

+
c2
4
ηαβ∂µh

µν∂ρh
ρ
ν −

c3
4
ηαβ∂µh

µν∂νh− c2 + 2c4 − 2c5
16

ηαβ∂µh∂
µh

+
1

4
(hµα2h

µ
β + hµβ2h

µ
α) +

1

4
(hµα∂ν∂βh

µν + hµβ∂ν∂αh
µν) +

1

4
hµν∂µ∂νhαβ

− 1

4

(
hµα∂µ∂νh

ν
β + hµβ∂µ∂νh

ν
α

)
− 1

4
(hµν∂µ∂αhνβ + hµν∂µ∂βhνα)

− 1

2

(
hµα∂β∂νh

ν
µ + hµβ∂α∂νh

ν
µ

)
+
c2
4
(hµα∂µ∂βh+ hµβ∂µ∂αh)−

c2
8
h2hαβ

+
c2
8
(h∂µ∂αh

µ
β + h∂µ∂βh

µ
α)−

c2 − 1

4
hαβ2h+

c4
8
h∂α∂βh+

c2
2
ηαβh

µν∂µ∂ρh
ρ
ν

− c2 − 1

4
ηαβh

µν2hµν −
c3
4
ηαβh

µν∂µ∂νh+
c4
8
ηαβh∂µ∂νh

µν − c2 + 2c4 − 2c5
8

ηαβh2h

+
c2
4
∂α∂βh̃− c3 − c2 + 1

4
ηαβ2h̃+

c2
4

δh̃

δhαβ
∂µ∂νh

µν − c3 − c2 + 1

4

δh̃

δhαβ
2h

]
.

(9.8.14)
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On the other hand, the variation with respect to hαβ of the matter
Lagrangian yields

δLm
δhαβ

=
δLm
δgµν

δgµν

δhαβ
= Tµν

(
−kδµαδνβ + k2(δµαh

ν
β + δµβh

ν
α)
)
=

= −kTαβ + k2
(
Tαµh

µ
β + Tβµh

µ
α

)
. (9.8.15)

Hence the equations of motion are:

− 1

4
2hαβ +

1

4
(∂µ∂αh

µ
β + ∂µ∂βh

µ
α)−

c2
4
(ηαβ∂µ∂νh

µν + ∂α∂βh) +
c3
4
ηαβ2h

+ k

[
1

4
∂µhαν∂

µhνβ −
1

4
∂µh

ν
α∂νh

µ
β +

1

4
(∂µhνα∂βh

µν + ∂µhνβ∂αh
µν) − 1

8
∂αh

µν∂βhµν

+
1

4
∂µh

µν∂νhαβ −
1

4
(∂αhµβ∂νh

µν + ∂βhµα∂νh
µν)− 1

4
(∂αh

µν∂µhνβ + ∂βh
µν∂µhνα)

+
c2
8
(∂αh

µ
β∂µh+ ∂βh

µ
α∂µh)−

c2
8
∂µhαβ∂

µh+
c3 + c4

8
∂αh∂βh+

c2
8
ηαβ∂µh

νρ∂νh
µ
ρ

− 3c2 − 4

16
ηαβ∂ρh

µν∂ρhµν +
c2
4
ηαβ∂µh

µν∂ρh
ρ
ν −

c3
4
ηαβ∂µh

µν∂νh

− c2 + 2c4 − 2c5
16

ηαβ∂µh∂
µh+

1

4
(hµα2h

µ
β + hµβ2h

µ
α) +

1

4
(hµα∂ν∂βh

µν + hµβ∂ν∂αh
µν)

+
1

4
hµν∂µ∂νhαβ −

1

4

(
hµα∂µ∂νh

ν
β + hµβ∂µ∂νh

ν
α

)
− 1

4
(hµν∂µ∂αhνβ + hµν∂µ∂βhνα)

− 1

2

(
hµα∂β∂νh

ν
µ + hµβ∂α∂νh

ν
µ

)
+
c2
4
(hµα∂µ∂βh+ hµβ∂µ∂αh)−

c2
8
h2hαβ

+
c2
8
(h∂µ∂αh

µ
β + h∂µ∂βh

µ
α)−

c2 − 1

4
hαβ2h+

c4
8
h∂α∂βh+

c2
2
ηαβh

µν∂µ∂ρh
ρ
ν

− c2 − 1

4
ηαβh

µν2hµν −
c3
4
ηαβh

µν∂µ∂νh+
c4
8
ηαβh∂µ∂νh

µν − c2 + 2c4 − 2c5
8

ηαβh2h

+
c2
4
∂α∂βh̃− c3 − c2 + 1

4
ηαβ2h̃+

c2
4

δh̃

δhαβ
∂µ∂νh

µν − c3 − c2 + 1

4

δh̃

δhαβ
2h

]

= kTαβ − k2
(
Tαµh

µ
β + Tβµh

µ
α

)
. (9.8.16)



Using the trace of the equation and the constraint (9.7.17) to eliminate
the terms ηαβ∂µ∂νh

µν and ηαβ2h, we get the new equations of motion:

− 1

4
2hαβ +

1

4
(∂µ∂αh

µ
β + ∂µ∂βh

µ
α)−

c2
4
∂α∂βh+ k

[
1

4
∂µhαν∂

µhνβ −
1

4
∂µh

ν
α∂νh

µ
β

+
1

4
(∂µhνα∂βh

µν + ∂µhνβ∂αh
µν)− 1

8
∂αh

µν∂βhµν −
1

4
(∂αhµβ∂νh

µν + ∂βhµα∂νh
µν)

+
1

4
∂µh

µν∂νhαβ −
1

4
(∂αh

µν∂µhνβ + ∂βh
µν∂µhνα) +

c2
8
(∂αh

µ
β∂µh+ ∂βh

µ
α∂µh)

− c2
8
∂µhαβ∂

µh+
c22 + c2 + 2c4

16
∂αh∂βh+

c2 − 2

8(2c2 − 1)
ηαβ∂ρh

µν∂ρhµν

+
−c32 + c22 + 2c2 + 2(2− c2)c4 − 4c5

32(2c2 − 1)
ηαβ∂µh∂

µh+
1

4
(hµα2h

µ
β + hµβ2h

µ
α)

+
1

4
(hµα∂ν∂βh

µν + hµβ∂ν∂αh
µν) +

1

4
hµν∂µ∂νhαβ −

1

4

(
hµα∂µ∂νh

ν
β + hµβ∂µ∂νh

ν
α

)

− 1

4
(hµν∂µ∂αhνβ + hµν∂µ∂βhνα)−

1

2

(
hµα∂β∂νh

ν
µ + hµβ∂α∂νh

ν
µ

)

+
c2
4
(hµα∂µ∂βh+ hµβ∂µ∂αh)−

c2
8
h2hαβ +

c2
8
(h∂µ∂αh

µ
β + h∂µ∂βh

µ
α)−

c2 − 1

4
hαβ2h

+
c4
8
h∂α∂βh+

c2
4(2c2 − 1)

ηαβh
µν∂µ∂ρh

ρ
ν −

1

4(2c2 − 1)
ηαβh

µν2hµν

− c22
8(2c2 − 1)

ηαβh
µν∂µ∂νh− c22 + c4

8(2c2 − 1)
ηαβh∂µ∂νh

µν +
3c22 + (4− c2)c4 − 4c5

16(2c2 − 1)
ηαβh2h

+
c2
4

δh̃

δhαβ
∂µ∂νh

µν − c22 − c2 + 2

8

δh̃

δhαβ
2h+

c2
4
∂α∂βh̃− c2 − 2

8(2c2 − 1)
ηαβ2h̃

− c22
8(2c2 − 1)

δh̃

δhρσ
ηρσηαβ∂µ∂νh

µν +
c2(c

2
2 − c2 + 2)

16(2c2 − 1)

δh̃

δhρσ
ηρσηαβ2h

]

= k

(
Tαβ −

c2
2(2c2 − 1)

ηαβT

)
− k2

(
Tαµh

µ
β + Tβµh

µ
α − c2

2c2 − 1
ηαβTµνh

µν

)
.

(9.8.17)



9.8.3 00-component at the ϵ4 order

The 00-component of equation (9.8.17) at the desired order is

1− c2
4

∂20h
(2)
00 +

1

4
∇2h

(4)
00 − 1

2
∂0∂ih

(3)
0i +

c2
4
∂20h

(2)
ii

+ k

[
+
1

4
∂ih

(2)
ij ∂jh

(2)
00 +

c32 + 7c2 − 26c2 + 2c2c4 − 4c4 + 4c5 + 16

32(2c2 − 1)

(
∂ih

(2)
00

)2

− c2 − 2

8(2c2 − 1)

(
∂ih

(2)
jl

)2
+
c32 − c22 − 2c2 − 4c4 + 4c5 + 2c2c4

32(2c2 − 1)

(
∂ih

(2)
kk

)2

− c32 + 3c22 − 4c2 + 2c2c4 − 4c4 + 4c5
16(2c2 − 1)

∂ih
(2)
jj ∂ih

(2)
00

+
9c22 − 30c2 − (4− c2)c4 + 4c5 + 16

16(2c2 − 1)
h
(2)
00 ∇

2h
(2)
00 − c22 − 4c2 + 2

8(2c2 − 1)
h
(2)
ij ∂i∂jh

(2)
00

− c22 − 2c2 − (4− c2)c4 + 4c5
16(2c2 − 1)

h
(2)
ii ∇2h

(2)
00 − c2

4(2c2 − 1)
h
(2)
ij ∂i∂kh

(2)
jk

− 5c22 − 12c2 − (4− c2)c4 + 4c5 + 4

16(2c2 − 1)
h
(2)
00 ∇

2h
(2)
ii +

1

4(2c2 − 1)
h
(2)
ij ∇2h

(2)
ij

+
c22

8(2c2 − 1)
h
(2)
ij ∂i∂jh

(2)
kk − c22 + c4

8(2c2 − 1)
h
(2)
00 ∂i∂jh

(2)
ij +

c22 + c4
8(2c2 − 1)

h
(2)
kk ∂i∂jh

(2)
ij

− 3c22 + (4− c2)c4 − 4c5
16(2c2 − 1)

h
(2)
ii ∇2h

(2)
jj +

3c32 − 5c22 + 8c2 − 4

16(2c2 − 1)

(
δh̃

δh00

)(2)

∇2
(
h
(2)
00 − h

(2)
ii

)

+
c2(3c2 − 2)

8(2c2 − 1)

(
δh̃

δh00

)(2)

∂i∂jh
(2)
ij +

c22
8(2c2 − 1)

(
δh̃

δhlm

)(2)

δlm ∂i∂jh
(2)
ij

+
c2(c

2
2 − c2 + 2)

16(2c2 − 1)

(
δh̃

δhij

)(2)

δij ∇2
(
h
(2)
00 − h

(2)
kk

)
+

c2 − 2

8(2c2 − 1)
∇2h̃(4)

 =

= k

(
T
(2)
00 − c2

2(2c2 − 1)
T (2)

)
− k2

(
3c2 − 2

2c2 − 1
T
(0)
00 h

(2)
00

)
. (9.8.18)



From (9.8.6) we have that

(
δh̃

δh00

)(2)

=h
(2)
ii (9.8.19a)

(
δh̃

δhij

)(2)

δij =3h
(2)
00 − 2h

(2)
ii (9.8.19b)

∇2h̃(4) =
(
h
(2)
ii ∇2h

(2)
00 + h

(2)
00 ∇

2h
(2)
ii + 2∂jhii∂jh

(2)
00

)
−
(
h
(2)
11 ∇

2h
(2)
22 + h

(2)
22 ∇

2h
(2)
11 + 2∂jh11∂jh

(2)
22

)
−
(
h
(2)
11 ∇

2h
(2)
33 + h

(2)
33 ∇

2h
(2)
11 + 2∂jh11∂jh

(2)
33

)
−
(
h
(2)
33 ∇

2h
(2)
22 + h

(2)
22 ∇

2h
(2)
33 + 2∂jh33∂jh

(2)
22

)
. (9.8.19c)

Moreover, from (9.3.14d), (9.3.14b) and (9.3.14e) we have that

∂0∂iVi = −∂20U (9.8.20a)

∂0∂iWi = ∂0∂iVi − ∂20∇2χ = ∂20U. (9.8.20b)

Hence, using (9.8.19), inserting the general PPN expansion for the met-
ric (9.5.1) and for the EMT (9.6.12), and using the relations (9.8.20), the
equations of motion (9.8.18) read
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c2 − 1

2
∂20U +

ξ

4
∇2ΦW − 1

4
(2γ + 2 + α3 + ζ1 − 2ξ)∇2Φ1 −

1

2
(1 + ζ3)∇2Φ3

− 1

2
(3γ − 2β + 1 + ζ2 + ξ)∇2Φ2 −

1

2
(3γ + 3ζ4 − 2ξ)∇2Φ4 +

1

4
(ζ1 − 2ξ)∇2A

+ βU∇2U + β (∂iU)2 +
1

4
(4γ + 3 + α1 − α2 + ζ1 − 2ξ) ∂20U − 1

4
(1 + α2 − ζ1 + 2ξ) ∂20U

− 3c2
2
γ ∂20U +

c32 + 7c22 − 26c2 + 2c2c4 − 4c4 + 4c5 + 16

8(2c2 − 1)
(∂iU)2

− 3c32 + 9c22 − 32c2 + 6c2c4 − 12c4 + 12c5 + 28

4(2c2 − 1)
γ (∂iU)2

+
9(c32 − c22 − 6c2 − 4c4 + 4c5 + 2c2c4 + 8)

8(2c2 − 1)
γ2 (∂iU)2

+
3c32 + 6c22 − 24c2 − (4− c2)c4 + 4c5 + 16

4(2c2 − 1)
U∇2U

− 3c32 + 8c22 − 28c2 + 3c2c4 − 11c4 + 12c5 + 26

2(2c2 − 1)
γU∇2U

− 9c32 − 18c22 + 64c2 − 9c2c4 + 30c4 − 36c5 − 72

4(2c2 − 1)
γ2U∇2U =

= 8π

[
3c2 − 2

4(2c2 − 1)
fm(1)ρ0Π+

3c2 − 2

2(2c2 − 1)

(
fm(1)− (1− 3γ)f ′m(1)

)
ρ0U

+
1

2
fm(1)ρ0v

2 +

(
3c2 − 2

4(2c2 − 1)
fm(1) +

1

2c2 − 1
f ′m(1)

)
p

]
. (9.8.21)
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Inserting in the equation the values found for γ (9.7.19), α1 (9.7.34) and
fm(1) (9.7.20), the solution is given by



ξ∇2ΦW = 0

(ζ1 − 2ξ)∇2A = 0

(α2 − ζ1 + 2ξ) ∂20U = 0(
42c2−1
3c2−2 + α3 + ζ1 − 2ξ

)
∇2Φ1 = −16π 2c2−1

3c2−2ρ0v
2

(1 + ζ3)∇2Φ3 = −4πρ0Π(
3c2

3c2−2 + 3ζ4 − 2ξ
)
∇2Φ4 = −16π

(
1
4 + f ′m(1)

2c2−1

)
p

[
2(2c2 − 1)(3c2 − 2)2β − 35c32 + 65c22 − 46c2 + 16 + 2c4(c2 − 2) + 4c5

]
(∂iU)2 = 0

2
[
35c32 − 65c22 + 46c2 − 16− 2c4(c2 − 2)− 4c5 − (2c2 − 1)(3c2 − 2)2β

]
U∇2U

+(2c2 − 1)(3c2 − 2)2(3γ − 2β + 1 + ζ2 + ξ)∇2Φ2 =

= −8π (3c2 − 2)2
(
2c2 − 1 + 2f ′m(1)

)
ρ0U.

(9.8.22)

The system (9.8.22) yields

α2 = α3 = ζ1 = ζ3 = ξ = 0

ζ2 =
2

3c2 − 2

(
2
f ′m(1)

fm(1)
− 1

)
= 2

(
2

2c2 − 1
f ′m(1)−

1

3c2 − 2

)

ζ4 =
2

3(3c2 − 2)

(
2
f ′m(1)

fm(1)
− 1

)
=

2

3

(
2

2c2 − 1
f ′m(1)−

1

3c2 − 2

)

β =
35c32 − 65c22 + 46c2 − 16− 2c4(c2 − 2)− 4c5

2(2c2 − 1)(3c2 − 2)2
.
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9.9 Summary and comparison with experiments

Using together the results found in sections (9.7) and (9.8), with the
definitions (9.8.10) and (9.8.11), we can summarize the values of the PPN
parameters that have been found for the general TDiff action (9.8.1):

α1 = α2 = α3 = ζ1 = ζ3 = ξ = 0 (9.9.1)

ζ2 = 2

(
2

2c2 − 1
f ′m(1)−

1

3c2 − 2

)
(9.9.2)

ζ4 =
2

3

(
2

2c2 − 1
f ′m(1)−

1

3c2 − 2

)
(9.9.3)

γ =
c2

3c2 − 2
(9.9.4)

β =
35c32 − 65c22 + 46c2 − 16− 2c4(c2 − 2)− 4c5

2(2c2 − 1)(3c2 − 2)2
. (9.9.5)

As expected, since TDiff theories do not predict preferred-location ef-
fects, we find ξ = 0; and since also preferred-frame effects are not predicted,
we find α1 = α2 = α3 = 0.
On the other hand, the non-conservation of the EMT has already been stud-
ied in chapter (6), so that we expected to find values of the ζ parameters
different from zero, which characterize non-conservative theories (with vio-
lations of the conservation of the total momentum).

We notice that in the special Diff-invariant case (General Relativity), i.e.
when

c2 = c3 = c4 = 1

c5 = 0

f ′m(1) =
1
2 ,

the PPN parameters reduce to the expected values:

α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = ξ = 0 (9.9.6a)

β = γ = 1. (9.9.6b)
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There are strong experimental bounds on the values of the PPN param-
eters. Today’s measured values of the PPN parameters are [25]:

|γ − 1| < 2, 3 · 10−5 (9.9.7a)

|β − 1| < 2, 3 · 10−4 (9.9.7b)

|ξ| < 10−3 (9.9.7c)

|α1| < 10−4 (9.9.7d)

|α2| < 4 · 10−7 (9.9.7e)

|α3| < 4 · 10−20 (9.9.7f)

|ζ1| < 2 · 10−2 (9.9.7g)

|ζ2| < 4 · 10−5 (9.9.7h)

|ζ3| < 10−7. (9.9.7i)

Let’s first define the following quantities:

∆2 ≡ c2 − 1 (9.9.8a)

∆4 ≡ c4 − 1 (9.9.8b)

∆f ≡ 2f ′m(1)− 1. (9.9.8c)

Since γ is an injective function of c2 (actually it is an hyperbole), the
experimental value of γ does not leave much freedom to the parameter of
the theory c2: we can expand the expression for γ in terms of the small
quantity ∆2 as

γ ≈ 1− 2∆2 (9.9.9)

so that (9.9.7a) gives the limit

|∆2| < 10−5. (9.9.10)

Hence, we can set c2 ≈ 1 in the other PPN parameters, so that

ζ2 ≈ 2∆f (9.9.11a)

ζ4 ≈
2

3
∆f (9.9.11b)

β ≈ 1 + ∆4 − 2c5. (9.9.11c)
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Figure 8: Value of γ in function of c2 plotted with contiuous line.

The experimental values (9.9.7h) and (9.9.7b) give the bounds

|∆m| < 2 · 10−5 (9.9.12a)

|∆4 − 2c5| < 2, 3 · 10−4. (9.9.12b)

Using the definitions (9.8.11) for the ci parameters and (9.9.8) , the ex-
perimental bounds (9.9.10) and (9.9.12) can also be rewritten as

|2f ′1(1)− 1| < 10−5 (9.9.13a)

|2f ′m(1)− 1| < 2 · 10−5 (9.9.13b)

∣∣∣∣f ′′1 (1) + 2f ′2(1) +
1

4

∣∣∣∣ < 5, 8 · 10−5. (9.9.13c)
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We have to impose the constraint (9.7.17):

2c3 = c22 + c2 (9.9.14)

which looks like an integrability condition. This constraint, together with
(2.4.19), yields

c2 ≤
1

2
or c2 ≥ 1. (9.9.15)

This means that the observational bound (9.9.10) is actually

c2 − 1 < 10−5. (9.9.16)

The measures of the PPN parameters impose strict bounds on the pa-
rameters of the theory c2 and f ′m(1), but not on the single parameters c4
and c5; only the combination c4 − 2c5 is constrained by experiments.
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10 Conclusions

In this work we have investigated a natural scenario to study deviations
from General Relativity, in order to give possible answers to the problems
arising from Einstein’s theory. Anyway, almost only classical effects have
been investigated, since these are the most easily verifiable ones; it has not
been verified if TDiff theories could be consistent renormalizable theories for
quantum gravity.
Since consistent propagation of a massless spin-2 graviton requires less sym-
metry than that imposed in General Relativity, the straightforward path
has been to consider a theory whose gauge-group is only TDiff, which leaves
us much more freedom to write the possible actions. This is the smallest
symmetry needed for the theory not to have classical instabilities, provided
that the parameters of the linearized theory satisfy the condition

2c3 ≤ 3c22 − 2c2 + 1.

Consistency requires that both the gravitational and the matter sectors have
to be whether Diff-invariant or TDiff-invariant, unless we impose the ex-
tremely strong integrability conditions Lm = 0 or R = 0. If we consider the
TDiff-invariant case, the freedom we have to play with in the matter sector
allows to give some theoretical solutions to direct Cosmological Constant
problem.

Probably one of the greatest differences from Diff-invariant theories is the
non-conservation of the source of gravity, that is, of the “active” energy-
momentum tensor. This will eventually lead to violations of the conservation
of the total momentum, of the equality between active and passive gravita-
tional masses, and of the Strong Equivalence Principle; hence, experiments
leave small room for deviations from General Relativity.
Other confrontations with experimental observations are given by the tests
on the violation of the inverse-square-law, since the coupling of TDiff-invariant
gravity to the matter predicts the propagation of an additional scalar degree
of freedom, which modifies the standard spin-2 graviton interaction.

Finally, we have calculated the PPN expansion of the metric for some
general TDiff theories (i.e. those which verify fk(|g|) = fv(|g|) in the matter
Lagrangian), since the PPN formalism is one of the most efficient tools to
compare gravitational theories with experiments. In this part we have found
an integrability condition on the parameters of the theory:

2c3 = c22 + c2.
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Moreover, the results and the confrontation with the measured PPN param-
eters pose some strict but not absolute bounds on the possible violations of
Diff-invariance.

Concluding, we can say that no strong theoretical arguments have risen
to exclude TDiff-invariance from being the fundamental symmetry of na-
ture, although experiments show that the violations of Diff-invariance have
to be small. Anyway, some freedom seems to be left, since for instance the
terms f ′′1 (1) and f

′
2(1) of the theory are not strictly bounded by observations

(only the combination f ′′1 (1) + 2f ′2(1) is bounded).
Moreover, not all possible TDiff-invariant Lagrangians have been taken into
account in calculating the PPN parameters: for example, the case with
fk(|g|) ̸= fv(|g|) in the matter Lagrangian, which includes WTDiff-invariant
Lagrangians, have still to be considered. Such Lagrangians could better
solve the direct Cosmological Constant problem (since the kinetic energy
could have the same weight as in General Relativity) even if, in this case,
test bodies seem not to follow geodesic trajectories.
Besides, the quantum behavior of Transverse Gravity should be better in-
vestigated.
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