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Introduction

The National Centre for Oncological Hadrontherapy (CNAO) was established

on 2001 by the Italian Health Ministry. Now it is under commissioning in Pavia and

will treat the first patients in one year [1].

The CNAO is the first Italian Centre for the treatment of patients affected by

tumors by means of beams of ions: treatments with an active scanning of both

protons and carbon ions will be possible.

Protons are required to have kinetic energy of about 220 MeV, while about

4.8 GeV (400 MeV
nucleon

) are necessary for the 12C6+ beams. A synchrotron will pro-

vide such energies.

The extraction of the beam from an hadrontherapy synchrotron must be very

slow, because the extracted beam, called spill, must have low and constant intensity

and must be long, in order to facilitate the measurement and control of the radiation

dose delivered to patients. The duration of the extraction must be of the order of 1 s,

so a multi-turn extraction (about 106 turns) is needed. The slow extraction is based

on the third order resonance and a sextupole magnet is used to excite the resonance.

The beam will be driven into the resonance by a betatron core, which accelerates

the beam. The possibility of using the RF-knockout system as an alternative way to

drive the beam into the resonance is also under consideration. RF-knockout method

has some advantages: in particular the start and the stop of the extraction are very

fast, and that characteristics is useful for some special treatment needs, such as the

synchronization with the breathing of the patient.

The aim of this thesis is to verify the possibility of activate the RF-knockout

extraction method and to optimize the corresponding performances with the already

present hardware and minimum upgrades of CNAO synchrotron.

A multiparticle tracking program has been written to simulate the beam dy-

namics during the extraction and to optimize the parameters of the radio frequency

system. Two types of signals have been studied in order to obtain a constant spill

with a minimum ripple:

• a carrier wave with a frequency and amplitude modulation;
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Introduction

• a noise at a given range of frequencies modulated in amplitude.

The fist type of signal is commonly used in other hadrontherapy synchrotrons,

as the ones in Japan and the one in Heidelberg, Germany. Nevertheless the second

option results in a lower ripple of the extracted beam, as it will be shown in this

thesis.

The optimized machine parameters of the two possible signals and the charac-

teristics required for the kicker will be shown.

This work was presented at the International Particle Accelerator Conference

2010 (IPAC10) in Kyoto, Japan [2].
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Chapter 1

Purpose and Project

The Radiation Therapy is one of the most important techniques of cancer treat-

ments.

In Radiation Therapy ionizing radiation (usually X-rays or γ-rays) are used to

kill the cancer cells.

X-rays are obtained by collision between an electron beam (from a linear acceler-

ator) and a metal target. γ-rays are obtained by radioactive decays of isotopes such

as 60Co. X-rays are not monochromatic and the requested maximum kinetic energy

ranges between 100 keV and 10 MeV, according to the depth of tumor. γ-rays are

monochromatic and the available kinetic energy is of the order of 1 MeV, depending

on the isotope selected.

Electron beams can also be used for Radiation Therapy. As electrons deposit all

their energy in the first millimeters, they work properly to treat skin cancer. The

electron beams are obtained with linear accelerators.

A new type of radiation therapy is Hadrontherapy. Hadrontherapy uses beams

of hadrons, i.e. baryons, mesons or ions. The energy of the hadron beams de-

pends on the kind of required particle and on the depth of tumor: it ranges between

100 MeV per nucleon to 500 MeV per nucleon. To have these energies for heavy par-

ticles, like carbon ions, a synchrotron is needed.

The National Centre for Oncological Hadrontherapy is the first Italian Centre

for the treatment of patients affected by tumors by means of proton and carbon ions

beams.

1.1 Hadrontherapy

Charged particles moving through matter interact with the electrons of atoms

and deposit energy in the matter. The energy per unit of length deposited by a
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Chapter 1. Purpose and Project

charged ion in a material depends on the ion species and on its energy by the Bethe-

Bloch formula [3]. The Bethe-Bloch curve, shown in fig. 1.1, describe the energy

deposition. The energy per unit of length is higher when the particle energy is low.

Figure 1.1: Bethe-Bloch curve. Energy deposited per unit of length
by a charged particle (muon, pion or proton) in different materials.

A beam of charged ions deposits more energy per unit of length by ionization

at the end of the range inside the material, i.e. when its energy is low. That phe-

nomenon generates the so-called Bragg peak [3]. Photons and electrons have a differ-

ent behavior. The energy deposited per unit of length by a beam of monochromatic

photons decreases exponentially with increasing depth. Very energetic electrons lose

energy due to bremsstrahlung effect, while low energetic electrons deposit all their

energy in the first few millimeters of the matter.

Figure 1.2 shows the difference between the energy deposition at various depths

by carbon ions and by photons of different energies: 120 keV, 1 MeV and 18 MeV.

Radiation therapy with charged particles deposits a lower radiation dose in

healthy tissues surrounding the tumor so it is preferred when the tumor is located
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1.1. Hadrontherapy

near organs that are very sensitive to radiation.

Figure 1.2: Dose deposited in water by different particles beams.
The red line, which is related to the beam of 12C6+, represents the
Bragg peak.

The linear energy transfer (LET ) is the average energy locally transfered to

matter by a charged particle when crossing a distance. LET differs from the stopping

power (−dE
dx

): in effect LET refers to the energy deposition in a limited volume

around the charged particle, while the stopping power refers to the energy lost

without any volume limitation.

A high-LET radiation causes a greater biological effects, because it produces a

high concentration of damaged molecules.The protons radiation has a lower LET

compared to ions radiation.

There are two hadron irradiation techniques: the passive spreading and the active

scanning.

The passive spreading consists on spreading the beam over a large area to treat

the whole tumor. It is good for large tumors and for tumors that are difficult to

immobilize. This is the most used technique.

The active scanning consists on painting the tumor with the beam with sub-

millimeter accuracy in three dimensions. To obtain this result, some magnets near
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Chapter 1. Purpose and Project

the patient bend the beam. During the treatment, the synchrotron beam energy is

changed in order to treat the tumor at different depths.

For the active scanning, well-focused beams with high spatial precision and a

well defined energy are required.

CNAO will be able to treat patients with active scanning, using protons and

carbon ions.

Hadrontherapy with carbon ions is conducted in Japan, at Heavy Ion Medical

Accelerator in Chiba (HIMAC), since 1994. In 2009 almost 700 people have been

treated with carbon ions at HIMAC and since 1994 about 5000 patients have been

treated [4].

Tumors which were treated more often with carbon ions at HIMAC are:

• prostate;

• bone;

• head and neck;

• lung;

• liver;

• rectum.

Some studies have shown that mortality one year, three years and ten years after

treatment is lower than mortality after other treatment options. The level of the

National Cancer Institute – Common Toxicity Criteria achieved by treatment with

carbon ions is less than grade 3 for almost all patients [5][6].

1.2 Characteristics of the beams at CNAO

The kinetic energy needed to have a Bragg peak at a depth of 26.2 cm in water

is about 200 MeV for the protons and about 390.7 MeV/u for carbon ions [7].

The range of kinetic energies at the extraction is adjusted to have a penetration

depth at lower energy of about 3.5 cm for both types of particles and a maximum

penetration of about 27.0 cm for carbon ions and of 30.5 cm for protons. In table

1.1 the kinetic energies are summarized.

The maximum number of particles to be delivered to patients during a single

spill is required to be 1.0 × 1010 for protons and 4.0 × 108 for carbon ions. The

extraction time is included between 1 s and 10 s.
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1.2. Characteristics of the beams at CNAO

particle
min energy max energy penetration at penetration at

(MeV/u) (MeV/u) min energy (cm) max energy (cm)

protons 60 250 3.5 30.5

carbon ions 120 400 3.5 27.0

Table 1.1: Kinetic energies of particle beams and corresponding
penetration.

The extracted beam must have small transverse dimensions and a small diver-

gence, in order to direct the beam to the tumor without deposit high dose in healthy

tissues surrounding the tumor.

A quantity used in Accelerator Physics to measure the transverse dimensions

of a beam and its angle is the emittance (εn). Dimensionally the emittance is a

length times an angle and therefore the unit of measure is m× rad. The definition

of emittance is given in appendix A.2.

The emittance of the extracted beam must be much smaller than the emittance

of the stored beam.
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Chapter 2

CNAO accelerator

The CNAO accelerator complex (fig. 2.1) is based on a 78 m synchrotron. The

synchrotron can accelerate proton beams up to 250 MeV and carbon ion beams up

to 400 MeV/u.

Figure 2.1: CNAO accelerator complex.

The accelerator is composed of:

• two particle sources;

• the low energy beam transfer lines (LEBT );

• the linear accelerator (Linac);

• the medium energy beam transfer line (MEBT )
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Chapter 2. CNAO accelerator

• the synchrotron;

• the high energy beam transfer lines (HEBT );

• the treatment rooms;

• the experimental extraction line.

Figure 2.1 shows the accelerator complex. In the future an experimental extrac-

tion line will be added to the complex.

The sources, the LEBT, the Linac and the MEBT are positioned inside the

synchrotron ring, the HEBT and the treatment rooms outside.

2.1 Injection system

The CNAO accelerator can use protons and carbon ions: anyway all parts of the

accelerator are common for both particles.

There are two particle sources, both of them can produce protons and carbon

ions. In order to keep the same charge to mass ratio in the Linac, the sources

produce H+
3 and 12C4+. After the Linac all the electrons are removed.

The injection of the beam into the synchrotron is made over many turns, so the

current of the sources is lower than the beam current in the synchrotron.

To have a treatment with an active scanning using the proton beam, 1.0× 1010

particles per spill are needed. When taking into account the efficiencies of all the

different components of the accelerator complex, such result is obtained if the proton

sources deliver 3.20× 1010 particles per treatment cycle.

To have a treatment with active scanning by carbon ions, 4.0× 108 particles per

spill are needed and the sources have to produce 1.49× 109 particles per filling [8].

The beams are produced by two electron cyclotron resonance (ECR) ion sources.

The ECR ion sources work frequency is 14.5 GHz [9]. The ECR ion sources use

permanent magnets for the magnetic fields, so the total electrical power is extremely

reduced. Into a volume with a low pressure gas a microwave is injected at the

frequency corresponding to the electron cyclotron resonance defined by the magnetic

field. The microwave heats free electrons, which collide with the atoms and cause

ionization.

The ECR ion sources length is 600 mm, the diameter is 380 mm, the weight is

210 kg [10]. The source is shown in fig. 2.2.

Two sources can produce both H+
3 and 12C4+, after a simple switching of gases.

Some others ions are also produced, as 12C5+ and H+
2 : to select the required one a

spectrometer is used.
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2.1. Injection system

Figure 2.2: ECR ion source of CNAO.

In the low energy beam transfer line, particles kinetic energy is 8 keV for the

protons and 8 keV/u for the carbon ions.

In figure 2.3 the low energy beam transfer lines are shown: magnets (dipoles and

quadrupoles) and diagnostic elements can be easily identified.

At the exit of the two sources (SO1 and SO2 ), there are two solenoids focusing

the beam.

The LEBT is composed by three sections. The first section consists of two

separate lines (O1 and O2 ) connecting the two sources to the second section. The

second and the third sections (called L1 and L2 ) are common for both lines.

In the first sections of the LEBT there are the spectrometers and the quadrupole

triplets for the beam focusing. The first sections end at the switching dipole.

In the second section of the LEBT there is a second quadrupole triplet. Between

L1 and L2 there is a 75◦ bending dipole. L2 section ends with a solenoid, positioned

in front of the radio-frequency quadrupole (RFQ).

Inside the RFQ the particles have the first acceleration. The RF repetition

frequency is 216.8 MHz for all ion species. The RF pulse power is 195 − 200 kW.

The kinetic energy after the RFQ is 400 keV for the protons and 400 keV/u for the

carbon ions [11].

The 3.77 m LINAC accelerates the particles from 0.4 MeV/u to 7.0 MeV/u. The

LINAC is a copy of the one of the Heidelberg Ion-beam Therapy centre (HIT ). The

resonance frequency of the Linac is 216.8 MHz and the RF pulse repetition freqency
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Chapter 2. CNAO accelerator

Figure 2.3: The sources and the low energy beam transfer lines.
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2.1. Injection system

is 10 Hz. In fig 2.4 is shown a photograph of the LINAC during tests at GSI.

Figure 2.4: The LINAC under test at GSI.

The Medium Energy Beam Transfer line (MEBT ) brings the proton or the 12C6+

beam from the end of the LINAC to the electrostatic septum, where it is injected

into the synchrotron. In figure 2.5 the MEBT line is shown.

Two dipoles divide the MEBT in tree segments: M1, M2 and M3.

In the section M1 there are four quadrupole magnets. In the section M2 the

last selection of ion species can be done with the slits, to ensure the maximum ion

purity of the beam. M3 is the section where the beam is prepared to the multi turn

injection and where most of the diagnostic elements are placed [1].

Many diagnostic elements are installed along LEBT and MEBT : slits, wire scan-

ners and Faraday cups [12].

The wire scanners can measure the beam profile: a wire crosses the beam trans-

verse area (horizontally or vertically) and the current collected by the wire is ac-

quired. From the contemporary information of the current and of the instantaneous

position the profile of the beam is derived. Slits and wire scanners allow also to

measure the beam divergence.

The Faraday cups were used to measure the beam current during the commis-

sioning of the injection system and to monitor the current from the sources. Mea-

surements taken with the Faraday cups are destructive.
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Chapter 2. CNAO accelerator

Figure 2.5: The medium energy beam transfer lines.

14



2.2. Synchrotron

In order to have 1.0 × 1010 particles per extracted spill, the required current of

H+
3 ions, is 600µA and in order to have 4.0×108 carbon ions per extracted spill, the

required current for the 12C4+ beam, is 200µA. During commissioning of the low

energy beam transfer line, currents up to 1400µA were obtained for H+
3 ions and up

to 230µA for 12C4+ ions [13].

2.2 Synchrotron

The CNAO synchrotron is based of two achromatic arcs joined by two dispersion-

free sections [8].

The characteristic of an achromatic beam line is that at the end of the line the

position and the angle of the particle are independent of the particle energy.

In the dispersion free section the dispersion and its derivative are zero.

The lattice of the synchrotron consists of:

• 16 dipoles;

• 24 quadrupoles;

• 5 sextupoles;

• 20 correctors;

• 1 RF cavity;

In one of the two dispersion-free section there are the injection electrostatic

septum and the magnetic extraction septum. In the other one there are the RF-

cavity and the resonance-driving sextupole.

In figure 2.6 the geometry of the synchrotron is shown and in table 2.1 the

synchrotron characteristics are summarized.

2.2.1 Main magnets characteristics

In the synchrotron there are 16 identical dipoles, each bending the beam of π
8

rad.

These dipole magnets have a H-type design, are rectangular and have parallel end

faces.

The main characteristics of the dipoles are shown in table 2.2.

In figure 2.7 the geometry of the dipoles is shown.

The particles curvature radius can be derived from the effective magnetic length

at maximum field of the dipoles:
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Chapter 2. CNAO accelerator

Figure 2.6: CNAO synchrotron.
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2.2.1 Main magnets characteristics

Circumference 77.64 m

Particles p or 12C6+

Proton injection energy 7.0 MeV

Protons extraction energy 60÷ 250 MeV

12C6+ injection energy 7.0 MeV/u

12C6+ extraction energy 120÷ 400 MeV/u

Revolution frequency 0.469÷ 2.76 MHz

Number of dipoles 16

Number of quadrupoles 24

Number of sextupoles 5

Horizontal tune at injection 1.739

Vertical tune at injection 1.779

Horizontal tune at extraction 1.666

Vertical tune at extraction 1.720

Dipole curvature radius 4.23 m

Table 2.1: CNAO synchrotron characteristics.

Overall length 1.8930 m

Overall width 1.0893 m

Overall height 0.7060 m

Gap height on central orbit 0.0720 m

Weight 8 t

Nominal maximum field 1.5 T

Current for maximum field 2778 A

Effective magnetic length at max. field 1.661 m

Field quality, ∆B/B ≤ ±2× 10−4

Table 2.2: Main characteristics of the dipoles.
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Chapter 2. CNAO accelerator

ρ =
Nd × L0

2π
=

16× 1.661 m

2π
= 4.23 m (2.1)

where Nd is the number of dipoles in the ring and L0 is the effective magnetic length

at maximum field.

Figure 2.7: Geometry of the CNAO dipole (all dimensions in mm).

The CNAO synchrotron has three families of quadrupoles: two focusing and one

defocusing. There are eight quadrupoles for each family [14].

The main characteristics of the quadrupoles are reported in table 2.3.

In the CNAO synchrotron there are five sextupoles, divided in three families.

Two sextupoles families set the horizontal chromaticity and the vertical chromaticity.

These four magnets are positioned in areas where the dispersion is different from

zero. The fifth sextupole is placed in one of the two dispersion-free regions and

drives the third integer resonant extraction [15].

Table 2.4 contains the main characteristics of the sextupoles.

The RF cavity of the CNAO synchrotron has a large frequency swing, between

0.4 MHz and 3.0 MHz, a very large relative permeability and a low Q factor. The

18



2.2.1 Main magnets characteristics

Overall length 0.4620 m

Overall width and height 0.6206 m

Aperture radius 0.0850 m

Weight 0.39 t

Nominal maximum gradient 3.65 T/m

Current for maximum gradient 540 A

Effective magnetic length at max. gradient 0.350 m

Gradient quality, ∆G/G ≤ ±5× 10−4

Table 2.3: Main characteristics of the quadrupoles.

Overall length 0.3000 m

Overall width 0.5600 m

Overall height 0.5050 m

Aperture radius 0.1000 m

Weight 0.27 t

Nominal maximum gradient 54.3 T/m2

Current for maximum gradient 500 A

Effective magnetic length at max. gradient 0.25 m

Gradient quality, ∆G/G ≤ ±4× 10−3

Table 2.4: Main characteristics of the sextupoles.
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Chapter 2. CNAO accelerator

length of the cavity is 1.5 m [16].

2.2.2 Optical characteristics of the synchrotron

An important parameter for the synchrotron is the beam magnetic rigidity. The

magnetic rigidity, R, determines the effect of the magnetic field on the motion of

the charged particles.

R = Bρ =
p

q
(2.2)

where B is the magnetic field of dipoles, ρ is the radius of curvature of the particle,

p is the particle momentum, q is the particle charge.

The beam magnetic rigidities vary by a factor of 10 from the R value of protons

at the injection, to the R value at the extraction of carbon ions with maximum

energy.

Table 2.5 shows the magnetic rigidities at various energies for protons and carbon

ions.

Situation
kinetic energy Bρ

(MeV/u) (T m)

protons injection 20 0.65

carbon ions injection 7.0 0.76

lowest proton extraction 60 1.14

highest proton extraction 250 2.43

lowest carbon ions extraction 120 3.25

highest carbon ions extraction 400 6.35

Table 2.5: Beam magnetic rigidities (Bρ) at various energies of
protons and carbon ions.

Position and Angle in the horizontal and vertical directions of the particles in

an accelerator oscillate in a certain frequency range. These oscillations are called

betatron oscillations and are due to the bending force of the quadrupole, which is

proportional to the particle distance from the reference orbit. The reference orbit is

at the quadrupoles center.
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2.2.2 Optical characteristics of the synchrotron

The frequency of betatron oscillations is a very important quantity in Particle

Accelerator Physics: in effect, if the ratio between that frequency and the revolution

frequency is a rational number, the beam is subjected to resonances.

The frequency of betatron oscillations is expressed in units of revolution fre-

quency.

Qx =
fbx
frev

(2.3)

Qy =
fby
frev

(2.4)

where fbx is the horizontal betatron frequency, fby is the vertical betatron frequency

and frev is the revolution frequency.

The tunes of the synchrotron can be changed in a large range: 1.05 < Qx < 1.95

and 1.05 < Qy < 1.95, maintaining the two dispersion-free regions. The synchrotron

is designed for slow extraction on the 5
3

integer resonance.

The particle tunes at injection are:

Qx = 1.739 (2.5)

Qy = 1.779 (2.6)

at extraction:

Qx = 1.666 (2.7)

Qy = 1.720 (2.8)

The above tunes refers to particles with exact reference momentum. Neverthe-

less, the betatron frequency depends on particle momenta.

To better understand the problem, important parameters are chromaticity and

dispersion.

The variation of tunes with particle momenta is the chromaticity ξ and it is

defined by:

ξx =
∆Qx

∆p/p
(2.9)
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Chapter 2. CNAO accelerator

ξy =
∆Qy

∆p/p
(2.10)

The nominal horizontal and vertical chromaticity of the CNAO ring are:

ξx = −3.940 (2.11)

ξy = −1.067 (2.12)

The dispersion is a function of the longitudinal position. It is the variation of

the transversal coordinate with the particle momenta. It is defined by:

Dx(s) =
∆x(s)

dp/p
(2.13)

Dy(s) =
∆y(s)

dp/p
(2.14)

The spatial derivative of the dispersion function is the variation of the particle

angle with the particle momenta. It is defined by:

D′x(s) =
∆x′(s)

dp/p
(2.15)

D′y(s) =
∆y′(s)

dp/p
(2.16)

The Twiss β function is important parameter to know the amplitude of the

betatron oscillation.

In figure 2.8 the dispersion Dx and Twiss β functions: βx and βy, are shown as

function of the position on the ring.

A treatment cycle at CNAO synchrotron lasts a few seconds and the corre-

sponding magnetic cycle is shown in figure 2.9 [17], where the current of dipole

power supply is plotted as a function of time.

The dipole current is proportional to the magnetic dipole field (if the magnets

are not saturated) and the magnetic field is proportional to the magnetic rigidity.

The first plateau (b) represents the injection time, the following ramp (c) corre-

sponds to acceleration, the second plateau (d) represents the extraction time. The

length of the extraction is between 1 s and 10 s, so it is longer than the acceleration

time. The e, f , g and h phases permit to reduce the magnetic hysteresis effects.
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2.2.2 Optical characteristics of the synchrotron

0.0 10. 20. 30. 40. 50. 60. 70. 80.
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Figure 2.8: βx, βy and dispersion for the CNAO synchrotron.
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Chapter 2. CNAO accelerator

Figure 2.9: CNAO synchrotron magnetic cycle.

2.3 Synchrotron extraction and transport lines

The beam extraction from the synchrotron is obtained by means of an elec-

trostatic extraction septum followed by a magnetic extraction septum after about

5 m.

The extraction is performed using the third order resonance, with the horizontal

tune Qx = 5
3
. The details on synchrotron extraction will be described in the next

chapter.

The extracted beam is transported through the High Energy Beam Transfer Line

(HEBT ) up to three treatment rooms.

Two of them will have only an horizontal fixed beam for the treatment, the other

room will have two beams: an horizontal fixed beam and a vertical fixed beam.

An upgrade of the CNAO complex is in project: in the second phase there will

be two more treatment rooms, equipped with gantries for carbon ions [18].
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Chapter 3

CNAO extraction systems

3.1 Synchrotron extraction

The beam extraction from a synchrotron can be made in one turn or in several

turns. In case of hadrontherapy the extraction must be very slow. The extracted

beam, called spill, must be low intensity and long, in order to facilitate the mea-

surement and control of the radiation dose delivered to the patient.

At CNAO the spill duration, as written in section 1.2, ranges from 1 s to 10 s

and therefore the number of turns of a complete extraction will be about 106− 107.

The beam extraction from a synchrotron is done with septa magnets [19], which

may be electrostatic or magnetic. At CNAO extraction occurs through an electro-

static septum followed, at a distance of about 5 m, by a magnetic septum [20].

The electrostatic septum is an element producing an electric field that deflects

the beam to be extracted, without deflecting the circulating beam. This is possible

because the part of the beam to be extracted has already been separated from the

circulating beam when arriving to the septum.

The magnetic septum is a special dipole which creates a magnetic field deflecting

the extracted beam, without deflecting circulating beam: this is obtained thanks to

the fact that the septum field is quite weak and it is almost zero in the region where

there is the circulating beam.

The electrostatic extraction septum used in CNAO synchrotron is shown in figure

3.1.

The slow extraction for hadrontherapy synchrotrons is based on the third order

resonance, excited by a sextupole magnet placed in a dispersion-free region.

There are three possible ways to drive the beam into the third order resonance:

• quadrupole driven or sextupole driven excitation;
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Chapter 3. CNAO extraction systems

Figure 3.1: Electrostatic extraction septum.

• acceleration driven extraction;

• RF knockout extraction.

With the first method, which will not be used at CNAO, the value of the

quadrupoles strength or the value of the resonance sextupole strength must be mod-

ified during the extraction.

At CNAO, the accelerator driven extraction, with the use of a betatron core,

will be used as primary method and the RF knockout could be used as secondary

method.

3.2 Third-order resonance

The third-order resonance occurs when the fractional part of the horizontal tune

of a particle is close to 1
3

or 2
3
.

Qx = m± 1

3
+ δQ (3.1)
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3.2. Third-order resonance

where Qx is the horizontal tune value, m is an integer and δQ� 1
3
. δQ is called the

tune distance of the particle from the resonance.

The horizontal transfer matrix of n turns of a synchrotron in normalized coor-

dinates is:

Mn =

 cos(2πnQx) sin(2πnQx)

− sin(2πnQx) cos(2πnQx)

 (3.2)

where Qx is the horizontal tune [21].

The transfer matrix for a particle close to the third-integer resonance is:

M̄n =

 cos
[
2πn

(
m± 1

3
+ δQ

)]
sin
[
2πn

(
m± 1

3
+ δQ

)]
− sin

[
2πn

(
m± 1

3
+ δQ

)]
cos
[
2πn

(
m± 1

3
+ δQ

)]
 (3.3)

The transfer matrix of three turns for a particle close to the third-integer reso-

nance is:

M̄3 '

 1 ε

−ε 1

 (3.4)

where ε = 6πδQ.

This means that every three turns the particle has the same starting coordinates,

both in position and in angle, if ε→ 0, i.e. if δQ→ 0.

The simplified effect of a sextupole on the trajectory of a positively charged par-

ticle in an anticlockwise synchrotron is calculated, with the thin lens approximation,

in appendix B.1. The result is shown in next equations:

∆X = 0 (3.5)

∆X ′ = S X2 (3.6)

∆Y = 0 (3.7)

∆Y ′ = 0 (3.8)

where S is the normalized sextupole strength, defined in equation B.18. A sextupole,

in first approximation, changes only the horizontal particle divergence.

Using matrix 3.3 and the simplified effect of a sextupole of equations 3.5, 3.6,

3.7 and 3.8, the change in position and divergence of a particle close to third order

resonance after three turns under effect of a sextupole can be evaluated.
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Chapter 3. CNAO extraction systems

The result, after simplification of negligible terms, is:

∆X3 = εX ′0 +
3

2
SX0X

′
0 (3.9)

∆X ′3 = −εX0 +
3

4
S
(
X0

2 −X ′0
2
)

(3.10)

These two equations are called the spiral step and the spiral kick.

If S = 0, i.e. if the sextupole is turn off, equations 3.9 and 3.10 give the same

results of matrix 3.4.

3.3 Stable region

The behavior of particles in the presence of a sextupole can be better understood

by studying the Hamiltonian of the system, which is called Kobayashi Hamiltonian

[22].

After three turns, the spiral step and the spiral kick are very small quantities.

The time needed for three turns in the synchrotron is very short, compared to the

extraction time, so can be choose as the Unit Time.

Equations 3.9 and 3.10 can be treated as continuous functions.

Considering:
dX

dt
= ∆X3 (3.11)

and
dX ′

dt
= ∆X ′3 (3.12)

The Hamiltonian of the system can be derived with the Hamilton equations.

The generalized coordinate is the variable X and the generalized momentum is the

divergence X ′.

∂H
∂X ′

=
dX

dt
= εX ′ +

3

2
SXX ′ (3.13)

∂H
∂X

= −dX ′

dt
= εX − 3

4
S
(
X2 −X ′2

)
(3.14)

The Kobayashi Hamiltonian is found by integrating equations 3.13 and 3.14.

H =
ε

2

(
X2 +X ′2

)
+
S

4

(
3XX ′2 −X3

)
(3.15)

The Hamiltonian is a constant of the motion, because it is time independent.
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3.3. Stable region

For different values of H a particle trajectory in the normalized horizontal phase

space can be found.

When the normalized sextupole strength (S) is zero, i.e. there is not sextupole,

the trajectories in phase space (X,X ′) are the ones of the unperturbed particles in

a linear synchrotron. Those trajectories are circles with radius
√

2H
ε

.

If S is not zero, the circular trajectories are distorted into triangular trajecto-

ries. When the excitation exceeds a certain level, the triangular trajectories become

open trajectories, as shown in figure 3.2, where the stable triangular region is also

identifiable.

Figure 3.2: Phase-space trajectories in normalized coordinates for
various excitations. These trajectories are calculated from the
Kobayashi Hamiltonian.

The area within the triangle is called the stable region. If a particle is inside the

triangle, its trajectory is closed; if a particle is outside the triangle, after a certain
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Chapter 3. CNAO extraction systems

number of turns, it will move away indefinitely.

The equations of the three straight lines at the sextupole, called separatrices,

can be derived from the Hamiltonian. If H = 8ε3

27S2 equation 3.15 can be factorized

into three pieces:(
S

4
X +

ε

6

)(√
3X ′ +X − 4ε

4S

)(√
3X ′ −X +

4ε

3S

)
= 0 (3.16)

The tree lines are:

r1 : X = − 2ε

3S
(3.17)

r2 : X ′ = − 1√
3
X +

4
√

3ε

9S
(3.18)

r3 : X ′ = +
1√
3
X − 4

√
3ε

9S
(3.19)

The vertices of the triangle are found intersecting the three lines:

P1 =

(
4ε

3S
; 0

)
(3.20)

P2 =

(
− 2ε

3S
;− 2ε√

3S

)
(3.21)

P3 =

(
− 2ε

3S
; +

2ε√
3S

)
(3.22)

The area of the stable triangle is the acceptance and its value is:

Acceptance =
48
√

3π

S2
(δQ)2 π (3.23)

At different longitudinal positions along the ring, the stable region and the sepa-

ratrices change orientation. The triangle and the three lines rotate of an angle equal

of the phase advance ∆µ.

Particles with different momentum have a different stable region.

Extracted particles exit from stable region along the separatrix r3.

To have the same extraction separatrix for different momentum, the synchrotron

lattice have to satisfy the Hardt Condition [21]:

Dn cos(α−∆µ) +D′n sin(α−∆µ) = −4π

S
ξx (3.24)
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3.3.1 Steinbach diagram

where Dn and D′n are the normalized dispersion function and its derivative, α is the

angle between the separatrix and the horizontal axis, ∆µ is the phase advance from

the resonance sextupole to the electrostatic extraction septum, S is the normalized

sextupole strength, ξx is the horizontal chromaticity.

The horizontal chromaticity value is chosen to satisfy the Hardt Condition.

3.3.1 Steinbach diagram

An useful representation of the beam and of the resonance is provided by the

amplitude-momentum space, called the Steinbach diagram, figure 3.3.

In the horizontal axis there is the momentum deviation with respect to the central

orbit. This value is proportional to the tune distance, owing to the chromaticity; it is

also proportional to the X particle position, owing to the dispersion. In the vertical

axis there is the normalized amplitude of the ions betatron oscillation, A =
√

ε
π
,

where ε is the single-particle emittance.

Spill
A

Stop bandBeam moving
into resonance

∆p/p or X or Qx

Stable region

Unstable
region

Qres

Figure 3.3: Steinbach diagram.

In the Steinbach diagram the stable region is the one outside the V region and

the unstable region is inside the V .

A particle of defined momentum (i.e. with defined δQ and X position) is stable if

its amplitude is smaller than the acceptance of the stable triangle defined in equation
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Chapter 3. CNAO extraction systems

3.23.

For a given emittance, the aperture of the V in the Steinbach diagram is called

the stop band and can be derived from equation 3.23. Considering that for a stable

particle:

ε ≤ 48
√

3π

S2
(δQ)2 π (3.25)

the stop band is defined:

Qres −

√
1

48π
√

3

ε

π
|S| < Q < Qres −

√
1

48π
√

3

ε

π
|S| (3.26)

where Qres is the tune resonance value.

3.4 Betatron core extraction and RF-knockout ex-

traction

In the magnet driven extraction the beam does not change emittance and energy.

More specifically:

with quadrupole driven extraction the beam horizontal tune is changed, changing

the quadrupole strengths, and the tune distance of the beam from the resonance

decreases;

with sextupole driven extraction the sextupole strength is increased, so the stop

band increases.

In acceleration driven extraction and RF-knockout the optical parameters of the

synchrotron during the extraction are constant.

In acceleration driven extraction the beam is accelerated towards the resonance

by a betatron core.

A betatron core is a circular magnetic circuit, through which the beam passes.

With a coil is possible to change the magnetic flux inside the magnetic circuit.

Varying the magnetic flux an electric field directed along the axis of the betatron

core is induced. The electric field accelerates the beam towards the resonance [23].

In figure 3.4 a schematic view of a betatron core is shown.

In figure 3.5 the Steinbach diagram of the acceleration driven extraction, obtained

by means of the betatron core, is shown.

The momentum spread of the beam, before the beginning of the acceleration

driven extraction, must be increased until ∆p
p
' 0.002. Then the betatron core

accelerates the beam gradually and the beam goes in the unstable region.
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3.4. Betatron core extraction and RF-knockout extraction

Figure 3.4: Schematic view of a betatron core.

Figure 3.5: Steinbach diagram of the acceleration driven extraction,
done with the betatron core.
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Chapter 3. CNAO extraction systems

With this extraction method is possible to have an extracted beam with a small
∆p
p

. The activation and deactivation of the extraction within the same synchrotron

cycle is not very fast, so, to be used when the synchronization with the breathing

of the patient is required, an on-off system on the extraction line must be used.

In RF knockout extraction the beam is excited in the horizontal phase space by

a radio frequency or by a stochastic noise with the right range of frequency. The

amplitude of betatron oscillation increase and, without changing the tune of the

particles, they go out from the stable region.

The RF knockout extraction consists on increasing the horizontal emittance of

the beam with a RF kicker. The beam will gradually leave the triangular stable

region, without changing its energy. The momentum spread of the extracted beam is

equal to the momentum spread of the circulating beam, unlike the case of extraction

with the betatron core. To have a momentum spread as small as possible, we must

keep a low momentum spread in the circulating beam.

In figure 3.6 is shown the Steinbach diagram of the RF knockout extraction.

Figure 3.6: Steinbach diagram of the RF knockout extraction.
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RF-knockout

Once the beam in the synchrotron has reached the extraction kinetic energy, the

resonance driving sextupole is activated to excite the resonance. The activation of

the sextupole is done gradually, in few ms. The trajectories of the particles in phase

space are deformed into triangles (fig. 3.2). The emittance of the beam before the

activation of the resonance driving sextupole must be smaller than the acceptance

defined in eq. 3.23.

The RF-knockout extraction system involves the use of a kicker, which perturbs

the beam at a frequency of the order of the revolution frequency. The amplitude

of the kick must be of the order of few µrad. The kicker is turned on when the

sextupole is activated.

The perturbation modifies the particle divergence by a small angle. If the per-

turbations of each particle at every turns are similar, after many turns the beam

emittance increases until it become bigger than the acceptance and some particles

leave the stable region.

To have a perturbation resonant with the particle, the radio frequency must

have the same frequency of the betatron oscillation, or a frequency which match the

betatron oscillation.

The betatron oscillation frequency fx is:

fx = Qx × frev = (m+ qx)× frev (4.1)

where m ∈ N is the integer part of Qx and qx ∈ R is the fractional part of Qx.

To match the particle oscillation, the frequency of the RF signal must be:

f0 = (n± qx)× frev (4.2)

where n ∈ N.
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Chapter 4. RF-knockout

If the horizontal chromaticity is 0, the RF frequency is determined by eq. 4.2,

because the betatron oscillation frequency is determined. Therefore the signal of

the kicker can be a sinusoid with frequency f0:

k(t) = k0 × cos(2πf0t) (4.3)

If the horizontal chromaticity of the synchrotron is different from 0, the mo-

mentum spread produces a tune spread. Therefore the betatron frequency of each

particle depends on the particle momentum.

The tune spread, ∆Qx, can be derived:

∆Qx = |ξx| ×
∆p

p
×Qx (4.4)

where Qx is the horizontal tune, ξx is the horizontal chromaticity, p is the reference

momentum and ∆p is the momentum spread.

If the mean momentum of the particles is different from the reference momentum,

i.e. there is a momentum translation, also the tune is translated.

The tune translation δQx is:

δQx = ξx ×
δp

p
×Qx (4.5)

where δp is the momentum deviation from the reference one.

If the particles of the beam have a large range of tunes, a constant frequency

will not match with all particle tunes and only a small fraction of the particles are

extracted with RF-knockout.

At CNAO synchrotron the horizontal chromaticity times the horizontal tune is

ξxQx = −3.940, the particles have a momentum spread ∆p/p ' 0.001 and the

horizontal tune of the reference particle at extraction is Qx = 1.666. The tune

spread is:

∆Qx = 3.940× 0.001 ' 0.004 (4.6)

In the CNAO synchrotron, in the region of the electrostatic extraction septum,

the dispersion is not 0. Therefore a momentum deviation determines also horizontal

position deviation.

To improve the extraction efficiency, the distance between the circulating beam

and the electrostatic extraction septum is increased by decreasing the average mo-

mentum.
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4.1. Frequency modulation

δp

p
' −0.0015 (4.7)

where δp is the mean momentum deviation from the reference one.

The momentum deviation causes an other advantage: the mean tune value

changes and the stable region becomes larger.

The mean horizontal tune is:

Q̄x = Qx + δQx = Qx + ξx ×
δp

p
×Qx = 1.666 + 3.940× 0.0015 ' 1.672 (4.8)

Two solutions can be applied for the RF-knockout method where the chromatic-

ity is different from 0. The first one is the use of a signal modulated in frequency,

in order to cover all the tunes range [24]. The second one is the use of a white noise

in the range of frequencies suitable to cover all the tunes [25].

4.1 Frequency modulation

The first solution, with the frequency modulation, is used in many hadrontherapy

synchrotrons, as the one in Chiba, Japan (HIMAC [24]) and the one in Heidelberg,

Germany [26].

The signal of the kicker must be modulated by a signal φ(t) as shown in next

equation:

k(t) = k0 × cos(ω0t+ φ(t)) (4.9)

where ω0 = 2πf0 is the angular frequency of the carrier wave and φ(t) is the modu-

lating signal.

The instantaneous phase ψ(t) and the instantaneous frequency f(t) are defined

as [27]:

ψ(t) = ω0t+ φ(t) (4.10)

f(t) =
1

2π

dψ(t)

dt
= f0 +

1

2π

dφ(t)

dt
(4.11)

The instantaneous frequency must match all the frequency spread of the betatron

oscillation. An instantaneous frequency, varying as a saw-tooth signal centered in

the frequency f0 and with peak to peak amplitude greater than the frequency spread

of the betatron oscillation, ensures this matching in a simple way. The repetition

frequency of the FM signal must be much less than the betatron oscillation frequency.

The betatron oscillation frequency depends on the velocity of the particles in the

synchrotron and therefore on the extraction energy and on the type of particle. The
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Chapter 4. RF-knockout

betatron frequency is of the order of 1 MHz, so the FM signal frequency can be of

the order of 1 kHz.

The instantaneous frequency can be written:

f(t) = f0 +G(t) (4.12)

where G(t) = 1
2π

dφ(t)
dt

.

G(t) is the modulating signal and it can be a saw-tooth signal centered in 0, with

amplitude greater than the frequency spread of the betatron oscillation.

G(t) = ∆f ×
(

t

TFM
−
[

t

TFM

]
− 1

2

)
(4.13)

where TFM is the period of the frequency modulation and
[

t
TFM

]
is the integer

part of t
TFM

.

An example of the function G(t) is shown in figure 4.1.
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Figure 4.1: Frequency modulation signal. The period of the mod-
ulation is 1 ms and the peak to peak amplitude is 30 kHz.

The signal of the kicker k(t) (eq. 4.9) can be obtained, because

G(t) =
1

2π

dφ(t)

dt
(4.14)

therefore

φ(t) = 2π

∫ t

0

G(τ)dτ (4.15)

Below the function φ(t) when t < TFM (eq. 4.16) and the function φ(t) for all

values of t (eq. 4.17) are written.
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φ(t) = 2π∆f

(
t2

2TFM
− 1

2
t

)
if 0 < t < TFM (4.16)

φ(t) = 2π∆f

((
t−
[

t
TFM

]
TFM

)2

2TFM
− 1

2

(
t−
[

t

TFM

]
TFM

))
∀t ∈ R (4.17)

The signal φ(t) of eq. 4.17 is the integral of the signal of figure 4.1 and it is

shown in fig. 4.2.
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Figure 4.2: Function φ(t). It is the integral of the G(t) function.

Using a kick with the signal described in eq. 4.9 all the frequencies of the particles

are excited and all the beam can be extracted.

An example of a signal modulated in frequency with a saw-tooth function is

shown in figure 4.3.

The carrier wave frequency is 7.0 kHz, the repetition period of the modulating

signal is 1.1 ms, the peak to peak amplitude of the modulating signal is 6.5 kHz.

Those values are very different from the ones to be used in the kicker for the

RF-knockout extraction. The repetition period of the modulating signal must be

greater than the period of the carrier wave by about a factor 103, because every

particle must receive a perturbation for many turns to be extracted.

If the amplitude of the frequency modulating signal is larger than the tunes

spread of the particles, the kicker perturbs some particles only in the centre of the

period, when the instantaneous frequency matches the betatron frequency of some

particles. The result is that the extracted beam, called spill, has a ripple at frequency

of the FM signal repetition, about 1 kHz.
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Figure 4.3: An example of a signal modulated in frequency by a
saw-tooth signal. The values of the carrier wave frequency is much
smaller than the frequency to be used for the kicker of the RF-
knockout extraction.

4.2 Noise

A second solution to perturbate all the particles of a beam, where there is a

momentum spread and the chromaticity is different from 0, involves the use of a

white noise at a given range of frequency. This solution was described by S. Van der

Meer in 1978 [25]. It has not been used up to now in hadrontherapy synchrotrons.

A white noise is a signal which contains the same power in each bandwidth at

all the frequencies. For the RF-knockout the spectrum of the noise must contain all

the range of frequencies of the particles.

The use of a white noise can eliminate the spill ripple, because the signal always

contains all the frequencies of the beam.

These two solution generate an extracted beam which decays exponentially with

the time [28].

To have a constant extraction the amplitude of the RF signal must increase with

time.
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Extraction simulation

A dedicated simulation is necessary to find the better parameters for the RF-

knockout extraction.

To simulate the RF-knockout extraction a multi-particle tracking program is

needed.

The program has to be able to find the values of the quadrupoles and sextupoles

strength to have the desired tunes and to have the desired chromaticity.

The simulation program must be able to do the tracking of at least a few thousand

particles, to get an information about the extracted beam not too disturbed by the

statistical fluctuations. The number of turns to be simulated is about 106.

The program has to change an element of the synchrotron, the kicker, at every

turn.

The program MAD-X [29], developed at CERN, can find the right values of

quadrupoles and sextupoles strength and it can track many particles. With MAD-

X, the change of an element of the synchrotron during the tracking is not expected.

It is possible to change all the synchrotron and to track only one turn at a time, but

this procedure is very slow. I effect the MAD-X output is a file with all particles

coordinates. Reading and writing a file for every turn is a very slow process: so

MAD-X is not a good program to simulate the RF-knockout extraction.

For those reasons a multi-particle tracking program has been written in C++

language. The characteristics of the program are explained in next section.

5.1 Simulation program

The simulation program ExTRACKtION can track any number of particles (pro-

tons or carbon ions) for one turn or many turns of the synchrotron. The synchrotron

lattice and the initial particle coordinates are the input of the program.
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Chapter 5. Extraction simulation

The resonance sextupole is gradually turned on in 30000 turns.

The program allows to choose whether to turn on the RF-knockout or leave it

off, to choose the type of radio frequency and to select the kind of kicker to be used.

The program performs a six-dimentional tracking, where the coordinates are:

• horizontal position (X);

• horizontal divergence (PX);

• vertical position (Y );

• vertical divergence (PY );

• longitudinal position (T );

• difference from particle momentum and reference momentum, divided by the

reference momentum (PT).

The synchrotron is composed by linear and nonlinear elements.

The linear elements are bending magnets, quadrupole magnets and drift spaces.

These elements can be described by a transfer matrix.

X1

PX1

Y1

PY1

T1

PT1


= (M)



X0

PX0

Y0

PY0

T0

PT0


(5.1)

where M is the element transfer matrix, {X1;PX1;Y1;PY1;T1;PT1} are the parti-

cle coordinates after the synchrotron element, {X0;PX0;Y0;PY0;T0;PT0} are the

particle coordinates before the synchrotron element.

M is a 6× 6 matrix.

A segment of the synchrotron with only linear elements is described by the prod-

uct of the transfer matrices of each element [30]. The transfer matrix is dependent

on the particle momentum.

Nonlinear elements of the synchrotron are the sextupoles.

The effect of every sextupole on the particle coordinates is calculated with the

thin lens approximation, described in appendix B.1. CNAO sextupole effective
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5.1. Simulation program

magnetic length is 26 cm. The sextupole is considered an element with null length

preceded and followed by two 13 cm drift spaces.

With the thin lens approximation, ∆X = 0 and ∆Y = 0.

∆X ′ =
1

2
lsk
′ (X2 − Y 2

)
(5.2)

∆Y ′ = − lsk′XY (5.3)

where

k′ =
1

Bρ

(
d2BY

dX2

)
(5.4)

is the normalized sextupole gradient.

Therefore, the effect of a sextupole is:

X1 = X0 (5.5)

PX1 = PX0 + ∆X ′ (5.6)

Y1 = Y0 (5.7)

PY1 = PY0 + ∆Y ′ (5.8)

T1 = T0 (5.9)

PT1 = PT0 (5.10)

In the CNAO synchrotron there are two elements which can be used as kickers

for the RF-knockout extraction: the horizontal tune kicker and the Schottky pickup.

The elements are described in chapter 6. The simulation program consents to choose

which kicker use changing an input parameter.

The kicker is considered an element with null length preceded and followed by

two equal drift spaces. The effect of the kicker is only to change the horizontal

divergence:

X1 = X0 (5.11)

PX1 = PX0 + k (5.12)

Y1 = Y0 (5.13)

PY1 = PY0 (5.14)

T1 = T0 (5.15)

PT1 = PT0 (5.16)
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The normalized quadrupole gradient and the normalized sextupole gradient de-

pend on the particle momentum. The beam has a momentum spread, therefore the

normalized gradients depend on the particle.

The program generates the transfer matrix of each segment of the synchrotron

composed of only linear elements for one particle, tracks the particle for all the turns

or until the extraction and continues with the next particle. For each particle the

matrices must be recalculated, because the particle momenta are different. The par-

ticle energy does not change during the simulation, because there is no accelerating

cavity and the particles do not radiate.

The program verifies the particle horizontal coordinate at the electrostatic ex-

traction septum. If the particle position is over the septum, the particle is considered

extracted and its coordinates are stored in a file.

5.1.1 RF-Signal

The frequency modulated signal is generated according to what explained in

chapter 4.

The noise signal is produced starting with the pseudo-random number generator,

included in the C++ standard library: the function rand().

The C++ function rand() returns a pseudo-random natural number in the range

0 to RAND MAX. RAND MAX is a constant defined in the <cstdlib> C++ library.

With a simple code, a signal ranging from −1 to 1 and with a flat spectrum

between f = 0 and f = fs/2, where fs is the sampling frequency, can be obtained.

A signal like that is shown in figure 5.1.

A signal with a spectrum characterized by two peaks near an angular frequency

ω0 can be obtained by means of an amplitude modulation of a sinusoid of angular

frequency ω0 with a sinusoid of angular frequency δω (Werner formulas, eq. 5.17).

cos(δωt) cos(ω0t) =
1

2
[cos ((ω0 − δω) t) + cos ((ω0 + δω) t)] (5.17)

In general, if a sinusoid with frequency f0 is modulated in amplitude by a sig-

nal with a frequency distribution centered at 0, a signal with the same frequency

distribution, but centered at f0, is obtained.

A noise with a flat spectrum between f0 − δf and f0 + δf in necessary for the

RF-knockout extraction. To generate that signal, a signal with a flat spectrum in

the range 0 to δf is used to modulate a sinusoid with a frequency f0.

A signal with an almost flat spectrum in the range 0 to δf can be generated

filtering the noise obtained with the pseudo-random generator. In the program a
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Figure 5.1: A white noise signal generated with the pseudo-random
C++ generator.

gaussian filter is used.

In figure 5.2 the Fast Fourier Transform of the noise signal used for RF-knockout

is shown.

5.1.2 Particle distribution

The program generates a particle distribution uniform into an ellipse, in the

horizontal and vertical phase space. This distribution is similar to the CNAO real

particle distribution in the synchrotron [31].

The horizontal and vertical emittance are free parameters.

In figure 5.3 the initial horizontal phase space distribution is shown. The emit-

tance corresponding to this distribution is 3.66225πmm mrad, i.e. the value at the

maximum extraction energy of carbon ion beam.

During the extraction the accelerating RF cavity is turned off and the momentum

spread causes the beam filling all the ring after some laps.

With the carbon ion beam at maximum extraction energy and a momentum

spread ∆p/p = 0.001, the beam fills all the ring after about 3500 turns.

The longitudinal phase space distribution generated by the program is uniform

in ∆p/p, with a null value of longitudinal relative position. The initial longitudinal

phase space distribution is shown in figure 5.4.

In table 5.1, the characteristics of the simulated beam are summarized.
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Figure 5.2: Fast Fourier Transform of the noise signal used for the
RF-knockout.

−0.016 −0.014 −0.012 −0.01 −0.008 −0.006 −0.004 −0.002 0

0.8

1

1.2

1.4

1.6

1.8

x 10−3

X (m)

X’
 (r

ad
)

Figure 5.3: Initial horizontal phase space distribution. The emit-
tance is 3.66225 mm mrad, the value corresponding to the maximum
extraction energy of carbon ion beam.
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Figure 5.4: Initial longitudinal phase space distribution.

Particle 12C6+

kinetic energy 400 MeV/u

fRev 2.757 MHz

Qx 1.666

Qy 1.720

ξx −3.940

ξy −1.067

Momentum spread (∆p/p) 0.001

Momentum translation (δp/p) −0.0015

fRF−ko 0.919 MHz

∆Qx 0.004

∆Qy 0.001

fRev ·∆Qx 11 kHz

εx = εy 3.66225πmm mrad

Table 5.1: Simulated beam characteristics.
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Chapter 5. Extraction simulation

5.2 Simulation results without RF-knockout

In figure 5.5 the result of the tracking of a carbon ion in the stable region without

the RF-knockout is shown. The particle is tracked for 105 turns, the resonance

sextupole is turned on in 30000 turns. In the firsts 100 turns, with the sextupole

turned off, the particle horizontal phase space coordinates stay on an ellipse. After

105 turns, the particle coordinates stay on the triangle.
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Figure 5.5: Horizontal phase space coordinates of a stable particle.
Every point is the position of the particle at one turn. The points
on the ellipse are the first 100 turns, with the sextupole turned off,
the points on the triangle are the last 100 turns of the simulation,
with the sextupole turned on.

In figure 5.6 is shown the result of the tracking of a carbon ion outside the stable

region. The separatrices are visible.

To verify the dimension of the stable triangular region, 1000 particles with a

large emittance have been tracked for 105 turns. Many particles were extracted,

because they were in the unstable region. Injected particles and residual particles

are shown in figure 5.7

The area of the stable region, the acceptance (eq. 3.23), depends on the distance

of the particle tune from the resonance. The particle tunes are different, because

the chromaticity is not 0 and the particles have a momentum spread.
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Figure 5.6: Horizontal phase space coordinates of an unstable par-
ticle. The particle is extracted after about 40000 turns.
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Figure 5.7: Horizontal phase space coordinates of 1000 particles
without momentum spread at injection, with a large emittance,
and the residual particles after 105 turns.
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Chapter 5. Extraction simulation

In figure 5.8 two stable regions are shown: the yellow one is relative to particles

far from resonance, the blue one is relative to particles near the resonance. One of

the three separatrices, the one where the extraction occurs, is common for particles

with high momentum and particles with low momentum, because the lattice satisfies

the Hardt Condition.
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Figure 5.8: The stable regions for two groups of particles with differ-
ent momenta, i.e. with different tune distance from the resonance.

5.3 Simulation with RF-knockout

To find the correct frequency of the carrier wave to be sent to the kicker, a simu-

lation with a large FM period and a large FM amplitude was done. The amplitude

of the carrier wave is large enough to have a high intensity spill.

The parameters of the RF signal used are:
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5.3. Simulation with RF-knockout

fk = (1− q − δQ) ∗ frev = 0.901 MHz (5.18)

Kick = 3.0µrad (5.19)

∆fk = 50 kHz (5.20)

TFM = 10 ms (5.21)

where fk is the carrier wave frequency, Kick is the amplitude of the carrier wave,

∆fk is the amplitude of the frequency modulating signal, TFM is the repetition

period of the frequency modulating signal.

In figure 5.9 is shown the intensity of the extracted beam relating to the phase

of the frequency modulating function.
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Figure 5.9: The first picture shows the integral of the extracted
particles, the second one shows the frequency modulating function,
the third one shows the extracted particles in 10 turns.

Extraction takes place only at a certain range of modulating function, i.e. when

the instantaneous frequency of the signal matches to the betatron frequency of some

particles of the beam.
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Chapter 5. Extraction simulation

If the momentum spread is null, the extracted beam intensity decay exponen-

tially, because the beam emittance increase exponentially.

In figure 5.10 the extracted beam intensity is shown with three different constant

amplitude of RF-knockout: 0.5µrad, 1.0µrad and 2.0µrad. The extracted beam

intensity increase at the begin of the RF-knockout and then decrease exponentially.

The characteristic time of the exponential is smaller when the kick amplitude is

larger.
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Figure 5.10: Intensity of extracted beam with constant kick ampli-
tude: 0.5µrad, 1.0µrad and 2.0µrad.

In figure 5.11 the extraction intensity is shown for beams with three different

momenta, without momentum spread. The momentum variations, compared to

the value of the reference momentum, are: δp/p = −0.001, δp/p = −0.0015 and

δp/p = −0.002.

The intensity of the extracted beam decrease exponentially. The characteristics

time of the exponential is smaller when the momentum of the particles is close to the

reference momentum, i.e. the tune is close to the resonance tune and the acceptance

of the stable region is smaller.
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Figure 5.11: Intensity of extracted beam with constant kick ampli-
tude, no momentum spread and three different momenta: δp/p =
−0.001, δp/p = −0.0015 and δp/p = −0.002.
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Chapter 5. Extraction simulation

The frequency modulated signal for the RF-knockout covers all frequencies of

the beam, but the extracted beam has a ripple corresponding to the frequency of

the modulating function.

In figure 5.12, the integral of extraction current is shown together with the saw-

tooth frequency modulation signal for a short time. The 1 kHz ripple is visible.
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Figure 5.12: Integral of the spill; saw-tooth FM; spill with 1 kHz
ripple.

Although the RF-knockout with the white noise signal is not used in the main

synchrotrons for hadrontherapy, the simulation shows that the ripple is eliminated

from the spill with that method. Figure 5.13 shows the spill characteristics for this

case.

5.3.1 Constant spill

The extracted beam with the RF-knockout decays exponentially with time with

both signals: the frequency modulated sinusoid and the white noise. The charac-

teristic time of the exponential depends on the kick amplitude.

To have a constant spill, as it is needed for hadrontherapy, the amplitude of the

signal must be increased.
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Figure 5.13: Integral of the extracted beam and spill for the RF-
knockout with noise signal simulation.

In figure 5.14, the inverse of the characteristic time (λ = 1/τ) is plotted as a

function of the kick amplitude.

Figure 5.14: 1/τ as function of kick amplitude.

A fit with a power function λ = A× kB has been performed, in order to find the

best approximation. It is an empirical way to estimate the value of 1/τ as function

of the kick amplitude.

The fit result is:

B = 2.4± 0.1 (5.22)
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Chapter 5. Extraction simulation

The extracted beam has an exponential decay:

N (t) = N0 e
− t
τ (5.23)

where N (t) is the number of particles of the beam at time t, N0 is the initial number

of particles.

− dN (t)

dt
=
N (t)

τ
= N (t)× λ (5.24)

The amplitude of the kick must be increased to have a constant spill.

− dN (t)

dt
∝ N (t)× k(t)B = const = N0 × kB0 (5.25)

N (t)× k(t)B = N0 × kB0 (5.26)

k(t) = k0 × (N0/N (t))1/B (5.27)

where N (t) = N0 × (1− t/τ).

In figure 5.15, the kicker signal has been increased with the amplitude modulation

function of equation 5.27.
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Figure 5.15: Spill integral, AM, spill.

Spill integrals of 0.1 s long periods in different moments have been compared and

they differ by about 10% for the first 70% of the extraction.
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5.3.1 Constant spill

A feedback system could be useful to have a constant extraction of the last part

of the beam.

The horizontal distribution of the particles in six moments of the simulation is

shown in figure 5.16.
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Figure 5.16: Horizontal distribution of the beam at six different mo-
ments of the simulation. The peak at x = 0.035 m is the extracted
beam.
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In figure 5.17, the horizontal phase space distribution of the extracted beam is

shown. The RMS emittance of the extracted beam obtained from the simulation is

εRMS = 2.358 · 10−2 mm mrad.
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Figure 5.17: Horizontal phase space distribution of the extracted
beam.

5.4 Simulation: a conclusion

Two signals have been compared for the RF-knockout extraction: a frequency

modulated sinusoid signal and a white noise filtered with a gaussian filter. With

the frequency modulated signal, the extracted beam has a ripple at the frequency

of the modulating signal (1 kHz). The noise signal does not produce an extracted

beam with ripple, so it is preferable.

An extracted beam with constant intensity is possible by means of an amplitude

modulation of the kicker signal. The simulation has shown an amplitude modulation

function which produce an extracted beam with constant intensity for about first

70% of the extraction time. A feedback system could be useful to have a constant

spill in the last part of the extraction.

The simulation has shown that, in the most demanding conditions, i.e. with
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5.4. Simulation: a conclusion

a carbon ion beam at maximum energy and minimum emittance, a relatively fast

extraction (1 s) can be obtained with a perturbation of less than 1µrad. To have a

slower extraction, an extraction of the proton beam or an extraction of the carbon

ion beam at less energy, the perturbation should be smaller.
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Chapter 6

Kicker

The maximum needed amplitude of the kick, as shown by simulation, is about

1µrad. Two devices could be used for the RF-knockout extraction in CNAO syn-

chrotron: the horizontal tune kicker [20] or the Schottky pickup [32].

The horizontal tune kicker is a dipole used to transversally perturb the beam, so

to measure the horizontal tune. In figure 6.1 the horizontal tune kicker is shown.

Figure 6.1: Horizontal tune kicker.
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The deflection angle of particles passing through the kicker per unit of coil current

is ∆x′ ' 0.7µrad/A [33].

The resistance of the tune kicker is R = 4.3·10−3 Ω, the inductance is L = 0.7µH.

At 1 MHz, the reactance Lω is of the order of 2πΩ, which is much larger than the

resistance.

With a current flowing through the magnet of 10 A, corresponding to a deflection

of 7µrad, the voltage across the kicker will be:

V = ZI ' jLωI ' 100 V (6.1)

A power supply with these characteristics is commercially available, so the hor-

izontal tune kicker can be used for the RF-knockout extraction.

The Schottky pickup is a diagnostic element of the synchrotron made by stripline

electrodes, used to measure the longitudinal and transverse dynamical properties of

the circulating beam. It can be relatively easily turned in a beam kicker. In figure

6.2 the schottky pickup is shown.

The electric field generated in the Schottky pickup, with a voltage applied to the

electrodes of ±500 V, is 104 V/m [33]. The deflection angle can be calculated for the

carbon ion beam at maximum energy:

∆x′ =
E · q · l
p · βc

' 104 V/m · 6 e · 1 m

11.4 GeV/c · 0.71 c
' 7.4µrad (6.2)

where E is the electric field, q is the particle charge, l is the electrode length, p is the

particle momentum and β = v/c. This is the deflection due to the electric field. The

total deflection is greater, because a component due to the magnetic field, produced

by current flowing in the electrodes, must be added.

The necessary kick for the RF-knockout extraction is less than 1µrad, so the

Schottky pickup can be used.

These two devices are in different regions of the ring. The simulation has not

shown relevant differences between the two kicker positions.
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Figure 6.2: Schottky pickup.
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Conclusions

CNAO accelerator complex is now under commissioning. The commissioning of

the injection system is successfully concluded. Design beam parameters have been

obtained along the injector, including the two sources, the LEBT, the RFQ, the

LINAC and the MEBT.

A slow extraction system from the synchrotron with high precision intensity is

needed. Two extraction methods will be possible in the CNAO synchrotron: the

acceleration driven extraction, with the use of a betatron core, and the RF-knockout.

After analysis and evaluations, the feasibility of the RF-knockout extraction in

the CNAO synchrotron has been checked.

The program ExTRACKtION has been written and used to fully explore the

possibility of implementing the RF-knockout extraction method in the CNAO syn-

chrotron with the existing hardware. It will be also used to simulate the beam

dynamics with any extraction systems and to obtain the beam distribution on the

extraction line in order to optimize the extracted beam characteristics.

In this work the use of a filtered white noise, instead of a frequency modulated

sinusoid, as kicker signal has been proposed to eliminate the ripple of the RF-

knockout extracted beam.

The maximum kick amplitude needed to have a slow and uniform extraction

can be produced by two devices already present in the CNAO synchrotron: the

horizontal tune kicker and the Schottky Pickup.

When the commissioning of the synchrotron will be terminated, the RF-knockout

extraction will be tested on the synchrotron.
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Appendix A

Accelerator Physics

A.1 Coordinate system

Figure A.1: Coordinate system for particle accelerator physics.

In particle Accelerator Physics an accelerator is described as a sequence of ele-

ments placed along the reference orbit. The reference orbit is the orbit of an ideal

particle with the exact momentum. It is defined under the assumption that all

elements are perfectly aligned.

The position of a particle in the accelerator is defined by the curvilinear coordi-

nate s, along the reference orbit, and by the orthogonal coordinates x and y. The

x axis is on the plane of the accelerator and the positive direction is going outside

the synchrotron. The y axis is the vertical coordinate.
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A.2 Emittance and acceptance

The beam emittance is the region of phase space occupied by the particles of the

beam. There are the horizontal, vertical and longitudinal emittance. The unit of

measure is m× rad. Usually the emittance is expressed in mm×mrad.

The acceptance is the maximum area which the beam can occupy in phase space

without losing particles.
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Appendix B

Third order resonance

B.1 Effect of a sextupole on the beam

The magnetic field of a sextupole is:

Bx =

(
d2By

dx2

)
xy By =

1

2

(
d2By

dx2

)(
x2 − y2

)
(B.1)

G =
d2By

dx2
(B.2)

is the sextupole gradient.

The effect of a sextupole magnet on the trajectory of a positively charged particle

in an anticlockwise synchrotron can be calculated with the thin lens approximation.

The sextupole will produce a ∆px and therefore a ∆x′ according to:

∆px =

∫
Fxdt = qByls (B.3)

where ls is the length of the sextupole and q is the charge of the particle;

∆x′ =
∆px
p

=
qByls
p

(B.4)

In eq. B.4, substituting p
q

with Bρ (eq. 2.2):

∆x′ =
Byls
Bρ

(B.5)

Similarly for y′ correction:

∆y′ = −Bxls
Bρ

(B.6)
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The values Bx and By from eq. B.1 are substituted into eq. B.5 and eq. B.6:

∆x′ =
1

2
lsk
′ (x2 − y2

)
(B.7)

∆y′ = − lsk′ xy (B.8)

where

k′ =
1

Bρ

(
d2By

dx2

)
(B.9)

is the normalized sextupole gradient.

Now the transformations for normalized coordinates are applied to the equations

B.7 and B.8, in order to obtain the effect of a sextupole in normalized coordinates.

Normalized coordinates are defined as [30]:

X =
x√
βx

(B.10)

X ′ =
√
βx x

′ (B.11)

Y =
y√
βy

(B.12)

Y ′ =
√
βy y

′ (B.13)

Therefore the effect of a sextupole in normalized coordinates results to be:

∆X = 0 (B.14)

∆X ′ =

(
1

2
βx

3
2 lsk

′
)(

X2 − βy
βx
Y 2

)
= S

(
X2 − βy

βx
Y 2

)
(B.15)

∆Y = 0 (B.16)

∆Y ′ = −2

(
1

2
βx

3
2 lsk

′
)
βy
βx
XY = −2S

βy
βx
XY (B.17)

where

S =

(
1

2
βx

3
2 lsk

′
)

(B.18)

is the normalized sextupole strength.

The sextupoles cause the coupling between X and Y .

In the case of the resonant extraction, the amplitude of the horizontal coordinate

is much greater than the amplitude of the vertical coordinate, furthermore, the tune

of the vertical betatron oscillations has a value far from resonances. For these

reasons, the vertical coordinate is negligible in the study of the resonant extraction
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and equations B.14, B.16, B.15, B.17 get this simplified form:

∆X = 0 (B.19)

∆X ′ = S X2 (B.20)

∆Y = 0 (B.21)

∆Y ′ = 0 (B.22)
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