TESI DI LAUREA IN INGEGNERIA AEROSPAZIALE INDIRIZZO SPAZIALE

PROGETTO DI UN PROPULSORE AD EFFETTO HALL SPERIMENTALE A BASSA POTENZA A PARAMETRI VARIABILI

Andreasebastian Daquino

Anno Accademico 2009-2010

T253

Università degli Studi di Pisa Facoltà di Ingegneria

Tesi di Laurea in Ingegneria Aerospaziale

PROGETTO DI UN PROPULSORE AD EFFETTO HALL SPERIMENTALE A BASSA POTENZA A PARAMETRI VARIABILI

Candidato

Andreasebastian Daquino

Relatori

Prof. M. Andrenucci

Ing. P. Rossetti

Ing. C. Ducci

Anno Accademico 2009-2010

A tutti coloro che, come me, non l'avrebbero mai detto A mio nonno che avrebbe desiderato vedermi così A me, che ce l'ho fatta!

St'omini vonnu sempa ma sannu Hannu semp' e sapira i saperi U ppecchì e tutti i misteri

SOMMARIO

Un approfondito lavoro di ricerca nel settore della propulsione elettrica condotto nell'ex Unione Sovietica, negli stati Uniti e, negli ultimi anni, anche in Europa, ha favorito l'impiego in campo spaziale dei propulsori ad effetto Hall soprattutto grazie all'introduzione di sistemi in grado di supportare la potenza elettrica necessaria alla loro alimentazione. Cresce inoltre l'interesse nei confronti di sistemi specializzati, come mini e micro satelliti, in grado di consentire notevoli risparmi in costi di lancio. Proprio la ricerca di propulsori adeguati alle dimensioni di tali satelliti apre nuove prospettive di studio verso un intervallo di potenze sino ad ora poco esplorato. Le ridotte geometrie di questi motori, sottoposti a intensi campi magnetici richiederanno necessariamente uno studio geometrico approfondito con l'adozione di particolari strategie tecnologiche che ne consentano lo smaltimento del calore.

Il seguente lavoro di tesi, sviluppato presso ALTA S.p.A., ha lo scopo di focalizzare l'attenzione sulle fasi di disegno, progettazione ed analisi mediante simulazioni agli elementi finiti, del comportamento di un propulsore ad effetto Hall sottoposto a variazioni di intensità della componente radiale del campo magnetico indotto nel traferro in un intervallo compreso tra $B_r = 10mT$ e $B_r = 80mT$.

La prima parte del lavoro riporta le leggi fondamentali che stanno alla base del funzionamento dei motori ad effetto Hall. Partendo poi da una geometria preliminare, ottimizzandone le simulazioni magnetiche, si cercherà di capire quali possano essere le modifiche geometriche e tecnologiche da apportare che ne consentano il raggiungimento di una configurazione magnetica ottimale. Ogni modello realizzato sarà comunque sottoposto ad analisi termica monitorando di volta in volta i valori massimi di temperatura raggiunti dai singoli componenti.

ABSTRACT

Electric Propulsion has been supported by experimental works done in the ex-USSR, USA and in the Europe thanks to development of space systems capable to provide enough energy for electric propulsion. Today the interest in small and micro satellites has strongly grown because they are cheap. These thrusters gives also the impulse to study devices of a new class of power not so much analysed until now. On the other hand these kind of Thrusters have particular heat dissipation problems caused by generation of a strong magnetic field in their compact device. These thermal problems will be only solved using an innovative configuration with technological improvements.

The present work investigates the design, the project and the analyses by numerical simulations of an Hall effect Thruster with magnetic field range between $B_r = 10mT$ and $B_r = 80mT$.

The first part of the thesis reminds fundamental laws concerning the Hall Thrusters. The first Thruster design is found on the base of initial requirements. The studies to research the optimal configurations is made between magnetic simulations after geometric changes. All Thruster designs is controlled by thermal analysis to check all elements temperatures after every magnetic simulation.

RINGRAZIAMENTI

Un ringraziamento particolare al Prof. Mariano Andrenucci per avermi concesso l'opportunità di svolgere presso ALTA una fantastica esperienza nell'ambito della ricerca in campo aerospaziale. Ringrazio l'Ing. Paola Rossetti per la sua disponibilità, l'Ing. Cosimo Ducci che con la sua pazienza e disponibilità ha saputo darmi preziosi consigli e l'Ing. Riccardo Albertoni per le numerose risposte alle mie altrettante domande. Desidero ringraziare inoltre tutti coloro che, seppur ignari, hanno contribuito al compimento di questo mio lungo cammino: la mia "Famiglia" che è sempre riuscita a sostenere la non poca onerosa vita universitaria e, nonostante la distanza, a farmi sentire a Casa; Michela, per essere entrata a far parte della mia Vita, per avermi capito, sostenuto e sopportato nei tanti momenti difficili; per avermi amato; Francesco, per essere diventato mio fratello ed aver incominciato con me questa meravigliosa esperienza; Manuel con cui ho condiviso momenti di gioia, studio ed ansia pre-esame; Ivo, Paolone, Gianne e tutti colori i quali hanno trascorso con me giornate fatte di studio e relax. Marco, per avermi insegnato a vivere il mare; Ringhio, per aver apportato il giusto carico di distrazione nei momenti di svago. A tutti loro ed a tanti altri dico *grazie*, perché è anche un po' per loro se oggi sono *questo*.

INDICE

LISTA DELLE FIGURE

LISTA DELLE TABELLE

LISTA DEI SIMBOLI

1	INTRODUZIONE	1
1.1	Introduzione	1
1.2	Cenni storici e generalità	1
1.3	Propulsione spaziale: generalità	4
1.4	La propulsione elettrica	10
1.5	I propulsori ad effetto Hall	12

2.1 2.2	Introduzione Particelle cariche in campi elettromagnetici	19 19
2.2	1 Moto di una particella in un campo elettrico uniforme: $B = 0$	20
2.2	2 Moto di una particella in un campo magnetico uniforme: $E = 0$)20
2.2	3 Moto di una particella in campi uniformi: $E \neq 0, B \neq 0$	22
2.3	Descrizione del propulsore ad effetto Hall	25
2.4	Influenza del campo magnetico	
2.5	Processo di ionizzazione	28
2.6	Conduzione verso le pareti della camera	
2.7	Influenza della parete della camera di accelerazione	
2.8	Parametri di prestazione di un motore ad effetto Hall	
2.9	Obiettivi e motivazioni della tesi	35

3 RICHIAMI DI ELETTOMAGNETISMO......**3**9

3.1	Introduzione	39
3.2	Le equazioni di Maxwell	39

	3.2.1 Legge di Gauss	41		
	3.2.2 Legge sull'assenza dei monopoli magnetici	42		
	3.2.3 Legge di Faraday	42		
	3.2.4 Legge di Ampere	43		
3.3	Potenziale elettrico scalare e potenziale magnetico vettoriale	44		
3.4	Interazione dei campi elettromagnetici con la materia	46		
	3.4.1 La polarizzazione elettrica	46		
	3.4.2 La magnetizzazione	47		
3.5	Condizioni al contorno di B ed H			
3.6	Diamagnetismo e paramagnetismo per materiali isotropi			
3.7	Ferromagnetismo			
3.8	Isteresi magnetica			
3.9	Energia di campo magnetico	54		
	3.9.1 Ciclo di isteresi nei materiali ferromagnetici dolci	56		
	3.9.1 Ciclo di isteresi nei materiali ferromagnetici duri	56		
3.10	Fattori che influenzano la qualità magnetica dei materiali	57		

4.1	Introduzione	59
4.2	Panoramica storica	59
	4.2.1 Il potenziale termalizzato ed influenza del gradiente assiale di B_r	60
4.3	Requisiti dei materiali del circuito magnetico	62
4.4	Requisiti del campo magnetico indotto	64
4.5	Il circuito magnetico	65
	4.5.1 Circuito magnetico con magneti permanenti	67

5	Anali	isi magnetica preliminare	71
5.1	Introdu	izione	71
5.2	Fase di	Fase di scelta della configurazione preliminare	
	5.2.1	Ipotesi e vincoli	73
	5.2.2	Analisi preliminari	74
		5.2.2.1 Generazione del campo	74
		5.2.2.2 Scelta del cavo da utilizzare	75
		5.2.2.3 Schematizzazione avvolgimenti	
		5.2.2.4 Caratteristiche dei materiali	
5.3	Analis	i magnetica	78
	5.3.1	Condizioni al contorno	79

	5.3.2	Assialsimmetria	80
	5.3.3	Ipotesi per la simulazione con FEMM	81
5.4	Risultati analisi magnetica		81
	5.4.1	Geometria di prima approssimazione	
		5.4.1.1 Risultati simulazione magnetica	
5.5	Prova	con magnete permanente	86

Introduzione					
Problemi termici dei motori ad effetto Hall					
Cenni di trasmissione del calore92					
Disegno CAD del motore					
6.4.1	Configurazione semplificata	93			
6.4.2	Disegno, materiali e caratteristiche	94			
	6.4.2.1 Complessivo	94			
	6.4.2.2 Base, poli ed espansioni polari	95			
	6.4.2.3 Schermi magnetici	95			
	6.4.2.4 Canale di accelerazione	95			
	6.4.2.5 Supporto ceramica	96			
Analisi termica					
6.5.1	Import geometria e definizione mesh	96			
6.5.2	Condizioni iniziali	97			
6.5.3	Carichi applicati	98			
6.5.4	Definizione delle superfici radianti	99			
6.5.5	Condizioni al contorno				
Risultati		105			
6.6.1	Schermo termico (o di radiazione)	105			
	Introdu Proble Cenni Disegr 6.4.1 6.4.2 Analis 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 Risulta 6.6.1	Introduzione Problemi termici dei motori ad effetto Hall Cenni di trasmissione del calore Disegno CAD del motore 6.4.1 Configurazione semplificata 6.4.2 Disegno, materiali e caratteristiche 6.4.2.1 Complessivo 6.4.2.2 Base, poli ed espansioni polari 6.4.2.3 Schermi magnetici 6.4.2.4 Canale di accelerazione 6.4.2.5 Supporto ceramica Analisi termica 6.5.1 Import geometria e definizione mesh 6.5.2 Condizioni iniziali 6.5.3 Carichi applicati 6.5.4 Definizione delle superfici radianti 6.5.5 Condizioni al contorno Risultati 6.6.1 Schermo termico (o di radiazione)			

7 GEOMETRIA QUASI DEFINITIVA......109

7.1	Intro	oduzione	
7.2	Accor	gimenti geometrici	109
	7.2.1	Elementi costruttivi e vincoli geometrici	110
7.3	Risult	ati simulazione magnetica	111
	7.3.1	Analisi e confronto con bobine reali	115
7.4	Diseg	no CAD del motore	118
	7.4.1	Complessivo	118
	7.4.2	Canale di accelerazione	119
7.5	Risult	ati analisi termica	

8	B GEOMETRIA FINALE			
8.1	Intro	duzione	123	
8.2	Rielaborazione obiettivo			
8.3	Analis	i magnetica	125	
	8.3.1	Canale da 10mm	125	
		8.3.1.1 Carichi applicati	126	
		8.3.1.2 Risultati analisi magnetica	127	
		8.3.1.3 Confronto risultati in Comsol Multiphysics		
	8.3.2	Canale da 5.5mm.		
		8.3.2.1 Carichi applicati	130	
		8.3.2.2 Risultati analisi magnetica		
		8.3.2.3 Confronto risultati in Comsol Multiphysics	135	
8.4	Distrib	ouzione di permeabilità relativa		
8.5	Diseg	no CAD del motore	139	
	8.5.1	Disegno materiali e caratteristiche	139	
	8.5.2	Complessivo e componenti	140	
	8.5.4	Base	141	
	8.5.4	Canale di accelerazione	141	
	8.5.5	Supporto ceramica	142	
	8.5.6	Schermi magnetici ed espansioni polari	142	
	8.5.7	Schermo termico (o di radiazione)	143	
	8.5.8	Anodo	143	
	8.5.9	Vincoli geometrici	144	
8.6	Analis	i termica	146	
	8.6.1	Import geometria e definizione mesh	146	
	8.6.2	Condizioni iniziali	147	
	8.6.3	Applicazione dei carichi	148	
	8.6.4	Definizione delle superfici radianti	149	
	8.6.5	Sistema di riferimento	156	
	8.6.6	Sistema di comando	156	
	8.6.7	Condizioni al contorno	157	
8.7	Risulta	ati analisi termica per il canale da 10mm	160	
8.8	Risultati analisi termica per il canale da 5.5mm		162	
8.9	Conclu	usioni	163	
9	CONC	CLUSIONI E SVILUPPI FUTURI	165	

BIBLIOGRAFIA16

APPENDICI

A	INTERVALL	O DI VARIAZIONE DEL CAMPO MAGNETICO	INDOTTO
	NEL TRAFE	RRO	171
A.1	Soluzioni per i	l canale da 10mm	171
	A1.1	Campo da 80mT nel traferro	172
	A1.2	Campo da 70mT nel traferro	173
	A1.3	Campo da 60mT nel traferro	174
	A1.4	Campo da 50mT nel traferro	175
	A1.5	Campo da 40mT nel traferro	176
	A1.6	Campo da 30mT nel traferro	177
	A1.7	Campo da 20mT nel traferro	178
	A1.8	Campo da 10mT nel traferro	179
	A1.9	Analisi complessiva dei risultati ottenuti	
A.2	Soluzioni per i	l canale da 5.5mm	181
	A2.1	Campo da 80mT nel traferro	181
	A2.2	Campo da 70mT nel traferro	
	A2.3	Campo da 60mT nel traferro	
	A2.4	Campo da 50mT nel traferro	184
	A2.5	Campo da 40mT nel traferro	
	A2.6	Campo da 30mT nel traferro	186
	A2.7	Campo da 20mT nel traferro	187
	A2.8	Campo da 10mT nel traferro	
	A2.9	Analisi complessiva dei risultati ottenuti	189

B	STUDIO SULLE ESPANSIONI POLARI1	.90
B .1	Prove per il canale da 5.5mm	90

ALLEGATI

LISTA DELLE FIGURE

Capitolo 1

Figura 1.1 - <i>SPT e TAL a confronto. Si noti come il canale di accelerazione nei TAL si corto. Ciò comporta che parte dei processi di jonizzazione e accelerazione avvengano f</i>	a più Suori
dal motore tra i due elettrodi	2
Figura 1.2: Determinazione dell'impulso specifico ottimo per un propulsore elettrico	10
Figura 1.3: Schema motore ad effetto Hall	14
Figura 1.4: Schema motore ad effetto Hall	16
Figura 1.5a: Andamento del potenziale in un motore ad effetto Hall	17
Figura 1.5b: Campo elettrico auto-consistente in un motore ad effetto Hall	17
Figura 1.6: Propulsori HT-100 in prova nel laboratorio IV-4	18
Figura 1.7: A sinistra: (sparo) test di un propulsore da 5kW di Alta; A destra: propulso	ore in
fase di montaggio in IV-4 ad Alta	18

Capitolo 2

Figura 2.1: Raggio di Larmor e velocità di deriva definita per particelle di carica negati	iva e
positiva	24
Figura 2.2: Schema di funzionamento di un motore ad effetto Hall	25
Figura 2.3: Ionizzazione per unità di area dello Xe in $Xe^+ e Xe^{++}$ per impatto con un	
elettrone	29
Figura 2.4: Struttura dello sheat della parete	31
Figura 2.5: Tipica struttura della curva di produzione degli elettroni secondari	32

Figura 3.1: Domini di Weiss prima e dopo l'allineamento con il campo magnetico	
esterno	50
Figura 3.2: Curva di magnetizzazione e della permeabilità relativa del ferro dolce ricotta	0,
con ridotta percentuale di impurità	51
Figura 3.3: M - H di un ciclo "maggiore" di isteresi di un materiale ferromagnetico	55
Figura 3.4: andamento B - H di un ciclo di isteresi di un materiale ferromagnetico	54
Figura 3.5: Curva di demagnetizzazione nel secondo quadrante	54
Figura 3.6: ciclo di isteresi per materiali ferromagnetici dolci	56
Figura 3.7: ciclo di isteresi per materiali ferromagnetici duri	56
Figura 3.8: Curve B-H del'acciaio al C alle varie temperature	57
Figura 3.9: Permeabilità relativa del ferro dolce al variare della temperatura	58

Capitolo 4

Figura 4.1: Campo magnetico radiale e potenziale assiale	61
Figura 4.2: caratteristiche di magnetizzazione di alcuni materiali dolci	63
Figura 4.3 : effetto sulle linee di forza del campo magnetico in cui ci sia immerso un	
materiale diamagnetico(a), paramagnetico(b) o ferromagnetico(c)	65.
Figura 4.4 : circuito elementare equivalente	66
Figura 4.5 : circuito elementare equivalente con traferro	67
Figura 4.6: punto di lavoro del ferromagnete	68
Figura 4.7: rotazione della retta di lavoro	68
Figura 4.8: calcolo del campo magnetico in un magnete permanente	70

Capitolo 5

Figura 5.1: procedura simulazioni	72
Figura 5.2: Curva B-H steel1010	77
Figura 5.3: Rappresentazione su Excel della curva B-H steel1010	77
Figura 5.4: Permeabilità relativa μ_r steel1010	78
Figura 5.5: Procedura di analisi magnetica sistematica	.79
Figura 5.6: geometria di prima approssimazione con Femm4.2	.82
Figura 5.7: dominio e mesh	83
Figura 5.8: risultato simulazione magnetostatica con FEMM4.2 per la "configurazione	
semplificata"	84
Figura 5.9:: particolare della zona del traferro	84
Figura 5.10: Andamento della componente radiale del campo di induzione magnetica B	
dall'interno del canale fino alla sezione d'uscita per la "configurazione semplificata"	85
Figura 5.11: Andamento del gradiente della componente radiale del campo di induzione	
magnetica B dall'interno del canale fino alla sezione d'uscita per la "configurazione	
semplificata"	85
Figura 5.12: Circuito magnetico di prova con magnete permanente	.87
Figura 5.13: Risultati analisi magnetica per il circuito magnetico di prova con magnete	
permanente	87
Figura 5.14: Andamento della componente radiale del campo di induzione magnetica B	
dall'interno del canale fino alla sezione d'uscita con magnete permanente	88

Figura 6.1: procedura simulazioni	.91
Figura 6.2: Vista isometrica geometria preliminare	94
Figura 6.3: Vista in sezione geometria preliminare	95
Figura 6.4: vista geometria importata in Ansys	.96
Figura 6.5: struttura mesh geometria preliminare	97

Figura 6.6: *Rappresentazione grafica per l'applicazione della condizione al contorno di irraggiamento all'ambiente per l'elemento "base poli ed espansioni polari"......104*

igura 6.7: Rappresentazione grafica per l'applicazione della condizione al contorno di
rraggiamento all'ambiente per l'elemento "ceramica"104
igura 6.8: Vista in sezione della rappresentazione grafica del campo di temperature per la
oluzione del problema sottoposto a flusso termico nel canale e a calore generato negli
vvolgimenti
igura 6.9: Vista in sezione della rappresentazione grafica del campo di temperature per la
oluzione del problema sottoposto a flusso termico nel canale e a calore generato negli
vvolgimenti in presenza dello schermo termico106
igura 6.10: Particolare della vista in sezione della rappresentazione grafica del flusso di
alore totale per la soluzione del problema sottoposto a flusso termico nel canale e a calore
enerato negli avvolgimenti107

Figura 7.1 : configurazione quasi definitiva su Femm4.2	109
Figura 7.2: risultato simulazione magnetostatica con FEMM4.2	110
Figura 7.3:: particolare della zona del traferro ad 80mT	111
Figura 7.4: Andamento della componente radiale del campo di induzione magn	etica B
dall'interno del canale fino alla sezione d'uscita	111
Figura 7.5: Andamento del gradiente della componente radiale del campo di in	duzione
magnetica B dall'interno del canale fino alla sezione d'uscita	112
Figura 7.6: Confronto tra gli andamenti della componente radiale del campo di	i induzione
magnetica B dall'interno del canale fino alla sezione d'uscita per le due configu	urazioni113
Figura 7.7: Confronto tra gli andamenti del gradiente della componente radiale	e del campo
di induzione magnetica B dall'interno del canale fino alla sezione d'uscita per l	e due
configurazioni	113
Figura 7.8: Flusso specifico di B per la configurazione quasi definitiva	114
Figura 7.9: geometria avvolgimenti reali su Femm4.2	115
Figura 7.10: particolare della zona del traferro	116
Figura 7.11: confronto tra gli andamenti della componente radiale del campo d	li induzione
magnetica B dall'interno del canale fino alla sezione d'uscita	116
Figura 7.12: confronto tra gli andamenti del gradiente della componente radia	le del campo
di induzione magnetica B dall'interno del canale fino alla sezione d'uscita	117
Figura 7.13: Viste motore complessivo	118
Figura 7.14: Viste canale di accelerazione	119
Figura 7.15a: Vista frontale della rappresentazione grafica per la soluzione del	l campo di
temperature del problema sottoposto a flusso termico nel canale e a calore gen	erato negli
avvolgimenti	
Figura 7.15b: Vista posteriore della rappresentazione grafica per la soluzione	del campo di
temperature del problema sottoposto a flusso termico nel canale e a calore gene	erato negli
avvolgimenti	

Figura 7.15c: Vista in sezione della rappresentazione grafica del campo di temperature pe	er
la soluzione del problema sottoposto a flusso termico nel canale e a calore generato negli	
avvolgimenti12	20

Figura 8.1: procedura simulazioni	122
Figura 8.2: Geometria con canale da 10mm rielaborata con FEMM4.2	123
Figura 8.3: Geometria e mesh con infittimento nelle regioni d'interesse	124
Figura 8.4: Risultati simulazione magnetica con FEMM4.2 per il canale da 10mm	125
Figura 8.5: Particolare della zona del traferro	126
Figura 8.6: Andamento della componente radiale del campo di induzione magnetica B	
dall'interno del canale fino alla sezione d'uscita	126
Figura 8.7: Andamento del gradiente della componente radiale del campo di induzione	
magnetica B dall'interno del canale fino alla sezione d'uscita	127
Figura 8.8: Confronto tra gli andamenti della componente radiale del campo di induzion	е
magnetica B dall'interno del canale fino alla sezione d'uscita per le due configurazioni	127
Figura 8.9: Risultati simulazione magnetica con Comsol Multiphysics 3.5 per il canale de	а
10mm	128
Figura 8.10: Confronto tra gli andamenti della componente radiale del campo di induzio	ne
magnetica B dall'interno del canale fino alla sezione d'uscita in uscita da Femm4.2 e	
Comsol Multiphysics 3.5 per il canale da 10mm	129
Figura 8.11: Geometria con canale da 5.5mm rielaborata con FEMM4.2	130
Figura 8.12: Risultati analisi magnetica con FEMM4.2 per il canale da 5.5mm	131
Figura 8.13: Particolare della zona del traferro	131
Figura 8.14: Andamento della componente radiale del campo di induzione magnetica B	
dall'interno del canale fino alla sezione d'uscita	132
Figura 8.15: Andamento del gradiente della componente radiale del campo di induzione	
magnetica B dall'interno del canale fino alla sezione d'uscita	132
Figura 8.16: Risultati simulazione magnetica con Comsol Multiphysics 3.5 per il canale d	da
5.5mm	133
Figura 8.17: Confronto tra gli andamenti della componente radiale del campo di induzio	ne
magnetica B dall'interno del canale fino alla sezione d'uscita in uscita da Femm4.2 e	
Comsol Multiphysics 3.5 per il canale da 5.5mm	134
Figura 8.18: Flusso specifico di B sulla sezione del motore con canale da 10mm	135
Figura 8.19: distribuzione di permeabilità relativa sulla sezione del motore con canale de	а
10mm	135
Figura 8.20: Flusso specifico di B sulla sezione del motore con canale da 5.5mm	136
Figura 8.21: distribuzione di permeabilità relativa sulla sezione del motore con canale d	da
5.5mm	137
Figura 8.22a: Viste motore complessivo canale da 10mm	138
Figura 8.22b: Viste motore complessivo canale da 5.5mm	138
Figura 8.23: particolare anodo del motore HT-100C fornito da ALTA	110
	142

Figura 8.25: struttura mesh del motore con canale da 10mm	145
Figura 8.26: Rappresentazione grafica per l'applicazione della condizione al contorna	o di
irraggiamento all'ambiente per l'elemento "espansione polare esterna"	156
Figura 8.27a: Rappresentazione grafica per l'applicazione della condizione al contorn	no di
irraggiamento all'ambiente per l'elemento "ceramica"	156
Figura 8.27b: Rappresentazione grafica per l'applicazione della condizione al contorn	no di
irraggiamento all'ambiente per l'elemento "ceramica"	157
Figura 8.28: Rappresentazione grafica per l'applicazione della condizione al contorna	o di
irraggiamento all'ambiente per l'elemento "base"	157
Figura 8.29a: Vista frontale della rappresentazione grafica per la soluzione del campo	o di
temperature del problema sottoposto a flusso termico nel canale da 10mm e a calore	
generato negli avvolgimenti	158
Figura 8.29b: Vista posteriore della rappresentazione grafica per la soluzione del car	mpo di
temperature del problema sottoposto a flusso termico nel canale da 10mm e a calore	
generato negli avvolgimenti	158
Figura 8.29c: Vista in sezione della rappresentazione grafica del campo di temperatu	re per
la soluzione del problema sottoposto a flusso termico nel canale da 10mm e a calore	
generato negli avvolgimenti	159
Figura 8.29d: Vista in sezione della rappresentazione grafica del campo di temperatu	ıre per
la soluzione del problema sottoposto solo a calore generato negli avvolgimenti	159
Figura 8.30a: Vista in sezione della rappresentazione grafica del campo di temperatu	re per
la soluzione del problema sottoposto a flusso termico nel canale da 5.5mm e a calore	
generato negli avvolgimenti	160
Figura 8.30b: Vista in sezione della rappresentazione grafica del campo di temperatu	ıre per
la soluzione del problema sottoposto solo a calore generato negli avvolgimenti	161

LISTA DELLE TABELLE

Capitolo 1

Tabella 1.1: Prestazioni tipiche di alcuni sistemi di propulsione	.5
Tabella 1.2 : Caratteristiche tipiche dei propulsori elettrici	6
Tabella 1.3 : Valori dell'incremento di velocità per alcune missioni tipiche	.8

Capitolo 2

Tabella 2.1: Dati sull'emission	e secondaria di elettroni	per vari materiali	
---------------------------------	---------------------------	--------------------	--

Capitolo 3

Tab.	3.1:	valori	di	suscettività	magnetica	per i	div	ersi	material	<i>i</i> 5	1
						r · ·					

Capitolo 4

Tabella 4.1: Proprietà magnetiche di materiali ferromagnetici ad elevata permeabilità......63

Capitolo 5

Tabella 5.1: cavi da vuoto presi in considerazione per le prove	75
Tabella 5.2: Risultati Matlab7 "configurazione semplificata"	86
Tabella 5.3: Confronto risultati Matlab 7 per prova magnete permanente	88

Tabella 6.1: rappresentazione schematica "enclosure1"	99
Tabella 6.2: rappresentazione schematica "enclosure2"	101
Tabella 6.3: rappresentazione schematica "enclosure3"	102
Tabella 6.4: schema di procedura risolutiva del Radiosity solver method	103

Capitolo 7

Tabella 7.1: Risultati Matlab7" configurazione quasi definitiva"	112
Tabella 7.2: Confronto risultati in uscita da Matlab7 per le due configurazioni	"definitiva"
e "semplificata"	114
Tabella 7.3: Risultati Matlab 7 avvolgimenti "reali" e "schematizzati"	117

Tabella 8.1: Risultati Matlab 7 configurazione "finale" e "quasi definitiva"	128
Tabella 8.2: Risultati Matlab 7 "Comsol" e "Femm" per il canale da 10mm	
Tabella 8.3: Risultati Matlab 7 per il canale da 5.5mm	
Tabella 8.4: Risultati Matlab 7 "Comsol" e "Femm" per il canale da 5.5mm	
Tabella 8.5: rappresentazione schematica "enclosure1"	151
Tabella 8.6: rappresentazione schematica "enclosure2-3-4"	152
Tabella 8.7: rappresentazione schematica "enclosure5"	153
Tabella 8.8: rappresentazione schematica "enclosure6-7-8"	153
Tabella 8.9: rappresentazione schematica "enclosure9"	153
Tabella 8.10: schema di procedura risolutiva del "Radiosity solver method"	

LISTA DEI SIMBOLI

Α	area della sezione della camera	$[m^2]$
b_{ch}	larghezza della camera di accelerazione	[mm]
b_m	distanza di separazione tra le espansioni polari	[mm]
В	campo magnetico	[T] o [Gauss]
B_{max}	massimo del campo magnetico	[mT]
B_r	componente radiale del campo magnetico	[mT]
B_z	componente assiale del camp magnetico	[mT]
c_p	calore specifico a pressione costante	[J/(kg.K)]
d	distanza tra gli elettroni	[m]
D_e	diametro esterno della camera di accelerazione	[mm]
Ε	campo elettrico	[V/m]
	Modulo di Joung	$[N/m^2]$
f_n	frequenza naturale di vibrazione	[1/s]
fmm	forza magnetomotrice	[Aspire]
F_{ij}	fattore di vista	[-]
g	velocità relativa di collisione	[m/s]
g_0	accelerazione di gravità al suolo	$[m/s^2]$
h	coefficiente di scambio termico	$[W/(m^2.K)]$
Η	campo magnetico	[T]
i	coefficiente di perdita elettronica	[-]
Ι	momento d'inerzia	[m ⁴]
I_B	corrente di ioni	[A]
I_D	corrente di scarica	[A]
I_e	corrente elettronica	[A]
I_s	impulso specifico	[s]
j	densità di corrente	$[A/m^2]$
k	conducibilità termica	[W/(m*K)]
K	costante elastica	[N/m]
Kn	numero di Knudsen	[-]
L_c	distanza assiale tra il punto di massimo campo	
L_{ch}	profondità del canale di accelerazione	[mm]
m_e	massa dell'elettrone	[kg]
М	massa dello ione	

M_g	massa del sistema di generazione di potenza	[kg]
n _e	densità di elettroni	$[1/m^3]$
n_N	densità di atomi neutri	$[1/m^3]$
р	pressione	$[N/m^2]$
P_D	potenza di scarica	[W]
q	carica elettrica	[C]
\dot{q}	flusso di calore	$[W/m^2]$
Q	ionizzazione per unità di area	$[1/m^{2}]$
r_L	raggio di Larmor	[m]
R	riluttanza	[1/H]
S	sezione del circuito magnetico	$[m^2]$
t	tempo	[s]
Т	spinta	[N]
	temperatura	[K]
T_c	massima temperatura tollerabile in camera	[K]
T_e	temperatura elettronica	[K]
u_d	velocità di deriva	[m/s]
• <u>v</u>	vettore di accelerazione del satellite	$[m/s^2]$
<u>v</u>	vettore della velocità di scarico	[m/s]
v_i	velocità degli ioni	[m/s]
V	potenziale	[V]
V_d	potenziale di scarica	[V]
W_{in}	potenza in ingresso al propulsore	[W]
W_{sp}	potenza specifica	[kW/N]
Ζ	grado di ionizzazione del propellente	[-]
α	massa specifica sistema di potenza	[kg/kW]
	coefficiente di dilatazione termica	[1/K]
β	parametro di Hall	[-]
Δt	durata della missione	[s]
Δv	variazione di velocità del satellite	[m/s]
Е	emissività	[-]
	deformazione di un materiale	[-]
μ_{0}	permeabilità magnetica nel vuoto	$[N/A^2]$
η_t	efficienza di spinta	[-]
Φ	flusso di un vettore	[-]
λ_D	lunghezza di Debye	[m]
λ_m	cammino libero medio	[m]
v	coefficiente di Poisson	[-]

V_{c}	frequenza di collisione	[1/s]
ω	frequenza di Larmor	[1/s]
ρ	densità	$[kg/m^3]$
σ	costante di Stefan Boltzman	$[W/(m^2.K^4)]$