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Abstract

Multiprocessor systems are nowadays de facto standard for both personal

computers and server workstations. Benefits of multicore technology will be

used in the next few years for embedded devices and cellular phones as well.

Linux, as a General Purpose Operating System (GPOS), must support many

different hardware platform, from workstations to mobile devices. Unfortu-

nately, Linux has not been designed to be a Real-Time Operating System

(RTOS). As a consequence, time-sensitive (e.g. audio/video players) or sim-

ply real-time interactive applications, may suffer degradations in their QoS.

In this thesis we extend the implementation of the “Earliest Deadline First”

algorithm in the Linux kernel from single processor to multicore systems,

allowing processes migration among the CPUs. We also discuss the design

choices and present the experimental results that show the potential of our

work.
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Introduction

Multiprocessor systems are nowadays de facto standard for both personal

computers and server workstations. Benefits of dual-core technology will

be used in the next few years for embedded devices and cellular phones as

well. Increases in computational power is not the answer for overall better

performance, as recently stated by Rob Coombs, director of mobile solution

for ARM, in an interview [40] : “We don’t need silly GHz speeds. With

our dual core A9, we can get two times the performance, without the speed

draining the battery so by the time you get home your phone is dead.”.

Linux, as a General Purpose Operating System (GPOS), should be able

to run on every possible system, from workstations to mobile devices. Even

if each configuration has is own issues, the at large trend seems to be a con-

siderable interest in using Linux for real-time and control applications.

Linux has not been designed to be a Real-Time Operating System (RTOS)

and this imply that a classical real-time feasibility study of the system under

development is not possible, there’s no way to be sure that timing require-

ments of tasks will be met under every circumstance. POSIX-compliant

fixed-priority policies offered by Linux are not enough for specific applica-

tion requirements.

Great issues arise when size, processing power, energy consumption and costs

are tightly constrained. Time-sensitive applications (e.g., MPEG players) for

embedded devices have to efficiently make use of system resources and, at

the same time, meet the real-time requirements.

Modified versions of the Linux kernel1 with improved real-time support are

marketed [25, 41, 30], but these are often non-free and cannot take advantage

1Operating System’s core.

vii



INTRODUCTION viii

of the huge development community of the standard kernel.

In a recent paper [20] Dario Faggioli and others proposed an implementa-

tion of the “Earliest Deadline2 First” (EDF) [28, 39] algorithm in the Linux

kernel. With the words of the authors: “...we believe that to be really gen-

eral, Linux should also provide enhanced real-time scheduling3 capabilities”.

EDF is a well known real-time dynamic-priority scheduling algorithm based

on a simple concept: the process with the earliest deadline will be the first

to run. In order to extend stock Linux kernel’s features a new schedul-

ing policy has been created: SCHED DEADLINE. At the time of writing a

complete patch set against vanilla kernel4 is under evaluation by the Linux

development community [19]. SCHED DEADLINE works natively on multi-

core platform but is at present completely partitioned: each CPU has is own

runqueue and is treated as an essentially independent scheduling domain5.

Lacking the possibility of migrate6 processes between CPUs, the assignment

of tasks to CPUs can be a pain and it is hard (or impossible) to get full

utilization of the system.

In addition to what previously stated it has to be said that some simple

scheduling problems cannot be solved without process migration. We can,

for example, imagine a two-CPU system running three processes, each of

which needs 60% of a single CPU’s time. The system has the resources to

run those three processes, but not if it is unable to move processes between

CPUs [11].

In this thesis we extend SCHED DEADLINE scheduling policy to allow

processes migrations. The at first sight solution is indeed a global runqueue

at which CPUs can draw on in order to decide which process to run. This

implementation is practically unfeasible due to the scalability problems that

entails. So we have decided to follow what sched rt group has done [35].

Our choice has been to leave runqueues on CPUs and actively push and pull

2The instant of time at which the work must be completed.
3The scheduler is a component of the kernel that selects which process to execute at

any instant of time and is responsible of dividing the finite resource of processor time
between all runnable processes in the system.

4Stock Linux kernel maintained by Linus Torvalds.
5A sched domain contains critical informations for the scheduler.
6Move a process from a CPU to an another.
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processes from these as needed. The goal is to have at any instant of time

the m earliest deadline processes running on the m CPUs of the system.

Moreover we present experimental results that try to prove the goodness of

our work both in terms of performance and scheduling/hardware overhead.

This document is organized as follows.

Chapter 1 (Background) gives a brief overview of the concepts and

the theory on which this thesis is based. First, the modular framework

of the Linux scheduler is analyzed (with special attention to multiproces-

sors systems), then we find the state of the art of Real-Time scheduling on

Linux. Since we will extend the EDF/CBS implementation contained inside

SCHED DEADLINE scheduling policy, in this chapter we also give some in-

sights on the theory behind those real-time scheduling algorithms and analyze

how they are implemented inside the Linux kernel. Cache memories orga-

nization and functioning are depicted as well in order to be able to present

some of the outcomes of the conducted experiments.

Chapter 2 (Design an Development) is the “main course” of this work.

The theoretical aspects of EDF scheduling on multiprocessors are presented

in the first section of the chapter, leaving to the second one a look at how

Linux behaves in SMP systems. We then present design choices we made

and, in the last section, we will dive deep into the code in order to explain

how the most interesting parts of the push/pull logic implementation works.

In Chapter 3 (Experimental Results) we present the results of the

experiments we conducted in order to analyse the functioning of our work.

This chapter also contains a section in which we explain how we collected

measures and how the programs built for experimental purposes works.

Finally, in Chapter 4 (Conclusions), we sum up results and suggest

possible future extensions to the code and alternate ways of testing.



Chapter 1

Background

1.1 The Linux scheduler

The process scheduler is the component of the kernel that selects which pro-

cess to run next. Processor time is a finite resource, the process scheduler

(or simply the scheduler) is a subsystem of the kernel that divides processor

time between the runnable processes. Working in a single processor machine

the scheduler has to give the impression to the user that multiple processes

are executing simultaneously. This is the basis of a multitasking1 operating

system like Linux.

On multiprocessor machines processes can actually run concurrently (in par-

allel) on different processors. The scheduler has to assign runnable processes

to processors and decide, on each of them, which process to run.

How the scheduler works affect how the system behaves. We can privilege

task switching in order to have a reactive and interactive system, we can allow

tasks to run longer and have a batch jobs well suited system, we can also

decide that some tasks are vital for the system and must execute to the

detriment of the others.

1In this context task and process are used as synonyms.

1
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1.1.1 Modular scheduling framework

The Linux scheduler has been designed and implemented by Ingo Molnar [29]

as a modular framework that can easily be extended. Each scheduler mod-

ule is a scheduling class that encapsulate specific scheduling poilicies details

about which the core scheduler is in the dark.

Scheduling classes are implemented through the sched class2 structure,

which contains hooks to functions that must be called whenever the respec-

tive event occurs. A (partial) list of the hooks follows:

• enqueue task(...): called when a task enters a runnable state. It

enqueues a task in the data structure used to keep all runnable tasks

(runqueue, see below).

• dequeue task(...): called when a task is no longer runnable. It

removes a task from the runqueue.

• yield task(...): yields the processor giving room to the other

tasks to be run.

• check preempt curr(...): checks if a task that entered the runnable

state should preempt the currently running task.

• pick next task(...): chooses the most appropriate task eligible

to be run next.

• put prev task(...): makes a running task no longer running.

• select task rq(...): chooses on which runqueue (CPU) a waking-

up task has to be enqueued.

• task tick(...): mostly called from the time tick functions, it exe-

cutes running task related periodical stuff.

In the Linux scheduler are at present implemented three “fair” (SCHED NORMAL,

SCHED BATCH, SCHED IDLE) and two real-time (SCHED RR, SCHED FIFO)

scheduling policies. This situation can be better view with Figure 1.1 on the

following page.

2 Defined in include/linux/sched.h.
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LINUX MODULAR SCHEDULER

kernel/sched_fair.c kernel/sched_rt.c

SCHED_NORMAL SCHED_BATCH

SCHED_IDLE SCHED_RR SCHED_FIFO

Figure 1.1: The Linux modular scheduling framework.

1.1.2 Scheduling entities, tasks and runqueues

All the things that the scheduler uses to implement scheduling policies are

contained into struct sched entity3 (there is a scheduling entity for

each scheduler module). Looking inside that structure we find the fields (e.g.

exec start, vruntime, etc. . . ) that the CFS4 scheduler uses to do his

job.

The concept of scheduling entity is essentially “something to be scheduled”,

which might not be a process (there also exist tasks groups [10]).

At the very beginning of struct task struct5 there are the fields

that distinguish tasks. Among others:

• volatile long state: describes task’s state, it can assume three

values (-1, 0, >0) depending on the task respectively beeing unrunnable,

runnable or stopped.

• const struct sched class *sched class: binds the task with

his scheduling class.

3Defined in include/linux/sched.h.
4 Completely Fair Scheduler, the default Linux scheduler, see [15].
5Defined in include/linux/sched.h.
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• struct sched entity se, struct sched rt entity rt:

contain scheduling entity related informations.

• cpumask t cpus allowed: mask of the cpus on which the task can

run.

• pid t pid: process identifier that uniquely identifies the task.

Last but not least come runqueues. Linux has a main per-CPU runqueue

data structure called not surprisingly struct rq6. Runqueues are imple-

mented in a modular fashion as well. The main data structure contains a

“sub-runqueue” field for each scheduling class, and every scheduling class can

implement his runqueue in a different way.

It is enlightening to look at the CFS runqueue implementation. Structure

struct cfs rq holds both accounting informations about enqueued tasks

and the actual runqueue. CFS uses a time-ordered red-black tree to enqueue

tasks and to build a “timeline” of future task execution.

A red-black tree is a type of self-balancing binary search tree. For every

running process there is a node in the red-black tree. The process at the left-

most position is the one to be scheduled next. The red-black tree is complex,

but it has a good worst-case running time for its operations and is efficient

in pratice: it can search, insert and delete in O(log n) time, where n is the

number of elements in the tree. The leaf nodes are not relevant and do not

contain data. To save memory, sometimes a single sentinel node performs

the role of all leaf nodes.

Scheduling class designers must cleverly choose a runqueue implementation

that best fits scheduling policies needs. Figure 1.2 on the next page shows

all this at first sight confusing things.

1.1.3 Multiprocessor Data Structures

Since now we haven’t talked about how many processor our system has. In

fact all that we have said remains the same for uni-processor and multi-

processor machines as well.

6Defined in kernel/sched.c, as other runqueue related things.
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struct rq {
           ...
           unsigned long nr_running;
           ...
           struct cfs_rq cfs;
           struct rt_rq rt;
           ...
};

struct cfs_rq {
            ...
            u64 exec_clock;
            u64 min_vruntime;

            struct rb_root tasks_timeline;
            struct rb_node *rb_leftmost;
            ...
};

Figure 1.2: The CFS runqueue.

A multiprocessor Linux kernel (one configured with CONFIG SMP) has addi-

tional fields into the afore-mentioned structures in comparison to a unipro-

cessor one. In struct sched class we find:

• select task rq(...): called from fork, exec and wake-up rou-

tines; when a new task enters the system or a task is waking up the

scheduler has to decide which runqueue (CPU) is best suited for it.

• load balance(...): checks the given CPU to ensure that it is bal-

anced within scheduling domain (see below); attempts to move tasks

if there is an imbalance. It is important to say that this function is

not implemented by every scheduling class, the reason why will be ex-

plained later.

• pre schedule(...): called inside the main schedule routine;

performs the scheduling class related jobs to be done before the ac-

tual schedule.

• post schedule(...): like the previous routine, but after the actual

schedule.

• task woken(...): called when a task wakes up, there could be

things to do if we are not going to schedule soon.
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• set cpus allowed(...): changes a given task’s CPU affinity; de-

pending on the scheduling class it could be responsible for to begin

tasks migration.

A modern large multiprocessor system can have a complex structure and,

at-large, processors have unequal relationships with each other. Virtual

CPUs of a hyperthreaded core share equal access to memory, cache and even

the processor itself. On a symmetric multiprocessing system (SMP) each

processor maintains a private cache, but main memory is shared. Nodes of

a NUMA architecture have different access speeds to different areas of main

memory. To get things worse all these options can coexist: each NUMA node

looks like an SMP system which may be made up of multiple hyperthreaded

processors. One of the key jobs a scheduler must do on a multiprocessor

(non real-time) system is balancing the load across the CPUs. Teaching the

scheduler to migrate tasks intelligently under many different types of loads

is not so easy. In order to cope with this problem scheduling domains [12]

have been introduced into the Linux kernel.

A scheduling domain (struct sched domain7) is a set of CPUs which

share properties and scheduling policies, and which can be balanced against

each other. Scheduling domains are hierarchical, a multi-level system will

have multiple levels of domains. A struct pointer struct sched domain

*sd, added inside struct rq, creates the binding between a runqueue

(CPU) and his scheduling domain. Using scheduling domain informations

the scheduler can do a lot to make good scheduling and balancing decisions.

1.2 State of the art of Real-Time scheduling

on Linux

Linux has been designed to be a general-purpose operating system (GPOS),

therefore it presents some issues, like unpredictable latencies, limited support

for real-time scheduling, and coarse-grain timing resolution that might be a

problem for real-time application [26]. The main design goal of the Linux

7Defined in include/linux/sched.h.
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kernel has been (and still remains) to optimize the average throughput (i.e.,

the amount of “useful work” done by the system in the unit of time).

During the last years, research institutions and independent developers have

proposed several real-time extensions to the Linux kernel. In this section we

present a brief description of the more interesting alternatives.

1.2.1 SCHED FIFO and SCHED RR

Since Linux is a POSIX-compliant operating system, the Linux scheduler

must provide SCHED FIFO and SCHED RR, simple fixed-priority policies.

As the standard states8, SCHED FIFO is a strict first in-first out (FIFO)

scheduling policy. This policy contains a range of at least 32 priorities (ac-

tually 100 inside Linux). Threads (tasks) scheduled under this policy are

chosen from a thread list ordered according to the time its threads have been

in the list without being executed. The head of the list is the thread that

has been in the list the longest time; the tail is the thread that has been in

the list the shortest time.

SCHED RR is a round-robin scheduling policy with a per-system time slice

(time quantum). This policy contains a range of at least 32 priorities and

is identical to the SCHED FIFO policy with an additional condition: when

the implementation detects that a running process has been executing as a

running thread for the time quantum, or longer, the thread becomes the tail

of its thread list, and the head of that thread list is removed and made a

running thread.

Both SCHED FIFO and SCHED RR unfortunately diverges from what the

real-time research community refer to as “realtime” [7]. As best-effort poli-

cies, they do not allow to assign timing constraints to tasks. Other notable

drawbacks of fixed priority schedulers are the fairness and the security among

processes [3]. In fact, if a regular non-privileged user is enabled to access the

real-time scheduling facilities, then he can also rise his processes to the high-

est priority, starving the rest of the system.

8IEEE Std 1003.1b-1993
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1.2.2 RTLinux, RTAI and Xenomai

RTLinux is a patch developed at Finite State Machine Labs (FSMLabs) to

add realt-time features to the standard Linux kernel [43]. The RTLinux

patch implements a small and fast RTOS, utilizing the Interrupt Abstraction

approach. The approach based on Interrupt Abstraction consists of creat-

ing a layer of virtual hardware between the standard Linux kernel and the

computer hardware (Real-Time Hardware Abstraction Layer). The RTHAL

actually virtualizes only interrupts. To give an idead of how it works (a com-

plete description is beyond the focus of this thesis) we can imagine that the

RT-kernel and the Linux kernel work side by side. Every interrupt source

coming from real hardware is marked as real-time or non real-time. Real-

time interrupts are served by the real-time subsystem, whereas non-real-time

interrupts are managed by the Linux kernel. In pratice, the resulting system

is a multithreaded RTOS, in which the standard Linux kernel is the lowest

priority task and only executes when there are no real-time tasks to run and

the real-time kernel is inactive.

RTAI is the acronym of “Real-Time Application Interface” [36]. The

project started as a variant of RTLinux in 1997 at Dipartimento di Ingeg-

neria Areospaziale of Politecnico di Milano (DIAPM), Italy. Although the

RTAI project started from the original RTLinux code, the API of the projects

evolved in opposite directions. In fact, the main developer (prof. Paolo Man-

tegazza) has rewritten the code adding new features and creating a more

complete and robust system. The RTAI community has also developed the

Adaptive Domain Environment for Operating Systems (ADEOS) nanokernel

as alternative for RTAI’s core to exploit a more structured and flexible way

to add a real-time environment to Linux [16]. The ADEOS nanokernel im-

plements a pipeline scheme into which every domain (OS) has an entry with

a predefined priority. RTAI is is the highest priority domain which always

processes interrupts before the Linux domain, thus serving any hard real time

activity either before or fully preempting anything that is not hard real time.

Xenomai [22] is a spin-off of the RTAI project that brings the concept of

virtualization one step further. Like RTAI, it uses the ADEOS nanokernel to
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provide the interrupt virtualization, but it allows a real-time task to execute

in user space extensively using the concept of domain provided by ADEOS

(also refer to [26] for a deeper insight).

All the alternatives before are efficient solutions, as they allow to obtain

very low latencies, but are also quite invasive, and, often, not all standard

Linux facilities are available to tasks running with real-time privileges (e.d.,

Linux device drivers, network protocol stacks, etc. . . ). Another major prob-

lem (on RTLinux and RTAI) is that the real-time subsystem executes in the

same memory space and with the same privileges as the Linux kernel code.

This means that there is no protection of memory between real-time tasks

and the Linux kernel; a real-time task with errors may therefore crash the

entire system.

1.2.3 PREEMPT RT

The CONFIG PREEMPT RT [24] patch set is maintained by a small group of

core developers, led by Ingo Molnar. This patch allows nearly all of the ker-

nel to be preempted, with the exception of a few very small regions of code.

This is done by replacing most kernel spinlocks with mutexes that support

priority inheritance, as well as moving all interrupt and software interrupts

to kernel threads.

The Priority Inheritance (PI) protocol solves the problem of unbounded pri-

ority inversion. You have a priority inversion when a high priority task must

wait for a low priority task to complete a critical section of code and release

the lock. If the low prioriry task is preempted by a medium priority task

while holding the lock, the high priority task will have to wait for a long

(unbounded) time. The priority inheritance protocol dictates that in this

case, the low priority task inherits the priority of the high priority task while

holding the lock, preventing the preemption by medium priority tasks.

The CONFIG PREEMPT RT patch set focus is, in short, make the Linux kernel

more deterministic, by improving some parts that do not allow a predictable

behaviour. Even if the priority inheritance mechanism is a complex algorithm

to implement, it can help reduce the latency of Linux activities, reaching the



CHAPTER 1. BACKGROUND 10

level of the Interrupt Abstraction methods [26].

1.2.4 OCERA

OCERA [33], that stands for Open Components for Embedded Real-time

Applications, is an European project, based on Open Source, which provides

an integrated execution environment for embedded real-time applications. It

is based on components and incorporates the latest tecniques for build em-

bedded systems.

A real-time scheduler for Linux 2.4 has been developed within this project,

and it is availabe as open source code [3], [34], [37]. To minimize the modi-

fications to the kernel code, the real-time scheduler has been developed as a

small patch and an external loadable kernel module. All the patch does is ex-

porting toward the module (by some hooks) the relevant scheduling events.

The approach is straightforward and flexible, but the position where the

hooks have to be placed is real challenge, and it made porting the code to

next releases of the kernel very hard.

1.2.5 AQuoSA

The outcome of the OCERA project gave birth to the AQuoSA [4] software

architecture. AQuoSA is an open-source project for the provisioning of adap-

tive Quality of Service functionality into the Linux kernel, developed at the

Real Time Systems Laboratory of Scuola Superiore Sant’Anna. The project

features a flexible, portable, lightweight and open architecture for support-

ing soft real-time applications with facilities related to timing guarantees and

QoS, on the top of a general-purpose operating system as Linux.

It basically consists on porting of OCERA kernel approach to 2.6 kernel, with

a user-level library for feedback based scheduling added. Unfortunately, it

lacks features like support for multicore platforms and integration with the

latest modular scheduler (see section 1.1.1).
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1.2.6 FRESCOR

FRESCOR [21] is a consortium research project funded in part by the Euro-

pean Union’s Sixth Framework Programme [18]. The main objective of the

project is to develop the enabling technology and infrastructure required to

effectively use the most advanced techniques developed for real-time appli-

cations with flexible scheduling requirements, in embedded systems design

methodologies and tools, providing the necessary elements to target recon-

figurable processing modules and reconfigurable distributed architectures.

A real-time framework based on Linux 2.6 has been proposed by this project.

It is based on AQuoSA and further adds to it a contract-based API and a

complex middleware for specifying and managing the system performances,

from the perspective of the Quality of Service it provides. Obviously, it

suffers from all the above mentioned drawbacks as well.

1.2.7 LITMUSRT

The LITMUSRT [27] project is a soft real-time extension of the Linux kernel

with focus on multiprocessor real-time scheduling and synchronization. The

Linux kernel is modified to support the sporadic task model and modular

scheduler plugins. Both partitioned and global scheduling is supported.

The primary purpose of the LITMUSRT project is to provide a useful ex-

perimental platform for applied real-time systems research. In that regard

LITMUSRT provides abstractions and interfaces within the kernel that sim-

plify the prototyping of multiprocessor real-time scheduling and synchroniza-

tion algorithms.

LITMUSRT is not a production-quality system, is not “stable”, POSIX-

compliance is not a goal and is not targeted at being merged into mainline

Linux. Moreover, it only runs on Intel (x86-32) and Sparc64 architectures

(i.e., no embedded platforms, the one typically used for industrial real-time

and control).
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1.3 EDF and CBS theory

In order to understand the choices made on implementing SCHED DEADLINE

scheduling class, we present here a brief discussion of the theory behind those.

For this purpose will be used the following notation:

τi identifies a generic periodic task;

φi identifies the phase of task τi; i.e., the first instance activation time;

Ti identifies the period of task τi; i.e., the interval between two subsequent

activations of τi;

Ci identifies the Worst-Case Execution Time (WCET) of task τi;

Di identifies the relative deadline of task τi; a symplifying assumption is

that Di = Ti;

di,j identifies the absolute deadline of the j-th job of task τi; it can be

calculated as di,j = φi + (j − 1)Ti +Di;

U identifies the CPU utilization factor; it is calculated as U =
N∑
i=1

Ci

Ti
,

and provides a measure of CPU load by a set of periodic tasks.

1.3.1 Earliest Deadline First

Dynamic priority algorithms are an important class of scheduling algorithms.

In these algorithms the priority of a task can change during its execution.

In fixed priority algorithms (a sub-class of the previous one), instead, the

priority of a task does not change throughout its execution.

Earliest Deadline First (EDF) schedules tasks for increasing absolute dead-

line. At every instant of time, the selected task from the runqueue is the one

with the earliest absolute deadline. Since the absolute deadline of a periodic

task depends from the k-th current job,

di,j = φi + (j − 1)Ti +Di,
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EDF is a dynamic priority algorithm. In fact, although the priority of each

job is fixed, the relative priority of one task compared to the others varies

over time.

EDF is commonly used with a preemptive scheduler, when a task with an

earlier deadline than that of the running task gets ready the latter is sus-

pended and the CPU is assigned to the just arrived earliest deadline task.

This algorithm can be used to schedule periodic and aperiodic tasks as well,

as task selection is based on absolute deadline only.

A simple example may clarify how EDF works (figure 1.3). A task set

composed by three tasks is scheduled with EDF: τ1 = (1, 4), τ2 = (2, 6),

τ3 = (3, 8), with τi = (Ci, Ti). The utilization factor is: U = 1
4

+ 2
6

+ 3
8

= 23
24

.

All three tasks arrive at instant 0. Task τ1 starts execution since it has the

earliest deadline. At instant 1, τ1 has finished his job and τ2 starts execution;

the same thing happens at instant 3 between τ2 and τ3. At instant 4, τ1 is

ready again, but it does not start executing until instant 6, when becomes

the earliest deadline task (ties can be broken arbitrarly). The schedule goes

on this way until instant 24 (hyperperiod, least common multiple of tasks

periods), then repeats the same.

20 4 6 8 10 12 14 16 18 20 22 24

Figure 1.3: An EDF schedule example.
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Last thing to say is about schedulability bound with EDF:

• Theorem [28]: given a task set of periodic or sporadic tasks, with

relative deadlines equal to periods, the task set is schedulable by EDF

if and only if

U =
N∑
i=1

Ci

Ti
≤ 1.

• Corollary: EDF is an optimal algorithm on preemptive uniprocessor

systems, in the sense that if a task set is schedulable, it is schedulable

by EDF (you can reach a CPU utilization factor of 100%).

We could ensure the schedulability of the task set in fig. 1.3 simply consid-

ering that U = 23
24
≤ 1.

1.3.2 Constant Bandwidth Server

In section 1.3.1 we have considered homogeneous task set only (periodic or

aperiodic). Here we have to cope with scheduling a task set composed by

periodic and aperiodic tasks as well. Periodic tasks are generally considered

of a hard type, whereas aperiodic tasks may be hard, soft or even non real-

time, depending on the application.

Using a periodic task (server), dedicated to serve aperiodic requests, is pos-

sible to have a good average response time of aperiodic tasks. As every

periodic task, a server is characterized by a period Ts and a computing time

Cs, called server budget. A server task is scheduled with the same algorithm

used for periodic tasks, and, when activated, serves the hanging aperiodic

requests (not going beyond its Cs).

The Constant Bandwidth Server (CBS) [2, 1] is a service mechanism of aperi-

odic requests on a dynamic context (periodic tasks are scheduled with EDF)

and can be defined as follows:

• A CBS is characterized by an ordered pair (Qs, Ts) where Qs is the

maximum budget and Ts is the period of the server. The ratio Us =

Qs/Ts is denoted as the server bandwidth.
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• The server manages two internal variables that define its state: cs is the

current budget a time t (zero-initialized) and ds is the current deadline

assigned by the server to a request (zero-initialized).

• If a new request arrives while the current request is still active, the for-

mer is queued in a server queue (managed with an arbitrary discipline,

for example FIFO).

• If a new request arrives at instant t, when the server is idle, you see

if you can recycle current budget and deadline of the server. If it is

cs ≤ (t − ds)Us, then we can schedule the request with the current

server values, else we have to replenish the budget with the maximum

value (cs = Qs) and calculate the deadline as ds = t+ Ts.

• When a request is completed, the server takes the next (if it exists)

from the internal queue and schedule it with the current budget and

deadline.

• When the budget is exhausted (cs = 0), it is recharged at the maximum

value (cs = Qs) and the current deadline is postponed of a period

(ds = ds + Ts).

The basic idead behind the CBS algorithm is that when a new request arrives

it has a deadline assigned, which is calculated using the server bandwidth,

and then inserted in the EDF ready queue. In the moment an aperiodic task

tries to execute more than the assigned server bandwidth, its deadline gets

postponed, so that its EDF priority is lowered and other tasks can preempt

it.

1.4 Caches

One of the great concern of the real-time research community, at the time

of writing, is how a global scheduler behaves considering modern processor’s

cache memories. We have seen in the precedent section that a careful es-

timate of WCET is fundamental to guarantee a task set schedulability. In
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SMP systems the WCET of a task may be unexpectedly inflated by the fact

that system’s caches are a shared resource, all the running task potentially

competing for it. We give here a brief overview of cache organization and

functioning in order to understand the experimental case studies.

1.4.1 Organization

Modern processors employ a hierarchy of fast cache memories that contain

recently-accessed instructions and operands to alleviate high off-chip memory

latencies (as the main memory latency). Caches are organized in levels;

proceding from the top to the bottom, we usually find a per-processor private

Level-1 (L1) cache (the fastest and smallest among caches), then a variable

number of deeper caches (L2, L3, etc. . . ) being successively larger and slower.

Depending on the particular CPU, cache levels (except L1) may be shared

among all the cores or used only by exclusive subsets of them (figure 1.4).

A cache contains either instructions or data (as in the L1 case, where

we find Level-1 Data (L1D) and Level-1 Instructions (L1I) caches), and may

contain both if it is unified.

Caches operate on blocks of consecutive addresses called cache lines with

common sizes ranging from 8 to 128 bytes. The loading of data from a

lower level cache (or from main memory) always proceeds at cache line size

chunks, even if a smaller amount of data is needed. The associativity of a

cache determines how the full main memory address space is mapped to the

small cache address space. In direct mapped caches, each location in main

memory can be cached by just one cache location. In fully associative caches,

on the contrary, each location in main memory may reside at any location

in the cache. On modern systems, in fact, most caches are set associative,

wherein each memory location may reside at a fixed number of places.

1.4.2 Functioning

The data set accessed by a job instance in doing its work is traditionally

called the working set size (WSS) of the job. Cache lines are loaded into the

cache when needed only. When a job references a cache line that cannot be
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Multi-Core CPU

Core 1 Core 2 Core 3 Core 4

Level-1 Level-1 Level-1 Level-1

Level-2 Level-2

Level-3

Figure 1.4: Example of a multi-core CPU cache hierarchy.
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found in a level-X cache, then it suffers a level-X cache miss. Cache misses

are also distinguished by the reason that caused them:

• Compulsory misses : are triggered the first time a cache line is refer-

enced. Before a job can work on data, they must be present on some

cache location.

• Capacity misses : result if the WSS of the job exceeds the size of the

cache.

• Conflict misses : arise if useful cache lines were evicted to make room

of othere cache lines (may happen in direct mapped and set associative

caches).

• Cache interference misses : when multiple jobs operate concurrently in

a shared cache system and the sum of the WSS of each job exceeds the

total cache size, frequent capacity and conflict misses may arise. Jobs

that incur frequent level-X capacity and confict misses even if executing

in isolation are said to be trashing the level-X cache.

Some others terms will be useful. Cache affinity describes the fact that a

job’s overall cache miss rate tends to decrease with the passage of execution

time; unless it trashed all cache leves, after an initial burst of misses, the

general trend will be little or no other events, since all the useful cache lines

will be loaded into the cache. Preemptions or migrations may cause cache

affinity to be lost completely for some levels of cache, causing additional com-

pulsory misses. Moreover, a job’s memory references are cache-warm after

cache affinity has been established; on the contrary, cache-cold references

happen when there is no cache affinity.

1.5 SCHED DEADLINE implementation

SCHED DEADLINE [38] is a new scheduling policy (made by Dario Faggioli

and Michael Trimarchi), implemented inside its own scheduling class, aiming

at introducing deadline scheduling for Linux tasks. It is being developed by
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Evidence S.r.l. 9 in the context of the EU-Funded project ACTORS 10.

The need of an EDF scheduler in Linux has been already highlighted in the

Documentation/scheduler/sched-rt-group.txt file, which says:

“The next project will be SCHED EDF (Earliest Deadline First scheduling)

to bring full deadline scheduling to the linux kernel”. Developers have ac-

tually chosen the name SCHED DEADLINE instead of SCHED EDF because

EDF is not the only deadline algorithm and, in the future, it may be desider-

able to switch to a different algorithm without forcing applications to change

which scheduling class they request.

The partners involved in this project (which include Ericsson Research, Ev-

idence S.r.l., AKAtech) strongly believe that a general-purpose operating

system like Linux should provide a standard real-time scheduling policy still

allowing to schedule non real-time tasks in the usual way.

The existing scheduling classes (i.e., sched fair and sched rt, see

fig. 1.1) perform very well in their own domain of application. However,

• they cannot provide the guarantees a time-sensitive application may

require. The point has been analyzed for SCHED FIFO and SCHED RR

policies (refer to sec. 1.2.1); using sched fair no concept of timing

constraint can be associated to tasks.

• The latency experienced by a task (i.e., the time between two consec-

utive executions of a task) is not deterministic and cannot be bound,

since it highly depends on the number of tasks running in the system

at that time.

It has to be emphasized the fact that these issues are particularly critical

when running time-sensitive or control applications. Without a real-time

scheduler, in fact, it is not possible to make any feasibility study of the

system under development, and developers cannot be sure that the timing

requirements will be met under any circumstance. This prevents the usage

of Linux in industrial context.

9http://www.evidence.eu.com
10http://www.actors-project.eu/

http://www.evidence.eu.com
http://www.actors-project.eu/
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1.5.1 Main Features

SCHED DEADLINE 11 implements the Earliest Deadline First algorithm and

uses the Constant Bandwidth Server to provide bandwidth isolation 12 among

tasks. The scheduling policy does not make any restrictive assumption about

the characteristics of tasks: it can handle periodic, sporadic or aperiodic

tasks.

This new scheduling class has been developed from scratch, without start-

ing from any existing project, taking advantage of the modularity currently

offered by the Linux scheduler, so do not be too invasive. The implementa-

tion is aligned with the current (at the time of writing) mainstream kernel,

and it will be kept lined up with future kernel versions.

SCHED DEADLINE relies on standard Linux mechanisms (e.g., control

groups) to natively support multicore platforms and to provide hierarchical

scheduling through a standard API.

1.5.2 Interaction with Existing Policies

The addition of sched deadline scheduling class to the Linux kernel does

not change the behavior of the existing scheduling policies, neither best-effort

and real-time ones. However, given the current Linux scheduler architecture,

there is some interaction between scheduling classes. In fact, since each class

is asked to provide a runnable task in the order they are chained in a linked

list, “lower” classes actually run in the idle time of “upper” classes. Where to

put the new scheduling class is a key point to obtain the right behavior. De-

velopers chose to place it above the existing real-time and normal scheduling

classes, so that deadline scheduling can run at the highest priority, otherwise

it cannot ensure that the deadlines will be met.

Figure 1.5 shows the Linux scheduling framework with SCHED DEADLINE

added.

11The new kernel/sched deadline.c file contains the scheduling policy core.
12Different tasks cannot interfere with each other, i.e., CBS ensures each task to run for

at most its runtime every (relative) deadline length time interval.
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LINUX MODULAR SCHEDULER

kernel/sched_fair.c kernel/sched_rt.c

SCHED_NORMAL SCHED_BATCH

SCHED_IDLE SCHED_RR SCHED_FIFO

kernel/sched_deadline.c

SCHED_DEADLINE

Figure 1.5: The Linux modular scheduling framework with
SCHED DEADLINE.

1.5.3 Current Multiprocessor Scheduling Support

As we have seen in section 1.1.2, inside Linux each CPU has its own ready

queue, so the way Linux deals with multiprocessor scheduling is often called

distributed runqueue. Tasks can, if wanted or needed, migrate between the

different queues. It is possible to pin some task on some processor, or set of

processors, setting the so called scheduling affinity as well.

An opposite solution may be to use a single global runqueue from which

each task can be picked up and run on each CPU, but an indepth discussion

of advantages and drawbacks of both alternatives is postponed to the next

chapter.

SCHED DEADLINE developers were interested in a general solution, i.e.

a globally scheduled system in which it is easy to ask one or more tasks

to stay on a pre-specified CPU (or set of CPU). Therefore, the easiest and

simplest way of achieving this was to go for the same approach of Linux

itself, which means having one runqueue for each CPU implemented with a

red-black tree 13. Furthermore, by correctly setting the affinity of each EDF

task in the system we can have what the real-time and scheduling community

13Ordered by increasing deadline, so it is straightforward to pick the task to run next
(at a low computational cost).
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calls partitioned scheduling 14.

The current implementation totally lacks the possibility of migrate tasks

between CPUs. EDF per-CPU runqueues are worlds apart, each task that

is born on a CPU dies on the same 15. We can say that the implementation

is totally partitioned ; then the goal of this thesis is to design the way and

develop the code in order to migrate tasks among the runqueues in such a

way that:

• we always try to have, on an m CPU system, the m earliest deadline

ready tasks running on the CPUs;

• we always respect the affinity the tasks specify.

1.5.4 Task Scheduling

As mentioned earlier, SCHED DEADLINE does not make any restrictive as-

sumption on the characteristics of its tasks, thus it can handle:

• periodic tasks, typical in real-time and control applications;

• aperiodic tasks;

• sporadic tasks (i.e., aperiodic tasks with a minimum interarrival time

(MIT) between releases), typical in soft real-time and multimedia ap-

plications;

A key feature of task scheduling in this scheduling class is that temporal

isolation is ensured. This means, the temporal behavior of each task (i.e.,

its ability to meet its deadlines) is not affected by the behavior of any other

task in the system. So, even if a task misbehaves, it is not able to exploit

larger execution time than it has been allocated to it and monopolize the

processor.

Each task is assigned a budget (sched runtime and a period, considered

equal to its deadline (sched period). The task is guaranteed to execute for

14With global scheduling each task may be picked up and run on each CPU.
15Unless the user changes the task affinity.
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an amount of time equal to sched runtime every sched period (task

utilization or bandwidth). When a task tries to execute more than its budget

it is slowed down, by stopping it until the time instant of its next deadline.

When, at that time, it is made runnable again, its budget is refilled and a

new deadline computed for him. This is how the CBS algorithm works, in

its hard-reservation configuration.

This way of working goes well for both aperiodic and sporadic tasks, but it

imposes some overhead to “standard” periodic tasks. Therefore, the devel-

opers have made it possible for periodic tasks to specify, before going to sleep

waiting for the next activation, the end of the current instance. This avoid

them (if they behave well) being disturbed by the CBS.

1.5.5 Usage and Task API

SCHED DEADLINE users have to specify, before running their real-time ap-

plication, the system wide SCHED DEADLINE bandwidth. They can do this

echoing the desired values in /proc/sys/kernel/sched deadline

period us and /proc/sys/kernel/sched deadline runtime us

files. The quantity

sched deadline runtime us

sched deadline period us

will be the overall system wide bandwidth SCHED DEADLINE tasks are al-

lowed to use.

The existing system call sched setscheduler(...) has not been ex-

tended, because of the binary compatibility issues that modifying its struct

sched param parameters would have raised for existing applications. There-

fore, another system call, called struct sched param ex(...) has

been implemented. It allows to assign or modify the scheduling parame-

ters described above (i.e., sched runtime and sched period) for tasks

running with SCHED DEADLINE policy. The system call has the following

prototype:

struct sched_param_ex {
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int sched_priority;

struct timespec sched_runtime;

struct timespec sched_deadline;

struct timespec sched_period;

int sched_flags;

};

int sched_setscheduler_ex(pid_t pid,

int policy, unsigned int len,

struct sched_param_ex *param);

For the sake of consistency, also

int sched_setparam_ex(pid_t pid, unsigned int,

struct sched_param_ex *param);

int sched_getparam_ex(pid_t pid, unsigned int,

struct sched_param_ex *param);

have been implemented. Another system call,

int sched_wait_interval(int flags,

const struct timespec *rqtp,

struct timespec *rmtp);

allows periodic tasks to sleep till the specified time (i.e., the end of its pe-

riod).

On multicore platforms, finally, tasks can be moved among different proces-

sors using existing Linux mechanisms, i.e. sched setaffinity(...).



Chapter 2

Design and Development

2.1 EDF scheduling on SMP systems

In this thesis we address the problem of scheduling soft real-time tasks on

a Symmetric Multi Processor (SMP) platform, made up by M identical

processors (cores) with constant speed. In extending the functionalities of

SCHED DEADLINE scheduling class we have to consider the class of soft real-

time applications that can be modeled as a set of periodic/sporadic tasks.

In soft real-time applications deadlines are not critical, but it is important

to respect some kind of Quality Of Service (QoS) requirements (e.g., limited

number of deadline misses, limited deadline miss percentage, etc. . . ).

Applications of interest can tolerate a bounded lateness with respect to the

desired deadline. This kind of constraint matches a large class of software

in multimedia, telecommunications and finance. As an example, consider a

HDTV video streaming or a VoIP session: a given frame-rate must be guaran-

teed, but a jitter of few milliseconds in the frame-time does not significantly

affect the quality of the video. In contrast, audio quality is extremely sensi-

tive to silence gaps. A bounded lateness in providing new samples (deadlines)

to the device can be easily compensated using a buffering/play-back strategy.

As previously said SCHED DEADLINE implements the EDF scheduling

algorithm, in which, roughly speaking, jobs are scheduled in order of increas-

25
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ing deadlines, with ties broken arbitrarly. The two main approaches to EDF

on multiprocessor systems are partitioned-EDF (P-EDF) and global -EDF (G-

EDF).

In P-EDF tasks are statically assigned to processors and those on each pro-

cessor are scheduled on an EDF basis. Tasks may not migrate. So, in an

M processors system we have M task sets independently scheduled. The

main advantage of such an approach is its simplicity, as a multiprocessor

scheduling problem is reduced to M uniprocessor ones. Furthermore, since

there is no migration, this approach presents a low overhead. Drawbacks

of P-EDF are: first, finding an optimal assignement of tasks to processors

is a bin-packing problem, which is NP-hard (sub-optimal heuristics are usu-

ally adopted); second, there are task sets that are schedulable only if tasks

are not partitioned [9]; third, when tasks are allowed to dynamically enter

and leave the system, a global re-assignement of tasks to processors may be

necessary to balance the load, otherwise the overall utilization may decrease

dramatically.

In G-EDF jobs are allowed to be preempted and job migration is permitted

with no restrictions. Jobs are usually inserted in a global deadline-ordered

ready queue, and at each instant of time the available processors are allo-

cated to the nearest deadline jobs in the ready queue.

No variant of EDF is optimal, i.e., deadline misses can occur under each EDF

variant in feasible systems (i.e., systems with total utilization at most the

number of processors). It has been shown, however, that deadline tardiness

under G-EDF is bounded in such systems, which, as we said, is sufficient for

many soft real-time applications [14, 42].

A third hybrid approach exists (H-EDF [8]) in which tasks are statically

assigned to fixed-size clusters, much as tasks are assigned to processors in

P-EDF. The G-EDF algorithm is then used to schedule the tasks on each

cluster. Tasks may migrate within a cluster, but not across clusters. In

other words, each cluster is treated as an independent system for scheduling

purposes. Under such an approach, deadline tardiness is bounded for each

cluster as long as the total utilization of the tasks assigned to each cluster is

at most the number of cores per cluster.
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2.2 A look at the Linux SMP support

In the early days of Linux 2.0, SMP support consisted of a big-lock that

serialized access across the system. While a CPU was choosing a task to

dispatch, the runqueue was locked by the CPU, and others had to wait. Ad-

vances for support of SMP slowly migrated in, but it wasn’t until the 2.6

kernel that full SMP support was developed.

The 2.6 scheduler doesn’t use a single lock for scheduling; instead, it has

a lock on each runqueue. This allows all CPUs to schedule tasks without

contention from other CPUs. In addition, with a runqueue per processor, a

task generally shares affinity with a CPU and can better utilize the CPU’s

hot cache. Another key feature is the ability to load balance work across the

available CPUs, while maintaining some affinity for cache efficiency1.

At the time of writing there are two approaches inside the Linux kernel to

to address SMP and load-balance, each contained in its own kernel module.

In kernel/sched fair.c we find the CFS implementation. As previously

said, the CFS uses a time-ordered red-black tree to enqueue tasks and to

build a timeline of future task execution. When tasks are created in an

SMP system, they are placed on a given CPU’s runqueue. In the general

case, you can’t know whether a task will be short-lived or it will run for a

long time. Therefore, the initial allocation of tasks to CPUs is likely to be

suboptimal. To maintain a balanced workload across CPUs, the CFS uses

load balancing. Periodically a processor2 checks to see whether the CPU loads

are unbalanced; if they are, the processor performs a cross-CPU balancing

of tasks.

The kernel/sched rt.c module behaves significantly different for two

main reasons. First, since it must deal with task priorities, it uses a priority

array to enqueue active tasks. The task to run next is always the highest

1When a task is associated with a single CPU, moving it to another CPU requires the
cache to be flushed for the task. This increases the latency of the task’s memory access
until its data is in the cache of the new CPU.

2More precisely the migration thread, a high priority system thread that performs
thread migration.
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priority one. Second, stock load balancing functionality has been deactivated.

With general processes, which expect high throughput, migration can be

done in batch, since no real-time constraint has to be meet. Real-time (RT)

tasks must instead be dispatched on a CPU that they can run on as soon as

possible. With the CFS approach an RT task can wait several milliseconds

before it gets scheduled to run. The migration thread is not fast enough

to take care of RT tasks. The RT tasks balancing is done with an active

method, i.e., the scheduler actively push or pull RT tasks between runqueues

when they are woken up or scheduled. The CFS balancing was removed in

order for this to work, or it would actually pull RT tasks from runqueues to

which they have been already assigned. Even if an RT task migration means

a bit of processor cache inefficiency (line flushing and reloading), it is needed

to reduce latency.

2.3 Extending SCHED DEADLINE

This section is the core of the thesis. We will analyze design choices, that are

the foundations, and commenting the code, that is the building structure, of

our G(H)-EDF implementation inside the Linux kernel.

2.3.1 Design

In designing a global scheduler there are two things to choose and one to

consider: respectively, the nature of the runqueue(s), the method of migra-

tion and the need for integration with the existing infrastructure.

Among the various possible alternatives [5, 6], the simplest and most

widely used ones are: a global runqueue from which tasks are dispatched to

processors, and a distributed approach with one runqueue for CPU and a

dynamical allotment of tasks to runqueues.

Advantages of a unique global runqueue are easy implementation and man-

agement and no need to face synchronization among the clocks of CPUs.

With only one runqueue the scheduler has not to decide where (on which
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CPU) to queue a ready task; moreover, assuming a some way ordered run-

queue, pick the system-wide task to run next is straightforward.

Unfortunately, the drawbacks win against the benefits of such an approach.

In a (large) SMP system scalability is a key goal. This implies the perfor-

mance of the scheduler on a given system remains the same as one adds more

processors to it. With a global runqueue (shared by the CPUs), the perfor-

mance of the scheduler degraded as the number of processors increased, due

to lock contention. The overhead of keeping the scheduler and all of its data

structures consistent is reasonably high, i.e., to ensure that only one proces-

sor can concurrently manipulate the runqueue, it is protected by a lock. This

means, effectively, only one processor can execute the scheduler concurrently.

To solve this problem, we usually divide the single global runqueue into a

unique runqueue per processor (as in the stock Linux scheduler). This design

is often called a multiqueue scheduler. Each processor’s runqueue has a sep-

arate selection of the runnable tasks on a system. When a specific processor

executes the scheduler, it selects only from its runqueue. Consequently, the

runqueues receive much less contention, and performance does not degrade

as the number of processors in the system increases.

Drawbacks of this case are a complex management of the concurrent run-

queues, in terms of tasks’ allotment and consistence of the data structures,

and the technical difficulty in doing a global scheduling choice (pick the right

system-wide task to run next may not be easy, e.g., for the lack of synchro-

nization among the CPUs’ clocks).

Considering that, at the present day, the number of CPUs/cores in a ma-

chine can even reach the 128 units and that a real-time scheduling decision

can not be slowed down by the time to acquire a so probably contended lock,

the only viable choice is a multiqueue scheduler (trying to find an efficient

solution to manage this approach’s complexity).

We recall for section 2.2 that tasks’ migration can be active or passive.

Similarly to what said for RT tasks, even EDF tasks must be dispatched on

a CPU that they can run on as soon as possible. By doing this we can ap-

proximate a G-EDF scheduler, where we use the term approximate because
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there may be some time intervals in which the scheduler is doing a schedul-

ing decision or a task is beeing migrated and the “on an m CPU system,

the m earliest deadline ready tasks running on the CPUs” statement may

be violated. Therefore, the approach that we will adopt is to actively push

or pull EDF tasks between runqueues when they are woken up or scheduled,

deactivating the load balancer.

Integration with the existing framework of the Linux scheduler and a

correct use of the data structures already devoted to tasks’ migration is

compulsory. The Linux scheduler uses (and implements) the concept of cpu

sets to be able to divide system’s CPUs in multiple exclusive sets that can

be considered island domains. The notion of a root-domain is then used to

define per-domain variables. Whenever a new exclusive cpuset is created,

also a new root domain3 is created and attached to it.

The root-domain structure contains both the cpu set masks and the variables

that control RT tasks migration:

struct root_domain {

atomic_t refcount;

cpumask_var_t span;

cpumask_var_t online;

cpumask_var_t rto_mask;

atomic_t rto_count;

#ifdef CONFIG_SMP

struct cpupri cpupri;

#endif

};

The span and online masks identify set and status of the CPUs belonging

to a domain; rto mask and rto count allow to know which and how many

CPU of the set are overloaded (contain more then one RT task); cpupri per-

mits efficient management of the system’s runqueues. For these reasons, we

will work at the root domain level, so that cpu sets still work as expected.

3struct root domain is defined in kernel/sched.c.
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2.3.2 Development

Based on the design choices taken in section 2.3.1, we are now able to dive

deep into the code4. We will first present the data structures needed to im-

plement the push and pull logic, then we will analyze the implementation of

that logic with a top-down approach.

Not surprisingly, struct dl rq is the place where we put accounting

informations to manage overloading and migrations, together with a tree of

pushable tasks.

Listing 2.1: struct dl rq extended.

struct dl_rq {

/* runqueue is an rbtree, ordered by deadline */

struct rb_root rb_root;

struct rb_node *rb_leftmost;

unsigned long dl_nr_running;

#ifdef CONFIG_SMP

struct {

/* earliest queued deadline task */

u64 curr;

u64 next; /* next earliest */

} earliest_dl;

unsigned long dl_nr_migratory;

unsigned long dl_nr_total;

int overloaded;

/* pushable tasks RBTREE, ordered by deadline */

struct rb_root pushable_tasks_root;

struct rb_node *pushable_tasks_leftmost;

#endif

...

};

Struct earliest dl operates like a cache for the earliest deadlines of the

4The formatting, indentation and space between lines of the previous and the following
pieces of code may be modified from the actual code for a seamless integration with text.
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ready SCHED DEADLINE (DL) tasks on the runqueue, in order to allow an

efficient push/pull decision. dl nr migratory and dl nr total respec-

tively account for the number of DL tasks that can migrate and the total

number of queued DL tasks; a flag for the overloaded status is then given by

overloaded.

The pushable task tree is a red-black tree with its root on pushable tasks

root. We use an rbtree (sorted by increasing deadlines) because the task

to be push/pull next is the one with the earliest deadline. Moreover, the

pointer pushable tasks leftmost permits an easy handling of the tree.

A slight change in struct root domain doesn’t alter the cpu sets

architecture and allows a root domain level overloading management.

Listing 2.2: struct root domain extended.

struct root_domain {

atomic_t refcount;

cpumask_var_t span;

cpumask_var_t online;

/*

* The "RT overload" flag: it gets set if

* a CPU has more than

* one runnable RT task.

*/

cpumask_var_t rto_mask;

atomic_t rto_count;

#ifdef CONFIG_SMP

struct cpupri cpupri;

#endif

/*

* The "DEADLINE overload" flag: it gets set

* if a CPU has more than

* one runnable DEADLINE task.

*/

cpumask_var_t dlo_mask;

atomic_t dlo_count;

};

Even if the code is quite self-explanatory, dlo mask shows which CPUs of

the system are overloaded and dlo count keeps count of those.
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Starting from the top and then giving a brief overview of the bottom, we

first analyze the push and pull functions.

Listing 2.3: Push function.

s t a t i c i n t push d l t a sk ( s t r u c t rq ∗ rq )

{
s t r u c t t a s k s t r u c t ∗ next ta sk ;

s t r u c t rq ∗ f u r t h e s t r q ;

i f ( ! rq−>dl . over loaded )

re turn 0 ;

next ta sk = p i c k n e x t p u s h a b l e t a s k d l ( rq ) ;

i f ( ! nex t ta sk )

re turn 0 ;

r e t r y :

i f ( u n l i k e l y ( next ta sk == rq−>curr ) ) {
WARNON(1) ;

r e turn 0 ;

}

/∗
∗ I t ’ s p o s s i b l e t h a t the n e x t t a s k s l i p p e d in o f

∗ h i gher p r i o r i t y than current . I f t h a t ’ s the case

∗ j u s t r e s chedu l e current .

∗/
i f ( u n l i k e l y ( d l t i m e b e f o r e ( next task−>dl . dead l ine ,

rq−>curr−>dl . dead l ine ) ) ) {
r e s ch ed ta sk ( rq−>curr ) ;

r e turn 0 ;

}

/∗ We might r e l e a s e rq l o c k ∗/
g e t t a s k s t r u c t ( next ta sk ) ;

/∗ f i n d l o c k l o w e s t r q l o c k s the rq i f found ∗/
f u r t h e s t r q = f i n d l o c k f u r t h e s t r q ( next task , rq ) ;
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i f ( ! f u r t h e s t r q ) {
s t r u c t t a s k s t r u c t ∗ task ;

/∗
∗ f i n d l o c k f u r t h e s t r q r e l e a s e s rq−>l o c k

∗ so i t i s p o s s i b l e t h a t n e x t t a s k has migrated .

∗
∗ We need to make sure t ha t the t a s k i s s t i l l on the same

∗ run−queue and i s a l s o s t i l l t he next t a s k e l i g i b l e f o r

∗ pushing .

∗/
task = p i c k n e x t p u s h a b l e t a s k d l ( rq ) ;

i f ( task cpu ( next ta sk ) == rq−>cpu && task == next ta sk ) {
/∗
∗ I f we ge t here , the t a s k hasnt moved at a l l , but

∗ i t has f a i l e d to push . We w i l l not t r y again ,

∗ s ince the o ther cpus w i l l p u l l from us when they

∗ are ready .

∗/
dequeue pushab l e ta sk d l ( next ta sk ) ;

goto out ;

}

i f ( ! task ) {
/∗ No more tasks , j u s t e x i t ∗/
goto out ;

}

/∗
∗ Something has s h i f t e d , t r y again .

∗/
p u t t a s k s t r u c t ( next ta sk ) ;

nex t ta sk = task ;

goto r e t r y ;

}

d e a c t i v a t e t a s k ( rq , next task , 0) ;

s e t t a s k c p u ( next task , f u r t h e s t r q−>cpu ) ;

a c t i v a t e t a s k ( f u r t h e s t r q , next task , 0) ;
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r e s ch ed ta sk ( f u r t h e s t r q−>curr ) ;

doub l e un lock ba lance ( rq , f u r t h e s t r q ) ;

out :

p u t t a s k s t r u c t ( next ta sk ) ;

r e turn 1 ;

}

The push function first checks the overloaded flag to see if there are DL tasks

to push away; then pick from the pushable rbtree the task to try to push

next. At this time the find lock furthest rq (details below) job is to

find and lock a runqueue where the task can immediately run. If found the

actual migration is accomplished, else the function just exits or retries.

Listing 2.4: Pull function.

s t a t i c i n t p u l l d l t a s k ( s t r u c t rq ∗ t h i s r q )

{
i n t t h i s c p u = t h i s r q−>cpu , r e t = 0 , cpu ;

s t r u c t t a s k s t r u c t ∗p ;

s t r u c t rq ∗ s r c r q ;

i f ( l i k e l y ( ! d l ove r l oaded ( t h i s r q ) ) )

re turn 0 ;

f o r ea ch cpu ( cpu , t h i s r q−>rd−>dlo mask ) {
i f ( t h i s c p u == cpu )

cont inue ;

s r c r q = cpu rq ( cpu ) ;

/∗
∗ Don ’ t bo ther t a k ing the s rc rq−>l o c k i f the

∗ next dead l i ne t a s k i s known to have f u r t h e r

∗ dead l i ne than our current t a s k .

∗ This may look racy , but i f t h i s va lue i s

∗ about to go l o g i c a l l y e a r l i e r , the s r c r q w i l l

∗ push t h i s t a s k away .
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∗ And i f i t s go ing l o g i c a l l y f u r the r ,

∗ we do not care

∗/
i f ( d l t i m e b e f o r e ( t h i s r q−>dl . e a r l i e s t d l . curr ,

s r c rq−>dl . e a r l i e s t d l . next ) )

cont inue ;

/∗
∗ We can p o t e n t i a l l y drop t h i s r q ’ s l o c k in

∗ doub l e l o c k ba l anc e , and another CPU cou ld

∗ a l t e r t h i s r q

∗/
doub l e l o c k ba l a nc e ( t h i s r q , s r c r q ) ;

/∗
∗ Are the r e s t i l l p u l l a b l e DEADLINE ta s k s ?

∗/
i f ( s r c rq−>dl . d l n r runn ing <= 1)

goto sk ip ;

p = p i c k n e x t e a r l i e s t d l t a s k ( s r c rq , t h i s c p u ) ;

/∗
∗ Do we have an DEADLINE ta sk t ha t preempts

∗ the to−be−schedu l ed t a s k ?

∗/
i f (p && d l t i m e b e f o r e (p−>dl . dead l ine ,

t h i s r q−>dl . e a r l i e s t d l . cur r ) ) {
WARNON(p == src rq−>curr ) ;

WARNON( ! p−>se . on rq ) ;

/∗
∗ There ’ s a chance t ha t p has an e a r l i e s t

∗ dead l i ne than what ’ s

∗ cu r r en t l y running on i t s cpu . This i s

∗ j u s t t h a t p i s wakeing up and hasn ’ t

∗ had a chance to schedu l e . We only p u l l

∗ p i f i t has a f u r t h e r dead l i ne than the

∗ curren t t a s k on the run queue
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∗/
i f ( d l t i m e b e f o r e (p−>dl . dead l ine ,

s r c rq−>curr−>dl . dead l ine ) )

goto sk ip ;

r e t = 1 ;

d e a c t i v a t e t a s k ( s r c rq , p , 0) ;

s e t t a s k c p u (p , t h i s c p u ) ;

a c t i v a t e t a s k ( t h i s r q , p , 0) ;

/∗
∗ We cont inue wi th the search , j u s t in

∗ case t he r e ’ s an even e a r l i e s t d ead l i ne t a s k

∗ in another runqueue . ( low l i k e l y h o o d

∗ but p o s s i b l e )

∗/
}

sk ip :

doub l e un lock ba lance ( t h i s r q , s r c r q ) ;

}

re turn r e t ;

}

The pull function checks all the root domain’s overloaded runqueues to see if

there is a task that the calling runqueue can take in order to run it (preempt-

ing the current running one). If found, this function performs a migration,

else continue the search or just exits if there aren’t any other runqueues to

consider.

The push function makes use of the find lock furthest rq routine

to find (and lock) a suitable runqueue to push a task.

Listing 2.5: find lock furthest rq function.

s t a t i c s t r u c t rq ∗ f i n d l o c k f u r t h e s t r q ( s t r u c t t a s k s t r u c t ∗ task

,

s t r u c t rq ∗ rq )

{
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s t r u c t rq ∗ f u r t h e s t r q = NULL;

i n t t r i e s ;

i n t cpu ;

f o r ( t r i e s = 0 ; t r i e s < DEADLINE MAX TRIES; t r i e s ++) {
cpu = f i n d f u r t h e s t r q ( task ) ;

i f ( ( cpu == −1) | | ( cpu == rq−>cpu ) ) {
break ;

}

f u r t h e s t r q = cpu rq ( cpu ) ;

/∗ i f the pr io o f t h i s runqueue changed , t r y again ∗/
i f ( d oub l e l o c k ba l a nc e ( rq , f u r t h e s t r q ) ) {

/∗
∗ We had to unlock the run queue . In

∗ the mean time , t a s k cou ld have

∗ migrated a l r eady or had i t s a f f i n i t y changed .

∗ Also make sure t ha t i t wasn ’ t s chedu l ed on i t s rq .

∗/
i f ( u n l i k e l y ( t a s k r q ( task ) != rq | |

! cpumask test cpu ( f u r t h e s t r q−>cpu ,

&task−>cpus a l lowed ) | |
ta sk runn ing ( rq , task ) | |
! task−>se . on rq ) ) {

raw sp in un lock (& f u r t h e s t r q−>l o ck ) ;

f u r t h e s t r q = NULL;

break ;

}
}

/∗ I f t h i s rq i s s t i l l s u i t a b l e use i t . ∗/
i f ( d l t i m e b e f o r e ( task−>dl . dead l ine ,

f u r t h e s t r q−>dl . e a r l i e s t d l . cur r ) | |
( f u r t h e s t r q−>dl . d l n r runn ing == 0) ) {

break ;

}
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/∗ t r y again ∗/
doub l e un lock ba lance ( rq , f u r t h e s t r q ) ;

f u r t h e s t r q = NULL;

}

re turn f u r t h e s t r q ;

}

The find lock furthest rq function tries DEADLINE MAX TRIES times

to find a suitable runqueue (where the running task has a further deadline

than that of the task at issue). It only acquires a double lock (source and

destination runqueues) if it succeeds in its work. A check is performed soon

after the lock to see if the destination runqueue is still suitable (something

can be changed in the meantime).

The very core of all the mechanism, however, are the furthest cpu find

and find furthest rq functions. The first tries to find the best CPUs in

the span (and builds a mask of those) for the task passed as an argument.

Listing 2.6: furthest cpu find function.

s t a t i c i n t f u r t h e s t c p u f i n d ( const s t r u c t cpumask ∗span ,

const s t r u c t t a s k s t r u c t ∗ task ,

s t r u c t cpumask ∗ fu r thes t mask )

{
i n t cpu ;

i n t found = 0 ;

s t r u c t rq ∗ rq ;

s t r u c t d l r q ∗ d l r q ;

const s t r u c t s c h e d d l e n t i t y ∗ d l s e = &task−>dl ;

f o r ea ch cpu ( cpu , span ) {
rq = cpu rq ( cpu ) ;

d l r q = &rq−>dl ;

i f ( ( d l t i m e b e f o r e ( d l s e−>deadl ine ,

d l rq−>e a r l i e s t d l . cur r ) | |
( d l rq−>d l n r runn ing == 0) ) &&

cpumask test cpu ( cpu , &task−>cpus a l lowed ) ) {
cpumask set cpu ( cpu , fur thes t mask ) ;

found = 1 ;
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} e l s e {
cpumask c lear cpu ( cpu , fur thes t mask ) ;

}
}
re turn found ;

}

This function is then utilized by find furthes rq to elect the best CPU

based on task’s affinity and system’s topology.

Listing 2.7: find furthest rq function.

s t a t i c i n t f i n d f u r t h e s t r q ( s t r u c t t a s k s t r u c t ∗ task )

{
s t r u c t sched domain ∗ sd ;

s t r u c t cpumask ∗ fu r thes t mask = g e t c p u v a r ( loca l cpu mask )

;

i n t t h i s c p u = smp proce s so r id ( ) ;

i n t cpu = task cpu ( task ) ;

i f ( task−>dl . n r cpus a l l owed == 1)

return −1; /∗ No other t a r g e t s p o s s i b l e ∗/

i f ( ! f u r t h e s t c p u f i n d ( t a s k r q ( task )−>rd−>span , task ,

fur thes t mask ) ) {
re turn −1; /∗ No t a r g e t s found ∗/

}

/∗
∗ At t h i s po in t we have b u i l t a mask o f cpus

∗ r ep r e s en t i n g the f u r t h e s t dead l ine t a s k s in the system .

∗ Now we want to e l e c t

∗ the b e s t one based on our a f f i n i t y and topo l o gy .

∗
∗ We p r i o r i t i z e the l a s t cpu t ha t the t a s k executed on s ince

∗ i t i s most l i k e l y cache−hot in t ha t l o c a t i o n .

∗/
i f ( cpumask test cpu ( cpu , fur thes t mask ) ) {

re turn cpu ;

}
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/∗
∗ Otherwise , we con su l t the sched domains span maps

∗ to f i g u r e out which cpu i s l o g i c a l l y c l o s e s t to our

∗ hot cache data .

∗/
i f ( ! cpumask test cpu ( th i s cpu , fur thes t mask ) )

t h i s c p u = −1; /∗ Skip t h i s c p u opt i f the same ∗/

for each domain ( cpu , sd ) {
i f ( sd−>f l a g s & SD WAKE AFFINE) {

i n t bes t cpu ;

/∗
∗ ” t h i s c pu ” i s cheaper to preempt than a

∗ remote proces sor .

∗/
i f ( t h i s c p u != −1 &&

cpumask test cpu ( th i s cpu ,

sched domain span ( sd ) ) )

re turn t h i s c p u ;

best cpu = cpumask f i r s t and ( furthest mask ,

sched domain span ( sd ) ) ;

i f ( bes t cpu < n r c p u i d s )

re turn best cpu ;

}
}

/∗
∗ And f i n a l l y , i f t h e r e were no matches w i th in

∗ the domains j u s t g i v e the c a l l e r ∗ something ∗
∗ to work wi th from the compat ib l e

∗ l o c a t i o n s .

∗/
i f ( t h i s c p u != −1)

re turn t h i s c p u ;

cpu = cpumask any ( fur thes t mask ) ;
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i f ( cpu < n r c p u i d s )

re turn cpu ;

re turn −1;

}

At this point we have seen how a migration is performed, both for the

pull and the push case. However, we lack to understand how the overleaded

status is managed and where in the code a push/pull call may arise.

Three functions are responsible for the overloaded status consistency, and

they are quite self-explanatory. Other two control the correct update of

dl nr running and earliest dl, but are not worth to be listed here to

avoid too much confusion.

Listing 2.8: Overloaded status management functions.

s t a t i c void update d l mig ra t i on ( s t r u c t d l r q ∗ d l r q )

{
i f ( d l rq−>d l n r mig ra to ry && dl rq−>d l n r t o t a l > 1) {

i f ( ! d l rq−>over loaded ) {
d l s e t o v e r l o a d ( r q o f d l r q ( d l r q ) ) ;

d l rq−>over loaded = 1 ;

}
} e l s e i f ( d l rq−>over loaded ) {

d l c l e a r o v e r l o a d ( r q o f d l r q ( d l r q ) ) ;

d l rq−>over loaded = 0 ;

}
}

s t a t i c void i n c d l m i g r a t i o n ( s t r u c t s c h e d d l e n t i t y ∗ d l s e ,

s t r u c t d l r q ∗ d l r q )

{
d l r q = &r q o f d l r q ( d l r q )−>dl ;

d l rq−>d l n r t o t a l ++;

i f ( d l s e−>nr cpus a l l owed > 1)

d l rq−>d l n r mig ra to ry++;

update d l mig ra t i on ( d l r q ) ;

}
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s t a t i c void d e c d l m i g r a t i o n ( s t r u c t s c h e d d l e n t i t y ∗ d l s e ,

s t r u c t d l r q ∗ d l r q )

{
d l r q = &r q o f d l r q ( d l r q )−>dl ;

d l rq−>d l n r t o t a l −−;

i f ( d l s e−>nr cpus a l l owed > 1)

d l rq−>d l nr migra to ry −−;

update d l mig ra t i on ( d l r q ) ;

}

The functions listed in 2.8 are called every time a DL entity is queued in or

dequeued from a CPU’s runqueue.

Finally, four points in the code can lead to a push/pull mechanism ac-

tivation. The push function is called after each scheduling decision (inside

post schedule dl) and every time a DL task is woken up (inside task

woken dl), so to provide a sort of load balancing. The pull function is

instead called before each scheduling decision (inside pre schedule dl)

and every time the last DL task on a runqueue ends its execution (inside

switched from dl) and consequently leaves room for the others DL tasks

of the system.
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Experimental Results

3.1 Cases of Interest

Decide what to measure and how to collect data from a scheduling experiment

is not a straightforward task. Moreover, a scheduling algorithm performance

analysis may be influenced by a number of subtle events that affect how the

system behaves, introducing unexpected noise in the collected data.

The target of the following analysis is not to prove that our G-EDF im-

plementation has a very good overall performance or that it behaves better

than other real-time algorithms for some specific application. Although this

kind of analysis may be very interesting, also to understand which type of

applications can find advantages in the use of a global EDF scheduler, it is

beyond the scope of this thesis. We will focus instead on evaluate system’s

overheads introduced by the migration of tasks. It is very important to verify

that our implementation can be a viable choiche for soft real-time applica-

tions developers, providing them a new useful mechanism inside the Linux

kernel.

3.1.1 Working Set Size

The focus of a large part of this analysis is how the presence of cache mem-

ory influences the behaviour of the implemented algorithm, considering the

introduced overhead.

44
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Since cache memory is very fast, compared to the other system’s components,

we first need to find a working set size that allows us to make measurements

of cache-related operations only. As will be clear in the next few paragraphs,

working with a too small dataset, we may incurr in measuraments errors due

to the fact that the time spent on the cache is comparable to the time spent

on executing code.

To find a suitable working set size, we conducted several experiments with

successive runs of a purpose built application. As suggested in a technical

article by Ulrich Drepper [17], we wrote a program which can simulate work-

ing sets of arbitrary size, read and write access, and sequential or random

access. The program creates an array corresponding to the working set size

of elements of this type:

struct list_elem {

volatile struct list_elem *next;

long int pad[NPAD];

};

typedef struct list_elem item;

All entries are chained in a circular list using the n element, in sequen-

tial order. Advancing from one entry to the next always uses the pointer,

even if the elements are laid out sequentially. The pad elements is the

payload and it can be varied as needed. A working set of 2N bytes contains

2N/sizeof(struct list item) elements. Obviously, sizeof(struct

list elem) depends on the value of NPAD. For 64-bit systems, as those we

have used, NPAD = 3 means the size of each array element is 32 bytes and

NPAD = 7 means 64 bytes.

The program allocates a static work set array of item elements, in-

creasing the working set size by a power of 2 at every iteration. Each iteration

works as follows:

• locks the working set’s memory locations and builds the circular list;

• for MAX ITER times:

– flushes the cache,
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– accesses all the elements of the array,

– accesses, a second time, a fixed number of the elements (with a

write to read ratio of 1/4);

• unlocks the memory.

Measures, on terms of execution time and using performance counters, are

taken for the first and the second access to the vector. This is done in order

to simulate a cache-cold and a cache-warm access to the same working set, in

fact, after the cache flush no elements of the array are present in the cache;

then, with the first access, the program loads every element in the cache,

so generating compulsory level-1 and level-2 cache misses; the second time it

accesses the vector, and considering that the vector is smaller in size that the

level-1 cache size and little or no interference with other tasks of the system,

the program should find already on the cache everything he needs, spending

less time and generating less or no cache misses in doing its job.

It has to be said the we used performace counters in order to prove the

expected program behaviour as well, in this respect we also analyzed working

set sizes that exceed L1D and L2 cache sizes.

3.1.2 Cache-Related Overhead

Once we have restricted our analysis to one or two working sets (considered

interesting in relation with the hardware we used), we have now to develop

a general method of “cache overhead accounting”, in order to prove that the

overhead introduced by migrations is negligible and doesn’t affect so much

the overall system’s behaviour.

The first step in finding cache-related overheads is to build a synthetic

worst case situation and look at how the system behaves. To heavy stress

cache memory we built an application that runs from 1 to 30 concurrent

tasks using a FIFO scheduling mechanism. Each tasks builds the circular

list according to a specified WSS; then, until a shutdown signal, repeatedly

accesses a fixed number of elements of the list (ACCESSED ITEMS) mea-

suring, at each iteration, access time, L1D and L2 cache misses. Moreover,
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every time a task finishes an iteration, it yields the processor; since tasks are

scheduled with a FIFO approach and they all are at the same priority, when

a task reach the end of an iteration, it will access again to its list only after

all the others tasks.

This way we recreate a worst case situation, as every time a task wants to

access to its data, he certainly doesn’t find them on the cache because they

were all flushed away by the others tasks.

Worst case assumption will be confirmed looking at L1D and L2 cache

misses. Since in this thesis we focus on inter-core migration, we expect a large

amount of L1D cache misses (the sum of all the tasks’ WSSes will be less

than the L2 cache size) and little or no L2 misses. With access time measures

we will instead make an estimation of the worst case per-item access time,

dividing total access time by the fixed number of accesses.

We are now able to deal with periodic tasks. A program has been built

that reads from a configuration file a task set and creates periodic tasks

that execute for a specified amount of time. For each task is possible to

specify task’s execution time and period, then the program calculates how

many accesses to the list a task must do to reach its execution time simply

by dividing that value for the estimated worst-case access time. After the

calculated number of access a task sleeps until the end of its period. Having

instrumented the code, we are able to collect data about real execution time

(and percentual error compared to the requested execution time), lateness in

waking up a task after its new activation time, slack or tardiness (the amount

of time the task finish its job until the end of its period or how much it is

gone beyond that instant of time), L1D and L2 cache misses.

The use of those kind of measures is fundamental in order to understand

the amount of cache-related overhead a scheduling mechanism introduces

allowing tasks to migrate between processors. The idea behind this statement

is that, if we schedule a schedulable task set under some scheduling algorithm

that allows tasks migrations and we find that every tasks in the system is

able to execute for the requested amount of time and, at the same time,

doesn’t miss its deadlines (assuming deadlines coincident with period), than

we can state that the cache-related overhead introduced by that algorithm is
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negligible, else the algorithm operates in a so poor way that it is not usable

in a real system.

3.2 Software Tools

Care must be taken when trying to collect data from a running system. The

collecting tools must introduce little or no overhead in order to not influence

measurement. Luckily, some software tools exist both in kernel and user

space to address this kind of problem. In this section we will present the

tools we used to take measures, with simple snippets of code to clarify how

they work.

3.2.1 Tracing the kernel

There are quite a variety of tracing options for Linux, we have decided to use

ftrace for its low overhead in tracing and its smooth integration with user

space applications. The name ftrace comes from “function tracer”, which

was its original purpose, but it can do more than that. Various additional

tracers have been added to look at things like context switches, how long

interrupts are disabled, how long it takes for high-priority tasks to run after

they have been woken up, and so on.

First thing to do to use this tracer is enable the proper kernel config

option CONFIG FUNCTION TRACER. Then we can access ftrace through the

debug file system, typically mounted this way:

# mount -t debugfs nodev /debug

That creates a /debug/tracing subdirectory which is used to control

ftrace and for getting output from the tool. The list of the available trac-

ers is simply showed by reading /debug/tracing/available tracers.

Then, one can choose a particular trace writing its name in current tracer
1.

1From here on, we assume we are inside the tracing directory.
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Tracing is enabled by default, so we have to stop it until the execution of the

activity to be traced.

# echo 0 > tracing_on

Ftrace stores lines of trace in a circular buffer. The execution for a large

amount of time can cause buffer overflow (not an error, but early data may

be unwittingly discarded). With:

# echo 10240 > buffer_size_kb

we can control the buffer size in units of kilobytes. Before tracing it may be

useful to empty the trace file with:

# head -4 trace > trace

Then a simple ftrace run may be:

# echo 1 > tracing_on

...some commands or activity to trace...

# echo 0 > tracing_on

Function tracer (function) is the one we used to trace the execution

of the scheduler. Other than restrict the tracing to push dl task and

pull dl task functions, we have introduced some tracepoints directly in-

side the kernel. Tracepoints [13] are lightweight hooks that can be put at

important locations in the kernel code. When the code execution reaches a

tracepoint an event is issued that can be trapped by the function tracer. First

of all a tracepoint must be defined in include/trace/events/sched.h

inside the kernel source directory. Follows an example of a tracepoint defini-

tion:

Listing 3.1: Tracepoint definition.

TRACE_EVENT(push_dl_entry,

TP_PROTO(struct task_struct *curr),

TP_ARGS(curr),

TP_STRUCT__entry(

__field( pid_t, pid )
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__field( u64, deadline )

),

TP_fast_assign(

__entry->pid = curr->pid;

__entry->deadline = curr->dl.deadline;

),

TP_printk("PID=%d DEADLINE=%llu",

__entry->pid, __entry->deadline)

);

As we can see a tracepoint can take some arguments and can also print

directly on the trace. After the definition, the code can be instrumented

with a tracepoint call:

Listing 3.2: Tracepoint call.

static int push_dl_task(struct rq *rq)

{

struct task_struct *next_task;

struct rq *furthest_rq;

if (!rq->dl.overloaded)

return 0;

trace_push_dl_entry(rq->curr);

next_task = pick_next_pushable_task_dl(rq);

if (!next_task) {

trace_push_dl_exit(rq->curr);

return 0;

}

...

In the previous code snippet we can see how we instrumented our G-EDF

implementation for tracing purposes. Finally, at run time, an event must be

set to link the tracepoint with the tracing environment:

# echo push_dl_entry >> set_event

The set event file contains a list of events that must be traced. Care must

be taken on echoing new events on it, they must be appended or they will
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overwrite previously added ones.

3.2.2 High resolution clocks

One of the common ways to measure time intervals in a user space application

is the use of high resolution clocks. Linux, by the clock gettime(...)

function, allows to read all the available system’s clock. The clock gettime

(clockid t clk id, struct timespec *tp) function retrives the

time of a specified clock clk id and writes it in the timespec structure

passed as a pointer in the function call.

The clk id argument is the identifier of the particular clock on which to

act. A clock may be system-wide and hence visible for all processes, or per-

process if it measures time only within a single process. Sufficiently recent

versions of glibc and the Linux kernel support the following clocks:

• CLOCK MONOTONIC: clock that represents monotonic time since some

unspecified starting point. Very useful to implement periodic tasks (see

below).

• CLOCK THREAD CPUTIME ID: thread-specific CPU-time clock. Every

thread has is on clock of this type, it is used in measuring time intervals

with no regards for other tasks concurrent execution.

The timespec structure is specified in <time.h> and has the following

shape:

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

We have two uses of high resolution clocks in collecting data for our analysis:

measure of time intervals and implementation of periodic tasks.

The common way of measure a time interval inside a thread is the following:

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_start);
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...some computations to measure...

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_stop);

Then the difference between t stop and t start gives the execution time

of the measured computation. It is to be noted here that this time interval

comprises the thread-specific time only, if a thread is preempted and than

resumes execution, that time interval is not computed.

The simplest way of doing a periodical activity follows:

clock_gettime(CLOCK_MONOTONIC, &t_sleep);

while(1){

...some computations here...

t_sleep = timespec_add(&t_sleep, &t_period);

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&t_sleep, NULL);

}

In a few words, a time reference is taken the first time a periodic task starts

its execution; then the task enters an endless loop where: makes some com-

putations (periodic job), adds to the time reference its period, then sleeps

until its next activation time (clock nanosleep(...) does this job).

3.2.3 Performance Counters

Hardware performance counters, or performance counters, are a set of special-

purpose registers built into modern microprocessors to store the counts of

hardware-related activities within computer systems. With those counters we

are able to conduct low-level performance analysis and inspect what’s going

on deep into the system. Compared to software profilers, performance coun-

ters provide low-overhead access to great number of detailed performance

information related to CPU’s functional units, caches and main memory.

Accessing to performance counters is straightforward, correlating the low

level performance metrics back to the source code is the hard task. There are

two methods on Linux to work with them, an indirect and a direct one. To

the first type belong, most commonly used, OProfile [31] and Performance
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Counters for Linux (perf). Even if OProfile may have a larger number of

features in comparison with perf, it is not always easy to use and is something

external to the Linux kernel. Performance Counters for Linux is instead a

subsystem of the kernel devoted to hardware monitoring. It is quite new

(introduced with the 2.6.31 kernel), but works flawlessly and integrates well

with Linux. The perf utility can be used only for data collection outside the

code of the monitored application. If, for example, we want to know how

many cache misses an application may caused, we can do this simply issuing

the following:

perf stat -e L1-dcache-load-misses ./myApp

The perf stat will run the specified application and gather performance

counter statistics of it. With the -e option we can specify at which type of

events we are interested.

The problem here is how to correlate a specific piece of code with application-

wide statistics. A library has been developed that can help us, PAPI [32].

PAPI works on top of the perf subsystems and behaves very similar to how

high resoluiton clocks are used.

This library requires a suitable configured kernel, i.e. one with CONFIG PERF

COUNTERS=y. After the library installation (refer to the on-line documen-

tation) the list of availabe hardware events and hardware informations can

be showed with papi avail.

$ papi_avail

Available events and hardware information.

-----------------------------------------------------

PAPI Version : 4.0.0.3

Vendor string and code : GenuineIntel (1)

Model string and code : Intel(R) Core(TM)2 Duo CPU

T7300 @ 2.00GHz (15)

...

Hdw Threads per core : 1

Cores per Socket : 2
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...

Total CPU’s : 2

Number Hardware Counters : 5

...

-----------------------------------------------------

The following correspond to fields in the

PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache

misses

PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction

cache misses

PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache

misses

PAPI_L2_ICM 0x80000003 Yes No Level 2 instruction

cache misses

Moreover, another useful utility may be papi mem info, that reports de-

tailed system’s cache memory infos such as total size of each level, line size,

associativity and number of lines.

$ papi_mem_info

Memory Cache and TLB Hierarchy Information.

-----------------------------------------------------

...

Cache Information.

L1 Data Cache:

Total size: 32 KB

Line size: 64 B
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Number of Lines: 512

Associativity: 8

L1 Instruction Cache:

Total size: 32 KB

Line size: 64 B

Number of Lines: 512

Associativity: 8

L2 Unified Cache:

Total size: 4096 KB

Line size: 64 B

Number of Lines: 65536

Associativity: 16

The library use is then quite easy, first of all the library header must be

included in the source code, and it is also convenient to define the number

of events we will inspect:

#include <papi.h>

...

#define NUM_EVENTS 2

Then we must issue an init call in the program’s main:

Listing 3.3: PAPI init call.

int main(int argc, char **argv)

{

...

int Events[NUM_EVENTS] = {PAPI_L1_DCM,

PAPI_L2_TCM};

long long values[NUM_EVENTS];

...

/* Initialize PAPI library */
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retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {

fprintf(stderr,

"PAPI library init error!\n");

exit(1);

}

Now is time to start counters, this can be done at the very beginning of the

code since succesive reads will reset the counter’s value.

Listing 3.4: PAPI counters start.

if ((retval = PAPI_start_counters(Events, NUM_EVENTS))

!= PAPI_OK) {

fprintf(stderr,

"PAPI library start counters error!\n");

if (retval == PAPI_ECNFLCT)

fprintf(stderr,

"Non compatible event set!\n");

exit(1);

}

After this instant of time successive calls to a read function will return the

needed values and reset the counters. An example of code sampling follows:

Listing 3.5: PAPI sampling.

if ((retval = PAPI_read_counters(values, NUM_EVENTS))

!= PAPI_OK) {

fprintf(stderr,

"PAPI library read counters error!\n");

exit(1);

}

...some computation here...

if ((retval = PAPI_read_counters(values, NUM_EVENTS))

!= PAPI_OK) {

fprintf(stderr,

"PAPI library read counters error!\n");

exit(1);

}
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An access on the values vector now gives us the collected data. Last thing

to do is to stop the counters.

Listing 3.6: PAPI stop counters.

if ((retval = PAPI_stop_counters(values, NUM_EVENTS))

!= PAPI_OK) {

fprintf(stderr,

"PAPI library stop counters error!\n");

exit(1);

}

PAPI library works well in a multithreaded application too. The multithread

support must be initialized in the main:

Listing 3.7: PAPI multithread init.

/* Initialize PAPI threads support */

retval = PAPI_thread_init(pthread_self);

if (retval != PAPI_OK) {

fprintf(stderr, "PAPI threads init error!\n");

exit(1);

}

Then start, read and stop of counters goes in the thread body.

3.2.4 Tasks Sets Generator

A generator of random tasks sets is needed in order to not bias experiments.

Once a tasks set is generated it must pass a schedulability test, this is strongly

advised as to get meaningful measures of the system’s behaviour. To that

purpose, we extended a tasks sets generator made by G. Lipari and in this

section we briefly explain how it works.

The program can take several arguments as input (e.d., the number of

tasks that will be part of the tasks set, the number of CPUs on the system,

the number of tasks sets to be generated, etc. . . ) and it returns as output

a file for each tasks set that passed the schedulability tests. It is possible

to specify the number of tasks sets to generate as well, and the generator

continues its work until it reaches the desired amount.



CHAPTER 3. EXPERIMENTAL RESULTS 58

The core of this program (the actual creation of tasks) works as follows:

• extracts a random number of tasks between the max and min values

passed as arguments;

• calculate the total bandwidth assigned to the tasks set relating it to

the number of processor, this value is comprised between a max and a

min as well;

• assigns to each task an equal fraction of the total bandwitdh;

• uses the concavity (passed as argument) as to shuffle tasks’ utilization,

an example of this is given in Figure 3.1.
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Figure 3.1: An example of a random tasks set.

After a tasks set has been created it must pass every schedulability test

chosen by the user in order to be part of the files set generated as output.

What follows better clarifies how the program behaves after a tasks set gen-

eration.
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• If P-EDF is set, the generator tries to divide the tasks among the CPUs

with a firts-fit approach. For every task it controls if its utilization can

fit inside a CPU’s maximum allowed bandwidth (Umax). If it can, the

program goes to the next task, else tries until it doesn’t find a suitable

CPU. If no CPU is found the routine just exits and the task set is

discarded. On the contrary, if successful, every tasks in the tasks set

will have its affinity properly set.

• If G-EDF is set, the tasks set will be tested with three schedulability

tests: RTA EDF, Sanjoy Baruah’s RTSS and the Marko Bertogna’s

improved Sanjoy’s test. If a tasks set passes one of these tests, it is

considered schedulable and the actual file is created.

• If P-RM is set, the program tries to divide the tasks among the CPUs,

as in the P-EDF case, with the difference that every “partial” parti-

tioned tasks set must pass the RTA FP test. If the adding of a task

on each CPU causes the test to fail the tasks set is discarded. It is

to be said that, if a tasks set has been previously partitioned with P-

EDF, each partition must pass the RTA FP test to the output file to

be created.

• The G-RM case is similar to the G-EDF one, changes the test only, as

for RM we use the RTA FP test.

3.3 Hardware

We used one hardware platform to conduct the experiments:

• an IntelR CoreTM2 Duo T7300 dual-core machine with 32KB of L1D

(plus 32KB of L1I) per-core cache memory and 4096KB of L2 shared

cache memory.

The use of an IntelR CoreTM2 Quad Q6600 quad-core machine with 32KB

of L1D (plus 32KB of L1I) per-core cache memory and 4096KB of L2 shared

cache memory is scheduled in the future as to continue the analysis of the
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present thesis. Although the first machine was useful to cache related over-

head experiments, the second will be necessary for analysing the scheduling

mechanism behaviour in a more general context from the point of view of

migrations overhead and counting.

3.4 Results

If in section 3.1 we have presented the theoretical aspects of our experimen-

tal analysis, here we will show the results of the experiments led on real

hardware.

3.4.1 Working Set Size Selection

Working set size selection has been done using the sinThSeqAccFixed.c

program (for source code see section A.2). The IntelR CoreTM2 Duo T7300

processor has 64 bytes wide cache lines both for level-1 and level-2 caches.

So, we have decided to consider the size of each element of the list to be 64

bytes or 32 bytes long. This is done in order to verify the cache behaviour

in regard to the number of cache misses.

As said in section 3.1.1, we start the experiment with a working set size of

1KB and we step up it to reach the size of 8192KB (8MB), it is to remember

that the T7300 has a 32KB L1D and a 4096KB L2 cache memories.

In Figure 3.2 on the next page is shown the 64 bytes long case. The

blue line represents the average per-item access time (in µs); the fuchsia and

yellow lines respectively depict L1D and L2 cache misses. The first two mea-

surements are polluted by noise. The measured workload is simply too small

to filter the effects of the rest of the system out. We can safely assume that

the values are all under 0, 018µs.

With this in mind we can see three distinct levels:

• up to a working set size of 16KB,

• from 32KB to 2048KB,
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Figure 3.2: Single thread sequential access with elements of 64 bytes.

• from 4096KB and up.

We do not see sharp edges in the transition from one level to the other be-

cause the caches are used by other parts of the system as well and so the

cache is not exlusively available for the program data. Moreover, the L2

cache is a unified cache also used for instructions.

The trend is confirmed looking at L1D and L2 cache misses and the expla-

nation for it follows:

• up to half of the L1D cache size a cache warm access doesn’t raise any

cache miss, so it is very fast to access data that are already present in

the nearest cache level;

• when the working set size goes beyond 16KB (and considering the afore-

mentioned interference) accesses to the list start to be L1D cache warm,

in the sense that needed data start to be evicted from L1D for space

reasons; per-item access time continues to be slightly above 0, 018µs

since L2 cache is warm and loading data from it is faster than a main
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memory access;

• when, at last, the working set size reach the L2 cache size we find an

abrupt increase of per-time access time due to the fact that, every time

we want to access an element of the list, we don’t find it on the cache

because it was evicted by previous accesses; from this time on we will

experiment capacity cache misses.

The other case (elements of 32 bytes) is shown in Figure 3.3. As we can

see the trend is the same of the previous case, specifically for the number of

cache misses. Per-item access time seems instead to be a little disturbed by

system’s interfecence, this may depend by the fact that elements are now half

a cache line big (generating half the number of cache misses), so the relative

number of “interferencing” cache misses is bigger.
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Figure 3.3: Single thread sequential access with elements of 32 bytes.

To mitigate system’s interference we have decided to choose 64 bytes as

the size of each elements. Another important thing to remark is the fact

that the analysis of a syntetic case, for which we know a priori how the trend
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must be, and the adherence of the collected data to that trend, proves the

correctness of both the analysis method and the way of collecting data.

To further test the goodness of this kind of analysis we conducted another

experiment. This time the list is scanned in a random way, we can decide

the value of MAX HOP from the current element to the next we can make in

doing a sort of random walk.
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Figure 3.4: Single thread random walk with elements of 64 bytes.

In Figure 3.4 we can see that the trend previously depicted nearly van-

ishes. The fact that the cache is warm dosen’t lower so much neither the

per-item access time nor the number of cache misses. The reason why is that

the processor can’t efficientely prefetch random data and you never can tell

that the elements accessed the first run will be the same the second time (so

invalidating the cache warm assumption).

In order to analyse a smooth and interference-free application we will

focus our attention, for the following experiments, to a 16KB working set

size with a sequential access to the elements of the list.
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3.4.2 Cache-Related Overhead

Worst case per-item access time estimate has been done with the use of

multipleThSeqAcc.c program (for source code see section A.2). The

experiment has been run with an increasing number of threads to try to

reach a “saturation point”. We expect that when the sum of the working

sets will exceed half the size of the L1D cache, an abrupt increase on the

number of cache misses and a consequent boost on the per-item access time

will occur.

The expected behaviour is shown in Figure 3.5. From this graph we can

see three important things:
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Figure 3.5: Worst case per-item access time estimate (16KB).

• L1D cache misses are nearly absent when there are few threads; using

a per-thread working set of 16KB, two threads are enough to exceed

the L1D cache size, so reaching the saturation point.

• L2 cache missess are stuck to zero as the number of threads increases;

this is the right behaviour since 16 · 30 = 480(KB), so L2 cache doesn’t
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experiment capacity misses.

• per-item access time saturates at the rounded down value of 0.025µs.

As to confirm our beliefs we repeated the experiment with a per-thread

working set size of 400KB. Figure 3.6 shows how the system behaves.

0 5 10 15 20 25 30 35

Number of threads

0,0235

0,024

0,0245

0,025

0,0255

0,026

0,0265

0,027

Pe
r-

it
e
m

 a
cc

e
ss

 t
im

e
 (

u
se

c)

0

20

40

60

80

100

120

C
a
ch

e
 m

is
se

s

Avg. per-item acc. time
Avg. L1D cache misses
Avg. L2 cache misses

Worst case per item-access time estimate (400KB)

Figure 3.6: Worst case per-item access time estimate (400KB).

As we can see, the experiment starts with a situation like the one at the

end of the previous test: one task with a working set of 400KB (L1D cache

misses are obviously at the max rate). As the number of tasks increases we

start to see an increasing number of L2 cache misses as well. At the same

time the per-item access time goes beyond 0.026µs, since L2 cache misses

are heavier than the L1D one for the system.

3.4.3 Experiments on Random Tasks Sets

With the per-item access time estimate in our hands, we are now able to

conduct several experiments in order to prove the goodness of our imple-

mentation. The focus of the following series of tests will be to show that
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introducing tasks migrations doesn’t afflict the system behaviour with a too

heavy cache-related overhead.

Our interest is to compare the G-EDF behaviour with the P-EDF and the

G-RM ones, where with G-RM we refer to the possibility to implement the

Rate Monotonic scheduling algorithm [28] in a global way simply utilizing

the SCHED FIFO scheduling class (present in the stock Linux kernel). Rate

Monotonic is in fact a static priority real-time algorithm, and to implement

it is sufficient to assign at each tasks a priority on the basis of its period: the

shorter the period, the higher is the task’s priority. Then, if we not set tasks’

affinities, they will be able to migrate between the CPUs of the system.

We divided the set of experiments in two distinct parts. In the first we

compare G-EDF and P-EDF, in the second G-EDF and G-RM. At this pur-

pose two groups of randomly generated tasks sets has been built; tasks sets

from the first group passed are G-EDF schedulable and a first-fit allocation

among the CPUs has been found for the tasks; tasks sets from the second

group, instead, passed G-EDF and G-RM schedulability tests. Inside each

group another three subgroups has been created in order to analyse system’s

behaviour with an high, medium or low load. Periods has been generated

with an uniform distribution between 1ms and 100ms. The number of tasks

in a tasks set has been varied as well, this way we have tasks sets composed

by 2, 4, 8 and 16 tasks (an higher number of soft real-time tasks beeing not

interesting on a dual-core CPU).

In order to better summarize, we have:

• 50 tasks sets with a fixed number of tasks, for a total of 200 tasks sets

for each subgroup and 600 for each group;

• each of these tasks sets is scheduled two times, e.d. the first time with

G-EDF and the second with P-EDF;

• each experiment runs for 10 seconds, this not affects the credibility of

the test since in the worst case (a task with period equal to 100ms) we

have 100 jobs per task;

It is to be said that in more than 6 hours of experiments we haven’t
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experienced crashes, so we can certainly state that our patches to the stock

Linux kernel doesn’t affect system’s stability.

In order to analyze the collected data we will refer to three metrics of

interest:

• Slack Time (Tardiness) / Period: if a job completes its work before the

end of the period, the interval of time from the end of the execution time

and the end of the period is called slack time, if, instead, a task’s job

goes beyond the end of its period (missing its deadline) that amount of

time is called tardiness. To not experiment tardiness, on a schedulable

task set, will be a sign that the scheduling cache-related overhead is

negligible. Slack time has been related to periods as to normalize an

otherwise too variable value.

• Number of L1D cache misses / Execution Time: since a global schedul-

ing algorithm may introduce additional cache misses compared to a

partitioned one (or to a different algorithm), it is interesting to look at

how many L1D cache misses occurs varying the number of tasks con-

currently executing. That value is normalized by the execution time of

each task, as a longer job normally generates more misses.

• Percentage error between expected and real execution time: even if this

will not be a precise metrics (timers’ resolution may be a problem),

beeing able to state that the percentage error is finite will be another

prove of the goodness of our analysis.

G-EDF versus P-EDF

With the following analysis we compare, on the same test-bed, the same algo-

rithm on its global and partitioned implementation. In practice we compare

what we found already implemented as a patch of Linux and what we have

added to it.

On the left of Figure 3.7 on the following page we find the G-EDF be-

haviour for high, medium and low system’s utilizations. On the right it is

shown the same for the P-EDF case. The two graphs are quite identical,
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Figure 3.7: Slack time / Period for G-EDF and P-EDF.

we can’t find appreciable differences between the global and the partitioned

approach. The trend is an increase in slack/period as the number of tasks

increases. This is due to the fact that, on equal terms of periods and total uti-

lization, when less tasks have to use the same amount of system’s bandwidth,

they have to execute more than when there are more tasks. This involves

that there will be less slack time and so the ratio will be small. When the

number of task increases each task executes for less time and has a larger

slack time, the slack/period ratio is bigger. Since we do not see tardiness in

the G-EDF case and that the trend is the same as in the P-EDF case, we can

state that our implementation behaves well we running on real hardware.

A further confirmation comes from Figure 3.8 on the next page. From

this graph we can see that the trend is the same for G-EDF and P-EDF as

well. Tasks migrations do not introduce in the system to much more cache

miss events than when there are only preemptions. We can also state, not

surprisingly, that a bigger number of tasks, that concurrently operate on the

cache, generates an higher number of cache miss. At a fixed number of tasks

lower utilization curves are above the higher ones because tasks’ execution

time is lower so the ratio beeing bigger.

With Figure 3.9 on page 70 we conclude the G-EDF versus P-EDF case.
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Figure 3.8: L1D cache misses / execution time for G-EDF and P-EDF.

As we stated before this kind of measures are not so reliable because high

resolution timers have a bad work when dealing with very small interval of

time (further causing a very big standard deviaton). The statement is con-

firmed if we look at the graphs. High utilization tasks sets all have a positive

percentage error; since tasks that comes from that sets have all big execu-

tion times, the timers that manage the execution of those tasks behave well.

When the execution time of tasks starts to be lower and lower, timers begin

to behave bad and we see negative percentage errors. Anyway percentage

error appears to be bounded between a +10% and a -15%, acceptable values

for soft real time tasks.

G-EDF versus G-RM

It is now time to make a comparison between our implementation of the

dynamic priority Earliest Deadline First scheduling algorithm and the static

priority one Rate Monotonic. We present the results in the same order of the

previous case, as to not confuse the reader.

In Figure 3.10 on the next page we find the Slack Time / Period trends

for the G-EDF and G-RM cases. The two graphs are quite indentical, this
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Figure 3.9: Percentage error between real and expected execution time for
G-EDF and P-EDF.
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signifies that no one of the two algorithms is better considering cache-related

scheduling overhead. In both cases the system doesn’t experience tardiness

proving that both the approaches are useful on scheduling soft real-time

tasks.

The trends continues to be very similar for L1D cache misses as well.

Figure 3.11 shows that fact, the predominant factor that drives the increase

on the number of cache misses is the number of real-time tasks on the system.
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Figure 3.11: L1D cache misses / Execution time for G-EDF and G-RM.

The last graph (shown in Figure 3.12 on the next page) confirms that

errors on estimate the execution time of a tasks are not related to a particular

algorithm, but only to the not so fine resolution of systems’ timers.

Concluding this comparison is important to remark that the use of a

global approach on scheduling EDF tasks not influences the correct behaviour

of the system. Moreover, since EDF is a dynamic priority scheduling algo-

rithm, tasks can dynamically enter and leave the system and no a-priori

knowledge of the system’s evolution is needed. With our work we give to the

user the opportunity to use a dynamical soft real-time system with all the

positives that an open source kernel as Linux incorporates.
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Conclusions and Future Works

In this thesis we extended the SCHED DEADLINE scheduling policy, an im-

plementation of the Earliest Deadline First real-time scheduling algorithm in

the Linux kernel. Linux has not been designed to be a Real-Time Operat-

ing System, but it is certain, at the time of writing, an increasing interest,

from both academic and commercial worlds, on extending Linux to reach

a sophisticated real-time support. Our focus was on SMP systems and our

goal was to allow SCHED DEADLINE tasks’ migrations among the system’s

CPUs. For this purpose, we studied how the Linux scheduler works and how

it is possible to implement new features inside its modular framework.

Several ways exist to implement migration of tasks, inside the Linux kernel

we find an active and a passive approach. Real-time tasks need to execute

as soon as they can, so we considered the passive approach not suitable to

our needs and we have chosen the active one. Our implementation actively

pushes and pulls tasks among the CPUs when needed, the desired behaviour

should be to have the m earliest deadline tasks always running on the m

CPUs of the system.

To prove the reliabilty of a working kernel with G-EDF tasks running

on it and in order to analyze probable cache-related overheads (when a task

migrates it lacks the so called cache affinity), we conducted several hours of

experiments. First we estimated, with some micro-benchmarks, the amount

of cache-related overhead a task may suffer in a worst case situation where

73
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a lot of tasks works concurrently on the same processor. This has been

done reading high resolution system’s clocks and with the use of a library

(PAPI) that allows to inspect performance counters of a CPU. With all

these measures at hand we started to schedule periodic tasks. Two groups of

random tasks sets were created by the use of a random tasks sets generator

(we extended to our needs an already existing application). With one group

we compared the G-EDF and P-EDF approaches, with the other the G-EDF

and G-RM scheduling algorithms.

The results of the experimental analysis confirms the goodness of our im-

plementation. Allowing tasks migration not introduces an amount of over-

head that the system is practically unusable. With our work we have instead

given to the Linux users an useful tool to develop dynamical soft real-time

applications.

The research on this topic is all but over. Many more experimental anal-

ysis are possible and a further optimization of the migration mechanism may

be interesting. It is remained outside from this thesis to investigate how, and

if, the peculiarities of each task on a tasks set may influence the number of

migrations. Tasks set can be distinguished by some quantities, such as, total

utilization, number of tasks, maximum per-task bandwidth, ratio between

light and heavy tasks, etc. . . . Therefore, it is interesting to see if the total

number of migrations the system experiences can be related to one or more

of the aforementioned quantities. A comparison between the number of tasks

migrations generated by the Rate Monotonic scheduling algorithm and the

Earliest Deadline First will be of great interest. With this kind of analysis

it should be possible to understand if a particular scheduling approach can

affect how much tasks migrate and if such an approach is influenced by a

particular tasks set parameter.

Experiments should be conducted on different types of hardware plat-

forms, such as, multicore with more than two cores, multiprocessors and

NUMA systems. Real applications, as in [23] , should be tested on that kind

of hardware in order to see how the system behaves on the real world.

An improvement on efficiency of the present implementation of the mi-

gration mechanism is possible as well. Several data structures should be
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analyzed in order to minimize the amount of time spent on finding a suitable

runqueue when a task has to migrate. Obviously, a practical comparison

between those data structures will be possible only on large multiprocessors

systems.

Using kernel tracers it should be possible to see if the present implemen-

tation strictly complies to the G-EDF algorithm. If it will not be the case

it will be important to measure the amount of time the system is under a

transient state and the reasons why of this unwanted situation.

Finally, it will be of a great interest to analyze how the G-EDF scheduling

mechanism can work inside soft real-time systems based on reservations and

resource sharing as FRESCOR or AQuoSA.



Appendix A

Source Code

A.1 SCHED DEADLINE

The complete source code of the SCHED DEADLINE scheduling policy is

available as a git repository at this address:

git://gitorious.org/sched_deadline/linux-deadline.git

The home page of the project is hosted by Evidence at this address:

http://www.evidence.eu.com/content/view/313/417/

A.2 Micro-benchmarks

The source code of the micro-benchmarks and test programs developed in

this thesis can be found as a git repository at this address:

git://gitorious.org/sched_deadline/tests.git
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