
UNIVERSITÀ DI PISA

FACOLTÀ DI INGEGNERIA

Corso di Laurea Specialistica in Ingegneria Informatica

Curriculum Networking e Multimedia

An IEEE 802.15.4 security sublayer

implementation for CC2420

SUPERVISORS: CANDIDATE:

Prof. Gianluca Dini Roberta Daidone

Ing. Alessio Bechini

Anno Accademico 2009-2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14699804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my family

Abstract

During the last ten years, the presence of sensor networks in common life has

become pervasive and sensor nodes are currently used in many areas of interest.

One of the most common radio communication protocol designed for Personal

Area Networks (PAN) is described by the IEEE 802.15.4 standard, according to

which data communication among devices can also be protected on a per frame

basis, so making it possible to assure data authenticity and confidentiality, and

security mechanisms can be configured in a flexible and effective way.

In this thesis work, the IEEE 802.15.4 security sublayer has been imple-

mented. In particular, the TinyOS implementation for the tmote sky mote

and the CC2420 chipset have been considered. The main goal of this work is

to extend the above mentioned MAC layer implementation in order to make

the IEEE 802.15.4 security mechanisms available, that is sending and receiv-

ing both ciphered and authenticated frames, by means of the security features

provided by the CC2420 chipset.

All security data structures and procedures have been implemented, so mak-

ing it possible to deal with different cryptographic keys usage and retrieval

modes. During the development phase, some problems strictly related to com-

putational and memory capacity shortage have been faced and properly ad-

dressed. Finally, the implemented security sublayer has been tested and eval-

uated by means of a simple application, which sends secured packets whose

payload changes both in content and size.

2

Contents

1 Introduction 10

2 IEEE 802.15.4 12

2.1 Overview . 12

2.2 MAC frame structure . 14

2.2.1 Data frame structure . 14

2.3 MAC header and auxiliary security header 15

2.3.1 Frame control field . 16

2.3.1.1 Frame type subfield 16

2.3.1.2 Security enabled subfield 16

2.3.1.3 Frame pending subfield 16

2.3.1.4 Acknowledgment subfield 16

2.3.1.5 PAN ID compression subfield 17

2.3.1.6 Frame version subfield 17

2.3.1.7 Addressing mode subfields 17

2.3.2 Auxiliary security header 17

2.3.2.1 Security control subfield 18

2.3.2.2 Frame counter field 20

2.3.2.3 Key identifier field 20

2.4 Security structures . 20

2.5 Security modes . 22

2.5.1 NO SEC . 23

2.5.2 CTR . 23

2.5.3 CBC MAC . 24

2.5.4 CCM . 24

3

4

2.6 Key identifier modes . 25

2.6.1 KeyIdMode0 . 25

2.6.2 KeyIdMode1 . 26

2.6.3 KeyIdMode2 . 26

2.6.4 KeyIdMode3 . 26

3 Tmote sky and CC2420 28

3.1 Tmote sky . 28

3.2 CC2420 chipset . 30

3.2.1 Configuration and Data Interface 31

3.2.2 RAM access . 31

3.2.3 Security operations . 34

3.2.3.1 CTR mode encryption/decryption 35

3.2.3.2 CBC MAC . 36

3.2.3.3 CCM . 36

3.2.3.4 Nonce structure 36

4 Security implementation 38

4.1 Overview . 38

4.2 Security data structures . 39

4.2.1 KeyTable . 42

4.2.1.1 KeyDescriptor structure 42

4.2.2 DeviceTable . 43

4.2.2.1 DeviceDescriptor structure 43

4.2.3 Minimum security level table 44

4.2.4 Frame counter . 44

4.2.5 Automatic request attributes 44

4.2.6 Default key source . 44

4.2.7 PAN coordinator address 45

4.3 Security functional description 45

4.4 Outgoing frame security procedure 46

4.4.1 Outgoing frame consistency checks 47

4.4.2 Outgoing frame key retrieval procedure 48

4.4.2.1 Key descriptor lookup procedure 50

5

4.5 Incoming frame security procedure 51

4.5.1 Incoming frame consistency checks 53

4.5.2 Incoming security level checking procedure 55

4.5.3 Incoming frame security material retrieval procedure . . 56

4.5.3.1 Blacklist checking procedure 59

4.5.4 Post-incoming frame security material retrieval consis-

tency checks . 60

4.5.4.1 Incoming key usage policy checking crocedure . 61

5 Evaluations and future works 62

5.1 Image size . 62

5.2 Error Management . 65

5.3 Test Application . 66

5.3.1 Sender side . 66

5.3.2 Receiver side . 66

5.4 Future works . 68

6 Conclusion 70

A MAC security procedures 71

A.1 Incoming frame security procedure 71

A.2 Outgoing frame key retrieval procedure 72

A.3 Incoming frame security procedure 73

A.4 Incoming frame security material retrieval procedure 76

A.5 KeyDescriptor lookup procedure 77

A.6 Blacklist checking procedure 78

A.7 DeviceDescriptor lookup procedure 79

A.8 Incoming security level checking procedure 80

A.9 Incoming key usage policy checking procedure 82

B TinyOS installation and setup 83

B.1 Installing TinyOS 2.1.1 . 83

B.1.1 Installing TinyOS 2.1.1 using TinyOS package repository 83

B.1.2 Installing TinyOS 2.1.1 using the TinyOS CVS 84

B.2 NESCDT: An editor for nesC in Eclipse 85

Contents 6

B.2.1 Installing NESCDT . 85

B.2.2 Using the plugin . 85

B.3 Compiling and installing a program 85

B.4 The TinyOS printf library . 87

Bibliography 88

List of Tables

2.1 Security Level values and options 19

2.2 Key Identifier values and options 19

3.1 Status byte flags . 32

3.2 Strobe configuration registers overview 33

4.1 Security Parameters . 39

4.2 MAC security-related PIB . 42

7

List of Figures

2.1 Star and peer-to-peer topology examples 13

2.2 Data Frame and PHY Packet 15

2.3 MAC Frame . 15

2.4 Frame Control Field . 16

2.5 Auxiliary Security Header . 17

2.6 Auxiliary Security Header Structure 18

2.7 Security Control Subfield . 18

2.8 Key Identifier Field . 20

2.9 CTR Frame Format . 23

2.10 CBC MAC Frame Format . 24

2.11 CCM Frame Format . 24

2.12 KeyIdMode0 Security Subheader Format 25

2.13 KeyIdMode1 Security Subheader Format 26

2.14 KeyIdMode2 Security Subheader Format 26

2.15 KeyIdMode3 Security Subheader Format 26

3.1 A simple Tmote Sky mote . 28

3.2 Components of a Tmote Sky mote 29

3.3 Functional blocks of a generic mote 30

3.4 IEEE 802.15.4 Nonce . 37

3.5 CC2420 Security Flag Byte . 37

4.1 Outgoing frame security procedure schema 46

4.2 Outgoing frame consistency checks 47

4.3 Key retrieval procedure schema 49

8

LIST OF FIGURES 9

4.4 Incoming frame security procedure schema 52

4.5 Incoming frame consistency checks 54

4.6 Incoming frame security material retrieval procedure schema . . 56

5.1 Security costs bar chart . 63

5.2 Sender side security pie chart 63

5.3 Receiver side security pie chart 64

5.4 Sender side execution screenshot 67

5.5 Receiver side execution screenshot 67

B.1 How to create a new nesC project with NESCDT 86

Chapter 1

Introduction

In the last few years, the concept of sensors network has come to be the new

horizon of networking, looking forward to the idea of pervasive computing.

These systems are meant to support a large number of applications, many

of which are security sensitive, such as medical or environmental monitoring

instruments.

A sensor node (or mote) is a small battery supplied device endowed with a

sensing system able to collect various kind of data, a processing system which

orates information and a communication system which sends and shares data

with other motes. So, the big challenges are power consumption and complexity,

as well as costs.

In order to avoid retransmissions and saving battery power as well, com-

munications should be reliable. Besides, it could be necessary or desirable to

guarantee the origin of messages (authenticity), protect data from unauthorized

accesses (confidentiality) and prevent unwanted replays of received messages

(anti-replay). By doing so, it is more difficult for an adversary to modify or to

inject messages in order to alter data communications.

A technology suitable for sensors networks is described by the IEEE 802.15.4

standard: it describes wireless Medium Access Control (MAC) and Physical

(PHY) layers specifications for Low-Rate Wireless Personal Area Networks

(LR-WPANs). IEEE 802.15.4 offers a wide range of security options: counter

mode encryption (CTR), authentication only mode (CBC-MAC) and a combi-

nation of them (CCM). Cryptography is based on AES (Advanced Encryption

10

1. Introduction 11

Standard) 128 bits symmetric-key cryptography. Thanks to the variety offered

by the standard, it is possible to tune the security level appropriate for a cer-

tain application. The security level is recognized by exploring the Auxiliary

Security Header and it is handled by means of specific data structures. These

contain security parameters and permit to validate and decipher messages in

a flexible and dynamic manner.

In this thesis work all the data structures and the security procedures de-

scribed by the standard, the four different Key Identifier Modes and their

management code, the routines support for device identificaton as well as keys

retrieval and management have been implemented.

During implementation work Tmote sky motes have been used since they

rely on an open source platform designed for experimentation within the re-

search community and they also include the CC2420 chipset which provides

extensive hardware support for packet handling and security mechanisms. The

nesC developing language and the TKN branch of the TinyOS environment

has been used [8].

In order to test the correctness of communications between a network coor-

dinator and some Reduced Function Devices (RFDs), it has been realized an

application which sends secured and unsecured packets and manages different

Security Levels according to a certain Key Identifier Mode. It is worth noting

that the device architecture affected all the project phases, especially during

testing and debugging. In fact, these phases turned out to be quite troublesome

because of the lack of powerful development environments as well as debugging

instruments.

The rest of the thesis is organized as follows: next chapter (Chapter 2)

provides a brief description of the IEEE 802.15.4 standard and its security fea-

tures, while Chapter 3 describes the main features of TelosB motes and CC2420

chipset. Chapter 4 discusses the implementation of the security mechanisms.

Chapter 5 reports perfomances evaluation and, finally, Chapter 6 draws some

conclusive remarks.

Chapter 2

IEEE 802.15.4

2.1 Overview

IEEE 802.15.4 describes a protocol for communication among low-power de-

vices in Wireless Personal Area Networks (WPANs).

Two different device types can participate in an IEEE 802.15.4 network:

Full-Function Device (FFD) and Reduced-Function Device (RFD). A network

comprises at least one coordinator, that is a FFD capable of relaying mes-

sages from other devices. Plus, one coordinator is elected as the Personal Area

Network (PAN) Coordinator. An RFD, on the other hand, is intended to do

extremely simple applications, consequently, it can be implemented using min-

imal resources and memory capacity. An RFD is associated to a single PAN

coordinator at a time.

According to the application requirements, a network may be organized in

either two topologies: star topology and peer-to-peer topology (Figure 2.1). The

star topology mirrors the classic host-client network paradigm: all the messages

from devices must pass through the single central controller, called the PAN

coordinator; every device has to associate with the PAN coordinator to be part

of the network. Also in peer-to-peer topologies there is a PAN coordinator, but

any device is allowed to communicate with any other device (as long as they

are in range of one another) creating a mesh network if they are supposed to

do so.

The physical medium is accessed through a Carrier Sense Multiple Access

12

2.1. Overview 13

Figure 2.1: Star and peer-to-peer topology examples

protocol, with Collision Avoidance (CSMA/CA). It can be used for channel

access either in an un-slotted version or in a time-slotted version with beacon

frames to keep motes synchronized. In time-slotted version, between every two

beacons, each device competes with others during the Contention Access Period

(CAP), while guaranteed time slots can be assigned during the Contention Free

Period (CFP).

Common data transmissions use unallocated slots when beaconing is in use;

confirmations do not follow the same process. Acknowledgement messages may

be optional under certain circumstances, in this case a success assumption is

made. Whatever the case, if a device is unable to process a frame at a given

time, it simply does not confirm its reception: timeout-based retransmissions

can be performed a number of times, following after that a decision of whether

to abort or to keep trying.

IEEE 802.15.4 specifies both PHY and MAC layer. The PHY layer acti-

vates and deactivates the radio transceiver, monitors energy detection and link

quality indicator for received packets, controls the Clear Channel Assessment

(CCA) for CSMA/CA and selects channel frequency and data transmission

and reception.

The MAC layer allows the transmission of the MAC frames through the

physical channel. It also offers beacon management, channel access, guaran-

2.2. MAC frame structure 14

teed time slot management, frame validation, acknowledged frame delivery,

association and disassociation. In addition, the MAC sublayer provides hooks

for implementing application-appropriated security mechanisms. [6]

2.2 MAC frame structure

According to the IEEE 802.15.4 standard [9], trasmissions are organized into

frames, which have been designed trying to keep complexity at a minimum. The

standard, while still assuring robustness for transmissions on a noisy channel,

provides four different frame structures that have specific functions:

• Data;

• Acknowledgment;

• Beacon;

• MAC Command.

Beacon frames are transmitted by a coordinator to implement significant

power saving modes or when attempting to establish a network, Data frames

and Acknowledgment frames are used for data transfers and to confirm suc-

cessful frame reception respectively. Finally, MAC command frames are used

to handle all MAC peer entity control transfers, sending low-level commands

from one node to another. Each further protocol layer is added to the structure

with layer-specific headers and footers.

2.2.1 Data frame structure

The data frame structure is similar to the other three frame types, its con-

tent is originated by the upper layers. The MAC payload is prefixed with the

MAC Header (MHR) and appended with the MAC Footer (MFR). The MHR

contains a two octets Frame Control Field, a single octet Data Sequence Num-

ber (DSN), Addressing Fields whose size changes according to the addressing

mode, and, optionally, a variable-length Auxiliary Security Header (ASH).

The MFR is composed of a 16-bit Frame Check Sequence (FCS). The MHR,

the MAC payload, and the MFR together form the MAC data frame (Figure

2.3. MAC header and auxiliary security header 15

Figure 2.2: Data Frame and PHY Packet

2.2). These fields compose the PHY payload. The PHY packet is completed

by the Synchronization Header (SHR) and the PHY header (PHR). The SHR

contains a preamble sequence to allow the receiver to acquire and synchronize

the incoming signal and a start of frame delimiter that signals the end of the

preamble. Besides, the PHR carries the frame length byte, which indicates the

length of the PHY payload.

2.3 MAC header and auxiliary security header

Figure 2.3: MAC Frame

The MAC frame is composed of the MAC header, the MAC payload, and

the MAC Footer. However, some fields like the addressing fields or the security

header might not be included in all frames, so it has a variable length, as shown

in Figure 2.3.

2.3. MAC header and auxiliary security header 16

Figure 2.4: Frame Control Field

2.3.1 Frame control field

The Frame Control Field is a two octets field. It contains information defining

the frame type, addressing fields type, and other control flags. It is formatted

as illustrated in Figure 2.4.

2.3.1.1 Frame type subfield

The Frame Type subfield contains the 3-bit encoding of the current frame type

(command, beacon, acknowledgment or data).

2.3.1.2 Security enabled subfield

The Security Enabled subfield is set to one if the frame is protected by the MAC

security sublayer and must be set to zero otherwise. The Auxiliary Security

Header field of the MHR is present only if this subfield is set to one.

2.3.1.3 Frame pending subfield

The Frame Pending subfield is set to one if the device sending the frame has

more data for the recipient. It is used only in beacon frames or frames trans-

mitted either during the CAP by devices operating on a beacon-enabled PAN

or at any time by devices operating on a nonbeacon-enabled PAN. Otherwise,

it shall be set to zero on transmission and ignored on reception.

2.3.1.4 Acknowledgment subfield

The Acknowledgment Request subfield is one bit in length and specifies whether

an acknowledgment is required from the recipient device when receiving a data

2.3. MAC header and auxiliary security header 17

or MAC command frame. If this subfield is set to one, the recipient device sends

an acknowledgment frame only if, on reception, the frame passes the third level

of filtering. If this subfield is set to zero, the recipient device will never send

acknowledgment frames.

2.3.1.5 PAN ID compression subfield

The PAN ID Compression subfield specifies whether the MAC frame to be sent

contains only one of the PAN identifier fields when both source and destination

addresses are present. If this subfield is set to one and both the source and

destination addresses are present, the frame has to contain only the Destination

PAN Identifier field, and the Source PAN Identifier field is assumed to be equal

to the destination’s.

2.3.1.6 Frame version subfield

The Frame Version subfield specifies the 2-bit encoding of the frame version.

2.3.1.7 Addressing mode subfields

Finally, the Destination Addressing Mode and the Source Addressing Mode

subfields indicate if address fields contain 16-bit short addresses or 64-bit ex-

tended addresses.

2.3.2 Auxiliary security header

Figure 2.5: Auxiliary Security Header

The Auxiliary Security Header has a variable length and, as shown in Fig-

ure 2.5, it contains information required for security processing, including the

Security Control Field, the Frame Counter Field, and the Key Identifier Field.

It is present only if the Security Enabled subfield of the Frame Control field is

set to one. It is formatted as illustrated in Figure 2.6.

2.3. MAC header and auxiliary security header 18

Figure 2.6: Auxiliary Security Header Structure

2.3.2.1 Security control subfield

Figure 2.7: Security Control Subfield

The 8-bit Security Control field is used to provide information about what

kind of protection is applied to the frame. The Security Control Field has to

be formatted as shown in Figure 2.7.

The Security Level subfield is three bit in length and indicates the actual

frame protection provided. This value can be adapted on a frame-by-frame

basis and allows for varying levels of data authenticity (to allow minimization

of security overhead in transmitted frames where required) and for optional

data confidentiality. Table 2.1 summarizes all security levels available.

The Key Identifier Mode subfield is two bit in length and indicates whether

the key used to protect the frame can be derived implicitly or explicitly. Fur-

thermore, it is used to indicate the particular representation of the Key Iden-

tifier field, if the key is derived explicitly. The Key Identifier Mode subfield is

set according to Table 2.2. The Key Identifier field of the Auxiliary Security

Header is present only if this subfield has a value not equal to 0x00.

2.3. MAC header and auxiliary security header 19

Security Level Security Control Security Data Data

Identifier Field Attributes confidentiality authenticity

0x00 ’000’ None OFF NO (M = 0)

0x01 ’001’ MIC-32 OFF YES (M = 4)

0x02 ’010’ MIC-64 OFF YES (M = 8)

0x03 ’011’ MIC-128 OFF YES (M = 16)

0x04 ’100’ ENC ON NO (M =0)

0x05 ’011’ ENC-MIC-32 ON YES (M = 4)

0x06 ’110’ ENC-MIC-64 ON YES (M = 8)

0x07 ’111’ ENC-MIC-128 ON YES (M = 16)

Table 2.1: Security Level values and options

Key Identifier Security Description

Key Identifier

mode Mode subfield

field length

(octets)

0x00 ’00’

Key is determined implicitly from the

0originator and receipient(s) of the frame

as indicated in the frame header.

0x01 ’01’

Key is determined from the 1-octet Key

1
Index subfield of the Key Identifier Field

of the auxiliary security header in

conjunction with macDefaultKeySource.

0x02 ’10’

Key is determined explicitly from the

5

4-octet Key Source subfield and the

1-octet Key Index subfield of the Key

Identifier Field of the auxiliary security

header

0x03 ’11’

Key is determined explicitly from the

9

8-octet Key Source subfield and the

1-octet Key Index subfield of the Key

Identifier Field of the auxiliary security

header.

Table 2.2: Key Identifier values and options

2.4. Security structures 20

2.3.2.2 Frame counter field

The Frame Counter field is a 4-octets field representing the macFrameCounter

attribute of the originator of a protected frame. It is used to assure replay

protection.

2.3.2.3 Key identifier field

Figure 2.8: Key Identifier Field

The Key Identifier field has variable length and is used for cryptographic

protection of outgoing frames, either explicitly or in conjunction with implicitly

defined side information. The Key Identifier field is present only if the Key

Identifier Mode subfield of the Security Control field of the Auxiliary Security

Header is set to a value different from 0x00. The Key Identifier field is formatted

as illustrated in Figure 2.8.

The Key Source subfield, if present, is either four octets or sixteen octets

in length, according to the value specified by the Key Identifier Mode subfield

of the Security Control field, and indicates the originator of a group key. The

Key Index subfield is one octet in length and allows unique identification of

different keys having the same originator.

2.4 Security structures

The MAC sublayer is responsible for providing security services on specified

incoming and outgoing frames, when requested by the higher layers. The in-

formation according to which is determined how to provide security is located

in the security-related PIB (PAN Information Base) [9]. This security-related

PIB is divided in seven structures:

• Key Table;

2.4. Security structures 21

• Device Table;

• Minimum security level table;

• Frame counter;

• Automatic request attributes;

• Default key source;

• PAN coordinator address.

The Key table contains key-descriptors, which are keys with related key-

specific information required for security processing.

The device table holds device-descriptors, containing device-specific address-

ing and security-related information which, combined with key-specific infor-

mation from the key table, provide all the keying material needed to secure/un-

secure frames.

The minimum security level table holds information regarding the mini-

mum security level the device expects having applied by the originator of a

frame, depending on frame type and, if it concerns a MAC command frame,

the command frame identifier.

The four octets frame counter is used to provide replay protection and se-

mantic security of the cryptographic building block used for securing outgoing

frames. Such counter is an integer which is incremented every time an outgo-

ing frame is secured. When the frame counter reaches its maximum value of

0xffffffff, the associated keying material can no longer be used, thus requiring

all keys to be updated.

The Automatic Request table holds all the information needed to secure

outgoing frames generated automatically and not as a result of a higher layer

primitive, as is the case with automatic data requests.

The default key source is commonly shared between originator and recipi-

ent(s) of a secured frame, so that, when combined with additional information

explicitly contained in the requesting primitive or in the received frame, it al-

lows an originator or a recipient to determine the key required for securing or

unsecuring the frame, respectively. The address of the PAN coordinator is an

information commonly shared between all devices in a PAN. The code of the

implementation can be seen in Appendix A.

2.5. Security modes 22

2.5 Security modes

The 802.15.4 security layer is handled at the MAC layer, below application

control. The application specifies its security requirements by setting the ap-

propriate control parameters into the radio stack. If an application does not set

any parameters, then security is not enabled by default. An application must

explicitly enable security.

The specification does not support security for acknowledgement packets;

other packet types can optionally support integrity protection and confiden-

tiality protection. An application has a choice of security suites that control

the type of security protection that is provided for the transmitted data. Each

security suite offers a different set of security properties and guarantees, and

ultimately different packet formats.

The 802.15.4 specification defines eight different security suites. We can

broadly classify them by the properties they offer: no security (NO SEC), en-

cryption only (CTR), authentication only (CBC MAC), and both encryption

and authentication (CCM). Each category that supports authentication comes

in three variants depending on the size of the MIC it offers. Each variant is

considered a different security suite and has its own name. In fact, the Mes-

sage Integrity Code (MIC) can be either four, eight, or sixteen bytes long. The

longer the MIC is, the lower is the chance an adversary has to blind forgery by

guessing an appropriate code.

An application indicates the chosen security suite in the MAC frame header.

802.15.4 radio chips control what security suite and keying information to use.

The security material is the persistent state necessary to execute the security

suite. The application must specify a boolean indicating whether security is

enabled. If no security is requested, the packet is sent out as is.

On packet reception, the MAC layer consults the packet flags field in order

to determine if any security suite has been applied to that packet. If no security

is used, the packet is passed as is to the application. Otherwise, the appropri-

ate security suite, such as key and replay counter, is applied to the incoming

packet, presenting the application with an error message if the procedure fails

somewhat. In the following sections will be provided more details about the

above-mentioned security suites.

2.5. Security modes 23

2.5.1 NO SEC

This is the simplest security suite. Its inclusion is mandatory in all radio chips.

It does not manage any security material and it does not provide any security

guarantees.

2.5.2 CTR

Figure 2.9: CTR Frame Format

This suite provides confidentiality protection using the AES block cipher

with counter mode. To encrypt data under counter mode, the sender breaks

the cleartext packet into 16-byte blocks and computes ci = pi ⊕ Ek(xi). Each

16-byte block uses its own varying counter, which we call x1. The recipient

recovers the original plaintext by computing pi = ci ⊕ Ek(xi). Clearly, the

recipient needs the counter value x1 in order to reconstruct pi .

The x1 counter, known as a nonce, is composed of a static flags field, the

senders address, and three separate counters: a 4-byte frame counter that iden-

tifies the packet, a 1-byte key counter field, and a 2-byte block counter that

numbers the 16-byte blocks within the packet. The sender increments the frame

counter after encrypting each packet. When it reaches its maximum value, the

radio returns an error code and the key has to be changed. The requirement is

that the nonce must never repeat within the lifetime of any single key, and the

role of the frame and key counters is to prevent nonce reuse. The block counter

ensures that each block will use a different nonce value; the sender does not

need to include it within the packet, since the receiver can infer its value for

each block.

As shown in Figure 2.9, the sender includes in the packet three main com-

ponents: the frame counter, key counter, and encrypted payload into the data

payload field of the packet.

2.5. Security modes 24

2.5.3 CBC MAC

Figure 2.10: CBC MAC Frame Format

This suite provides integrity protection using CBC MAC. The sender can

compute either a four, eight, or sixteen bytes Message Integrity Code (MIC)

using the CBC MAC algorithm, leading to three different variants. The MIC

can only be computed by parties with the symmetric key and can protect

packet headers as well as the data payload. The sender appends the plaintext

data with the MIC.

The recipient verifies the MAC by computing the MAC and comparing it

with the value included in the packet, deciding wether the packet is authenti-

cated or not. Figure 2.10 shows the format of this packet.

2.5.4 CCM

Figure 2.11: CCM Frame Format

This security suite uses CCM mode for both encryption and authentication.

Broadly, it first applies integrity protection over the header and data payload

using CBC MAC and then encrypts both the data payload and the MIC using

CTR. So CCM combines the fields from both the authentication and encryption

2.6. Key identifier modes 25

operations such as the MIC and the frame counter. These fields serve the same

function as above. As CBC MAC, also CCM has three variants depending on

the MIC size. Figure 2.11 shows the format of this packet.

2.6 Key identifier modes

The Key Identifier Mode subfield is two bits in length and indicates whether

the key used in order to protect the frame can be derived implicitly or explicitly.

Furthermore, it is used to indicate the particular representations of the Key

Identifier field if it si derived explicitly. The Key Identifier Mode subfield shall

be set to one of the values listed in the following sections. This field specifies

the mode used in order to identify and retrieve the key used by the originator

of the received frame. This parameter is ignored if the SecurityLevel parameter

is set to 0x00.

There are four different modes: KeyIdMode0, KeyIdMode1, KeyIdMode2

and KeyIdMode3. The increment of the index corresponds to an enhancement

of their peculiarities, but also of their complexity. The KeyIdMode0 just allows

two or more nodes to send or receive data secured with a static, uniform, sin-

gle key. The KeyIdMode1 provides more keys, selected from a single KeyTable

thanks to the KeyIndex subfield of the Auxiliary Security Header. The keyTable

is located at the default index written in the MacDefaultKeySource field of

the PIB structure. This mode allows a key change just changing the index

of the default key table. The two modes left are the most complex and com-

plete. The KeyIdMode2 and KeyIdMode3 provide, besides the KeyIndex, also

a KeySourceAddress which locates a different KeyTable filled with some differ-

ent KeyDescriptors. So distinct devices are allowed to secure data using keys

provided by different sources.

2.6.1 KeyIdMode0

Figure 2.12: KeyIdMode0 Security Subheader Format

2.6. Key identifier modes 26

The key is determined implicitly from the originator and receipient(s) of the

frame, as indicated by the frame header whose structure is shown in Figure

2.12.

2.6.2 KeyIdMode1

Figure 2.13: KeyIdMode1 Security Subheader Format

The key is determined from the 1-octet Key Index subfield of the Key Iden-

tifier field of the auxiliary security header in conjunction with macDefault-

KeySource. The structure of the Auxialiary Security Header for this KeyId-

Mode is shown in Figure 2.13.

2.6.3 KeyIdMode2

Figure 2.14: KeyIdMode2 Security Subheader Format

The key is determined explicitly from the 4-octet Key Source subfield and

the 1-octet Key Index subfield of the Key Identifier field. The structure of the

Auxialiary Security Header for this KeyIdMode is shown in Figure 2.14.

2.6.4 KeyIdMode3

Figure 2.15: KeyIdMode3 Security Subheader Format

The key is determined explicitly from the 8-octet Key Source subfield and

2.6. Key identifier modes 27

the 1-octet Key Index subfield of the Key Identifier field. The structure of the

Auxialiary Security Header for this KeyIdMode is shown in Figure 2.15.

Chapter 3

Tmote sky and CC2420

3.1 Tmote sky

Figure 3.1: A simple Tmote Sky mote

A sensor node, also known as a ’mote’, is a node used in a wireless sensor

network. It can perform various kind of processing: it can monitor applications,

it can gather sensory information and it can set up network connections with

other motes forming a network. As can be seen in Figure 3.1, one point of

strength about motes is their small dimension, combined with industry stan-

28

3.1. Tmote sky 29

dards like USB, so providing flexible interconnection with peripherals [5].

Figure 3.2: Components of a Tmote Sky mote

In the Figure 3.2, we can see the components of the mote: an antenna, to

send and receive data; a microcontroller to perform tasks, process data and

control the functionality of other components in the sensor node; three leds,

useful to signal certain events or for debugging and an AA battery slot. A

generic sensor has five subsystems (Figure 3.1), each one with a specific task:

• Sensing subsystem;

• Processing subsystem;

• Communication subsystem;

• Actuation subsystem;

• Power management subsystem.

The sensing subsystem is designed to get information about the environment

used by other subsystems. The processing subsystem is designated to take

data from the sensing subsystem and to elaborate them so making it possible

they can be used by others. The communication subsystem sends and receives

packets. The power management subsystem concerns all the operations about

3.2. CC2420 chipset 30

Figure 3.3: Functional blocks of a generic mote

battery managing (e.g. power saving). Finally, the actuation subsystem gets

information from sensing and processing and decides how to control and make

the system evolve.

The motes used developing this thesis are Tmote sky: it is an open source

platform designed to enable cutting-edge experimentation for the research com-

munity. As [5] explains, the key Features of this suite are:

• IEEE 802.15.4/ZigBee compliant RF transceiver;;

• Interoperability with other IEEE 802.15.4 devices;

• 8MHz CC2420 microcontroller (10k RAM, 48k Flash);

• Integrated onboard antenna;

• Low current consumption;

• Programming and data collection via USB;

• Runs TinyOS 1.1.10 or higher.

3.2 CC2420 chipset

CC2420 is the chipset Tmote sky motes use. It provides hardware support

for the cryptographic primitives and is used in several applications: Zigbee

3.2. CC2420 chipset 31

and TinyOS systems, home and building automation, industrial control and

wireless sensor networks.

The CC2420 is a single-chip 2.4 GHz IEEE 802.15.4 compliant transceiver

designed for low power and low voltage wireless applications. It provides exten-

sive hardware support for packet handling, data buffering, burst transmissions,

data encryption, data authentication, clear channel assessment, link quality

indication and packet timing information. Between its many features, we can

highlight the separate transmit and receive FIFOs, the IEEE 802.15.4 MAC

hardware support (CRC 16 computation, Energy Detection, Link Quality de-

tection, etc.) and IEEE 802.15.4 MAC hardware security (CTR encryption/de-

cryption, CBC MAC authentication CCM encryption/decryption and authen-

tication, stand-alone AES encryption) [1].

3.2.1 Configuration and Data Interface

There are thirty-three 16-bit configuration and status registers, fifteen com-

mand strobe registers, and two 8-bit registers to access the separate transmit

and receive FIFOs. Each data register is addressed by a 6-bit address. In each

register read or write cycle, twenty-fours bits are read. Also the configuration

registers can be read by the microcontroller.

CC2420 then returns the data from the addressed register in sixteen clock

cycles. After the transfer, the CC2420 status byte is returned on the SO pin.

The status byte contains 6 status bit whose configuration is described in Table

3.1. A SNOP (no operation) command strobe may be used to read the status

byte.

Command strobes may be viewed as single byte instruction to CC2420.

These commands must be used to enable receive mode, start decryption etc.

All command strobes can be viewed in Table 3.2.

3.2.2 RAM access

CC240 also has 368 bytes RAM that can be accessed through the SPI interface.

These registers contain a one-to -one mapping of the FIFO registers, the KEY0

and the KEY1 registers, the RXNONCE and the TXNONCE registers. This

3.2. CC2420 chipset 32

Bit # Name Description

7 Reserved, ignore value

6 XOSC16M STABLE

Indicates whether the 16 MHz oscillator is running or not

0 : The 16 MHz crystal oscillator is not running

1 : The 16 MHz crystal oscillator is running

5 TX UNDERFLOW

Indicates whether a FIFO underflow has occurred during

transmission. It must be cleared manually with a SFLUSHTX

command strobe.

0 : No underflow has occurred

1 : An underflow has occurred

4 ENC BUSY

Indicates whether the encryption module is busy

0 : Encryption module is idle

1 : Encryption module is busy

3 TX ACTIVE

Indicates whether RF transmission is active

0 : RF Transmission is idle

1 : RF Transmission is active

2 LOCK

Indicates whether the frequency synthesizer PLL is in lock or not

0 : The PLL is out of lock

1 : The PLL is in lock

1 RSSI VALID

Indicates whether the RSSI value is valid or not.

0 : The RSSI value is not valid

1 : The RSSI value is valid, always true when reception has been

enabled at least 8 symbol periods

0 Reserved, ignore value

Table 3.1: Status byte flags

3.2. CC2420 chipset 33

Address Register Description

0x00 SNOP No Operation (has no other effect than reading out status-bits)

0x01 SXOSCON
Turn on the crystal oscillator (set XOSC16M PD = 0 and

BIAS PD = 0)

0x02 STXCAL
Enable and calibrate frequency synthesizer for TX. Go from

RX/TX to a wait state where only the synthesizer is running.

0x03 SRXON Enable RX

0x04 STXON
Enable TX after calibration (if not already performed)

Start TX in-line encryption if SPI SEC MODE = 0

0x05 STXONCCA
If CCA indicates a clear channel:Enable calibration, then TX.

Start in-line encryption if SPI SEC MODE = 0, else do nothing.

0x06 SRFOFF Disable RX/TX and frequency synthesizer

0x07 SXOSCOFF Turn off the crystal oscillator and RF

0x08 SFLUSHRX

Flush the RX FIFO buffer and reset the demodulator. Always

read at least one byte from the RXFIFO before issuing the

SFLUSHRX command strobe

0x09 SFLUSHRX Flush the TX FIFO buffer

0x0A SACK Send acknowledge frame, with pending field cleared

0x0B SACKPEND Send acknowledge frame, with pending field set

0x0C SRXDEC
Start RXFIFO in-line decryption/authentication (as set by

SPI SEC MODE)

0x0D STXENC
Start TXFIFO in-line encryption/authentication (as set by

SPI SEC MODE), without starting TX

0x0E SAES

AES Stand alone encryption strobe. SPI SEC MODE is not

required to be 0, but the encryption module must be idle. If not,

the strobe is ignored

Table 3.2: Strobe configuration registers overview

3.2. CC2420 chipset 34

mapping is very useful to make debugging, in fact the TXFIFO is write only,

but it may be read back using RAM access.

Data are read and written one byte at a time, as with RAM access. The

RXFIFO is both writeable and readable. KEY0 and KEY1 registers contain

a 16-bit key used for ciphering/deciphering operation. After a key is writ-

ten in any of these registers, it is selected and then used when reading the

SEC TXKEYSEL/SEC RXKEYSEL bit in SECCTRL0 register. TXNONCE

and RXNONCE contain nonce.

3.2.3 Security operations

CC2420 features hardware IEEE 802.15.4 MAC security operations. This in-

cludes counter mode (CTR) encryption/decryption, CBC MAC authentication

and CCM encryption and authentication. All security operations are based on

AES encryption using 128 bit keys and they are performed within the transmit

and receive FIFOs on a per-frame basis.

The SAES, STXENC and SRXDEC command strobes are used to start

security operations in CC2420 as will be described in the following sections. The

ENC BUSY status bit may be used to monitor when a security operation has

been completed. Security command strobes issued while the security engine is

busy, will be ignored and the ongoing operation will be completed. The CC2420

RAM space has storage space for two individual keys (KEY0 and KEY1).

Transmit, receive and stand-alone encryption may select one of these two

keys relying on the three control bits SEC TXKEYSEL, SEC RXKEYSEL

and SEC SAKEYSEL in the SECCTRL0 register. A way of establishing the

keys used for encryption and authentication must be decided considering the

particular application requirements. IEEE 802.15.4, in fact, does not define how

this is done, it is left to the higher layers of the protocol. However, the nonce

must be correctly initialized before starting any reception or transmission [7].

The in-line security mode is set in SECCTRL0.SEC MODE to one of the

following modes:

• NO SEC (disabled);

• CBC MAC (authentication);

3.2. CC2420 chipset 35

• CTR (encryption/decryption);

• CCM (authentication and encryption/decryption).

When enabled, transmission (TX) in-line security is started in two differ-

ent ways: the first one is issuing the STXENC command strobe, so in-line

security will be performed within the TXFIFO buffer, but a transmission will

not be started. The second one is issuing the STXON or STXONCCA com-

mand strobe, so in-line security will be performed within the TXFIFO and a

transmission of the ciphertext is started.

When enabled, reception (RX) in-line security is started issuing a SRXDEC

command strobe, so the first frame in the RXFIFO buffer is decrypted/au-

thenticated as set by the current security mode. RX in-line security operations

are always performed on the first frame currently inside the RXFIFO, even

if parts of this has already been read out over the Serial Peripheral Interface

(SPI). This allows the receiver to first read the source address out, making it

possible to decide which key to use before doing authentication of the com-

plete frame. In CTR or CCM mode it is of course important that bytes to be

decrypted are not read out before the security operation is started.

3.2.3.1 CTR mode encryption/decryption

CTR mode encryption/decryption is performed by CC2420 on MAC frames

within the TXFIFO/RXFIFO respectively. SECCTRL1.SEC TXL/SEC RXL

flags in this control register set the number of bytes between the length field

and the first byte to be encrypted/decrypted respectively, so controlling the

number of plaintext bytes in the current frame.

When encryption is initiated, the plaintext in the TXFIFO is then en-

crypted. The encryption module will encrypt all the plaintext currently avail-

able or it will wait if not everything is prebuffered. The encryption operation

may also be started without any data in the TXFIFO at all, and data will

be encrypted as soon as they are written to the TXFIFO. When decryption is

initiated issuing the SRXDEC command strobe, the ciphertext of the RXFIFO

is then decrypted.

3.2. CC2420 chipset 36

3.2.3.2 CBC MAC

CBC MAC in-line authentication is provided by CC2420 hardware. When en-

abling CBC MAC in-line TXFIFO authentication, the generated MIC is writ-

ten to the TXFIFO for transmission. The frame length must include the MIC.

SECCTRL1.SEC TXL/SEC RXL flags in this control register set the num-

ber of bytes between the length field and the first byte to be authenticated.

Normally it is set to 0 for MAC authentication. SECCTRL0.SEC M flag in

this control register set the MIC length M, encoded as (M − 2)/2. SECC-

TRL0.SEC CBC HEAD flag defines if the authentication length is used as the

first byte of data to be authenticated or not. This bit should be set to one.

When enabling CBC-MAC in-line RXFIFO authentication, the generated

MIC is compared to the MIC in the RXFIFO. The last byte of the MIC is

replaced in the RXFIFO with 0x00 if MIC is correct or 0xFF if MIC is incorrect.

3.2.3.3 CCM

CCM combines CTR mode encryption and CBC MAC authentication in a

single operation. SECCTRL0.SEC M flag sets the MIC length M, encoded as

(M − 2)/2. SECCTRL0.SEC CBC HEAD flag defines if the authentication

length is used as the first byte of data to be authenticated or not. This bit

should be set to one. SECCTRL1.SEC TXL/SEC RXL sets the number of

bytes after the length field to be authenticated but not encrypted. The MIC is

generated and verified in the same way descibed in the CBC-MAC subsection.

3.2.3.4 Nonce structure

The receive and transmit nonces used for encryption and decryption are lo-

cated in RAM, starting from addresses 0x110 and 0x140 respectively. They are

both sixteen bytes. The nonce must be correctly initialized before receiving or

transmitting secured frames. The format of the nonce is shown in Figure 3.4.

The standard imposes the block counter to be set to one, the key sequence

counter is controlled by a layer above the MAC layer. The frame counter must

be increased at each new frame by the MAC layer. The source address is the

64-bit IEEE address.

3.2. CC2420 chipset 37

Figure 3.4: IEEE 802.15.4 Nonce

CC2420 gives the user full flexibility in selecting the flags for nonces accord-

ing to the chosen security level. The flag setting is stored in the most significant

byte of the nonce. The flag byte used for encryption and authentication is then

generated as shown in Figure 3.5.

Figure 3.5: CC2420 Security Flag Byte

Chapter 4

Security implementation

4.1 Overview

IEEE 802.15.4 offers several ways to secure a frame: packets can be only en-

crypted, only authenticated or both encrypted and authenticated. In our sce-

nario, we consider some Reduced Function Devices (RFDs) transmitting data

with different security levels to the Full Function Device (FFD) coordinator,

that decrypts messages and sends back acks. When security is turned off, upper

layers does not send to MAC any security parameters: when the frame is built,

security routines are not called and the frame is sent in clear.

At the startup of the application, both RFDs and FFD set their security

data structures, such as Key Table and Device Table, according to the security

parameters they are going to use. Then, while parsing the frames, the coor-

dinator understands whether it has security or not and, eventually, recognizes

the security level, behaving appropriately

When security is active, the first step consists in verifying consistency be-

tween table contents and security parameters. If these checks succeed, the Aux-

iliary Security Header is built and inserted into the MAC frame. Finally, the

proper security routines are called before sending the frame.

The coordinator, while parsing the frame, understands that it is secured

and then proceeds to unsecure it in a coherent manner. It makes the consis-

tency checks too, so verifying the correctness of its table contents. If everything

works, it recognizes the security level and unsecures the packet relying on the

38

4.2. Security data structures 39

opportune security routines [10].

The security parameters mentioned before are overviewed by Table 4.1 and

will be deeply explained later.

Name Type Range Description

SecurityLevel Integer 0x00-0x07 The security level to be used

KeyIdMode Integer 0x00-0x03
The mode used in order to identify

the key to be used

Key Source

Set of 0
As specified by the

The originator of the key to be used.

4, or 8
KeyIdMode parameter

It is ignored if the KeyIdMode

octets parameter is ignored or set to 0x00.

KeyIndex Integer 0x01-0xff

The index of the key to be used. It

is ignored if the KeyIdMode

parameter is ignored or set to 0x00

Table 4.1: Security Parameters

This security structure is used by application layer to manage the security

parameters when the frame is created. The implementation of the security

structure is1:

typedef struct i e e e 1 5 4 s e c u r i t y {

u i n t 8 t Secu r i tyLeve l ;

u i n t 8 t KeyIdMode ;

u i n t 8 t KeySource [8] ;

u i n t 8 t KeyIndex ;

} i e e e 1 5 4 s e c u r i t y t ;

The following section deeply describes the security data structures imple-

mentation and their functionalities.

4.2 Security data structures

The PIB security-related attributes are presented in Table 4.2. Among them,

the MacKeyTable and the MacDeviceTable are the most important security

1All the code is Copyright (c) 2008, Technische Universitaet Berlin All rights reserved

4.2. Security data structures 40

data structure. Mainly, they are a set of KeyDescriptor and DeviceDescriptor

respectively.

Attribute Identifier Type Range Description Default

macKey-
0x71

List of

-

A table of Key-

(empty)
Table

KeyDescriptor

Descriptors,

entries

each containing

keys and

related-security

information

macKey-

0x72 Integer
Implementa-

The number of

0Table-
tion specific

entries in mac-

Entries KeyTable

macDevice-
0x73

List of

-

A table of De-

(empty)
Table

Device-

viceDescriptor

Descriptor

entries, each

entries

indicating a

remote device

with which this

one securely

communicates

macDevice-

0x74 Integer
Implementa-

The number of

0Table-
tion specific

entries in mac-

Entries DeviceTable

mac

0x75

Table of

-

A table of Secu-

(empty)Security-
SecurityLevel

rityLevel-

LevelTable
Descriptor

Descriptors,

entries

holding

information

about the

minimum secu-

rity level

expected

continued on next page

4.2. Security data structures 41

continued from previous page

Attribute Identifier Type Range Description Default

mac

0x76 Integer
Implementa-

The number of

0
Security-

tion specific

entries in mac-

LevelTable- SecurityLevel

Entries Table

macFrame-
0x77 Integer

0x00000000- The outgoing 0x00

Counter 0xffffffff frame counter

macAuto

0x78 Integer 0x00-0x07

The security

0x06
Request level used for

Security- automatic

Level data request

macAuto

0x79 Integer 0x00-0x03

KeyIdMode

0x00Request-
used for auto-

KeyIdMode
matic data

request

macAuto-

0x7a

As specified

-

The originator

All 0xffRequest-

by the mac- of the key

KeySource

AutoRequest- used for auto-

KeyId- matic data

Mode request

macAuto-

0x7b Integer 0x01-0xff

The index of

All 0xffRequest-
the key used

KeyIndex
for automatic

data request

macDefault-
0x7c Set of 8 octets -

The originator

All 0xff
KeySource

of the default

key used for

KeyIdMode1

macPAN-

0x7d

IEEE address An extended 64-bit address

-Coord- 64-bit IEEE of the PAN

Extended- address coordinator

continued on next page

4.2. Security data structures 42

continued from previous page

Attribute Identifier Type Range Description Default

Address

MacPAN-

0x73 Integer 0x0000-0xffff

16-bit address

0x0000
Coord-

of the PAN
Short-

coordinator
Address

Table 4.2: MAC security-related PIB

4.2.1 KeyTable

The key table holds KeyDescriptors, particular data structures able to provide

key-specific information. These are retrieved thanks to some parameters ex-

plicitly contained in the requesting primitive or in the received frame, and are

involved in the outgoing frame key retrieval procedure and the incoming frame

security material retrieval procedure, as well as the KeyDescriptor lookup pro-

cedure. All these procedures will be described starting from Section 4.4. The

implementation of this data structure is the following:

typedef struct ieee154 macKeyTable t {

i e e e154 KeyDesc r i p to r t k eyde s c r i p t o r

[MAX MAC KEY TABLE ENTRIES] ;

bool v a l i d [MAX MAC KEY TABLE ENTRIES] ;

} ieee154 macKeyTable t ;

4.2.1.1 KeyDescriptor structure

The following rapresents the ieee154 KeyDescriptor t nesC implementation:

typedef struct i e e e154 KeyDesc r i p to r t {

i e e e154 LookupDesc r ip to r t

k ey id l ookupde s c r i p to r [MAX MAC KEY ID LOOKUP LIST ENTRIES] ;

4.2. Security data structures 43

u i n t 8 t k ey id l ookupen t r i e s ;

i e e e154 KeyDev i c eDesc r ip to r t

k e y d e v i c e l i s [MAX MAC DEVICE LIST ENTRIES] ;

u i n t 8 t k e y d e v i c e l i s t e n t r i e s ;

i e ee154 KeyUsageDescr ip tor t

k e yu s a g e l i s t [MAX MAC KEY USAGE LIST ENTRIES] ;

u i n t 8 t k e y u s a g e l i s t e n t r i e s ;

i e e e154 Key t key [1 6] ;

} i e e e154 KeyDesc r i p to r t ;

4.2.2 DeviceTable

The device table holds DeviceDescriptors, containing device-specific addressing

information that, when combined with key-specific information from the key

table, provide all the keying material needed to secure outgoing and unsecure

incoming frames. Device-specific information in the device table is identified

based on the originator of the frame, as described in the blacklist checking

procedure we are going to describe in Section 4.5.3.1. The implementation of

this data structure is:

typedef struct i eee154 macDeviceTable t {

i e e e 1 54 Dev i c eDe s c r i p t o r t d e v i c e d e s c r i p t o r [MAX SEC TABLE ENTRIES] ;

bool v a l i d [MAX SEC TABLE ENTRIES] ;

} i eee154 macDeviceTable t ;

4.2.2.1 DeviceDescriptor structure

The following rapresents the ieee154 DeviceDescriptor t nesC implementation:

typedef struct i e e e 1 54 Dev i c eDe s c r i p t o r t {

ieee154 macPANId t panid ;

i e e e 1 5 4 add r e s s t address ;

ieee154 macFrameCounter t framecounter ;

bool exempt ;

} i e e e 1 54 Dev i c eDe s c r i p t o r t ;

4.2. Security data structures 44

4.2.3 Minimum security level table

The minimum security level table holds information regarding the minimum

security level the device expects to have been applied by the originator of a

frame, depending on frame type and, if it concerns a MAC command frame,

the command frame identifier. Security processing of an incoming frame will

fail if the frame is not adequately protected.

4.2.4 Frame counter

The 4-octet frame counter is used to provide replay protection and semantic

security of the cryptographic building block used for securing outgoing frames.

The frame counter is included in each secured frame and is one of the elements

required for the unsecuring operation at the recipient(s).

The frame counter is incremented each time an outgoing frame is secured,

as described in the outgoing frame security procedure (Section 4.4). When the

frame counter reaches its maximum value of 0xffffffff, the associated keying

material is blacklisted, requiring all keys associated with the device to be up-

dated. This provides a mechanism for ensuring that the keying material for

every frame is unique and, thereby, provides for sequential freshness.

4.2.5 Automatic request attributes

Automatic request attributes hold all the information needed to secure out-

going frames generated automatically and not as a result of a higher layer

primitive, as is the case with automatic data requests.

4.2.6 Default key source

The default key source is an information commonly shared between originator

and receipient(s) of a secured frame, which, when combined with additional

information explicitly contained in the requesting primitive or in the received

4.3. Security functional description 45

frame, allows an originator or a recipient to determine the key required for

securing or unsecuring this frame, respectively.

This provides a mechanism for significantly reducing the overhead of security

information contained in secured frames in particular use cases.

4.2.7 PAN coordinator address

The address of the PAN coordinator is an information commonly shared be-

tween all devices in a PAN, which, when combined with additional information

explicitly contained in the requesting primitive or in the received frame, allows

an originator of a frame directed to the PAN coordinator or a recipient of a

frame originating from the PAN coordinator to determine the key and security-

related information required for securing or unsecuring this frame.

4.3 Security functional description

Security implementation is optional on a device. When a device does not im-

plement security, it shall not provide a mechanism for the MAC sublayer to

perform any cryptographic transformation on incoming and outgoing frames

nor require any PIB attributes associated with security.

A device that implements security, on the other hand, shall provide a mech-

anism for the MAC sublayer to provide cryptographic transformations on in-

coming and outgoing frames using information in the PIB attributes associated

with security when the macSecurityEnabled attribute is set to TRUE.

If the MAC sublayer is required to transmit a frame or receives an incoming

frame, the MAC sublayer shall process the frame as descibed in Figure 4.1 and

Figure 4.4, respectively.

4.4. Outgoing frame security procedure 46

4.4 Outgoing frame security procedure

The inputs to this procedure are:

• the frame to be secured;

• SecurityLevel;

• KeyIdMode;

• KeySource;

• KeyIndex.

The outputs from this procedure are the status of the procedure and, if it

is SUCCESS, the secured frame.

Figure 4.1: Outgoing frame security procedure schema

4.4. Outgoing frame security procedure 47

Fist of all, the procedure does some consistency controls and, if everything

works, it shall obtain the key using the outgoing frame key retrieval procedure

as described in Figure 4.3. In case of failure, the procedure shall return with

a status of UNAVAILABLE KEY. Otherwise, it proceeds with the auxiliary

security header insertion and the encryption/authentication. Finally, the pro-

cedure updates the frame counter to the macFrameCounter attribute. If the

frame counter has the value 0xffffffff, the procedure shall return with a status

of COUNTER ERROR.

4.4.1 Outgoing frame consistency checks

Figure 4.2 describes the consistency checks we are going to enumerate.

Figure 4.2: Outgoing frame consistency checks

If the Security Enabled subfield of the Frame Control field of the frame to

4.4. Outgoing frame security procedure 48

be secured is set to zero, the procedure shall set the security level to zero.

If the Security Enabled subfield of the Frame Control field of the frame

to be secured is set to one, the procedure shall set the security level to the

SecurityLevel parameter. If the resulting security level is zero, the procedure

shall return with a status of UNSUPPORTED SECURITY.

If the macSecurityEnabled attribute is set to FALSE and the security level

is not equal to zero, the procedure shall return with a status of UNSUP-

PORTED SECURITY.

Then, the procedure shall determine whether the frame to be secured fits

the maximum length of MAC frames payload: the procedure shall set the size

(M) of the Authentication field to zero if the security level is equal to zero and

shall determine this value from the security level otherwise. The procedure shall

determine the AuxLen, that is the length, in octets, of the auxiliary security

header using the KeyIdMode and the security level. If this check fails, the

procedure shall return with a status of FRAME TOO LONG.

4.4.2 Outgoing frame key retrieval procedure

The inputs to this procedure are:

• the frame to be secured;

• SecurityLevel;

• KeyIdMode;

• KeySource;

• KeyIndex.

The outputs from this procedure are a passed or failed status and, if passed,

a key.

If the KeyIdMode parameter is set to KeyIdMode0 (i.e. implicit key iden-

tification), the outgoing frame key retrieval procedure shall determine the key

4.4. Outgoing frame security procedure 49

Figure 4.3: Key retrieval procedure schema

lookup data and key lookup size as follows:

• if the short addressing mode is used, the key lookup data shall be set

to the 2-octets SourcePANIdentifier field of the frame right-concatenated

with the 2-octets macPANCoordShortAddress attribute, in turn right-

concatenated with the single octet 0x00. The key lookup size shall be set

to five;

• if the extended addressing mode is used, the key lookup data shall be set to

the 8-octet macPANCoordExtendedAddress attribute right-concatenated

with the single octet 0x00. The key lookup size shall be set to nine;

• if the Destination Addressing Mode subfield of the Frame Control field of

the frame is set to 0x02, the key lookup data shall be set to the 2-octet

Destination PAN Identifier field of the frame right-concatenated with the

2-octet Destination Address field of the frame and with the single octet

0x00. The key lookup size shall be set to five;

4.4. Outgoing frame security procedure 50

• if the Destination Addressing Mode subfield of the Frame Control field of

the frame is set to 0x03, the key lookup data shall be set to the 8-octet

Destination Address field of the frame right-concatenated with the single

octet 0x00. The key lookup size shall be set to nine.

If the KeyIdMode parameter is set to a value not equal to KeyIdMode0, the

procedure shall determine the key lookup data and key lookup size as follows:

• if the KeyIdMode parameter is set to KeyIdMode1 (i.e. default key source

address), the key lookup data shall be set to the value of the 8-octet

macDefaultKeySource attribute right-concatenated with the single octet

KeyIndex parameter. The key lookup size shall be set to nine;

• if the KeyIdMode parameter is set to KeyIdMode2 (i.e. short address

key source), the key lookup data shall be set to the 4-octet KeySource

parameter right-concatenated with the single octet KeyIndex parameter.

The key lookup size shall be set to five;

• if the KeyIdMode parameter is set to KeyIdMode3 (i.e. extended address

key source), the key lookup data shall be set to the 8-octet KeySource

parameter right-concatenated with the single octet KeyIndex parameter.

The key lookup size shall be set to nine.

The procedure shall obtain the KeyDescriptor by passing the key lookup

data and the key lookup size to the KeyDescriptor lookup procedure.

If that procedure returns with a failed status, this procedure shall also return

with a failed status. The MAC sublayer shall set the key to the Key element

of the KeyDescriptor. The procedure shall return with a passed status, having

obtained the key identifier and the key as well.

4.4.2.1 Key descriptor lookup procedure

The inputs to this procedure are the key lookup data and the key lookup size.

The outputs from this procedure are a passed or failed status and, if passed, a

4.5. Incoming frame security procedure 51

KeyDescriptor.

The procedure, for each KeyDescriptor in the macKeyTable attribute and

for each KeyIdLookupDescriptor in the KeyIdLookupList of the KeyDescriptor,

shall check whether the LookupDataSize element of the KeyIdLookupDescrip-

tor indicates the same integer value as the key lookup size and whether the

LookupData element of the KeyIdLookupDescriptor is equal to the key lookup

data. If both checks pass, the procedure shall return with this (matching) Key-

Descriptor and a passed status.

Otherwise, the procedure shall return with a failed status.

4.5 Incoming frame security procedure

The input to this procedure is the frame to be unsecured. The outputs from

this procedure are:

• the unsecured frame;

• SecurityLevel;

• KeyIdMode;

• KeySource;

• KeyIndex;

• the status of the procedure.

All outputs of this procedure are assumed to be invalid unless and until

explicitly set in this procedure.

It is assumed the PIB attributes associating KeyDescriptors in macKeyTable

with a single, unique device or a number of devices will have been established

by the next higher layer.

4.5. Incoming frame security procedure 52

Fist of all, the procedure does some consistency controls and, if nothing

goes wrong, it moves on doing the incoming security level checking proce-

dure. If that fails, the procedure shall set the unsecured frame to be the

frame to be unsecured and return with the unsecured frame, the security level,

the key identifier mode, the key source, the key index, and a status of IM-

PROPER SECURITY LEVEL.

Otherwise, it proceeds with the incoming frame security material retrieval

procedure, described in Figure 4.6. It the procedure succedees, it passess the

KeyDescriptor, the frame type, and, depending on whether the frame is a

MAC command frame, the first octet of the MAC payload (i.e., command

frame identifier for a MAC command frame) to the incoming key usage policy

checking procedure.

Figure 4.4: Incoming frame security procedure schema

4.5. Incoming frame security procedure 53

If that procedure fails, the procedure shall set the unsecured frame to be

the frame to be unsecured and return with the unsecured frame, the security

level, the key identifier mode, the key source, the key index, and a status of

IMPROPER KE TYPE. It follows another checking phase, described in Figure

4.5.

If everything works, the procedure shall then use the ExtAddress element

of the DeviceDescriptor, the frame counter, the security level, and the Key

element of the KeyDescriptor to produce the unsecured frame according to the

CCM inverse transformation process.

If the security level specifies the use of encryption, the decryption operation

shall be applied only to the actual payload field within the MAC payload. If

the CCM inverse transformation process fails, the procedure shall return with

a status of SECURITY ERROR.

The procedure shall increment the frame counter and set the FrameCounter

element of the DeviceDescriptor to the resulting value. If the FrameCounter

element is equal to 0xffffffff, the procedure shall set the Blacklisted element

of the KeyDeviceDescriptor. The procedure shall return with the unsecured

frame, the security level, the key identifier mode, the key source, the key index,

and a status of SUCCESS.

4.5.1 Incoming frame consistency checks

Figure 4.5 describes the consistency checks we are going to enumerate. If the

Security Enabled subfield of the Frame Control field of the frame to be unse-

cured is set to zero, the procedure shall set the security level to zero.

If the Security Enabled subfield of the Frame Control field of the frame to

be unsecured is set to one and the Frame Version subfield of the Frame Control

field of the frame to be unsecured is set to zero, the procedure shall return with

a status of UNSUPPORTED LEGACY.

If the Security Enabled subfield of the Frame Control field of the frame

4.5. Incoming frame security procedure 54

Figure 4.5: Incoming frame consistency checks

to be unsecured is set to one, the procedure shall set the security level and

the key identifier mode to the corresponding subfields of the Security Con-

trol field of the auxiliary security header of the frame to be unsecured and

shall set the key source and key index to the corresponding subfields of the

Key Identifier field of the auxiliary security header of the frame to be unse-

cured, if present. If the resulting security level is zero, the procedure shall set

the unsecured frame to be the frame to be unsecured and return a status of

UNSUPPORTED SECURITY.

If the macSecurityEnabled attribute is set to FALSE, the procedure shall

set the unsecured frame to be the frame to be unsecured and return with the

unsecured frame, the security level, the key identifier mode, the key source, the

key index, and a status of SUCCESS if the security level is equal to zero and

with a status of UNSUPPORTED SECURITY otherwise.

4.5. Incoming frame security procedure 55

4.5.2 Incoming security level checking procedure

The procedure shall determine whether the frame to be unsecured meets the

minimum security level by passing the security level, the frame type, and,

depending on whether the frame is a MAC command frame, the first octet of

the MAC payload (i.e. command frame identifier for a MAC command frame)

to this procedure.

The inputs to this procedure are the incoming security level, the frame type

and the command frame identifier. The output from this procedure is a passed,

failed, or conditionally passed status.

The incoming security level checking for each SecurityLevelDescriptor in the

macSecurityLevelTable attribute:

• If the frame type is not equal to MAC command frame (0x03) and the

frame type is equal to the FrameType element of the SecurityLevelDe-

scriptor, the procedure shall compare the incoming security level with the

SecurityMinimum element of the SecurityLevelDescriptor. If this compar-

ison fails, the procedure shall return with a conditionally passed status

if the DeviceOverrideSecurityMinimum element of the SecurityLevelDe-

scriptor is set to TRUE and the security level is set to zero and with a

failed status otherwise;

• if the frame type is equal to MAC command frame (0x03), the frame

type is equal to the FrameType element of the SecurityLevelDescriptor,

and the command frame identifier is equal to the CommandFrameIdenti-

fier element of the SecurityLevelDescriptor, the procedure shall compare

the incoming security level with the SecurityMinimum element of the Se-

curityLevelDescriptor. If this comparison fails, the procedure shall return

with a conditionally passed status if the DeviceOverrideSecurityMinimum

element of the SecurityLevelDescriptor is set to TRUE and the security

level is set to zero and with a failed status otherwise;

4.5. Incoming frame security procedure 56

• If everything goes right, the procedure shall return with a passed status.

4.5.3 Incoming frame security material retrieval procedure

Figure 4.6: Incoming frame security material retrieval procedure schema

The input to this procedure is the frame to be unsecured. The outputs from

this procedure are a passed or failed status and, if passed, a KeyDescriptor, a

DeviceDescriptor, and a KeyDeviceDescriptor.

As Figure 4.6 describes, the procedure checks if the Key Identifier Mode

subfield of the Security Control field of the auxiliary security header of the

frame is set to KeyIdMode0. If so, the procedure shall determine the key lookup

data and the key lookup size as follows:

• if the source address mode of the FrameControl field is set to 0x00 and

the macPANCoordShortAddress attribute is set to a value in the short ad-

dressing mode is used, the key lookup data shall be set to the 2-octet Des-

4.5. Incoming frame security procedure 57

tination PAN Identifier field of the frame right-concatenated with the 2-

octet macPANCoordShortAddress attribute right-concatenated with the

single octet 0x00. The key lookup size shall be set to five;

• if the source address mode of the Frame Control field of the frame is

set to 0x00 and the extended addressing mode is used, the key lookup

data shall be set to the 8-octet macPANCoordExtendedAddress attribute

right-concatenated with the single octet 0x00. The key lookup size shall

be set to nine;

• if the source address mode of the Frame Control field of the frame is set to

0x02, the key lookup data shall be set to the 2-octet Source PAN Identifier

field of the frame, or to the 2-octet Destination PAN Identifier field of the

frame if the PAN ID Compression subfield of the Frame Control field of

the frame is set to one, right-concatenated with the 2-octet SourceAddress

field of the frame right-concatenated with the single octet 0x00. The key

lookup size shall be set to five;

• if the source address mode of the Frame Control field of the frame is set

to 0x03, the key lookup data shall be set to the 8-octet Source Address

field of the frame right-concatenated with the single octet 0x00. The key

lookup size shall be set to nine.

If the Key Identifier Mode subfield of the Security Control field of the auxil-

iary security header of the frame is set to a value not equal to KeyIdMode0, the

procedure shall determine the key lookup data and key lookup size as follows:

• if the KeyIdMode1 is used, the key lookup data shall be set to the 8-octet

macDefaultKeySource attribute right-concatenated with the 1-octet Key

Index subfield of the Key Identifier field of the auxiliary security header.

The key lookup size shall be set to nine;

• if the KeyIdMode2 is used, the key lookup data shall be set to the right-

4.5. Incoming frame security procedure 58

concatenation of the 4-octet Key Source subfield and the 1-octet Key

Index subfield of the Key Identifier field of the auxiliary security header.

The key lookup size shall be set to five;

• if the KeyIdMode2 is used, the key lookup data shall be set to the right-

concatenation of the 4-octet Key Source subfield and the 1-octet Key

Index subfield of the Key Identifier field of the auxiliary security header.

The key lookup size shall be set to five;

• if the KeyIdMode3 is used, the key lookup data shall be set to the right-

concatenation of the 8-octet Key Source subfield and the 1-octet Key

Index subfield of the Key Identifier field of the auxiliary security header.

The key lookup size shall be set to nine.

The procedure shall obtain the KeyDescriptor by passing the key lookup

data and the key lookup size to the KeyDescriptor lookup procedure. If that

procedure returns with a failed status, the procedure shall also return with a

failed status.

The procedure shall determine the device lookup data and the device lookup

size as follows:

• if the source address mode of the Frame Control field of the frame is

set to 0x00 (i.e. PAN identifier and address fields are not present) and

are used the short addresses, the device lookup data shall be set to the

2-octet Destination PAN Identifier field of the frame right-concatenated

with the 2-octet macPANCoordShortAddress attribute. The device lookup

size shall be set to four;

• if the source address mode of the Frame Control field of the frame is set to

0x00 and are used the extended addresses, the device lookup data shall be

set to the 8-octet macPANCoordExtendedAddress attribute. The device

lookup size shall be set to eight;

4.5. Incoming frame security procedure 59

• if the source address mode of the Frame Control field of the frame is set to

0x02 (i.e. Address field contains a 16-bit short address), the device lookup

data shall be set to the 2-octet Source PAN Identifier field of the frame,

or to the 2-octet Destination PAN Identifier field of the frame (if the PAN

ID Compression subfield of the Frame Control field of the frame is set

to one), right-concatenated with the 2-octet Source Address field of the

frame. The device lookup size shall be set to four;

• if the source address mode of the Frame Control field of the frame is set

to 0x03 (i.e. Address field contains a 64-bit extended address), the device

lookup data shall be set to the 8-octet Source Address field of the frame.

The device lookup size shall be set to eight.

The procedure shall obtain the DeviceDescriptor and the KeyDeviceDescrip-

tor by passing the KeyDescriptor, the device lookup data, and the device lookup

size to the blacklist checking procedure, described in Section 4.5.3.1.

If that procedure returns with a failed status, this procedure shall also re-

turn with a failed status too. Otherwise, the procedure shall return with a

passed status having obtained the KeyDescriptor, the DeviceDescriptor, and

the KeyDeviceDescriptor.

4.5.3.1 Blacklist checking procedure

The blacklist checking procedure for each KeyDeviceDescriptor in the KeyDe-

viceList of the KeyDescriptor:

• obtains the DeviceDescriptor using the DeviceDescriptorHandle element

of the KeyDeviceDescriptor;

• if the UniqueDevice element of the KeyDeviceDescriptor is set to TRUE,

the procedure shall return with the DeviceDescriptor and the KeyDe-

viceDescriptor. It returns a passed status if the BlackListed element of

4.5. Incoming frame security procedure 60

the KeyDeviceDescriptor is set to FALSE, or the procedure shall return

with a failed status if this Blacklisted element is set to TRUE;

• if the UniqueDevice element of the KeyDeviceDescriptor is set to FALSE,

the procedure shall execute the DeviceDescriptor lookup procedure with

the device lookup data and the device lookup size as inputs. If the cor-

responding output of that procedure is a passed status, the procedure

shall return with the DeviceDescriptor, the KeyDevice-Descriptor, and

a passed status if the Blacklisted element of the KeyDeviceDescriptor is

set to FALSE, or the procedure shall return with a failed status if this

Blacklisted element is set to TRUE.

Otherwise, the procedure shall return with a failed status.

4.5.4 Post-incoming frame security material retrieval consistency

checks

If the Exempt element of the DeviceDescriptor is set to FALSE and if the

incoming security level checking procedure of the step above obtained as output

the conditionally passed status, the procedure shall return with the unsecured

frame, the security level, the key identifier mode, the key source, the key index,

and a status of IMPROPER SECURITY LEVEL.

The procedure shall set the frame counter to the Frame Counter field of the

auxiliary security header of the frame to be unsecured. If the frame counter has

the value 0xffffffff, the procedure shall return a status of COUNTER ERROR.

The procedure shall determine whether the frame counter is greater than or

equal to the FrameCounter element of the DeviceDescriptor. If this check fails,

the procedure shall set the unsecured frame to be the frame to be unsecured

and return with the unsecured frame, the security level, the key identifier mode,

the key source, the key index, and a status of COUNTER ERROR.

4.5. Incoming frame security procedure 61

4.5.4.1 Incoming key usage policy checking crocedure

The procedure, for each KeyUsageDescriptor in the KeyUsageList of the Key-

Descriptor:

• if the frame type is not equal to 0x03 (i.e. MAC Command Frame) and the

frame type is equal to the FrameType element of the KeyUsageDescriptor,

the procedure shall return with a passed status;

• if the frame type is equal to 0x03, the frame type is equal to the FrameType

element of the KeyUsageDescriptor, and the command frame identifier is

equal to the CommandFrame-Identifier element of the KeyUsageDescrip-

tor, the procedure shall return with a passed status.

Otherwise, the procedure shall return with a failed status.

Chapter 5

Evaluations and future works

5.1 Image size

According to the tecnical feature of Tmote sky mentioned in Section 3.1, the

executable image size can not exceed 48K, otherwise it can not be installed on

the mote.

As a conclusion of the development phase, it has been made an evaluation

of the memory usage, comparing the TinyOS image size when security was not

implemented and when all the security features were fully implemented and

used (i.e. code and data structures). As Figure 5.1 shows, it came out that

security requires a not negligible amount of memory: about 7K for the RFDs

and 6K more for the coordinator. The reason for the security implementation

requiring more memory on the RFD than on the FFD Coordinator is that the

RFDs must be able to set a different SecLevel and KeyIdMode for each frame,

while the Coordinator just parses the frames’ header relying on the RFD’s

decisions. Observe that, in this implementation, only the Coordinator (RFDs)

receives (transmit) secured frames.

Going into more depth, it has been considered the costs of the implemen-

tation of single security features in terms of memory usage so distinguishing,

among different components, which one impacts more on the memory footprint.

62

5.1. Image size 63

Figure 5.1: Security costs bar chart

Figure 5.2: Sender side security pie chart

5.1. Image size 64

Figure 5.3: Receiver side security pie chart

The security implementation consists in three main components: one for the

security data structures such as the key table or the device table, one for the

code to get and set the security data structures and one for the key modes setup

and management. As shown in Figure 5.2 and Figure 5.3, key management

structures need considerably less memory than other security components. It

also has been made an evaluation of the memory requirements when multiple

keys are used and came out it does not increase the image size considerably,

so, by employing a small amount of resources, a KeySource device is able to

provide more keys and change it more frequently, enhancing the robustness of

the security system.

Besides, it can be seen this pre-integration implementation of security in

TinyOS drains almost all the available memory left on Tmote sky. On the other

hand, integrating these features in the release 2.1.1 of TinyOS and writing ad

5.2. Error Management 65

hoc security modules and interfaces, the memory footprint reduced its size

considerably. This advatage is due to two important aspects: the first one is

the complete removal of printf() calls that determined the removal of the printf

driver from the image, saving some memory. The second one is the introduction

of interfaces, because the compiler is able to optimize the code exploiting the

call mechanism, which acts as an inline expansion of the function called.

5.2 Error Management

As explained in Chapter 4, implementig the MAC layer security operations, it

has been completed also the implementation of MAC layer security consistency

checks described by the standard, introducing all the provided ad hoc status

describing differnt kind of failures.

From the point of view of failure management, it would be useful to dis-

tinguish between general failure errors and different kinds of retry errors, that

can be easily faced by means of a second execution attempt. For example,

UNSUPPORTED SECURITY or FRAME TOO LONG could be treated as

FAIL errors, because, when they happen, no security operation can be car-

ried on successfully. On the contrary, an IMPROPER SECURITY LEVEL or

FRAME COUNTER ERROR status could be considered RETRY errors, be-

cause they are due to a temporary mismatch between security parameters which

would be successfully fixed with a retry.

The current implementation of the procedure just returns a FAIL/SUCCESS

status. It would be useful to return these status messages in case of failure,

so making it possible to exploit them for diagnostic purposes and improve

performances thanks to the above-mentioned distinction between FAIL and

RETRY errors.

5.3. Test Application 66

5.3 Test Application

The TestDataSecurity application has been developed in order to test the

discussed and implemented security features. This application represents a

security-modified version of the TestData application. The classical TestData

sees one or more RFDs continously sending packets to the coordinator in the

context of a beacon enabled PAN. The TestDataSecurity’s scenario consists

in some RFDs sending diffent kinds of secured packets to a FFD, acting as

a coordinator, which receives these secured packets and usecures them coher-

ently with KeyIdModes and SecLevels. The application still works in a beacon

enabled PAN.

5.3.1 Sender side

On the sender side, each RFD starts looking for an association to a PAN coor-

dinator, this is done easily thanks to the beacon the coordinator periodically

sends around the network. After that, it retrieves the key and creates secured

packets according to the Security Level it has been set for. Figure 5.4 shows a

screenshot of the execution output of a Tmote sky behaving as a RFD when

sending secured packets whose payload changes both in content and length.

5.3.2 Receiver side

On the receiver side, the PAN coordinator FFD periodically sends beacon to

allow the RFDs to join the network. Every time it receives a packet, it re-

trieves the key and unsecures the received packet, giving a feedback about

the decryption/authentication result. Figure 5.5 shows a screenshot of the ex-

ecution output of a tmote sky behaving as a PAN ccordinator and receiving

and unsecuring packets whose payload changes both in content and length and

come from different senders, which applies differnt SecLevels.

5.3. Test Application 67

Figure 5.4: Sender side execution screenshot

Figure 5.5: Receiver side execution screenshot

5.4. Future works 68

5.4 Future works

The MAC layer security implementation preludes complex and useful utiliza-

tions in a wide range of monitoring applications which were claming for security

and authentication, especially for military and medical application fields.

For the future, it would be interesting to do some further testing activities

in more complex scenarios (e.g. to consider nodes both transmitting and re-

ceiving protected MAC frames). Furthermore, in order to have a full standard

implementation, it is necessary to provide some minor security mechanisms,

such as the opportunity to encrypt Beacon and Command frames. Moreover,

to improve these security mechanisms, it could be worthwhile, starting from

this implementation, to realize a run-time key distribution mechanism, for ex-

ample by exploiting KeyIdMode2 or KeyIdMode3 to retrieve keys. Run-time

key distribution requires concurrency management of security data structures

and a method to get and manage a writing lock on the key tables for both the

RFDs and the Coordinator. Depending on how it is implemented, the locking

could determine the loss of a small number of packets or the incorrect unse-

curing of some packets. However, these issues should be easily faced by means

of retransmissions.

An integration activity of this suite in the IEEE 802.15.4 implementation

of the TinyOS official release is currently ongoing, in cooperation with the

Technische Universitaet Berlin. According to the results achieved so far, it is

possible to noticeably reduce the memory footprint both on the RFDs and the

Coordinator by writing ad hoc security modules which are well-optimized by

the TinyOS’s building policy. In fact, when compiling a specific application,

the compiler introduces only the modules that the specific application needs.

However, the RFDs’ image size still remains bigger than the Coordinator’s one

because the computational load continues to be more on the sender side. By

completely removing the printf() calls, it is possible to further reduce the image

5.4. Future works 69

size, having more available memory and being able to introduce security in more

complex application scenarios (i.e. much more memory would be available for

the application).

Chapter 6

Conclusion

The IEEE 802.15.4 security suite allows network nodes to protect communica-

tions by encrypting and authenticating MAC frames. Such security mechanisms

are provided by Tmote sky motes and their CC2420 chipset. This thesis work

extends the IEEE 802.15.4 TinyOS implementation, introducing security sup-

port on the Tmote sky platform. Security modules have been tested and their

impact on memory usage has been evaluated.

In particular, the realized security implementation makes it possible to pro-

tect MAC frames in different ways and manage dynamic security information

retrieval from specific data structures, according to different available criteria.

The security suite has been succesfully tested through a proper application,

which allows many sender nodes to securely communicate with a single receiver

node. Specifically, MAC data frames having payloads different in content and

size have been considered. Finally, a memory footprint of the RFD and FFD

code has been produced, highlighting how security impacts on memory usage

quite remarkably, almost draining all available motes’ memory.

For the future, it would be interesting to consider more complex testing

scenarios, include some still missing minor features, and realize a run-time

key distribution mechanism. An integration with the TinyOS official release is

currently ongoing, together with the Technical University of Berlin.

70

Appendix A

MAC security procedures

A.1 Incoming frame security procedure

The following is the implementation of the consistency checks described in the

section 7.5.8.2.1 of the IEEE 802.15.4 standard.

The inputs to this procedure are the frame to be secured, the security pa-

rameters and the mic length. The output is the return status of the procedure.

i e e e 1 5 4 s t a t u s t f r ame s e cu r i t y p ro c edu r e

(i e e e 1 5 4 s e c u r i t y t ∗ s e cu r i t y , message t ∗ frame , u i n t 8 t mic l ength)

{

u i n t 8 t ∗mhr = MHR(frame) ;

i e ee154 macSecur i tyEnab led t mac secur i ty enab l ed ;

u i n t 8 t pktLen = 0 ;

u i n t 8 t AddLen = 0 ;

u i n t 8 t SecLen = 0 ;

eee154 macFrameCounter t counter ;

e r r o r t e r r o r ;

i f (mhr [MHR INDEX FC1] == FC1 SECURITY ENABLED &&

(se cu r i t y−>Secur i tyLeve l == NO SEC))

return IEEE154 UNSUPPORTED SECURITY;

mac secur i ty enab l ed = c a l l MLMEGET. macSecurityEnabled () ;

71

A.2. Outgoing frame key retrieval procedure 72

i f (mac secur i ty enab l ed == FALSE &&

(se cu r i t y−>Secur i tyLeve l == NO SEC))

return IEEE154 UNSUPPORTED SECURITY;

c a l l FrameUti l i ty . getAddress ingFie ldsLength

(mhr [MHR INDEX FC1] , mhr [MHR INDEX FC2] , &AddLen) ;

pktLen += AddLen ;

c a l l FrameUti l i ty . getSecur i tyHeaderLength

(mhr [MHR INDEX FC1] , mhr [AddLen] , &SecLen) ;

pktLen += SecLen ;

pktLen += c a l l Frame . getPayloadLength (frame) ;

pktLen += mic length ;

pktLen += 2 ;

i f (pktLen > IEEE154 aMaxPHYPacketSize)

return IEEE154 FRAME TOO LONG;

counter = c a l l MLMEGET. macFrameCounter () ;

i f (counter == 0 x f f f f f f f f)

s e cu r i t y−>KeyIndex = (s e cu r i t y−>KeyIndex + 1)%2;

e r r o r = k ey r e t r i e v a l p r o c e du r e

(frame , s e cu r i t y , s e cu r i t y−>KeyIndex) ;

i f (e r r o r != SUCCESS)

return IEEE154 UNAVAILABLE KEY;

return IEEE154 SUCCESS ;

}

A.2 Outgoing frame key retrieval procedure

This function is used in order to manage the key descriptor building procedure

described in the section 7.5.8.2.2 of the IEEE 802.15.4 standard.

The inputs to this procedure are the frame to be secured and the security

parameters. The outputs from this procedure is a SUCCESS/FAIL status and,

A.3. Incoming frame security procedure 73

in case of success, a key.

e r r o r t k e y r e t r i e v a l p r o c e du r e

(message t ∗ frame , i e e e 1 5 4 s e c u r i t y t ∗ s e cu r i t y , int key index)

{

e r r o r t e r r o r ;

u i n t 8 t ∗mhr = MHR(frame) ;

e r r o r = key de s c r i p t o r l o okup proc edu r e (5 , (mhr [3])) ;

i f (e r r o r == FAIL)

return FAIL ;

return SUCCESS;

}

A.3 Incoming frame security procedure

The following implements the consistency checks described by section 7.5.8.2.3

of the IEEE 802.15.4 standard, The inputs to this procedure is the frame to

be unsecured, the output is the status of the procedure.

i e e e 1 5 4 s t a t u s t f r ame s e cu r i t y p ro c edu r e

(i e e e 1 5 4 s e c u r i t y t ∗ mysec , u i n t 8 t ∗ mhr , u i n t 8 t mic l ength)

{

u i n t 8 t o f f s e t ;

i e e e 1 5 4 s t a t u s t s t a tu s = IEEE154 SUCCESS ;

i eee154 macSecur i tyEnab led t s e cu r i t y enab l ed ;

e r r o r t e r r o r ;

u i n t 8 t s e c l e v e l ;

ieee154 macFrameCounter t macCounter ;

ieee154 FrameType t frame type ;

i e e e 1 54 Dev i c eDe s c r i p t o r t ∗ d e v i c e d e s c r i p t o r = NULL;

i e e e154 KeyDesc r i p to r t ∗ k ey de s c r i p t o r ;

i f (mhr [MHR INDEX FC1] == FC1 SECURITY ENABLED &&

(mhr [MHR INDEX FC2] & FC2 FRAME VERSION MASK) == 0x00)

s t a tu s = IEEE154 UNSUPPORTED LEGACY;

c a l l FrameUti l i ty . getAddress ingFie ldsLength

A.3. Incoming frame security procedure 74

(mhr [MHR INDEX FC1] , mhr [MHR INDEX FC2] , &o f f s e t) ;

s e c l e v e l = mhr [o f f s e t] & SEC CNTL LEVEL;

i f (mhr [MHR INDEX FC1] == FC1 SECURITY ENABLED &&

s e c l e v e l == 0x00 && sta tu s == IEEE154 SUCCESS)

s t a tu s = IEEE154 UNSUPPORTED SECURITY;

s e cu r i t y enab l ed = c a l l MLMEGET. macSecurityEnabled () ;

i f (s e cu r i t y enab l ed == FALSE && sta tu s == IEEE154 SUCCESS)

s t a tu s = IEEE154 UNSUPPORTED SECURITY;

mysec−>Secur i tyLeve l = s e c l e v e l ;

mysec−>KeyIdMode = ((mhr [o f f s e t ++] & 0x18)>> 3) ;

macCounter = ∗ ((nx u in t32 t ∗) (&(mhr [o f f s e t]))) ;

o f f s e t += 4 ;

i f (mysec−>KeyIdMode != KEYIDMODE0){

i f (mysec−>KeyIdMode == KEYIDMODE1)

mysec−>KeyIndex = mhr [o f f s e t ++];

else i f (mysec−>KeyIdMode == KEYIDMODE2){

mysec−>KeySource [0] = mhr [o f f s e t ++];

mysec−>KeySource [1] = mhr [o f f s e t ++];

mysec−>KeySource [2] = mhr [o f f s e t ++];

mysec−>KeySource [3] = mhr [o f f s e t ++];

mysec−>KeyIndex = mhr [o f f s e t ++];

}

else {

mysec−>KeySource [0] = mhr [o f f s e t ++];

mysec−>KeySource [1] = mhr [o f f s e t ++];

mysec−>KeySource [2] = mhr [o f f s e t ++];

mysec−>KeySource [3] = mhr [o f f s e t ++];

mysec−>KeySource [4] = mhr [o f f s e t ++];

A.3. Incoming frame security procedure 75

mysec−>KeySource [5] = mhr [o f f s e t ++];

mysec−>KeySource [6] = mhr [o f f s e t ++];

mysec−>KeySource [7] = mhr [o f f s e t ++];

mysec−>KeyIndex = mhr [o f f s e t ++];

}

}

k ey de s c r i p t o r = c a l l MLMEGET. macKeyTable (mysec−>KeyIndex) ;

d ev i c e d e s c r i p t o r−>f ramecounter = ++macCounter ;

i f (d ev i c e d e s c r i p t o r−>f ramecounter == 0 x f f f f f f f f)

k ey de s c r i p to r−>k e y d e v i c e l i s t

[mysec−>KeyIndex] . b l a c k l i s t e d = TRUE;

frame type = mhr [MHR INDEX FC1] & FC1 FRAMETYPE MASK;

e r r o r = s e c l e v e l c h e c k i n g p r o c edu r e (s e c l e v e l , frame type , 0) ;

i f (((e r r o r == FAIL) | |

(e r r o r == SUCCESS && cond i t i o n a l l y p a s s e d == TRUE))

&& sta tu s == IEEE154 SUCCESS)

s t a tu s = IEEE154 IMPROPER SECURITY LEVEL ;

e r r o r = s e c u r i t y ma t e r i a l r e t r i e v a l p r o c e d u r e (mhr , mysec , 0) ;

i f (e r r o r == FAIL && sta tu s == IEEE154 SUCCESS)

s t a tu s = IEEE154 UNAVAILABLE KEY;

e r r o r = key u sag e po l i c y che ck ing (key de s c r i p to r , frame type , 0) ;

i f (e r r o r == FAIL && sta tu s == IEEE154 SUCCESS)

s t a tu s = IEEE154 IMPROPER KEY TYPE;

return s t a tu s ;

}

A.4. Incoming frame security material retrieval procedure 76

A.4 Incoming frame security material retrieval proce-

dure

This function is used in order to manage the security material retrieval pro-

cedure described in the section 7.5.8.2.4 of the IEEE 802.15.4 standard. The

inputs to this procedure are the frame to be secured and the security parame-

ters. The outputs from this procedure is a SUCCESS/FAIL status and, in case

of success, a key.

e r r o r t s e c u r i t y ma t e r i a l r e t r i e v a l p r o c e d u r e (u i n t 8 t ∗ mhr ,

i e e e 1 5 4 s e c u r i t y t ∗ secur i ty params , u i n t 8 t key index)

{

i eee154 macDefaul tKeySource t ∗ de f k ey s ou r c e = NULL;

e r r o r t e r r o r ;

i e e e154 LookupDesc r ip to r t d ev i c e l o okup t ab l e ;

i e e e154 KeyDesc r i p to r t ∗ k ey de s c r i p t o r = NULL;

i f (secur i ty params−>KeyIdMode == KEYIDMODE0 | |

secur i ty params−>KeyIdMode == KEYIDMODE2)

e r r o r = key de s c r i p t o r l o okup pro c edu r e (5 , &(mhr [3])) ;

else i f (secur i ty params−>KeyIdMode == KEYIDMODE1){

de f k ey s ou r c e = c a l l MLMEGET. macDefaultKeySource () ;

e r r o r = key de s c r i p t o r l o okup pro c edu r e (9 , d e f k ey s ou r c e) ;

}

else

e r r o r = key de s c r i p t o r l o okup pro c edu r e (9 , &(mhr [3])) ;

i f (e r r o r == FAIL){

c a l l Leds . led0On () ;

return FAIL ;

}

i f ((mhr [MHR INDEX FC2] & FC2 DEST MODE MASK) ==

FC2 DEST MODE SHORT)

{

A.5. KeyDescriptor lookup procedure 77

dev i c e l o okup t ab l e . l ookupdata s i z e = 4 ;

d ev i c e l o okup t ab l e . lookupdata [0] = mhr [3] ;

d ev i c e l o okup t ab l e . lookupdata [1] = mhr [4] ;

d ev i c e l o okup t ab l e . lookupdata [2] = mhr [5] ;

d ev i c e l o okup t ab l e . lookupdata [3] = mhr [6] ;

}

e r r o r = b l a c k l i s t c h e c k i n g p r o c e du r e

(key de s c r i p to r , 5 , &(mhr [3])) ;

i f (e r r o r == FAIL){

c a l l Leds . led0On () ;

return FAIL ;

}

return SUCCESS;

}

A.5 KeyDescriptor lookup procedure

According to the algorithm dascribed in the section 7.5.8.2.5 of the IEEE

802.15.4 standard, it makes some consistency controls over the retrieved key

descriptor. It takes as input the size of the key lookup table and the key lookup

data. It returns a SUCCESS/FAIL error t and, if passed, a valid KeyDescrip-

tor.

e r r o r t k ey de s c r i p t o r l o okup proc edu r e (ieee154 LookUpDataSize t

key l ookup s i z e , ieee154 LookUpData t ∗ key lookup data)

{

u i n t 8 t i , j ;

u i n t 8 t l o okup da t a s i z e ;

u i n t 8 t mac key t ab l e en t r i e s ;

i e e e154 KeyDesc r i p to r t ∗ k ey de s c r i p t o r ;

A.6. Blacklist checking procedure 78

mac key t ab l e en t r i e s = c a l l MLMEGET. macKeyTableEntries () ;

for (i = 0 ; i < mac key t ab l e en t r i e s ; i++){

k ey de s c r i p t o r = c a l l MLMEGET. macKeyTable (i) ;

l o okup da t a s i z e =

(key de s c r i p to r−>key id l ookupde s c r i p to r [0]) . l ookupdata s i z e ;

i f (k ey l o okup s i z e != l o okup da t a s i z e)

return FAIL ;

for (j = 0 ; j < l o okup da ta s i z e −1; j++){

i f (k ey de s c r i p to r−>key id l ookupde s c r i p to r [i] . lookupdata [j]

!= key lookup data [j])

return FAIL ;

}

}

return SUCCESS;

}

A.6 Blacklist checking procedure

According to the algorithm dascribed in the section 7.5.8.2.6 of the IEEE

802.15.4 standard, it makes some controls over the retrieved key descriptor

to check whether the key is valid or not. It takes as input the key descriptor

pointer, the size of the key lookup table and the key lookup data. The procedure

returns a SUCCESS/FAIL error t and, if passed, a valid KeyDeviceDescriptor

and a valid DeviceDescriptor.

e r r o r t b l a c k l i s t c h e c k i n g p r o c e du r e (i e e e154 KeyDesc r i p to r t ∗

key descr , i eee154 LookUpDataSize t d ev i c e l o okup s i z e ,

ieee154 LookUpData t ∗ dev i c e l ookup data)

{

u i n t 8 t i ;

e r r o r t r e s u l t ;

i e e e 1 54 Dev i c eDe s c r i p t o r t ∗ d e v i c e d e s c r i p t o r ;

i e e e154 KeyDev i c eDesc r ip to r t ∗ k ey d ev i c e d e s c r i p t o r ;

A.7. DeviceDescriptor lookup procedure 79

for (i = 0 ; i < key descr−>k e y d e v i c e l i s t e n t r i e s ; i++){

k ey d ev i c e d e s c r i p t o r = &(key descr−>k e y d e v i c e l i s t [i]) ;

d e v i c e d e s c r i p t o r = c a l l MLMEGET. macDeviceTable

(k ey dev i c e d e s c r i p t o r−>dev i c ed e s c r i p t o rhand l e) ;

i f (k ey dev i c e d e s c r i p t o r−>uniquedev ice == TRUE &&

key dev i c e d e s c r i p t o r−>b l a c k l i s t e d == FALSE)

return SUCCESS;

else i f (k ey dev i c e d e s c r i p t o r−>uniquedev ice == FALSE){

r e s u l t = dev i c e d e s c r i p t o r l o okup p ro c edu r e

(d ev i c e d e s c r i p t o r , d ev i c e l o okup s i z e , dev i c e l ookup data) ;

i f (r e s u l t == SUCCESS &&

key dev i c e d e s c r i p t o r−>b l a c k l i s t e d == FALSE)

return SUCCESS;

}

}

return FAIL ;

}

A.7 DeviceDescriptor lookup procedure

According to the algorithm dascribed in the section 7.5.8.2.7 of the IEEE

802.15.4 standard, it makes some consistency controls over the retrieved device

descriptor. It takes as input the device descriptor pointer, the size of the device

lookup table and the device lookup data. It returns a SUCCESS/FAIL error t.

e r r o r t d ev i c e d e s c r i p t o r l o okup p ro c edu r e

(i e e e 1 54 Dev i c eDe s c r i p t o r t ∗ dev i c e de s c r ,

i eee154 LookUpDataSize t d ev i c e l o okup s i z e ,

ieee154 LookUpData t ∗ dev i c e l ookup data)

{

A.8. Incoming security level checking procedure 80

ieee154 LookUpData t ∗ lookup data = NULL;

u i n t 8 t i ;

i f (d e v i c e l o o kup s i z e == 4){

lookup data [0] = (dev i c e de s c r−>panid) & 0 x00 f f ;

lookup data [1] = ((dev i c e de s c r−>panid) & 0 x f f 0 0) >> 8 ;

lookup data [2] = (dev i c e de s c r−>address . shortAddress) & 0 x00 f f ;

lookup data [3] =

((dev i c e de s c r−>address . shortAddress) & 0 x f f 0 0) >> 8 ;

}

else i f (d e v i c e l o o kup s i z e == 8){

lookup data [0] =

(dev i c e de s c r−>address . extendedAddress) & 0 x000000 f f ;

lookup data [1] =

((dev i c e de s c r−>address . extendedAddress) & 0 x0000 f f00) >> 8 ;

lookup data [2] =

((dev i c e de s c r−>address . extendedAddress) & 0 x00 f f0000) >> 16 ;

lookup data [3] =

((dev i c e de s c r−>address . extendedAddress) & 0 xf f000000) >> 8 ;

}

for (i = 0 ; i < 4 ; i++){

i f (dev i c e l ookup data [i] != lookup data [i])

return FAIL ;

}

return SUCCESS;

}

A.8 Incoming security level checking procedure

This function is used in order to manage the incoming security level checking

procedure described in the section 7.5.8.2.8 of the IEEE 802.15.4 standard.

The inputs to this procedure is the incoming security level, a frame type and,

if needed, a command frame identifier. The output from this procedure is a

SUCCESS/FAIL status.

A.8. Incoming security level checking procedure 81

e r r o r t s e c l e v e l c h e c k i n g p r o c edu r e (u i n t 8 t sec1 ,

ieee154 FrameType t frame type ,

ieee154 CommandFrameIdent i f ier t command frame ident i f i e r)

{

u i n t 8 t e n t r i e s ;

u i n t 8 t i ;

u i n t 8 t sec2 ;

i e e e 1 5 4 S e cu r i t yDe s c r i p t o r t ∗ s e c u r i t y d e s c r ;

e n t r i e s = c a l l MLMEGET. macSecur i tyLeve lTableEntr ie s () ;

for (i = 0 ; i < e n t r i e s ; i++){

s e c u r i t y d e s c r = c a l l MLMEGET. macSecur ityLevelTable (i) ;

i f (s e c u r i t y d e s c r−>frametype == frame type){

i f (f rame type == FC1 FRAMETYPE CMD &&

se cu r i t y d e s c r−>commandframeident i f i er !=

command frame ident i f i e r)

return FAIL ;

sec2 = s e cu r i t y d e s c r−>securityminimum ;

i f (((sec1 & 0x04) < (sec2 & 0x04)) | |

((sec1 & 0x03) < (sec2 & 0x03))){

i f (sec1 == NO SEC &&

se cu r i t y d e s c r−>d e v i c e o v e r r i d e s e c u r i t y == TRUE){

c ond i t i o n a l l y p a s s e d = TRUE;

return SUCCESS;

}

else

return FAIL ;

}

}

}

return SUCCESS;

}

A.9. Incoming key usage policy checking procedure 82

A.9 Incoming key usage policy checking procedure

This function implements the key usage policy checking procedure described in

the section 7.5.8.2.9 of the IEEE 802.15.4 standard. The inputs to this proce-

dure are the KeyDescriptor, the frame type and the CommandFrameIdentifier.

The output from this procedure is a SUCCESS/FAIL status.

e r r o r t k ey u sag e po l i c y che ck i ng

(i e e e154 KeyDesc r i p to r t ∗ key descr ,

ieee154 FrameType t frame type ,

ieee154 CommandFrameIdent i f ier t command frame ident i f i e r)

{

u i n t 8 t e n t r i e s ;

u i n t 8 t i ;

e n t r i e s = key descr−>k e y u s a g e l i s t e n t r i e s ;

for (i = 0 ; i < e n t r i e s ; i++){

i f (key descr−> k eyu s a g e l i s t [i] . frametype == frame type){

i f (f rame type == FC1 FRAMETYPE CMD &&

key descr−> k eyu s a g e l i s t [i] . commandframeident i f i er

!= command frame ident i f i e r)

return FAIL ;

}

else

return FAIL ;

}

return SUCCESS;

}

Appendix B

TinyOS installation and setup

B.1 Installing TinyOS 2.1.1

B.1.1 Installing TinyOS 2.1.1 using TinyOS package repository

If you are running a version of Linux that supports Debian packages, the

TinyOS package repository can be used to get the latest version of TinyOS. It

can be done by means of the following instructions, as provided by [3].

• Remove any old TinyOS repository from the file /etc/apt/sources.list and

add the following line (supported distributions are edgy, feisty, gutsy,

hardy, jaunty, karmic, lucid):

deb http :// t i nyo s . s t an fo rd . edu/ t inyo s / d i s t s /ubuntu <d i s t r i bu t i o n > main

• Update your repository cache:

sudo apt−get update

• Run the following to install the latest release of TinyOS and all its sup-

ported tools:

sudo apt−get i n s t a l l t i nyo s

This will likely give you a message to choose between the two available

versions. As an example:

83

B.1. Installing TinyOS 2.1.1 84

sudo apt−get i n s t a l l t inyos −2.1 .1

• Add the following line to your ˜/.bashrc or ˜/.profile file in your home

directory to set up the environment for TinyOS development at login.

#Sourcing the t inyo s environment v a r i a b l e se tup s c r i p t

source /opt/ t inyos −2.1.1/ t i nyo s . sh

B.1.2 Installing TinyOS 2.1.1 using the TinyOS CVS

Another way to install TinyOS is by using the CVS located at [4].

• First of all, login to the CVS:

cvs −d : pse rve r : anonymous@tinyos . cvs . s ou r c e f o r g e . net : / cv s roo t / t i nyo s l o g i n

just skip when it asks for password;

• then download the correct module

cvs −z3 −d : pse rve r : anonymous@tinyos . cvs . s ou r c e f o r g e . net : / cv s roo t / t i nyo s

co −P modulename

where modulename is tinyos-2.x.

• Finally, set your enviroment variables as follows:

export TOSROOT=/home/roby/ tos / t inyos −2.x

export TOSDIR=$TOSROOT/ tos

export MAKERULES=$TOSROOT/ support /make/Makerules

export CLASSPATH=/home/roby/ tos / t inyos −2.x/ support / sdk/ java / :$CLASSPATH

This installation method allows you to install a new parallel version of

TinyOS if you already have one. Note that if you used the TinyOS debian

repository in the past, keep in mind that all of the tools have been updated for

TinyOS-2.1.1, but still work with all older versions of TinyOS as well. These

conflicts should be OK so long as you remove any old packages; they are due

to a change in the names of the updated packages installing into the same

locations as the outdated ones.

B.3. Compiling and installing a program 85

B.2 NESCDT: An editor for nesC in Eclipse

the NESCEDT plugin is an editor for working with nesC code within Eclipse.

Fundamentally, it allows you just create a new nescdt project in Eclipse and

link those folders from your TinyOS installation and your application trees

that are needed. Built-in keywords (which you can change) are used for syntax

highlighting. The plugin does not touch, nor does it compete with your build

system: you still build your applications with a command-line make.

B.2.1 Installing NESCDT

Start Eclipse and use the update site at [2] in the Eclipse update manager. Then

save it in the Eclipse plugin directory (where the other jar plugins also reside).

It would usually be /opt/eclipse/plugins on Linux. Finally restart Eclipse.

B.2.2 Using the plugin

Create a new empty nescdt project as showed in Figure B.1 and name it what

you want to (for example nescdtsampleproject). When you open some .nc file

it will be syntax colored according some some predefined rules in the plugin.

There is auto-completion for keywords, types, and all other words found when

then plugin scanned the .nc files in the linked folders. Press CTRL + SPACE

to get the suggestions.

B.3 Compiling and installing a program

You compile TinyOS applications with the program make. TinyOS uses a pow-

erful and extensible make system that allows you to easily add new platforms

and compilation options. The makefile system definitions are located in tinyos-

2.x/support/make. If you don’t have mote hardware, you can compile it for

TOSSIM, the TinyOS simulator.

B.3. Compiling and installing a program 86

Figure B.1: How to create a new nesC project with NESCDT

The first step is to check that your environment is set up correctly. Run the

tos-check-env command:

$ tos−check−env

This script checks everything that the TinyOS environment needs. If your

system says some command is not available and you downloaded from CVS,

then you need to compile and build the tools. Go to tinyos-2.x/tools/tinyos

and type:

$ con f i gu r e

$ make

$ make i n s t a l l

In order to install a program on a tmote sky, move to the program directory

and then give the following command:

$ make t e l o s i n s t a l l

If you need to give idetify a mote by means of a number which rapresents its

identity, then give:

B.4. The TinyOS printf library 87

$ make t e l o s i n s t a l l ,<number>

B.4 The TinyOS printf library

In TinyOS debugging applications are very arduous. Debugging such a program

typically involves flashing the three available LEDs in some intricate sequences.

The TinyOS printf library helps debugging by providing the terminal printing

functionality to TinyOS applications through motes connected to a PC via

their serial interface. Messages are printed by calling printf() commands using

a familiar syntax borrowed from the C programming language. In order to use

this functionality, you simply need to include a single component in your top

level configuration file (PrintfC), and include a ”printf.h” header file in any

components that actually call printf() and printfflush().

To install the application on the mote, run the following set of commands:

cd $TOSROOT\ t u t o r i a l s \Pr in t f

make t e l o s b i n s t a l l bs l , / dev/ttyUSBXXX

To see the output generated by the Printf tutorial application you need to start

the PrintfClient by running the following command:

java net . t i nyo s . t o o l s . P r i n t fC l i e n t −comm se r i a l@ /dev/ttyUSBXXX: t e l o s b

After resetting the mote, the following output should be printed to your screen:

Hi I am wr i t i ng to you from my TinyOS app l i c a t i on ! !

Here i s a u int8 : 123

Here i s a u int16 : 12345

Here i s a u int32 : 1234567890

After this first compilation, you can see the output of all your programs just

plugging them by the USB port and then providing the command:

java net . t i nyo s . t o o l s . P r i n t fC l i e n t −comm se r i a l@ /dev/ttyUSBXXX: t e l o s b

Acknowledgment

Heartfelt thanks to prof. Gianluca Dini and Marco Tiloca of Information En-

gineering Department of the University of Pisa for the technical support and

advices, to Jan Hauer for the support he gave me during the time I spent at

Technische Universitaet Berlin and to all guys I met there.

Thanks to my father Renato for having taught me how to face problems

with a little bit of irony, to my mother Rosanna and my brother Riccardo for

the constant encouragement.

Thanks to my best friend Ofelia ”Ophe” Puglia, I do not need complicated

words to thank her because I am sure she understands how I feel. Thanks

to my flat-mates: Federica ”Fede” Pantó, Carmen ”Pasca” Pascarelli, Maria

Teresa ”Mari” Romano, Valentina ”Vale” Scocca and Manuela Febbraro for

these years we spent together and the moral support they give me day by day.

Thanks to Daniel Cesarini, Francesco Giurlanda, Francesco Magno, and all

the Green Lab’s students for sharing my difficulties and thanks to Cristiano

Carnicelli for bearing all my questions about his work.

88

Bibliography

[1] Cc2420 2.4 ghz ieee 802.15.4/zigbee rf transceiver, www.chipcon.com/

files/cc2420 data sheet 1 3.pdf.

[2] Nescdt plugin, http://nxtmote.sf.net/nescdtupdate.

[3] Tinyos community forum, http://www.tinyos.net/.

[4] Tinyos cvs, http://sourceforge.net/projects/tinyos/develop.

[5] Tmote iv low power wireless sensor module, http://www.snm.ethz.ch/

projects/tmotesky/tmote-sky-datasheet.pdf.

[6] Jon T. Adams. An Introduction to IEEE STD 802.15.4. 2100 E.Elliot

Road, MD EL536, July 2006.

[7] Cristiano Carnicelli. Implementation of ieee 802.15.4 security on cc2420.

Master’s thesis, Università di Pisa, February 2010.

[8] Jan-Hinrich Hauer. TKN15.4: An IEEE 802.15.4 MAC Implementation

for TinyOS 2, March 2009.

[9] Institute of Electrical and Electronics Engineers, Inc., New York. IEEE

Std. 802.15.4-2006, IEEE Standard for Information technology - Telecom-

munications and information exchange between systems - Local and

metropolitan area networks - Specic requirements Part 15.4: Wireless

Medium Access Control (MAC) and Physical Layer (PHY) Specifications

89

BIBLIOGRAPHY 90

for Low-Rate Wireless Personal Area Networks (WPANs), September

2006.

[10] Ida M. Savino. Security suite for IEEE 802.15.4 MAC on TinyOS 2.x,

June 2009.

