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Chapter 1

Introduction

There is a paradox at the ground of the actual state of knowledge of search
engine users: their information needs often arise because they “don’t know
something”; information retrieval systems, and search engines in particular,
are designed to satisfy these needs, but the users need to know what they
are looking for. However, if the users know what they’re looking for, there
may not be a need to search in the first place. Thus, in these cases, computing
similarity between queries and documents is fundamentally wrong, or at least
not useful enough. For example, a user would want a search for “aircraft” to
match “plane”. Users often attempt to address this problem themselves by
manually refining a query, but this process of refinement could be automated.
Every search engine nowadays has got their own query recommendation
features, ranging from auto-completion to related topics suggestion, from

spelling correction to similar queries proposal.

Therefore, giving suggestions to users of Web Search Engines (WSEs) is a
common practice aimed at “driving” users toward the information bits they

may need. Suggestions are normally provided as queries that are, to some ex-
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CHAPTER 1. INTRODUCTION

tent, related to those recently submitted by the user. The generation process of
such queries, basically, exploits the expertise of “smart” users to help inexpe-
rienced ones. The knowledge mined for making this possible is contained in

WSE logs which store all the past interactions of users with the search system.

1.1 Earlier studies

An original solution for query suggestion based on the model called Search
Shortcuts has been proposed in 2009 by Baraglia et al. [5]. Considering a query
path as the set of time-ordered queries performed by the same user in a time
interval, the authors wanted to analyze the query path followed by different
users who started with the same query, assuming they could have the same
information need.

The basic idea is that some users follow a “right” path, and end their ses-
sion visiting some document proposed by the search engine; some other users
may end the search session without visiting any result. These two cases are
what the authors call, respectively, a satisfactory and a unsatisfactory session, as
explained in detail in chapter 3.

Figure 1.1 shows the percentage of satisfactory query paths, sorted by the
logarithm of the rank of the initial queries: this plot was made with queries
extracted from AOL query log, and it includes 140, 165 initial queries (not
unique) which are the starting point for at least two sessions. Considering
this data, 64% of the sessions were satisfactory, while 36% ended with a query
that did not produce any user click.

In the left hand side of the figure, which represents the query paths as-
sociated with the most frequent initial queries, we can see that the majority
of sessions ended successfully, but at the same time there are several sessions

ended up without clicking on any document, although they started with the
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Figure 1.1: Percentage of satisfactory query paths in the AOL query log, by
popularity of the first query.

same query.

Hence, the search shortcut model provides a way of exploiting the informa-
tion provided by the satisfactory sessions, which could lead the failed sessions
to a successful ending point.

The particular shape visible in the right hand side of the plot is produced
by less frequent queries: for all initial queries repeated two times, we will
have some paths 100% satisfactory, some others at 50%, some others at 0%;
thus, we have dots at three percentages. Same consideration for queries
repeated three times: we have dots at 100%, 66%, 33% and 0%, and so on for

the other less popular queries.

In the same work, the problem of Search Shortcuts was formally defined: it

5



CHAPTER 1. INTRODUCTION

was also proposed an original evaluation metric for assessing the effectiveness
of suggested queries, and investigated the use of Collaborative Filtering meth-
ods to address this problem. However, some limitations were pointed out in
the solution based on collaborative filtering mainly due to the poor scoring
information available in query logs, and to the sparsity of data. As a result,
using CF based method was able to “cover”, i.e. generate suggestions for, only
a limited number of queries. We worked to overcome these issues and in this
work we propose a very efficient and effective algorithm specifically designed
for generating search shortcuts. We firstly introduce in the shortcut model a
weak function for assessing query similarity. We then relax the query simi-
larity constraint. Finally, we re-conduct the shortcut generation phase to the
processing of a full-text query over an inverted file that indexes satisfactory
user sessions recorded in query log. Differently from most state-of-the art pro-
posals, our shortcuts generation algorithm results to be very efficient, making
it suitable for large-scale implementations in real-world search engines. More-
over, our solution can provide effective recommendations also for queries that
were never processed in the past, thus solving the data-sparsity problem that

often affects recommending techniques [1].

Another important contribution of this work consists in a novel method-
ology for assessing the effectiveness of query suggestion techniques. The
methodology exploits the query topics and the human judgements provided
by the National Institute of Standards and Technology (NIST) for running the
TREC Web diversity track. For the purposes of the diversity track, the NIST
assessors provide 50 queries, and, for each of them, they identify a represen-
tative set of subtopics, based on information extracted from the logs of a com-
mercial search engine. We claim that given a query topic A with all its subtopics
{a1, a9, ...,a,}, and a query suggestion technique T, the more the queries suggested

by T for A cover the human-assessed subtopics {a1, as, ..., a,}, the more T is effec-
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1.1. EARLIER STUDIES

tive. To assess the effectiveness of a given query suggestion technique, we thus
propose to simply count how many subtopics are actually covered by the sug-
gestions generated by 7 for all the TREC diversity track queries. This method-
ology is entirely based on a publicly-available data. It can be thus considered
fair and constitute a good shared base for testing query recommendation sys-
tems.

In all the experiments conducted the solution proposed outperformed re-
markably the two state-of-the-art algorithms (presented in [3] and [6],[7]) cho-
sen for performance comparison purposes. Differently from these competitor
algorithms, our solution generated relevant suggestions for all the 50 TREC
queries, and the suggested queries covered a high percentage of possible

subtopics.



CHAPTER 1. INTRODUCTION

1.2 Outline

The rest of this thesis is organized as follows:

Chapter 2, Related work, a detailed overview on the current methods to gen-
erate query recommendations, including an in-depth description of two

main state-of-the-art algorithms used for comparison;

Chapter 3, Search Shortcuts: theoretical model, a formal definition of Search

Shortcuts problem;

Chapter 4, Search Shortcuts: out shortcuts generation method, a prelimi-
nary yet intensive explanation of the approach we use to resolve Search

Shortcuts problem discussed in the previous chapter;

Chapter 5, Implementation details, a more exhaustive and thorough descrip-
tion of the how we implemented our method and about the datasets we

used;

Chapter 6, Evaluation methodology, a presentation of a novel evaluation

methodology;

Chapter 7, Results, an extensive report of results obtained, including a com-

parison with other algorithms;

Chapter 8, Conclusions, a final review of the whole work, focused on the

results and possible improvements of this approach.



Chapter 2

Related work

Different approaches have been advanced to perform and improve query
suggestion, which is a challenging problem. These techniques can be used to
improve more than one aspect of information retrieval, but basically, they all

aim to boost the performances of the search engine, to better fit the user needs.

2.1 A broad classification

A first distinction could be done between explicit and implicit approaches:

o explicit methods rely on actively soliciting data by recording queries and
then asking users to provide relevance judgements on retrieved docu-
ments. The main idea is to present to the users a list of documents related
to an initial query: after examining them, the user selects those which are

relevant;

¢ implicit methods are based on extracting implicit information from dif-
ferent source, mainly query logs: the system attempts to infer user in-
tentions based on observable behaviour (e.g.: click-through data, time

spent on a page, input reformulation). These approaches usually need a
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CHAPTER 2. RELATED WORK

preprocessing phase, consisting in performing static analysis on the in-
formation sources available, extracting useful data that will be used later

to recommend queries to users.

Few users are willing to give explicit feedback, making significant amounts
of such data difficult to obtain; implicit techniques allow virtually unlimited
data to be collected at very low cost, although interpretation is more complex.
We will focus on these latter, both because the more interest they have in re-

search and the real benefits they potentially provide.

2.2 Implicit methods

Considering implicit methods, we discern between query expansion ap-
proaches and methods that get knowledge by query log exploitation. The former
ones basically adapt query expansion techniques to give suggestion of new
queries possibly related to the input query. This strategy is different from
finding related queries because the methods based on expansion construct
artificial queries, while by leveraging query log knowledge, it is possible
to give actual related queries formulated by other users that had the same
information need in the past. In particular, these methods are based on the
idea that it is possible to make automatic predictions about the interests of a
user by collecting and analyzing pattern information from many users; we

will focus on the second category, as it includes our Search Shortcuts approach.

Following, a narrower classification among implicit methods that use

query logs:

e Association rules based methods, proposed by some authors as a tech-

nique to generate lists of related queries;
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2.3. ASSOCIATION RULES

e Collaborative filtering methods try to make automatic predictions of
queries: a collaborative filtering approach has been proposed to resolve
the Search Shortcuts problem we define in section 3; we will briefly dis-

cuss the method provided by [5] in section 3.2;

e Clustering methods use a formal definition of ‘similarity” to build sets of

‘similar” queries.

2.3 Association rules

Fonseca et al. [10] used an algorithm for mining association rules from the
log of past submitted queries to a search engine. Their approach can be used

for spelling correction and query expansion as well.

extracting mining
Log file ——» user association ——— Related queries

sessions rules

phase 1 phase 2
Figure 2.1: Identifying related queries process

Their method is divided in two phases; in the first one, search engine logs
are analyzed and user sessions are extracted. A user session is the set of all
queries made by a user in a pre-defined time interval. In this work, the defi-
nition of user session is strictly related to our query session definition, except
that they consider a time interval of 10 minutes instead of 5. To avoid queries

from different users with the same IP address, they only use sessions with a
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low number of queries (10 or less). Once the set of user sessions s is character-
ized, the second phase can be performed. The intuition behind this method is
as follows: during a session, the user defines (roughly) his information need
submitting a set of queries. If distinct queries occur simultaneously in many

user sessions, these queries may be related.

The simple definition they propose allow to compute the relation between
queries in an extremely fast way, which means new association rules can be
updated periodically to identify new groups of related queries. The evaluation
of the quality of this method is made performing some experiments using a log
with 2,312,586 queries from a popular search engine in Brazil (Farejador IG).
They show related queries extracted for the top 5 most popular queries in the

period analyzed.

The general problem of mining association rules, based on the problem of
mining sales data, can be refined for the problem of finding related queries.
Given a set of queries I from log files and a set of user sessions 7', let X and
Y be subsets of I: the implication X = Y, where X NY = () is an association
rule with a confidence factor of ¢ if ¢% of the sessions in 7" that contains X also
contain Y’; this association rule also has a support factor of s if s% of sessions
in T contain X U Y. The problem of mining association rules is to generate all
the association rules that have a support greater than a specified minimum

support, or minsup.

The authors evaluates their method performing experiments using a value
of minsup = 3. The judgement about the relationship between queries was per-
formed by five people from their laboratory, who analysed each query and the
suggestion provided by the program, assigning as related the suggestions they
believed cold be interesting for users who formulated the original query; a sec-

ond evaluation to check the degree of relation between two queries is made

12
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evaluating the precision-recall curve of the original query compared against
the curve for the related queries. The results are quite good, however two
problems arise: first, it is difficult to determine sessions of successive queries
that belong to the same search process; on the other hand, the most interesting
related queries, those submitted by different users, cannot be discovered. This
is because the support of a rule increases only if its queries appear in the same

query session, and thus they must be submitted by the same user.

2.4 Cover Graph

Baeza-Yates et al. [2, 3] propose a clustering method that uses the content
of historical preferences of users registered in the query logs to group semanti-
cally similar queries: they define a graph based on the notion of query distance
using common clicked URL’s. We will focus on this approach to compare the
results with the Search Shortcuts method we propose. They start with a few

definitions:

e Query instance: query (set of words or sentence) plus zero or more
clicks related to that query. Formally: QI = (q,ux) where ¢ =
{words or phrase} being ¢ the query, and u a clicked URL. Moreover,
given a query instance QI they denote with I, the query associated to
QI and with Q1) the set of its clicked URLs.

e URL Cover: set of all URLs clicked by a query. That is:

UC, = |J QL
QIq:p

Our definition of session is quite different than theirs: in fact, a session in

our work is strictly related to time, and not to clicked results, furthermore it

13
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usually contains different queries. We recall that we consider a query session
as a set of queries performed by the same user in a 5 minutes period of time.

Taking a step back to [3] work, the authors start considering only queries
that appear in the query log: a single query may be submitted to the search
engine several times, and each submission induces a different query session.

Then they introduce a vectorial representation for the queries: these latter
are represented as points in a high dimensional space, where each dimension
corresponds to a unique URL u. That is, a query is based on all the different
URLs in its URL cover. Given a query g, they denote its representation with g.
To each component of the vector g is assigned a weight equal to the frequency
with which the corresponding URL u has been clicked for that query ¢. Based
on this vectorial representation, it is possible to define a graph: each query
is a node of the graph; two nodes (queries) are connected by an edge if they
share at least one URL u. Hence, the graph obtained is undirected. Edges are
weighted according to the cosine similarity of the queries they connect: thus,
if e = {q,¢'} and the URL space has D dimensions (total number of different
URLs), the weight of e is given by:

— = ) N .A (s
W(e) — g| i]/| = ZZSD q(z) d (Z)
laliz \/ZiSD q(i)? - \/ZiSD q'(i)?
The quality of the so obtained graph could be improved using a different
types of edges connecting the nodes: they classify the types of edges as fol-

lows:

e Identical cover: UC,; = UCy, a undirected edge implying that both

queries ¢1 and ¢2 are in practice equivalent;

e Strict complete cover: UC,; C UCy», a directed edge from ¢1 to ¢2, se-

mantically implying that ¢1 is more specific than ¢2;

14
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e Partial cover: UC,; N UCyp # 0, but does not fulfill any of the previous
two conditions. This is the most typical edge and can exist for many

reasons, such as due to multi-topic URLs to truly related queries.

One of the problems of this approach is the sparsity of the model; in fact,
all the queries that have been clicked at least once, become part of the model.
To lower its dimension, the authors use a filter both on nodes and edges of
the graph, pruning queries with a few clicks and the edges with a low weight.
This technique has also the effect of lowering the noise of the data.

Another possible improvement is based on multi-topical URL recognition:
this kind of URLs brings usually weak relations between queries, because
the URL used is shared among weakly semantically related queries or
unrelated at all; the authors propose a heuristic to lower the impact of this

phenomenon on the results by deleting URL that are implied in weak relations.

Their query recommending algorithm operates in the following steps:

1. Queries along with the text of their clicked URLs extracted from the
query log are clustered. This preprocessing phase can be conducted pe-

riodically.

2. Given an input query, it first finds the cluster to which the input query

belongs; then, it computes a rank score for each query in the cluster.

3. The related queries are returned ordered according to their rank score.

It results that is critically important to define a good ranking function: they

measure the rank score of a related query combining two notations:

a. Similarity of the query. The similarity of a query to the input query is

measured using the following method: they first build a term-weight

15
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vector for each query, using as vocabulary the set of all distinct words
in the clicked URLs, not considering stopwords. Each term is weighted
according to the number of occurrences and the number of clicks of the
documents in which the term appears. Given a query ¢, and a URL v, let
Pop(q,u) be the popularity of u (fraction of clicks) in the answers of g.
Let T'f(t,u) be the number of occurrences of term ¢ in URL u: they now
define a vector representation for ¢, where ¢[i] is the i — th component of

the vector associated to the ¢ — th term of the vocabulary as follows:

= 3 el

s mazTf(t,u)

b. Support of the query. This is a measure of how relevant is the query in
the cluster. The support of the query is measured as the fraction of the
documents returned by the query that captured the attention of users

(clicked documents). It is estimated from the query log as well.

Given these definitions, they compute the clusters using a 15 days query
log of TodoCL, a search engine of Chile; it contains 6,042 queries with rela-
tive clicks; 22, 190 clicks in total, over 18, 527 different URLS, for an average of
3.67 URLs per query. The algorithm used to compute the clusters is the well
known k-means, chosen both for simplicity and low computational cost, com-
pared to other clustering algorithms. Since the value k is fixed in k-means, they
performed successive runs of the algorithm with different number of clusters,
represented by k. They measured the quality of the clusters using a common
adopted criterion function in k-means implementations, which is a function
that measures the total sum of the similarities between the vectors and the
centroids of the clusters that are assigned to. The following figure shows the
quality of the cluster related to the number of clusters (k value); Dif f curve

shows the incremental gain of the overall quality of the clusters:
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Figure 2.2: Plot of cluster quality (vertical axis) for number of clusters (hori-
zontal axis)

The authors followed a similar approach to [10] in order to assess the qual-
ity of results: the relevance of each query to the input query were judged by
members of their department; the results are given in a graph that shows pre-
cision vs. number of recommended queries. The average support measure is
80% for the first 3 recommended queries; for both popularity and similarity,

the precision decreases as the rank of results decreases.

2.5 Query Flow Graph

Boldi et al. [7] introduce the Query-Flow Graph, a graph representation of
the interesting knowledge about latent querying behaviour. Intuitively, in the
query-flow graph, a directed edge from query ¢; to query ¢; means that the
two queries are likely to be part of the same “search mission”. Any path over
the query-flow graph may be seen as a searching behaviour, whose likelihood

is given by the strength of the edges along the path.
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The Query-Flow Graph is an outcome of query-log mining and, at the
same time, a useful tool for it. The methodology proposed builds a real-world
query-flow graph from a large-scale query log that can be applied to two con-
crete applications: query recommendation and finding logical sessions.

The Query-Flow Graph is an actionable, aggregated representation of the
interesting information contained in a large query-log. In particular, the phe-
nomenon of interest is the sequentiality of similar queries: the fundamental two
dimensions that drive the construction of the query-flow graph are the tempo-
ral order of queries and their similarity.

Given a query log, the nodes of the query-flow graph are all the queries
contained in the log, and a directed edge between two queries ¢;,¢; has a
weight w(g;, ¢;). The authors propose two weighting schemes, one that rep-
resents the probability that the two queries are part of the same search mission
given that they appear in the same session, and another that represents the
probability that query ¢; follows query ¢;. In both cases, when w(g;, ¢;) is high,
one may think of ¢; as a typical reformulation of ¢;: this a step ahead towards
the successful completion of a possible search mission.

The first problem, query recommendations, is strictly related to our work.
We will see that the second problem, finding logical sessions, could be useful
if combined to the Search Shortcuts problem solution we propose: in fact, we
provide a simple and naive methodology for user sessions extraction, while a

more effective approach could improve the quality of recommendations.

With respect to query recommendation, they propose an algorithm that
builds on the concept of query-flow graph and allows leveraging not only sim-
ilarity between queries, but the overall complex structure in a neighbourhood
of the graph. Their recommendation algorithm is based on performing a ran-
dom walk with restart to the original query of the user or to a small set of

queries representing the recent querying history.
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They list some definitions to introduce their approach:

Sessions: a user query session, or session, is defined as the sequence of
queries of one particular user within a specific time limit. More formally, if ¢y

is a timeout threshold, a user query session S is a maximal ordered sequence

S = <<q’i17ui17til>7 bR/ <Q’Lk7 uik7tik>>7

where u;;, = ... = w;, € U,t;;, < ... < t;,,andt

1,2,k — 1.

i) 41 tij < iy, for allj =

Given a query log L, the corresponding set of sessions can be constructed
by sorting all records of the query log first by userid u;, and then by timestamp
t;, and by performing one additional pass to split sessions of the same user if

the time difference of two queries exceeds the timeout threshold. Whenever

they used a timeout threshold for splitting sessions, they set ¢y = 30 minutes.

Supersessions: the sequence of all the queries of a user in the query log,
ordered by timestamp, is called a supersession. Thus, a supersession is a se-
quence of sessions in which consecutive sessions have time difference larger

than tg.

Chains: it is a topically coherent sequence of queries of one
user. For instance, a query chain may contain the following se-
quence of queries: "brake pads"; "auto repair"; "auto body shop";
"batteries"; "car batteries"; "buy car battery online". Unlike the
concept of session, chains involve relating queries based on the user informa-
tion need, which is an extremely hard problem. Thus, a session may contain
queries from many chains, and inversely, a chain may contain queries from

many sessions.

The query-flow graph: it is a directed graph G, f = (V, E, w) where:

19



CHAPTER 2. RELATED WORK

e the set of nodesis V' = Q U {s,t}, i.e., the distinct set of queries @) sub-
mitted to the search engine and two special nodes s and ¢, representing
a starting state and a terminal state which can be seen as the begin and

the end of a chain;
e E CV x Vis the set of directed edges;

e w : E — (0.1] is a weighting function that assigns to every pair of

queries (¢,¢') € E a weight w(q, ¢').

It is important to notice that in their settings, even if a query has been sub-
mitted multiple times to the search engine, possibly by many different users,
it is anyway represented by a single node in the query-flow graph. The two
special nodes s and ¢ are used to capture the begin and the end of query chains.
In other words, the existence of an edge (s, ¢;) represents that ¢; may be poten-
tially a starting query in a chain, and an edge (g;, ) indicates that ¢; may be a
terminal query in a chain.

They built the query-flow graph extracting a set of sessions from a query
log L from Yahoo! UK search engine in early 2008. Given two queries ¢, ¢/,
they tentatively connect them with an edge if there is at least one session in
S(L) in which ¢ and ¢’ are consecutive. In other words, they form the set of

tentative edges 71" as:

T= {(q,q/) | HS]' S S(L)S.t.q =q; € Sj A q/ = (@i+1 € S]}

The key aspect of the construction of the query-flow graph is to define the
weighting function w : £ — (0..1].

The two weighting schemes proposed are based, respectively, on the
chaining probability, i. e. the probability that ¢ and ¢’ belong to the same chain

(given that they belong to the same session) and the relative frequencies of the

20



2.5. QUERY FLOW GRAPH

pair (¢, ¢') and the query q¢.

Weights based on chaining probabilities. The approach used is a machine
learning method. The first step is to extract for each edge (¢,¢') € T a set
of features associated with the edge. Those features are computed over all
sessions in S(L) that contain the queries ¢ and ¢’ appearing in this order and
consecutively.

For learning the weighting function from the features, they use training
data: this data is created by picking at random a set of edges (¢, ¢’) (exclud-
ing the edges where ¢ = s or ¢’ = t), and manually assigning them a label
same_chain. This label, or target variable, is assigned by human editors and
is 0 if ¢ and ¢’ are not part of the same chain. The probability of having an
edge included in the training set is proportional to the number of times the
queries forming that edge occur in that order and consecutively in the query
log. Then they use this training data to learn the function w(—, —), given the
set of features and the label for each edge in 7T'.

They use 18 features to compute the function w(—, —) for each edge in T,

which can be summarized as follows:

o Textual features: they compute the textual similarity of queries ¢ and
¢’ using various measures, including cosine similarity, Jaccard coeffi-
cient, and size of intersection. Those measures are computed on sets

of stemmed words and on character-level 3-grams;

e Session features: they compute the number of sessions in which the pair
(q,q') appears. They also compute other statistics of those sessions, such
as, average session length, average number of clicks in the sessions, av-

erage position of the queries in the sessions, etc;

e Time-related features: they compute average time difference between ¢

21
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and ¢’ in the sessions in which (g, ¢') appears, and the sum of reciprocals

of time difference over all appearences of the pair (¢, ¢).

The last step for constructing the query-flow graph is to train a machine
learning model to predict the label same_chain. The training dataset consists
of approximately 5,000 labeled examples; the labels were assigned by the

authors.

Weight based on relative frequencies. The second weighting scheme con-
sidered turns the query flow graph into a Markov chain. Let f(¢q) be the num-
ber of times the query g appears in the query log, and f(q, ¢') the number of
times the query ¢’ follows immediately ¢ in a session. Let f(s,q) and f(q,?)
indicate the number of times the query ¢ is the first and last query of a session,
respectively.

The weight used is:
ad) L) if(w(q,q) > 0) V(g =)V (g =1)

0 otherwise

which uses the chaining probabilities w(q, ¢’) basically to discard pairs that
have a probability of less than 6 to be part of the same chain.

By construction, the sum of the weights of the edges going out from each
node is equal to 1. Following, an example of the query flow graph pro-
duced with this weighting scheme: notice that this snapshot contains the query
"barcelona” and some of its followers up to a depth of 2, and not all the out-
going edges are reported.

In respect to the application of the query flow graph we’re examining,
query recommendation, a simple scheme is to pick, for an input query q, the

node having the largest w(q, ¢’). An issue with this method is that it tends to
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barcelona fc
website

cheap
barcelona
hotels

luxury
barcelona
hotels

barcelona
weather
online

Figure 2.3: A portion of the query flow graph using the weighting scheme based
on relative frequencies

”drift” towards those queries that are popular in the query log, but unrelated
with the input query. Another recommendation algorithm can be instead
built upon a measure of relative importance: when a user submits a query
q to the engine, the recommendation that the engine provides should be the
most important query ¢’ relatively to ¢. This can be described as a random
walk with restart to a single node: a random surfer starts at the initial query
g; then, at each step, with probability a < 1, the surfer follows one of the
outlinks from the current node chosen proportionally to the weights present

on the arcs, and with probability 1 — « s(he) instead jumps back to ¢g. This
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point of view reminds a form of personalized PageRank: recommendations
can be deduced from the random-walk score by tanking either the single
top-scored query, or the best queries up to a certain lower score threshold.
Notice that, in particular, if the most relevant query for ¢ is ¢, this means
that the engine will not give any suggestion, because the query flow graph is
showing that the chain at that point is more likely to end than to continue. A
third and last recommendation scheme is taken into account by authors: the
idea is to provide recommendations not only relying on the last input query,
but on some of the last queries in the user’s history. This approach may help
to alleviate the data sparsity problem and help to solve ambiguous queries,
adjusting the score of the query ¢’ in relation to ¢ obtained in the random walk

model.

The authors of the query flow graph do not assess the results obtained
with their approach, they just show the possible applications of the query flow
graph; we are mainly interested to compare the results provided by our Search
Shortcuts approach to the application of the query flow graph with respect to
the query recommendation task. Furthermore, in section 8.1, we show a prelimi-
nary analysis on the application of query flow graph to the problem of splitting
in logical sessions a query log: this is a good starting point for future work aim-

ing to improve Search Shortcuts quality.

2.6 Successful sessions

A few words to mention the works of Smyth et al. [26, 25], about collabora-
tive web searches. The authors refer extensively to Successful sessions, an idea
which is pretty the same of our concept of Satisfactory sessions. In these works,

a session is considered successful if at least one result has been selected; oppo-
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sitely, if no results were selected, a session is considered failed. As we also do,
they do not distinguish between sessions with different numbers of selected
results, mainly because it is not possible to conclude much from the frequency
of result selections. In fact, for example, one might be tempted to conclude
that users selecting more results is a sign of increasing result relevance, but a
similar argument can be made in support of decreasing result relevance, on the

basis that the initial selections must not have satisfied the users.
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Chapter 3

Search Shortcuts: theoretical

model

In the following sections we recall the Search Shortcuts Problem (SSP) pro-
posed in [5], discussing the first proposal to resolve the problem, based on
collaborative filtering, included in the same work. After formally defining SSP
problem, we examine the weak points and limitations of the collaborative fil-

tering approach.

3.1 The Search Shortcuts Problem

The SSP is formally defined as a problem related to the recommendation
of queries in search engines and the potential reductions obtained in the users
session length. This problem formulation allows a precise goal for query sug-
gestion to be devised: recommend queries that allowed “similar” users, i.e., users
which in the past followed a similar search process, to successfully find the informa-
tion they were looking for. The problem has a nice parallel in computer systems:
prefetching. Similarly to prefetching, search shortcuts anticipate requests to the

search engine with suggestion of queries that a user would have likely issued
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at the end of her session.

We now introduce the notations and we recap the formal definition of the
SSP.

Let U be the set of users of a WSE whose activities are recorded in a query
log QL, and Q be the set of queries in QL. We suppose Q)L is preprocessed
by using some session splitting method (e.g. one of those designed by Jones
et al. [14] or Boldi et al. [6]) in order to extract query sessions, i.e., sequences
of queries which are related to the same user search task. Formally, we denote
by S the set of all sessions in L, and ¢ a session issued by user u. Moreover,
let us denote with o}’ the i-th query of o*. For a session ¢“ of length n, its final
query is the query o}, i.e. the last query issued by u in the session. To simplify
the notation, in the following we will drop the superscript u whenever user u
is clear from the context.

We say that a session o is satisfactory if and only if the user has clicked on
at least a link shown in the result page returned by the WSE for the final query
on, unsatisfactory otherwise.

Finally, given a session o of length n we denote oy the head of o, i.e., the
sequence of the first ¢, ¢ < n, queries, and oy, the tail of o given by the sequence

of the remaining n — ¢ queries.

Definition 1 We define k-way shortcut a function h taking as arqument the head

of a session oy, and returning as result a set h (o) of k queries belonging to Q.

Such definition allows a simple ex-post evaluation methodology to be in-

troduced by means of the following similarity function [5]:

Definition 2 Given a satisfactory session of length n o € S, and a k-way shortcut

function h, the similarity between h (oy)) and a tail o, is defined as:
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S 5 o= (o), 1 (m)

5 (h (Ut\) 7U|t) _ qeh(at)m:1’h(at)‘ 3.1)

Where f (m) is a monotonic increasing function, and function [q¢ = o,,] = 1 if

and only if q is equal to op,.

For example, to evaluate the effectiveness of a given shortcut function b,
the sum (or average) of the value of s computed on all satisfactory sessions in

S can be computed.

Definition 3 Given the set of all possible shortcut functions H, we define Search
Shortcut Problem (SSP) the problem of finding a function h € H which maximizes

the sum of the values computed by Eq. (3.1) on all satisfactory sessions in S.

A difference between search shortcuts and query suggestion is actually
represented by the function ¢ = (U‘t)mﬂ in Eq. (3.1). By relaxing the strict
equality requirement, and by replacing it with a similarity relation - i.e.,
lg ~ (o), ] = 1if and only if the similarity between ¢ and o, is greater
than some threshold - the problem reduces, basically, to query suggestion.
By defining appropriate similarity functions, the equation in (3.1) can be thus
used to evaluate query suggestion effectiveness as well.

Finally, we should consider the influence the function f (m) has in the def-
inition of scoring functions. Actually, depending on how f is chosen, different
features of a shortcuts generating algorithm may be tested. For instance, by
setting f (m) to be the constant function f (m) = ¢, we simply measure the
number of queries in common between the query shortcut set and the queries
submitted by the user. A non-constant function can be used to give an higher
score to queries that a user would have submitted later in the session. For

example, in the tests discussed in [5], the exponential function f(m) = e™
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was chosen to assign an higher score to shortcuts suggested early. Smoother f

functions can be used to modulate position effects.

3.2 Previous solution proposals

A previous solution to the Search Shortcut problem was provided by
Baraglia et al. [5]; the solution offered is based on the application of Col-
laborative Filtering techniques, which seemed a natural way to approach
the Search Shortcuts problem, given the fact emphasized at the beginning of
section 3.1: to recommend queries that allowed “similar” users, i.e., users which in
the past followed a similar search process, to successfully find the information they
were looking for. Baraglia et al. [5] applied CF as a proposal to solve the Search
Shorcuts problem and the results obtained are evaluated on large query logs

from AOL and Microsoft.

Collaborative filtering algorithms, based on the preferences of other users,
can be classified in two main types: memory-based and model-based. Memory-
based approaches use the whole past data to identify similar users [22], items
[21], or both [30]. Generally, memory-based algorithms are quite simple
and produce good recommendations, but they usually face serious scalability
problems. On the other hand, model-based algorithms construct in advance a
model to represent the behaviour of users, allowing to predict more efficiently
their preferences. However, the model building phase can be highly time-
consuming, and models are generally hard to tune, sensitive to data changes,
and highly dependent on the application domain. In the literature different
approaches can be found: based on algebra methods [9, 16] and clustering
[29].

Collaborative filtering deals with a set of users U, and a set of items /. User
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preferences are taken into account as item ratings, a numeric value represent-
ing the utility of an item to a given user. The subset of valid ratings is denoted
as R. Ratings can be explicitly introduces by users, or implicitly extracted from
user interaction (e.g. from query log data). Preferences for all users are stored
in a user-item matrix, known as the rating matrix V. Each entry v,; of V rep-
resents the rating of user u for item i, with u,; € R U {0}, where {0} indicates
that the user has not rated the item yet.

Thus, to apply collaborative filtering to the SSP, we need to fill such matrix
with the information in the query log data.

First, the concept of the SSP (users, queries, terms and sessions) have to be
mapped to the pure collaborative filtering problem (users and items). As the
goal in the SSP is to recommend queries for a given session, it seems reasonable
to treat each session as a user, and each query as in item. Sessions are extracted
from query log collecting all the queries performed by the same user in a time
span of 30 minutes.

Second, the query ratings must be inferred from the information in the
query log. As a preliminary approach, in this work the Baraglia et al. rate
the queries focusing in the last query of each session. If such last query was
successful (the user has clicked at least one result), then a positive rating
(10.0) is given to the query. Otherwise, it is given a negative rating (0.0). All

remaining queries are considered neutral (5.0).

The main problem of this approach is that in query session logs there are
many queries that only appear in a single session. This lack of information is
the well-known sparsity problem [12], and it brings to low coverage of results.
In addition, web search query logs usually contain much more data than those
collected in traditional collaborative filtering domains like e-commerce, and

their size grows continuously at a very high rate. Furthermore, several limi-
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tations are related to the three-level rating chosen (positive, negative, neutral),
which does not perform as expected for collaborative filtering algorithms, es-
pecially because most queries are neutral.

Some techniques to limit the sparsity problem include stemming and stop-
words removal; using a threshold to cut off the sessions with a low number
of queries is another approach to partially narrow down the sparsity problem:
experimental results show that when only session with at least 3 queries are

considered, sparsity is highly reduced.
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Search Shortcuts: our

shortcuts generation method

We approach the SSP previously described using a novel algorithm that
aims to generate suggestions containing only those queries appearing as final
in satisfactory sessions. The goal is to suggest queries having a high potential-
ity of being useful for people to reach their initial goal. As hinted by the prob-
lem definition, suggesting queries appearing as finals in satisfactory sessions,
in our view is a good strategy to accomplish this task. In order to validate
this hypothesis, we analyzed the Microsoft RFP 2006 dataset, a query log from
the MSN Search engine containing about 15 million queries sampled over one

month of 2006 (hereinafter QL).

First, we measured that the number of distinct queries that appear as fi-
nal query in satisfactory sessions of Q)L is relatively small if compared to the
overall number of submitted queries: only about 10% of the total number of
distinct queries in ()L occur in the last position of satisfactory user sessions.
As expected, the distribution of the occurrences of such final queries in satis-

factory user sessions is very skewed (as shown in Figure 4.1), thus confirming
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once more that the set of final queries actually used by people is limited.

Queries which are final in some satisfactory sessions may obviously ap-
pear also in positions different from the last in other satisfactory sessions. We
verified that when this happens, these queries appear much more frequently
in positions very close to the final one: about 60% of the distinct queries ap-
pearing in the penultimate position of satisfactory sessions are also among the
final queries, about 40% in positions second to the last, 20% as third to the
last, and so on. We can thus argue that final queries are usually close to the
achievement of the user information goal. We can thus consider these queries
as highly valued and high quality short pieces of text expressing actual user
needs.

100000 , , , , ,

10000 -  + u

1000 -

# of sessions

100 + u

1 10 100 1000 10000 100000 le+06

final queries
Figure 4.1: Popularity of final queries in satisfactory sessions.

The SSP algorithm proposed works by efficiently computing similarities

between partial user sessions (the one currently performed) and historical sat-
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isfactory sessions recorded in a query log. Final queries of most similar satis-
factory sessions are suggested to users as search shortcuts. Let us better for-

malize this concept.

Let o’ be the current session performed by the user, and let us consider the

sequence 7 of the concatenation of all terms with possible repetitions appear-

/
t)”

ing in o/, i.e. the head of length ¢ of session ¢’. We now compute the value
of a scoring function § (7, c*), which for each satisfactory session measures the
similarity between its queries and the set of terms 7. Intuitively, this similarity
measures how much a previously seen session overlaps with the user need ex-
pressed so far (the concatenation of terms 7 serves as a bag-of-words model of
user need). Sessions are ranked according to J scores and from the subset of the
top ranked sessions we suggest their final queries. It is obvious that depend-
ing on how the function ¢ is chosen we may have different recommendation
methods. In our particular case, we opt for § to be the similarity computed
as in the BM25 metrics [17]. We opt for an IR-like metric because we want
to take into much consideration words that are discriminant in the context of
the session to which we are comparing. BM25, and other IR-related metrics,
have been designed specifically to account for that property in the context of
query/documents similarity. We borrow from them the same attitude to adapt
to this conditions. The shortcuts generation problem has been, thus, reduced

to an information retrieval task of finding highly similar sessions in response

to a given sequence of queries.

The idea described above is thus translated into the following process. For
each unique “final query” q; contained in satisfactory sessions we define what
we have called a virtual document identified by its virtual title and its virtual
content. The virtual title, i.e. the identifier of the document, is exactly g¢. The
virtual content of the document, instead, is made up of all the terms that have

appeared in queries of all the sessions ending with the query ¢; representing
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the virtual title. At the end of this procedure we have a set of virtual docu-
ments, one for each final query in satisfactory sessions. Just to make things
clearer, let us introduce a toy example. Consider the two following satisfactory
sessions: (gambling, gambling places, las vegas, bellagio), and (las vegas, strip, las
vegas hotels, bellagio). We then create the virtual document identified by the
virtual title bellagio and whose content is the text (gambling gambling places las
vegas las vegas strip las vegas hotels). As you can see the text actually contains
repetitions that are also considered in the context of BM25 metrics. All virtual
documents are indexed with the preferred Information Retrieval system, and
generating shortcuts for a given user session ¢’ becomes simply processing
the query 0£| over the inverted file indexing the virtual documents. We know
that processing queries over inverted indexes is very fast and scalable, and
these characteristics are inherited by our query suggestion technique; further

information about inverted index is provided in section 4.1.

It is worth noticing another, very important, characteristics of our method
for extracting query suggestion. Query shortcuts generation through IR-like
methods is very robust with respect to singleton queries. Singleton queries
account for almost 50% of the submitted queries [24], and their presence is
responsible for what it is known as the issue of the sparsity of models [1]. This
phenomenon has been accounted as an issue by many papers in the field (also
in the already cited work from Baraglia et al. [5]). Since we match 7 with the
text obtained by concatenating all the queries in each session we are not bound
to look for previously submitted queries as in the case of other models (e.g. [3],
[6], [10]). We will report in chapter 7 about the coverage of different models,

including ours, discussing the results obtained.
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4.1 Inverted indexes

Figure 4.2 shows briefly how inverted indexes work, expanding the toy ex-
ample discussed above: firstly, the virtual documents are processed and split
in tokens. Then, each entry of the index, i.e. a token, has a posting list associ-
ated: this is a sequence of documents containing that entry, and the number of

times that token appears in the document.

bellagio

casino

—
—» | bellagio,1 caesars palace,2

gambling gambling places | _|

o
las vegas las vegas strip gambling] — [bellagio2
las vegas hotels

—> [bellagio3

—» | bellagio,1

caesars palace

-
casino pool hotels las -
vegas hotels —» | bellagio,1

—> [bellegos

(a) (b) (c

-~

Figure 4.2: Virtual documents (a) are split in tokens (b); each token has a
posting list (c) associated, which reports the name of the related document and
the frequency of the token.

The retrieval process starts from a query ¢ performed by a user: g is sub-
mitted to the retrieval engine, which extracts from the inverted index the doc-
uments containing the term(s) of ¢. Before showing the output to the user,
results are ordered using a ranking function, or model. A very basic mea-
sure of relevance could be based on the frequency of the terms: a document
containing more occurrences of the requested term ¢ with regards to another
document, is considered more relevant for t. This model is definitely not reliable
enough in the real world, because it is simply too easy to deceive, opening the
way to spammers. However, frequency of terms is still somehow taken into

account even in more complex weighting models.
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Examples of queries performed on this inverted index could be:

e "las vegas”, returning both bellagio, caesars palace (in this exact order, if

frequency-based rank is used);
e “"gambling places”, returning only bellagio;
e “casino pool”, returning only caesars palace.

This is just an example to show a simplified version of the inverted index-
ing and retrieval process: obviously, real implementations take usually into
account some other information about tokens besides frequency, e.g. their po-
sition inside the document. In the next section we discuss the ranking model

we used in this work.

4.2 BM25 Ranking model

In information retrieval theory, BM25 ([20]) is a widely used ranking func-
tion based on the probabilistic retrieval framework developed in the 1970s
and 1980s by Stephen E. Robertson, Karen Spérck Jones, and others. Often
also called Okapi weighting, getting this name from the first retrieval system
in which it was implemented, it was developed as a way of building a prob-
abilistic model sensitive to both term frequency and document length, while
not introducing too many additional parameters in the model. This weighting
function is based on a previous work [18] from the same authors, who pre-
sented a first version called BM1; afterwards, they improved it with two other
functions called BM11 and BM15 [19], and, by combining these latter into a
single function, they finally obtained BM25, which, at the moment, represents
the state-of-the-art TF /IDF-like retrieval functions used in document retrieval.

Going deeper, BM25 is a bag-of-words retrieval function that ranks a

set of documents based on the query terms appearing in each document,
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regardless of the inter-relationship between the query terms within a doc-
ument, as their relative proximity. Actually, it is not a single function,
but a whole family of scoring functions with slightly different components

and parameters. One of the most used functions is formally defined as follows:

Given a query @, containing keywords ¢, ..., ¢,, the BM25 score of a docu-

ment D is:

F@ D)+ k(1 —b+b- 2y

BM25(D, Q) = i IDF(q;) -
=1

where f(¢;, D) is ¢;'s term frequency in the document D, |D| is the number
of words contained in D, and avgd! is the average document length in the text
collection from which documents are drawn. k; and b are free parameters,
usually chosen as k1 = 2.0 and b = 0.75. Note that setting parameter b =
1 turns BM25 to BM11, and b = 0 turns it to BM15. IDF(q;) is the inverse

document frequency weight of the query term ¢;, usually computed as:

N —n(q;) +0.5

IDF(@) =log~ 2800

where N is the total number of documents in the collection, and n(g;) is the

number of documents containing g;.

4.3 Final results ranking

We observed that using only BM25 to rank suggestions for a query, we
were not taking into account the frequency of suggestions, i.e. the number of
satisfactory sessions having a query ¢ as final. Since we are providing rec-

ommendations for user queries, we believe that popular queries should have
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more weight, and thus have their rank raised with respect to less popular final
queries.

The resulting weighting formula is a linear combination of the BM25 score
and the frequency of the suggestion; the rank value for the generic ¢y, recom-
mendation in relation to 7, defined above in section 4 as the concatenation of
the terms appearing in the head of the current search session, is computed as

following:

w(T,qy5,) = a- BM25(t,q5,) + 3 - freq(qy,)

Notice that both BM25 rank and frequency are normalized values, so

w(T,qy,) domain is defined by the range (0..2].

In our experimental settings we used a = 8 = 1, giving the same em-
phasis to both the parameters; obviously, further tests aimed to find the best
values of a and /3 coefficients in the above formula could be performed in fu-
ture, giving thus more or less importance, respectively, to BM25 ranking or

frequency-based ranking.
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Implementation details

5.1 Datasets

In order to implement our Search Shortcuts generation method we had to
choose a dataset to work on. We initially had two possible choices: the first one
was the well known America Online query log, a publicly available dataset re-
leased on early 2006, and a Microsoft query log, the MSN Search Asset Data
Spring 2006. The first one contains 36, 389, 567 queries, sampled from March
1st to May 31st, while the second includes 14, 921, 286 records; a first cleansing
was performed by Microsoft researchers before making the query log avail-
able, pruning 78, 769 adult queries that are provided in a separate file; despite
that, lots of queries that should have been filtered are still present in the query
log. In AOL query log, instead, it doesn’t exists any kind of pre-filtering pro-
cess.

For both query logs is available click-through information: in the MSN QL
this data is provided in a separate file, while in the AOL QL it is included in
the main file: in the latter, if a query generated a click, the clicked url and the

result rank (ordinal number) is simply appended to the query line.
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The following table shows the format of the MSN query log:

timestamp | query | querylD | sessionID | number of results

e timestamp: the date and minute the query (or click) occurred, in the

format "YYYY-MM-DD HH:MM:SS”;

e query: the query string, trimmed and with spaces reduced to 1 character

(normalization performed by Microsoft ); no change to character case;

e queryID: a unique identifier of the query, a 16 numbers hexadecimal

hash;

e sessionID: in the documentation Microsoft provided there is no expla-
nation about how this identifier is generated: so we made some assump-
tions about it after a simple analysis. We sorted the query log by ses-
sionID and then measured the number of queries and the time span of
a 'session’, as they call it: a lot of them are short and include only a few
queries, but many of them last hours or days, and include hundreds of
queries; for both number of queries and time interval, the variance is ex-
tremely high. A possible explanation of this could be that sessionID is
obtained from browser cookies; in this case, we can’t know the exact na-
ture of this parameter, but we can still rely on it as a measure of sessions.
Another chance could be that Microsoft researchers exploited some “ses-
sion splitting” technique, and also in this case we can’t know how they
performed this task. In the end, we assumed that this is surely a basic
user identifier, thus is useful for our purposes. We will execute a fur-
ther sessionization step, using a time interval. As querylD, sessionID is

represented by a 16 hex digits hash;

e number of results on results page: the meaning of this parameter is un-

clear: it varies from 0 to 67, and no explanation for it is given from the
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attached Microsoft QL docs. However, it has not been used for Search

Shortcuts generation.

The click query log has instead the following format:

querylD | query | timestamp | clickedURL | position

The first three parameters have the same meaning already explained for
the main query log, while the last two are, respectively, the url clicked for the
relative query, and the url position in the results page. As expected, position
has extremely low values, confirming that people usually select the first results
provided by the search engine. As in the case of “number of results”, this
parameter is not relevant for our algorithm of shortcuts generation.

We don’t report results obtained on AOL QL because they are comparable
with those computed on MSN QL; anyway, just for completeness, we report
some statistics we initially obtained from the former one, such that it is possi-

ble to compare them with the latter:

MSN AOL
Total number of queries 14,921,286 | 36,389,567
Total sessions 9,461,423 | 16,218,017
Satisfactory sessions 1,949,320 | 2,814,449
Average number of queries per session 2.71 2.39

Notice that session maximum time interval between the first and the last
query is set to 5 minutes; the number of satisfactory sessions is actually higher
than the one shown in the table, but we merged sessions that share the "fi-
nal query”, considering those sessions as part of the same search need; lastly,
we discarded sessions including only one query, as they are not interesting in
shortcuts generation process, although formally being a (one-query) session.

Comparing the number of satisfactory sessions to total sessions ratio ex-

tracted from the two query logs, we have 4.85 for MSN and 5.76 for AOL,
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which is quite the same; we got similar results comparing the average number
of queries per session, respectively 2.71 and 2.39; thus we assume that users
behaviour, with respect to session length, is similar in both search engines, and
this result is coherent with previous studies [13], [23] on search engine users’

sessions.

5.2 Preprocessing

The Microsoft RFP 2006 query log has been preprocessed by applying stan-
dard data cleaning techniques: lowercase conversion, removal of stopwords
and of punctuation/control characters. We tested different combinations of
stemmer and stopwords modules to spot differences in results suggestions.
We obtained good results with all combinations, anyway, stemming and stop-
words removal provides the smaller index, as expected.

Then, we sorted the queries by user and timestamp, and segmented them
into sessions on the basis of the already described splitting algorithm which
simply groups in the same session all the queries issued by the same users
in a time span of 5 minutes. Any other more advanced session splitting
method [14] could be used with expected improvements also in the quality
of shortcuts generated by our solution. The investigation of session splitting
methods is however out of the scope of this work. For our purposes, we con-
sidered only the 9,461, 423 sessions made up of less than 30 queries in order
to clean the log from highly-populated sessions surely performed by software
robots. Then, we devised satisfactory sessions present in the log and grouped
them on the basis of the final query. Thus, for each distinct final query its corre-
sponding virtual document was built with the terms (with possible repetitions)
belonging to all the queries of all the associated satisfactory sessions, as we

will show in more detail in section 5.4.
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5.3 Terrier IR engine

To implement our query suggestion technique we exploited the open
source Terrier search engine (http://terrier.org/). This approach has sev-
eral benefits with respect to query suggestions generation: in fact, both the al-
gorithms compared to our method use a "query-based approach”, which means
that if we are willing to get suggestions for a query that is not present in their
model, these algorithms are unable to provide any recommendation. In other
words, if the string for which we want to get suggestions is not included in the
query log from which they extract their knowledge, implying that the query
has not been performed before in that query log, those two approaches cannot
generate any suggestion.

Using a IR engine such as Terrier, we are able to provide recommendations
for queries that has never been performed before, starting from a knowledge
base made up by simply building virtual documents from the extracted sessions.

Following, is shown the main configuration file, read by Terrier in indexing

and in retrieval phase either:

Listing 5.1: configuration file: terrier.properties

terrier .home=/Users/stc/Documents/tesi/terrier
querying . postprocesses.order=QueryExpansion

querying . postprocesses.controls=qe:QueryExpansion
querying . default. controls=start:0,end:999

querying . allowed . controls=c,scope, qe,qemodel, start ,end
TrecDocTags . doctag=DOC

TrecDocTags . idtag=DOCNO

TrecDocTags . skip=DOCHDR

TrecDocTags. casesensitive=

TrecQueryTags.doctag=TOP
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TrecQueryTags.idtag=NUM
TrecQueryTags. process=TOP ,NUM, TITLE
TrecQueryTags . skip=DESC,NARR

bundle . size =2500
termpipelines=PorterStemmer , Stopwords
block.indexing=

matching . retrieved_set_size=50

interactive . model=BM25

5.4 Virtual Documents

We wrote a collection of Python scripts to extract sessions from a given
query log, already preprocessed and ordered by user id and timestamp;
following the Search Shorcuts model defined in chapter 4, if the last query
of the session extracted produced a click, the script checks if there is already
a virtual document associated to that last query, previously defined as final
query or virtual title. If already exists a bag-of-words for that query, the script
simply merges all the other queries of the current session with the related and
existing virtual content; if there is no virtual document defined for that query,

the script creates it.

A virtual document is a plain text file with the following format:

<DOC>
<DOCNO>doc_identifier</DOCNO>
bag-of-words

</D0OC>

This format has been chosen because it is easily parsable by Terrier; in fact,
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it builds up its index using the doc_identifiers as elements of the posting
list associated to each term of the bag of words, in our case the queries of
the sessions. Terrier has been configured to build the index without block
indexing feature, because, for the current Search Shortcut implementation,
we don’t need positional information about words inside the queries; Terrier
has also been configured to stem the tokens extracted form the bag-of-words,
and to exclude stopwords from indexing, using a stopwords list provided by

Terrier developers.

Notice that doc_identifier is supposed to be an integer value: however,
in our IR-based model, the identifier of every session is its final query.

To make such model work, when our scripts create the virtual documents,
a unique integer identifier is assigned to every final query. Hence, before
indexing with Terrier, we have two files containing all the information to build

the index and to make possible to know the associated query after retrieval.

For each virtual document we also store the number of sessions that in-
cludes; in other words, we save the number of times a query appears as final
among all satisfactory sessions. As expected, the distribution of these frequen-
cies follow a power-law. We will use this value for tuning the rank of our
recommendations, as already explained in more detail in section 4.3.

Both id-terms map and final queries frequencies are stored in a SQLite
database, (http://www.sqlite.org), a lightweight, single-file based database
engine. We opted for this solution to perform our tests, because SQLite fit well
our needs; by adopting other solutions it would be possible to get improve-

ments in scalability and speed.
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Following, we show the structure of id-terms map and of virtual docu-

ments files:

map-id_terms virtual_docs

1 bellagio
<DOC>

<DOCNO>1</DOCNO>

gambling gambling places las vegas las vegas
strip las vegas hotels

</D0OC>

2 google
<D0OC>

<DOCNO>1</DOCNO>

google.it search engine google maps maps

translate google images google earth

</D0C>

<D0C>
<DOCNO>3</DOCNO>

</D0OC>
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5.5 SS Interactive Interface

Through the Terrier search engine we indexed the resulting 1, 191, 143 vir-
tual documents, and the index was made available for our testing purposes.

The possibility of processing queries on such index is provided to in-
terested readers through a simple web interface available at the address
http://searchshortcuts.isti.cnr.it. The web-based wrapper accepts
user queries, interact with Terrier to get the list of final queries (id of virtual
documents) provided as top-k! results, and retrieves and visualizes the

associated query strings.

Current settings

Ranking model: [ Bm25 B

. o
Query: | star wars [ submit )

star wars games
star wars galaxies

star wars characters
star wars music

lego star wars

star wars models to buy
pics star wars

all star wars toys

R @ N\ RN

star wars comics

"
o

star wars watches

Figure 5.1: A sample query and its relative recommendations provided by the
SS web interface

'k is set to 10 in our experimental settings.
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The web interface is developed in PHP5, and it acts as a wrapper to the in-
teractive terrier command-line interface; the input query is sent to the interac-
tive version of Terrier, which reads a previously defined configuration shown
in the listing reported in section 5.3. The web interface allows to change the
ranking model, although, as we will explain in section 4.3, this is not the global

ranking value for the suggestions.

5.6 Results processing

The output produced by Terrier, including document identifiers and their

IR-Ranks, is then processed by a PHP script following these steps:

o extraction of the recommended query string by matching the docu-
ment identifier contained in the id-terms map table, stored in the SQLite

database;
o results filtering, using some techniques described below;

e results reordering, sorting them by the rank value computed as ex-

plained in detail in section 4.3.

As the careful reader may have noticed, in the listing proposed in section
5.5, the parameter matching.retrieved set_size is set to 50, while we
previously stated that in our experimental settings we set £ = 10; the main
reason is that we always retrieve at most 50 results from Terrier, but then we
filter out some results with some criteria explained below, showing in the end

only the top-k.

The main purpose of filtering is to provide a basic topic diversification:

in just 10 recommendations provided, we don’t want to allow very similar
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queries such as, for example, ”"Yahoo! mail” and ”Yahoo mail”; it won’t be useful
to the user, thus we want to discard one of those, creating room for another,
different suggestion. This solution also avoids that the almost-useless sugges-
tion “Yahoo!” is provided when the input query is “Yahoo”.

Every recommendation is compared with all the recommendations given
until then, and if their Levenshtein distance, or edit distance, is shorter than a
threshold ¢y, the shortest query is discarded. Experimental tests with human-

assessed results show that ¢y = 2 behaves good.
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Chapter 6

Evaluation methodology

6.1 Evaluation models

The evaluation of recommender systems effectiveness is an hard task that
is usually addressed by means of user-studies or through the adoption of some
performance metrics. In many works, for example [2, 11, 4], manual assess-
ment of results is the most reliable evaluation of effectiveness, however limited
to a small test set. Usually, in these cases, the results obtained are submitted
to human judges, a role often played by the researchers themselves, who pa-
tiently spend some of their time assigning values and labels. Some other eval-
uations are based on performance metrics [15], for example the well known
precision and recall measurement of results. However, depending on how the
object algorithm was designed, it is not always possible to apply these metrics;
furthermore, unfortunately, both these methodologies may lack of generality
and incur in the risk of being over-fitted on the system object of the evaluation.
The evaluation methodology proposed and used in this work aims to solve the
above issues, still maintaining a simple human results assessment task which

guarantees transparency as being possible to evaluate by everyone.
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6.2 TREC topics coverage

The idea is based on exploiting the query topics and the human judge-
ments provided by the National Institute of Standards and Technology (NIST,
an agency of the U.S. Commerce Department), for running the TREC diver-
sity track 2009 (http://trec.nist.gov/data/web09.html). The TREC Web
Track explores and evaluates Web retrieval technologies: the 2009 Web Track
includes two different tasks, a traditional adhoc retrieval task and a diversity
task. We are interested to the latter: in particular, the goal of this diversity task
is to return a ranked list of pages that together provide complete coverage for
a query, while avoiding excessive redundancy in the result list. Even if in this
work we are not interested to participate to the Web Track, we noticed that
for the purposes of the TREC diversity track, the NIST assessors provided 50
queries, and, for each of them, they identified a representative set of subtopics
covering the whole spectrum of different user needs/intentions. Subtopics are
based on information extracted from the logs of a commercial search engine,

and are roughly balanced in terms of popularity.

Obviously, the queries chosen are very different and from various cate-
gories: ambiguous or faceted in order to allow the overall performance of di-
versification methods to be evaluated and compared. Ambiguous queries are
those that have multiple distinct interpretations, while faceted ones refer to
a single meaning, but from different points of view. For example, the query
”"KCS” is considered an ambiguous query, because it could be related to the
”Kansas City Southern railroad”, or “Kanawha County Schools in West Vir-
ginia”, or “Knox County School system in Tennessee”, or even something else;
on the other side, a query like ”Volvo” is considered faceted because all its sub-
topics are somehow related to the Swedish car company and (almost surely)

to nothing else. When selecting the subtopics, strange and unusual interpre-
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tations and aspects were avoided as much as possible; the set of subtopics is
intended to be representative, not exhaustive, with the number of subtopics

per topic ranging from three to eight, with a mean of 4.9.

Since diversity and topic coverage are the key issues also for the query
recommendation task, we propose to use the same dataset for evaluating
query suggestion effectiveness also. Given a query topic A with subtopics
{a1,as,...,a,}, and a query suggestion technique 7, we claim that the more
the top-k queries suggested by 7 for A cover the human-assessed subtopics
{a1,a9,...,a,}, the more T can be considered effective. To assess effectiveness
of 7, we thus simply count how many subtopics are actually covered by the

top-k suggestions generated by 7 for all the 50 TREC diversity track queries.

A last comment about this evaluation method: one might be tempted to
say that the pertinence of the 50 TREC queries could be time-sensitive; some of
these queries, in fact, refer to events or people of a certain period, (e.g. “obama
family tree”), affecting the effectiveness of evaluations performed on datasets
extracted in a different period, as we do. Our dataset, for instance, is extracted
from MSN Search Engine in 2006, when the keyword “obama” was surely less
searched than in 2009. However, the basic idea of this methodology is still
valid, as long as all the results are obtained from the same dataset: if used to
compare results from different approaches, and not as an absolute effective-
ness value, even if some queries report poor or no results, this methodology

still provide an accurate relative effectiveness measure.

In conclusion, this evaluation methodology has some clear advantages. It
is based on a publicly-available test collection which is provided by a well
reputed third-party organization. Moreover, it grants to all the researchers the
possibility of measuring the performance of their solution under exactly the
same conditions, with the same dataset and the same reproducible evaluation

criterion.
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6.3 Experimental Settings

In order to compare the performance of our Search Shortcuts (SS) solution
with other state-of-the-art proposals, we selected two algorithms: Cover Graph
(CG) proposed by Baeza Yates et Al. [3], and Query Flow Graph (QFG), pro-
posed by Boldi et Al. [7]. These algorithms are recent and highly reputed
representatives of the best practice in the field of query recommendation. The
implementation of the CG algorithm was done by ourselves, while for test-
ing the QFG query suggestion technique we used the original implementation
kindly provided by the authors. Obviously, either CG and QFG models were
trained with the same Microsoft RFP 2006 query log in order to conduct a fair
comparison.

The relevance of each suggestion w.r.t. the TREC query subtopics was as-
sessed manually. Given the limited number of queries and the precise defini-
tion of subtopics provided by NIST assessors, this manual evaluation task was
not cumbersome at all.

The results have been human-assessed using a binary label: each recom-
mendation has been labelled as “related” or “unrelated” to the query that pro-
duced it; additionally, if the recommendation is somehow associated to one
or more topics, we consider such topic as “covered”. In the end, we have a
list of related recommendations and covered topics; from such data, we obtain

graphs and performance statistics, which are discussed in chapter 7.
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Chapter 7

Results

Table 7.1 reports for each of the 50 TREC queries, the coverage (in percent-
age) of the associated subtopics measured for the top-10 suggestions returned
by SS, CG, and QFG; the same data is plotted in the area chart shown in Fig-
ure 7.1. By looking at such results, we can see that SS outperforms remarkably
its competitors. On 27 queries out of 50 SS was able to cover more than a half
of the subtopics, while CG in no case reached the 50% of coverage, and QFG
only on 5 queries out of 50. Moreover, SS covered the same number or more
subtopics than its competitors in all the cases but 4, and in 34 cases the number
of subtopics covered by SS was strictly greater. Only in 4 cases (query topics

15,19, 25, and 45), QFG outperformed SS in subtopic coverage.

Table 7.2 and figure 7.2 reports instead the number of relevant suggestions
returned among the top-10 ones generated by CG, SS, and QFG. A recommen-
dation is considered relevant for a query if pertinent to the initial query. Also
considering this performance metric our Search Shortcuts solution results the
clear winner. All the top — 10 queries suggested by SS are relevant in 40 cases
out of 50, against the 5 of both CG and QFG. The average number of relevant

suggestions returned (a sort of P@10 metric) was 9.52, 4.72, and 2.46 for SS,
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QFG, and CG, respectively. This difference is really impressive, but we must
consider that both CG and QFG are not able to generate suggestions for queries
which were not encountered in the training log, and are thus not present in the
model. SS on the other hand, adopts an IR-based approach based on a simi-
larity score to select from the inverted index the final queries which are the
closest to the current user query. For this reason, the method results to be very ro-
bust to data sparsity which strongly penalizes the other two algorithms, and it is able
to produce significant suggestions also for singleton queries which were not previously
submitted to the WSE.

We recall that singleton queries account for almost half of the whole vol-
ume of unique queries submitted to a WSE, and are often the hardest to answer
since they ask for “rare” or badly expressed information needs. The possibil-
ity of suggesting relevant alternatives to these queries is more valuable than
the one of suggesting relevant alternatives to frequent queries, which express

common and often easier to satisfy needs.
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Table 7.1: Subtopics coverage for the 50 TREC queries, shown in percentage
(truncated). Comparison between three algorithms.

TREC query | CG | SS | QFG | TREC query | CG | SS | QFG
110 3310 26 | 0 7510
210 5010 27| .16 | .50 | .33
310 .66 | .66 2810 .60 | .40
410 16 | 0 2910 40| 0
510 2510 3010 .66 | .16
6|.20 | 40 |0 3110 75 | .25
710 0 0 3210 .60 | 0
810 .75 | .50 3310 .50 | .25
91].16 | .50 | .33 34|10 5010

10 | .12 | .25 | .12 3510 3310
1110 5010 36 |0 .25 | .25
1210 .25 | .25 371.40 | .60 | 0
13| .14 | .14 | .14 3810 33 | .33
14 | .20 | .80 | .40 39 | .20 | .20 | .20
15| .16 | .16 | .33 40 | O 1 0
16 | .25 | .25 |0 41 1 0 2510
1710 .50 | .33 42 10 .50 | .50
1810 80 |0 4310 25 1 .25
191.25 |0 .25 44 10 .80 | .60
20| .16 | .33 | .16 451 0 16 | .33
211 .20 |1 .40 46 | .33 | .66 | .33
22 1.20 | .20 ] 0 4710 .66 | 0
23| .14 | .57 |0 48 | .40 | 40 | 0
24 10 75 1 .25 49 | 0 3310
25 (.20 | .50 | .75 50 1 .33 | 1 .33
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Table 7.2: Number of related recommendations among the top-k for the 50
TREC queries. Comparison between three algorithms.

TREC query | CG | SS | QFG | TREC query | CG | SS | QFG
1 0| 10 0 26 0] 10 0
2 4110 0 27 91| 10 5
3 0| 5 4 28 0] 10 10
4 0] 10 10 29 0] 10 0
5 1110 0 30 0] 10 5
6 5] 6 4 31 0] 10 9
7 0| 10 0 32 0| 9 0
8 1110 9 33 1110 5
9 51 10 8 34 2| 10 9

10 11 9 7 35 0] 10 8
11 0] 10 0 36 0] 10 6
12 0| 9 7 37 7| 8 6
13| 10| 10 4 38 0] 10 7
14 3110 9 39 51 10 5
15| 10| 10 6 40 0| 3 0
16 | 10| 10 8 41 0| 9 1
17 0] 10 10 42 1| 10 5
18 0| 10 0 43 0| 9 2
19 4110 4 44 0| 9 9
20| 10| 10 5 45 0] 10 7
21 6| 10 5 46 6| 10 4
22 51 10 6 47 0] 10 0
23| 10| 10 0 48 3| 10 0
24 10 10 49 0| 10 0
25 1110 10 50 3| 10 7
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Figure 7.1: Coverage of the subtopics associated with the 50 TREC diversity-
track queries measured on the top-10 suggestions provided by the Cover Graph
(CG), Search Shortcuts (SS), and Query Flow Graph (QFG) algorithms.

WCG ®MQFG mSsS

Figure 7.2: Number of suggestions relevant for some of the TREC query
subtopics among the top-10 suggestions returned by the Cover Graph (CG),
Search Shortcuts (SS), and Query Flow Graph (QFG) algorithms.
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7.1 Recommendations for TREC queries

In the tables that follow, we present the results obtained for the 50 TREC
queries, used in the evaluation model we proposed; as discussed above and
in section 6.2, we count how many sub-topics are covered by the suggestions
produced by our Search Shortcuts algorithm and the two other approaches,

for comparison.

We report the top-10 suggestions provided by the three algorithm run
against the MSN query log. For each query topic, the first column of the table
lists the associated subtopics.

The manual evaluation of results produced the figures discussed above:
SS computed mostly relevant suggestions covering a significant subset of the

subtopics.
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Query & subtopics

7 Search Shortcuts

| Cover Graph [3]

7 Query Flow Graph [7]

4 - toilet (faceted)

1. What different kinds of toilets exist, and
how do they differ?

2. I’m looking for companies that manu-
facture residential toilets.

3. Where can I buy parts for American
Standard toilets?

4. How do I fix a toilet that isn’t working
properly?

5. What companies manufacture bidets?
6. I'm looking for a Kohler wall-hung toi-
let. Where can I buy one?

toto toilets

toilet partitions
old fashion toilets
antique toilets
installing a toilet
mansfield toilets
toilet-to-go

cadet toilets
composting toilets
toilet history

composting toilets
ladies bathroom sigh
toilet accessories
toilet girls

toilet history
installing a toilet
cartoon toilet

tib

toilets

ladies bathroon sign

no suggestion provided

5 - matchell college

(faceted)

1. Find the homepage for Mitchell College.
2. Find the homepage for the athletics de-
partment at Mitchell College.

3. Find web pages that compare Mitchell
College to other colleges in Connecticut.
4. Find information on admissions to
Mitchell College. How do I become a stu-
dent there?

paul mitchell

mitchell daily republic

joni mitchell

mitchell community college
mitchell gold

beverley mitchell

jacks campers mitchell
mitchell fuerst

robert mitchell

mitchell sd

mitchell

no suggestion provided

6 - kcs (ambiguous)

1. Find the homepage for the Kansas City
Southern railroad.

2. I'm looking for a job with the Kansas
City Southern railroad.

3. Find the homepage for Kanawha
County Schools in West Virginia.

4. Find the homepage for the Knox County
School system in Tennessee.

5. Find information on KCS Energy, Inc.,
and their merger with Petrohawk Energy
Corporation.

kannapolis city schools

kcs autocad applications

kcs railroad shreveport louisiana
kcs railroad
http://kes.kana.k12.wv.us

rally 800

williams communications gps
south charleston middle school

kaul tronics us cellular
kes autocad applications
kannapolis city schools
gdp
kannapolis
school

gdp mexico
nfb

per capita income
gdp cia

bfsb

intermediate

kansas city railroad

kansas city southern railroad
kes railroad

www.kesi.com

kansas city southern
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Query & subtopics

_ Search Shortcuts

| Cover Graph [3]

_ Query Flow Graph [7]

10 - cheap internet (faceted)

1. What are some low-cost broadband in-
ternet providers?

2. Do any internet providers still sell dial-
up?

3. Who can provide inexpensive digital
cable television bundled with internet ser-
vice?

4. I'm looking for the Vonage homepage.
5. Find me some providers of free wireless
internet access.

6. I want to find cheap DSL providers.

7. Is there a way to get internet access
without phone service?

8. Take me to Comcast’s homepage.

internet explorer

cheap internet services (aol
cheap cable internet

cheap internet services

atrial fib

cheap wireless internet for lap-
tops

cheapest long distance, local, in-
ternet packages

internet

cheap cigarettes

cheap books

atrial fib

dsl

att dsl

accelerators
centurytel dsl
charterdsl

corvallis public library
d s | shipment
delivery service
diagnostic systems |

cheap internet services

11 - gmap prep classes (faceted)

1. Who are some companies that offer
GMAT prep classes?

2. I’'m looking for some free sample GMAT
exams to practice on.

3. I'd like to find some tips to help me do
well on the GMAT.

4. 'm looking for the Beat TheGMAT blog
and forums.

5. Take me to the VeritasPrep home page.
6. What’s the difference between the GRE
and the GMAT?

gmat

gmat prep nj

gmat atlanta

free gmat test prep

psat prep classes

kaplan prep courses

sat prep class * maynard, ma
coding ccs prep class
gmat+help

sat test prep classes in virginia

no suggestion provided

no suggestion provided

12 - djs (facet

ed)

1. I'm looking for DJs that specialize in
hip-hop music.

2. I want to hire a DJ for a wedding.

3. How do I become a radio disc jockey?
4. What jobs are available for disc jockeys?

thunder and lightning djs
djs, raleigh, nc

atlanta black djs

djs unlimited in houston
djs in waco, tx

djs wanted los angeles
djs teens pornography
music djs

elite entertainment
wedding djs chicago

dj angel

dj dave mccollough
djskennesaw ga
free dj link
novaspace

albums

free dj links

milk inc.

wedding dj

albums cline

no suggestion provided
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_ Search Shortcuts

| Cover Graph [3]

Query Flow Graph [7]

16 - arizona game and fish (faceted)

1. Take me to the Arizona Game and Fish
Department homepage.

2. What are the regulations for hunting
and fishing in Arizona?

3. I'm looking for the Arizona Fishing Re-
port site.

4. T'd like to find guides and outfitters for
hunting trips in Arizona.

big fish games

arizona fish and game
wyoming game and fish

nm game and fish

arizona mvd

arizona game and fish depart-
ment

california fish and game
arizona saguaro lake

arizona fishing

crappie fishing san carlos lake,
arizona

arizona saguaro lake

a frame

arizona lakes map

cibeque creek arizona
pro.sports news com.

san carlos lake arizona
www.navajofishandwildlife.or
nm game and fish

movie post

arizona mvd

D

arizona department of wildlife
arizona game & fish dept
arizona game fish

az dept. fish and game

az fish &game

az fishing report

az game & fish

az game & fish dept

az game an fish

az game and fish

17 - poker tournaments (faceted)

1. I want to find information on the World
Series of Poker.

2. I'm looking for a schedule of poker tour-
naments in Las Vegas.

3. Take me to the Full Tilt Poker website.
4. I'm looking for a schedule of poker tour-
naments in Atlantic City.

5. I want to find Texas Hold-Em tourna-
ments.

6. Find books on tournament poker play-
ing.

freeroll poker tournaments
tropicana casino poker tourna-
ments

tilt poker tournament

world poker tournament

poker tournament timer

poker tournament-binions
bellagio poker tournament win-
ners

dd tournament poker .iso

free poker tournaments cash
poker tournaments in atlantic
city

poker blogs
learning poker
paradise poker tournaments

poker tournaments at
harrahs superstar poker
tournaments

casino games

poker forum

poker tournaments at har-
rahs casino
superstar  poker
ments results
texas holdem

tourna-

no suggestion provided

18 - wedding budget calculator (faceted)

1. T want to find online guides, tips, and
checklists for planning a wedding.

2. I am looking for spreadsheets or tem-
plates to help me tabulate a budget for a
wedding.

3. I want to find some example wedding
budgets.

4. T'm looking for information on plan-
ning a wedding shower, like theme ideas
and budget guidelines.

5. How can I plan an inexpensive wedding?

budget

wedding budget sheet

sample wedding budgets
budget calculator

budget outside wedding
wedding planning

budget wedding bouquets

how to have a celebrity wedding
on a budget

planning a wedding on a budget
wedding costs

no suggestion provided

no suggestion provided
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_ Search Shortcuts _

Cover Graph [3]

Query Flow Graph [7]

22 - rick warren (faceted)

1. Take me to Rick Warren’s homepage.
2. I'm looking for the homepage for
Rick Warren’s book, ” The Purpose Driven
Life”.

3. I'm looking for background and bio-
graphical information on Rick Warren.

4. 1 want to see articles and web pages
about the controversy over Rick Warren’s
invocation at the Obama inauguration.

5. I want to read about the debate between
John McCain and Barack Obama hosted
by Rick Warren.

warren buffett

rockbridge seminary

what sin is rick warren

rick astley

rick bayless

warren kimble

rick warrens book bible study
methods

colorado  springs
ity”rick warren
rick boucher

rick jeannaret

christian-

benny hin

rockbridge seminary
television evangelist

platos closet

help from the bible

tv prechers

platos closet in lexington ky
platos closet plano

diesel clothing

fox tv church programs

purposedrivenlife.com
www.purposedrivenlife.com
www.rickwarren.com

the purpose driven life

23 - yahoo (ambiguous)

1. Take me to the Yahoo! homepage.

2. Take me to Yahoo! Mail.

3. I’m looking for the Yahoo! Messenger
homepage.

4. Take me to Yahoo! Finance.

5. I’'m looking for the Yahoo! Music home-
page.

6. I want to log in to my Yahoo! account.
7. Find information about Yahoo!, the
company.

my yahoo

yahoo chat
yahoo! finance
yahoo mexico
yahoo pool
yahoo jobs
yahoo.games
yahoo e mail
yahoo canada
yahoo messanger

cablelynx

wesh tv

cupidbay

ahoo

gayphoenix.com

ideal bite blog

javairc

gonzaga law school

holt international

craig list new hampshire

yahoo.com

yahoo!

http://yahoo.com

www. yahoo.com

yahoo
-warehouses-employment
and 1

ireland: pitcures of clothing
local roller blade stores near tren-
ton, nj

24 - diversity (fa

ceted)

1. How is workplace diversity achieved and
managed?

2. Find free activities and materials for
running a diversity training program in my
office.

3. What is cultural diversity? What is
prejudice?

4. Find quotes, poems, and/or artwork il-
lustrating and promoting diversity.

diversity in education
diversity inclusion

cultural diversity

diversity test

accepting diversity

diversity poem

diversity skills

diverse learners presentation
picture of diverse childern
advantages of diversity

accepting diversity
dispariging remarks
diverse world
diversity director
diversity poem
diversity test
minority & women
civil liberties
inclusion

gender and racial bias

no suggestion provided
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Query & subtopics

_ Search Shortcuts

| Cover Graph [3]

_ Query Flow Graph [7]

28 - inuyasha (ambiguous)

1. I'm looking for pictures and wallpaper
images from InuYasha.

2. Find InuYasha anime episodes for down-
load.

3. Find games based on the InuYasha se-
ries, either online or for game systems.

4. I’'m looking for InuYasha fan forums and
websites.

5. Find music from the InuYasha television
series.

inuyasha pictures
inuyasha world pics
inuyasha radio
inuyasha games
inuyasha avatars
inuyasha myspace
inuyasha screensavers
inuyasha in love
inuyasha media
pictures of inuyasha

inuyasha and kagome
inuyasha pics

inuyasha wallpaper

amuro namie

anime people

gundam seed cagalli
inuyasha and his girl friend
inuyasha and kagome church
of lemons

inuyasha epesods

inuyasha episode guide

no suggestion provided

29 - ps 2 games (faceted)

1. Find reviews of PlayStation 2 games.
2. Where can I find cheat codes for
PlayStation 2 games?

3. I'm looking for sites that announce new
PlayStation 2 games.

4. Where can I buy used PlayStation 2
games?

5. What are the specifications of the
PlayStation 2 console?

mouse drivers

playstation 2 games

ps 2 gaming cheats

sp 2

ps 2 cheat codes

diner dash 2 game

game cheats for medal of honor
european assault for ps 2

usb to ps/2 adapter

ps/2 compatible mouse driver
unplug mouse ps/2

no suggestion provided

no suggestion provided

30 - diabetes education (faceted)

1. Find free diabetes education materials
such as videos, pamphlets, and books.

2. Take me to the NIH National Diabetes
Education Program homepage.

3. Take me to the American Association
of Diabetes Educators homepage.

4. I'm looking for nutrition and diet infor-
mation for diabetics.

5. Where can I get free diabetes education
posters?

6. How can I become a diabetes educator?

diabetes

diabetic education

nutrition and diabetes educa-
tion

diabetes educator exam
educating the insulin dependent
diabetic

international diabetes center ed-
ucational materials

diabetic diet

diabetes education powerpoint
american association of diabetes
educators

tele-ed program diabetes educa-
tion

diabetes education survival
skills

nutrition and diabetes edu-
cation

diabetes education survival
skills pdf

diabetes survival skills pdf
diabetes handhouts pdf

no suggestion provided
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Query & subtopics

_ Search Shortcuts

| Cover Graph [3]

_ Query Flow Graph [7]

34 - cell phones (faceted)

1. What free phones are available from dif-
ferent vendors?

2. Go to AT&T’s cell phones page.

3. Go to Verizon’s page that lists phones
for sale.

4. Find information on prepaid cell
phones.  What companies offer them?
What kind of phones are available?

5. Go to Nokia’s home page.

6. What cell phone companies offer Mo-
torola phones?

7. Go to Sprint’s page that lists phones for
sale.

8. Where can I find information on buying
unlocked phones?

samsung cell phones
prepaid cell phones
cingular cell phones
cell phone reviews
alltel cell phones
sprint cell phones
unlocked cell phones
cell phone lookup
nokia cell phones
used cell phones

cell phones without plans
camera phones

cell phones without a plan
al cellular

advertisement ancient
bell. ca

cartoon cell phone

cell phone batt

cell phone companies in
toronto

cell phone history

cell phones and what
the latest cell phones

35 - hoboken (faceted)

1. Find restaurants in Hoboken.

2. Find the homepage for the city of Hobo-
ken, NJ.

3. I'm looking for the history of Hoboken,
NJ.

4. I’m looking for information on bars and
nightclubs in Hoboken, NJ.

5. Find real estate listings for Hoboken,
NJ.

6. Find a street-level map of Hoboken, NJ.

pet grooming - hoboken
hoboken floors

hoboken man dead
hoboken apartments
hoboken nj

madisons in hoboken

w hoboken residence prices
hoboken chinese precious
hoboken nj hotels

lucie marciano hoboken nj

hoboken popullation
hoboken nj

hoboken nj hotels

marciano law hoboken nj
north bergen nj

hotels within 50 miles of
manhattan ny

lucie marciano hoboken nj
north bergen nj hotels
super 8 hotels

best western hotel reserva-
tions

no suggestion provided

36 - gps (faceted)

1. Find reviews of GPS units and car nav-
igation systems.

2. Take me to the Garmin homepage.

3. Take me to GPS Magazine.

4. Find reviews of digital cameras with
built-in GPS.

magellan gps

sony gps

gps garmin

palm gps

www.gps.edu

gps for teenagers

gps microsoft

satelitte pictures of addresses
cheap gps

ford gps

gps garmin

gps tracker

magellan gps

50 ra air grinder
aplications of triginomitry
bar code mount

best motorcycle gps
bluetooth gps

buying gps

compare prices for

no suggestion provided
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Query & subtopics

Search Shortcuts

7 Cover Graph [3]

7 Query Flow Graph [7]

40 - michworks (faceted)

1. Take me to the michworks Michigan
Talent Bank homepage.

2. What jobs are available in Michigan?
3. Find career resources and information
on job seeking in Michigan.

4. Find information about services avail-
able to the unemployed in Michigan.

www.michworks.org
michworks.org
www.michworks.com
anderson speedway

grand haven weaterh
grand  haven  michigan
weather statistics

no suggestion provided

41 - orange county convention center (faceted)

1. Take me to the Orange County Conven-
tion Center homepage.

2. Find a schedule of events taking place
at the Orange County Convention Center.
3. How do I reserve the Orange County
Convention Center for an event?

4.  What hotels are near the Orange
County Convention Center?

dallas convention center

orange county performing arts
center

tampa convention center

la convention center
philadelphia convention center

orlando, fl+embassy suites
hotel

hawaii convention center
tucson convention center

great american homeowners
challenge

marriott  courtyard  orange

county convention center

international drive

dallas convention center
hotrod.com

trinity rail express
hemming news.com
oldcartrader

magical midway

resturants on international
drive

universal studios islands of
adventure

discovery cove

no suggestion provided

42 - the music man

(faceted)

1. Find lyrics for songs from The Music
Man.

2. Find current performances of The Mu-
sic Man.

3. Find recordings of songs from The Mu-
sic Man.

4. I’'m looking for the script for The Music
Man.

till there was you

musical music man lyrics

the music man ” soundtrack
the music man summary
elephant man music

70’s music rubberband man
encino man, songs

music man lyrics

free music on msn

music man trouble in river city

the music man on broadway
the music man summary
state fair musical

till there was you

dizzy gilelespee

oysters rockefeller recipe
archnid

female whale

brewski

fats dominos first name

the music man movie
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Query & subtopics

Search Shortcuts

7 Cover Graph [3]

7 Query Flow Graph [7]

46 - alezian brothers hospital (faceted)

1. Go to the Alexian Brothers Health Sys-
tem homepage.

2. Find information about the Alexian
Brothers lay Catholic order.

3. Find Alexian Brothers hospitals.

big brother

brother

alexian brothers san jose
alexian brothers hospital net-
work

brother.com

alexian brother eating disorders
program

band of brothers

alexian brothers medical center
illinois

healey brothers

alexian.org

24 hour health clinic
schaumburg illinois
alexian brothers san jose
rumuda ranch

24 hr emergency care near
schaumburg illinois
immediate care services near
schaumburg illinois

google

barbizon star power
site:www.google.com google
icy madness

google home

in

alexian brothers

il

alexian brothers hospital, illinois
alexian brothers illinois
alexian.org

alexian brothers medical center

47 - indezed annuity (faceted)
1. What is an indexed annuity? What | annuities what commpetitor took | no suggestion provided
are their advantages and disadvantages? | annuity bryant gumbel to dinner
What kinds of indexed annuities are there? | lincoln benefit life” index annu- | the night after the cbs early
2. Where can I buy an indexed annuity? | ity show debuted

What investment companies offer them?
3. Find ratings of indexed annuities.

travelers annuity

ailg annuity

what is an annuity

aig annuities

annuity vs bond

equity deferred annuities
fidelity guaranty annuity

what competitor took
bryant gumbel to dinner
who is byrnat gumbels
competitor

who is byrnat gumbel com-
petitor

competitor took  bryant

gumbel to dinner
cbs early show debuted
1965 portrait of the assassin

48 - wilson antenna

(faceted)

1. Go to the Wilson Antenna homepage.
2. What kinds of CB antennas does Wilson
Antenna sell?

3. Where can I buy used Wilson Antennas?
4. What is the best antenna from Wilson
for a big truck?

5. Find reviews of Wilson antennas.

wilson antenna for cingular
8125

wilson cb antenna tips
antenna decor

scanner antennas
antenna noise factor
cadillac srx antenna
antenna decorations
cellular antennas
dipole antenna
everhardt antennae

no suggestion provided

wilson antennas
wilson cb antenna
wilsonelectronics.com

alexian brothers hospital elk grove
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Chapter 8

Conclusions

We have proposed a very efficient solution for generating effective sug-
gestions to WSE users based on the model of Search Shortcuts. Our original
formulation of the problem allows the query suggestion generation phase to
be re-conducted to the simple processing of a full-text query over an inverted
index. Final queries of most similar satisfactory sessions are thus efficiently
selected to be proposed to the user. An additional contribution of this work
regards the evaluation methodology used, based on a publicly-available test
collection provided by a highly reputed organization such as the NIST. The
proposed methodology is objective and very general, and, if accepted in the
query recommendation scientific community, it would grant researchers the
possibility of measuring the performances of their solutions under exactly the

same conditions, with the same dataset and the same evaluation criterion.

On the basis of the above evaluation method, the algorithm (SS) proposed
in this work remarkably outperformed two well-known representatives of the
best practice in the field of query recommendation in almost all the tests con-
ducted. In particular, suggestions generated by SS covered the same number

or more TREC subtopics than its two counterparts in 46 cases out of 50. In 34
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CHAPTER 8. CONCLUSIONS

cases the number of subtopics covered by SS suggestions was strictly greater.
Only in 4 cases QFG outperformed SS. Also when considering the number of
relevant suggestions among the top-10 returned, SS resulted the clear winner
with an average number of relevant suggestions equal to 9.52, versus 4.72 and
2.46 for QFG, and CG, respectively. Moreover, differently from its competi-
tors, SS resulted to be very robust w.r.t data sparsity, and can produce relevant
suggestions also to queries which were not present in the query log used for

training.

8.1 Extracting sessions with Query Flow Graph

Another application of the Query Flow Graph described in [7] is finding
logical sessions. This is a very important problem, as it allows improving of
query-log analysis, user profiling and more: in the current Search Shortcuts
implementation we use a naive approach to extract user sessions, so its perfor-
mances could be improved by introducing a more sophisticated way to seg-
ment the query log into user sessions (also called chains). We already described
in section 2.5 the weighting models used in the query flow graph while operat-
ing in the task of query recommendation: for the second application - finding
chains - the authors use the first weighting scheme, the one based on chaining
probabilities.

They separate the problem of finding chains into two subproblems: session
reordering and session breaking. The session reordering problem is to ensure
that all the queries belonging to the same search mission are consecutive; in
fact, the authors allow chains to be intertwined in a supersession'. Then, the
session breaking problem is much easier, as it only needs to deal with non-

intertwined chains.

'For supersession definition, cp. section 2.5.
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8.1. EXTRACTING SESSIONS WITH QUERY FLOW GRAPH

The first subproblem is modelled as an instance of the Asymmetric Traveler
Salesman Problem (ATSP): instead of trying to produce exact solutions, they
adopt a greedy heuristic that every time chooses the arc with minimum weight
going out of the current node.

After reordering, session breaking corresponds to the determination of a
series of cut-off points in the re-ordered session. They apply a threshold 7 to
break a reordered session whenever the weight of the edge connecting ¢ and

q is less than 7).

We performed a preliminary study on session breaking using the query
flow graph, applying different thresholds 7; as explained by the authors of
query flow graph, we performed a first task of session splitting based on break-
ing the list of queries from the same user using a time threshold ¢y = 30 min-
utes against the same MSN query log we used in our experiments (see section
5.1); from these sessions we extracted a sample set including the first 10, 000

sessions, and we got the following results:

n=01|n=02|n7n=04|7n=0.75
total sessions 10,222 | 10,311 | 10,639 12,442

session length > 2 | 6,152 | 6,149 | 6,142 6,081

These results show that applying session reordering + session breaking on
10,000 30-minutes sessions, we obtained a larger number of sessions, which
means that the algorithm based on the query flow graph split some of them.
Raising the threshold, the number of sessions obtained raises as well: anyway,
the number of sessions with 2 queries or more is almost the same. This leads
us to the assumption that adjusting this threshold could be useful to “clean
up” the query log, removing from sessions some noise originated by weakly

connected queries.

83



CHAPTER 8. CONCLUSIONS

Finally, we run the session reordering and breaking processes applying the
threshold n = 0.75 on the whole query log, obtaining 9, 214, 476 total sessions.
This result is actually smaller than the one we obtained? with our simple 5-
minutes based procedure (9,461,423). As a first hypothesis, we believe that this

way to generate sessions could improve Shortcuts quality as well.

8.2 Future work

As future works we intend to investigate if the sharing of the same final
queries induces a sort of “clustering” of the queries composing the satisfac-
tory user sessions. By studying such relation, which is at the basis of our
query shortcut implementation, we could probably find ways to improve our
methodology. Moreover, we currently use a very simple session splitting tech-
nique based on a fixed time-window, and we plan to study the possible en-
hancements to the effectiveness of suggestions deriving from the exploitation
of more precise session splitting heuristics such as the ones discussed in [14] or
in section 8.1. At the moment, in fact, we did not perform any evaluation task
on the quality of Shortcuts obtained from sessions extracted with query flow
graph: an interesting improvement of our Shortcuts algorithm surely relies on
a more effective sessions extraction. Previous studies about multitasking in
web searches [8], [28] and [27] showed that real search engine users don’t limit
their searches to a single topic within a session. Hence, a topic identification
process could be an important area to investigate to improve Shortcuts quality:
multitasking sessions, in fact, tend to introduce noise into the bag-of-words as-
sociated to the final query, which represents the actual query recommendation.

We made another consideration about scalability of Shortcuts generation:

with the current implementation, we have to pre-process the whole query log

2Cp. section 5.1
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to extract the Shortcuts; a way to avoid to reprocess all the data should be
implemented in future versions of this algorithm. An incremental indexing
could be a simple and effective solution: at defined time intervals, we could
merge the new users’ satisfactory sessions with the already extracted virtual

documents, then simply re-index them.

In the current version of Search Shortcuts algorithm we don’t take into
account the history of the input queries for which we want to generate
suggestions: for example, if a user asks suggestions for “apple”, and “banana”
in the following query, we would want to avoid recommendations related to
apple computers, and prefer suggestions about the fruits. Search-history driven
topic disambiguation is a good basis to develop in future improvements of

Shortcuts algorithm.

Finally, some considerations about the web interface: a useful expansion
to introduce would be to add a wrapper for actual search engines: people
willing to perform a search would use our interface, which would behave just
as a man-in-the-middle between the real search engine and the users. This
would give us the possibility to both suggest our own recommendations and
enrich our knowledge base with real user sessions. In other words, it would

let us collect useful data to improve the quality of Shortcuts.
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Appendix A

Glossary

Association Rules mining is the process of extraction of relations between
elements in large data sets. Widely used in marketing field to discovery
information patterns about users tastes and purchases, A.R. mining can be
transposed in IR world, for example, to find relations among the queries in a
search engine query log, improving query recommendation. The basic idea is
that if a certain percentage of users who searched information about topic T1
and searched for topic T2 in the same session, T1 and T2 are related topics. An

AR.is formally writtenas X = Y.

Click-Through Data is an important part of a search engine query log,
that includes all the information about user activity related to clicks. This
information is at the base of different approaches with the intent of improving
the results provided (e.g. in implicit relevance feedback) or in the recommen-

dation of related queries.
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Collaborative Filtering is the process of filtering information or patterns
using techniques involving collaboration among multiple sources. Typically
used in large data sets, C.F. tries to make automatic predictions about the
interests of a user by collecting taste information from many users. The more
information there is in the data set, the more accurate will probably be the

prediction.

Precision and Recall are classification in IR world.

e Precision is the number of relevant documents retrieved divided by the

number of documents retrieved,;

o Recall is the number of relevant documents retrieved divided by the total

number of existing relevant documents.

They both can be used to give a measure of the performances of a IR system,
and they are often considered in the Precision/Recall tradeoff: some features

can increase one of them by decreasing the other one.

Query Expansion includes all the techniques used to improve the quality
of the results in a search engine, or in a information retrieval system in
general. Q.E. is the process of reformulating a user query by evaluating and
expanding it in order to match additional documents. In this way, the results
may not exactly match the original query, but they hopefully better fit the user
needs. Examples of Q.E. are use of synonyms (and searching for synonyms
besides the original query), stemming, spelling correction. Q.E. methods

usually increase recall at the expense of reducing the precision.
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Query Chain is a sequence of queries about the same topic. It is related
to the idea of the refinement process manually performed by a user, that
could lead to the discovery of more information if compared to considering
the queries in the chain independently. Sometimes it is possible to use query
chains and query sessions as synonyms, but only if assumed that a session,
which is time-based and not topic-based, contains searches only about one

topic.

Query Clustering: there are several ways to make cluster of queries; a
cluster is a set of items that are similar each other in a formally defined way.
Thus, there must be a definition of similarity, which makes the difference

between clustering methods.

Relevance Feedback is a feature of some IR systems, based on the idea of
taking the results initially returned from a given query and using information
about whether or not those results are relevant to perform a new query. R.F.
can be classified in explicit feedback, implicit feedback and pseudo (or blind)

feedback.

e Explicit feedback: users explicitly mark relevant and irrelevant docu-

ments;

o Implicit feedback: the system attempts to infer user intentions based on
observable behavior (e.g.: click-through data, time spent on a page, input

reformulation);

o Blind feedback: the idea is to take the top n documents and assume they
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are relevant, and then perform the query as usual. If the initial hits are

good, blind feedback will improve the results.

When R.F is used to benefit all users of the search engine, then it can be
considered collaborative filtering. Relevance feedback from one user indicates
that a document is considered relevant for their current need. If that user’s
information need can be matched to others’ information needs, then relevance

feedback can help improve the others” search results.

Stemming: is the process for reducing inflected (or sometimes derived)
words to their stem, base or root form, e.g. getting — get, or dogs — dog. The S.
process is useful in search engines for query expansion or indexing and other

natural language processing problems.
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