
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

INF/01

Ph.D. Thesis

Measuring the Semantic Integrity of a
Process Self

Daniele Sgandurra

Supervisor

Fabrizio Baiardi

May 21, 2010

Every act of creation is first of all an act of destruction.
Pablo Picasso

Abstract

The focus of the thesis is the definition of a framework to protect a process from
attacks against the process self, i.e. attacks that alter the expected behavior of the
process, by integrating static analysis and run-time monitoring. The static analysis
of the program returns a description of the process self that consists of a context-
free grammar, which defines the legal system call traces, and a set of invariants
on process variables that hold when a system call is issued. Run-time monitoring
assures the semantic integrity of the process by checking that its behavior is coherent
with the process self returned by the static analysis. The proposed framework can
also cover kernel integrity to protect the process from attacks from the kernel-level.

The implementation of the run-time monitoring is based upon introspection, a
technique that analyzes the state of a computer to rebuild and check the consistency
of kernel or user-level data structures. The ability of observing the run-time values
of variables reduces the complexity of the static analysis and increases the amount
of information that can be extracted on the run-time behavior of the process. To
achieve transparency of the controls for the process while avoiding the introduction
of special purpose hardware units that access the memory, the architecture of the
run-time monitoring adopts virtualization technology and introduces two virtual
machines, the monitored and the introspection virtual machines. This approach
increases the overall robustness because a distinct virtual machine, the introspection
virtual machine, applies introspection in a transparent way both to verify the kernel
integrity and to retrieve the status of the process to check the process self.

After presenting the framework and its implementation, the thesis discusses some
of its applications to increase the security of a computer network. The first applica-
tion of the proposed framework is the remote attestation of the semantic integrity
of a process. Then, the thesis describes a set of extensions to the framework to pro-
tect a process from physical attacks by running an obfuscated version of the process
code. Finally, the thesis generalizes the framework to support the efficient sharing
of an information infrastructure among users and applications with distinct security
and reliability requirements by introducing highly parallel overlays.

iv

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor, Prof.
Fabrizio Baiardi, who has played a major role in my growth as a researcher with his
continuous support and professional supervision throughout my activities.

I am very grateful to Thomas Jensen and Sebastian Mödersheim, who reviewed
this thesis, for their insightful comments and suggestions that have been invaluable
to improving my thesis. Special thanks go to my internal referees, Nicoletta De
Francesco and Giorgio Levi, who provided many helpful comments.

Several people deserve special mention for their contributions: in primis, Dario
Maggiari, for his immense help during the design and implementation of both the
static and the run-time components of the framework; Francesco Tamberi, for con-
tributing with several fruitful ideas to the development of the run-time architecture;
Gaspare Sala, for his contributions to the design and implementation of the vir-
tual community framework; Diego Cilea, for having contributed to the design and
implementation of the remote attestation framework; Fabio Campisi, for support-
ing me during the development of the introspection functions; Diego Zamboni for
his patience, invaluable help and support during the design and implementation of
the context-agent framework. Finally, I also wish to thank Alberto Daniel, Stefano
Paganucci and Federico Tonelli for their precious contributions.

I would like to thank all the PhD students that I have met at the Department for
making my life so enjoyable: Michele Albano, Davide Cangelosi, Giulio Caravagna,
Cristian Dittamo, Gabriele Mencagli, Luca Nicotra, Igor Nitto among the others.

Last, but not least, I would like to thank my parents for always supporting me.

vi

Contents

Introduction xv

I Background 1

1 Measuring the Semantic Integrity 3

1.1 Process Self . 3

1.2 Description of the Process Self . 4

1.2.1 Context-Free Grammar . 6

1.2.2 Assertion Generation . 7

1.3 Formal Models for Static Analysis . 8

1.3.1 Reaching Definition Model . 8

1.3.2 Abstract Interpretation Model 9

2 Virtualization-based Security 13

2.1 Virtualization Technology . 13

2.1.1 Current Products . 16

2.1.2 Hardware Support . 20

2.1.3 Transparency . 22

2.2 Virtual Machine Introspection . 24

2.2.1 Passive Virtual Machine Introspection 26

2.2.2 Trigger-Based Virtual Machine Introspection 26

2.2.3 Mitigation of Threats . 27

2.2.4 Vulnerabilities . 28

2.3 Applications of Virtualization to Security 28

2.3.1 Checking Kernel Integrity . 28

2.3.2 Remote Attestation of System Integrity 31

2.3.3 Code Obfuscation . 32

2.3.4 Trusted Overlay of Virtual Networks 32

CONTENTS

3 Related Works 35
3.1 Sense of Self . 35
3.2 Virtualization for Security . 43
3.3 Hardware-based Security and Remote Attestation 48
3.4 Code Obfuscation . 52
3.5 Collaborative Virtual Environments 52

II Principles and Implementation 59

4 Description of the Process Self 61
4.1 Abstract Syntax Tree in PsycoTrace 61
4.2 Grammar Generating Algorithm . 63

4.2.1 Grammar Generating Algorithm Rules 63
4.3 Assertion Generator . 65

4.3.1 Invariant Table . 67
4.3.2 Assignment Variables . 73

5 Run-Time Architecture 77
5.1 Run-Time Components . 77

5.1.1 Assumptions . 78
5.1.2 Transparency . 79

5.2 Kernel Integrity . 80
5.2.1 Introspection Library . 81
5.2.2 Integrity Checks . 84
5.2.3 Context-Agent Injection . 87

5.3 Checking the Process Self . 94
5.3.1 System Call Tracing . 94
5.3.2 The Analyst . 95
5.3.3 Sliced Execution . 101

5.4 Results . 102
5.4.1 Protecting the Kernel Integrity 102
5.4.2 Checking the Process Self . 103

III Applications of the Proposed Approach 107

6 Remote Attestation of Semantic Integrity 109
6.1 Virtual Machine Integrity Measurement System Architecture 110

6.1.1 Formal Model . 112
6.1.2 Assurance Virtual Machine 114
6.1.3 Start-up Attestation and Monitoring 115
6.1.4 Trust in the Measurements and in the Node Configuration . . 116

viii

CONTENTS

6.1.5 Handling of Anomalous Behavior 117
6.2 Current Implementation . 117

6.2.1 Remote Attestation Module 119
6.2.2 Description of the Attestation Protocol 120
6.2.3 Measurements in a P2P Overlay 122

6.3 Performance Results . 125
6.3.1 Attestation . 126

7 Code Obfuscation in a Virtual Environment 127
7.1 Threat Model . 128
7.2 System Blocks and Program Representation 128

7.2.1 Representing the Program Through System Blocks 129
7.2.2 Algorithm to Build the System Block Graph 132

7.3 Architecture of the Obfuscation Mechanism 137
7.3.1 Control-Flow Partitioning . 138
7.3.2 Encryption . 141
7.3.3 Run-Time Components . 142

7.4 Performance Results . 146

8 Trusted Overlays of Virtual Communities 151
8.1 Introduction . 151
8.2 Virtual Interacting Network Community Architecture 153

8.2.1 File Sharing . 154
8.2.2 Application Virtual Machines 158
8.2.3 Storage Virtual Machines . 159
8.2.4 Communication and Control Virtual Machines 163
8.2.5 Assurance Virtual Machines 164
8.2.6 Infrastructure Virtual Machines 164

8.3 Performance Results . 167

IV Final Remarks 169

Conclusions 171

List of Acronyms 175

A Meta-Compiler-Compiler Approach 177

B Retrieving Data-Structures through the Introspection Library 179

C Source Code of the Testbed Program 183

Bibliography 185

ix

CONTENTS

x

List of Figures

1 Process Virtual Memory Layout . xvi
2 Function Call Conventions (a); Overwriting the Return Address (b) . xviii

1.1 Process Self . 4

2.1 Type I Virtual Machine Monitor . 14
2.2 Type II Virtual Machine Monitor . 15
2.3 Shadow Page Table . 18
2.4 Full Virtualization and Para-Virtualization 19
2.5 Xen Split Device Drivers . 20
2.6 VM Exit and VM Entry Operations 21
2.7 Introspection Virtual Machine . 25
2.8 Overall PsycoTrace Architecture . 29

5.1 PsycoTrace Run-Time Architecture 78
5.2 Introspection Library: User-Space Page Mapping 82
5.3 Introspection Library: Kernel Memory Access 83
5.4 Rebuilding File Data-Structures through the Introspection Library . . 86
5.5 Context-Agent . 87
5.6 Injecting a Context-Agent . 92
5.7 Run-Time Invariant Evaluation . 100
5.8 Sliced Execution . 102
5.9 Time to Retrieve a Variable Value . 105
5.10 Assertion Checker Overhead . 106

6.1 Standard Boot-Time Integrity Checks 111
6.2 Example Scenario . 112
6.3 Start-up Attestation . 115
6.4 Current Implementation . 118
6.5 First Testbed Implementation . 119
6.6 Second Testbed Implementation . 120
6.7 Attestation Protocol Overview . 122

LIST OF FIGURES

6.8 Protocol in the Gnutella Implementation 124
6.9 Average Client Attestation Overhead 125
6.10 VPN Server Attestation Overhead 126

7.1 Control-Flow Graph (a) Unit Block Graph (b) System Block Graph (c)132
7.2 Unit Block Graph (a) and System Block Graph (b) for Example 1 . . 134
7.3 Unit Block Graph (a) and System Block Graph (b) for Example 2 . . 136
7.4 Unit Block Graph (a) and System Block Graph (b) for Example 3 . . 137
7.5 System Block Graph . 140
7.6 Obfuscation Run-Time Architecture 142
7.7 Protection Overhead: 1) Current Library; 2) Extended Library 148

8.1 Virtual Machine Templates . 155
8.2 Abstract Application Model . 156
8.3 File Request . 161
8.4 File System Virtual Machine Policy Enforcement and Query Generation163
8.5 Example of Communities and Virtual Community Networks 165
8.6 A Virtual Interacting Network Community Node 166
8.7 IOzone NFS Read Performance without Policy Enforcement 167
8.8 IOzone NFS Read Performance with Policy Enforcement 168

A.1 Meta-Compiler-Compiler Approach 178

B.1 Retrieving the Page Global Directory through the Introspection Library180

xii

List of Tables

4.1 Examples of The Grammar Generating Algorithm 66
4.2 Example of Source Code for P . 67
4.3 Context-Free Grammar for P . 68
4.4 Example of Source Code for P . 71
4.5 Invariant Table for P . 72

5.1 Traced System Calls . 95
5.2 PsycoTrace Scanner for P . 97
5.3 Context-Free Grammar for P and its Bison Representation 103
5.4 Overhead of System Calls . 105

6.1 Example of Attestation Response . 121

7.1 Obfuscation Strategy Implemented by Introspection Virtual Machine 139

B.1 Retrieving the Process List of the Monitored Virtual Machine 182

LIST OF TABLES

xiv

Introduction

Before describing the goals of the thesis and the methodologies that it proposes,
we briefly review some terminologies and some classes of attacks against a computer
system. A software bug is an error in a program, due to either a programming error
or an erroneous specification, that prevents it from behaving as intended. Some
bugs may cause the program to crash, freeze or halt and may be undetected for a
long time. A vulnerability is a bug that has security implications for the overall
system, i.e. it may enable an attacker to violate the security policy. An exploit
is a fragment of code and data that takes advantage of a vulnerability to violate
the security policy of a system. Finally, an attack executes an exploit to effectively
take advantage of a vulnerability. By composing several simple attacks, an attacker
implements a complex attack to achieve a goal of interest, which can be full system
control or denial of service.

At a high level, we can categorize attacks against a computer system into two
wide classes of attacks against the integrity of distinct components:

attacks against user-level processes, which allow an attacker to insert some
code into a process and, eventually, to diverge the original control-flow to
execute the injected code;

attacks against the kernel, which modify some kernel functionalities. Usually,
they are the final step of a complex attack because they require that the
attacker has already gained root privileges. If successful, they modify the
behavior of the kernel to hide any sign of the previous steps of the complex
attack against the system.

In the following, we describe buffer overflows and rootkits, the most popular
attacks that belong, respectively, to the first and second class.

Buffer Overflow

A buffer overflow [61] attack exploits a software vulnerability due to a program-
ming error so that a process may store data beyond the boundaries of a fixed-length

INTRODUCTION

Figure 1: Process Virtual Memory Layout

buffer. This results in the overwriting of adjacent memory locations, which may
store variables or control-sensitive data structures. Eventually, this erroneous mem-
ory update may crash the process or cause the execution of malicious code. Usually,
to implement a buffer overflow, an attacker sends a large amount of data to a
network process, coded in a type unsafe language that lacks a native array-bound
checking mechanism. If the listening process stores the received data in an under-
sized stack buffer, it may overwrite data on the call stack, such as the function’s
return pointer. If the data to be stored in the buffer has been properly crafted, the
attacker may overwrite the value of the return pointer with a value of her choice and
transfer the control to malicious code in the data itself. This part of the attack is a
control-hijacking attack [221], where the attacker diverges the program control-flow
to execute instructions in the transmitted data.

From a historical point of view, stack-based buffer overflows were already dis-
covered and analyzed in 1972 [7]. In 1996, [4] described in full detail how to exploit
stack-based buffer overflow vulnerabilities. The Morris worm (1988) is the earliest
known exploitation of a buffer overflow that spread over the Internet by exploiting
a flawed version of fingerd [224]. More recently, at least two worms have exploited
buffer overflows to compromise a fairly large number of systems over the Internet:
in 2001, the “Code Red Worm” exploited a buffer overflow in Microsoft’s Internet
Information Services, while in 2003 the “SQL Slammer Worm” compromised a large
number of hosts running Microsoft SQL Server 2000.

The ability of implementing a buffer overflow attack is strictly related to the
process virtual memory layout. As shown in Fig. 1, on x86 architectures running

xvi

INTRODUCTION

Linux, the private stack of a user process grows from high memory addresses to
lower ones. The C function calling conventions are relevant as well, since they rule:

(i) the order to allocate the function parameters;

(ii) where parameters are placed, either on the stack or in the processor’s registers;

(iii) whether the code of the caller or the one of the callee is responsible for un-
winding the stack on return.

A buffer overflow vulnerability is the joint effect of the process virtual memory
layout, in particular the stack growing from higher memory addresses to lower ones,
and the function calling conventions that impose to store local variables at memory
addresses that immediately precede the return address. For instance, several string
functions in C do not perform bound checking and can easily overwrite the bounds
of the buffers they operate upon. Most of these functions are legacy C library
functions, such as the infamous strcpy() and fgets().

As an example, in the following C fragment

1 void foo (char *str)
2 {
3 char buff [5] ;
4 strcpy (buff , str) ;
5 }
6 i n t main (i n t argc , char **argv)
7 {
8 foo (argv [1]) ;
9 }

the foo() function copies the string pointed by the argument str into the local
variable buff that can store at most five characters (actually, four characters plus
the trailing nul character). If the string is longer than five characters, eventually,
during the copy, some characters will overflow the receiving buffer. Figure 2(a) shows
the C calling conventions that dictate that local variables are stored at lower memory
addresses than the return address. For these reasons, in the previous example, the
strcpy() may end up overwriting the return address (see Fig. 2(b)). Furthermore,
since argv[1] is the first command line argument transmitted to main, and it is
directly passed as a parameter to the vulnerable function, the attacker can craft
the parameter to overflow the buffer and overwrite the return address. Then, if
the parameter codifies some malicious code, the execution of the original program
resumes at the return address specified by the attacker and it results in a malicious
behavior of the process. Usually, according to the privileges of the attacked process,
the malicious code spawns a root shell, which gives the attacker full control of the
system through privilege escalation.

Some known countermeasures to buffer overflow attacks are:

� avoid the use of vulnerable functions, such as strcpy(), fgets() and the likes,
that operate on nul-terminated strings and that perform no bounds checking;

xvii

INTRODUCTION

(a) (b)

Figure 2: Function Call Conventions (a); Overwriting the Return Address (b)

� prevent the execution of code on the stack. Since, usually, the malicious code is
stored on the stack, one simple countermeasure invalidates the stack to execute
any instruction, so that any attempt to execute code in the stack results in
a segmentation violation. However, this countermeasure is not fully general
because some compilers, such as GCC, use trampoline functions that require
an executable stack and, furthermore, it does not prevent heap-based buffer
overflows;

� apply static checks, as an example, by enabling compilers to produce warnings
on the use of unsafe invocations;

� enforce run-time checks: as an example, StackGuard [62] prevents smash stack-
ing attacks by protecting the return address on the stack by placing a canary
word (usually, a random value) next to this address and by generating code to
check this value before the function returns. If the canary has been altered,
then the stack has been successfully overflowed. In another scenario, the access
of a process to the run-time support is restricted. An example is libsafe [237],
a library that secures calls to unsafe functions. Further approaches apply a
sandbox, i.e. a mechanism that provides a tightly-controlled set of resources
to the running process [3].

These countermeasures may be integrated with an Intrusion Detection Systems
(IDS) [64] that provides an on-line auditing capability to detect attacks or anoma-
lous events. Most IDSes monitors the execution of a program or of a system and
raises an alarm if it diverges from a statistical model that describes the expected
behavior of the monitored entity. For example, a host-based anomaly IDS closely
monitors the activities of an application process and, if any of those activities de-
viates from the training-based statistical model, either it terminates the process or
flags its activities as suspicious. A further common way to model the acceptable
behavior of an application is to monitor the sequence of system calls invoked by the
corresponding process [228, 116]. If we assume that an attacker can inflict damage
to the system only by invoking some system calls, then by monitoring the system
calls that a process issues, an IDS can detect and prevent any malicious activities.
This approach poses the problem of deducing a statistical model that faithfully rep-

xviii

INTRODUCTION

resents the behavior of the application and that also minimizes both false positives
and negatives. In fact, one of the most complex issue to be faced is the false alarm
rate, which dramatically limits the usefulness of a statistical model [11]. It is worth
stressing that, due to the large number of system calls that a process invokes, even
a fairly low false alarm rate may result in a very large number of false alarms and
in a useless IDS that “cries wolf”.

Rootkits

A distinct class of attacks includes those attacks that modify some functional-
ities of the operating system (OS) kernel. In this way, an attacker can modify the
expected behavior of a program by altering the functions implemented by the under-
lying kernel rather than the program itself. Usually, an attacker has to gain root
privileges to modify the kernel behavior. A rootkit is a collection of software tools
that modify the kernel behavior so that: (i) system calls return bogus information
about the status of the system to hide the traces of the compromise; (ii) there is a
hidden path that allows the attacker to easily access the system at anytime. Since
any security strategy aimed at obtaining full control of a computer system, for at-
tacking or defending it, has to be applied at the lowest possible system level, rootkits
have gradually evolved from user-level rootkits to kernel-level ones [225]. In fact,
rootkits of the first generation run at the user-level and, usually, modify only critical
system binaries to hide specific processes or files owned by the attacker. Hence, they
can be easily detected by comparing the hash value of the original file against the
compromised one [135]. Rootkits of the second generation enable the attacker to
insert code into the kernel, e.g. to modify the behavior of a system call.

Static Code Analysis

There are several alternative approaches based upon static analysis to prevent
vulnerabilities or detect attacks. Some tools implement formal analysis to prove
properties of interest of a program, for example that its behavior matches that of its
specification [115]. Other tools may help the developer to avoid likely coding errors
or may locate potentially vulnerable code [77].

The approach that we propose considers a static analysis that exploits the con-
cepts of control-flow analysis and invariants to detect attacks. A basic block is a
linear sequence of program instructions with just one entry point, i.e. the first in-
struction executed, and one exit point, i.e. the last instruction executed. A control-
flow analysis represents a program as a control-flow graph, i.e. a directed graph
where the nodes represent basic blocks and the edges control-flow transfers. An-
other static analysis that the thesis exploits generates invariants, i.e. predicates on
the program variables. Invariants play a central role in static analysis and run-time
monitoring [74], because they can be exploited to verify some software properties,

xix

INTRODUCTION

such as type safety, or to check at run-time a set of constraints. In the approach
proposed in this thesis, integrity checks on a component are implemented through
invariants that are automatically inferred through data-flow analysis or abstract
interpretation. If the component is a user process, an invariant is defined on the
process state and it involves the values of both program variables and the program
counter. Alternative approaches deduce invariants either by monitoring the program
execution [75] or by applying data-mining techniques to the source code [5].

Data-flow analysis defines a set of techniques that derive information about the
flow of data along program execution paths. Each analysis couples every program
point with a value that represents an abstraction of the program states that flow
across that point. Alternative definitions of this state are possible. For example, in
the case of reaching definitions, the value of a variable is represented by the subset
of the program statements that produce a value for that variable. To generate
invariants, an analysis should couple each point in the program with the exact set
of definitions that can reach that point.

Abstract interpretation [58, 59, 60] is another framework to formally define an
analysis that returns invariants. An abstract interpretation over-approximates the
behavior of the program by modeling the effects of every statement on an abstract
machine. The operations of this machine abstract the various language constructs.
In general, an abstract interpretation associates each program point with a mapping
between each variable and an abstract value, i.e. a value in the abstract domain.
This value constrains the concrete values that the variable can assume and, as a
consequence, it defines an invariant on the concrete values at that point. As an
example, if the abstract domain is defined in terms of ranges of concrete values,
each abstract value may be transformed into an invariant that expresses that the
actual value belongs to the concretization of the abstract range.

Overview of the Proposed Framework

The goal of this thesis is to define and protect the expected run-time behavior
of a process, i.e. the process self, from those attacks that modify these expected
properties of the process [243, 245, 149, 148]. To define mechanisms to detect these
attacks, the thesis proposes a methodology that integrates a static analysis and run-
time checks. The static analysis of the program approximates the process self by
returning a description of the behavior of a process in terms of valid traces of system
calls that the process may issue and invariants on program variables that hold when
a system call is invoked. Run-time components compare this description against the
actual behavior and signal any difference. The proposed approach considers attacks
that result in a process behavior that is inconsistent with the process self. This
behavior is usually due to the insertion of malicious code into the running process.
Since this code is not present in the original program, its execution results in process
behavior different with respect to the one codified by the source code.

xx

INTRODUCTION

The static analysis can be formally described as the computation of a context-
free grammar that describes the legal sequences of system calls and of invariants
that hold when a system call is issued. Its correctness may be proved by abstract
interpretation techniques. Then, at run-time, the system calls that a process invokes
are traced to verify that:

1. the values of the process variables satisfy the invariant coupled with the system
call;

2. the system call trace is a prefix of at least one string of the context-free gram-
mar.

To apply these checks in a robust and unobtrusive manner, we exploit virtualiza-
tion technology. This technology does not require the introduction of specialized
hardware units to apply the checks and it increases the robustness of the overall
approach by executing two virtual machines concurrently, namely the monitored
virtual machine and the introspection virtual machine. The first virtual machine
executes the system that runs the monitored process, while the second one is a
privileged machine that inspects the state of the monitored machine through virtual
machine introspection, which is a technique that directly accesses the status of the
components allocated to the monitored machine. By accessing the memory of the
monitored virtual machine, the monitoring virtual machine can evaluate invariants
on the state of a process on this machine to assure that the process self is consistent
and the underlying kernel has not been attacked. This last check is required to
protect the integrity of the kernel against malicious modifications, so that we can
guarantee that system calls behave in a consistent manner. The protection of the
kernel is fundamental because, by subverting the kernel, an attacker can alter the
behavior of a process even if its system call trace and the invariants are coherent
with the output of the static analysis.

Even if the original reason in favor of virtualization is that introspection can be
implemented in a transparent way, without modifying either the process or the un-
derlying OS, this thesis also shows that the joint adoption of the proposed framework
and of virtualization offers further advantages to develop a highly robust informa-
tion and communication technology (ICT) system. In particular, a key advantage
of virtualization is the ability of strongly reducing the cost of increasing the number
of system nodes. This, in turn, can be exploited to minimize the amount of shar-
ing among nodes and applications by defining highly parallel virtual networks that
increase the overall system robustness.

To summarize, the focus of the thesis is on the definition of the expected run-
time properties of a process and on the definitions of transparent, i.e. non obtrusive,
checks on these properties, by integrating a static analysis and run-time monitoring
based on virtual machine introspection. The static analysis builds a grammar that
defines the process self as a a language where the terminal symbols are pairs that

xxi

INTRODUCTION

consist of a system call and an invariant that must hold when the system call is is-
sued. Each string of the language describes the system call sequence and the variable
values of distinct execution of the program. Run-time tools detect attacks against
the process self by checking that the actual sequence of system calls corresponds to
one string of the language and that each invariant holds when the corresponding call
is issued. The adoption of virtualization supports not only a fully transparent im-
plementation of the proposed framework, but also the definition of other strategies
to increase the overall system robustness.

Main Contributions of the Thesis

The main contributions of the thesis include:

� the definition of the process self in terms of a context-free grammar of sys-
tem calls and invariants on the process state; this solution merges the ability
of constraining the sequence of system calls with that of coupling memory
assertions with such calls and results in a high detection capability;

� the definition of PsycoTrace, a robust framework to check the process self in
a fully transparent way. PsycoTrace does not require modification either to
the monitored process or the underlying OS so that the process is unaware
of being monitored. PsycoTrace can also protect kernel integrity with a high
degree of robustness;

� the definition of a mechanism to bridge the semantic gap by transparently
injecting an agent into the memory of a virtual machine;

� the definition of a framework that extends PsycoTrace to remotely attest the
integrity of a node willing to join an overlay that generalizes the Trusted
Platform Module (TPM) by applying granular checks on the integrity of a
node that also consider the behavior of the node;

� the definition of the notion of system block and its adoption to both increase
the accuracy and reduce the complexity of a static analysis to compute invari-
ants of a program;

� an extension of PsycoTrace to protect a process against physical attacks by a
novel code-obfuscation strategy that exploits virtualization to effectively split
the program logic between two virtual machines. The first machine stores the
system blocks of the original program, whereas the second virtual machine
stores the system block graph and the keys to decrypt the blocks. Moreover,
the second virtual machine applies introspection to continuously encrypt and
decrypt memory regions in the other virtual machine according to the system
block graph;

xxii

INTRODUCTION

� the definition of a strategy to manage and protect an ICT infrastructure shared
among users and applications with distinct trust and reliability levels. The
strategy exploits highly parallel overlays of virtual machines, where each vir-
tual machine is an instance of a specialized template customized to run a small
set of software components.

Outline of the Thesis

The thesis is structured as follows:

Part I: Background

Chapter 1: Measuring the Semantic Integrity

This Chapter deepens and formalizes the notion of program self, seman-
tic integrity and the models underlying static analysis by describing the
extraction of a model that characterizes the normal behavior of the pro-
gram. Moreover, it introduces PsycoTrace, the framework that we have
defined.

Chapter 2: Virtualization-based Security

This Chapter discusses virtualization technology, with emphasis on vir-
tual machine introspection, and some applications of virtualization in the
field of security.

Chapter 3: Related Works

This Chapter discusses the related works with respect to sense of self,
virtualization for security, TPM and remote attestation, code obfuscation
and collaborative virtual environments.

Part II: Principles and Implementation

Chapter 4: Description of the Process Self

This Chapter discusses the description of the process self in terms of
a context-free grammar, which defines the legal system call traces that
the process may execute, and invariants that hold when a system call is
issued. The static tools that build the description are presented as well.
The references for this Chapter are [16, 15].

Chapter 5: Run-Time Architecture

This Chapter describes PsycoTrace run-time architecture. This architec-
ture exploits virtual machine introspection first of all to check that the
current trace is coherent with the grammar and to evaluate invariants
at each system call invocation. Virtual machine introspection is also ap-
plied to monitor the kernel to detect modifications by an attacker trying

xxiii

INTRODUCTION

to insert and execute arbitrary instructions to alter the behavior of the
kernel. Moreover, the Chapter presents a methodology and an implemen-
tation of mechanisms to transparently inject, and protect, an agent into
a running virtual machine through virtual machine introspection. The
references for this Chapter are [18, 19] as far as concerns kernel integrity
and [233, 13] for the process self integrity.

Part III: Applications of the Proposed Approach

Chapter 6: Remote Attestation of Semantic Integrity

This Chapter presents a framework (VIMS) to protect and remotely at-
test the integrity of a system by integrating an initial attestation and a
continuous monitoring to discover malware. VIMS is a framework based
upon PsycoTrace that considers not only the configuration of the sys-
tem to be attested but also its semantic integrity. The reference for this
Chapter is [12].

Chapter 7: Code Obfuscation in a Virtual Environment

This Chapter discusses a new approach for code obfuscation that stems
from virtualization and PsycoTrace run-time architecture that can be
applied to protect a virtual machine from physical attacks aiming to
access its program or its data. This solution maps the control-flow graph
of the program into a system block graph, where a block is any portion of
program in-between two consecutive system calls. The reference for this
Chapter is [63].

Chapter 8: Trusted Overlays of Virtual Communities

This Chapter presents Vinci, an architectural framework that exploits
virtualization and PsycoTrace to share in a secure way an ICT infras-
tructure among a set of users with distinct trust levels and reliability
requirements. The references for this Chapter are [205, 17, 21, 20, 14].

xxiv

Part I

Background

Chapter 1
Measuring the Semantic Integrity

This chapter introduces PsycoTrace, a framework aimed at the definition of a
robust system to defend the integrity of a process by integrating static and run-time
tools. Static tools analyze the source code to define the process self [228], i.e. the
essential characteristics of the process that describe its correct behavior. Run-time
tools monitor a process execution through introspection by accessing the values of
the process variables and other information in the process status.

1.1 Process Self

A key issue of this thesis is the definition of the properties of a process that can
be extracted from the program that the process is currently executing. In general, a
process is an OS concept that involves dynamic properties, such as signals, whereas a
program is a static notion related to a programming language. A strong correlation
between a process and a program is established as soon as the process overwrites
its address space with the code of the program that it executes. By doing so, the
process also inherits some of the program’s properties.

Definition (Process Self). The properties of a process that determine its run-time
behavior define the process self.

We assume that an attack against a process results in a modification to the
process self, i.e. if the process current behavior deviates from the process self then
the process code has been altered by an attack.

Definition (Measuring the Semantic Integrity). The act of defining the process self
and of monitoring the actual process behavior to assure that it is coherent with the
process self is referred to as measuring the semantic integrity (see Fig. 1.1).

Since we are only interested in defining and checking the properties that can
be extracted from the program, the process self does not include some OS-based

CHAPTER 1. MEASURING THE SEMANTIC INTEGRITY

properties, such as signals, scheduling, priority. Hence, when monitoring the process
current behavior at run-time, these OS-based properties have to be excluded.

Definition (P). P is a generic process that we want to protect.

Definition (Self(P)). Self(P) refers to the process self of P .

Definition (SourceCode(P)). SourceCode(P) refers to the source code of the pro-
gram executed by P .

Figure 1.1: Process Self

1.2 Description of the Process Self

Alternative definitions of a process self are possible, each offering a distinct
ability of detecting inconsistencies, and hence attacks, between the process self and
the actual process behavior. Each definition corresponds to a distinct monitoring
overhead. To offer different trade-offs between detection capability and overhead,
PsycoTrace supports several alternative definitions of the process self. As previously
discussed, system calls are the common base of all the strategies. Currently, the
following descriptions are supported:

4

1.2. DESCRIPTION OF THE PROCESS SELF

1. hashing or memory invariants; it defines memory invariants to be evaluated
anytime P issues a given system call;

2. forbidden calls: it defines the set of system calls that P cannot issue;

3. forbidden parameters: it defines the set of system calls that P cannot issue or
assertions on parameters it cannot transmit to a call;

4. allowed calls: it defines the set of system calls that P can issue and pairs each
call with assertions on its parameters;

5. enriched traces: an enriched trace describes the sequence of system calls that
P issues in one execution; each call may be coupled with a memory assertion.
A set of enriched traces fully describes alternative legal behaviors of P .

Any strategy applies distinct measurements and results in a distinct attack de-
tection capability. Strategies 1, 4 and 5 implement a default-deny approach that
defines legal system calls, whereas 2 and 3 implement a default-allow strategy that
describes forbidden calls. In general, default-allow strategies are more permissive,
e.g. have a lower detection capability, than default-deny strategies. As a counter-
part, default-allow strategies simplify the definition of P self by enabling the security
policy to directly define the calls to be forbidden. Complexity increases for default-
deny strategies that apply static tools to compute the expected behavior. These
tools can be applied only if SourceCode(P) is available and they return a descrip-
tion of traces of P that strictly includes those that P actually produces, so that
no false positive arises but false negatives cannot be avoided. Assertions minimize
the number of false negatives, because an assertion coupled with a call may signal
an anomalous behavior that the trace cannot detect, and increase the likelihood of
detecting mimicry attacks [244].

The most complex and rigorous strategy applies enriched traces to constrain
both the system calls that P can issue, their ordering into traces and the values of
variables. To support this strategy, PsycoTrace static tools analyze SourceCode(P)
to approximate the process self by returning a description of the Self(P) that is
CFG(P) and IT (P).

Definition (CFG(P)). CFG(P) is a context-free grammar that defines the system
call traces that P may issue during its execution.

Definition (IT (P)). IT (P) is an invariant table that includes a set of invariants
{I(P, 1), . . . , I(P, n)}, each associated with a program point i where P invokes a
system call.

This strategy merges the ability of constraining the sequence of system calls
with that of associating memory assertions with such calls. This results in a high
detection capability whose counterpart is the overhead due to the parsing of the

5

CHAPTER 1. MEASURING THE SEMANTIC INTEGRITY

trace and the evaluation of assertions. The thesis is focused on this strategy as it
offers noticeable advantages. PsycoTrace can also support other strategies to define
the process self that we have not investigated, such as a default-deny strategy that
describes the process self through a specification language. A first example of this
strategy is the one where the context-free grammar is a user input rather than an
output of static tools. Obviously, this may increase the detection capabilities of
PsycoTrace at the expense of a large number of false positives. This solution can be
easily integrated into the framework to improve detection anytime the static tools
return a description that does not constrain the behavior of P and it works even
when SourceCode(P) is not available.

1.2.1 Context-Free Grammar

To justify the description of the process self that has been adopted, consider that,
even if in principle any behavior can be described just by associating assertions with
system calls, we can simplify the description by formulating it in terms of sequences
of system calls and of assertions coupled with system calls. A context-free grammar
(CFG) is a synthetic description of the set of strings of system call tokens that
the process can produce at run-time. We believe that a CFG is an acceptable
compromise between two contrasting requirements, i.e. efficiency and complexity of
the parsing. To check the consistency of the actual behavior of a process against
the expected one, a run-time tool parses the string that describes the system calls
produced up to a given instant and checks if it is a prefix of at least one grammar
string. Hence, the overall run-time efficiency is inversely related to the parsing
complexity and it is optimal for a regular grammar and less and less efficient for
context-free and context-dependent grammars. On the other hand, as the grammar
complexity decreases, it increases the probability of a false negative, e.g. of accepting
a too large set of sequences and of classifying as normal an anomalous behavior. As
an example, if a process invokes several system calls within distinct loops a regular
grammar cannot constrain the traces when the two loops generate the same number
of calls. Consider a process that opens some files, works on them and then closes
all the open files:

1 f o r (i = 0 ; i < n ; i++)
2 {
3 . . .
4 open (file [i]) ;
5 . . .
6 }
7 . . .
8 f o r (i = 0 ; i < n ; i++)
9 {

10 . . .
11 close (file [i]) ;
12 . . .
13 }

6

1.2. DESCRIPTION OF THE PROCESS SELF

A regular grammar cannot check that the same number of files are at first opened
and then closed. Another advantage of CFGs is the ability of distinguishing among
distinct invocations of the same system call in distinct program points. Further-
more, a CFG can describe the expected sequence of system calls and map calls with
assertions, due to semantic actions, in a more concise and neat way than a regular
grammar that cannot associate an action with a system call and a program counter
(PC), but only with a system call. Lastly, several parser generator tools such as
Bison [68] and the like takes as input grammar encoded in CFG syntax so that the
adoption of a CFG simplifies the building of the system call parser.

Even if, in general, the trade-off between complexity and accuracy may depend
upon the security level of interest, for the previous reasons, PsycoTrace adopts a
grammar CFG(P) to describe the legal traces of P , i.e. the sequences of system
calls that P may produce. At run-time, the current trace of P , i.e. the sequence of
system calls that the execution of P has generated up to a given instant, is legal if
and only if it is coherent with CFG(P), i.e. it is a prefix of at least one string of
the language L(P) generated by CFG(P).

1.2.2 Assertion Generation

To compute assertions in enriched traces, the static tools apply a data-flow anal-
ysis that considers, for each system call s in SourceCode(P), the set of reaching
definitions of the instruction i that implements s. In general, s is a high level in-
struction that is implemented by invoking i. However, the detailed implementation
of s is uninfluential as far as the computation of assertions is involved. A reaching
definition for a variable v that may be referred by i is an instruction j that computes
an expression e, assigns its value to v, and this value of v is still valid in i. If none
of the variables that e refers to has been updated in-between j and i, then not only
the value of v is still the one computed at j but also the assertion v == e holds
at i. Notice that, to generate assertions, we are interested in all the variables that
reach i even if i does not refer all of them. This is the reason why the notion of
reaching definitions of PsycoTrace generalizes the classical definition by saying that
v is any variable that i may refer, rather than the variable that is actually referred
by i. If several definitions for v reach i and none of their variables has been updated
in-between j and i, then the value of v is equal to the expression in one of the
definitions that may reach i. Hence, an assertion:

(v == e1)|(v == e2)| . . . |(v == ek)

holds at i, where j = 1, . . . k is an instruction that computes ej and assigns its value
to v.

The cases previously defined can be generalized if we consider that PsycoTrace
run-time tools can access the process variables through introspection anytime it
invokes a system call. By exploiting this ability, PsycoTrace can define an assertion

7

CHAPTER 1. MEASURING THE SEMANTIC INTEGRITY

even if a variable w in e has been updated in-between j and i because run-time tools
may access and copy the value of the variable w of P before it is updated. As an
example, an assertion can be generated anytime there is at least one system call in-
between j and the first statement that updates w because, when analyzing this call,
the run-time tools can save the current value of w. In this case, the assertion coupled
with a system call refers to the saved value rather than to that in the memory of
P . If i refers several variables v1, . . . , vj then the assertion coupled with i has the
structure:

A(v1)& . . .&A(vj)

where each A(vh), h = 1, . . . , j is computed as previously defined.
In the most general case, invariants coupled with system calls of enriched traces

are based upon reaching definitions for any program variable. Instead, if some
other PsycoTrace strategies to describe the process self are adopted, then the static
analysis may consider the reaching definitions of system call parameters only.

1.3 Formal Models for Static Analysis

This section presents a more formal description of the previous analysis in terms
of a reaching definitions analysis. Then, it describes an alternative approach to
compute assertions based upon an abstract interpretation framework.

1.3.1 Reaching Definition Model

The set of reaching definitions r(q) of a program point q is defined as the set
of pairs (x, p) where x is a program variable and p is a program point where the
definition of x computed at p may reach q. Suppose q is an assignment, and:

� expr(q) is the right-hand side of the assignment;

� var(q) is the left-hand side of the assignment.

To compute an assertion coupled with q, let us consider a variable x and suppose,
for the moment being, that there is just one definition for x that reaches q, i.e.
r(q) = (x, p), then we may map with q the assertion (var(p) == expr(p)) if the
following condition holds:

∀y ∈ expr(p), (y, s) ∈ r(p)⇔ (y, s) ∈ r(q)

Informally, if any definition that reaches p also reaches q, then the value of expr(p)
does not change if it is computed at q. Hence, the corresponding assertion holds at,
and may be coupled with, q. This condition is sufficient but not necessary since one
ore more statements can update a variable in exp(q) in-between p and q but without
changing its value. If the previous condition is not satisfied because some variables

8

1.3. FORMAL MODELS FOR STATIC ANALYSIS

in expr(p) are updated, then we may generate an assertion by saving a copy of the
values of these variables. Thus, if z is the first system call instruction after q and
the following condition holds:

∀y ∈ expr(q), (y, s) ∈ r(p)⇔ (y, s) ∈ r(z)

then the value of variables of interest has not be updated and we can read the values
of some variables in z and the assertion in q may refer to the values that have been
copied in z rather than the current ones in the memory of P .

1.3.2 Abstract Interpretation Model

This section describes how to transform any abstract interpretation into one that
returns the assertions coupled with a program point.

An abstract interpretation of a program simulates its execution by modeling the
effects of every statement on an abstract machine. If the behavior of the language
constructs is properly defined, then the abstract execution over-approximates the
behavior of the system. This implies that the abstract system is simpler to analyze,
but it may lack completeness, i.e. not every property true in the original system
holds for the abstract system. On the other hand, abstract interpretation is sound,
i.e. every property that is true in the abstract system can be mapped onto a true
property in the original system. Several abstract interpretations have been defined
that formally define an analysis that returns linear relations among variables of
programs. One of the main uses of these relationships is to compute at compile
time a specified numeric sub-range for each integer variable so that each integer
expression may be coupled with a range that always includes the actual value of the
expression itself. In this way, each abstract interpretation maps with each program
point, i.e. each arc of the control-flow graph, an assertion that states that each
variable belongs to the concretization of the sub-range.

While each of these interpretations can be applied to compute assertions, we
show how to transform each interpretation into one that fully exploits introspection
to increase the accuracy of assertions and, hence, the amount of information that is
available on the process self. Any abstract interpretation consists of:

� an abstract domain α(S), which maps concretes objects (states, traces, ...)
with abstract ones;

� a set of abstract operators AbsOp, to model the effects of the language con-
structs on the objects of the abstract domain;

� the abstraction function α, to map concrete objects into abstract ones;

� the inverse concretization function γ, which maps an abstract object into some
concrete one.

9

CHAPTER 1. MEASURING THE SEMANTIC INTEGRITY

Often it is required that (α, γ) is a Galois connection. Any abstract interpretation
maps each program point with an abstract state s ∈ S that maps each program
variable into an abstract value.

To transform the original abstract interpretation into the one to generate asser-
tions, first of all we consider a set of program points and map each point in this subset
with a distinct label l ∈ Lab, where Lab is a finite set of labels. Then, we define an
abstract state of the new interpretation as a finite set of elements from the Cartesian
product of the abstract state domain of the original interpretation and Lab. Hence,
a new abstract state s1 consists of a set of pairs S1 = {< s ∈ S, l ⊆ Lab >}, where
s is defined as in the original abstract interpretation. A new abstract state can-
not include two pairs such that the second elements of the pairs are equal. In this
case, the two pairs are merged into a pair where the first element is the least upper
bound of the two states in the original domain and the second element is equal to
the second element of the two original pairs. In the new abstract interpretation, if
a program point receives an abstract state s1, then it computes an abstract state
that includes all the pairs < os, ol > that can be computed starting from any pair
< s, l > in S1 as follows:

� os is produced by applying the abstract operators in AbsOp to s,

� ol is produced by inserting the label (if any) coupled with the considered point
into l.

A program point where two or more control-flows merge produces a single abstract
state that merges the abstract sets coupled with each flow, whereas a program point
with two or more possible successors transmits the abstract state that it computes
to each successor. To prove that we have defined an abstract interpretation, consider
that Lab is finite and:

(a) if there are no loops, the number of states that reach a program point depends
on the number of control-flow paths;

(b) if there are loops, the fixed point of the abstract state coupled with a program
point is reached when the abstract version of the language constructs add no
further labels to the abstract states that reach the point. This fixed point is
reached since Lab is finite.

The new abstract interpretation maps each program point with a set of states that
depend upon the instructions belonging to the paths that reach the program point.
Moreover, it does not consider the number of times an instruction has been executed,
but only the distinct paths of the control-flow graph to the instruction. Then, we
may map each program point with an assertion generated as follows: given the
abstract value of a variable, the assertion states that the concrete value of this
variable should belong to the set that is the union of the concretizations of the
values in the set that includes all the abstract values of the variable in the different

10

1.3. FORMAL MODELS FOR STATIC ANALYSIS

elements of the abstract state. In other words, we consider all the values of the
variable in all the pairs in the abstract states, map each value into the concrete ones
and merge all these concrete values. As an example, if an abstract state includes
n pairs that map x into, respectively, a1, . . . an, then the assertion states that x
belongs to the union of the concretization of ai, 1 ≤ i ≤ n.

To return assertions that constrain in a more accurate way variable values, Psy-
coTrace run-time tools can remember those labels that have been met during the
current execution of P . In this way, when building the set of abstract values for a
variable, run-time tools can include only those states coupled with labels that have
been met in the current execution. At the expense of analyzing at run-time some
abstract information coupled with a program point, namely the labels coupled with
each element of an abstract set, this strategy reduces the amount of indeterminacy
due to a static analysis. This also shows the difference of defining abstract inter-
pretation for program monitoring and for program optimization because the latter,
in general, does not access the actual program state. In our framework, the only in-
structions that may be coupled with a label are system calls and the abstract states
of interest to deduce assertions are those coupled with a system call.

A distinct approach exploits the notion of system block graph (discussed in
Chap. 7) and introspection to increase the precision of the abstract interpretation,
by reducing the complexity of the code to be statically analyzed. In fact, by ana-
lyzing each system block, i.e. the code in-between two successive OS invocations in
isolation, this approach computes the relations between the variable values at the
beginning and those at the end of the system block. By exploiting these relations,
and the ability of applying introspection to access the values of these variables at
the beginning of a system block, this approach strongly increases the amount of in-
formation on variable values at the end of a system block and, hence, the constrain
on the process behavior that the static analysis can return. This strategy not only
increases the overall precision of this approach but also reduces the complexity of
the static analysis because it considers only a set of code fragments, i.e. the system
blocks, each analyzed independently from the other ones, rather than a complete
program.

In the next chapters, we first discuss virtualization, because it allows PsycoTrace
run-time tools to implement introspection in a transparent way, and then, after re-
viewing some related works, we will discuss in details each component of PsycoTrace
and the corresponding implementation.

11

CHAPTER 1. MEASURING THE SEMANTIC INTEGRITY

12

Chapter 2
Virtualization-based Security

This section discusses how virtualization can increase the overall security level of
an ICT system by simplifying attack detection and confinement. In fact, while in-
trospection simplifies the analysis of the state of a virtual machine to detect attacks,
the ability of increasing the number of virtual machines running user applications
and services minimizes the sharing among such applications and services. A key
advantage of virtualization is that its adoption may be transparent for the applica-
tions and the OSes. It is important to notice that the most popular reasons that
favor the adoption of this technology are related to rather distinct considerations,
such as the strong simplification in system administration and management as well
as to energy saving. Hence, the ability of exploiting the technology to increase the
overall security is a further important advantage that should not be missed.

2.1 Virtualization Technology

In computer science, a virtual machine (VM) is an abstract computing system
that is defined not to build a physical machine but as a step towards the solution of
a problem. As an example, any computing system can be described as a hierarchy
of VMs that covers the range from an actual physical machine to the abstract one
that interfaces the final user. Any machine in the hierarchy is built on top of, and it
abstracts, the underlying machine to define programming languages and resources
more oriented to the problem of interest. This design and implementation strategy
simplifies the portability and the reuse of one or more layers, as exemplified by the
Java virtual machine. Here we will consider a more specialized version of the VM
concept and of the corresponding technology because we are interested in VMs that
implement a software emulation of the program environment defined by a physical
architecture. Such a VM enables a user to run the program stack, from the OS to
the applications of interest, as it happens on a physical architecture. Properties of
the architecture to be emulated, such as the amount of memory, or the connected

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

physical devices are fixed when the VM is configured. The replacement of a physical
system with a VM should be fully transparent to the applications and to the OS, so
that they can run unchanged.

While virtualization is rooted in time-sharing and in IBM OSes [110, 175, 211],
interest has been revitalized by the diffusion of personal computers, as an attempt
to preserve their existence in spite of Moore’s law because the increasing computing
capability of hardware components reduces their utilization and, hence, their cost
effectiveness.

Figure 2.1: Type I Virtual Machine Monitor

If we consider the hierarchy of software layers proper of any computer system,
there are two of these layers where our flavor of virtualization can be introduced. To
define them, first of all we introduce the concept of virtual machine monitor (VMM)
[104, 103], the software component that creates, manages and monitors VMs. Two
kinds of VMM exist:

Type I VMM: this VMM is a thin software layer that runs on top of the hard-
ware/firmware layer. The VMs on this VMM emulate the behavior of the
underlying physical machine. In this way, a standard machine can support
several VMs, each running a distinct OS, as shown in Fig. 2.1.

Type II VMM: this VMM runs on top of a host OS and a VM is implemented
as a process that runs an emulator of the physical architecture of interest.
Each VM supports a guest OS that, in turn, supports user applications (see
Fig. 2.2). Resource requests from an application are transmitted to the guest
OS that maps them into requests to the host OS of the underlying physical
machine. In general, the resources that the host OS allocates to a VM are those

14

2.1. VIRTUALIZATION TECHNOLOGY

that can be accessed by the user that creates the VM. The VMM determines
in either a dynamic way or at configuration time, e.g. when the VM is created,
the amount of resources to be allocated to each VM.

Figure 2.2: Type II Virtual Machine Monitor

Each type of VMM can emulate a physical machine by applying a range of im-
plementation strategies that span from run-time interpretation of each assembly
instruction to dynamic rewriting of sequence of assembly instructions by the em-
ulator that then stores the output of the translation in a cache to minimize the
translation overhead. Assuming that a VM has the same interface of the physical
machine, then any implementation strategy should maximize the number of instruc-
tions directly executed by the physical machine without any software mediation. To
determine instructions that can be directly executed, first of all we have to consider
sensitive instructions, i.e. those assembly instructions, such as I/O ones, whose ex-
ecution involves the resources shared with other VMs and that can reveal that the
physical machine has been replaced by a virtual machine. The execution of sensitive
instructions depends upon the mapping of virtual resources into physical ones and it
cannot be fully implemented by dynamic rewriting only. Hence, any implementation
strategy can, at most, avoid any software mediation for non-sensitive instructions
only. A simple condition to verify if an architecture can be virtualized is if it allows
any sensitive instructions to be trapped when executed in any but the most privileged
mode [187]. This is the reason why several systems run the assembly code of a
VM in a low privilege ring so that any attempt to access a physical resource by
a sensitive instruction results in an exception. The handler of the exception can
resume the emulator that is in charge of managing the physical resources. While
the solutions proposed by this thesis can be applied to any VMM, in the following,

15

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

because of performance and security reasons, we will consider solutions based upon
a type I VMM only. First of all, the existence of two OS layers strongly increases the
complexity of the execution of sensitive instructions. Furthermore, the complexity
of these layers increases the number of vulnerabilities and reduces the overall ro-
bustness. Our choice in favor of a type I VMM because of its low complexity with
respect to an OS has the important implication that any solution to increase the
overall robustness should minimize the number of extensions to the VMM.

Since one of its goals is to confine erroneous or malicious behavior of any VM,
the VMM should monitor any access of a VM to shared resources such as primary
or secondary memory. Furthermore, it should also prevent a VM from exhausting
a shared resource because this may slow down other VMs. The confinement that
a VMM can guarantee is fundamental for security because it strongly increases the
complexity of attacking another VM even for an attacker that already controls a
VM. This is the reason why VMs may be used to analyze code that is potentially
dangerous or to debug a system.

2.1.1 Current Products

From our point of view, the most interesting VMMs currently available are those
supplied by, respectively, VMware [119] and Xen [26].

2.1.1.1 VMware

VMware VMMs can be stand-alone or hosted. A stand-alone VMM is the one
more interesting for our approach as it is basically a type I VMM that runs directly
on the hardware and that lets users create their VMs. On the contrary, a hosted
VMM is a type II VMM that runs as an application on a host OS that it exploits for
memory management, processor scheduling, hardware drivers, and resource man-
agement. Since VMware products are targeted towards x86-based workstations and
servers, they have to manage the problems posed by a not fully-virtualizable ar-
chitecture. As a matter of fact, the previous condition on sensitive instruction is
violated by the x86 that contains both non-privileged sensitive instructions and priv-
ileged instructions that fail silently [197]. To this purpose, portions of the code of
a VM have to be dynamically rewritten to insert traps wherever the VMM inter-
vention is required. To minimize the resulting overhead, the translation results are
cached and reused wherever possible. This solution is strongly related to the x86
architecture, where the protection mechanism provides four privilege levels, or rings,
from 0 through 3. In the original design, ring 0 is meant for OSes and kernel services,
ring 1 and 2 for device drivers, and ring 3 for applications. However, in most cases,
both the OS and the device drivers run completely in ring 0 and applications in ring
3. Privileged instructions may be executed only in ring 0, and cause a protection
violation if executed in any other ring.

16

2.1. VIRTUALIZATION TECHNOLOGY

VMware Workstation is a hosted VMM that has three components: the VMX
driver and VMM installed in ring 0, and the VMware application (VMApp) in ring 3.
The VMX driver is installed within the OS to gain the high privilege levels required
by the VMM. When it is executed, the VMApp cooperates with the VMX driver
to load the VMM into kernel memory and assign to it the highest privilege ring,
ring 0. At this point, the host OS knows about the VMX driver and the VMApp
but not about the VMM. Now the machine supports two worlds: the host world
and the VMM world. The latter interacts directly with the processor hardware, or
through the VMX driver, with the host world. However, every switch to the host
world is expensive from a performance perspective as it requires all the hardware
states to be saved and restored on return. When the guest OS or an application
run CPU-bound programs, they are executed directly through the VMM. Instead,
I/O instructions are privileged ones that have to be trapped by the VMM and
executed in the host world. I/O intensive applications are slowed down because the
I/O operations requested by a VM are translated into high-level I/O-related calls.
These calls are eventually invoked through the VMApp in the host world and their
results are communicated back to the VMM world.

The ESX server is a standalone VMM that does not require a host OS and
can run on a bare machine. It handles all the I/O instructions, which require the
installation of all the hardware drivers and related software, and it implements
shadow versions of system structures, such as page tables (see Fig. 2.3), by trapping
every instruction that attempts to update them. This corresponds to the adoption
of one extra level of mapping in the page table. The virtual pages of a process are
mapped into physical pages through the page tables of the guest OS. Then, the
VMM maps a physical page into a machine page that, eventually, is the correct one
in the physical memory. The ESX server applies several techniques to increase the
overall efficiency and levels of isolation to keep VMs independent from one another.

2.1.1.2 Xen

Due to its inherent features that cannot be virtualized [197], the x86 archi-
tecture increases the complexity of achieving both high performance and strong
confinement. In addition, completely hiding the effects of resource virtualization
from guest OSes may result in several problems for both correctness and efficiency.
These reasons underlie the choice of some researchers at University of Cambridge
to design and develop Xen, a modified architecture for virtualization that exports
a para-virtualized architecture to each of its VMs to maximize performance and
resource isolation while preserving the same application binary interface as com-
modity OSes. While full virtualization exports to the OS an exact replica of the
interface of the underlying architecture, para-virtualization requires some modifi-
cations of the OS to be run on a VM (see Fig. 2.4). Although Xen requires the
porting of an OS, the minimization of this effort is a project goal. Another goal is
running hundred of VM instances on a single physical machine with a reasonable

17

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

Figure 2.3: Shadow Page Table

performance. By applying para-virtualization, Xen can export a new VM interface
that aims at improving both performance and scalability. A new lightweight event
mechanism replaces the traditional hardware interrupts in the x86 architecture for
both CPU and device I/O. Asynchronous I/O rings (see Fig. 2.5) are used for simple
and efficient data transfers between the VMs and the VMM, or hypervisor in Xen
terminology. For security purposes, each VM registers with Xen descriptor tables
for exception handlers and, with the exception of page faults, the handlers remain
the same. To avoid the indirection through Xen on every call, guest OS can install
fast handler for system calls, allowing direct calls from an application into its OS.
Even if guest OSes have a direct access to hardware page tables, to implement a
secure but efficient memory management technique, page table updates are batched
and validated by Xen. Instead, in VMware systems, the VMM traps and applies

18

2.1. VIRTUALIZATION TECHNOLOGY

Figure 2.4: Full Virtualization and Para-Virtualization

every update to the page table. In particular, the invocation of a fork() to create
a process, results in a huge number of updates that might result in a noticeable
performance loss that can be reduced through Xen batched updates. Each guest
OS can access a timer interface and is aware of both “real” and “virtual” time. In
this way, Xen tries to build a more robust architecture that preserves all the critical
features for application binaries while minimizing the porting effort for a guest OS.

Xen Memory Management. A first consequence of para-virtualization is that
each time a guest OS updates the memory mapping of a process, Xen has to in-
tercept the update to prevent interferences among VMs. To deal with memory
virtualization, one the most complex task for a hardware-level VMM, Xen considers
three distinct issues:

1. physical memory management, e.g. how to avoid memory fragmentation;

2. virtual memory management, e.g. how to minimize the overhead introduced
by VMs scheduling;

3. page table (PT) management, e.g. how to validate each memory access to
satisfy the isolation requirement among VMs.

To give to guest OSes the illusion of a contiguous address space, Xen defines
two distinct address spaces: Machine memory, i.e. the total amount of physical

19

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

Figure 2.5: Xen Split Device Drivers

memory of the host that runs Xen, and Pseudo-Physical memory, i.e. the space
address as seen inside a VM. Two tables implement the mapping between the two
address spaces: Machine-to-Physical (M2P), which maps physical memory pages
into pseudo-physical pages, and Physical-to-Machine (P2M), one for each domain,
which implements the reverse mapping. The size of M2P is proportional to the
physical memory, whereas that of a P2M is proportional to the memory allocated to
each VM. To minimize the performance degradation of VM context switching due
to TLB misses, the topmost 64MB (for 32 bit architecture) of the virtual address
space of each process records a mapping for the Xen hypervisor itself.

There are two possible solutions to manage PTs: shadow PTs or direct manage-
ment of the PTs by guest OSes. Shadow PTs require that a guest OS implements
virtual PTs that are not visible to the MMU. In this case, to prevent interferences
among VMs, Xen traps each access to the virtual PTs and propagates their updates
to the real PTs used by the MMU. Direct management of PTs requires that guest
OS PTs are read-only so that the OS is forced to invoke Xen through hypercalls to
update the mapping.

2.1.2 Hardware Support

While the inherent lack of support increases the complexity of virtualizing the x86
architecture, Intel and AMD have recently implemented some processor extensions
to make this architecture classically virtualizable. Intel virtualization technology
(VT-x) and AMD extensions (AMD-V) are not completely equivalent but they share
the same basic structure. Intel VT-x introduces new modes of CPU operation: VMX

20

2.1. VIRTUALIZATION TECHNOLOGY

root operation and VMX non-root operation. VMX root operation is a host mode
similar to previous IA-32 operation before VT-x and is intended for VMMs, while
VMX non-root operation is a guest mode targeted at VMs. Both modes support
execution in all four privilege rings. The VMRUN instruction performs a VM Entry,
switching from host to guest mode. The inverse switch occurs on a VM Exit that
may be triggered by both conditional and unconditional events. For example, a
write to a register or memory location might trigger such a transfer according to the
bits that are modified.

Figure 2.6: VM Exit and VM Entry Operations

The interaction between hosts and guests exploits the VM control structure
(VMCS) that records the guest state and the host state. On a VM Entry, the host
processor state is saved before loading the guest processor state from the VMCS. In
a VM Exit, these operations are swapped: at first the guest state is saved and then
the host state is loaded (see Fig. 2.6). The processor state includes segment registers,
the control register 3 (CR3), which stores the physical location of the page tables,
and the interrupt descriptor table register. The address space of a guest VM can
be separated from that of the VMM by loading and storing CR3 on VM Entry and
Exit. To speed up VM Entry and Exit, the VMCS does not store general purpose
registers as the VMM can include them as needed. Furthermore, the VMCS of a
guest is referenced through a physical address to avoid translating a guest virtual
address. The most important difference between host and guest mode, VMX root
and non-root operation, is that several instructions in guest mode will trigger a VM
Exit as specified by the VM’s execution control fields. Among the conditions that

21

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

trigger this exit we have:

� external-interrupt or interrupt-window exiting,

� access to the task priority register in the VMCS and CR masks and shadows,

� exception, I/0 , and access to specific registers.

To quickly identify the problem and return the control to the guest VM, a VM
Exit also includes information on the reasons for the exit. An event is a two-way
communication channel with event injection that enables the VMM not only to
receive events from a guest but also to delegate the management of interrupts or
exceptions to a guest VM using the interrupt descriptor table (IDT). By introduc-
ing a new execution mode with full access to all four privilege rings, both the ring
compression and the ring aliasing problems disappear [152]. A guest OS executes in
ring 0 while the VMM is still fully protected from any errant behavior. Since each
guest VMCS is referenced with a physical address and it stores critical registers,
VMs have full access to their entire address space. Moreover, the VT-x supports a
fine-grained control over any potentially problematic instruction. Lastly, the VMCS
control fields also address the challenge of interrupt virtualization. External inter-
rupts can be set to always cause a VM Exit, and VM Exits can be conditionally
triggered upon guest masking and unmasking of interrupts. In this way, the x86 can
becomes classically virtualizable. VT-x strongly simplifies the VMM with respect to
both para-virtualization and binary translation. However, the overall performance
may not be fully satisfactory because, sometimes, a software VMM may achieve a
better performance due to the high cost of managing shadow pages to handle page
faults. Furthermore, the VMM has to determine the cause for a VM Exit from the
VMCS.

2.1.3 Transparency

A condition for the transparency of a virtualization-based security approach
is VM transparency. A VM is transparent if its presence cannot be detected by
the software that it supports so that any test that this software can implement
should return the same result if executed on a VM or on a physical architecture.
While it is well known how to achieve transparency in the case of functional tests
that only consider the input/output behavior of a program, transparency is rather
more complex if the test considers non functional properties such as the amount
of resources a program accesses or timing-based properties [92]. An example is a
test where the output is the number of cache faults or the program execution time.
However, the problem is simplified because most of these tests have not a single
result even when applied to a physical architecture. Taking this non-determinism
into account, the existence of a VM cannot be detected if any result returned by a
test on a VM belongs to the set of results returned by at least one physical machine.

22

2.1. VIRTUALIZATION TECHNOLOGY

This implies that a program can implement tests that detect whether the execution
environment has changed with respect to a predefined one but these tests cannot
distinguish whether distinct results are due to the adoption of a VM or of a distinct
physical machine. As an example, the number of cache faults changes not only when
moving from a physical machine to a virtual one but also when moving to a distinct
physical machine or when the number of user programs changes and so on. The
impossibility of detecting a VM under very general assumption has been proved in
[109].

In this thesis, we are not interested in building transparent VMs, i.e. VMs that
are “undetectable” by an attacker. In our view, we are more interested with the
transparency enabled by virtualization technology that is the feasibility of checking
the integrity of the software that a VM runs both at the kernel-level and at the
user-level without modifying this software or requiring some user intervention. This
implies that the integrity of the overall status of the system hosted by the VM can be
measured, i.e. checked, without forcing the users to install further tools or to modify
any software or architectural layer. This transparency is achieved by implementing
an access to each virtual component of the monitored VM, e.g. to its main memory
or the processor’s register, to read and modify their current state. As we will discuss
later, this access makes it possible to check the consistency of any running process
without modifying the software of the monitored VM and without the users of this
VM being aware of these checks. It is worth noticing that transparency is rather
important from a security point of view because the more transparent a solution,
the more complex for an attacker to discover (and to attack) the components that
implement the controls. As an example, if a solution is fully transparent to the OS,
then a malicious user cannot discover the monitoring even if she can access the OS.

2.1.3.1 Security and Transparency

From a security perspective, virtualization introduces a further system level, the
VMM, that can independently access any value in the state of a VM. Hence, it can
behave as a coprocessor that can access both the memory and the CPU status of a
physical machine to implement checks that may involve not only variable values but
also the process control-flow. The evasion of these checks is very complex due to
the low-level access of the VMM to the memory representation of any components.
From a semantic point of view, we have modeled these checks as the evaluation of
an assertion on the status of the component. As a counterpart, there is the cost
of developing this new layer and the potential performance loss. The complexity
of the new layer is large because the VMM should access a process memory on
a VM to evaluate assertions that have a complexity that strongly depends upon
the required security level. This contrasts with the assumption that the VMM
should be rather simple to minimize its vulnerabilities. A solution can be found
by shifting this complexity to one VM that the VMM supports. This strategy
recalls to the one that Xen adopts to simplify the implementation of physical I/O.

23

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

Rather than implementing the I/O drivers in the Xen VMM, a privileged VM runs
these drivers, whereas the drivers of virtual I/O devices run on other VMs and
interact with those on the privileged VM. In our considered problem, a privileged
VM evaluates the invariants while the VMM only needs to implement those functions
that enable the privileged VM to access the variables in the memory of another
VM that are referred by the invariants. The resulting strategy will be denoted as
virtual memory introspection (VMI) [95] and it involves two VMs, the monitored VM
and the monitoring VM (which we also refer to as privileged VM or introspection
VM). An implementation exploiting two distinct VMs is very robust because of the
confinement that the VMM implements so that even an undetected attack against
the monitored VM has a low probability of spreading to the monitoring VM.

A further problem to consider is the frequency to evaluate an invariant or, from a
program point of view, which instructions of the monitored process may be coupled
with an invariant. We have already discussed the reasons in favor of monitoring
the system calls that a process issues. For this reasons, the status of a VM should
be checked any time one of its processes invokes a system call but the VMM can
implement the checks only when the implementation of the system call invokes one of
its function. To evaluate invariants with the required granularity, all the system calls
in the monitored VM should be trapped and control transferred to the privileged
VM.

The two main strategies to trap system calls in a VM require to hijack, respec-
tively, the system call table and the memory mapping. The first solution updates
the system system call table in the monitored VM so that the invocation of a system
call transfers control to a wrapper that suspends, e.g. freezes, the VM and transfers
the control to the VMM and then to the monitoring VM. This solution is rather
efficient because it minimizes the overhead due to the cooperation between the two
VMs. The approach is fully transparent to the applications only but not to the OS
because of the updated system call table and the wrapper code.

The second solution inserts a trap into the emulator to discover when some
virtual memory positions are accessed. The trap transfers the control to the emulator
anytime some predefined positions in the memory of the VM, namely those involved
in the execution of a system call, are accessed. Again, the code in the emulator will
freeze the VM and transfer the control to the monitored VM. This solution is fully
transparent to both the application and the OS but it requires the update of the
emulator code.

2.2 Virtual Machine Introspection

As shown in Fig. 2.7, Virtual Machine Introspection (VMI) enables a privileged
VM, or Introspection VM (I-VM), to retrieve critical data structures in the memory
of a Monitored VM (Mon-VM) to evaluate a set of invariants on data-structures at
the kernel or at the user-level. In this way, an I-VM can analyze the state of the

24

2.2. VIRTUAL MACHINE INTROSPECTION

processes and of the kernel hosted on a Mon-VM at the hardware/firmware level,
without introducing additional units. Hence, introspection is applied at a lower
level than the one an attacker can gain and it is very hard to elude it. Thus, the
advantages of VMI are:

1. full visibility of the system running inside the Mon-VM, because the I-VM can
access every Mon-VM component, such as the main memory or the processor’s
registers;

2. more robustness, because the I-VM is isolated from the Mon-VM;

3. transparency, because the security checks are implemented without requiring
any update of the software running in the Mon-VM and are almost invisible.

Figure 2.7: Introspection Virtual Machine

To exemplify the various invariants that can be evaluated consider that the I-VM
can compute the hash of the code of any running software module and compare it
against a value computed offline to discover whether the module has been maliciously
updated. If applied at the kernel-level, this approach supports the discovery of
rootkits, while at the user-level it supports the detection of attacks to the process self.
To prove both the power and the precision of VMI consider that further invariants
may be evaluated:

1. to guarantee the integrity of critical kernel data structures;

2. to assure that a process correctly executes the application code.

25

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

Alternative implementations of VMI exist. VMI is wholly passive if the VMM
only provides mechanisms for the I-VM to peer into another, actively running Mon-
VM. In a distinct solution, the VMM can support an event-based mechanism, i.e.
trigger-based, where the I-VM is notified when certain events occur. Other differ-
ences arise because the event notification may be synchronous, i.e. the Mon-VM is
stopped during event processing, or asynchronous, i.e. the Mon-VM is running as
the event is delivered. We briefly review the advantages and disadvantages of these
alternative solutions.

2.2.1 Passive Virtual Machine Introspection

A passive VMI-based system monitors the status of the Mon-VMs without ac-
tually interrupting them, or by minimizing the interruption time. In a passive
environment, the I-VM periodically examines the memory and the critical CPU
registers of the Mon-VMs to detect unexpected changes or settings. As an exam-
ple, the I-VM maintains a shadow copy of the IDT and periodically compares it
against the one that the Mon-VM currently uses. The advantage of passive VMI is
its minimal performance impact on the Mon-VMs. A first disadvantage is due to
the periodic nature of the checks that results in a delay in detecting changes to the
Mon-VMs. From this point of view, it is important that the frequency of the check-
ing be unguessable, e.g. the time-window in-between two checks should be random.
If not, malicious code in the Mon-VMs can potentially predict when the check will
be performed and undo the change during that time interval. This would prevent
the I-VM from detecting the change. Another disadvantage is the large number of
changes that can be made during the time-window. The cumulative effect of these
changes could increase the overall complexity of undoing them.

A major challenge of this solution is preserving the semantic consistency of the
data structure of the Mon-VM, since these data structures are concurrently accessed
by both the Mon-VM and the I-VM. Therefore, the values that the I-VM reads may
not be consistent and, if this issue is neglected, erroneous results could be produced.
A recovery-based solution that undoes unauthorized changes is also a challenge when
the Mon-VM CPUs continue to execute instructions. In fact, the recovery code needs
to ensure that the changes to the Mon-VM does not affect the consistency of the
status of this VM that, otherwise, will likely crash.

2.2.2 Trigger-Based Virtual Machine Introspection

In an alternative implementation, the I-VM sets triggers that are activated when
a specified condition occurs. For example, any write to a particular memory address
activates a trigger [242]. In a trigger-based system, the I-VM sets triggers to mon-
itor writes to critical data structures. For example, any attempt to write to the
memory region storing the IDT activates a trigger, and eventually notifies the I-VM
of the change or of the attempted change. Trigger-based VMI removes the delay

26

2.2. VIRTUAL MACHINE INTROSPECTION

in detecting unauthorized changes that is inherent in passive VMI. Furthermore,
since each individual change activates a trigger, the increase of complexity due to
cumulative memory changes may be resolved.

The delivery of the trigger can either be asynchronous or synchronous. In the for-
mer case, the Mon-VM continues to execute instructions, in the latter the Mon-VM
is stopped while the I-VM processes the trigger. Also hybrid solutions are possi-
ble, where only the CPU that activates the trigger is stopped while other CPUs
are unaffected. The performance impact on Mon-VMs of asynchronous delivery of
triggers is similar to that of passive VMI. However, because the I-VM is executed
only to handle a trigger action, the performance impact on the overall system is pro-
portional to the frequency of trigger actions. Asynchronous delivery does, however,
share with passive VMI the challenge of preserving memory consistency.

Synchronous delivery of triggers freezes the Mon-VM CPUs and this necessarily
has the largest impact on these VMs. Again, the impact is a function of the frequency
of the activation of triggers. As an example, if the I-VM sets write triggers for the
IDT, and no attempts to write to the IDT ever occur, then the overhead is quite
low. However, if the granularity of triggers is at the page-level rather than at the
word-level, then spurious triggers may be activated due to writes in other words
in the same page and the resulting overhead may be rather high. Controlling the
performance impact on Mon-VMs with synchronous delivery of triggers is a primary
concern that may be accomplished by applying other techniques. For example, if
the introspection API provides a periodic timer, then techniques similar to passive
VMI can be applied.

2.2.3 Mitigation of Threats

VMI offers several advantages in security monitoring and control. Scenarios
where VMI can provide significant advantages include:

� intrusion detection/prevention: by providing at least some of the monitoring
functionality from “outside” the Mon-VM, the I-VM can be immune to modifi-
cations to the compromised Mon-VM made by an intruder. One of the axioms
of computer security is that once the attacker gains administrator privileges
in the monitored system, any IDS can no longer be trusted. VMI enables the
I-VM to continue unharmed even in this case;

� malware detection and control: similar arguments hold for malware detection
and control. If a malware has affected a Mon-VM and, even, has made it
unavailable, an I-VM can continue to monitor the operations of the Mon-VM;

� distributed attacks or reconnaissance activities: they may be sufficiently low-
profile to go undetected by individual machines. However, if an I-VM controls
several Mon-VMs, then it might be able to correlate these activities into a
significant pattern.

27

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

2.2.4 Vulnerabilities

Although powerful, VMI increases the overall complexity and, in turn, introduces
additional vulnerabilities due to flaws in the design, implementation or configuration
of:

� the introspection mechanisms that allow the Mon-VM to modify, hide or build
fake information about its activities;

� the I-VM that allow the Mon-VM:

– to crash the I-VM, whereas the execution of the Mon-VM continues in-
stead of being stopped or of producing an alert;

– to manipulate the I-VM, for example by crafting contents of memory
to trigger a buffer overflow in the I-VM. This would allow an attacker
to violate the isolation properties of VMI and, potentially, to directly
control the I-VM.

The risks due to these vulnerabilities can be mitigated by state-of-the-art careful
design of the involved components, including clean separation between components,
clear communication and control paths, separation/limitation of privileges, and care-
ful coding practices.

2.3 Applications of Virtualization to Security

The application of virtualization enables PsycoTrace to implement introspection
in a transparent and robust way. Figure 2.8 shows the resulting overall architecture
of PsycoTrace, where the run-time components receive as input the description of
the process self and apply VMI to check kernel integrity and the process self (see
Chap. 5 for a detailed description of the run-time architecture).

In the following sections we discuss further applications of virtualization that
can enhance the security of computer systems, namely to check kernel integrity,
to remotely attest the integrity of a system, to protect code through obfuscation
techniques and to build trusted overlay of virtual nodes.

2.3.1 Checking Kernel Integrity

To discover attacks against the kernel, the thesis proposes a solution that exploits
VMI to monitor some kernel memory regions to detect illegal modifications made
by an attacker trying to insert and execute arbitrary instructions, e.g. to modify
the code of a system call. This poses the problem of the semantic gap [47] between
the point of view of the guest OS in the Mon-VM, defined in term of processes, files,
network connections, and the view that the VMM offers to the I-VM, defined in

28

2.3. APPLICATIONS OF VIRTUALIZATION TO SECURITY

Figure 2.8: Overall PsycoTrace Architecture

terms of physical memory pages, CPU registers. To solve this problem, VMI needs
to provide a high-level view of the state of the Mon-VM starting from the raw data
accessed inside its memory. This is fundamental because the control interface of the
VMM offers only a low-level view of the resources of the VMs, i.e. a view defined in
terms of cells of memory, processor’s registers and disk blocks, whereas a high-level
view makes it possible to check kernel integrity by applying standard host intrusion
detection techniques, defined in terms of OS resources, such as files or processes.

The transparency enabled by virtualization corresponds to the feasibility of
checking the current state of the software on a Mon-VM both at the kernel and
at the user-level without forcing the users to install any additional software. Two
approaches to achieve transparency that we advocate in the thesis are:

� exploit processors with virtualization extensions, so that the VMM can trap
the execution of the Mon-VM each time it executes some critical instructions,
such as system calls;

� injecting a context-agent from the I-VM into the memory of the Mon-VM

29

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

to transparently obtain high-level information about the internal state of the
kernel.

VMI-based context-agent injection is a mechanism to inject and protect a context-
agent into a running VM using VMI without the cooperation of the monitored VM.
This addresses the problem of obtaining reliable high-level information about the
internal operation of the VM while having confidence that the context-agent has not
been compromised.

2.3.1.1 Context-Agent

From the security point of view, context-agent injection has several benefits
because the agent can provide high-level information about the health of the OS
in the Mon-VM to enrich the view of the I-VM and also act on its commands, for
example to remove malicious code, or install additional software, such as anti-virus
updates. Moreover, the agent can neutralize a malware by undoing the malicious
modifications to the kernel code or data-structures. A context-agent inside the Mon-
VM may help PsycoTrace to bridge the semantic gap, because it can provide to the
I-VM high-level information about the running system, such as the list of running
processes, open files and network connections, logged users, running kernel modules.
For example, the agent can send semantically rich notifications to the I-VM about
event of interests, such as the creation of new tasks or processes, or the loading of
new device drivers or kernel modules.

Nevertheless, the use of a context-agent presents two problems:

1. the complexity of installing and managing it;

2. the agent is vulnerable to attacks against the Mon-VM.

To solve both problems, we have designed and implemented a mechanism to inject
and protect a context-agent into a running Mon-VM from an isolated I-VM, without
the cooperation of the Mon-VM. A particular benefit of agent injection is that it
enables the I-VM to make both persistent and non-persistent changes to the Mon-
VM OS in a minimally invasive way. This allows the I-VM to trigger agents on
demand to obtain information, without making permanent changes or installations
on the system.

The ability of injecting arbitrary agents into running Mon-VMs also simplifies
the management and deployment of patches in large virtual infrastructures. The
scalability advantages are evident in cloud environments with several Mon-VMs
where, instead of logging in all the machines and invoke the command to apply the
updates, Mon-VMs can be constantly patched transparently from a single location.
Moreover, while software to update the OS can be easily disabled by the users,
the injection of patches from the I-VM guarantees that are always applied. Finally,

30

2.3. APPLICATIONS OF VIRTUALIZATION TO SECURITY

agent injection can support compliance reporting and remediation, since the context-
agent can also offer semantically rich and fine-grained information on the integrity
of services and of data.

2.3.2 Remote Attestation of System Integrity

VMI enables the I-VM to verify the correct configuration and software integrity
in the Mon-VM. The most popular mechanism to check the integrity of a tool or of a
system configuration is that defined in the Trusted Computing framework and that
computes a hash function on the sequence of memory positions that corresponds to
the area that stores either the tools or a set of information about the configuration.
However, this mechanism neglects loss of integrity due to run-time attacks. To
take these attacks into account, we have to measure not only the integrity of the
executables stored on files but also that of the software running in memory. The
latter has to be measured at a rate that depends upon the security level that is
required. This poses new problems because, first of all, the well-known execution
environment initialized at boot time, and that provided a safe environment for the
measurement, cannot be reproduced without rebooting the system. Second, since
the applications data structures are continuously updated at run-time, their integrity
cannot be checked through hash values.

The thesis shows how the framework underlying PsycoTrace can be generalized
to cover the remote attestation of the integrity of a system. To do this, we consider
an overlay, i.e. a virtual network, that offers some services. We assumes that node
integrity is a precondition for joining the overlay without putting at risk both the
security of the overlay and of the services it offers. This results in an architecture
that attests the integrity of a node when it joins the overlay and it continuously
monitors its integrity as long as it belongs to the overlay. The main goals of this
architecture are:

1. measurements with a better detection capability than hash-based ones;

2. continuous measurement as long as a node belongs to the overlay;

3. a transparent attestation;

4. strong separation of the measurement system from applications;

5. avoid the introduction of privileged nodes;

6. minimization of the attestation overhead.

To satisfy these goals, first of all the architecture distinguishes the start-up attes-
tation of the integrity of a node from the continuous monitoring of such integrity.
The start-up attestation determines whether the node can join an overlay, whereas

31

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

the monitoring aims to detect both attacks against P , which now runs the overlay
application, and malicious updates to the node configuration.

The start-up attestation and the continuous monitoring apply distinct measure-
ments according to the overlay security policy. To define and implement these
measurements, we apply PsycoTrace. The start-up attestation evaluates a set of
PsycoTrace assertions that generalize the hashing ones that a TPM applies to check
software integrity. Continuous monitoring measurements compare P self against the
actual behavior. Since the kernel integrity is initially attested, attacks that inject
malicious code can be detected by monitoring the system calls that P issues and
their parameters.

2.3.3 Code Obfuscation

This thesis introduces a new approach for code obfuscation that stems from
virtualization and PsycoTrace run-time architecture. This approach exploits the
decomposition of the program into system blocks, i.e. the fragments of code in-
between two consecutive system calls. The Mon-VM only stores these blocks but
they are encrypted and the Mon-VM does not store any information about their
order. Instead, the control-flow logic of the program is represented by a system block
graph that is safely stored only inside the I-VM, along with the keys to decrypt the
system blocks. At run-time, the VMM traps the execution of a system call on the
Mon-VM, freezes the Mon-VM and it transfer control to the I-VM that determines
the next system block to be executed, decrypts this block, encrypts the previous
one and modifies the program counter of the Mon-VM to point to the next system
block.

2.3.4 Trusted Overlay of Virtual Networks

Virtualization can increase robustness not only by enabling more complete and
severe controls on a VM, but also by replacing a physical node through a network of
VMs and by partitioning the software node among these VMs to minimize the soft-
ware each VM runs. These considerations result in the definition of a methodology
adopts a highly parallel approach to share in a secure way an ICT infrastructure.
To this purpose, it introduces several overlays, dynamically mapped onto the phys-
ical ICT infrastructure, where each physical node runs a VMM to multiplex the
node’s physical resources and strongly confine each VM. To simplify the configu-
ration of the overlay, we introduce several VM templates each related to a specific
applicative or system functionality. As an example, the execution of user applica-
tions is delegated to specialized Application VMs that only run the smallest number
of software packages and libraries to support the corresponding applications. We
introduce distinct Application VMs according to the privileges of the user and to
the application’s trust level, from high trust level applications, which access critical

32

2.3. APPLICATIONS OF VIRTUALIZATION TO SECURITY

information, to insecure ones with low trust level, such as browsers. Other VM
templates are introduced to:

1. manage shared resources among Application VMs of the same overlay or of
distinct one,

2. control information flowing among VMs

3. map the overlays onto the physical infrastructure

To harden each VM by removing unneeded functionalities, the OS of each tem-
plate can be carefully selected and configured according to its functionalities. The
appropriate combination of OS and applications for each VM minimizes the overall
complexity and increases the overall security [164], while preserving any software
investment.

The number of overlays that share an infrastructure depends upon the number of
user communities. Informally, a community consists of applications and of services to
support these applications that can be handled in a uniform way because they have
the same security and reliability requirements. While communities do not prevent
cooperation and information exchange among user, the consistency and security
checks that are applied within a community differ from those that are applied when
crossing the community border. To define communities in a more formal way, we
pair both any user and any application with a level that define, respectively, the
security and the trust levels. The user security level defines the information the
user can access while the user and application levels jointly define a further level
that is coupled with the VM executing the application on behalf of the user. This
level is a synthetic evaluation of:

� the actions that the application can execute;

� the resources that the VM can accesses;

� the reliability of service that the VM requires.

A community includes users and applications such that all the VMs that sup-
port the users and the applications have the same level. Distinct communities are
implemented through distinct overlays. In this way, the VMs in an overlay can be ho-
mogeneously managed because they have similar requirements. As an example, data
they exchange may be protected through the same mechanisms or they require the
same reliability level. The homogeneous handling of the VMs in an overlay strongly
simplifies the management of the overlays and their mapping onto the infrastructure
physical nodes. While an overlay strongly resembles a VPN, an important difference
lies in the granularity of the computation because we are interested in minimizing
the complexity of the services a VM implements. As an example, some VMs may
be introduced just to attest the integrity of, or to apply security checks to, other
VMs. Furthermore, overlays are dynamically mapped onto physical networks.

33

CHAPTER 2. VIRTUALIZATION-BASED SECURITY

34

Chapter 3
Related Works

This chapter reviews some of the main works on the topics considered by the
thesis.

3.1 Sense of Self

[228, 116] firstly described a model that defines the self of a process in terms
of a set of short sequences of system calls. Any sequence that does not belong
to the statistical-based set is a signal of an intrusion. This approach was later
exploited in [249], which compares four methods for characterizing normal behavior
and detecting intrusions based on system calls in privileged processes. [41, 140]
propose a solution that pairs a program with a specification of its intended behavior,
i.e. the program policy. The proposed specification language is based upon predicate
logic and regular expressions. A similar approach is discussed in [213], which exploits
a language for capturing patterns of normal or abnormal behaviors of processes in
terms of sequences of system calls and their arguments.

[212] proposes an approach to detect anomalous program behaviors through a
finite-state automaton that learns a program behavior, expressed as sequences of
system calls, and it does not require access to the program source code. [253, 151]
propose data mining-based approaches to generate rules from system call sequences.
Association rules and frequent episodes algorithms are used to compute the consis-
tent patterns from audit data. [76] extends previous research on system call anomaly
detection by incorporating dynamic window sizes and exploiting two methods: the
first one is an entropy modeling method that determines the optimal single window
size for the data, whereas the second method is a probability modeling method that
takes into account context dependent window sizes.

Several authors [142, 234, 45] also propose a notion of anomaly detection that
also considers constraints on system call parameters. [214] further explores the
work described in [212] by discussing an approach where constraints on system call

CHAPTER 3. RELATED WORKS

parameters are based on data-flow relations, i.e through policies able to specify that
an argument of a system call is a function of arguments or return values of previous
calls. An example is a policy that requires that the file descriptor argument for a
read() system call is the value returned by a previous open() system call. Since
source code is often unavailable, and static analysis of binary is rather complex
on certain platforms, it would be important if advantages of the previous anomaly
detection based models can be achieved without a static analysis of the source code
or the binary.

[89, 90] introduce a new model of system call behavior, called an execution
graph, which is a gray-box model that accepts only sequences of system calls that
are consistent with the control-flow graph of the program, and it is maximal given a
set of training data. This is the first model that does not require a static analysis of
the program source or binary, and conforms to the control-flow graph of the program.
[193] introduces an approach to system call monitoring based on authenticated
system calls, i.e. system calls augmented with extra arguments that specify the
policy for that call and a cryptographic message authentication code that guarantees
the integrity of both the policy and the arguments. The kernel uses this extra
information to verify the system call.

[243, 245] define a static analysis of the application source code that returns
a specification of the expected application behavior. Intrusions are signaled by
system call traces that are not coherent with the transition system that models the
application. The paper introduces the callgraph model, built by analyzing the
control-flow of the program. This model is then extended to the abstract stack
model to take into account impossible paths, i.e. paths in the model that cannot
be taken by the program. Finally, it considers the digraph model to simplify the
implementation of the framework.

[99] proposes an approach to detect malicious system calls through a static anal-
ysis of the binary program that builds a model representing any remote call stream
that the process may generate. As the process executes remotely, the local agent
operates on the model incrementally, ensuring that any call received does not vi-
olate the model. Each model is defined in terms of finite-state machines. The
control-flow graphs generated from the binary code are used to construct either a
non-deterministic finite-state automaton or a push-down automaton to mirror the
execution control-flow of the executable.

The Dick Model [100] includes a stack to record function call return locations,
by using precalls and postcalls, and null system calls to eliminate impossible path
and to simulate stack operations. VtPath [78] is an anomaly detection method
that utilizes return address extracted from the call stack. It generates the abstract
execution path between two execution points in the program and decides whether
this path is valid according to what has been learned on the normal runs of the pro-
gram. Moreover, since Pushdown automaton model are rather inefficient because of
non-determinism, [79] explores the VPStatic model, a variant of the VtPath model,
which extracts context information about stack activity of the monitored program

36

3.1. SENSE OF SELF

to define a deterministic model. [98] further explores these idea by proposing a
static data-flow analysis that associates a program’s data-flow with specific calling
contexts that use the data. Then, this analysis is exploited to differentiate system
call arguments flowing from distinct call sites in the program.

[218] proves that for any system-call sequence model, under the same (static or
dynamic) program analysis technique, there always exists a more precise control-
flow sequence based model. [106] presents a new abstraction of program behavior
referred to as an Inlined Automaton Model that is as accurate as a pushdown
automaton model since it does not suffer from false positives, in the absence of re-
cursion, and as efficient, in terms of run-time overhead, as a non-deterministic finite
automata. The authors present a static analysis algorithm to build a control-flow
and context-sensitive model of a program that allows for efficient on-line validation.
[2, 1] describe a technique, based on the enforcement of Control-Flow Integrity
(CFI), whose security policy, derived by a static binary analysis, dictates that soft-
ware execution must follow a path of a control-flow graph. CFI enforcement is based
on a combination of lightweight static verification and machine-code rewriting that
instruments software with run-time checks. The run-time checks dynamically ensure
that control-flow does not violate a given control-flow graph.

State-based control-flow integrity (SBCFI) [185] is an approach to dynami-
cally monitor operating system kernel integrity based upon a property called state-
based. Violations of SBCFI indicate a persistent, unauthorized modification of the
kernels control-flow graph. The approach consists of of two steps: (i) validate ker-
nel text, including static control-flow transfers, by keeping a copy or hash of the
code; (ii) validate dynamic control-flow transfers. The latter requires the monitor
to consider the dynamic state of the kernel, i.e. the heap, stack, and registers, to
determine potential branch targets. The current implementation monitors function
pointers inside the kernel. The monitor traverses the heap starting at a set of roots,
which are global variables, and then it locates each function pointer that might be
invoked in the future. It then verifies that these pointers target valid code, ac-
cording to the control-flow graph. The algorithm identifies the roots, and then it
builds the type graph and then uses this graph to generate the traversal code for
the monitor and code to locate all function pointers reachable from global variables.
Finally, function pointers are validated by checking whether the target of a pointer
is consistent with the kernels control-flow graph. Four approximated candidates are
introduced for determining consistency: (i) valid code region; (ii) valid functions;
(iii) valid function type; (iv) valid points-to set.

Paid [148, 149, 251, 147] is a compiler-based intrusion detection system that
derives an accurate system call model from the application source code. It derives
a deterministic finite-state automaton model that captures system call sites, their
ordering and partial control-flow information. Moreover, Paid exploits run-time
information to minimize the degree of non-determinism of the system call graph
returned by the static analysis, and it also computes a set of constraints on the
arguments of sensitive system calls. A kernel run-time verifier compares the system

37

CHAPTER 3. RELATED WORKS

call pattern of a process against the statically derived model.
[156] presents a mechanism for profiling the behavior space of an application by

analyzing all function calls issued by the process, including regular functions and
library calls, as well as system calls. Behavior is derived from aspects of both con-
trol and data-flow. The implemented system, called Lugrind, extracts the program
behavior dynamically from the execution of the program binary without instru-
menting the source code. The model is also based on a feature set that includes
a mixture of parent functions and previous sibling functions and exploits the no-
tion of Smart Error Virtualization, a self-healing technique that involves learning
appropriate function return values at run-time.

[165] presents a novel approach to the analysis of system calls that uses a compo-
sition of dynamic analysis and learning techniques to characterize anomalous system
call invocations in terms of both the invocation context and the parameters of the
system calls. This model can also detect data modification attacks, which cannot be
detected using only system call sequence analysis. The SwitchBlade [82] system in-
tegrates system call interception, in normal mode, and dynamic taint analysis, when
checking violation of the system call model, and exploits randomization of the model
to make code injections arbitrarily difficult. Moreover, the dynamic taint analysis in-
tegrates data-flow-based learning to update too strict models. The guarded model
[200] is a generalization of previous models that offers no false alarms, a very low
monitoring overhead, and is automatically generated. It detects mimicry attacks by
combining control-flow and data flow analysis, and can also tackle non-control-data
flow attacks. The model is built automatically by combining control-flow and data
flow analysis using tools for automatic generation and propagation of invariants.

[27] proposes an extension to the Java security models by introducing history-
based policies, which are expressed through finite state automata. History-based
policies and mechanisms are alternative to stack inspection, and they depend on
the whole execution of the program. A static analysis optimizes the run-time en-
forcement of policies and it exploits the call-graph construction and model-checking
to predict those policies that will always be obeyed. At first, the static analysis
extracts the control-flow graph, which is transformed into a history expression, then
it model-checks the history expression against the usage policies. To specify, analyze
and enforce safe usage of resources, the static analysis applies a model-checking tool
[28], which runs in polynomial time in the size of the history expression extracted
from the analyzed program. [161, 162] exploit abstract interpretation to derive a
control-flow analysis that approximates the inter-procedural control-flow of func-
tion calls and returns by computing, for each expression, an abstract control stack.
Control-flow analysis provides extra information about the points where a function
returns at no additional cost by enabling the creation of more precise call graphs.

[67] presents an automated mechanism for generating robust signatures for kernel
data-structures. This means that any attempt to evade the signature by modifying
the structure contents will cause the OS to consider the object invalid. Through
dynamic analysis, the target data structure are profiled to determine commonly used

38

3.1. SENSE OF SELF

fields, and then those fields are fuzzed to determine which are essential for the correct
operations of the OS: these fields form the basis of a signature for the data structure.
ClearView [182] is a system for automatically patching errors in software. To
this end, it (i) observes normal executions to learn invariants that characterize the
application’s normal behavior; (ii) monitor the application’s execution to detect
failures; (iii) identifies violations of learned invariants occurring in a failed execution;
(iv) generates candidate repair patches that enforce selected invariants by changing
the state or the flow of control to make the invariant true; (v) observes the continued
execution of patched applications to select the most successful patch.

Mimicry Attacks

[243, 244] firstly introduce the idea of mimicry attacks, i.e. any trace of system
calls that does not trigger an IDS alarm and yet contains a malicious sequence of
system calls. The author develops a tool that takes as input an attack sequence of
system calls and outputs an entire valid sequence of system calls accepted by the
IDS but where the system calls that do not belong to the attack are “nullified”, i.e.
the play the role of “semantic no-ops”, and are present only to ensure that the IDS
does not detect the attack. As an example, a way for transforming a system call in
a no-op is to invoke it with an invalid argument, such as invoking open() with a
non-existent pathname. When the system call fails, no action is taken, yet the IDS
assumes that this system call was executed. Since most of the IDSes ignores the
return value of system calls, this enables an attacker to nullify the effect of a system
call while fooling the IDS into thinking that the system call succeeded.

[143] presents a novel technique to evade an IDS and to facilitate the task of
an attacker to exploit a mimicry attack. Given a legitimate sequence of system
calls, this technique allows the attacker to execute each system call in the correct
execution context by obtaining and relinquishing the control of the application’s
execution flow through manipulation of code pointers. The author discusses a static
analysis tool for Intel x86 binaries that uses symbolic execution to automatically
identify instructions that can be used to redirect control-flow and to compute the
necessary updates of the process environment.

To make mimicry attacks more difficult, [239] introduces the notion of behav-
ioral distance to evaluate the extent to which processes, potentially running dif-
ferent programs and executing on different platforms, behave similarly in response
to a common input. Inspired by evolutionary distance, the paper presents an algo-
rithm to calculate behavioral distance and an algorithm to train the model to learn
the behavioral distance automatically and shows that this approach holds promise
for better intrusion detection with moderate overhead. [101] discusses a model to
automate the discovery of mimicry attacks, by starting with two models: a program
model of the application’s system call behavior and a model of security-critical OS
state. Given unsafe OS state configurations that describe the goals of an attack,
the model finds system call sequences that are valid execution according to the

39

CHAPTER 3. RELATED WORKS

program model but that nevertheless produce unsafe configurations. Moreover, a
model checker attempts to prove that the attack effect will never hold in the pro-
gram model. By finding counter-examples that cause the proof to fail, the model
can find undetected attacks, such as system call sequences and arguments that are
accepted as valid execution and induce the malicious attack effect upon the OS.

[257] proposes a mechanism, based on waypoints, to provide trustworthy control-
flow information for anomaly monitoring and to detect global mimicry attacks. Way-
points are marks along the normal execution path that a process must follow to
successfully access OS services. Waypoints actively log trustworthy context infor-
mation as the program executes, allowing an IDS to both monitor control-flow and
restrict system call permissions to conform to the legitimate needs of application
functions. They can also catch return into-libc by guarding the return addresses.

To prevent mimicry attacks, [232] proposes an enhancement to the IDS by ex-
ploiting specifications to abstract the system call arguments and process credentials.
The specification takes into account what objects in the system can be sensitive to
potential attacks, and highlights the occurrence of unsafe operation. The model
does not use the actual values of arguments and privileges, as this could result into
a higher false positive rate, but rather it abstracts these values by categorizing them
into distinct classes that are defined by a user-supplied category specification. To
this end, an appropriate category specification should take into account the potential
security impact of system call operations on system’s objects and resources, such as
files or directories.

[36] presents a novel defensive technique against mimicry attack, based on a
“obfuscator” kernel module, which works in transparent way and with low overhead,
that interacts with a host IDS and whose main scope is to randomize the sequences
of system calls produced by an application to make them unpredictable by any
attacker. The same approach is further extended in [37] where, by exploiting the
Inter-procedural Control-Flow Graph of a protected binary, the authors propose a
strategy where a static analysis techniques localizes critical regions of a program,
which are code fragments that could be used to implement an automatic mimicry
attack. Once these regions have been recognized, their code is instrumented to
monitor the integrity of dangerous pointers during the execution of these regions,
and any unauthorized modification will be undone by restoring at once the legal
values.

[177] describes an alternative approach for building mimicry attacks that make
these attacks a more immediate and realistic threat. These attacks, called persis-
tent interposition attacks, are not as powerful as traditional mimicry attacks
because an attacker cannot exploit them to obtain a root shell, but they enable
cyber-criminals to achieve their goals, such as stealing credit-cards or hijacking and
impersonating servers. Persistent interposition attacks are stealthier than mimicry
attacks and are not IDS-specific and they can evade a large class of system-call-
monitoring IDS, the I/O-data-oblivious ones. These IDSes have perfect knowl-
edge of the values of all system call arguments as well as their relationships, with

40

3.1. SENSE OF SELF

the exception of data buffer arguments to read() and write() and thus they can
be attacked by injecting code that interposes on I/O operations and modifying the
data read or written by the victim but leaving the control-flow and other system-call
arguments unmodified.

Data-Flow Integrity

[256] presents a solution called Leapfrog which retrofits binary executables with
mandatory data-flow control, which enables a patched application to perform fine-
grained data-flow control. Leapfrog exploits a technique that tracks sensitive data
flows only at a small set of program locations, where each location uses the program’s
internal state and pre-computed conditions to predict the path taken by the data
flows and the next location they will reach. To prevent attackers from exploiting
buffer overflows and format string vulnerabilities to write data to unintended loca-
tions, [43] presents a technique that enforces data-flow integrity. This technique
statically computes a data-flow graph and it instruments the program to ensure
that at run-time the actual flow of data corresponds to the data-flow graph. This
technique uses reaching definitions analysis to compute the data-flow graph and, for
each value read by an instruction, it computes the set of instructions that may have
produced the value. To enforce data-flow integrity at run-time, the implementation
instruments the program to compute the definitions that actually reach each use by
maintaining a table that identifies the last instruction that has written into each
memory position. The program is instrumented to update this table before every
write and to prevent the attacker from tampering with it. Also reads instruction are
instrumented to check if the identifier of the instruction that wrote the value being
read is an element of the set returned by the static analysis. In the same direction
of the previous work, [31] presents an approach for enhancing the accuracy of host-
based intrusion detection models by capturing data-flow information. This approach
learns temporal properties involving the arguments of different system calls, thus
capturing the flow of security-sensitive data through the program. Further works
based on data-flow integrity are discussed in [84, 153, 258]

System Call Interposition

Janus [102] is a secure environment for untrusted helper applications, exempli-
fied by browser plugins, that restricts the access of an untrusted program to the OS
by using the OS process tracing facility. When the application attempts to invoke a
system call, the framework dispatches this information to relevant policy modules.
Each module reports its opinion on whether the system call should be executed,
and any necessary action is taken by the framework. Each module contains a list of
system calls that it will examine and filter and it may pair each system call with a
function to validate the arguments before it is executed by the OS. Then, the func-
tion may use this information to update the local state, and then it may suggest

41

CHAPTER 3. RELATED WORKS

allowing the system call, denying it, or make no comment on the attempted system
call.

[87] presents techniques for developing Generic Software Wrappers, i.e. protected
and non-bypassable kernel-resident software extensions to increase security without
modifying the Commercial Off-the-Shelf component (COTS) source. It exploits a
high-level Wrapper Definition Language, which enables wrappers to easily refer to
collections of system calls and simplify the implementation of meaningful security
functionality without requiring a complete knowledge of low-level kernel details.
The strategy for providing protected and efficient enhancements for COTS systems
is to implement a Wrapper Support Subsystem as a kernel module, to permit dy-
namic installation, and to track running processes and evaluate activation criteria
at appropriate times to activate new wrapper instances for the processes.

[125] presents an implementation of a system-call interposition infrastructure at
the user level, which offers similar level of security and comparable level of capabil-
ities as kernel-based implementations of system call extensions. This implies that
normal users can develop and deploy their own extensions; moreover, damage due
to errors in the extension code is limited, and does not affect the security of the
entire system. As a result, the infrastructure can be used to develop extensions that
implement a variety of security-related tasks, such as custom auditing and logging,
fine-grained access control, intrusion detection and confinement.

Program shepherding [138] is a method for monitoring at run-time control-
flow transfers to enforce a policy that provides three techniques as building blocks for
security policies. First, shepherding can restrict execution privileges on the basis of
code origins by ensuring that malicious code masquerading as data is never executed.
Second, shepherding can restrict control transfers based on instruction class, source,
and target. As an example, shepherding can forbid execution of shared library code
except through declared entry points, and can ensure that a return instruction only
targets the instruction after a call. Finally, shepherding guarantees that sandboxing
checks placed around any type of program operation will never be bypassed.

[91] discusses some of the problems and pitfalls of system call interposition, such
as incorrectly replicating OS semantics, overlooking indirect paths to resources, race
conditions, incorrectly subsetting a complex interface, and side effects of denying
system calls. Then, it shows some practical solutions to these problems, and defines
some general principles to avoid the pitfalls. Ostia [94] is a sandboxing that relies
on a delegating architecture to overcome several limitations of sandboxing systems.
Rather than introducing a sandboxed application that directly interacts with the
kernel to access sensitive resources, the architecture delegates the responsibilities of
obtaining those resources to an agent controlling the sandbox. This agent accesses
resources on behalf of the sandboxed program according to a user-specified security
policy.

e-NeXSh [132] is a security approach that exploits kernel and LIBC support to
efficiently defend systems against process-subversion attacks. It monitors all LIBC
function and system-call invocations, and validates them against process-specific

42

3.2. VIRTUALIZATION FOR SECURITY

information that strictly describes the acceptable program’s behavior: any deviation
from this behavior is considered malicious. The prototype is implemented as a set
of modifications to the Linux kernel and a user-space shared library. The technique
is transparent, requiring no modifications to existing libraries or applications.

3.2 Virtualization for Security

Virtual machine introspection (VMI) is first proposed in [95] together with
Livewire, a prototype VMI IDS that monitor VMs through introspection. Hy-
perspector [141] is a monitoring environment to detect intrusions in a distributed
system that separates the IDS from the system it monitors by running each IDS on a
dedicated VM. Moreover, an independent virtual network connects all the IDS VMs.
[150] presents a virtualization-based architecture to protect IDSes that exploits the
confinement provided by a VMM to separate the IDSes from the monitored OS. It
also provides a learning mode to build a database of sequences of invoked system
calls.

ReVirt [69] is a logging system for VMs that supports recovery, checkpoint and
roll-back. These techniques support virtual-machine replay because ReVirt can re-
execute a system, encapsulated in a VM, instruction-by-instruction for recovering
purposes. This concept is extended by IntroVirt [129], a virtualization-based sys-
tem that detects intrusions by executing vulnerability-specific predicates.

[131] discusses a technique to debug Xen VM kernels through gdb. Paladin [23]
is a framework that exploits virtualization to detect and contain rootkit attacks. It
defines the notion of protected zones, which are guarded and protected from illegal
access. These zones are partitioned into Memory Protected Zone (MPZ) and File
Protected Zone (FPZ). The memory image of the kernel and the various jump tables
are a part of the MPZ, which is set to non-writable so that any attempt to write
into it will trigger an alarm. The FPZ includes the system files to be protected from
being modified. The VMM intercepts system calls from the guest OS and forwards
them to an application VMApp. Upon receiving a system call event, the VMApp
process consults the policies specified and determines if the given system call violates
any access control policies.

Manitou [155] is a system implemented within a VMM that ensures that a VM
only executes authorized code by computing the hash of each page before executing
the code it includes. Manitou sets the executable bit of the page only if the hash
belongs to a list of authorized hashes. XENKimono [191] detects violations of the
kernel security policy, by checking the kernel from a distinct VM through virtual
machine introspection. XENKimono proposes two distinct strategies: (i) integrity
checking to detect illegal changes to kernel code and jump-tables, e.g. system call
table, IDT, page-fault handler; (ii) cross-view comparison to detect malicious mod-
ifications to critical kernel objects. Moreover, it monitors critical processes, detects
suspicious activities and applies a white-list based detection, such as a list of appli-

43

CHAPTER 3. RELATED WORKS

cations that can have root access, a list of network ports that the applications can
bind to and a list of kernel modules that can be loaded into the kernel.

Xenprobes [190] is a framework to probe several Xen guest kernels simultane-
ously and that allows developers to implement their probe handlers in user-space
for kernel debugging purposes. VMwatcher [127] is an “out-of-the-box” approach
that overcomes the semantic gap challenge. A new technique called guest view cast-
ing is developed to systematically reconstruct internal semantic views (e.g., files,
processes, and kernel modules) of a VM from the outside in a non-intrusive manner.
Specifically, the new technique casts semantic definitions of guest OS data struc-
tures and functions on VM states, so that the semantic view can be reconstructed.
VMwatcher utilizes the symbol information exported by the kernel to apply guest
view casting to identify and reconstruct critical guest data structures. VMwatcher
enables developers to apply: (i) comparison-based stealthy malware detection, which
compares a VM’s semantic view obtained from both inside and outside to detect any
discrepancy; (ii) out-of-the-box execution of off-the-shelf anti-malware software.

SecVisor [216] is a tiny hypervisor that ensures that only user-approved code
can execute in kernel mode, by protecting the kernel against code injection attacks,
such as kernel rootkits. SecVisor is effective even against an attacker who controls
everything but the CPU, the memory controller, and system memory chips and
can even defend against zero-day kernel exploits. SecVisor virtualizes the physical
memory to set hardware protections over kernel memory, which are independent of
any protections set by the kernel. SecVisor uses the IOMMU to protect approved
code from DMA writes and it virtualizes the CPU’s MMU and the IOMMU to ensure
that SecVisor can intercept and check all modifications to MMU and IOMMU state.

XenAccess [38] is a monitoring library for OS running on Xen. XenAccess
incorporates virtual memory introspection and virtual disk monitoring capabilities,
so that monitor applications can safely and efficiently access the memory state and
disk activity of a target OS. For example, these applications can retrieve the list of
the running processes/modules, set watchpoints in privileged system directories to
be notified each time those directories are updated. Lares [179] is a security tool
that can actively control an application running in a guest VM by inserting hooks
into the process execution flow. These hooks transfer control to another VM that
checks the monitored application using introspection and security policies.

Lycosid [128] is a VMM-based hidden process detection and identification ser-
vice. The key difference between Lycosid and previous VMM-based hidden process
detectors is its use of implicitly information obtained by the monitored OS. Implicit
information decouples Lycosid from the guest OS so that it can exploit at best its
placement within a VMM. For example, Lycosid does not depend on the consistency
of private guest OS data structures, so it is less vulnerable to guest-initiated evasion
attacks. Similarly, Lycosid does not depend on guest OS implementation details, so
it can be portable to several OSes. Lycosid exploits cross-view validation to detect
maliciously hidden OS processes by comparing the lengths of the process lists ob-
tained, respectively, at a low (trusted) and a high (untrusted) level. If the trusted

44

3.2. VIRTUALIZATION FOR SECURITY

list is longer than the untrusted one, Lycosid deduces that at least one process has
been hidden. Lycosid applies CPU inflation technique, to allow a VMM to influence
the run-time of specific processes by carefully patching their executable code. By
forcing processes to run more frequently than they normally would, CPU inflation
effectively increases the resolving power of Lycosid’s identification techniques.

NICKLE [196] is a lightweight VMM-based system that transparently prevents
unauthorized kernel code execution of unmodified commodity OSes. NICKLE is
based on memory shadowing, wherein the trusted VMM maintains a shadow physical
memory for a running VM and performs real-time kernel code authentication so
that the shadow memory only stores authenticated kernel code. Further, NICKLE
transparently routes guest kernel instruction fetches to the shadow memory. This
guarantees that only the authenticated kernel code will be executed.

The VIX tools [114, 166] support a forensic analysis of a guest VM from a
privileged VM. Using this approach, neither the virtual machines nor the virtual
machine manager have to be modified. VIX consists of a library of common functions
and of a suite of tools which mimic the behavior of common Unix command line
utilities. The basic approach of these tools is to freeze the target virtual machine,
acquire through read-only operations the data necessary to perform the requested
function, and then resume the target VM. In this way, VIX can ensure that the
state of the VM does not change during the data acquisition process, because it is
not modified while the VM’s execution is suspended.

Overshadow [49] presents an application with a normal view of its resources,
but the OS with an encrypted view. This allows the OS to implement the complex
task of managing resources, without allowing it to read or modify them. Overshadow
exploits multi-shadowing which leverages the extra level of indirection offered by
memory virtualization in a VMM. A VMM maintains a one-to one mapping from
guest physical addresses into actual machine addresses, whereas multi-shadowing
replaces this mapping with a one-to-many, context-dependent mapping, offering
multiple views of guest memory. Overshadow leverages this mechanism to present
an application with a clear-text view of its pages, and the OS with an encrypted
view. Encryption-based protection allows resources to remain accessible to the OS,
yet secure, so that the OS can manage them without compromising application
privacy or integrity.

KernelGuard [195] is a solution that blocks dynamic data kernel rootkit at-
tacks by monitoring kernel memory access using VMM policies. KernelGuard pre-
emptively detects changes to monitored kernel data states and enables fine-grained
inspection of memory accesses on dynamic kernel data. For each kernel data struc-
ture to be protected, a policy describes how the VMM should identify the data
structure in a raw view of memory as well as the characteristics of an attack against
that data structure. In addition, the policy describes the pointers within the kernel’s
memory that point to the data structure so that they can be tracked and protected
as well. At run-time, the VMM locates the data structure in memory and intercepts
all writes to its address in order to validate them and ensure they do not violate the

45

CHAPTER 3. RELATED WORKS

policy. In addition, the specified pointers are also monitored in order to ensure that
KernelGuard can monitor the data structure in real time even if the kernel loads it
in memory, so that dynamic data structures are monitored as well.

Wizard [226] is a Xen-based kernel monitor. In contrast to virtual machine
introspection, Wizard trusts no guest OS data, but its semantic understanding can
identify kernel-level attacks that alter the kernel’s execution behavior. Wizard mon-
itors the interactions of a guest OS with the hypervisor and does not peer into
memory states that may have been constructed by an attacker. Wizard verifies
that the actual execution of each kernel service handler, as viewed by a hypervisor,
does not differ from the execution of an unmodified, benign handler. Wizard de-
tects operations of guest VMs that are visible outside the VM, such as system calls
generated by user-level applications and VM calls or hypercalls generated by the
guest kernel. Applications executing in the untrusted VM request kernel services by
executing a software interrupt. Xen intercepts this interrupt, notifies the security
software that a kernel handler will be executing, and passes the interrupt to the
untrusted guest kernel. Xen also passes these events to Wizard’s privileged VM
component, and applications within the privileged VM use the event information
to improve the security of a guest VM. When a guest VM generates an event, a
handler inside Xen intercepts the system call or VM call and then writes the event’s
information into a shared memory region. Wizard logs both the system and VM
calls together with their parameter values and the associated interrupt handler, the
value of the CR3 register, and the entry and exit of interrupt handler execution. To
verify the correlation between kernel service requests and the subsequent hardware
accesses generated by the kernel handlers, Wizard requires a characterization of this
correlation in during benign execution. To this end, during a training period, Wiz-
ard records the system call requests generated by all running applications and the
subsequent VM calls produced by the kernel.

[186] presents a formal discussion of the development of VMI-based security
applications by identifying those challenges that these applications should overcome
and by defining a formal model for describing VMI techniques. SADE [50] is a
stealthy deployment and execution mechanism to automatically inject agents into
guest VMs. It also protect the integrity of in-guest agents at run-time and effectively
hides the execution of agent code.

HookSafe [248] is a hypervisor-based lightweight system to protect several ker-
nel hooks from being hijacked by kernel rootkits. HookSafe overcomes critical chal-
lenges of the protection granularity gap by introducing a thin hook indirection layer.
Since any kernel hook, once initialized, is frequently read-accessed, but rarely write-
accessed, HookSafe relocates those kernel hooks to a dedicated page-aligned mem-
ory space and then exploits hook indirection to regulate accesses to them through
hardware-based page-level protection. [51] adopts virtualization to monitor and pro-
tect the systems running in a cloud from a centralized security VM. The proposed
solution does not assume any a-priori semantic knowledge of the guest OS or any
trust assumptions into the state of the VM.

46

3.2. VIRTUALIZATION FOR SECURITY

Virtual Machine Detection and Attack

Virtual-machine based rootkit (VMBR) [137] is a type of malicious soft-
ware that gains qualitatively more control over a system, with respect to standard
malware. This malware installs a VMM underneath an existing OS and hosts the
original OS into a VM. To insert itself beneath an existing system, a VMBR must
manipulate the system boot sequence to ensure that it is loaded before the OS and
applications. Then, the VMBR boots the target OS using the VMM. As a result,
the target OS runs normally, but the VMBR sits silently beneath it. To install
a VMBR on a computer, an attacker must first gain access to the system with
sufficient privileges to modify the system boot sequence. After the attacker gains
root privileges, she must install the VMBR’s state on persistent storage. The most
convenient storage for VMBR state is the disk. The paper explores the design and
implementation of a VMBR, called SubVirt, and shows that the best way to detect
a VMBR is to run at a layer that the VMBR cannot control. Detectors that run
below the VMBR can see its state because their view of the system does not invoke
the VMBR’s virtualization layer. Such detection software can read physical memory
or disk and look for signatures or anomalies that indicate the presence of a VMBR,
such as a modified boot sequence. Other low-level techniques, such as secure boot,
can ensure the integrity of the boot sequence and prevent a VMBR from gaining
control before the target OS.

GuardHype [42] is a hypervisor with a focus on security and VMBR prevention
that controls how the user deploys virtualization, allowing the execution of legitimate
third-party hypervisors but disallowing VMBRs. GuardHype mediates the access of
third-party hypervisors to the hardware virtualization extensions, effectively acting
as a hypervisor for hypervisors. Another option relies on GuardHype to provide a
standardized virtualization interface to which hosted hypervisors attach themselves
to access the hypervisor layer. Malware usually include code to check for the presence
of VMs, because these checks are straightforward, as the Intel IA-32 instruction set
contains a number of instructions that are unvirtualizable [197]. Based on these
instructions, a variety of detection techniques have been implemented, as an example
the “Scooby Doo - VMware Fingerprint Suite” [139]. [92] surveys the wide range
of dissimilarities between real and virtualized platforms, and the usage of timing
benchmarks to detect the presence of VMMs.

[85, 86] investigate the problem of the remote detection of VMMs and devises
fuzzy benchmarking to successfully detect the presence or absence of a VMM
on a remote system. Fuzzy benchmarking works by measuring the execution time
of particular code sequences on the remote system, by developing a fuzzy bench-
marking program whose execution differs from the perspective of an external verifier
when a target host is virtual machine. It exploits the timing dependency exception
to the equivalence property of a VMM to detect the presence of a VMM without
relying on implementation details or software artifacts. [189] describes a method
for determining the presence of VM emulation in a non-privileged operating envi-

47

CHAPTER 3. RELATED WORKS

ronment. It use the Local Descriptor Table as a signature for virtualization. [192]
surveys alternative strategies to detect system emulators.

Blue Pill [198] is a rootkit based on x86 virtualization technology that targets
Microsoft’s Windows Vista. It exploits AMD64 SVM extensions to move the OS
into a VM on-the-fly and no modifications to BIOS, boot sector or system files are
necessary. If an exact replica of the hardware state is exported on the VM, i.e. it
allows nested virtualization, the solution to discover these rootkits is to verify that
MSR EFER.SVME is equal 1, since this must be set to 1 before executing any SVM
instruction. If, instead, the VMM exports a generic hardware interface inside a
VM, without SVM, Blue Pill cannot install itself without hardware virtualization
support.

Vitriol [81] is a proof-of-concept VM rootkit for Mac OS X using Intel VT-x.
[80, 81] describes known attacks against several VM emulators: VMWare, Virtu-
alPC, Parallels, Bochs, Hydra, QEMU, Atlantis, Sandbox, VirtualBox, CWSandbox
and Xen, and describes ways to defend against them. [176] proposes an automatic
technique to generate red-pills for detecting if a program is executed through a
CPU emulator. The proposed technique has been implemented in a prototype, used
to discover new red-pills for detecting two IA-32 CPU emulators, i.e. QEMU and
Bochs, involving hundreds of different opcodes.

3.3 Hardware-based Security and Remote Attes-

tation

[260] examines the effectiveness of secure coprocessor-based IDS where the IDS
is run on a coprocessor rather than on the host. This means that a compromise
of the host does not affect the coprocessor, and self-protection of the IDS monitor
is achieved. Moreover, since a coprocessor can read the memory of the host, a
coprocessor IDS can verify the correctness of the host’s state. The advantages of a
coprocessor-based IDS are: (i) independence from the host OS; (ii) narrow interface;
(iii) secure boot; (iv) trusted observer, i.e., any authenticated statements made by
the secure coprocessor can be fully trusted. However, given its external nature, a
coprocessor IDS cannot interpose the host’s execution the way that a host IDS can.

Copilot [183] is a coprocessor-based kernel integrity monitor for commodity sys-
tems designed to detect malicious modifications to the host kernel. It is transparent
and can be expected to operate correctly even when the host kernel is thoroughly
compromised. As an example, Copilot has been able to successfully detect the pres-
ence of several rootkits. The Copilot monitor consists of two machines and a PCI
add-in card: the first machine is the monitored one and it contains the Copilot
monitor on its PCI add-in card; the second machine is the admin station, where an
administrator can interact with the Copilot monitor.

The Co-Processing Intrusion Detection System (CuPIDS) [252] project aims at

48

3.3. HARDWARE-BASED SECURITY AND REMOTE ATTESTATION

improving information system security through dedicating computational resources
to system security tasks in a shared resource, multi-processor architecture. The
project explores the improvements that a symmetric multi-processing system of-
fers over the traditional uni-processor model of security. The proposed approach
runs a protected application on one processor while a shadow process specific for
that application runs on a different processor and monitors the application process’
activity, and responds immediately if the application violates policy. A prototype
supporting fine-grained protection of the real-world application resulted in less than
a 15% slowdown while demonstrating CuPIDS’ ability to quickly detect illegitimate
behavior, raise an alarm, automatically repair the damage due to the fault or attack,
allow the application to resume execution, and export a signature for the dangerous
activity.

[66] proposes a transparent and external approach to malware analysis, moti-
vated by the intuition that a transparent malware analyzer should not induce any
side-effects that are unconditionally detectable by malware. The paper proposes
Ether, which is based on an application of hardware virtualization extensions, and
resides completely outside of the target OS environment. Thus, there are no in-guest
software components vulnerable to detection, and there are no shortcomings that
arise from incomplete or inaccurate system emulation. Ether does not induce any
unconditionally detectable side-effects by completely residing outside of the target
OS environment. As a result, malware cannot detect Ether. The results of the
experiments show that Ether remains transparent and defeats the obfuscation tools
that evade the existing approaches.

Speculative Parallel Check (Speck) [169] is a system that accelerates security
checks on commodity hardware by executing them in parallel on multiple cores. It
provides an infrastructure that allows sequential invocations of a particular security
check to run in parallel without sacrificing the system’s safety. Speck creates paral-
lelism in two ways: (i) it decouples a security check from an application by executing
the application in a speculative way while the security check executes in parallel on
another core; (ii) it creates parallelism between sequential invocations of a security
check by running later checks in parallel with earlier ones. Speck provides a process-
level replay system to deterministically and efficiently synchronize a security check
and the original process. Speck has been tested to parallelize three security checks:
sensitive data analysis, on-access virus scanning, and taint propagation.

[9] firstly proposed an architecture to check the integrity of a computer system
through a integrity chain, under the assumption that the hardware is valid. It
describes the AEGIS architecture for initializing a computer system by validating
integrity at each layer transition in the bootstrap process. A description of the
Trusted Computing Group (TCG) Trusted Platform Module (TPM) can be found
in [22, 180].

Property based attestation [199] is a strategy that describes an aspect of the
behavior of the platform to be attested with respect to security-related requirements.
As an example, a property may state that a platform has built-in measures to con-

49

CHAPTER 3. RELATED WORKS

form to the privacy laws, or that it strictly separates processes from each other, or
that it has built-in functionalities to provide Multi-Level Security. [188] presents
a protocol and architecture for property based attestation that resolves scalability,
privacy and openness issues raised by straightforward binary attestation using TPM
hardware. In fact, with property attestation, a verifier is securely assured of secu-
rity properties of the platform’s execution environment without receiving detailed
configuration data. This enhances privacy and scalability because the verifier needs
to be aware of its few required security properties rather than a huge number of
acceptable configurations.

[46] proposes a concrete and efficient property-based attestation protocol within
an abstract model for the main functionalities provided by TCG-compliant plat-
forms. Semantic remote attestation [111, 112] adopts language-based virtual
machines for remote attestation of dynamic program properties. This increases the
flexibility for the challenger, because the integrity monitor can examine the current
state of a system to detect semantic integrity violations. While this technique alone
will not produce complete results as it does not attempt to characterize the entire
system, it does offer a way to measure the integrity of portions of the target not
suitable for measurement by hashing.

[201] discusses the design and implementation of Integrity Measurement Ar-
chitecture (IMA), which is a secure integrity measurement system for Linux. This
architecture enables a system to prove that the integrity of a program on a remote
system is sufficient. IMA uses the TPM to detect subversion of the measurements
system by comparing a hash value stored in the TPM against the one in the measure-
ment system audit log. Attestation-based Remote Policy Enforcement [203]
is an access control architecture that enables corporations to verify client integrity
properties using a TPM, and to establish trust upon the capability of the client to
enforce the policy before allowing the client to access the corporate Intranet.

[207] proposes a trusted computing architecture to enforce access control policies
in p2p applications. The proposed architecture is based on an abstract layer of
trusted hardware that may be implemented though emerging trusted computing
technologies. A trusted reference monitor monitors and verifies the integrity and
properties of running applications through the functions of trusted computing and
that can enforce various policies on behalf of object owners. Also user-based control
policies are supported.

[174] examines whether trusted computing can remedy the relevant security prob-
lems in PCs and it argues that, although trusted computing has some merits, nei-
ther it provides a complete remedy nor it is likely to prevail in the PC mass market.
[144] describes an open and scalable architecture for trusted virtualization. Pioneer
[217, 215] is a software-based platform addressing the problem of verifiable code ex-
ecution on legacy computing hosts without relying on secure co-processors or CPU
virtualization extensions. Pioneer is based on a challenge-response protocol between
an external trusted entity (the dispatcher) and an untrusted computing platform.

Prima [122] is an extension of the Linux IMA system to measure information

50

3.3. HARDWARE-BASED SECURITY AND REMOTE ATTESTATION

flow integrity that can be verified by remote parties. vTPM [29] is a full software
implementation of the TPM specification with further functions to create and de-
stroy virtual TPM instances. The software is integrated in the Xen hypervisor to
make TPM functions available to virtual machines. Semantic integrity [184] is a
measurement approach targeting the dynamic state of the software during execution
and, therefore, providing fresh measurement results.

UCLinux [145] is a Linux Security Module that enables TPM-based usage con-
trols enforcement. It provides the attestation support, sealing support and pro-
tection from administrative abuse required by a trustworthy usage control system,
and it does so with existing hardware and limited changes to an existing OS. [229]
presents an efficient and portable TPM emulator for Unix that enables not only the
implementation of flexible and low-cost test-beds and simulators but, in addition,
provides programmers of trusted systems with a powerful testing and debugging tool
that can also be used for educational purposes.

[73] introduces a technique that allows a hypervisor to safely share a TPM among
its guest OSes and allows them full use of the TPM in legacy-compliant or func-
tionally equivalent form. It also allows guests to use the authenticated-operation
facilities of the TPM to authenticate themselves and their hosting environment.
Moreover, the implementation makes use of the hardware TPM wherever possible,
which means that guests can enjoy the hardware key protection offered by a physical
TPM.

[209] proposes improvements for software-based attestation protocols by using
the time stamping functionality of a TPM so that the execution time of the finger-
print computation can be measured locally. This also allows to uniquely identify
the platform that is being verified. This solution can be further strengthen with a
trusted boot-loader, which can identify the processor specification of the untrusted
platform and provide accurate timing information about the checksum function.

[72] describes three practical techniques for authenticating the code and other
execution state of an OS using the services of the TPM and a hypervisor. These tech-
niques are specialized OS images, authentication of OS images with persistent state
and virtual machine policy attestation. The techniques trade off detailed reporting
of the OS code and configuration with the manageability and comprehensibility of
reported configurations.

[108] extends behavior-based attestation to a model-driven remote attesta-
tion to prove that a remote system is trusted as defined by TCG. The described
model-driven remote attestation verifies two compliance requirements to prove the
trustworthiness of a remote system, i.e. expected and enforced behavior’s compli-
ance. [235] presents a non invasive method that respects a node privacy, but it only
guarantees the integrity of anti-virus tools.

Assayer [178] is an architecture that leverages hardware-based attestation to
enable end-hosts to embed secure proofs of code identity in packets. Recently, [168]
a collaboration of companies has defined a framework to secure cloud computing
with a hardware root-of-trust, by creating resource pools within private clouds that

51

CHAPTER 3. RELATED WORKS

share common physical characteristics and the same security policies.

3.4 Code Obfuscation

[55] proposes a taxonomy of obfuscating transformations. The key to success-
ful control transformations is the resilience of opaque predicates and variables [56],
where opaque predicates and variables are constructs whose values are known to the
obfuscator, but are difficult for the deobfuscator to deduce. An opaque predicate is
trivial if a deobfuscator can deduce it by static local analysis, and weak if a deob-
fuscator can deduce it by static global analysis. Transformations that obscure data
abstractions include modifying inheritance relations and restructuring data arrays
[54]. [246] describes a set of transformations that introduce aliases and further hinder
the analysis by a systematic break-down of the program control-flow that transform
high-level control transfers into indirect addressing through aliased pointers. By
doing so, the basic control-flow analysis is transformed into a general alias analysis,
and the data-flow analysis and control-flow analysis are made co-dependent.

[154] describes and evaluates techniques to increase the complexity of disassem-
bling, i.e. junk insertion, thwarting linear sweep and recursive traversal [210]. [57]
identifies three types of attacks by malicious hosts on the intellectual property con-
tained in software and describes powerful obfuscations techniques to obscure the
control and data structures. [65] examines some sophisticated protection technolo-
gies available today and methods that anti-malware reverse engineers use to defeat
them. [6] studies the pros and cons of virtualization to make distinct copies of a
piece of software and to make them more tamper-resistant.

[236] presents a framework for quantitative analysis of control-flow obfuscating
transformations by showing that several existing control-flow obfuscation techniques
can be expressed as a sequence of basic transformations on the control-flow graphs.
[118] describes three novel control-flow obfuscation methods for protecting Java
class files, namely basic block fission obfuscation, intersecting loop obfuscation and
replacing goto obfuscation. [32] describes Skype’s protection mechanism and it
shows that almost all of its code is encrypted at run-time and, finally, it proposes
some reverse engineering attempts against it.

3.5 Collaborative Virtual Environments

Terra [93] is a VM-based architecture for trusted computing that enables ap-
plications with distinct security requirements to run simultaneously on commodity
hardware. The software stack in each VM can be tailored to meet the security
requirements of its applications. PlanetLab [52] is a global overlay network that
runs concurrently multiple services in slices, i.e. networks of VMs that include some
amount of processing, memory, storage and network resources. PlanetLab exploits

52

3.5. COLLABORATIVE VIRTUAL ENVIRONMENTS

the concept of an open grid of machines where resources can be dynamically allo-
cated and discovered. Poly2 [39] is a framework aimed at segregating applications
and networks and at minimizing OSes. The proposed approach maps network ser-
vices onto different systems and it isolates specific classes of network traffic. To this
purpose, administrative and application-specific traffic are mapped onto distinct
networks. Moreover, minimized OSes should only provide the services required by
a specific network application.

[133] propose a codification of the interactions required to negotiate the creation
of new execution environments by modeling dynamic virtual environments (DVEs)
as first-class entities in a distributed environment where Grid service interfaces nego-
tiate creation, monitor properties, and manage lifetime. It also shows how DVEs can
be implemented in a variety of technologies, such as sandboxes, virtual machines,
or simply Unix accounts by evaluating costs associated with each approach. DVEs
provide a basis for both customization of a remote computer to meet user needs and
also enforcement of resource usage and security policies. They can also simplify the
administration of virtual organizations (VOs), by allowing new environments to be
created automatically, subject to local and VO policy. To protect file systems and
network services from untrusted grid applications, SVGrid [263] introduces distinct
execution environments for the applications and the storage areas.

sHype [202, 204] is a security architecture that controls the sharing of resources
among VMs according to formal security policies at the VMM-level. It provides
boot and run-time guarantees and addresses OS security weaknesses by providing
confinement opportunities. It also enables secure communication and sharing be-
tween workloads on the same platform and potentially across multiple platform and
organizational domains. The secure hypervisor enables its users to run a trusted
operating system securely alongside a distributed operating system on a single plat-
form. This idea is further explored with Shamon [160], an approach to securing
distributed computation based on a shared reference monitor that enforces manda-
tory access control (MAC) policies across a distributed set of machines. Shamon
enables the reference monitors on these machines to achieve a set of monitor guar-
antees. The implementation is based on the Xen hypervisor with a trusted MAC
virtual machine built on Linux 2.6 whose reference monitor design requires only 13
authorization checks, 5 of which apply to normal processing, while the others are
for policy setup.

Trusted Virtual Domains (TVDs) [107] is an architecture that offloads com-
puting services into execution environments that demonstrably meet a set of security
requirements. A TVD is an abstract union including an initiator and at least one
responder. During the process of joining, all the parties specify and confirm the
set of mutual requirements and each party is assured of the identity and integrity
of the computer system of the remote party. The enforcement of the attestation is
delegated to virtual environments.

[124, 123] present an implementation of MAC for Linux network communications
that restricts socket accesses to labeled IPSec security associations. The Linux Se-

53

CHAPTER 3. RELATED WORKS

curity Modules framework defines a reference monitor interface that enables security
modules to enforce comprehensive MAC for Linux 2.6. Socket communications are
restricted by network interfaces and IP addresses but they cannot control access to
particular applications on remote machines or reliably associate request processing
with the appropriate remote principals.

[105] examines how to link specific properties of a remote system, verified through
TPM-based attestation, to secure tunnel endpoints to counter attacks where a com-
promised authenticated SSL endpoint replays the TPM-based attestation of another
system. The proposes mechanism can be deployed in virtualized environments to
create SSL endpoint certificates and instant revocation that scales Internet-wide.
[254] considers VMs as sandboxes that simplify the deployment of collaborative en-
vironments over wide-area networks. Each VM sandbox can be seen as a virtual
appliance available to several users, so that new nodes can easily join, and be inte-
grated into, the virtual network.

The Dynamic Virtual Clustering (DVC) system [71] integrates the Xen vir-
tual machine with the Moab scheduler to enable the creation of virtual clusters on
a per-job basis. These virtual clusters can provide a unique software environment
for a particular application, or a consistent software environment across multiple
heterogeneous clusters. OurGrid SWAN [44] provides a sandboxing environment
for the OurGrid free-to-join grid. By executing the task on a VM it creates security
guarantees to the grid resource’s owner that are especially important for a free-to-
join grid model. Grid task execution are improved by creating a common storage
area that is only visible by the current running tasks of a given site. This avoids
multiple transfer of a given file across inter-site networking because, after the first
transfer, the file can be accessed via the intra-site networking.

[8] describes the development of a small and specialized environment based on a
Mini-OS running on Xen to support sensitive applications. This environment is iso-
lated from other domains and has a very small TCB. Both these properties increase
the trustworthiness of the application and of the supporting environment, which is
not intended as a general purpose OS. To maintain a small TCB, this environment
does not include several features, such as file system support and networking. The
papers shows that a lightweight library OS offers a convenient and practical way of
reducing the trusted computing base of applications by running security sensitive
components in separate Xen domains.

Trusted Grid Architecture [157] is a framework to build a trustworthy grid
architecture by combining Trusted Computing and virtualization technologies. The
proposed approach allows a user to check that a selected provider is in a trusted
state before accessing a submitted grid job. Both the previous architectures consist
of a grid of nodes where clients require services, using some form of negotiation to
locate a trustworthy provider. [40] introduces a secure virtual networking model
and a framework for efficient and security-enhanced network virtualization. The
key drivers of this framework design are the security and management objectives
of virtualized data centers, which are meant to co-host IT infrastructures belong-

54

3.5. COLLABORATIVE VIRTUAL ENVIRONMENTS

ing to multiple departments of an organization or even multiple organizations. The
proposed framework merges existing networking technologies (such as Ethernet en-
capsulation, VLAN tagging, and VPN) and security policy enforcement to concretely
support the abstraction of TVD, which can be thought of as security-enhanced vari-
ants of virtualized network zones. Policies are specified and enforced at the intra-
TVD level (e.g., membership requirements) and inter-TVD level (e.g., information
flow control).

[35] describes the requirements and services to ensure the scalable management
and deployment of appliances implemented as VM images. These requirements
are important to achieve scalability as well as develop methods to manage trust
and enable more images to be deployed on more platforms in a secure manner
according to site policies. Finally, it describes methods of adapting VM images to
produce appliances and contextualizing them on deployment. VM-FIT [194] is an
architecture that applies virtualization to build fault and intrusion tolerant network-
based services. The VM-FIT infrastructure intercepts the client/service interaction
at the hypervisor level, below the guest OS that hosts a service, and distributes
requests to a replica group. The hypervisor is fully isolated from the guest operating
system and provides a trusted component that is not affected by malicious intrusions
into guest operating system, middle-ware, or service. Furthermore, it supports the
implementation of more efficient strategies for proactive recovery in order to cope
with the undetectability of malicious intrusions.

[96] presents a secure and flexible Enterprise Rights Management system based
on a refined version of the TVD security model to establish isolated execution en-
vironments spanning over virtual entities across separate physical resources. The
proposed security approach results in a two-layered policy enforcement on docu-
ments: a TVD Policy ensuring isolation of the workflow from other tasks on the
user platforms, and a role-based document-policy ensuring both confidentiality and
integrity of document parts. The proposes architecture offers advanced features for
secure workflows such as offline access to documents and transparent encryption of
documents exchanged via USB, external storage or VPN communication between
peer platforms.

PEV architecture [126] is a formal integrity model to manage the integrity of
arbitrary aspects of a virtualized system. This architecture is based upon a model
that generalizes the TPM’s integrity management functions to cover not only soft-
ware binaries, but also VMs, virtual devices, and a wide range of security policies.
PEV supports the verification of security compliance and the enforcement of se-
curity policies. SnowFlock [146] is a Xen-based implementation of the VM fork
abstraction. VM fork enables cloud users and programmers to instantiate several
VMs in different hosts in sub-second time, with little run-time overhead. Therefore,
it enables the simple implementation and deployment of services based on familiar
programming patterns that rely on the ability to quickly instantiate stateful workers.

55

CHAPTER 3. RELATED WORKS

Protected Storage

S4 [231] is a self-securing storage server that transparently maintains an efficient
object-versioning system for its clients. By doing so, it prevents intruders from unde-
tectably tampering with or permanently deleting stored data by internally auditing
all requests and keep old versions of data for a window of time, regardless of the
commands received from potentially compromised host operating systems. S4 uses
a log-structured object system for data versions and a novel journal-based structure
for metadata versions. In addition to reducing space utilization, journal-based meta-
data simplifies background compaction and reorganization for blocks shared across
many versions.

Storage-based intrusion detection [181] enables storage systems to discover
data modifications proper of system intrusions. This enables storage systems to spot
several common intruder actions, such as adding backdoors, inserting Trojan horses,
and tampering with audit logs. An IDS embedded in a storage device watches system
activity from a new viewpoint, which immediately exposes some common intruder
actions. Running on separate hardware, this functionality remains in place even
when client OSes or user accounts are compromised.

[227] presents a survey of techniques for securely storing data, including theoret-
ical approaches, prototype systems, and existing systems currently available. [219]
improves backtracking techniques [136] by logging additional parameters of the file
system (such as the offsets where a read or write operation is performed) during
normal operations and examining the logged information during the analysis phase.
In addition, it uses data flow analysis, e.g. reaching definitions, within the processes
related to the intrusion to prune unwanted paths from the dependency graph. This
results in significant reduction of the search space and time as well as the number
of false positives.

[25] presents two storage-based IDSes for block storage environments and it shows
that the impact on storage system performance is negligible. It exploits two alterna-
tive approaches to intrusion detection: a real-time one, which works at block storage
level and another one that does not operate in a real time manner and is applied at
file system level. It then discusses how intrusion detection schemes can be deployed
as an appliance loosely coupled with a SAN storage system. The major advantage
of this approach is that it is fully transparent because it uses the space and time
efficient point-in-time copy operation of SAN storage devices.

SVFS (Secure Virtual File System) [264] uses virtualization technology to store
sensitive files in a VM that is dedicated to providing secure data storage, and run
applications in one or more guest virtual machines. Accesses to sensitive files are
filtered by SVFS and are subject to access control policies. Because these policies are
enforced independently in an isolated VM, intruders cannot bypass file protection by
compromising a guest VM. In addition, SVFS introduces a virtual remote procedure
call to improve the performance of data exchange crossing VM boundaries.

[113] presents two systematic threat modeling processes to base protection for

56

3.5. COLLABORATIVE VIRTUAL ENVIRONMENTS

storage systems: (i) the CIAA process; (ii) the data life-cycle model process. The
CIAA process structures threats and vulnerabilities into classes of attacks to match
existing protection techniques for confidentiality, integrity, availability, and authen-
tication. The data life-cycle process focuses on the most important asset of a storage
system, and it traces the data life-cycle within an environment to ensure it is fully
protected at each stage.

[24] presents a storage based IDS which uses time and space efficient point-
in time copy and performs file system integrity checks to detect intrusions. The
storage system software is enhanced to keep track of modified blocks to speed up a
file system scan. Furthermore, when an intrusion occurs a recent undamaged copy
of the storage is used to recover the compromised data. It proposes that the storage
controller keeps track of modified blocks and uses this information to minimize the
number of files to be examined. Furthermore, the system can rollback the state of
one or more logical disks to a previous point in time to recover the compromised
data.

[134] discusses important security issues related to storage and presents a com-
prehensive survey of the security services offered by existing storage systems. [262]
presents a data management solution which allows fast VM instantiation and effi-
cient run-time execution to support VMs as execution environments in Grid comput-
ing, which is based on novel distributed file system virtualization techniques. The
proposed solution provides on-demand cross-domain access to VM state for unmod-
ified VM monitors and enables private file system channels for VM instantiation by
secure tunneling and session-key based authentication. Moreover, it supports user-
level and write-back disk caches, per-application caching policies and middleware-
driven consistency models and it leverages application-specific meta-data associated
with files to expedite data transfers.

[261] presents a storage-based IDS that makes use of advantages of VM and smart
disk technologies. The VMM can defend the IDS itself from potential attacks while
the smart disk technology provides IDS with a whole view of the file system of the
monitored VM. The virtual disk maintains a sector-to-file mapping table (the file-
aware block level storage) and it can detect the changes to file content on-line. By
exploiting these features, normal file-level intrusion detection rules can be converted
into sector-level ones in order to integrate intrusion detection functions within the
virtual storage ones.

VOFS (View-Only File System) [34] relies on trusted computing primitives and
virtualization technology to provide a great level of security than current systems.
In VOFS, a secure VM on the client authenticates itself with a content provider and
downloads sensitive data. Before allowing the user to view the data in his or her non-
secure VM, the VOFS client disables non-essential device output. This prevents the
user, or any malicious software, from printing, uploading, or stealing the sensitive
content. When the user has terminated the operations on a sensitive file, VOFS will
reset the machine to a previous state and resume normal device activity.

[247] proposes a mechanism to provide secure and efficient access to large-scale

57

CHAPTER 3. RELATED WORKS

outsourced data, by encrypting every data block with a different key to achieve flex-
ible cryptography-based access control. It exploits key derivation methods so that
the owner has to maintain only a few secrets. Moreover, over-encryption and/or lazy
revocation prevent revoked users from getting access to updated data blocks. [259]
proposes a cryptographic network file system based on a MAC tree construction that
uses a universal-hash based stateful MAC that results in standard model security
proof and in better performance than a Merkle hash tree. The implementation is
based on coreFS, a user-level network file system. [250] proposes an image manage-
ment system that controls access to cloud’s image repository, tracks the provenance
of images, and provides users and administrators with efficient image filters and
scanners that detect and repair security violations.

58

Part II

Principles and Implementation

Chapter 4
Description of the Process Self

In the previous chapters, we have shown that PsycoTrace strategies to detect
attacks against a process are built around the notion of process self. The most
powerful of these strategies describes the self as a set of legal traces of system calls,
where each system call may be coupled with an assertion on some variables value.

In the following, we describe the two main PsycoTrace static tools that analyze
SourceCode(P) to extract Self(P):

1. the first tool implements Grammar Generating Algorithm (GGA), an algo-
rithm that we have defined to build CFG(P), the grammar that describes the
traces of P ;

2. the second tool is the Assertion Generator, which generates IT (P), which
includes a set of invariants {I(P, 1), . . . , I(P, n)}, that hold at point i of the
process P .

4.1 Abstract Syntax Tree in PsycoTrace

Definition (AST (P)). AST (P) is the abstract syntax tree coupled with P .

A preliminary step of the static analysis builds AST (P), which is exploited
both to generate CFG(P) and to produce the set of invariants. For this reason,
the static tools require a detailed representation of AST (P) at a proper level of
abstraction. Some GCC compilation options1 return an internal GCC representation
of AST (P) that a data-flow analysis cannot easily exploit to generate invariants.
For this reason, the static tools exploit an alternative representation to the AST (P)
exported by the GCC, namely the one exported by Icaria-Ponder [10]. Icaria-Ponder
performs a static analysis on the program and supports forward and backward slicing
and chop [117, 121]. We have modified both a subset of the library (Ponder) and

1Such as -fdump-translation-unit and -fdump-rtl-*.

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

of the front-end (Icaria) to generate a DOT representation of the AST (P) that
enables the PsycoTrace static tools to (i) easily parse the DOT representation of the
AST (P) tree using existing libraries; (ii) generate images from the AST (P) DOT
representation: to this end, we have exploited Graphviz [70].

The nodes of the AST (P) are represented by a record including the following
fields:

1. a unique numeric identifier, to identify the node in the tree;

2. a type, which can be:

� ROOT: it represents the root of the AST;

� LIST: it is a special node used to list all the children coupled with a node;

� IDENTIFIER: it represents the name for variables and functions;

� LITERAL: it represents the actual value of a variable or of a function
parameter;

� STATEMENT: it represents the distinct types of the language statements;

� EXPRESSION: it represents any type of a language expression, such as
assignments, functions, mathematical/logical expressions;

� DECLARATION: it represents a variable declaration;

� DECLARATOR: it represents a function declaration;

� INIT DECLARATOR: it represents a variable declaration and its initializa-
tion;

� SPECIFIER: it represents the type of a variable or the return type of a
function;

� QUALIFIER and STORAGE: they represent modifiers for functions or vari-
ables, such as STATIC, CONST or EXTERN;

� EMPTY: it is used to uniformly represent all the language constructs inside
an AST in all the cases where a node may be empty. As an example, the
ELSE branch of an if-statement may be empty.

3. value or label: as an example, the name of a statement or the value of a literal;

4. the name of the file that defines an instruction;

5. the line number where an instruction appears;

6. the source code corresponding to the instruction in the AST.

62

4.2. GRAMMAR GENERATING ALGORITHM

4.2 Grammar Generating Algorithm

PsycoTrace static tools generate CFG(P) by applying grammar generating algo-
rithm (GGA) while traversingAST (P). Formally, CFG(P) is a tuple< T, F, S,R >,
where:

� T is a set of terminal symbols with one symbol for each distinct system call
in SourceCode(P);

� F is a set of non-terminal symbols, one for each function defined in SourceCode(P);
each symbol corresponds to a subset of T that may be empty.

� S ∈ F is the starting symbol, which corresponds to the main function;

� R is the set of production rules X → β, where X is a non-terminal symbol
and β a sequence of terminal and not-terminal symbols that may be empty.

Since CFG(P) represents the control-flow of P in terms of legal traces of system
calls, terminal and non-terminal symbols of CFG(P) depend upon the system calls
that SourceCode(P) invokes and the functions it defines. Any rule defined by GGA
exploits the type of a node of AST (P) to deduce the type of the statements and
to determine the structure of the corresponding production rule. As an example,
a conditional IF includes the expression to be evaluated (the guard) and two chil-
dren nodes, which correspond, respectively, to the instructions to be executed when
the expression evaluates to TRUE or to FALSE. Each type of node corresponds to
a semantic construct that is used to build CFG(P). Thus, if a node of AST (P)
represents a function, each statement of this function is coupled with a distinct pro-
duction, where the name of every production is built by appending the name of the
file where the function is defined with the name of the function. In a similar way,
GGA uniquely identifies the various instances of statements such as FOR or WHILE

by appending a numerical subscript for each instance, e.g. FOR1, WHILE2.

4.2.1 Grammar Generating Algorithm Rules

GGA analyzes AST (P) and for each function fun defined in SourceCode(P) it
inserts into F a new non-terminal symbol FUN and a new rule Rnew into R, where
FUN is the left-hand-side of Rnew. To generate the right-hand side of the rule, GGA
linearly scans the definition of fun in SourceCode(P). Distinct production rules
may be generated, according to the type of statement met by GGA in the body of
fun. For each statement, GGA generates a new rule and adds a new symbol to the
right-hand side of Rnew. In this way, CFG(P) represents the system calls that fun

can invoke and the ordering among the invocations in the body in fun.
To generate the rule for a statement, GGA considers the following cases2:

2The subscripts, such as X, Y, represent a unique numeric identifier to distinguish the distinct
productions.

63

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

� if fun contains a block block1 of instructions without conditional statements
or loops, then:

1. GGA produces a new rule <EXPRX> → syscall, where syscall repre-
sents the system calls (if any) inside an expression in block1.

2. the symbol <EXPRX> is added to the right-hand-side of Rnew.

� if fun contains a statement if(cond) block1:

1. GGA generates a new rule <STIFX> → | ε, where B is a new
non-terminal symbol that represents the left-hand-side of the new rules
generated by recursively applying GGA on block1;

2. the symbol <STIFX> is added to the right-hand-side of Rnew.

� if fun contains a statement if(cond) block1 else block2:

1. GGA generates a new rule <IFELX> → <STIFY> | <ELSEK>, where
<STIFY > and <ELSEK> are new non-terminal symbols that represent the
left-hand-side of the two new rules generated by recursively applying
GGA on block1 and block2;

2. the symbol <IFELX> is added to the right-hand-side of Rnew.

� if fun contains a statement if(cond) {block1} else if(cond) {block2}
. . . else if(cond) {blockn} statement or, equivalently, switch (expr) case(val1):

block1 . . . case(valn) blockn:

1. GGA generates a new rule <STIFX> → <ELSE1> | <ELSE2> | . . . |
<ELSEn>, where <ELSE1>, <ELSE2>, <ELSEn> are the new non-terminal
symbols of the left-hand-side of n new rules generated by recursively
applying GGA on <block1>, . . ., <blockn>;

2. the symbol <STIFX> is added to the right-hand-side of Rnew.

The previous rule is valid only if every CASE branch of the SWITCH construct
contains a break statement. Otherwise, GGA manages the fall through sce-
nario by combining all the CASE branches together. As an example the follow-
ing SWITCH statement:

switch (expr) {
case 0 : . . . break ;
case 1 : . . .
case 2 : . . .
case 3 : . . . break ;

}

generates the production:

64

4.3. ASSERTION GENERATOR

<SWITCHX> → CASE0 | CASE1 CASE2 CASE3 | CASE2 CASE3 | CASE3;

� if fun contains a statement while(cond) {block1} or for(init; control;

iteration) block1:

1. GGA generates, respectively, the rules:

– <WHILEX> → <WHREY> <WHILEX> | ε
– <FORSX> → <FOREY> <FORSX> | ε

where <WHREX>, <WHREX> and <FOREY > are two new productions rules
generated by recursively applying GGA on block1

3;

2. productions <FORSX> → ε and <WHILEX> → ε are inserted to handle
the loop exit;

3. a symbol <FORSX> or <WHILEX> are added to the right-hand-side of Rnew.

Table 4.1 shows some simple examples of grammars generated by GGA. As an-
other example, Tab. 4.3 shows CFG(P) generated from SourceCode(P) listed in
Tab. 4.2. Appendix A discusses an alternative strategy that we have exploited to
build CFG(P).

4.3 Assertion Generator

The Assertion Generator is the static tool to generate invariants. To this pur-
pose, AST (P) is represented in a structured way that contains the following infor-
mation:

� symbolic names of the variables;

� type of the variables;

� symbolic names of the functions containing the variables of interest;

� values that variables may assume statically;

� type of statements of the considered language (C), such as assignments, con-
ditional statements, loop;

� memory size of variables, such as arrays with known size.

3Since expressions in conditional statements (e.g. cond in the while rule) may contain some
system call invocations, these system calls have to be added to the terminal symbols of the rule as
well.

65

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

f () {
open () ;
read () ;
g () ;
close () ;

}

g () {
getpid () ;

}

〈F〉→ open read 〈G〉 close;

〈G〉→ getpid;

f () {
open () ;
i f (x)

read () ;
}

〈F〉→ open 〈ST1〉;

〈ST1〉→ read | ε;

f () {
open () ;
i f (x)

read () ;
e l s e

close () ;
}

〈F〉→ open 〈IFEL1〉;

〈IFEL1〉→ 〈STIF2〉 | 〈ELSE3〉;

〈STIF2〉→ read;

〈ELSE3〉→ close;

f () {
open () ;
whi l e (x)

read () ;
}

〈F〉→ open 〈WHILE1〉;

〈WHILE1〉→ 〈WHRE2〉 〈WHILE3〉 | ε;

〈WHRE2〉→ read;

f () {
open () ;
read () ;
i f (execl (. . .) != −1)

f () ;
close () ;

}

〈F〉→ open read 〈STIF1〉 close;

〈STIF1〉→ execl 〈F〉 | ε;

Table 4.1: Examples of The Grammar Generating Algorithm

As previously said, AST (P) is extracted from SourceCode(P) by applying Icaria-
Ponder and it includes all the previous information. The DOT representation of
AST (P) is then analyzed by exploiting the GRAPPA library to detect the type of

66

4.3. ASSERTION GENERATOR

1 i n t main (i n t argc , char **argv) {
2 char *filename ;
3 i n t fd ;
4 filename = argv [1] ;
5 fd = fork () ;
6 i f (fork () == 0) {
7 i f (execl (filename , NULL) == −1) {
8 printf (”ERROR!\n”) ;
9 }

10 e l s e {
11 strcat (filename , ” . exec1 ”) ;
12 }
13 }
14 e l s e { . . . }
15
16 i f (argc > 2) {
17 filename = argv [2] ;
18 strcat (filename , ” . exec2 ”) ;
19 }
20
21 execl (filename , NULL) ;
22 }

Table 4.2: Example of Source Code for P

nodes inside the tree. We have extended this library by defining some functions
that, given a node, return, respectively, the depth, the father, the children and the
siblings of the considered node.

The basic strategy of the Assertion Generator to generate invariants is to traverse
AST (P) and analyze the variables, functions and language statements to build the
invariant table (IT (P)), which includes a set of invariants {I(P, 1), . . . , I(P, n)},
each associated with a program point i where P invokes a system call. To simplify
the analysis, we assume that the following assumptions hold:

� integer variables : we restrict the analysis to files and socket descriptors so that
we can express relations among these variables and the system calls;

� string variables : in case of arrays of char statically declared, functions to
manipulate strings, such as str(n)cpy and str(n)cat, are treated like as-
signments. In the following, these kinds of functions will be denoted as
ATOMIC FUN;

� struct members : we restrict the analysis to integer or string type field.

4.3.1 Invariant Table

When analyzing AST (P), the Assertion Generator builds the invariant table
(IT (P)), which contains the following fields:

67

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

〈MAINP 〉→ 〈EXPR0〉 〈EXPR1〉 〈IFEL2〉 〈STIF11〉 〈EXPR14〉;
〈EXPR0〉→ /*empty*/;

〈EXPR1〉→ fork;

〈IFEL2〉→ 〈STIF3〉 | 〈ELSE4〉;
〈ELSE4〉→ fork 〈EXPR10〉;
〈STIF3〉→ fork 〈IFEL5〉;
〈IFEL5〉→ 〈STIF6〉 | 〈ELSE7〉;
〈ELSE7〉→ execl 〈EXPR9〉;
〈STIF6〉→ execl 〈IFEL8〉;
〈EXPR8〉→ 〈PRINTFp〉;
〈PRINTFp〉→ . . .;

〈EXPR9〉→ 〈STRCATp1〉;
〈STRCATp1〉→ . . .;

〈EXPR10〉→ . . .;

〈STIF11〉→ /*empty*/ | 〈EXPR12〉 〈EXPR13〉
〈EXPR12〉→ /*empty*/;

〈EXPR13〉→ 〈STRCATp1〉;
〈EXPR14〉→ execl;

Table 4.3: Context-Free Grammar for P

� VAR ID: name of the variable in the source code. If VAR ID appears on the
right-hand-side of an assignment, we say that VAR ID is an assignment variable,
and we refer to its value as a assignment value. If filename is the name of
a variable used as the first parameter of the open() system call, then we
will say that param0@open = filename is an invariant where filename is an
assignment variable and the subscript 0 indicates the first parameter, 1 the
second parameter, and so on;

� FUN FILE: the name of the function or file that defines VAR ID;

� VALUES: a set of values that VAR ID can assume;

� RUN-TIME: if the variable value can only be known at run-time;

� TYPE: the type of VAR ID. It also indicates whether a variable is local to a
function or is static;

68

4.3. ASSERTION GENERATOR

� LENGTH: dimension (if defined) coupled with VAR ID;

� LOC: line number where VAR ID appears;

� REL: relational operator of the invariant;

� INVARIANTS: it corresponds to VAR ID REL VALUES;

� RULE: name of the rule where the current relation appears.

To produce IT (P), the Assertion Generator implements a depth first visit of
AST (P), from left to right, so that it can firstly meet variable declarations and
then statements or compound statements. Every time the Assertion Generator
meets a declaration of a variable that belongs to the set of types of interest, it
adds the variable to IT (P), by initializing VALUES with an undefined value4 (?).
If the declaration is also an assignment (INIT-DECLARATOR) that can be statically
determined, then VALUES is initialized with the corresponding value. Every time
the Assertion Generator finds an EXPR-ASSIGNMENT statement or an ATOMIC-FUN

that can be statically determined, it checks if the variable belongs to IT (P), and
it updates VALUES with the corresponding value, otherwise it evaluates the next
statement. In case of conditional statements where the Assertion Generator cannot
determine the value of a variable, IT (P) is modified to include a union of all the
possible values that can be assigned to the corresponding variable, and if they are
statically determined or known at run-time. In this case, the Assertion Generator
considers the control/data-flow path to determine the values that can be assigned
to the variable.

As an example, in the following code:

1 i n t a ;
2 i f (test) {
3 a = 1 ;
4 }
5 e l s e {
6 a = 2 ;
7 ref (a) ;
8 }

at the end of the evaluation of the IF branch (line 4), the set of values that the
variable a may assume is {?, 1}, whereas at the end of the ELSE branch (line 8) the
set is {1, 2}.

If the value of the variable involved in an INIT-DECLARATOR or EXPR-ASSIGNMENT
is not statically computable, then the RUN-TIME column in IT (P) is updated with
the value RT to indicate that the value of this variable can only be known at run-
time. By default, the value of the parameters of the main function are set to RT.

4We assume that an undefined variable means that its value has been initialized by the compiler
to a default value according to the type of the variable, e.g. 0 for integer variables

69

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

Whenever a variable is referred, the largest set of values it can assume is returned by
determining the set of reaching definitions. This set is then correlated to the call-site
by specifying the referred variable, the name of the function (also for system calls),
the grammar rule where the referred variable appears and the line in the code of the
call-site. To this end, during the visit of the AST (P), the Assertion Generator keeps
track of the type of the variables, their scope (local or global), their dimension (if
any) and the line of code where the variable appears. The first prototype determines
the reaching definitions by visiting the AST (P) and by considering the control/data-
flow to determine the values that a variable can assume before a point of execution.
The Assertion Generator checks the current statement S and:

� if S is not a conditional statement, then the Assertion Generator assumes
that the set of values of the predecessors is the same as the last set of val-
ues in VALUES, since this models the correct control/data-flow, as previously
described;

� if, instead, S is a conditional statement, firstly the Assertion Generator consid-
ers potential assignments in a branch and then it analyzes the stack of previous
assignments by selecting the set of predecessor values of the statement. As an
example, in the code previously described, the set of predecessors of a at line
7 is equal to {2} since the assignment to a in the ELSE branch is the only point
of execution that influences the current value of the variable at line 7. If a has
not been assigned at line 6, then the set of predecessors of a would have been
{?}, since the statement corresponding to the IF branch is not considered in
the control flow that reaches the variable referred at line 7.

To generate the relations (REL) and the corresponding invariants (INVARIANTS)
the Assertion Generator applies a contextual analysis during the visit of theAST (P).
In the following, for the sake of simplicity, we only focus on unary equality relations
and on system call parameters. As an example, it is well known that several equality
relations hold among file descriptors in a sequence of system calls such as open(),
read(), write(), close() that involve the same file.

An Example. Let us consider the code in Tab. 4.4: the corresponding IT (P) is
shown in Tab. 4.5, and it contains two main pieces of information:

1. all the possible values that the variables declared in the program (argc, argv,

test, path1, path2, fd) can assume;

2. the values of the program variables when they are referred in the code, as
previously described. These values are used to generate invariants.

As far as concerns system calls parameters, we can isolate the following invari-
ants:

70

4.3. ASSERTION GENERATOR

1 /*
2 i nva r i an t gene ra t i on example
3 */
4
5 i n t main (i n t argc , char **argv) {
6 char path1 [1 0] ;
7 char path2 [1 0] = ”B” ;
8 i n t test , fd ;
9 i f (atoi (argv [1]) == 0) {

10 test = 2 ;
11 strcpy (path2 , ”D”) ;
12 strcpy (path1 , ”D”) ;
13 fd = open (” f i l e p a t h ” , ”RW”) ;
14 }
15 i f (atoi (argv [1]) > 5) {
16 test = 1 ;
17 strcpy (path1 , ”A”) ;
18 printf (”%s” , path1) ;
19 write (fd , path1 , s i z e o f (path1)) ;
20 }
21 e l s e {
22 test = 0 ;
23 execl (path2 , ””) ;
24 printf (”%s” , path1) ;
25 }
26 }

Table 4.4: Example of Source Code for P

� 13. PRM0@open = {"file path"}

� 13. PRM1@open = {"RW"}

� 19. FD0@write = {?,OPEN@13}

� 19. path11@write = {"A"}

In the first two cases, the IT (P) suggests that the first and second parameter of
the open() system call should be equal to, respectively, "file path" and "RW". On
the contrary, in the last two cases, the IT (P) indicates the first parameter of the
system call write() is either undefined (?), i.e. it has the default value according
to the type of the variable, or equal to the value returned by the open() system
call issued at line 13: in this case, by applying introspection at one of the previous
system call invocations (after open()), this value can be retrieved at run-time. On
the other hand, the second value of the system call write() is statically known and
is equal to A. In fact, the variable path1 is assigned by the function strcpy at line
17. By computing the reaching definitions, the Assertion Generator can deduce the
set of values that a referred variable can assume. In fact, at the beginning of the IF

statement at line 15, the variable path1 can assume the values {?,D}, but that is
not longer true at write() call site, since the strcpy function overwrites the set of
possible values with the single value A.

71

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

Rule INVARIANT RT LOC
PRMFUN@main argc = {?} RT 5

PRMFUN@main argv = {?} RT 5

main stringsSYS path1 = {?} - 6

STIF0 path1 = {?,"D"} - 12

STIF6 path1 = {?,"D","A"} - 17

STIF6 path1 = {?,"D","A"} - 18

ELSE7 path1 = {?,"D","A"} - 24

main stringsSYS path2 = {"B"} - 7

STIF0 path2 = {?,"B","D"} - 11

ELSE7 path2 = {?,"B","D"} - 23

main stringsSYS test = {?} - 8

STIF0 test = {?,2} - 10

STIF6 test = {?,2,1} - 16

ELSE7 test = {2,1,0} - 22

main stringsSYS fd = {?} - 8

STIF0 fd = {?,open} RT 13

STIF6 fd = {?,open} RT 19

EXPR2 path20@strcpy0 = {"B"} - 11

EXPR2 PRM1@strcpy0 = {"D"} - 11

EXPR3 path10@strcpy1 = {?} - 12

EXPR3 PRM1@strcpy1 = {"D"} - 12

EXPR4 PRM0@open2 = {"file path"} - 13

EXPR4 PRM1@open2 = {"RW"} - 13

EXPR8 path10@strcpy4 = {?,"D"} - 17

EXPR8 PRM1@strcpy4 = {"A"} - 17

EXPR9 PRM0@printf5 = {"%s"} - 18

EXPR9 path11@printf5 = {"A"} - 18

EXPR10 fd0@write5 = {?,OPEN@13} RT 19

EXPR11 path11@write6 = {"A"} - 19

EXPR12 path20@execl7 = {"B","D"} - 23

EXPR13 PRM1@execl7 = {""} - 23

EXPR14 PRM0@printf8 = {"%s"} - 24

EXPR15 path11@printf8 = {?,"D"} - 24

Table 4.5: Invariant Table for P

It is worth noticing that the invariant fd0@write5 = {?,OPEN@13} on the write()
parameter helps the discovery of a logic error inside the program. In fact, the value
of fd0 may be undefined when it is used. Therefore, as a side-effect, the IT (P) can
also be helpful in discovering common flaws, such as uninitialized variables.

As previously said, to increase the generality of the Assertion Generator, the
IT (P) is exploited to infer invariants involving any program variable. As an exam-

72

4.3. ASSERTION GENERATOR

ple, when the open() system call is issued, the Assertion Generator can also check
the possible values of the variable test. Since the last useful assignment of this vari-
able occurs at line 10, whereas the open() is invoked at line 13, the corresponding
invariant is equal to:

13. test1@open2 = 2

Obviously, the invariant is coupled with the first system call where it can be
evaluated, i.e. the open() system call. In the same way, let us consider the last
execl() system call inside the else branch. In this case, the corresponding invariant
is equal to:

23. path20@execl7 = {"B","D"}
23. PRM1@execl7 = {""}

Also in this case, the value that path2 may assume at the execution of execl() is
either B or D.

PsycoTrace can exploit run-time information to reduce the set of alternative
values that a variable can assume. In other words, it can propagate the knowledge
obtained at run-time to reduce the size of this set. Let us consider again the previous
example. Statically, PsycoTrace can identify the following invariants:

23. path20@execl7 = {"B","D"}
23. PRM1@execl7 = {""}

By accessing run-time information through introspection, PsycoTrace run-time
tools can further specialize the invariant by reducing the set of values that path2

may assume. As an example, if the first open() at line 13 is executed, PsycoTrace
can access the final value of path2, since this value is not changed anymore until
the execution of the execl() system call at line 23. This means that the block
inside the first IF is executed, and the value D has been assigned permanently to
the variable path2. If PsycoTrace propagates this knowledge, the previous invariant
can be tightened as follows:

23. path20@execl7 = {"D"}
23. PRM1@execl7 = {""}

4.3.2 Assignment Variables

In general, the values of most variables involved in any invariant is known at run-
time only. The main problem when evaluating an invariant is due to the temporal
relation and to the synchronous approach that PsycoTrace run-time tools exploit
to access the state of the processes. In fact, PsycoTrace introspection mechanism
can access memory locations and processor’s registers only when a system call is
issued. By exploiting the definition of System Block (SB) (discussed Chap. 7) as
the program fragment in-between two consecutive system calls, then introspection
may be applied only at the begin and end of a SB. If we consider invariants that

73

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

involve assignment variables, we should correctly determine their assignment value.
Let us consider two kinds of invariants:

� those involving variables whose assignment value is statically known: they are
evaluated at the begin and end of any SB;

� those involving variables whose assignment value is only known at run-time;
in general, they cannot be evaluated at the begin and end of any SB.

If we consider the following snippet of code:

. . .
char *filename ;
L0 : uid_t uid = getuid () ;
L1 : filename = function (. . .) ;
L2 : Log (. . .) ;
L3 : execl (filename , NULL) ;
. . .

the invariant that is statically generated and that corresponds to the execl() system
call is:

PRM0@execl=filename@L1

PRM1@execl=NULL

In this case, the value of filename is known only in-between the getuid() executed
at L0 and the execl() at L3. If we assume that function() may determine a
value which is not related to values known before the getuid() system call, even
if PsycoTrace knew the address of the filename variable, this invariant cannot
be evaluated at run-time, because the evaluation can only be coupled with the
execution of the execl() system call, where no information about the assignment
value is known. This problem arises because PsycoTrace cannot access the state of
P as soon as the assignment values, referred by some invariants, are modified, but
only when a system call is issued. In other words, the analysis of the state of P is
based upon system blocks rather than upon data-flow notions. This implies that
some invariants that can be statically inferred, cannot be evaluated at run-time or
can only be partially evaluated. In fact, there are some cases where PsycoTrace can
access the assignment value of a variable, but this value may not be correct. Let us
consider the following example :

. . .
char *filename ;
L0 : filename = function (. . .) ;
L1 : Log (. . .) ;
L2 : uid_t uid = getuid () ;
. . .
L3 : execl (filename , NULL) ;
. . .

74

4.3. ASSERTION GENERATOR

When the execl() system call is invoked at L3, PsycoTrace can evaluate the value
of filename to check the correctness of the parameters of the system call. However,
before the execution of the getuid() system call, which is the first point where
PsycoTrace run-time tools can retrieve any variable value and check an invariant,
the function Log() is invoked. If this function changes the value of filename, the
evaluation of the invariant at execl() may use an inconsistent value, which can
lead to a false negative. This problem is due to the fact that also functions may
invoke system calls but the current prototype only analyzes functions defined in
SourceCode(P) and not those defined inside shared libraries. This problem can be
solved by analyzing the object code rather than the source code, but this strongly
increases the complexity of generating invariants.

With respect to assignment variables, there are four classes of invariants:

1. invariants that do not involve assignment variables, such as:

15. test@open2 = 2

2. invariants involving assignment variables whose value is statically known;

3. invariants involving assignment variables whose value is only known at run-
time and that can be determined inside a SB;

4. invariants involving assignment variables whose value is only known at run-
time and that cannot be determined inside a SB.

To determine the value of a assignment variable that can be known at run-time only,
two conditions must hold:

1. the assignment variable must not be declared or reassigned inside the SB;

2. no function is invoked in-between an assignment to the variable and the be-
ginning of a SB.

Suppose k is the assignment variable involved in an invariant, i is the entry-point
of a SB, o the exit point of a SB, and j the point of execution where k takes its
final value. Notice that this point is only known at run-time. Then, the assignment
value of k can be determined at the entry of SB if and only if:

1. k is assigned in j and j < i;

2. there is no statement of type EXPR-ASSIGNMENT or ATOMIC-FUN in-between i
and o;

3. no function that may update k is invoked in-between i and o.

If the previous conditions are satisfied, then PsycoTrace can determine at i the
value of k that the invariant uses at o. In other words, PsycoTrace can determine
at the entry of SB the value of all the variables, such as k, that are involved in
the evaluation of the invariant at the exit point of SB. Otherwise, PsycoTrace may
adopt the solution proposed in Sect. 5.3.3.

75

CHAPTER 4. DESCRIPTION OF THE PROCESS SELF

76

Chapter 5
Run-Time Architecture

This chapter firstly describes the run-time tools that check and protect the kernel
integrity and then those that check and protect the process self.

5.1 Run-Time Components

The implementation of the run-time tools is built around Virtual Machine In-
trospection (VMI) to apply introspection at the hardware/firmware level without
introducing additional units. The run-time architecture consists of two virtual ma-
chines:

1. the monitored VM (Mon-VM), i.e. the VM executing P ;

2. the introspection VM (I-VM), i.e. the VM monitoring P through virtual
machine introspection.

The I-VM can access each component of the Mon-VM to inspect its running state
both to check the process self of P and the kernel integrity. To implement these
checks, the Mon-VM transfers control to the I-VM each time P invokes a system call.
At this point, the I-VM checks that the current trace of P satisfies CFG(P) and it
evaluates the invariant I(P, i) coupled with the point i reached by P . Periodically,
the I-VM applies a set of integrity functions to assure the kernel integrity. Figure
5.1 shows the overall architecture.

The I-VM runs an Assertion Checker that evaluates invariants on the state of P
and that accesses the variables in the memory of P and the CPU of the Mon-VM
through an Introspection Library, which has a low-level access to each component
on the Mon-VM. Every time P issues a system call, the Mon-VM transfers control
to the I-VM, which:

(i) retrieves the system call number and the value of its parameters from the
processor registers of the Mon-VM (e.g., EAX, EBX, ECX, EDX);

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.1: PsycoTrace Run-Time Architecture

(ii) determines the invariant coupled with the program counter (PC) correspond-
ing to system call that P has issued;

(iii) retrieves the values of the variables that the invariant refers to;

(iv) evaluates the invariant and:

– kills P if the invariant is false, because this signals a successful attack
against P ;

– otherwise it resumes the execution of P by returning control to the Mon-
VM.

To create the Mon-VM and I-VM, we have adopted Xen [26] mainly because of
its high performance and complete integration with the Linux kernel.

5.1.1 Assumptions

The important assumptions underlying the adopted architecture are that:

(i) the VMM can be trusted, i.e. it belongs to the Trusted Computing Base
(TCB);

(ii) introspection safely extends the TCB.

To justify these assumptions consider that, first of all, the VMM is more robust
than commodity OSes because:

78

5.1. RUN-TIME COMPONENTS

� it exports a simple interface to the higher levels, which is more difficult to
subvert than, for example, the one of a kernel that implements hundreds of
system calls;

� the small size of its code reduces the likelihood of a compromise and makes it
possible to formally validate its correct implementation.

Secondly, the VMM has full visibility of the Mon-VM, because it can access every
component of this VM. Notice also that the kernel of the Mon-VM does not belong
to the TCB because the I-VM can check its integrity, as discussed in Sect. 5.2. In
conclusion, since the VMM has full visibility of the VMs but it is strongly isolated
from them, the complexity of compromising the VMM or of eluding the introspection
monitoring capabilities of the Mon-VM is very high. Nonetheless, as discussed in
Related Works, there are known threats against the VMM that also have to be
considered.

5.1.2 Transparency

To be fully transparent, PsycoTrace should not require any modification of
SourceCode(P) or of the kernel of the Mon-VM. Currently, while SourceCode(P) is
not modified to build CFG(P), the generation of invariants requires some updates
to SourceCode(P) to enable the I-VM to retrieve the addresses of local variables be-
cause they are dynamic and cannot be extracted at compile time. Hence, we update
SourceCode(P) to store their run-time addresses in a shared memory-mapped page
through Xen grant-tables. A fully transparent strategy may be defined by statically
computing variable addresses as the relative offset of local variables from the frame
pointer and by accessing the frame pointer at run-time through VMI. Furthermore,
PsycoTrace requires some modifications to the kernel of the Mon-VM to intercept
each system call and trace P (see Sec. 5.3.1). There are at least three alternative
implementations of a fully transparent system even with respect to the Mon-VM:

1. IDT-hijacking: when the Mon-VM kernel tries to install its own interrupt ta-
ble, the VMM installs a different system call handler, which traces system
calls and then jumps to the original system call handler. This handler can
be installed when the Mon-VM kernel invokes the set trap table() hyper-
call to submit a table of trap handlers. This solution does not work with
syscall/sysexit instructions, and it requires a para-virtualized Mon-VM
kernel, i.e. modified to invoke hypercalls;

2. exploiting the hardware NX bit, for example to set to read-only the page stor-
ing the system call handler. Each time P invokes a system call, a trap is
generated and Xen can trace the system call. Then, it sets to read-only the
executable bit of the pages storing, respectively, the system call handler and
the ret from syscall() procedure, so that the return of the call generates a

79

CHAPTER 5. RUN-TIME ARCHITECTURE

further trap. When handling this trap, PsycoTrace can set the executable bit
of both pages to read only again, and so on;

3. in case of full virtualization, and with AMD processors with VT extensions, the
VMM can be instrumented to invoke the VMEXIT AMD instruction, which is
an instruction that traps the execution of the Mon-VM, each time P executes
an int $0x80 instruction, i.e. a software interrupt instruction to invoke a
system call. This solution does not work with syscall/sysexit instructions,
which are instructions to implement fast system call invocations.

The adoption of any of these solutions results in a monitoring that is both fully
transparent to P and Mon-VM kernel and highly robust.

5.2 Kernel Integrity

As previously discussed, the most sophisticated attacks strives to occupy the
lowest system level, i.e. the kernel-level, for at least two reasons:

(i) to achieve more complete control of the system;

(ii) to deceive the legitimate owner of the system, by hiding the traces of the
compromise.

To detect these attacks, an IDS running on the I-VM may exploit the VMM direct
access to the memory of each Mon-VM and apply VMI to analyze the state of the
kernel hosted on a Mon-VM, so that integrity checks are applied at a lower level
than the one a rootkit can gain. A possible solution runs on the I-VM a modified
IDS so that it can work at the VMM level and use VMI to check intrusions. A
further, distinct, approach applies VMI to evaluate a set of consistency checks de-
fined according to the OS-level semantics. In this approach, an introspection library
rebuilds the high-level view of the Mon-VM that the IDS requires. Both approaches
are feasible, but the effort of the first one is very high because the IDS should be
modified to monitor the Mon-VMs at the hardware level. On the other hand, the
second approach requires a complex introspection library able to bridge the seman-
tic gap and offer an OS view in terms of files, processes, virtual memory and that
should also support the various versions of the OSes of interest. PsycoTrace defines
a hybrid approach by introducing its own Introspection Library to rebuild the status
of the processes and of critical kernel data-structures starting form the status of the
memory and of the CPU of the Mon-VM. The Introspection Library enables the I-
VM to build a high-level view of a Mon-VM state by mapping the raw data accessed
in the Mon-VM memory into a high-level view in terms of OS data structures. To
this purpose, the library needs to know the kernel hosted by the Mon-VM, the data
structures it uses and the memory areas where they are allocated. In this way, the
I-VM can consider global information about the OS of the Mon-VM such as the list

80

5.2. KERNEL INTEGRITY

of running processes, the list of the loaded modules or information associated with
a PID, such as the list of open files/sockets. However, to support more complex OS
concepts while bounding the complexity of the Introspection Library, PsycoTrace
can inject a context-agent (see Sect. 5.2.3) in the Mon-VM’s memory to retrieve
further data it needs to complement the functionalities of the Introspection Library.

5.2.1 Introspection Library

A critical problem underlying the evaluation of assertions is related to the mech-
anism to access any memory region of P to retrieve the values of interest. As
described in the following, this problem is rather complex and its solution strongly
influences the overall performance. The I-VM implements this access through the
Introspection Library because it enables the I-VM to traverse the page tables of P to
translate a virtual address of a variable of P into a machine address, i.e. a physical
address in Xen terminology. In this way, the I-VM can map any page of P into
its address space to access the variables of P . The Introspection Library has been
implemented and tested on 32-bit x86 architectures both with regular paging and
Physical Address Extension (PAE), in the two cases of para-virtualized OS guest or
full-virtualized VMs. The library implements two introspection functions, namely
Memory Introspection, to access the memory of a Mon-VM both at the user and
at the kernel level, and VCPU-Context Introspection, to retrieve the state of the
Mon-VM virtual processor. These two functions are described in the following.

5.2.1.1 Memory Introspection

To implement user-space memory introspection, the library needs to access any
physical memory location allocated to the Mon-VM that corresponds to a virtual
address of P . To translate this virtual address, the Introspection Library directly
accesses the page tables (PTs) of P and then follows the pointer to walk the paging
levels to retrieve the pairing between a virtual address and a physical one. In the
case of para-virtualization, the addresses in all the page levels and in the registers of
a virtual context of a VM are machine addresses. For instance, the page directory
address in the cr3 register is a machine address. This implies that the Introspection
Library has to map three pages to translate a virtual address into a machine address
and it maps the corresponding page using the xc map foreign range() function,
as shown in Fig. 5.2.

Conversely, Xen manages static addresses as pseudo-physical addresses in a para-
virtualized OS, such as those coupled with the kernel exported symbols. Hence, when
Xen starts a VM, kernel static addresses are relocated, and the original addresses
are managed as pseudo-physical ones. For this reason, the Introspection Library
translates a pseudo-physical address PPA coupled with a kernel symbol, by applying
the following four steps (see Fig.5.3):

81

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.2: Introspection Library: User-Space Page Mapping

1. translate PPA into a machine address MA using the physical-to-machine
(P2M) table. Note that MA does not reference the kernel symbol because it
is relocated, i.e. Xen adds a further level of indirection to the kernel pseudo-
physical addresses;

2. invoke Xen to map the page at the base address of MA, i.e. the page that in-
cludes MA, and retrieve from the resulting offset the relocated pseudo-physical
address PPA2 of the kernel symbol;

3. access the P2M table to translate PPA2 into the corresponding machine ad-
dress MA2;

4. request Xen to map the page at the base address of MA2 into the address space
of the Assertion Checker process. This page stores the kernel data structure
pointed to by the kernel symbol.

82

5.2. KERNEL INTEGRITY

As soon as the Introspection Library has mapped the page that stores the pointer to
the kernel page directory and referenced to by the swapper pg dir symbol, it can
translate pseudo-physical addresses by accessing the kernel PTs as in the case of a
process virtual address. In this case, the Introspection Library sequentially maps
three pages instead of executing the previous four steps. Finally, when exploiting
processor virtualization extensions, Xen applies the shadow PTs mechanism and
both the page directory and PTs store pseudo-physical addresses. Each time a PT
needs to be updated, Xen propagates the update to the real PT, which is known
to the MMU. To this end, the Introspection Library exploits the Xen page array

structure, which records the pairing between pseudo-physical frame numbers and
machines frame numbers.

Figure 5.3: Introspection Library: Kernel Memory Access

5.2.1.2 VCPU-Context Introspection

To support the context switch between two VMs, Xen saves the values of the
CPU registers in a Virtual CPU-Context coupled with each VM. When a VM vma is
going to be scheduled, the current values of the registers are saved into the VCPU
context of the running VM, while the values of the registers of vma are restored
from the proper VCPU context. The VCPU-Context Introspection allows the I-VM
to monitor, and modify, the content of any Mon-VM register. As an example, it

83

CHAPTER 5. RUN-TIME ARCHITECTURE

enables the I-VM to retrieve the current system call number by reading the EAX

register and the value of any parameter stored in or pointed to by a VCPU register
or to monitor, and modify, the content of any Mon-VM register.

The VCPU-Context Introspection function exploits a Xen data structure, which
is vcpu guest context t, which contains the following fields:

� unsigned long ctrlreg[8], the control registers for the virtual CPU. As an
example, the control registers can be used to access the page directory through
the CR3 register;

� struct cpu user regs user regs, the user registers, such as the EIP and all
the registers used to save the parameters of a system call.

5.2.2 Integrity Checks

The I-VM monitors the kernel text section and that of the loaded modules to
discover whether they have been modified, for example by a kernel-level rootkit.
Since these memory regions are read-only, any attempt to modify them implies that
an attacker is trying to insert and execute arbitrary instructions, usually to update
the code of a system call.

The basic approach to retrieve a Mon-VM’s kernel data-structure to check its
integrity is:

1. the I-VM freezes the execution of the Mon-VM;

2. the I-VM maps into its address space the pages in the kernel of Mon-VM that
store the data structures of interest1;

3. by exploiting the definitions in the kernel header files, the Introspection Library
in the I-VM casts the raw memory to the correct data-structure;

4. if the data-structure contains a pointer, the I-VM retrieves the corresponding
virtual address and retrieves and maps the pointed data-structure, as in 3;

5. the I-VM applies consistency checks and returns to 3 if the data-structure is
a list;

6. the I-VM resumes the execution of the Mon-VM.

Appendix B lists the code of a sample Introspection function to retrieve the list of
running processes in Mon-VM that exploits this approach.

The first version of PsycoTrace’s kernel integrity functions have been developed
using the C language and exploits some security functions defined by OpenSSL.
Each Mon-VM runs a Linux Debian distribution.

1This step exploits the System.map file to retrieve the kernel virtual address of the data struc-
tures.

84

5.2. KERNEL INTEGRITY

The following sections discuss some sample introspection functions to exemplify
some of the capabilities of PsycoTrace’s kernel integrity functions.

5.2.2.1 Detecting Kernel Modifications

The I-VM invokes this introspection function to check the pages of the OS kernel
that should never be modified and that store:

� the kernel code, from the address text to etext;

� sys call table, the system call dispatch table;

� idt table table, the interrupt descriptor table.

The I-VM periodically computes the hash of each page and verifies that it has
not been changed by comparing it against the original value.

5.2.2.2 Running Processes Checker

The I-VM retrieves a set of PIDs by rebuilding the list of the processes executed
on a Mon-VM pointed by the init task symbol. Then, it compares this set against
the one returned by a context-agent injected into the Mon-VM. If the two sets of
PIDs differ, then an attacker has replaced critical system binaries with trojaned
versions to hide her presence. If the number of running processes is known, the list
of allowed PIDs and the name of the processes can be fixed when the Mon-VM is
booted and a hash of each element in the list is periodically checked.

5.2.2.3 Open Files Checker

This function is similar to the previous one, as it retrieves the list of running
processes, and for each process it rebuilds:

� the list of files that the process has open through the open() system call;

� the list of memory mapped files, such as shared libraries (in Linux, .so files)
that the Linux Loader loads into the process address space, or loaded at run-
time through the mmap() system call.

Fig. 5.4 shows the kernel data-structures that the Introspection Library rebuilds
from the raw data to retrieve the list of open files.

5.2.2.4 Loaded Modules Authenticator

This function retrieves the list of the modules loaded into the kernel, which is
pointed by the modules symbol. Then, it verifies that each module is an authorized
module and that its integrity is preserved. To check the integrity of the modules,

85

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.4: Rebuilding File Data-Structures through the Introspection Library

before starting the Mon-VM, each authorized kernel module is loaded and the I-VM
computes the hash of the pages storing its instructions and saves these values along
with the name of the module. Later, when this Mon-VM is started, this function
periodically computes the hash of the pages storing the code of each kernel module
and it checks if the hash differs from the previous one. If a hash or the name of a
module differs from the stored values, then either a module has been modified or a
not authorized one has been loaded.

5.2.2.5 Promiscuous Mode Checker

This function requests the pages starting from the kernel symbol dev base, a
pointer to a list of device structures in the Mon-VM. For each of such structures,
this function checks the corresponding flags to discover whether the interface is set
into promiscuous mode. This approach is similar to the one implemented by Kstat
[88], but it differs because of the level where this check is applied. Kstat accesses
these structures at the user-level through /dev/kmem or, if implemented as a module,
at the kernel-level. PsycoTrace promiscuous mode checker function applies the same
checks at the VMM level, so it cannot be defeated even by an attacker that gains
root privileges.

5.2.2.6 Anti-spoofing

To support the anti-spoofing capabilities, the I-VM kernel is compiled with the
following options:

� CONFIG NETFILTER XT MATCH PHYSDEV

� CONFIG BRIDGE NETFILTER

86

5.2. KERNEL INTEGRITY

� CONFIG NETFILTER NETLINK

� CONFIG NETFILTER XTABLES

� CONFIG BRIDGE

The I-VM implements the anti-spoofing checks on the Xen virtual bridge using a set
of iptables [167] rules. Each rule is defined in terms of the static IP address bound
to the virtual interface assigned to the Mon-VM. Every packet with a spoofed source
IP address is dropped and logged.

5.2.3 Context-Agent Injection

The I-VM can inject a context-agent inside a Mon-VM at any time and it also
implements mechanisms to control its behavior and to communicate with it to ex-
change commands and results. The I-VM also protects the context-agent from
modifications by any software running in the Mon-VM (see Fig. 5.5).

The I-VM has to provide a trusted subset of the Mon-VM kernel through the
mechanisms previously described: this is a necessary condition, because the context-
agent relies on the integrity of some key-components on the Mon-VM kernel so that
it may exploit the kernel interface to properly perform its tasks. The approach that
PsycoTrace adopts to deal with this condition is described in the next section.

Figure 5.5: Context-Agent

87

CHAPTER 5. RUN-TIME ARCHITECTURE

5.2.3.1 Defining the Kernel Trusted Computing Base

The algorithm to inject a context-agent heavily depends on the assumption on
the Mon-VM kernel components that can be trusted. There are three cases to
consider:

1. the kernel is untrusted;

2. the kernel is fully trusted;

3. the kernel is partially trusted because the I-VM checks the integrity of key
kernel components through VMI.

If the kernel is untrusted, then the context-agent should also include some low kernel-
level routines, such as to allocate memory, and some kernel data-structures to act
independently from the Mon-VM OS. It is worth stressing that there is no difference
between this case and a pure VMI approach where the I-VM gets information on
the Mon-VM without injecting the context-agent. In fact, in both cases the OS-
view has to be rebuilt starting from raw data, because any information that may be
supplied by the kernel cannot be trusted. For these reasons, the implementation of
this solution is rather complex and its cost effectiveness is rather low.

If the kernel is fully trusted, a possible approach is the one that hijacks the
execution of a root process and inject code into its memory to execute a user-level
program (such as insmod) to load a kernel module that implements the context-
agent. Before injecting the context-agent, the I-VM should force the hijacked process
to mount the file-system that stores the kernel module. Alternatively, if the context-
agent is implemented through a user-level program, the I-VM should inject code into
the hijacked process on the Mon-VM to execute a fork() and then an exec() to
load and run the context-agent. Even if the complexity of this solution is rather
low, it is based upon a strong assumption on the kernel, i.e. that it is fully trusted.

The approach that we have implemented belongs to the case where only a subset
of the kernel can be trusted. In this way, the I-VM can:

� exploit PsycoTrace kernel integrity function to determine a minimal subset of
the Mon-VM kernel that can be trusted;

� after providing a trusted subset of the kernel, the I-VM can inject into the
Mon-VM a kernel module, which implements the context-agent and may safely
invoke the trusted kernel functions.

There are two alternative implementations of this approach:

1. inject the kernel module into user-space memory : the I-VM should mimic the
behavior of insmod, by forcing the Mon-VM to invoke a function or a sys-
tem call to reclaim some user-space memory and by overwriting the allocated
memory with the content of the module. Finally, the I-VM should invoke

88

5.2. KERNEL INTEGRITY

the Mon-VM kernel system call to load a kernel module from the allocated
memory;

2. inject the kernel module into kernel-space memory : the I-VM should force the
Mon-VM to invoke a kernel internal function to reclaim some kernel memory
and it should replicate the functionalities of the system call to load a kernel
module by properly modifying the Mon-VM memory and the CPU registers.

In the next paragraphs, we discuss the pros and cons of both approaches.

User-Space Memory Injection. The following are some considerations about
injecting a kernel-module into Mon-VM user-space memory:

� firstly, the I-VM has to choose a suitable user-process to hijack, since it needs
to allocate user-level memory that is bound to a specific user-process;

� the I-VM has to overwrite the hardware state to issue a memory allocation
system call or to invoke a LIBC function, i.e. a brk() system call (the system
call used to reclaim more memory by incrementing the size of the data segment)
or malloc() (a LIBC wrapper for brk()). In the latter case, the hijacked
process should have the LIBC mapped in its address space, and the I-VM
should locate the address of malloc(). Instead, to invoke the system call
brk(), it needs to change the hardware state only, such as the general-use
registers EAX and EBX, which are some of the registers exploited by system
calls;

� the I-VM needs to overwrite both the Mon-VM memory with the context-agent
and the processor’s registers to issue the sys init module() system call, so
that the Mon-VM OS can load the kernel module implementing the context-
agent. The first parameter of the system call is the address of the memory
previously allocated;

� as soon as the sys init module() returns, the I-VM should restore the pre-
vious state of the hijacked process.

In an alternative solution, the I-VM forces a Mon-VM user-process to issue a
fork(), so that the I-VM can apply the algorithm with a new process that it can
tamper with. The problem posed by this approach is that Linux adopts the copy-
on-write strategy, so the father and the children may share some memory, and the
I-VM may write also into the memory of the father. Another problem is related to
the paging mechanism, i.e. if the I-VM has to overwrite some user-space pages that
are currently not in memory.

89

CHAPTER 5. RUN-TIME ARCHITECTURE

Kernel-Space Memory Injection. The following considerations about overwrit-
ing kernel-space memory hold:

� the I-VM only needs to invoke kmalloc() to reclaim some Mon-VM kernel
memory or simply overwrite an unused kernel memory with the context-agent
kernel module;

� the I-VM needs to mimic the sys init module() system call inside the Mon-
VM, which could be can be very hard to emulate.

Since kernel-space memory injection poses too many problem, the first prototype
of context-agent injection applies user-space memory injection, by hijacking a Mon-
VM user-space process. Basically, the I-VM executes the following steps:

1. freezes the execution of the Mon-VM OS;

2. hijacks a root-owned user-level process;

3. modifies the Mon-VM virtual hardware to invoke a memory allocation function
and to transmit to the function the arguments to allocate a buffer that can
store the kernel module;

4. copies the kernel module into the allocated memory;

5. invokes the Mon-VM kernel system call to load the module.

6. restores the Mon-VM CPU and stack states to those at step 1.

In the next section, we describe this solution in detail.

5.2.3.2 Algorithm to Inject the Context-Agent

As previously said, in this approach the I-VM mimics the behavior of the insmod
inside the Mon-VM. The following are the implementation choices that we have
adopted:

� the I-VM hijacks the Mon-VM’s init process because:

– it is always present on any Linux system;

– it is a root-owned process that can invoke any privileged system call, such
as sys init module(), and lock any region of memory;

– its PID is fixed to 1, so it is easy to find the corresponding PCB.

90

5.2. KERNEL INTEGRITY

� to store the kernel module, the I-VM allocates user-memory into the Mon-VM
through brk() rather than through malloc(). The reason is that brk() is
a system call and, hence, the I-VM needs not to locate the address of the
malloc() function inside LIBC2. The I-VM invokes brk() twice: firstly to
retrieve the current pointer of the data-segment of init, which is the memory
region that will hold the context-agent, and secondly to move the pointer to
reclaim more memory;

� the I-VM modifies both the Mon-VM status and init to invoke sys init module()

to load a kernel module: the parameter for this call is the pointer to the
init’s user-memory previously allocated with brk() and overwritten with the
context-agent;

� to solve the paging problem, the I-VM locks in Mon-VM memory the pages
that will store the context-agent through the lock() system call;

� the I-VM exploits brk() also to free the reclaimed memory by setting the
data-segment pointer to the original value: for the sake of simplicity, we refer
to this operation as free().

To implement these operations, the injection of the context-agent requires that a
“prequel code”, hereafter loading-code, is firstly injected into the Mon-VM’s init

process memory to invoke, in order:

1 brk () ; // to rec l a im some user−space memory
2 mlock () ; // to lock the rec la imed memory
3 sys_init_module () ; // to load the context−agent (a kerne l−module)
4 munlock () ; // to unlock the rec la imed memory
5 free () ; // to r e l e a s e the memory

Moreover, the I-VM sets triggers on the loading-code so that in-between the exe-
cution of steps 2 and 3 the I-VM overwrites the allocated memory with the kernel
module that implements the agent, hereafter called the context-agent3.

In more detail, the I-VM implements the following steps to inject the context-
agent (see Fig. 5.6):

1. wait that the Mon-VM OS is fully loaded; then, the I-VM invokes an intro-
spection function to:

� retrieve the address of Page Global Directory (PGD), i.e. the pointer to
the page tables, of the init process in the Mon-VM4;

2A further problem is that LIBC can be either statically compiled or dynamically loaded.
3In the current implementation, the kernel module is compiled into the Mon-VM and its object

.ko file is then copied into the I-VM: in a real environment, the kernel module should be compiled
in a testbed Mon-VM with the same version of kernel of the hijacked Mon-VM.

4The I-VM fetches the PGD address of the Mon-VM’s init process because its has to translate

91

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.6: Injecting a Context-Agent

� set triggers with each page of init’s code address space.

From this moment on, the I-VM waits for init’s triggers to be invoked so that
it can overwrite its memory with the loading-code;

2. the first time init generates a trigger, the I-VM saves the content of the
init’s memory pointed by the current PC and the current Mon-VM CPU
registers to be able to restore them. Then, it overwrites the init’s memory
with the loading-code. From this moment on, the I-VM checks whether the
trigger belongs to a known offset inside the loading-code;

3. it checks if the trigger address is equal that of the sys init module() in-
struction inside the loading-code: in this case, the I-VM overwrites the init’s
reclaimed memory with the context-agent5;

4. if the context-agent shares a page to store results and/or receive commands,
firstly it communicates the address of the shared page through a predefined
kernel variable6;

the init’s code page addresses into physical ones to associate them with triggers. The I-VM
retrieves the starting address and the size of the init’s code segment from the Mon-VM proc file
systems through introspection.

5Since the I-VM does not know the address of the init’s user buffer that stores the context-
agent, it retrieves this value from the Mon-VM EBX register: in fact, EAX stores the system call
number for sys init module(), while EBX, ECX, EDX store the values of the three parameters for
this call.

6The I-VM checks if the trigger address is that of the predefined kernel variable. If so, it

92

5.2. KERNEL INTEGRITY

5. it checks the trigger address is that of the synchronization variable; as soon
as the context-agent has updated the shared page, it changes the value at this
location to signal the I-VM that it may access the shared page to retrieve the
results of the checks: in the testbed examples, the shared page stores the list
of running processes, or the list of open files, or the list of loaded modules;

6. it checks if the trigger address is that of the last instruction of the loading-code:
in this case, the I-VM restores the state of memory of init and Mon-VM CPU
registers to the values they hold before the hijacking.

The implementation of this algorithm results in an important contribution of this
framework: the injection of the context-agent into the Mon-VM does not require the
cooperation of the Mon-VM and everything is transparently applied from the I-VM.

Appendix B contains a technical description of the algorithm implemented by
the I-VM to retrieve from the Mon-VM memory (i) the PGD address of the init

process; (ii) the code of the context-agent to check that it has not been attacked.

5.2.3.3 Algorithm to Remove the Context-Agent

Basically, the code to remove the context-agent, called the delete-code, imple-
ments the same strategy of the loading-code. The only difference is that instead
of invoking the system call to load the kernel module, the delete-code invokes the
system call to remove the kernel module. Hence, the I-VM injects the delete-code
into the init process memory to invoke, in this order, the system calls:

1 brk () ; // to rec l a im some user−space memory
2 mlock () ; // to lock the rec la imed memory
3 sys_delete_module () ; // to unload the context−agent (a kerne l−module)
4 munlock () ; // to unlock the rec la imed memory
5 free () ; // to r e l e a s e the rec la imed memory

To this end, the I-VM sets triggers on the delete-code so that in-between the execu-
tion of steps 2 and 3 the I-VM overwrites the allocated memory with the name of
the context-agent : in fact, this memory is exploited to store the parameter used by
the system call sys delete module() to remove a kernel module.

In more detail, the I-VM implements the following steps to remove the context-
agent from the Mon-VM’s memory:

1. as soon as init generates a trigger, the I-VM saves the content of the init’s
memory pointed by the current PC and the current Mon-VM CPU registers to
be able to restore them. Then, it overwrites the init’s memory with the delete-
code. From this moment on, the I-VM checks whether the trigger belongs to
a known offset inside the delete-code;

retrieves the address of the shared page and associates it with a trigger.

93

CHAPTER 5. RUN-TIME ARCHITECTURE

2. if the trigger address is that of the sys delete module() instruction inside
the delete-code, the I-VM overwrites the init’s reclaimed memory with the
name of the context-agent7;

3. if the trigger address is that of the last address of the delete-code, the I-VM
restores the status of the memory of the hijacked init process and of the
Mon-VM CPU registers to their original status.

5.3 Checking the Process Self

Once the integrity of the Mon-VM kernel is assured through a cooperation be-
tween PsycoTrace’s integrity functions and the context-agent, the run-time support
has to guarantee that the self of P is not altered. To do this, PsycoTrace’s run-
time tools trace and check system calls against CFG(P) and evaluate invariants in
IT (P).

5.3.1 System Call Tracing

At run-time, system calls are traced by two tools: the HiMod and the Analyst,
which run, respectively, in the kernel of the Mon-VM and as a user-process in the
I-VM (see Fig. 5.1). The HiMod is a kernel module that hijacks the system calls
that P invokes. Every time P invokes a system call, HiMod notifies the Analyst.
The Analyst includes a Bison-generated parser for L(P), which checks the trace of
P , and an Assertion Checker, which evaluates invariants by exploiting the Intro-
spection Library to access the memory of P and the Mon-VM VCPU registers. The
interactions between the Analyst and the HiMod are synchronous. The HiMod traps
the system calls of P and, before servicing the trapped call, it informs the Analyst
that is waiting for communications from the HiMod. Then, the Analyst freezes
the execution of the Mon-VM and resumes this execution only after successfully
terminating the security checks.

To notify the Analyst that P wants to issue a system call, the HiMod allocates
and shares with the Analyst an event channel, which is a data structure that Xen
introduces to emulate the interrupt mechanism. When the Analyst allocates a new
event channel, it receives an integer value that represents the port number used to
capture notifications from the HiMod. At this point, the Analyst binds itself to
the specified port and waits for a notification from the HiMod. Each notification
corresponds to a system call invocation that P wants to issue. Because of the
large number of system calls in the Linux kernel, and since most of them cannot be

7The I-VM exploits VCPU-Introspection to retrieve this memory address from the EBX register,
which stores the first parameter of the sys delete module() system call, i.e. the name of the
module to be removed.

94

5.3. CHECKING THE PROCESS SELF

exploited to attack a process, PsycoTrace monitors only the system calls listed in
Tab. 5.1, which are critical from the security point of view [30].

sys exit sys mknod sys setfsgid sys setfsuid sys read
sys chmod sys lchown sys setresgid sys write sys vhangup
sys symlink sys mkdir sys open sys stat sys chown
sys ioctl sys close sys lseek sys setgid sys ftruncate
sys waitpid sys getpid sys setgroups sys flock sys creat
sys mount sys setresuid sys brk sys link sys fchown
sys rename sys reboot sys unlink sys setuid sys fchmod
sys swapoff sys chdir sys setregid sys setreuid sys stime
sys delete module sys mlock sys settimeofday sys setdomainname sys truncate
sys setrlimit sys ioperm sys sched setparam sys swapon sys mlockall
sys nice sys sethostname sys socketcall sys syslog sys rmdir
sys dup2 sys nfsservctl sys kill sys setpriority sys adjtimex
sys umount sys sysctl sys sched setscheduler sys quotactl sys exec
sys time

Table 5.1: Traced System Calls

As soon as the Analyst is notified that P has invoked a system call, it suspends
the Mon-VM and retrieves the values of the processor’s registers in the Mon-VM
through VCPU-Introspection. In this way, the Analyst knows the system call num-
ber and, if needed, its parameters and the values of any program variable. After
retrieving the system call number from the EAX register, the Analyst passes it to
the lexical analyzer that, in turn, transmits the proper system call token to the
parser. If the current call does not belong to the terminal alphabet symbols, i.e. it
is a system call that P should not invoke, the parser returns an error. Otherwise,
it checks the current system call by resuming the parsing from the point reached
when analyzing the previous call. No error is signaled if, after receiving the current
token, the parsing continues till it requires a further token that corresponds to the
next system call of the process. As a matter of fact, this implies that the current
trace of calls may belong to at least one legal trace in CFG(P). In this way, Psyco-
Trace implements a stream-oriented parsing as opposed to the usual application of
a parser to a whole sequence of tokens in a single step. This strongly simplifies the
parsing with respect to the case where a new derivation from the starting symbol
of the grammar is started from each invocation. The corresponding performance
improvement favors the adoption of a context-free grammar and of a Generalized
Left-to-right Rightmost derivation parser (GLR) parser.

5.3.2 The Analyst

The Analyst implements the run-time checks to verify the integrity of the self of
P and is composed of:

� Lexical Analyzer : it verifies that the system call that P wants to issue belongs
to the set of system calls returned by the static analysis of SourceCode(P);

95

CHAPTER 5. RUN-TIME ARCHITECTURE

� Parser : it checks that the current trace of system calls issued by P is coherent
with CFG(P), i.e. it is a prefix of a word allowed by CFG(P);

� Assertion Checker : it checks whether the invariant coupled with the current
system-call holds.

5.3.2.1 Lexical Analyzer

The lexical analysis of the tokens of L(P) only verifies that every system call
that P attempts to invoke belongs to the set of system calls it may legally invoke,
which represent the valid tokens of L(P). In this scenario, we can apply a tool to
automatically generate a scanner, such as Flex or YooLex, that accepts a description
of the language tokens through regular expressions. In this way, the automatic
generation of the lexical analyzer for L(P) is parametric to the system calls that P
may invoke. An example of an input for Flex is the following one:

%%

open { return(OPEN); }

getuid { return(GETUID); }

exit { return(EXIT); }

[\t\n]+ [a-z]* { return("ERROR"); }

%%

In this example, Flex generates a scanner that only accepts the tokens in {open,
getuid, exit}, and it returns a lexical error otherwise. The lexical analysis func-
tion yylex() is automatically generated by the tool that builds CFG(P) after a
visit of AST (P) that returns the system calls that P may invoke. The lexical ana-
lyzer is then included in the prologue of Bison, so that the yylex() function can be
invoked before performing any syntactic analysis. Also this procedure is parametric
with respect to the system calls and it can be automatically generated during the
static analysis of SourceCode(P). Analogously, by adopting a scanner generator,
it is possible to automatically generate the set of previous regular expression. An
example of a scanner automatically-generated is shown in Tab. 5.2, where P can
only execute three system calls: open(), write() and execl().

5.3.2.2 Parser

A system call invocation does not violate the self of P if the trace of system
calls generated up to a given call is a prefix of at least one string generated by
CFG(P). A Bison-generated parser implements the syntactic analysis to verify
that the execution flow of the process expressed in terms of system calls, is coherent
with the self defined by CFG(P). The Analyst and the parser are executed as two
separated processes on the I-VM. The Analyst reads the system call number from
the processor’s registers and passes the token to the parser that invokes the function

96

5.3. CHECKING THE PROCESS SELF

1 . . .
2 //LEXICAL ANALYZER FUNCTION CODE AUTO−GENERATED!
3 i n t yylex (void) {
4 char *sys_tokens [NSYSCALL] = { ”open” , ” wr i t e ” , ” ex e c l ” } ;
5 char *sys_addr_sep [2] ;
6 char sys_addr_received [3 5] ;
7 i n t c , i ;
8 // Skip white space .
9 whi l e ((c = getchar ()) == ' ' | | c == ' \ t ') ;

10 i f (setup_token) {
11 // Process setup message .
12 scanf (”%s” , sys_addr_received) ;
13 setup_token = 0 ;
14 }
15
16 // Process s y s c a l l .
17 scanf (”%s” , sys_addr_received) ;
18 split (sys_addr_received , sys_addr_sep , 2 , ”−”) ;
19 f o r (i = 0 ; i < NSYSCALL ; i++) {
20 i f (strcmp (sys_addr_sep [0] , sys_tokens [i]) == 0) {
21 switch (i) {
22 case (0) : r e turn OPEN ; break ;
23 case (1) : r e turn WRITE ; break ;
24 case (2) : r e turn EXECL ; break ;
25 }
26 }
27 }
28 //Return end−of−input .
29 i f (c == EOF)
30 re turn 0 ;
31 }

Table 5.2: PsycoTrace Scanner for P

yylex() before performing syntactic analysis. The Analyst kills P if the system call
is not coherent with CFG(P). Grammars corresponding to the simple constructs
shown in Tab. 4.1 generate a language that is accepted by a deterministic top-down
lexical analyzer. In other words, these are LL(1) grammars. This simplification is
possible because the code fragments shown in Tab. 4.1 are outside the real context of
the program. In fact, if we apply GGA to more complex program, it may generate
productions that are quite similar to the following ones (shown using the Bison
syntax):

S0: TIME CLOSE DUP2 DUP2 DUP2 F0 | TIME CLOSE DUP2 DUP2 DUP2 S0

;

F0: READ F1 CLOSE | READ F1 WRITE F0

;

F1: F2 | /* empty */

;

F2: OPEN WRITE F2 CLOSE | OPEN WRITE CLOSE

;

97

CHAPTER 5. RUN-TIME ARCHITECTURE

Since a static analysis cannot predict which branches in the code will be executed,
to correctly identify the process self, CFG(P) includes all the possible productions.
In this scenario, non-determinism is resolved by adopting the Bison-generated GLR
Parser. The high complexity of parsing, due to ambiguous context-free grammars,
is justified by a better accuracy of checks also for programs with a highly non-
deterministic behavior.

5.3.2.3 Assertion Checker

The proposed semantics-driven integrity measurements also include the evalu-
ation of invariants. System call sites are one of the most appropriate choices for
invariant evaluation, because at these points the monitored system switches from
user-level to kernel-level. To be fully integrated with the run-time tool, Psyco-
Trace static tool is focused on, but not restricted to, the generation of invariants
that relates values of programs variables and of system call parameters, where each
invariant is coupled with the virtual address of the corresponding system call. By
coupling an invariant with each call, PsycoTrace can detect non-control-data attacks
[48, 45].

The I-VM runs an Assertion Checker to evaluates invariants and, even if it can
monitor several processes concurrently, for the sake of simplicity, we assume that P
is the only process that is being monitored.

In the current prototype, the input of the Assertion Checker is a set of invariants
of the form:

(PC, var name: addr: type, expr on vars)

where:

� PC is the program counter, i.e. the virtual address, of a system call;

� var name: addr: type is a set of variable names, their virtual address and
their type;

� expr on vars is a set of relations among variables with the following struc-
ture:

– <var (OP var)* REL value >, where OP is an arithmetic/logic operator
and REL is a relational operator, such as: a > 10;, a + b >= 0;, i ==

5;

– <var (OP var)* REL var >, such as: a + b > c;, c == d.

As an example, let us consider the invariant:

(i, {a:0xB7EC00DA:int}, {a == 5})

The following semantic action is coupled with the invariant of the Assertion Checker
at the execution point i equal to 0xB7EC00DA of P :

98

5.3. CHECKING THE PROCESS SELF

1 i f (! ((i n t) (* map (0 xB7EC00DA)) == 5)) {
2 // s i g n a l that an i nva r i an t does not hold here
3 // k i l l P
4 . . .
5 }

where map is the function that maps the virtual addresses into the address space
of P . Suppose that, in this example, the point of execution i (i.e., 0xB7EC00DA)
corresponds to the invocation of the first terminal DUP2 in production S0 of the
previous grammar. In this scenario, the following grammar is generated with the
annotated semantic actions:

1 S0 : DUP2

2 {
3 i f (! ((i n t) (* map (0 xB7EC00DA)) == 5)) {
4 // s i g n a l that an i nva r i an t does not hold here
5 // k i l l P
6 . . .
7 }
8 } DUP2 { . . . } DUP2 { . . . } F0 { . . . }
9 ;

10 . . .

Any non-empty assertion is the conjunction of assertions in the following classes:

1. Parameters assertions. They express data-flow relations among parameters of
distinct calls, e.g. the file descriptor in a read call is the result of a previous
open call.

2. File Assertions. To prevent symlink and race condition attacks, they check, as
an example, that the real file-name corresponding to the file descriptor belongs
to a known directory.

3. Buffer length assertions. They check that the length of the string passed to a
vulnerable function is not larger than the local buffer to hold it.

4. Conditional statements assertions. They prevent problems due to impossible
paths [243] by relating a system call and the expression in the guard of a con-
ditional statement. As an example, in if(uid == 0) then syscall1 else

syscall2, we couple the assertion uid == 0 (usually, on many OSes, this is
the user-id of root) with syscall1, to check at run-time the real value of uid
to prevent a normal user from executing the same call with the privileges of
the root user. They may also check that the current return address matches
the call issued by P .

Currently, PsycoTrace implements these classes for the purpose of prototyping: ob-
viously, they are not comprehensive of all the critical problems for an application.
According to the default-deny approach, the handling of a false invariant, is imple-
mented through the invocation of the error recovery function yyerror that imple-
ments the error reporting and kills P .

99

CHAPTER 5. RUN-TIME ARCHITECTURE

Invariant Evaluation. To evaluate the invariants, the Assertion Checker exploits
the VCPU-Context introspection capability of the library to retrieve the current PC
of P and to map the pages storing the variables of P into its address space to fetch
their values.

Whenever a system call is issued, the Assertion Checkers needs to retrieve the
address of the instruction currently executed by P to locate the invariant coupled
with the system call in the Invariant Table. Instead of fetching the value of PC,
the current implementation retrieves the system call’s return address that is, more
precisely, the system call handler’s return address. This solution has been adopted
because this return address points to the instruction following the system call site
(i.e., the address following the PC coupled with the system call) and, therefore,
can be easily related to the system call address returned by the static analysis and
coupled with the invariant. This address is located in the user-stack but, since after
the invocation of the current system call the Mon-VM is in kernel space, the ESP

register points to the kernel stack not to the user stack. Thus, the Assertion Checker
needs to retrieve the value of the saved ESP register in the kernel stack to retrieve
the return address. Then, from the user-stack it locates the return address.

Figure 5.7: Run-Time Invariant Evaluation

In more detail, to evaluate an invariant the Assertion Checker implements the
following steps (see Fig. 5.7):

1. accesses the VCPU context to read the kernel sp register, which points to
the top of the kernel stack;

2. maps in its memory the kernel stack;

3. reads the value of the ESP register, which points to the base of the user stack;

100

5.3. CHECKING THE PROCESS SELF

4. maps in its memory the user stack;

5. locates the return address of the system call in the user stack of P . Since the
offset of the return address from the stack pointer depends upon the system
call type, the Assertion Checker reads the EAX register to identify the system
call;

6. after reading the return address, the Assertion Checker in its memory maps
the pages storing the variables coupled with this return address;

7. reads the value of the variables;

8. evaluates the invariant.

If the invariant is satisfied, the Assertion Checker resumes the execution of the
Mon-VM, otherwise it kills P .

5.3.3 Sliced Execution

By exploiting VMI, PsycoTrace can compute the values of the assignment values
that do not not satisfy the conditions of Sect. 4.3.2. This can be done by shifting
the execution of some parts of the program of P from the Mon-VM to the I-VM to
compute, at run-time, the values of the assignment values that cannot be determined
inside a code fragment. At the entry point of a code fragment, we can compute a
slice that corresponds to the assignment variable that cannot be determined and
move this section of code inside the I-VM. The I-VM will execute this code, to
compute the values of the variables involved in the invariant. As an example, in the
following code:

1 . . .
2 char *filename ;
3 L0 : uid_t uid = getuid () ;
4 L1 : filename = function (argv [1]) ;
5 L2 : Log (. . .) ;
6 L3 : execl (filename , NULL) ;
7 . . .

filename is an assignment variable (i.e., k = filename) that cannot be determined
when getuid() is executed at L0, because the three conditions of Sect. 4.3.2 are not
satisfied. In fact, in the system block that begins at L0 (i.e., i = L0) and ends at L3
(i.e., o = L3), the third condition is not satisfied since at L0 the function function()

updates the assignment variable k in-between i and o. But, by exploiting the slicing
technique, we can compute the slice corresponding to filename at the execution
of getuid(). The slice contains line L1 and all the other lines to compute the
final value of filename. Therefore, by moving the slice in the I-VM, the value
of filename can be computed so that it is available during the evaluation of the
invariant coupled with execl() (at L3) as previously described (see Fig. 5.8).

101

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.8: Sliced Execution

5.4 Results

This section presents a first evaluation of both PsycoTrace kernel integrity func-
tions and run-time tools to check the process self, from the security and the perfor-
mance points of view.

5.4.1 Protecting the Kernel Integrity

To evaluate the kernel integrity functions, we configured the I-VM to compute
the hashes of the text area of the kernel and of the kernel modules with a predefined
frequency. In turn, a context-agent into the Mon-VM kernel returns the list of
running processes, which the I-VM compares against the equivalent list returned by
the Running Processes Checker function using introspection. The I-VM also verifies
that only authorized kernel modules have been loaded and also checks that the Mon-
VM is not sniffing traffic. Lastly, it applies anti-spoofing techniques on the virtual
bridge. The Introspection Library and the PsycoTrace’s kernel integrity functions
are composed of about 1.5K lines of C code, whereas the context-agent framework
consists of about 2.5K lines of C/ASM code.

5.4.1.1 Effectiveness

To evaluate the effectiveness of the kernel integrity functions, we have modified
some known rootkits to update the kernel text and an entry in the idt table

pointing to a modified interrupt handler [130]. We also inserted a malicious module
into the kernel of the Mon-VM to modify the sys call table and an existing system
call. Besides, we replaced system binaries, such as ps, to hide specific processes. The
I-VM correctly detects the modifications to:

� the system call handler;

� any system call;

102

5.4. RESULTS

� pointers in the sys call table;

� an entry in the idt table.

Lastly, each time a module is loaded into the kernel, the I-VM detects if the module
is not an authorized one, because it does not belong to the list of know modules, or
if an authorized module has been updated.

5.4.1.2 Performance Evaluation

To evaluate the overhead due to kernel integrity checks, we computed the average
time of 100 consecutive executions of the command tar -xjf linux-2.6.20.tar.bz2

on a Mon-VM, while the I-VM applies the whole set of consistency checks previously
discussed, with a period of 60 seconds between each invocation. This is a worst case
since the tar command is computing intensive and it is not possible to overlap the
checks with some I/O activity. The overhead is less than 10% with respect to the
execution of the same command when the integrity checks are not applied.

5.4.2 Checking the Process Self

This section analyzes the attacks against P that PsycoTrace can detect and it
shows a first evaluation of the run-time overhead of the current implementation.
PsycoTrace run-time tools are implemented through 450 lines of Perl code, which
generate the HiMod by parsing the definition of the Linux system calls. The HiMod
consists of 2.5K lines of C code, while the Analyst is composed of about 3K lines of
C code. Finally, the generated Bison parser for CFG(P) is about 2.5K lines of C
code.

<MAIN>: "dup2" "dup2" "dup2" ("read" <PARSE_STR>

("write")?)* "close".

<PARSE_STR>: (<LOGFILE>)?.

<LOGFILE>: "open" "write" (<LOGFILE>)? "close".

S0: DUP2 DUP2 DUP2 F0;

F0: READ F1 CLOSE |

READ F1 WRITE F0 CLOSE;

F1: /* empty */ | F2;

F2: OPEN WRITE F2 CLOSE |

OPEN WRITE CLOSE;

Table 5.3: Context-Free Grammar for P and its Bison Representation

5.4.2.1 Effectiveness

To test the effectiveness of PsycoTrace, we considered a case where P implements
a single server application that opens a socket and reads from its stream a sequence
of characters. Appendix C contains SourceCode(P) used for the tests. Table 5.3

103

CHAPTER 5. RUN-TIME ARCHITECTURE

shows the CFG(P) generated by the GGA and the corresponding grammar in Bi-
son syntax. Semantic actions are not shown. For the sake of conciseness, CFG(P)
only describes the behavior of P after the accept() system call. Notice that the
LOGFILE non-terminal generates a recursive production which defines the language
(open write)n(close)n, which cannot be handled by a regular grammar. The
parse str() function parses the received string. If the string begins with “copy”,
P invokes strcpy() to copy the receiving string into a local small buffer. strcpy()
is an insecure function that could be exploited to compromise the security of the ap-
plication. If, instead, the received string begins with “file”, P invokes the logfile()
function. Lastly, if the string begins with “exit” the server closes the connection
with the client. The following is one of the traces generated by the execution of P :

(DUP2)3; READ; (WRITE; READ; (OPEN; WRITE)10; (CLOSE)10)2; (WRITE; READ)2; CLOSE.

We have implemented an attack that exploits the vulnerable strcpy() function
on the server-side, to manipulate a parameter from the client-side. The exploit
overflows the server buffer by transmitting a string that contains a shellcode and
that is built by appending to the string “copy” a sequence of NOP instructions,
the shellcode itself and finally a repetition of the jump address of the shellcode to
overwrite the parse str() return address in the server stack. The execution of this
exploit results in a remote shell with the privileges of the remote server process. The
trace of P after a successful attack is:

(DUP2)3; READ; SETUID; BRK; OPEN; CLOSE; (OPEN; READ; CLOSE)3; OPEN; CLOSE; (BRK)3;

TIME; BRK; IOCTL; BRK; (OPEN; READ; CLOSE)2; BRK.
In this case, PsycoTrace parser signals an inconsistency with respect to the ex-

pected behavior after the fourth system call, P is stopped and no shell is spawned.
The corresponding string is:

DUP2; DUP2; DUP2; READ; syntax error [SETUID] → process killed (pid=1054).

5.4.2.2 Performance Evaluation

The system to run the prototype tools included a Pentium Centrino Duo T2250
1.7GHz. In all the tests, 128MB of physical RAM were allocated to the Mon-VM,
running a Linux Debian distribution, and 874 MB RAM to the I-VM. The Xen
version was 3.1.0, while the Mon-VM Linux kernel version was 2.6.18-xen.

We evaluated the average time to execute the bunzip2 tool to uncompress the
Linux kernel on the Mon-VM in two cases, during a normal execution and when we
only traced the bunzip2 process. The execution time increased from 19.896 sec to
24.268 sec. The overhead, 21.97%, is rather high in this case because bunzip is a
tool that invokes system calls at high rate. To optimize introspection of variables
mapped into the same page (see Fig. 5.9), PsycoTrace exploits a software TLB
that records the pairing among virtual and machine addresses. Before translating
a virtual address va, the Introspection Library searches the TLB for the virtual
address of the page including va. If the address is found, then the page is already

104

5.4. RESULTS

Figure 5.9: Time to Retrieve a Variable Value

mapped in the Assertion Checker memory. The average time to map a page of P
into the Assertion Checker address space is about 50µsec. The software TLB reduces
the access time to 20µsec anytime the same page stores several variables. In this
way, the Assertion Checker can access the variables without mapping further pages
of the virtual address space of P .

system call normal traced traced + introspection
time 2 µsec 55 µsec 141 µsec
open 3 µsec 58 µsec 116 µsec

write (1k buffer) 8 µsec 67 µsec 177 µsec

Table 5.4: Overhead of System Calls

Table 5.4 shows the average execution time of three system calls executed on the
Mon-VM in three cases: during the normal execution, while tracing the system calls
and when the Analyst checks the trace and evaluates the assertions by accessing
one page of P . In these tests, to compute the average execution time, the traced
program loops several times on each system call.

Fig. 5.10 displays the average execution time of the time() system call in a loop
when the Analyst evaluates the assertions, as the number of mapped pages varies
from 1 to 10. Complex assertions refer to a larger number of pages because they
access several variables. The overhead is linear in the number of mapped pages.

Finally, we considered the execution time of P , where SouceCode(P) is described
in Appendix C, when a client generates and sends to P a continuous stream of
requests. Three cases were analyzed:

1. a normal execution of P ;

105

CHAPTER 5. RUN-TIME ARCHITECTURE

Figure 5.10: Assertion Checker Overhead

2. when system calls generated by P are traced and notified to the Analyst but
no check is applied;

3. when tracing the system calls, checking the grammar and evaluating the as-
sertions, by accessing one page of P .

The total number of traced system calls generated by P was 63234. In the worst
case, a 48% overhead arises.

106

Part III

Applications of the Proposed
Approach

Chapter 6
Remote Attestation of Semantic Integrity

An overlay network, or simply overlay, is a logical and dynamic connection among
logical or physical nodes that belong to a predefined pool. In some cases the pool
is well known and strictly ruled, e.g. nodes of a corporate network, in other cases
it is fully unconstrained, e.g. peer-to-peer (P2P) networks. Overlays are becoming
more and more popular because they can offer highly robust services to the nodes
they interconnect. As an example, virtual private networks offer confidential com-
munications while P2P networks implement a highly available and distributed data
repository. On the other hand, sometimes overlays offer a very low security because
almost all these properties are at risk even if a few nodes of the overlay run some
malware because of an erroneous, or malicious, configuration or as a result of exter-
nal attacks against the node. Hence, node integrity is a precondition of any overlay
security policy and it should be attested not only when a node joins an overlay but
also as long as the node belongs to the overlay.

These considerations have led us to define Virtual machine Integrity Measure-
ment System (VIMS), an architecture based upon PsycoTrace to continuously attest
the integrity of overlay nodes by applying alternative integrity measurements accord-
ing to the overlay security requirements. VIMS protects the integrity of a node by
defining both a start-up attestation and a continuous monitoring that are applied,
respectively, when the node joins the overlay and as long as the node belongs to the
overlay. To implement the corresponding measurements, VIMS applies PsycoTrace
static tools and extends the run-time ones. In this way, VIMS supports alternative
strategies to describe the expected behavior with distinct complexities and attack
detection capabilities and it can implement integrity measurements and monitor-
ing strategies that consider not only the correct configuration of an OS and of the
applications, but also attacks to install malware.

To strongly separate the attestation subsystem from the one to be attested,
VIMS fully exploits the two VMs introduced by PsycoTrace run-time architecture,
i.e. the Mon-VM and the I-VM. Henceforth, to stress the role played by the I-
VM when supporting the integrity measurement process and to take into account

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

the new components that it runs, we will refer to the I-VM as the Assurance VM
(A-VM). The only difference between the A-VM and the I-VM is that the A-VM
also runs some modules to remotely attest the integrity of the Mon-VM. The Mon-
VM is the target of the attestation and of the monitoring and it runs an overlay
application that plays the role of the process P protected by PsycoTrace. When
VIMS is adopted, each overlay node runs two VMs, the A-VM and the Mon-VM.
The A-VM cooperates with the other A-VMs to apply measurements on behalf
of the overlay by accessing the live state of the Mon-VM in its node through the
PsycoTrace run-time tools. Anytime an A-VM detects a loss of integrity, it kills the
Mon-VM on its node and informs the other A-VMs. Trust in VIMS measurements
requires the correct configuration of both the A-VM and the underlying VMM and it
is guaranteed by measurements and controls of a Trusted Platform Module (TPM)
[22, 180] subsystem that acts as the root-of-trust for the chain of measurements.

6.1 Virtual Machine Integrity Measurement Sys-

tem Architecture

VIMS is aimed at implementing a fairly general and reliable system to measure
the integrity of an overlay node, so that other nodes can be assured of the integrity
of the node. The main goals of VIMS are:

1. granular checks on the integrity of a node willing to join the overlay: with
respect to solutions that only exploit TPM-based functions, the integration of
static and dynamic tools results in more granular checks;

2. support for dynamic security policies: as long as a node belongs to an overlay,
its run-time state should be continuously monitored (either interval-based or
on request), to detect whether it has been infected by a malware. Moreover,
the security policy that is applied, i.e the PsycoTrace strategy to describe the
process self of the overlay application, can be updated as a result of changes
in the configuration of a node;

3. mutual attestation: if required, all the parties should be mutually assured of
the integrity of any other peer;

4. scalability: the overhead of an attestation should be negligible given the secu-
rity policy of interest.

As previously said, VIMS extends the set of PsycoTrace run-time components
and also defines a protocol that rules both the information exchanged among these
components and the format of the protocol messages. The new component developed
for VIMS is the Remote Attestation Module, a module that runs on the A-VM and
that implements the start-up attestation and replies to attestation requests.

110

6.1. VIRTUAL MACHINE INTEGRITY MEASUREMENT SYSTEM ARCHITECTURE

Figure 6.1: Standard Boot-Time Integrity Checks

VIMS exploits the TPM and vTPM [29] to apply the consistency checks on
a Mon-VM starting from a valid root-of-trust, which is located in the hardware.
However, with respect to systems that are based upon TPM mechanisms only, VIMS
can implement a semantic attestation that applies consistency checks based upon
the behavior of the processes. To this end, the A-VM adopts PsycoTrace strategy to
protect the integrity of the kernel and of the overlay application on the Mon-VM. In
this way, VIMS can: (i) guarantee the integrity of critical kernel data structures; (ii)
assure that the overlay application invokes only a predefined set of system calls. This
corresponds to the implementation of a semantic integrity attestation that applies
rigorous and granular semantic checks that are strictly more powerful than those
based upon hashes of running code only. In fact, by monitoring the current behavior
of the Mon-VM, the A-VM applies not only the static checks implemented at boot-
time that exploits the TPM (see Fig. 6.1) to verify, as an example, the integrity of
the binaries of the applications that have been loaded in the Mon-VM OS, but it
also monitors the semantic integrity of these applications.

The A-VM can apply alternative security policies, which can be parametrized
according to:

� the frequency of the execution of security checks;

� their granularity, i.e. which data structures and software code are checked for
integrity;

� the PsycoTrace strategies to describe a process self that is adopted.

111

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

Figure 6.2: Example Scenario

Example. In the general case (see Fig. 6.2), an overlay application P running on
Mon-VMreq on a node Nreq that wants to join an overlay ove contacts the Remote
Attestation Module of an A-VMove of a node Nove of ove to connect to ove. Before
allowing P , which is the overlay application, to connect to ove and access any of
its services, the Remote Attestation Module on A-VMove establishes an out-of-band
control channel with A-VMreq. A-VMreq measures the current configuration of P
and communicates the results to A-VMove. Then, as long as Mon-VMreq belongs
to ove, A-VMreq monitors the behavior of Mon-VMreq and of P and it exchanges
information with the Remote Attestation Module on A-VMove through the control
channel about (i) the integrity policy, i.e. the checks to be applied, (ii) the results of
the measurements on Mon-VMreq and P . The protocol exploits the control channel
also to alert the Remote Attestation Module on A-VMove anytime Mon-VMreq or P
have been compromised.

6.1.1 Formal Model

A measure of the integrity of an entity is a way to establish trust in the entity
and is the building block to create a chain of trust among components. This section
briefly describes a formal model to build the chains of trust from the trust relations
among system components, i.e. Mon-VMs, A-VMs and TPM. The first step to
describe the model is the definition of a partial order among the policies to measure
the integrity of a component. This order is defined in terms of the ordering among
the checks that a policy applies, e.g. among functions that map memory values into
a boolean. A check C1 is more severe than C2 if there is at least one input where C1

returns true while C2 returns false while the inverse never occurs. A set S1 is more
severe than a set S2 if, for any check in S2, S1 includes at least one more severe
check. Obviously, both the order among sets and the one among checks are partial
orders. A policy is a pair including a set of checks and an application frequency. A
policy P1 is more severe than a policy P2 if either P1 applies a more severe check
than P2 with at least the same frequency or if P1 applies the same checks of P2 with

112

6.1. VIRTUAL MACHINE INTEGRITY MEASUREMENT SYSTEM ARCHITECTURE

a higher frequency. An attestation that adopts a policy more severe than another
one results in higher security levels of the components.

In the formal model, each component c defines:

a) trusted(c), a set of components that c trusts to apply a policy to other com-
ponents;

b) the policy to be applied to a component that does not belong to trusted(c) so
that c can trust this component;

c) for each other component d, the policy that c can apply to d. If c cannot check
d, the policy includes an empty set of checks and the application frequency is
set to infinite;

d) invoke(c, p), a set of components that trust c to apply a policy p to, i.e. to
check, other components;

e) the policy to be applied to a component d not belonging to invoke(c) so that
d can invoke c to apply a policy.

For any component c, trusted(c) and invoke(c, p) are the output of a function whose
input is the physical architecture and the mapping of components onto the archi-
tecture. As an example, a VM may only trust the VMs that run on a node that
includes a TPM or a VM can check another one only if they are mapped onto the
same node. The set of components that c may trust is the fixed point of the equa-
tions that relates the ones that c trusts and those that c can invoke to apply a
policy at least as severe as the one that it requires to trust a component. As an
example, if a trusts b to apply a security policy, i.e. b belongs to trusted(a), and b
can apply to c a security policy at least as severe as the one that a requires to trust
a component, then a can trust c. All the chains of trust between two components
may be computed in an automatic way by automating the computation of the fixed
point. Alternative models are defined according to the components that require the
application of a policy. As an example, a component a may require that b applies a
policy to a itself to prove to c that a can be trusted. Alternatively, c may delegate
the application of a policy to b to check whether it may trust a. More general mod-
els consider the communication of policies and of the measurement results as well
so that a trusts b only if, besides others, the confidentiality and/or the integrity of
communications between a and b are guaranteed by components that a trusts. As
far as concerns VIMS, it is worth noticing that sometimes the frequency of some
checks cannot be freely chosen because some checks can be executed only when a
system call is invoked, e.g. checks on the sequence of system calls issued by the
overlay application.

113

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

6.1.2 Assurance Virtual Machine

VIMS attestation is fully transparent because, as discussed in the previous chap-
ters, Mon-VM runs off-the-shelf software that is not aware of the integrity measure-
ments. To measure the integrity of the Mon-VM, at first the TrustedBoot [223] is
loaded and the TPM applies a set of measurements on the boot-loader, so that from
now on all the steps can be measured, from boot to kernel loading and modules.
Attestation requires the certification of both the A-VM on a node and of the mea-
surements that it implements on the Mon-VM, so that the A-VMs on other nodes
of the overlay can establish trust on the node integrity based upon these measure-
ments. This is achieved by signing the hash of the running software with the TPM
private key to create a chain-of-trust, from the BIOS up to the A-VM, that certifies
the integrity of the VMM and of A-VM.

To this end, VIMS exploits the features of the TPM to build a hash chain on
the client system that measures a predefined sequence of code loads, such as the
authenticated boot of the VMM and of the kernel of the A-VM from the BIOS and
boot-loader. The TPM measurements indicate that the VMM is safely started, so
that it can initialize the local A-VM to assure it is started in a safe state. The A-VM
in the local node can retrieve these hash values, which are called measurements, and
protects them so that they cannot be accessed by the Mon-VM on its node. In this
way, the A-VM of a node can establish trust at first into the measurements applied
by the A-VM in another node and then into the run-time properties of the remote
Mon-VM. The A-VM uses the message returned by the TPM quote operation to
send an authenticated hash chain to another A-VM to validate the integrity of the
code in the hash chain that belongs to the Mon-VM.

VIMS verifies the initial integrity of both Mon-VM and A-VM by measuring
their configurations through hash functions of the code of running processes and of
the Mon-VM kernel, i.e. critical data structures, code and kernel modules. After the
A-VM has been safely initialized, it applies PsycoTrace run-time tools to check the
integrity of the software on the Mon-VM. As an example, the A-VM may periodically
retrieve the list of the kernel modules to verify that they are authorized kernel
modules and to measure their integrity. A policy can also apply a description of the
process self that defines invariants on variable values or on the sequence of system
calls of the overlay application. Anytime the computed hash differs from the stored
one or the behavior of the overlay application differs from the expected one, the
Mon-VM cannot be trusted and A-VM tears down the connection.

Since PsycoTrace static tools compute a behavior that over-approximates the
overlay application’s run-time behavior no false positives can occur. An A-VM
database stores the PsycoTrace policies it can apply on request by A-VM. Each one
results in a measurement granularity and in an assurance level.

114

6.1. VIRTUAL MACHINE INTEGRITY MEASUREMENT SYSTEM ARCHITECTURE

Figure 6.3: Start-up Attestation

6.1.3 Start-up Attestation and Monitoring

When a node Nreq tries to join an overlay ove (see Fig. 6.3), A-VMove acts as
an appraiser [53] that implements, on behalf of ove, the start-up attestation of Nreq

before it can join the overlay. A-VMove intercepts the request from Mon-VMreq and
it deduces the IP address of A-VMreq from the one of Mon-VMreq.

By directly accessing and examining the run-time status of Mon-VMreq through
virtual machine introspection, the run-time tools on A-VMreq can apply any mea-
surements according to the appraiser’s requests. The appraiser always applies hash-
ing assertions to check the integrity of A-VMreq. After attesting the integrity of
A-VMreq, A-VMove can trust this VM and delegate to it the attestation of Mon-
VMreq. A database in A-VMreq records the measurements that the appraiser can
request in the start-up attestation. If the attestation confirms that the configuration
of Mon-VMreq is correct, A-VMreq starts the continuous monitoring by applying the
strategy requested by the appraiser A-VMove.

To describe in more detail the start-up attestation, we consider the steps of the
communication protocol among the various VMs (see Fig. 6.3):

1. Mon-VMreq contacts Mon-VMove to join ove;

2. A-VMove intercepts the request and transmits to A-VMreq the set of measure-
ments to be applied for the start-up attestation.

3. the run-time tools on A-VMreq compute the requested measurements;

4. A-VMreq returns the measurements to A-VMove;

5. if the attestation is successful, A-VMove communicates to A-VMreq the mea-
surements that the run-time monitoring should apply and enables Mon-VMreq

to join ove.

Further features of the protocol are:

115

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

� the control channel between the A-VMs exists as long as Nreq belongs to ove;

� A-VMreq can apply consistency checks on Mon-VMreq on request from A-
VMove;

� A-VMove can request that specific measurements are applied after a timeout.

6.1.4 Trust in the Measurements and in the Node Configu-
ration

A critical issue of any attestation is the root-of-trust of the measurement system.
VIMS exploits the TPM to measure the integrity of the VMs through a hash chain
that measures the authenticated boot of the VMM and of the kernel of A-VM from
the BIOS and boot-loader. If the VMM is safely started, then it can initialize
the local A-VM to assure that also the A-VM is started in a safe state. A-VMreq

enables an appraiser A-VMove to retrieve the hash values that A-VMreq protects
from accesses by Mon-VMreq. To validate the integrity of the code in the node hash
chain, A-VMreq sends to the appraiser the authenticated hash chain returned by
a TPM quote operation. In this way, the appraiser and the overlay can establish
trust at first into A-VMreq and its measurements and then into the applications on
Mon-VMreq.

After its safe initialization, A-VMreq can continuously apply measurements to
monitor the integrity of Mon-VMreq and of P but this is ineffective against modifi-
cations of the configuration of Nreq. To this purpose, VIMS introduces a seal-plugin
module that exploits the TPM functions seal and unseal. During the start-up at-
testation of Nreq, as soon as the appraiser A-VMove has attested the integrity of
A-VMreq, it asks this A-VM to seal a value K by listing all the TPM registers.
From now on, the appraiser can control the integrity of the configurations of Nreq

by a challenge/response protocol that sends a nonce n encrypted with K. A-VMreq

has to unseal K, decrypt the received value and return n to the appraiser. Obvi-
ously, A-VMreq can reply to the challenge only if the configuration of Nreq is stable.
To avoid the loss of K when A-VMove leaves the overlay, K can be distributed to
other A-VMs both at the end of the start-up attestation and before Nove leaves the
overlay. In this way, each A-VM holds a set of keys, each for a distinct A-VM, and
it may randomly choose one of them to control the configuration of the correspond-
ing node. Two consecutive controls are separated by an interval T that depends
upon the overlay security policy. The handling of the seal-plugin module shows how
A-VMs can cooperate to create an overlay-wide appraiser.

The seal-plugin module may be ineffective against intermittent configuration at-
tacks where a node switches from a malicious configuration to a correct one, and the
other way around, with a frequency that depends upon 1/T so that its configuration
is correct anytime it is controlled. To detect these attacks, the time in-between two
consecutive controls may be randomly chosen from a distribution with an average

116

6.2. CURRENT IMPLEMENTATION

equal to T . However, since the configuration of an A-VM may be controlled by
several other ones and the clocks of these A-VMs are not tightly synchronized, the
complexity of foreseeing the timing of configuration controls is rather high even if
the time in-between two controls is fixed.

Finally, if the node includes a TPM, the measurements can be trusted provided
that the configurations of the VMM and of the A-VM are trusted and that the
seal-plugin module can prevent configuration updates. This is often the case if the
nodes are in controlled environment, such as a corporate network. If physical attacks
against the memory of a node, or other hardware components, cannot be avoided,
then increasing the security of the overlay is very hard. However, robustness with
respect to physical attacks can be improved by adopting code obfuscation techniques
described in Chap. 7.

6.1.5 Handling of Anomalous Behavior

Anytime an A-VM discovers that the attestation of a Mon-VM fails or that the
behavior of P differs from the expected one, it kills the Mon-VM. The A-VM may
also communicate this decision to the A-VMs of some overlay nodes connected to the
considered one so that they update a blacklist of IP addresses that cannot belong
to the overlay. We recall that the continuous monitoring cannot produce a false
positives because the description computed by the static tools over-approximates
the run-time behavior of P . Instead, if an A-VM detects that another A-VM cannot
be attested or the configuration of the node has been updated, it communicates this
information to other A-VMs that can either inform the Mon-VM on their nodes or
simply destroy the connection to the removed node. It is useless to inform the A-VM
of the disconnected node because it is untrusted. Notice that, to prevent denial of
service attacks, before disconnecting the node, the integrity of the A-VM requiring
the disconnection should be attested.

6.2 Current Implementation

Xen [26] 3.1.0 is the adopted technology to create the VMs, which are based on
Debian Etch 4.0 with Linux kernel 2.6.18. We adopted PsycoTrace tools described
in Chapter 4 and 5 to define the semantic checks on the overlay application and
PsycoTrace Introspection Library to compute the assertion on the Mon-VM mem-
ory. The various modules that run on A-VM that have been implemented are (see
Fig. 6.4):

� Remote Attestation Module: an A-VM module that implements the start-up
attestation and implements the attestation protocol;

� a database with the measurements that can be applied;

117

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

� a vTPM module interface;

� an interface for the low-level introspection function;

� an OpenVPN plugin [173] used to connect the node to a VPN;

� an extension to a Gnutella code [222].

The last two modules act as interfaces to join, respectively, a VPN and a Gnutella
network. The attestation protocol has been implemented in Java. The attestation
library consists of 4 Java classes of about 1500 lines of code, whereas the monitoring
requires 1000 lines of Java code, including a small wrapper to interface with the
introspection functions. The update of the Gnutella code to support the attestation
consists of about 1500 lines of code.

Figure 6.4: Current Implementation

In the first experiments, the Mon-VM runs a VPN client to join a remote Intranet
and Remote Attestation Module acts as a VPN server on Nove (see Fig. 6.5). This
covers those cases where an Intranet hosts critical resources such as SCADA devices
that are remotely accessed and monitored. To protect the integrity of the VPN
client, the continuous monitoring strategy evaluates assertions computed by the
static tools. The VPN server has been modified to handle the remote attestation
protocol. Java SSL libraries and TPM/J [208] are used to access the TPM values and
to create a VPN connection. Finally, OpenVPN has been extended with plugins to
enable remote attestation. In the second experiment (see Fig. 6.6), we have extended
a Gnutella node to support attestation. In both experiments, we assume that no
measurement violates the user’s privacy.

118

6.2. CURRENT IMPLEMENTATION

Figure 6.5: First Testbed Implementation

6.2.1 Remote Attestation Module

The Remote Attestation Module is at the core of the attestation protocol as it
initializes the protocol and implements the communications between Nove, a node
of the overlay, and A-VMreq, the A-VM on the node that is trying to connect to the
overlay. The protocol is triggered each time Mon-VMreq tries to join an overlay by
opening a connection to Nove. The Remote Attestation Module on A-VMove acts as
daemon service waiting for connections and it starts the handshaking phase. In the
VPN case, this module is an OpenVPN plugin activated by requests to access the
private network. Instead, in the P2P testbed scenario, the module on the A-VM
cooperates with a new thread in the Gnutella code to manage the control channel
between the A-VMs. Once activated, the Remote Attestation Module maps the IP
address of Mon-VMreq into the one of A-VMreq and it opens a connection to the
A-VMreq.

The handshaking between the Remote Attestation Module on A-VMove and A-
VMreq includes the mutual authentication and the initial parameters exchange. At
the end of the handshake, A-VMreq applies the initial set of measurements to Mon-
VMreq and it transmits their results and the hashes computed by the TrustedBoot to
the Remote Attestation Module on A-VMove. To attest the integrity of A-VMreq and
discover the current configuration of Mon-VMreq, the Remote Attestation Module on
A-VMove compares the hashes against those in the database. Then, A-VMove defines
a security level and it communicates this level to A-VMreq. Finally, A-VMreq stores
this level in its database and it applies the corresponding strategy. As an example,

119

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

Figure 6.6: Second Testbed Implementation

a node is attested when it joins the overlay and anytime a predefined number of
communications has occurred.

Currently, the Remote Attestation Module can apply further measurements be-
sides those that implement the strategies previously described. In fact, the Remote
Attestation Module may apply either an on-demand or a frequency policy, based on
a XML-encoded policy (see Tab. 6.1 for an example of an attestation response from
the A-VMreq). In an on-demand policy, as long as a node belongs to an overlay, the
Remote Attestation Module may request specific measurements to an A-VM. These
policies include all the strategies previously described to detect an attack against the
overlay application. Instead, in frequency-based policies, the A-VM computes the
hash values of some memory areas, as requested by the Remote Attestation Module
on the appraiser A-VM, with the corresponding frequency and return these values
to the module.

6.2.2 Description of the Attestation Protocol

The protocol between A-VMreq and the Remote Attestation Module on A-VMove

includes the following steps (see Fig. 6.7):

1. Mon-VMreq opens a connection to the Remote Attestation Module on A-
VMove;

120

6.2. CURRENT IMPLEMENTATION

1 <a t t e s t a t i o n>
2 <re sponse>
3 <o v e r a l l r e s u l t>suspicious</ o v e r a l l r e s u l t>
4 <nonceid>89892345</nonceid>
5 <AssuranceIp>192 . 1 6 8 . 1 . 1</AssuranceIp>
6 <r e qpo l i c y>timeout</ r e qpo l i c y>
7 <t im em i l l i s>20000</ t imem i l l i s>
8 <a s s u r an c e l e v e l>4</ a s s u r an c e l e v e l>
9 <measuresaggregate>

10 <measureschain>
11 <measure>
12 <idmeasure>TPM−Boot</ idmeasure>
13 <hash>7844 e409c39fad83bb65f7dac4c8a53e</hash>
14 <s t a tu s>trusted</ s t a tu s>
15 <ob j e c t>TPM . Measure</ ob j e c t>
16 <name>boot</name>
17 </measure>
18 <measure>
19 <idmeasure>0</ idmeasure>
20 <hash>7844 e409c39fad83bb65f7dac4c8a53e</hash>
21 <s t a tu s>trusted</ s t a tu s>
22 <ob j e c t>kernel . struct</ ob j e c t>
23 <name>idt_table</name>
24 </measure>
25
26 <measure>
27 <idmeasure>78</ idmeasure>
28 <hash>0000 e409c39fad83bb65f7dac4c8a53e</hash>
29 <s t a tu s>trusted</ s t a tu s>
30 <s t a t u s p r o f i l e>wrong</ s t a t u s p r o f i l e>
31 <ob j e c t>process</ ob j e c t>
32 <name>modprobe</name>
33 </measure>
34 </measureschain>
35 </measuresaggregate>
36 </ response>
37 </ a t t e s t a t i o n>

Table 6.1: Example of Attestation Response

2. the Remote Attestation Module on A-VMove checks the user’s credentials;

3. if Mon-VMreq has been authenticated, the Remote Attestation Module on A-
VMove invokes a function to query the database;

4. the Remote Attestation Module on A-VMove retrieves the IP address of A-
VMreq either though a function or by mapping Mon-VMreq address;

5. the Remote Attestation Module on A-VMove sets up a control channel with
A-VMreq;

6. the Remote Attestation Module on A-VMove sends the handshake message
with some parameters;

121

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

Figure 6.7: Attestation Protocol Overview

7. A-VMreq computes the hash values of P and sends them to the Remote At-
testation Module on A-VMove chained with the TPM’s measurements of the
underlying system;

8. the Remote Attestation Module on A-VMove compares the results sent by
A-VMreq against the expected ones;

9. the Remote Attestation Module on A-VMove sends to A-VMreq an XML con-
figuration file with the measurements that it should apply. The function pa-
rameters are (i) level, an ID coupled with a strategy in A-VMreq database;
(ii) measurement, whose value can either be frequency or on demand;

10. in a frequency policy, the Remote Attestation Module on A-VMove sends a
timeout value for the session. A-VMreq applies the measurements when the
timeout is elapsed and sends the results to the Remote Attestation Module on
A-VMove;

11. from this moment on, A-VMreq measures the integrity of the overlay applica-
tion and of the kernel and it returns the measurements to the Remote Attes-
tation Module on A-VMove.

6.2.3 Measurements in a P2P Overlay

Our solution to protect a P2P overlay through VIMS is not fully transparent
because, to compute the integrity measurements, we have modified three distinct
components in the Gnutella code [222] that implement, respectively, the handshake,
the download and the exchange of Ping messages. Moreover, a further thread in
the Gnutella code implements the message exchange between the appraiser A-VM
and P (i.e., the Gnutella application). As an example, if the new thread receives an

122

6.2. CURRENT IMPLEMENTATION

alert from an A-VM stating that a node has been compromised, it forces P to “kick”
the compromised node out of the overlay. Anytime a node attempts to connect to
a Gnutella peer, the new thread receives the request and informs the A-VM on
its node to act as an appraiser and to interact with the A-VM on the requesting
node. As soon as this node has been successfully attested, it can join the overlay.
From now on the standard Gnutella protocol is executed. If required, also the the
requesting node can attest the Gnutella peer.

The handshake component has been modified to implement a revised version of
the original protocol where (see Fig. 6.8):

1. Mon-VMreq opens a TCP connections with Mon-VMove;

2. Mon-VMreq sends the string “GNUTELLA CONNECT/0.6” to Mon-VMove;

3. Mon-VMreq sends a header with its specifications containing new fields for the
attestation to Mon-VMove;

4. Mon-VMove contacts A-VMove to inform that Mon-VMreq is willing to join the
Gnutella Overlay;

5. A-VMove contacts A-VMreq using UDP to request the integrity measurements
for Mon-VMreq;

6. A-VMreq applies the initial integrity measurements, i.e. the hashing measure-
ments on Mon-VMreq, and sends the results to A-VMove;

7. A-VMove communicates the response to Mon-VMove;

8. if the response is positive, Mon-VMove sends the string “GNUTELLA/0.6 200
OK” to Mon-VMreq, otherwise it closes the connections.

Then, steps 4 to 8 are repeated but this time the roles of Mon-VMove and Mon-VMreq

are reversed, i.e. Mon-VMreq requires A-VMove to attest Mon-VMove.
The following is an example of the handshake messages exchanged between two

nodes:

1)
GNUTELLA CONNECT/0.6
Node: 123.123.123.123:1234
Pong-Caching: 0.1
GGEP: 0.5
Ip-Att: 123.123.123.123
Port-Att: 6666
AttEveryXPing: 5
Dom-Name: Mon-VMreq
2)

123

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

Figure 6.8: Protocol in the Gnutella Implementation

ATTESTATION MESSAGE
Code-Message: ATTESTATION_ON_HANDSHAKE
Ip-Node: 123.123.123.123
Port-Node: 1234
Ip-Att: 123.123.123.123
Port-Att: 6666
AttEveryXPing: 5
Dom-Name: Mon-VMreq
3)
ATTESTATION MESSAGE
Code-Message: REQUEST_ATTESTATION
Dom-Name: Mon-VMreq
4-5)
Integrity measurements on Mon-VMreq
6)
ATTESTATION MESSAGE
Code-Message: ATTESTATION_ON_HANDSHAKE
Attestation: OK
7)
ATTESTATION MESSAGE
Code-Message: ATTESTATION_ON_HANDSHAKE
Attestation: OK
8)
GNUTELLA/0.6 200 OK
User-Agent: gtk-gnutella/0.95
Pong-Caching: 0.1ss
GGEP: 0.5
Ip-Att: 234.234.234.234
Port-Att: 8888
AttEveryXPing: 5

124

6.3. PERFORMANCE RESULTS

Dom-Name: Bar
Private-Data: 5ef89a

As soon as Mon-VM receives the “OK” string, steps 2-8 are repeated to attest
the integrity of Mon-VMove. We do not detail here the update of the components im-
plementing the downloads and Ping messages, since it recalls that of the handshake.
It suffices to say that the original protocol has been modified to include integrity
measurements as well. Anytime a file download is started, the A-VMs of the nodes
involved in the download cooperate to attest the integrity of both Mon-VMs. At-
testations may be fired by Ping messages as well. As soon as Mon-VM receives a
Ping message from another Mon-VM it replies with a Pong and then, if the num-
ber of Ping messages exceeds a threshold, it starts the mutual attestation of both
Mon-VMs. As soon as the attestation of a peer Mon-VM fails, the appraiser A-VM
informs the local Mon-VM and all its neighbor A-VMs that, in turn, inform the
Gnutella application on the corresponding Mon-VMs to close the connection with
the kicked Mon-VM. Furthermore, since A-VM continuously monitors the behavior
of P , Ping messages also include integrity results based upon measurements on P
and based upon hashing assertions.

6.3 Performance Results

In the following, we discuss at first the overhead of start-up attestation and
then the one of continuous monitoring. The system to run the prototype included
a Pentium Centrino Duo T2250 1.7GHz. In all the tests, the A-VM Linux kernel
version was 2.6.18-xen, 128MB of physical memory were allocated to the Mon-VM,
running a Linux Debian distribution, and 874 MB to the A-VM.

Figure 6.9: Average Client Attestation Overhead

125

CHAPTER 6. REMOTE ATTESTATION OF SEMANTIC INTEGRITY

6.3.1 Attestation

Figure 6.9 shows the number of operations of the IOzone [120] benchmark on
the Mon-VM when the attestation is repeated after an interval from 5 sec to one
minute. In this case, network latency masks the protocol overhead.

Figure 6.10 shows the attestation overhead computed by IOzone on the Mon-
VM when 3 nodes try to connect to the overlay simultaneously. The figure shows
the overhead as a function of timeout, the time interval in-between two consecutive
attestations.

Figure 6.10: VPN Server Attestation Overhead

To evaluate the overhead of the attestations of the integrity of the Mon-VM ker-
nel and of applicative software in a Gnutella overlay, we have developed a solution
that is not fully transparent because a further thread in the Gnutella application
intercepts connection requests. A node is attested anytime it joins a network, down-
loads a file or has exchanged a policy defined number of ping messages. Anytime a
node attempts to connect to a Gnutella peer, the newly inserted Gnutella thread in
the peer receives the message and informs the A-VM on its node to act as an ap-
praiser and to interact with the A-VM on the requesting node. As soon as this node
has been successfully attested, it can join the overlay. From now on the standard
Gnutella protocol is executed.

The attestation overhead is low because the increase in the execution time is less
than 10 percent if the Mon-VM only runs the Gnutella application. If it runs other
applications, the slow-down of the download due to the attestation may be neglected
provided that less than one attestation for minute occurs. As far as concerns the
communication overhead, the number of exchanged messages is increased from four
in the original protocol to, at most, eight to implement the attestation and, however,
two of these messages are exchanged between VMs on the same node.

126

Chapter 7
Code Obfuscation in a Virtual
Environment

Code obfuscation is the practice of making code unintelligible to prevent its
reverse engineering by applying a set of transformations that change the physical
appearance of the code, while preserving its original semantics. We present an ob-
fuscation transformation targeted at cloud environments that strongly separates the
obfuscated program from the information to compute the inverse transformation.
This separation is achieved by exploiting PsycoTrace run-time architecture. To this
end, the Mon-VM stores the obfuscated program as a set of program fragments,
whereas the I-VM stores the information to invert the obfuscation. The proposed
obfuscation strategy applies the encryption of program fragments and the random-
ization of the program control-flow. At anytime, exactly one program fragment,
the current one, is stored in clear on the Mon-VM, whereas any other fragment is
encrypted. As soon as the execution of the current fragment terminates, control is
transferred to the I-VM that decrypts the next fragment to be executed, encrypts
the current one and updates the program counter of the Mon-VM so that it can
correctly execute the next fragment. Alternative solutions may be implemented ac-
cording to the definition of fragment that is adopted. In particular, we consider
that a fragment includes all the instructions in-between two system calls as this
minimizes the overhead to intercept the flow of control on the Mon-VM. In fact, by
trapping the execution of a system call on the Mon-VM, the I-VM is alerted that
a fragment has been completely executed so that it can encrypt and decrypt the
proper fragments and update the program counter. This corresponds to a program
decomposition into system blocks, where the notion of system block is similar to
that of basic block provided that control transfers are replaced by system calls. A
noticeable advantage of this solution is that is fully transparent to system software.

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

7.1 Threat Model

The threat model we assume is focused on a cloud service provider (CSP) that
implements an infrastructure-as-a-service model through the instantiation of dedi-
cated VMs where the user has full access, i.e. the VMs are bare metal. According
to the environments, i.e. OS and development tools, the vendor may also offer a
minimal set of applications to the cloud users: in this scenario, the CSP is interested
in obfuscating these applications. (This model may be viewed as a special case of
platform-as-a-service model where the user can also apply changes at the OS-level.)
Hence, the user can access the highest privilege level of the VM so that she can
read and modify any programs in memory or on disk provided by the CSP. For this
reason, the CSP should run an I-VM to obfuscate the program that it provides to
the users. In the VIMS scenario, if the start-up attestation is successful, the overlay
sends (a) the obfuscated version of the overlay program to the Mon-VM and (b) the
system block graph and the decryption keys to the A-VM.

7.2 System Blocks and Program Representation

This section briefly introduces the program representation underlying the pro-
posed obfuscation model.

The fundamental notion of the model is that of system block. Informally, a
system block is the program fragment that includes all the instructions that may be
executed in-between two consecutive system calls.

Definition (System Block (SB)). If s is a system call or the first instruction of
the program, a system block (SB) is the smallest program fragment that includes
any instruction that may be executed in-between s (not included) and either the next
system call (included) or the program end.

A SB can be described as a sub-graph of the program control-flow graph that
has just one entry point, the instruction following s, and several exit points. There
is a distinct exit point for each system call that can be executed immediately after
s, or for the program end if s is the last call that may be executed before the end is
reached. While a SB recalls a basic block (BB), the two notions are fully orthogonal.
As a matter of fact, a BB may include several SBs, because a sequence of instructions
without jumps may also include several system calls. On the other hand, a SB can
include several BBs that do not issue system calls.

A program may be described as a set of SBs and a system block graph that
denotes the execution order among these SBs.

Definition (System Block Graph (SBG)). A system block graph (SBG) is an ori-
ented graph where each node represents a distinct SB and each arc is coupled with a
distinct system call among those executed by the program. An arc denotes that the

128

7.2. SYSTEM BLOCKS AND PROGRAM REPRESENTATION

SB represented by the arc destination node (the destination SB) is executed after the
source SB, which is the SB represented by the source node. The system call coupled
with the arc is the last instruction of the source SB.

In general, there may be several arcs leaving a node, because there may be several
exit points for each SB, each corresponding to the execution of a distinct system
call, if any.

System Blocks Example. The following code:

1 read () ;
2 i f (x) {
3 x = x + 1 ;
4 }
5 e l s e {
6 x = x + 2 ;
7 write () ;
8 y = y*y ;
9 }

10 z = −z ;
11 time () ;

includes two SBs:

1. the first SB begins at the instruction (line 2) after the read() system call and
ends in two points, i.e. in the write() (line 7) and time() (line 11) system
calls. Hence, this SB includes the instructions x = x + 1;, z = -z;, time();
and x = x + 2;, write();

2. the second SB begins at the instruction (line 8) after the write() system call,
and ends in the system call time() (line 11). This SB contains the instructions:
y = y*y;, z = -z;, time();

While distinct SBs may share some instructions, this sharing can be avoided by
replicating shared instructions. As an example, the two SBs in the previous example
share the instructions z = -z; time();. The sharing may be avoided by replicating
the two instructions in each branch of the if statement.

7.2.1 Representing the Program Through System Blocks

Definition (CFGraph(P)). CFGraph(P) is the control graph of P defined in terms
of BBs.

Definition (SBG(P)). SBG(P) is the system block graph of P .

SBG(P), the graph that describes the decomposition of a program P into SBs,
is a transformation of CFGraph(P). The transformation assumes, without any
loss of generality, that CFGraph(P) includes exactly one initial BB and a final BB.

129

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

Currently, we build CFGraph(P) from SourceCode(P) but, in a real-world scenario,
the graph should be deduced from the executable code where all the required libraries
are statically linked through disassembly [241]. This guarantees the consistency
between the statically generated CFGraph(P) and the run-time behavior. The
transformation is built around the notion of unit block and unit block graph, which
is an intermediate representation to map CFGraph(P) into SBG(P) through unit
blocks.

Definition (Unit Block). A unit block (UB) is any sequence of instructions that
belong to the same BB in-between two consecutive delimiters of the BB, where a
delimiter is either a system call or the first and the last instruction of the BB.

Conceptually, a unit block generalizes a BB because also system call instructions
are considered as branch instructions. If the first instruction of a UB is the first
program instruction or it immediately follows a system call, then the UB is the
initial UB of a SB, whereas UBs having as their last instruction a system call, or
the last instruction of a program, are final UBs of the corresponding SB.

Unit Blocks Example. The following code:

1 i f (x) {
2 x = x + 1 ;
3 time () ;
4 t = t + 10 ;
5 s = s * 4 ;
6 }
7 e l s e {
8 y = y*y ;
9 m = m − 1 ;

10 write () ;
11 f = f + 5 ;
12 }
13 z = −z ;
14 read () ;

includes five UBs, i.e.:

1. x = x + 1; time();

2. t = t + 10; s = s * 4;

3. y = y*y; m = m - 1; write();.

4. f = f + 5;.

5. z = -z; read();.

UB 4 is an initial UB because its first instruction immediately follows a system call,
whereas UBs 3 and 5 are final UBs.

130

7.2. SYSTEM BLOCKS AND PROGRAM REPRESENTATION

Definition (Unit Block Graph (UBG)). A unit block graph (UBG) is a transfor-
mation of CFGraph in a graph that contains a node for each UB and an arc from
the node representing UB1 to the one representing UB2 if:

a) UB1 and UB2 belong to the same BB and UB2 is executed immediately after
UB1, or

b) UB1 is the last UB of BB1 and UB2 is the first UB of BB2 and BB2 may be
executed after BB1.

Definition (UBG(P)). UBG(P) is the unit block graph of P .

In the following, we assume that system calls are represented through well-known
lexical tokens, so that they can be recognized when parsing the code. As an example,
if the algorithm is applied to the executable code, it should locate all int $0x80

and syscall assembly instructions (i.e., those instructions to issue system calls). If,
instead, it is applied to SourceCode(P), these tokens represents the LIBC wrappers
for system calls. The algorithm builds SBG(P) by locating all the system calls
inside CFGraph(P) and, for each system call, it discovers all the control paths
from this system call to the next system call. Then, the algorithm merges all the
instructions along these paths into a new SB and it inserts the corresponding node
into SBG(P). The number of arcs leaving this node depends upon the number of
system calls that end the block because there is a distinct arc for each system call.

In more details, the algorithm to map CFGraph(P) into SBG(P):

1. splits each BB containing n > 0 system calls into n+1 UBs (1, ..., n+1), where
the i-th block includes all the instructions in-between the (i−1)th system call
of the BB (if i = 1, from the first instruction of the BB) and the i-th system
call of the BB (if i = n+ 1, to the last instruction of the BB);

2. generates UBG(P);

3. visits UBG(P) and, for each node n that represents a UB:

� it starts a depth first visit of the graph;

� determines Succ(n), the set that includes any node m that represents
either a UB that may be executed after n and that ends with a system
call or the END block that terminates the program;

� merges all the UBs represented by nodes on the path from n to any node
in Succ(n) into the same SB, SB(n).

As an example, Fig. 7.1(b) and 7.1(c) show, respectively, the UBG and the SBG
resulting from the control-flow graph shown in Fig. 7.1(a).

131

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

(a) (b) (c)

Figure 7.1: Control-Flow Graph (a) Unit Block Graph (b) System Block Graph (c)

7.2.2 Algorithm to Build the System Block Graph

In the following, we describe a high-level version of the algorithm that implements
the steps previously described to locate SBs and build the SBG. Here, SB refers to
the set of SBs that have already been located, whereas UB refers to the set of UBs
that may follow the final UB of the SB. The functions are:

� systemBlockGraphGenerator: this is the main function that takes as param-
eter a reference to the basic block that is the root of the control-flow graph.

132

7.2. SYSTEM BLOCKS AND PROGRAM REPRESENTATION

This function generates the SBG and returns a pointer to its root;

� searchInFoundSystemBlocks: the input of this function is a pointer to a basic
block BB and returns a pointer to a SB. At first, this functions verifies if BB
is an initial UB of any SB in SB. In this case, it returns a pointer to that SB,
otherwise it returns null;

� systemBlockDiscoverer: it takes as input a basic block BB and returns the
set of UBs that compose the SB having BB as its root. Moreover, it inserts
into UB the UBs that follow the final UBs of the last SB. The search of new
SBs starts from these UBs.

The following is the high level description of the algorithm:

1 SystemBlock systemBlockGraphGenerator (BasicBlock bb)
2 {
3 SystemBlock SB = searchInFoundSBlocks (bb) ;
4 i f (SB != nu l l)
5 re turn SB ;
6 e l s e
7 {
8 SB = new SystemBlock (systemBlockDiscoverer (bb)) ;
9 addSystemBlock (SB) ; //add the new system block

10 // to the s e t o f system blocks
11 f o r each i in UB

12 {
13 setNextNode (SB , systemBlockGraphGenerator (i)) ;
14 }
15 re turn SB ;
16 }
17 }
18
19 void systemBlockDiscoverer (BasicBlock bb)
20 {
21 P = {} ; // the s e t o f un i t b locks in the
22 // cur rent system block
23 Q = {bb } ; // s e t with the nodes o f the cont ro l−f l ow graph
24 // (i . e . , ba s i c b locks) to be analyzed
25
26 repeat

27 select i from Q

28 Q = Q − {i } ;
29 f o r each (i , j) in exit−arcs (i)
30 {
31 P = P + {i } ;
32 i f (isAFinalUnitBlock (i))
33 {
34 UB = UB + {j } ;
35 }
36 i f (j is not in P)
37 {
38 Q = Q + {j } ;
39 }
40 }
41 until (Q = {})
42 re turn P ;
43 }

133

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

7.2.2.1 Examples of System Block Graphs

In the following, we discuss three examples of SBG generation.

Example 1. Consider the following snippet of code:

1 i f (x) {
2 x = x + 2 ;
3 }
4 e l s e {
5 x = x + 3 ;
6 read () ;
7 y = y * y ;
8 }
9 z = −z ;

10 x = x * 2 ;
11 write () ;
12 y = y + 10 ;
13 s = s + 1 ;
14 time () ;

The algorithm explores the control-flow graph starting with the first basic block,
which contains the first UB with index 1 (see Fig. 7.2(a)).

(a) (b)

Figure 7.2: Unit Block Graph (a) and System Block Graph (b) for Example 1

134

7.2. SYSTEM BLOCKS AND PROGRAM REPRESENTATION

The first time, the algorithm returns the set of all the UBs of the first SB (which
we call SB A: see Fig. 7.2(b)). SB A contains all the basic blocks met by exploring
the control-flow graph until a final UB is found. The UBs of this set are 1, 2, 5, 3,
where 5 and 3 are final UBs. The algorithm keeps tracks of the nodes in the graph
that are the roots of the next SB, i.e. the UBs following the final UB of the last
explored SB (A). These are UBs 4 and 6. Moreover, an arc is added from each final
UB of the last SB to each new UB. Then, the algorithm is applied recursively to
each new UB.

Then, the algorithm locates the next basic block (4), and the new SB (B) consists
of the UBs 4 and 5, where 5 is the final UB. The following block (6) is the only UB
of C, the next SB, and it is then explored recursively. At the end, the algorithm
returns the following SBs and UBs:

� SB A = {1, 2, 5, 3}, initial UB = {1}, final UBs = {5, 3};

� SB B = {4, 5}, initial UB = {4}, final UB = {5};

� SB C = {6}, initial UB = {6}, final UB = {6}.

Example 2. Consider the following snippet of code:

1 whi le (x<10){
2 y = y + x ;
3 write () ;
4 x = x+1;
5 }
6 z = −z ;
7 read () ;
8 time () ;

This is the list of the SBs and of the corresponding UBs:

� SB A = {1, 2, 4}, initial UB = {1}, final UB = {2, 4}.

� SB B = {3, 1, 2, 4}, initial UB = {3}, final UBs = {4, 2}.

� SB C = {5}, initial UB = {5}, final UB = {5}.

Figure 7.3(a) and 7.3(b) show, respectively, the corresponding UBG and SBG.

Example 3. Consider the following snippet of code:

1 whi le (x<20){
2 y = y + x ;
3 k = k − 2 ;
4 read () ;
5 i f (v) {
6 a = a − x ;
7 s = a ;

135

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

(a) (b)

Figure 7.3: Unit Block Graph (a) and System Block Graph (b) for Example 2

8 write () ;
9 }

10 e l s e {
11 s = 2 ;
12 }
13 x = x + 1 ;
14 }
15 z = −z ;
16 time () ;
17 read () ;

This is the list of the system blocks and of the corresponding unit blocks:

� SB A = {1, 2, 7}, initial UB = {1}, final UBs = {2, 7};

� SB B = {3, 4, 5, 6, 1, 2, 7}, initial UB = {3}, final UBs = {4, 2, 7};

� SB C = {6, 1, 2, 7}, initial UB = {6}, final UBs = {2, 7};

� SB D = {8}, initial UB = {8}, final UB = {8}.

Figure 7.4(a) and 7.4(b) show, respectively, the corresponding UBG and SBG.

136

7.3. ARCHITECTURE OF THE OBFUSCATION MECHANISM

(a) (b)

Figure 7.4: Unit Block Graph (a) and System Block Graph (b) for Example 3

7.3 Architecture of the Obfuscation Mechanism

This section describes an architecture for the proposed strategy that exploits
virtualization to achieve full transparency for the program to be obfuscated. The
overall solution includes two steps:

1. the control-flow logic of the program to be obfuscated is partitioned between
two VMs, i.e. the Mon-VM, which runs the SBs of P , and the I-VM, which
implements the code encryption/decryption and transfers the control among
SBs according to SBG(P); each arc of the SBG(P) is coupled with the virtual
address of the corresponding system call;

2. the I-VM encrypts and decrypts SBs at run-time in the memory of the Mon-
VM so that only the SB that is currently being executed is in clear.

To increase the complexity for an attacker to rebuild the original code by accessing
any of the executed SBs in clear, the Mon-VM only stores the SBs without any

137

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

information about their execution order. Transfer of control among these blocks is
implemented by the I-VM by directly updating the program counter of the Mon-
VM. The new value of this register is computed through the SBG and a jump table
that maps the SBs into their virtual address.

7.3.1 Control-Flow Partitioning

The algorithm described in the previous section supports a partitioning of the
control-flow information of a program into two sets: (i) a set of SBs; (ii) the SBG.
To produce them, the techniques previously discussed are applied at compile-time
to generate: (i) a binary file containing the code of all the SBs in some random
order; (ii) one or more files with information about: (a) the SBG, which describes
control transfer among the SBs; (b) the SB localizator, which records the initial and
final address of each SB in the binary file. At run-time, the SB localizator is used
to determine the boundary of the SBs that are encrypted and decrypted. Moreover,
it is used as an index to the jump table that records the association among SBs
and virtual addresses to retrieve the initial address of the next SB. This address is
used to update the program counter of the Mon-VM: in fact, the current value of
the program counter is invalid because the SBs have been randomly ordered in the
binary file. Any information but the binary file is stored in the I-VM that it protects
by the Mon-VM. Only the Obfuscator in the I-VM can access the SBG and the jump
table. As an example, Table 7.1 describes, at a high-level, the strategy applied by
the Obfuscator in the I-VM to protect the program on the Mon-VM described by
the SBG in Fig. 7.5.

Any SB consists of a set of UBs. Each UB is coupled with:

� a unique identifier;

� a virtual memory address that is the address of the first instruction of the UB;

� its dimension.

Moreover, also the starting address of the text segment is recorded.
Each node of the SBG is associated with the following data:

� an identifier and the initial virtual address of the SB;

� the set of the UBs that compose the SB;

� the set of the exit points, i.e. the arcs to other nodes. Each exit point includes:
(a) an identifier of the next SB; (b) the return address of the system call
identifying this arc.

Each transition between two SBs is generated by a system call. At run-time, to
distinguish the system call associated with the current arc, we cannot use the system

138

7.3. ARCHITECTURE OF THE OBFUSCATION MECHANISM

call token, i.e., the name of the system call, because the program may issue the same
system call at several distinct program points. For this reason, the Obfuscator uses
the virtual address coupled with the system call inside the text segment, which is
unique for each system call. In the current prototype, each call is identified by the
return address of the invocation, which is the address that immediately follows the
call, rather than the system call virtual address. The technical reason is that, at
run-time, when a system call is issued and trapped the current program counter
does not store the system call virtual address but, instead, the virtual address of
the kernel instruction that is executing the system call handler. By retrieving the
return address of the system call, which can be found on the stack, we know the
virtual address that immediately follows the system call site and, therefore, that of
the system call.

1 switch (currentSystemBlock)
2 {
3 case ' 1 ' : switch (currentSystemCall)
4 { case ' 1 ' : decrypt (SB2 } ;
5 setPC (jumpTable [firstInstr (SB2)]) ;
6 encrypt (SB1) ; break ;
7 case ' 2 ' : decrypt (SB3 } ;
8 setPC (firstInstruction (SB3)) ;
9 encrypt (SB1) ; break ;

10 } break ;
11 case ' 2 ' : switch (currentSystemCall)
12 { case ' 5 ' : decrypt (SB5 } ;
13 setPC (jumpTable [firstInstr (SB5)]) ;
14 encrypt (SB2) ; break ;
15 } break ;
16 case ' 3 ' : switch (currentSystemCall)
17 { case ' 3 ' : decrypt (SB4 } ;
18 setPC (jumpTable [firstInstr (SB4)]) ;
19 encrypt (SB3) ; break ;
20 } break ;
21 case ' 4 ' : switch (currentSystemCall)
22 { case ' 4 ' : decrypt (SB6 } ;
23 setPC (jumpTable [firstInstr (SB6)]) ;
24 encrypt (SB4) ; break ;
25 } break ;
26 case ' 5 ' : switch (currentSystemCall)
27 { case ' 5 ' : setPC (jumpTable [firstInstr (SB5)]) ;
28 break ;
29 case ' 6 ' : decrypt (SB8 } ;
30 setPC (jumpTable [firstInstr (SB8)]) ;
31 encrypt (SB5) ; break ;
32 } break ;
33 case ' 6 ' : switch (currentSystemCall)
34 { case ' 6 ' : decrypt (SB7 } ;
35 setPC (jumpTable [firstInstr (SB7)]) ;
36 encrypt (SB6) ; break ;
37 } break ;
38 }

Table 7.1: Obfuscation Strategy Implemented by Introspection Virtual Machine

139

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

Figure 7.5: System Block Graph

As soon as the Obfuscator knows the return address of a system call, it can:

1. identify transitions between SBs to locate the next SB and retrieve its first
address through the jump table;

140

7.3. ARCHITECTURE OF THE OBFUSCATION MECHANISM

2. encrypt the current SB and decrypt the next one;

3. redirect the process control-flow to the first instruction of the next SB.

To locate the return address, the Obfuscator in the I-VM:

1. accesses the Mon-VM VCPU context to read the kernel sp register, which
points to the top of the kernel stack;

2. maps the Mon-VM kernel stack;

3. reads the ESP register, which points to the base of the Mon-VM user stack;

4. maps the Mon-VM user stack;

5. locates the return address of the system call in the user stack of the protected
application.

To implement the last step, the Obfuscator has to read the EAX register (which
contains the system call identifier) not only to identify the system call but also to
locate the return address in the stack, since the correct offset from the stack pointer
varies among distinct calls. As previously said, the return address is used to identify
the transition among SBs. However, in some cases the Obfuscator cannot deduce
the next SB from the current system call’s return address because the same system
call may be coupled with several arcs, e.g. anytime a system call is issued inside
a function. In this cases, the Obfuscator scans the stack to detect the SB that
has generated the call. Further alternative solutions are: (i) function inlining, i.e.
the compiler generates code so that any system call has a distinct address for each
case (obviously, this solution cannot be applied in case of recursive procedures); (ii)
the compiler generates code to locate the first return address in the stack that is
different in all the cases.

7.3.2 Encryption

The binary code is encrypted with keys written in the configuration files stored
in the I-VM. Only the first SB is in clear, so that whenever the program is loaded in
memory it can be executed until the first system call is executed. When this system
call is reached, the Obfuscator in the I-VM can deduce the next SB that will be
executed, because it knows the SBG and the current system call, i.e. it knows the
current edge in the graph. Hence, the Obfuscator encrypts anything that was in
clear before the current system call, decrypts the memory region storing the next
SB and updates the program counter to point to the first instruction of this SB. An
attacker cannot recover the original program even if she has seen all the previous SBs
in clear because she may know some SBs but cannot recover the original program
control-flow and the execution order among these SBs that is codified by the SBG
in the I-VM.

141

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

7.3.3 Run-Time Components

The run-time support of the proposed strategy includes the following components
(see Fig. 7.6): the interceptor module in the Mon-VM, the Obfuscator in the I-VM,
which also stores a set of configuration files. In the current implementation, the
interceptor module is implemented by HiMod (see Sect. 5.3.1), a kernel module in
the Mon-VM that intercepts the system calls and informs the I-VM that a system
call has been executed. It can also be replaced by a hardware virtualization support
for trapping interrupt instruction [230].

Figure 7.6: Obfuscation Run-Time Architecture

The Obfuscator runs in the I-VM and can access:

� any memory location of the Mon-VM with read and write permissions;

� the information about the flow of the SBG;

� the encryption keys;

� the jump table.

The Obfuscator listens to any events sent by the HiMod and it receives an event
anytime the application program invokes a system call. Then, the Obfuscator:

1. freezes the execution of the Mon-VM;

2. deduces the next SB to be executed through the current system call, identified
by the current return address and the SBG;

142

7.3. ARCHITECTURE OF THE OBFUSCATION MECHANISM

3. updates the Mon-VM program counter to point to the next SB;

4. encrypts the previous SB and decrypts the next one;

5. resumes the execution of the Mon-VM.

The frameworks also includes the configuration files in the I-VM graph.xml,
codesegment.xml, keys.k, which store all the information about the SBG, the
virtual address of the UBs and the encryption keys. graph.xml stores the repre-
sentation of the SBs and its core element is the SB (<system>), which is associated
with:

� <id>: SB identifier. An integer value greater than or equal to zero, used as
identifier of the initial SB;

� <start address>: the virtual address of the first instruction inside the SB;

� <exit point>: it represents an arc to the next SB. An exit point contains:

– <return address>: the value of the return address identifying the arc;

– <next system id>: the identifier of the next SB.

� <unit block id>: identifier for a UB belonging to the SB.

The following is an example of a graph.xml file:

1 <app l i c a t i on g raph>
2 <system>
3 <id> 0 </ id>
4 <s t a r t a dd r e s s> 80483a4 </ s t a r t a dd r e s s>
5 <e x i t p o i n t>
6 <r e tu rn addr e s s> 80483df </ r e tu rn addr e s s>
7 <next sys t em id> 1 </ next sys t em id>
8 </ e x i t p o i n t>
9 <un i t b l o c k i d> 0 </ un i t b l o c k i d>

10 </ system>
11
12
13 <system>
14 <id> 1 </ id>
15 <s t a r t a dd r e s s> 80483f7 </ s t a r t a dd r e s s>
16 <e x i t p o i n t>
17 <r e tu rn addr e s s> 804849c </ r e tu rn addr e s s>
18 <next sys t em id> 2 </ next sys t em id>
19 </ e x i t p o i n t>
20 <e x i t p o i n t>
21 <r e tu rn addr e s s> 804849c </ r e tu rn addr e s s>
22 <next sys t em id> 3 </ next sys t em id>
23 </ e x i t p o i n t>
24 <un i t b l o c k i d> 1 </ un i t b l o c k i d>
25 <un i t b l o c k i d> 2 </ un i t b l o c k i d>
26 <un i t b l o c k i d> 3 </ un i t b l o c k i d>
27 </ system>
28
29 <system>

143

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

30 <id> 2 </ id>
31 <s t a r t a dd r e s s> 80484a1 </ s t a r t a dd r e s s>
32 <e x i t p o i n t>
33 <r e tu rn addr e s s> 80485e6 </ r e tu rn addr e s s>
34 <next sys t em id> 3 </ next sys t em id>
35 </ e x i t p o i n t>
36 <un i t b l o c k i d> 4 </ un i t b l o c k i d>
37 </ system>
38
39 <system>
40 <id> 3 </ id>
41 <s t a r t a dd r e s s> 80485eb </ s t a r t a dd r e s s>
42 <e x i t p o i n t>
43 <r e tu rn addr e s s> 8048870 </ r e tu rn addr e s s>
44 <next sys t em id> 4 </ next sys t em id>
45 </ e x i t p o i n t>
46 <un i t b l o c k i d> 5 </ un i t b l o c k i d>
47 <un i t b l o c k i d> 6 </ un i t b l o c k i d>
48 </ system>
49
50
51 <system>
52 <id> 4 </ id>
53 <s t a r t a dd r e s s> 8048875 </ s t a r t a dd r e s s>
54 <e x i t p o i n t>
55 <r e tu rn addr e s s> 8048 d7a </ r e tu rn addr e s s>
56 <next sys t em id> 5 </ next sys t em id>
57 </ e x i t p o i n t>
58 <un i t b l o c k i d> 7 </ un i t b l o c k i d>
59 <un i t b l o c k i d> 8 </ un i t b l o c k i d>
60 <un i t b l o c k i d> 9 </ un i t b l o c k i d>
61 <un i t b l o c k i d> 10 </ un i t b l o c k i d>
62 </ system>
63
64 <system>
65 <id> 5 </ id>
66 <s t a r t a dd r e s s> 8048 d7c </ s t a r t a dd r e s s>
67 <e x i t p o i n t>
68 <r e tu rn addr e s s> 8048 d89 </ r e tu rn addr e s s>
69 <next sys t em id> 6 </ next sys t em id>
70 </ e x i t p o i n t>
71 <un i t b l o c k i d> 11 </ un i t b l o c k i d>
72 </ system>
73
74 <system>
75 <id> 6 </ id>
76 <s t a r t a dd r e s s> 8048 d89 </ s t a r t a dd r e s s>
77 <un i t b l o c k i d> 12 </ un i t b l o c k i d>
78 </ system>
79
80 </ app l i c a t i on g raph>

The second file, codesegment.xml records the virtual address of each UB, that
of the code segment and the encryption algorithm used, and it contains the following
fields:

� <CSstart address>: the initial code segment address;

� <CSend address>: the final code segment address;

� <encryption method>: the name of the encryption algorithm;

144

7.3. ARCHITECTURE OF THE OBFUSCATION MECHANISM

� unit block: it represents a UB, and it contains:

– <id>: identifier for the UB;

– <initial address>: initial virtual address of the UB;

– <size>: length of the UB.

The following is an example of codesegment.xml:

1 <code segment>
2
3 <CSstar t addre s s> 8048320 </ CSsta r t addre s s>
4
5 <CSend address> 8048 d97 </CSend address>
6
7 <encryption method> DES </ encryption method>
8
9 <un i t b l o ck>

10 <id> 0 </ id>
11 < i n i t i a l a d d r e s s> 80483a4 </ i n i t i a l a d d r e s s>
12 <s i z e> 59 </ s i z e>
13 </ un i t b l o ck>
14
15 <un i t b l o ck>
16 <id> 1 </ id>
17 < i n i t i a l a d d r e s s> 80483f7 </ i n i t i a l a d d r e s s>
18 <s i z e> 165 </ s i z e>
19 </ un i t b l o ck>
20
21 <un i t b l o ck>
22 <id> 2 </ id>
23 < i n i t i a l a d d r e s s> 80484a1 </ i n i t i a l a d d r e s s>
24 <s i z e> 325 </ s i z e>
25 </ un i t b l o ck>
26
27 <un i t b l o ck>
28 <id> 3 </ id>
29 < i n i t i a l a d d r e s s> 80485eb </ i n i t i a l a d d r e s s>
30 <s i z e> 645 </ s i z e>
31 </ un i t b l o ck>
32
33 <un i t b l o ck>
34 <id> 4 </ id>
35 < i n i t i a l a d d r e s s> 8048875 </ i n i t i a l a d d r e s s>
36 <s i z e> 1285 </ s i z e>
37 </ un i t b l o ck>
38
39 <un i t b l o ck>
40 <id> 5 </ id>
41 < i n i t i a l a d d r e s s> 8048 d7c </ i n i t i a l a d d r e s s>
42 <s i z e> 13 </ s i z e>
43 </ un i t b l o ck>
44
45 <un i t b l o ck>
46 <id> 6 </ id>
47 < i n i t i a l a d d r e s s> 8048 d89 </ i n i t i a l a d d r e s s>
48 <s i z e> 14 </ s i z e>
49 </ un i t b l o ck>
50 </ code segment>

145

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

Finally, keys.k records the keys to encrypt each UB, ordered by the UB they
belong to. We recall that the I-VM may receive this file at run-time as well, after
the successful execution of some acceptance test on the underlying system.

7.4 Performance Results

Using a CPU Intel code 2 Duo T7500 2.2. GHz with 3GB DDR2 RAM, we tested
the latency of the following mechanisms: (i) system call interception; (ii) location
of the return address; (iii) SB transition; (iv) SB encryption; (v) SB decryption.

The interception of a system call requires several steps: (i) the trap of the current
system call invocation by the HiMod; (ii) the communication of the HiMod to alert
the Obfuscator. Hence, the resulting time is the sum of the system call interception
latency, the channel event latency to inform the Obfuscator and the time spent by
the HiMod waiting for the notification by the Obfuscator. The tested average value
for this time is:

Cint = 52µsec

As previously said, to locate the return address the I-VM has to (i) retrieve
the value of a register; (ii) unwind two stacks. If Cget denotes the time of this
computation, then:

Cgret = (a · x) + d [+a · y]

where x is the number of kernel-stack frames to traverse, a is the cost to traverse a
stack frame, d is the cost to read the EBP register, the pointer to the current frame,
retrieve the value of the saved register at the bottom of the kernel-stack and analyze
the top of the user-stack, y is the number of user-stack frames to be scanned if the
return address to deduce the next block is not in the top frame of the user-stack. If
the optional part is not required (i.e., y = 0), the average time for this operation is:

Cgret = 81µsec

To implement a SB transition, the I-VM considers the node representing the
current SB and searches the arc of the SBG identified by the return address located
in the previous step. Then, it updates some internal states and modifies the program
counter to point to the virtual address of the next SB. The average time is:

Ctstats = 4µsec

To encrypt a SB, the I-VM first retrieves the keys associated with the block and
then encrypts it. This requires a time that can be computed as follows:

Ccrypt =
n∑
i=1

(ci + ui) + g

where n is the number of UBs in the SB; ci and ui are, respectively, the cost of
encrypting the i-th UB and of copying the i-th UB into the corresponding memory

146

7.4. PERFORMANCE RESULTS

location; g is the fixed cost to manage the remaining computations. In more detail,
ci can be computed as:

ci = s+ (li · ei)
where s is the fixed cost for managing each UB; li is the length of the i-th UB; ei is
the cost of encrypting a unit of memory. Instead, ui is computed as:

ui = li · kum

where li is the length of the i-th UB; kum is the cost of writing a unit of memory.
The tests produced the following average times:

g = 1µsec

s = 41µsec

kum = 0.01µsec

ei = 0.05µsec (for byte, using DES)

ei = 0.036µsec (for byte, using Blowfish)

ei = 0.008µsec (for byes, using One Time Pad)

If a SB includes exactly one UB with a size of 1 KB, then:

Ccrypt = 103µsec (using DES)

Ccrypt = 89µsec (using Blowfish)

Ccrypt = 60µsec (using OTP)

To decrypt a UB, the I-VM retrieves the key associated with the corresponding
SB. The formulas to compute the associated costs are the same ones of the previous
case and the previous results still hold.

The overhead associated with a system call is:

Cint + Cgret + Ctstat + Ccrypt + Cdecrypt

The value of the first three parameters is fixed and is given by:

Cint + Cgret + Ctstat = 52µsec+ 81µsec+ 4µsec = 137µsec

If we consider the previous example of a SB including exactly one 1k UB, we
have:

Ccrypt + Cdecrypt = 103µsec+ 103µsec = 206µsec (using DES)

Ccrypt + Cdecrypt = 89µsec+ 89µsec = 178µsec (using Blowfish)

Ccrypt + Cdecrypt = 60µsec+ 60µsec = 120µsec (using OTP)

147

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

Figure 7.7: Protection Overhead: 1) Current Library; 2) Extended Library

If we sum the previous results, we have:

Ctot = 137µsec+ 206µsec = 343µsec (using DES)

Ctot = 137µsec+ 178µsec = 315µsec (using Blowfish)

Ctot = 137µsec+ 120µsec = 257µsec (using OTP)

Obviously, to compute the total latency, the time to perform a system call should
be added to these results. Since in the current prototype the Introspection Library
cannot map two pages simultaneously, whenever the I-VM needs to access a page,
the Introspection Library unmaps the previous mapped page and maps another
one. Since the cost of a map operation is 37µsec and of an unmap is 4µsec, the
extension of the Introspection Library to map several pages concurrently results in
the following performance benefits:

� system call interception: this operation maps and unmaps the page corre-
sponding to the synchronization channel. Hence, by avoiding these two oper-
ations, the new cost is:

Cint = 52− (Cmap + Cunmap) = 11µsec

148

7.4. PERFORMANCE RESULTS

� locating the return address: this operation maps two pages storing the ker-
nel and user stacks and unmaps the kernel stack. Thus, by avoiding these
operations, the cost is:

Cgret = 81− (2 · Cmap + Cunmap) = 4µsec

� SB transition: the cost is negligible, since the user stack is not unmapped;

� the cost of map and unmap depends upon that to manage each UB. Also this
cost is negligible if we neglect the costs of map and unmap.

As an example, if the Introspection Library can map several pages concurrently,
the costs for a SB composed of exactly one 1k UB are:

Ccrypt = Cdecrypt = 62µsec (using DES)

Ccrypt = Cdecrypt = 48µsec (using Blowfish)

Ccrypt = Cdecrypt = 19µsec (using OTP)

and the fixed overhead associated with each system call invocation is:

Cint + Cgret + Ctstat = 11µsec+ 4µsec+ 0µsec = 15µsec

and we have that:

Ctot = 15µsec+ 2 · 62µsec = 139µsec (using DES)

Ctot = 15µsec+ 2 · 48µsec = 111µsec (using Blowfish)

Ctot = 15µsec+ 2 · 19µsec = 53µsec (using OTP)

Fig. 7.7 shows the overhead in the all the previous scenarios.

149

CHAPTER 7. CODE OBFUSCATION IN A VIRTUAL ENVIRONMENT

150

Chapter 8
Trusted Overlays of Virtual Communities

This chapter introduces Virtual Interacting Network CommunIty (Vinci), a soft-
ware architecture that exploits virtualization to share in a secure way an information
and communication technology (ICT) infrastructure among a set of users with dis-
tinct security levels and reliability requirements. To this purpose, Vinci decomposes
users into communities, each consisting of a set of users, their applications, a set of
services and of shared resources. Users with distinct privileges and applications with
distinct trust levels belong to distinct communities. Each community is supported
by a virtual network, i.e. a structured and highly parallel overlay that interconnects
VMs built by instantiating one of a predefined set of VM templates. Some VMs
run user applications, some protect shared resources and some others control traf-
fic among communities to filter out malware or distributed attacks. Further VMs
manage the infrastructure resources and configure the VMs at start-up. The adop-
tion of alternative VM templates enables Vinci to minimize the complexity of each
VM and increases the robustness of both the VMs and of the overall infrastructure.
Moreover, the security policy that a VM applies depends upon the community a
user belongs to. As an example, discretionary access control policies may protect
files shared within a community, whereas mandatory policies [171] may rule access
to files shared among communities.

8.1 Introduction

While the most well-known benefit of virtualization is the cost saving achieved by
server consolidation [238], the previous chapters have discussed a further noticeable
advantage, namely an increase of system robustness. This is due to the low cost
of including into a virtual architecture some components that check and control
the other ones in a transparent way. As an example, an overlay can include VMs
that run the applications and distinct VMs that monitor the VMs running the
applications in a completely unobtrusive way, such as the Assurance VMs in VIMS.

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

A further, distinct, advantage of virtualization is that an overlay including a large
number of VMs can increase the robustness of each VM, and of the overall system,
by minimizing the software each VM runs. This implies that the number of virtual
nodes, i.e. of VMs, may be rather large with respect to the number of physical nodes.
In this way, we can optimize error confinement at the expense of the virtualization
overhead. However, the latter overhead may be strongly reduced provided that
proper hardware support is available, as it is often the case in the last generation
processors. These considerations have led to the definition of Virtual Interacting
Network CommunIty (Vinci), a software architecture that aims to exploit at best
virtualization technologies to share in a secure way an ICT infrastructure. To this
purpose, Vinci adopts a two-tier approach that introduces several overlays and each
overlay is highly parallel because it includes a large number of VMs. To increase the
robustness of an overlay, Vinci minimizes the functionalities of each VM by defining
several VM templates. As an example, Vinci instantiates Application VMs to run
user applications, according to the applications trust level and to the user privileges,
i.e. user security levels, so that each Application VM only runs the smallest number
of software packages and libraries to support the considered applications. Other VM
templates are introduced to control resources shared among Application VMs of the
same overlay or of distinct ones, or information flowing among overlays.

The number of overlays that are mapped onto the infrastructure depends upon
user communities, because a distinct overlay, or virtual community network (VCN),
is introduced for each community. A community consists of a set of users that
execute applications and of services that these applications exploit. The users and
applications in a community can be handled in a uniform way because they have
homogeneous security and reliability requirements. Communities can also cooperate
and exchange information. Proper consistency and security checks are applied within
a community, while more severe checks are enforced to cross the community border.
When defining a community, an administrator pairs it with a global level, which
defines the set of users that can join the community, the applications they can run
and the resources they can access. In this way, the global level is the same for all
the VMs in a community and they can be homogeneously managed because they
have similar requirements. Hence, the notion of community simplifies the overall
management of the VMs, because VMs of the same overlay require the same global
level and the data they exchange can be protected through the same mechanisms.

Example. An example of an infrastructure where Vinci can be applied is the one
of a hospital that is shared, at least, among the doctor community, the nurse commu-
nity and the administrative community. Since each of these communities manages
its private information but also shares some data with the other ones, it should be
associated with its reliability requirements, its security policy and with controls on
information that may be shared with the other ones. As an example, members of the
doctor community can update information about prescriptions whereas those in the

152

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

nurse community can read but not update the same information. Both the nurse
community and the doctor community share some data with the administrative
community, which has to bill the patient insurances. In the most general case, each
user belongs to several communities according to the applications she needs to run
and the data she wants to access. Consider a doctor that is the head of the hospital:
as a doctor she belongs to the doctor community but, because of her administra-
tive duties, she belongs to the administrative community as well. Furthermore, the
community the doctor joins to access critical health information differs from that
she joins when surfing the Internet.

8.2 Virtual Interacting Network Community Ar-

chitecture

In the general case, the infrastructure architecture is a private network that
spans several locations, it includes a rather large number of physical nodes and it
is centrally managed by a set of administrators. We also assume that most of the
nodes of the infrastructure are personal computers that can only be accessed by one
person at a time and that the infrastructure includes a set of servers to store data
shared among communities and execute server applications. Vinci requires that each
node runs a VMM, which guarantees both the confinement among the VMs and a
fair access to the node’s resources.

As said before, one of the main advantages of virtualization is the ability of choos-
ing the appropriate combination of OS and applications for each VM. To exploit at
best this feature, Vinci defines a set of highly specialized and simple VM templates
that are dynamically instantiated and connected into overlays, i.e. virtual commu-
nity networks (VCNs). A Vinci VCN includes both VMs that run applications and
VMs that support and monitor the previous ones. While a VCN strongly resembles
a virtual private network (VPN), an important difference lies in the granularity of
the computation because when defining a VCN we are interested in minimizing the
complexity of the services that each VM implements.

In Vinci, each VCN is built by connecting VMs that are instances of the following
templates:

1. Application VM (APP-VM): it runs a set of applications on behalf of a single
user;

2. Storage VM (STO-VM): it exports a shared storage. It is further specialized
in:

� Community VM (COM-VM): it manages the private resources of a com-
munity by enforcing mandatory and/or discretionary access control (MAC/-
DAC) policies;

153

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

� File System VM (FS-VM): it belongs to several VCNs to protect files
shared among the corresponding communities. It can implement MAC
and Multi-Level Security policies and a tainting mechanism to prevent
illegal information flows across communities.

3. Communication and Control VM (CC-VM): it implements and monitors in-
formation flows among communities, i.e. flows among CC-VMs of distinct
communities, or private flows among VMs of the same community;

4. Assurance VM (A-VM): it checks that APP-VMs only run authorized software
and attests the software of a VM.

Moreover, Vinci introduces Infrastructure VMs (INF-VMs) that do not belong to
any VCN and extend the VMMs with new functionalities to manage the overall
infrastructure. As shown in Fig. 8.1, VMs that are instances of the same tem-
plate have homogeneous requirements and system configurations: thus, they are
easy-to-deploy virtual appliances created on demand from a generic baseline image.
Moreover, when a VM is instantiated, its run-time environment is highly customized
according to the user and the community of interest through a set of parameters
that include, among others, the amount of memory, the running kernel modules,
and the OS and applications versions.

In the following, we describe the current implementation of Vinci that exploits
Xen [26] to create the VMs and connect them into VCNs. NFSv3 and Security-
Enhanced Linux (SELinux) [159, 158] have been modified to apply security policies
based upon the security levels of users or the global levels of communities. Finally,
interconnections among VMs are handled through iptables [167] and OpenVPN
[173].

8.2.1 File Sharing

The application model of interest consists of a set of application processes exe-
cuted by several users, where each process P can access some files in one or more
shared file systems, denoted as FS1(P), . . . , FSn(P). We assume that T (P), the
trust level coupled with P , is known and that it also holds for all the processes
spawned by P .

To execute the application processes and export the file systems, the application
model introduces a cluster of VMs. Any VM that exports a shared storage belongs
to the class of Storage VMs (STO-VMs). STO-VMs implement a highly secure
storage through a file sharing server (FSS) module configured according to the
security policy defined for the corresponding file system. Each APP-VM runs a file
sharing client (FSC) module that acts as a proxy for the application processes and
interacts with the proper FSS module, so that application processes can access any
files unaware of the type and the location of the file system.

154

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

Figure 8.1: Virtual Machine Templates

The mapping of applications and file systems onto the physical architecture is
implemented in two steps:

1. the first step maps the application processes onto APP-VMs and each shared
file system onto a distinct STO-VM;

2. the second step maps all the VMs (APP-VMs and STO-VMs) onto the physical
machines.

The goal of the first mapping is to minimize the sharing among the applica-
tion processes. The association of application processes and APP-VMs is static
because an application process cannot migrate from an APP-VM to another one,
since processes executed by users with distinct security requirements, i.e. with dis-
tinct global levels, should not be mapped onto the same APP-VM. On the other
hand, the mapping in the second step is dynamic and an INF-VM can migrate at
run-time an APP-VM or an STO-VM to another physical node (see Fig. 8.2). The
goal of this step is to balance the computational load among the machines and the
communication load among the components the interconnection structure.

To show how an application can access a file, consider an application process P
on APP-VM(P), which locally mounts any shared file system FSi(P) exported by

155

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

Figure 8.2: Abstract Application Model

STO-VMi(P). While the local file system of APP-VM(P) handles any operation on
the private files of P , any request of P to access a file in FSi(P) is trapped and
transferred to the FSC module of APP-VM(P) that transmits it to the FSS module
on STO-VMi(P). This module checks the request and serves it only if it satisfies the
security policy of FSi(P), and then returns the result to FSC. P is unaware that it
is accessing a file on a distinct VM.

If we consider file sharing as a specific case of resource sharing, most of the
previous concepts applies to the more general context too.

8.2.1.1 Threat Model

The threat model refers to the cloud model of Infrastructure-as-a-Service [240]
and it is focused on attacks implemented by application processes against processes
of other overlays. The application process may act on behalf of a malicious user or
of an insider to implement attacks with the goal of accessing some shared resources,
such as files in the considered model. The attacks may be implemented either by a
malicious application or by malware code injected into an application by a previous
attack. The threat model can also cover attacks against a user application of the
same community because an overlay may include VMs to detect these attacks by

156

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

monitoring the behavior of other VMs and the data they exchange. The number
of these VMs and the complexity of their checks depend upon the trust level of
the users and of the applications they run. A further assumption underlying the
threat model is that the VMMs and the A-VMs belong to the Trusted Computing
Base (TCB). The number of VMs to be trusted can be minimized by applying the
attestation strategies discussed in Chap. 6. This threat model describes cases where
a private or a community cloud [170] is shared among several communities that trust
the cloud provider but do not trust each other. However, since the cloud provider is
trusted, malicious users cannot implement physical attacks against the infrastructure
to sniff or alter the information flowing among the physical nodes. On the other
hand, virtual connections among the VMs of an overlay can be attacked. To prevent
these attacks, the IP address of each VM is statically assigned and known so that
the consistency of communications among the VMs may be preserved by preventing
a VM to spoof an address.

As an example, this threat model describes in a realistic way a trusted Intranet
executing a set of untrusted applications, where each application can implement at-
tacks to export some information that it illegally accesses. The Intranet connections
are trusted because we can assume that a physical attack against the infrastructure
to sniff or alter the the information flowing among the physical nodes is rather
complex.

8.2.1.2 Security Policy: Implementation

To implement in a transparent way the security policy that controls the file shar-
ing, each APP-VM executes a FSC module that remotely accesses a FSS module
on an STO-VM. In turn, the FSS module delegates the security policy description
and enforcement to a MAC-based Security (MAC-S) module, which guarantees the
fulfillment of critical security requirements, such as the integrity and the confiden-
tiality of the shared storage. The adoption of the MAC-S module enables Vinci to
support a large set of MAC or DAC class policies on the shared storage and reduces
the impact of successful attacks. As an example, MAC allows Vinci to reduce the
privileges associated to the superuser on the APP-VMs and to minimize the impact
on the shared storage resulting from flawed or malicious application process on an
APP-VM.

Every file request from FSC to FSS includes the IP address of the APP-VM
that produces the original request. The MAC-S module uses the address to protect
the shared storage through a default-deny approach where an application can only
access those files for which the current policy grants an authorization. To associate a
protection domain with each APP-VM, the MAC-S module identifies the APP-VM
through the source IP address in the request and labels the APP-VM with a security
context according to the set of privileges associated with the trust level coupled with
the IP address. Therefore, if the security policy is parametric with respect to the
trust level of the APP-VM, the user that executes an application process can inherit

157

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

the protection domain of the APP-VM that runs the process. In this way, all the
users of an APP-VM can access the same files with the same privileges, whereas
users on APP-VMs with distinct trust levels can access distinct sets of files. Hence,
the granularity level of the overall security policy can be tuned by updating the
number of APP-VMs. A more detailed model of the implementation of an STO-VM
will be described in the following.

8.2.1.3 Security Policy: Assurance

Vinci can integrate PsycoTrace components to detect attacks against the VMs.
This requires that each node runs an A-VM that analyzes the memory of VMs onto
the same node through PsycoTrace run-time tools to discover attacks against the
kernel or the processes of these VMs. Furthermore, both an APP-VM and an STO-
VM may run some IDS agents to detect intrusions against the local OS or some
application processes. All the agents on the VMs on the same physical node are
connected to the A-VM through a dedicated virtual control network that delivers
the agent alerts.

PsycoTrace tools are even more powerful when applied to an STO-VM because
of the low degrees of freedom of the configuration of this VM that only runs a fixed
set of processes, which use a fixed set of storage resources and so on. Because of
these constraints, the A-VM can apply to any STO-VM the most severe strategies
to describe the process self of its applications.

8.2.2 Application Virtual Machines

Each APP-VM runs applications of a single user and is coupled with the global
level inherited from the corresponding community. In general, the resources and
services that an APP-VM can access depend upon the user security level and the
global level of the community that the user of the VM belongs to. Since a user
can join distinct communities through distinct APP-VMs, she can access distinct
resources/services according to the global level of each community. In some cases,
there may exist some resources that a user can access regardless of the community
she currently belongs to. As an example, each user can always access its private files.
While the global level of a community constrains the users that can join the com-
munity and the applications they can run, an administrator can also dictate which
resources a community can access and/or share with other communities. Thus, when
a user wishes to join a community, and she has the rights to do so, the community
statically defines the set of applications that the APP-VM can run and the resources
it can access.

In Vinci, during the login phase, a user chooses the community she wants to
join. Then, the INF-VM of the local node configures and starts up a corresponding
APP-VM to run those applications enabled by the community policy and it connects

158

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

the APP-VM to the proper VCN. A user can run several APP-VMs on the same
node concurrently, each belonging to the same community or to distinct ones.

In the current prototype, each APP-VM is associated with a minimal partition
on one of the disks in the physical node, which stores the OS kernel loaded during
the boot-up of the APP-VM. Other files may be stored either locally, in a COM-
VM in the same VCN, or in a FS-VM shared with other VCNs. To simplify the
implementation of security policies, at boot time an IP address is statically assigned
to an APP-VM and both the VM global level and the user security level are coupled
with this address. Since the IP address uniquely determines the resources the VM
and the user can access, CC-VMs implement proper checks to detect any spoofed
traffic in a VCN.

8.2.3 Storage Virtual Machines

STO-VMs are generic VMs that export a shared storage and they are imple-
mented by COM-VMs and FS-VMs. A Vinci VCN always includes at least one
COM-VM to manage and control the resources shared within the corresponding
community, i.e. among its APP-VMs only. A COM-VM stores the community pri-
vate files, which include configuration files, system binaries, shared libraries and user
home directories. In the current prototype, COM-VMs protect the files that they
manage through MAC and DAC security policies where the subject of the policy
is the user security level, which is deduced from the IP address of the requesting
APP-VM. On the other hand, a FS-VM that belongs to several VCNs supports
file sharing across communities. The security policies that this VM enforces extend
those of a COM-VM by considering both the security level and the community of a
user.

In the following, we describe the extensions to common components of FS-VMs
and COM-VMs. Then, we discuss the extensions applied to the FS-VM kernel only
to insert a Tainting module in-between the NFS server and the Virtual File System.

NFSv3 Overview. The NFS service implements a distributed file-system based
upon a client-server architecture, by exporting to the clients one or more directories
of the shared file system. According to the general model previously described, each
APP-VM executes one and only one NFSv3 client, i.e. the FSC module, and every
STO-VM executes both an NFSv3 server, i.e. the FSS module, and an SELinux
module, i.e. the MAC-S module.

Currently, NFS servers exploit the information in each RPC request generated
by the client to authorize or deny access to the shared files, according to the server
OS DAC class policies. Since, according to our threat model, client VMs represent
a source of untrusted information, NFS has to be modified because it essentially
trusts the client machines, and it enables an attacker to maliciously impersonate a
legitimate user on an APP-VM with little effort [172].

159

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

SELinux Overview. SELinux implements MAC policies through a combination
of type enforcement (TE), role-based access control (RBAC) and Identity-based
Access Control (IBAC). The TE model assigns types to every OS object, such as
files, processes, and network connections. In this way, the security policy can define
the rules governing the interactions among OS objects, by implementing a fine-
grained access control that satisfies the least privilege principle [206]. SELinux
is based upon the Linux Security Modules (LSM) [220, 255], a patch for the Linux
kernel that inserts both security fields into kernel data structures and calls to specific
hooks into security-critical kernel operations to manage the security fields and to
implement access control.

When the SELinux policy is configured, an administrator can label every kernel
component with a security context. Processes, identified by a domain, are the
subjects of the SELinux policy. At run-time, the security policy can associate the
subject with its privileges to grant or deny access to system objects according to the
requested operation. The policy description specifies both the programs a process
can execute and the legal domain transitions.

The idea of integrating NFS with SELinux stems from the need to centrally
control client accesses to the shared files and to assign distinct privileges to each
APP-VM, leveraging the SELinux flexibility to describe MAC policies.

Modifications to NFS and SELinux. We have modified the Linux kernel to
enable an STO-VM to exploit a simpler resource sharing management and a fine-
grained access control mechanism. A compile-time option enables the administrator
to configure the kernel of the STO-VM to integrate SELinux and NFS. On the other
hand, no modifications are required on the APP-VMs.

Through the modified SELinux labeling and access rules, STO-VM administra-
tors can manage, from a single central point, the indirect accesses of an NFS client
to the shared file systems. As an example, an administrator can couple each NFS
client with a security context and, if proper privileges are assigned to this context,
Vinci can satisfy the least privilege principle without sacrificing transparency.

Moreover, since the A-VM can identify the IP address of each APP-VM in a
reliable way, STO-VM considers the APP-VM that generated the file request as the
real subject of the current security policy.

NFS Client Subject. SELinux labeling and access rules have been extended
to introduce a new subject corresponding to the NFS client and to define all the
operations it can invoke. In turns, this requires the extension of the SELinux network
object node [163], by adding into the corresponding object class the operations
executed by the NFS server on behalf of NFS clients, such as read, write and create
files or directories. In general, nodes are used to control network traffic, i.e. to
grant or deny a process the permissions to exchange data with a specific IP address
through the network interfaces, and are associated with an IP address and a net-

160

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

mask through the nodecon SELinux syntax statement.

These extensions allow Vinci to define a distinct protection domain for each NFS
client and to dynamically associate the NFS server process with the security context
of the NFS client requesting the operation.

NFS Request. To properly describe the extensions to the kernel modules, we
consider the flow of a request from a NFS client to the NFS server and show how the
data structures have been extended and where the modified functions are invoked.

SELinux stores run-time security information about the kernel objects in some
data structures, such as tasks, i-nodes and files. The main structure that stores
security information about the running processes is task security struct.

Figure 8.3: File Request

NfsSid is a new field of task security struct that we have added to represent
the security identifier bound to the node type. This field is coupled with the IP
address and the net-mask of the NFS client that is trying to access the shared file.
Every time the NFS server processes a request, the RPC service invokes a new
SELinux function (called SidLookup in Fig. 8.3) that maps the NFS server SID
(SSID) and the NFS client IP address into a SID according to the SELinux Security
Policy Database, i.e. the database that stores the current SELinux policy. If the
current security policy maps the requesting IP address with a node type, SidLookup
returns the corresponding SID and the related security context, otherwise it returns
a default unprivileged SID. Before the NFS server invokes the system call on the file
system, the NFS client SID is copied into the NfsSid field of task security struct

of the NFS daemon process servicing the request. Later, when the NFS server
invokes the system call to access the shared file system on behalf of NFS clients, the
kernel triggers an LSM hook to delegate security controls to SELinux.

161

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

LSM Hook Modifications. The appropriate LSM hooks have been modified to
enforce access controls on the operations a subject can invoke. The controls are
applied when the NFS server:

� uses a capability;

� updates an i-node;

� updates a file;

� creates or removes a file, a directory, a link to a file or to a directory;

� renames a file or a directory;

� operates on the file system (super-block).

We have modified all these hooks so that two cases are considered. If the NFS
server task is coupled with the SID relative to the IP address of the requesting
NFS client, then the SELinux Security Server applies the current security policy by
considering the NfsSid as the policy subject. If, instead, an unprivileged default
SID relative to the node type is assigned to the task security struct, then the
subject of the SELinux controls is the NFS server daemon process. After the kernel
has handled the system call, the NfsSid field is reset to a default value corresponding
to an unprivileged domain. In both cases, the Security Server authorizes or denies
file access according to the current security policy. In this way, NFS clients own
some privileges on the remote file system exported by the STO-VM just for the
time interval to serve client requests on a shared file.

8.2.3.1 Tainting Module

FS-VMs exploit the capabilities of a Tainting module to prevent the flow of
information among predefined communities. This module can:

(i) confine information flows among communities;

(ii) increase the robustness with respect to contamination attacks;

(iii) log the actual flow of information among communities.

To this end, the Tainting module associates each user of a community with a
bit mask, i.e. the community mask, which, by default, has exactly one bit set
to 1 to represent the corresponding community. Each file is coupled with a mask
that represents the communities that either have interacted with the file or have
exchanged some information through the file. Anytime a user attempts an operation
on a file, the module computes an OR of the masks of the file and of the user
community. If the result shows an illegal information flow among communities,
then the operation is forbidden, otherwise the result becomes the new mask of the

162

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

file, in the case of a write operation, or of the community, in the case of a read
operation. In general, files and communities may have more than one bit set to 1,
which shows the interaction among communities. In any case, the Tainting module
logs into a file the operation type, the name of the community and of the file and the
original and the new masks. To this purpose, we have modified the nfsd permission

function, which verifies file requests, and nfsd_vfs_read and nfsd_vfs_write to
check, respectively, read and write requests.

Periodically, the Tainting module parses the log file and updates in an incre-
mental way a dependency graph [136] that represents the information flows among
communities and files. Each node in the graph represents either a file or a com-
munity and it is coupled with a unique identifier of the community or of the file
as well as with the corresponding mask. A node that represents a file is created
the first time the file is involved in an operation. An arc represents an operation
and is associated with the information about the requested operation. To identify
information flows, a read operation is represented by an arc from a node that rep-
resents a file to one that represents a community, while a write operation by an arc
from a community to a file. As shown in Fig. 8.4, an administrator can query the
module to analyze the dependency graph to discover those communities that have
exchanged some information, to trace the source of a contamination and track all
the files/communities that may have been contaminated by a community/file.

Figure 8.4: File System Virtual Machine Policy Enforcement and Query Generation

8.2.4 Communication and Control Virtual Machines

A CC-VM protects and monitors information flows by implementing and man-
aging a local virtual switch that supports communications among VMs. CC-VMs
can be further specialized into:

163

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

1. VPN VMs, which create an authenticated and protected communication chan-
nel among VMs of the same community mapped onto distinct physical nodes;

2. Firewall VMs, which filter information flows so that only authorized APP-
VMs can access the physical or virtual communication components of the
infrastructure and interact with other communities;

3. IDS VMs, which monitor information flowing among VMs in the same com-
munity or in distinct ones.

The introduction of a Firewall VM enables the infrastructure administrators to
define which communities can interact and, hence, how VCNs can be connected into
larger overlays. As an example, a community can be isolated or communities with
a lower global level may not be allowed to communicate with those with higher
global levels. Firewall VMs can decide whether to forward a packet, according to
the source and destination communities. Furthermore, Firewall VMs support the
authentication of shared resource requests through the IP address of the originating
VM because they control that APP-VMs do not spoof traffic on the virtual switches
interconnecting the VMs. Finally, IDS VMs monitor information flows across the
same or distinct VCNs to discover attacks. An IDS VM can also retrieve and
correlate partial information from other IDS VMs in the same VCN or in distinct
ones to minimize the time to detect a distributed attack.

8.2.5 Assurance Virtual Machines

As described in Sect. 6.1.2, A-VMs can fully exploit PsycoTrace tools to monitor
critical APP-VMs and the VMs of a VCN that manage critical components, to attest
their integrity and to authenticate their configuration as well.

8.2.6 Infrastructure Virtual Machines

INF-VMs extend the VMMs to configure and manage the VCNs. In particu-
lar, distinct INF-VMs cooperate to monitor the overall infrastructure and update
the topology of the VCNs and their mapping onto the physical architecture. The
introduction of these VMs minimizes the size of the VMM by simplifying the imple-
mentation of some functionalities too complex to be developed at the VMM level.
An INF-VM runs a minimal kernel, it does not run any Internet service and the
functionalities it implements cannot be directly accessed by any user but the ad-
ministrators.

As shown in Fig. 8.5, all the INF-VMs, one per node, belong to a Management
Community that does not interact with any other community in a direct way since
any interaction results in an update of the management of the infrastructure. During
the creation of the Management Community, one INF-VM is designated as the

164

8.2. VIRTUAL INTERACTING NETWORK COMMUNITY ARCHITECTURE

Figure 8.5: Example of Communities and Virtual Community Networks

Master INF-VM that contacts the other INF-VMs to set up proper communication
channels to support cooperation in the Management Community.

To properly configure the Vinci run-time environment, INF-VMs can:

� create/kill, freeze/resume any VM in their node or request this operation to
another INF-VM;

� configure a VM through specific parameters such as network configuration,
amount of memory, the number of VCPUs;

� retrieve information about the current mapping of VMs and the resulting
resource usage;

165

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

Figure 8.6: A Virtual Interacting Network Community Node

� update the mapping by migrating VMs, which requires an interaction with
some CC-VMs to manage the resulting communications;

� setup, compile and deliver to each File System and COM-VM the general
security policy it has to enforce.

Among the challenges that the Management Community has to face, one is
concerned with data management issues, to enable a fast access of a community to
its data [83], or with VMs mapping. Alternative mapping strategies may evenly
distribute APP-VMs running server applications on the available nodes, or map
COM-VMs onto physical nodes directly connected to those that run the APP-VMs
of the corresponding community. The Management Community may migrate VMs
among physical nodes to handle errors and faults, to reduce the communication
latency or to balance the computational load.

INF-VMs also authenticate users through a centralized authentication protocol,
so that users can log on APP-VMs with the same combination of user-name and
password anywhere in the infrastructure. In this way, the association among users
and privileges is managed in a centralized way. The set of users that share an
infrastructure is globally known so that Vinci can uniquely identify users through
their user-name or their associated user identifier (UID). The UID is coupled with
the privileges of the user, i.e. with its security level. Whenever a user has been
authenticated and has chosen the community she wants to join, the INF-VM starts
up an APP-VM, which runs only those applications that satisfy the community
policy and with the proper global level. After the login and boot-up phases, the
local INF-VM contacts the proper CC-VMs to update the topology of the VCN to

166

8.3. PERFORMANCE RESULTS

insert this APP-VM into a VCN and to add communication rules to handle the
corresponding information flows. Finally, the security policies of COM-VMs and
FS-VMs may be updated. Figure 8.6 shows the various interactions among the
VMs running on a physical node. Currently, INF-VMs are assigned to Xen Domain
0 VMs, i.e. they are privileged VMs that can access the control interface to manage
a physical node and the VMs that the node runs.

Figure 8.7: IOzone NFS Read Performance without Policy Enforcement

8.3 Performance Results

This section shows a preliminary performance evaluation of the current Vinci
prototype. The tests were performed on several machines equipped with Intel Core
2 Duo E6550 2.33GHz CPUs. A first experiment evaluated in an integrated way
the performance of file sharing through FS-VMs and CC-VMs. An APP-VM on a
node ran the IOzone [120] NFS test while a FS-VM, on a distinct physical node,
stored the requested files. Requests were transmitted along a communication channel
implemented by two Firewall VMs and the physical nodes were connected through
100MB Ethernet. Figures 8.7 and 8.8 compare the throughput of the write test
against the one of the insecure version that does not apply the security checks.
The overhead due to the enforcement of the security policies, in the average case,
is lower than 9%. Instead, the tests on the enforcement of security policies by a
COM-VM resulted in a reduction of the final throughput lower than 5%. The same

167

CHAPTER 8. TRUSTED OVERLAYS OF VIRTUAL COMMUNITIES

tests executed on an APP-VM connected to a remote FS-VM through two VPN
VMs resulted in an overhead that, in the worst case, is lower than 13%.

Figure 8.8: IOzone NFS Read Performance with Policy Enforcement

168

Part IV

Final Remarks

Conclusions

In this thesis we have discussed PsycoTrace, a virtualization-based framework to
protect the integrity of a process self by detecting and preventing most attacks that
modify the intended behavior of the process. The key feature of the framework is the
integration of static analysis, which returns a specification of the process self that
corresponds to the expected behavior of the process, and run-time monitoring, which
compares the actual behavior of the process against the specifications to discover
any deviation. PsycoTrace supports alternative specifications of the self where the
most severe strategy consists of a context-free grammar that describes sequences of
system calls issued by the process and a set of assertions to be evaluated when a
system call is executed. The grammar and the assertions are the output of the static
analysis that exploits the notion of control-flow graph and introduces the concept
of system block, i.e. the sequence of instructions in-between two consecutive system
calls. At run-time, each time the process invokes a system call, PsycoTrace tools
apply introspection to access the state of the monitored process and verify that the
system call trace is coherent with the grammar and that the assertion coupled with
the system call is verified. If a system call trace is incompatible with the grammar,
or an assertion is false, PsycoTrace assumes that the process has been successfully
attacked.

Virtualization technology enables us to implement the proposed framework with-
out introducing specialized hardware/firmware units. Furthermore, it helps us to
build a robust monitoring system by running two distinct virtual machines: the first
one executes the monitored system while the second one exploits virtual machine
introspection to check the process self. Virtual machine introspection also enables
the protection of kernel integrity by monitoring both its code and critical data struc-
tures from illegal updates, thus assuring that the trusted computing base has not
been compromised. A fundamental advantage of PsycoTrace is transparency be-
cause its adoption does not require to modify the programs and the components to
be protected.

One of the problems posed by introspection is the semantic gap between the
raw access to data and the abstraction level to define invariants to detect attacks

CONCLUSIONS

at the OS-level. To deal with the semantic-gap problem, we have extended the
framework with the introduction of a context-agent, i.e. a program fragment that
is injected into the monitored virtual machine in an almost total transparent way
to complement the low-level view that the introspection virtual machine has of the
monitored virtual machine. The context-agent implements short-term living services
that run inside the monitored virtual machine to: (i) return fresh information on the
running state of the virtual machine; (ii) cooperate with the introspection virtual
machine to detect inconsistencies in the kernel.

We have also discussed the applications of the framework to three fields, namely
(i) remote attestation of semantic integrity; (ii) code obfuscation to protect the
virtual machines from physical attacks; (iii) highly parallel and trusted overlays.
The application of the framework to remotely attest the semantic-integrity of a
system can overcome the limitations of the Trusted Computing framework. Code
obfuscation is implemented by splitting the program in a control-part, located in
a distinct virtual machine, and a further program composed of a set of encrypted
system blocks. Finally, the adoption of PsycoTrace to define highly parallel overlays
of virtual machines has led us to the definition of Vinci, which aims to simplify the
management of an ICT infrastructure.

Future Works

We can partition the work to deepen and evaluate the ideas in this thesis along
two main aspects. The first one concerns PsycoTrace framework itself, the other
one the applications of PsycoTrace that we have discussed. As far as concerns the
first aspect, we believe that a more formal description of the static analysis and of
the strategies to describe the process self may result in a more accurate description
of the expected behavior and in a lower number of false negatives, due to the lower
number of undetected attacks, e.g. mimicry attacks. A further interesting devel-
opment is the adoption of an asynchronous cooperation model among the virtual
machines in the run-time support. Another important extension concerns the sev-
eral security problems that PsycoTrace does not cover, such as time of check time of
use errors [33]. Moreover, there are several non-standard control-flows that a static
analysis cannot handle very easily. As an example, a function pointer could be used
to indirectly invoke a system call. To take into account function pointers, the static
analysis should predict all the possible targets of every indirect call through a func-
tion pointer. For the moment being, we neglect function pointers, so our approach
may miss some system call invocation and we neglect linked libraries as well. In this
case, if the source code of the library is available, we can apply the static analysis,
otherwise we can associate each function of the library with a context-free grammar
only by reverse engineering the library. The handling of dynamic linking is even
more complex, because a process can load at run-time any library. This requires
to dynamically update both CFG(P) and the IT (P), each time a new library is

172

CONCLUSIONS

loaded. An alternative solution inserts null calls into the program code to signal
the I-VM that a library function has been invoked to stop/resume the checks on the
Mon-VM. Further non-standard control-flows are direct invocations of system calls,
e.g. using inlined assembly instructions, that should also be located and correctly
decoded. Finally, another non-standard control-flow mechanism is the OS signal
facility. Since a process may receive signals in any order and the handler of a sig-
nal may invoke several system calls, a static analysis cannot extract their order in
CFG(P).

With respect to the applications of PsycoTrace discussed in this thesis, first of all
some experiences with a real-world context would be very useful. From this point
of view, a critical problem to be deepened is the reduction of the virtualization
overhead by properly exploiting the extension of physical processors to efficiently
support virtualization technology[152]. A future development of VIMS considers the
exploitation of an USB dongle as a secure root-of-trust of the VMM and the A-VM
to increase the portability of this architecture to those contexts where the adoption
of a TPM chip gives rise to privacy concerns. An important improvement of the
obfuscation strategy is related to virtual memory. In fact, at run-time, some of the
blocks may not have been loaded into memory, because of the paging mechanism.
This problem can be solved by introducing a trigger mechanism [242] so that the
I-VM starts decrypting the system block as soon as it is going to be executed in
memory. Moreover, the solutions previously discussed as far as concerns linked
libraries may be applied in this case as well. A counterpart of the advantages
of virtual, highly parallel and secure overlays is the overhead due to the context
switching that the VMM applies to multiplex the physical resources. A multi-core
architecture [97] can strongly reduce this overhead because of the native support for
multiplexing. Moreover, this architecture can run several VMs in consolidation and
assign a dedicated core to some VMs. This guarantees that VMs that implement
critical tasks, such as management and protection of other VMs, are never delayed.

173

CONCLUSIONS

174

List of Acronyms

APP-VM Application Virtual Machine

A-VM Assurance Virtual Machine

A-VMove The A-VM running on Nove

A-VMreq The A-VM that Checks Mon-VMreq

CC-VM Communication and Control Virtual Machine

CFGraph(P) The Control-Flow Graph of P

CFG(P) The Context-Free Grammar of P

COM-VM Community Virtual Machine

FSC File Sharing Client

FSS File Sharing Server

FS-VM File System Virtual Machine

GGA Grammar Generating Algorithm

INF-VM Infrastructure Virtual Machine

IT (P) Invariant Table for P

I-VM Introspection Virtual Machine

L(P) The Language Generated by CFG(P)

MAC-S Mandatory Access Control-based Security Module

Mon-VM Monitored Virtual Machine

Mon-VMreq The Mon-VM running on Nreq

LIST OF ACRONYMS

ove A Generic Overlay

Nove A Node of the Overlay ove

Nreq A Node that Requests Access to the Overlay ove

P The Process to be Protected

Self(P) The Process Self of P

SourceCode(P) The Source Code of the Program Executed by P

SB System Block

SBG System Block Graph

STO-VM Storage Virtual Machine

UB Unit Block

UBG Unit Block Graph

VCN Virtual Community Network

VIMS Virtual machine Integrity Measurement System

VINCI Virtual Interacting Network CommunIty

VM Virtual Machine

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

176

Appendix A
Meta-Compiler-Compiler Approach

Currently, GGA is implemented by a Java program that also generates the pro-
gram’s invariants by traversing AST (P). An alternative implementation that we
have developed builds CFG(P) by exploiting Bison to generate a parser for an ex-
tended version of the C language where system calls are tokens of the language. This
parser implements GGA and its semantic actions generate CFG(P). Moreover, this
solutions also exploits Bison to build a second parser that at run-time checks if the
trace of P is a a prefix of at least one string of L(P). In more detail, this meta-
compiler-compiler approach (see Fig. A.1) is implemented in three steps, where the
first step does not depend upon SourceCode(P) and each of the remaining steps
builds a distinct parser:

1. define an extended C grammar (ECG) in the Bison syntax where system calls
are added as new tokens. We also define the semantic actions coupled with
the rules of ECG that implement GGA to generate CFG(P);

2. apply Bison to ECG to produce the parser that generates CFG(P) when
applied to SourceCode(P). Semantic actions for CFG(P) return the assertion
that holds at each system call invocation;

3. apply Bison to CFG(P) to build the parser that checks if the current trace
of P is a prefix of a string in CFG(P). The semantic actions associated with
this parser include the evaluation of assertions.

In this solution, in step (1) a Flex-generated scanner recognizes system calls as
tokens of the language. To create CFG(P), the parsing of SourceCode(P) in step
(2) is decomposed into two further steps. In the first step, the semantic actions
of the generated parser build and export AST (P). In the second step, the parser
visits the AST (P) to build CFG(P) by applying GGA. CFG(P) is represented in
the Bison syntax so that in step (3) we can exploit Bison to generate the parser to
check the current trace of P . The implementation of the ECG, which also includes
the semantic actions to generate CFG(P), is about 1K lines of C++ code.

APPENDIX A. META-COMPILER-COMPILER APPROACH

Figure A.1: Meta-Compiler-Compiler Approach

178

Appendix B
Retrieving Data-Structures through the
Introspection Library

This appendix describes in details the algorithms that the I-VM implements to
retrieve and rebuilds some kernel data-structures in the Mon-VM memory.

Retrieving the Page Global Directory Address. The I-VM needs to retrieve
the Page Global Directory (PGD) address so that the Introspection Library can
convert virtual addresses into physical ones. We have adopted an approach where the
I-VM retrieves automatically the PCB of each process in the Mon-VM by rebuilding
and traversing the running processes list until it finds the init PCB and from this
PCB it retrieves the corresponding PGD.

To retrieve the PGD address of the init process, the I-VM traverses the Mon-
VM’s list of running processes, it finds the corresponding PCB, a struct task struct

in Linux, that stores the PID 1 and it retrieves the corresponding PGD. The PGD is
a field of mm (a struct mm struct), a field of the task struct. The I-VM executes
the following algorithm to locate the PGD value inside a PCB (see Fig. B.1):

1. retrieve the first element of the Mon-VM running processes list, pointed by
the kernel symbol init task;

2. invoke an introspection function to:

(a) cast to a task struct the buffer that stores the memory of the current
task;

(b) retrieve the address of the next process in the field: this is implemented
through next task(), a macro defined in linux/sched.h, which returns
the next task in the list.

3. invoke an introspection function that retrieves the PID value of the current
task. The process list is scanned till reaching the hijacked process;

APPENDIX B. RETRIEVING DATA-STRUCTURES THROUGH THE INTROSPECTION
LIBRARY

Figure B.1: Retrieving the Page Global Directory through the Introspection Library

4. retrieve the linear address of the mm field, which is a data structure that con-
tains, among the others, the PGD value, and translate it into a physical one;

5. retrieve the content of the address of the mm field;

6. cast the buffer to a struct mm struct *, and retrieve the value of the field
PGD in this structure.

Anytime the I-VM invokes the Introspection Library to rebuild a kernel data-
structure, the library casts the region of memory to the corresponding data-structure
declared in the Linux headers. To this end, the I-VM executes the following algo-
rithm:

1. the I-VM retrieves a page of the Mon-VM’s memory containing a kernel data
structures, such as modules and init task. This is implemented by invoking
an introspection function to read the physical pages of a Mon-VM 1;

2. an introspection function casts the memory to the correct data structures, such
as struct task struct * or struct module *. To implement the casting
correctly, the I-VM requires the header files of the Mon-VM’s Linux kernel
that include the declaration of the considered data structures;

1In the current prototype, the linear addresses of the kernel symbols are retrieved from the
corresponding Mon-VM’s System.map files: since these variables can be reached by some system
calls, their addresses can be found by scanning the region of memory that can be reached by such
system calls and looking for known signatures.

180

3. if a kernel data structure contains a pointer (such as the field mm of the struct
task struct *), an introspection function returns the value of the linear ad-
dress of this pointer and the I-VM converts it into a physical one. Then, it
retrieves the page that contains this address and casts the pointed structure
to the correct kernel data structure.

Table B.1 shows the code to retrieve the list of running processes in Mon-VM
OS that exploits the previous approach.

Retrieving the Context-Agent. The I-VM also retrieves the address of the
context-agent and its code from the Mon-VM’s memory to compute the hash of the
code to verify its integrity. To protect the integrity of the context-agent, the I-VM
has to retrieve the kernel pages storing the context-agent and compute their hash.
The I-VM applies the following algorithm to retrieve the code of the context-agent
from the Mon-VM’s memory:

1. get the linear address of the first module in the list of the loaded kernel mod-
ules; then cast the memory to a struct list head * structure, which is the
one pointed by the modules kernel symbol. Then, the I-VM retrieves the
module struct using the Linux macro list entry(). Since the first entry is
not a module entry, but simply the head of the list, it is handled differently
than the other ones. For this reason, the I-VM needs to invoke the Linux
macro next module() to retrieve the address of the first module;

2. from this moment on, the I-VM exploits an introspection function to retrieve
the linear address of the next module, which then it translates to the physical
one;

3. the memory storing the module struct is retrieved, and an introspection func-
tion is invoked to get and compare the name of the module in the list against
the one of the context-agent ;

� if the name of the module in the list is the same of the context-agent, the
I-VM retrieves from the corresponding module struct the address and
size of its code and finally I-VM retrieves the context-agent ’s code;

� otherwise, the I-VM retrieves both the address of the next kernel module
and that of the node in the list storing the next kernel module, so that
it can compare this address against the first one of the list. If the two
addresses differ, then the I-VM translates the linear address of the next
module, and retrieves the memory storing its information and so on until
it locates the injected kernel module’s name.

181

APPENDIX B. RETRIEVING DATA-STRUCTURES THROUGH THE INTROSPECTION
LIBRARY

1 i n t get_process_list (uint32_t vm)
2 {
3 s t r u c t task_struct *task ; // po in t e r to the cur rent p roce s s
4 uint32_t init_addr , next_addr ; // address o f the f i r s t and next p roce s s
5 char *symbol = ” i n i t t a s k ” ; // ke rne l name o f the f i r s t p roce s s
6 void *mem_mon_vm ; // po in t e r to the Mon−VM memory
7 i n t xc_handle = xc_interface_open () ; //open the VMM con t r o l i n t e r f a c e
8
9 // r e t r i e v e the ke rne l address o f the l i s t from System .map f i l e

10 init_addr = get_kernel_address (symbol) ;
11 [. . .]
12
13 // 1)PAUSE THE MON−VM
14 xc_vm_pause (xc_handle , vm) ;
15
16 // 2)GET THE FIRST PCB OF THE LIST
17 mem_mon_vm = get_mem_mon_vm (xc_handle , 0 , vm , (void *) init_addr ,
18 PROT_READ | PROT_WRITE , KERNEL_PGD) ;
19 [. . .]
20
21 whi l e (next_addr != init_addr) // enumerate a l l the p r o c e s s e s
22 {
23 // 3)CAST THE MEMORY TO THE PCB KERNEL DATA STRUCTURE
24 task = (s t r u c t task_struct *) mem_mon_vm ;
25
26 // 4)RETRIEVE THE ADDRESS OF THE NEXT PCB IN THE LIST
27 next_addr = (uint32_t) next_task (task) ;
28 [. . .]
29
30 // 5)RETRIEVE THE NEXT PCB
31 mem_mon_vm = get_mem_mon_vm (xc_handle , 0 , vm , (void *) next_addr ,
32 PROT_READ | PROT_WRITE , KERNEL_PGD) ;
33 // 6)APPLY CHECK ON THE CURRENT PROCESS
34 [. . .]
35 }
36 // 7)RESUME THE MON−VM
37 xc_vm_unpause (xc_handle , vm) ;
38 free (mem_mon_vm) ;
39 xc_interface_close (xc_handle) ;
40 re turn 0 ;
41 }

Table B.1: Retrieving the Process List of the Monitored Virtual Machine

182

Appendix C
Source Code of the Testbed Program

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <sys / types . h>
4 #inc lude <sys / s t a t . h>
5 #inc lude < f c n t l . h>
6 #inc lude <netdb . h>
7 #inc lude <un i s td . h>
8
9 #de f i n e BUFF 1024

10 #de f i n e SMALL BUFF 512
11
12 i n t n = 10 ;
13
14 void logfile ()
15 {
16 i n t fd = open (``log . txt ' ' , O_CREAT | O_WRONLY | O_APPEND , S_IRWXU) ;
17 n−−;
18 write (fd , ``log ' ' , 3) ;
19 i f (n>0) logfile () ;
20 e l s e (n=10) ;
21 close (fd) ;
22 }
23
24 i n t parse_str (char *buff)
25 {
26 char smallbuff [SMALL_BUFF] ;
27 i f (! strncmp (buff , ``copy ' ' , 4)) strcpy (smallbuff , buff) ; /* VULNERABILITY*/
28 i f (! strncmp (buff , ``file ' ' , 4)) logfile () ;
29 i f (! strncmp (buff , ``exit ' ' , 4)) r e turn 1 ;
30 re turn 0 ;
31 }
32
33 i n t main ()
34 {
35 i n t fd , sockfd , ret , yes=1;
36 socklen_t sin_size ;
37 s t r u c t sockaddr_in sin ;
38 s t r u c t hostent *h ;
39 char buffer [BUFF] ;
40 fd = socket (AF_INET , SOCK_STREAM , 0) ;
41 memset(&sin , 0 , s i z e o f (sin)) ;
42 h = gethostbyname (`` localhost ' ') ;

APPENDIX C. SOURCE CODE OF THE TESTBED PROGRAM

43 sin . sin_family = AF_INET ;
44 sin . sin_port = htons (5555) ;
45 sin . sin_addr . s_addr = INADDR_ANY ;
46 ret = setsockopt (fd , SOL_SOCKET , SO_REUSEADDR , &yes , s i z e o f (i n t)) ;
47 ret = bind (fd , (s t r u c t sockaddr *) &sin , s i z e o f (sin)) ;
48 ret = listen (fd , 5) ;
49 sin_size = s i z e o f (s t r u c t sockaddr_in) ;
50 sockfd = accept (fd , (s t r u c t sockaddr *)&sin , &sin_size) ;
51 dup2 (sockfd , STDIN_FILENO) ;
52 dup2 (sockfd , STDOUT_FILENO) ;
53 dup2 (sockfd , STDERR_FILENO) ;
54 whi l e (1)
55 {
56 memset (buffer , 0 , BUFF) ;
57 read (sockfd , buffer , BUFF) ;
58 i f (parse_str (buffer) == 1) break ;
59 write (sockfd , ``ok\n ' ' , 3) ;
60 }
61 close (sockfd) ;
62 }

184

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. A theory of secure control flow.
Lecture notes in computer science, 3785:111, 2005. 37

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow in-
tegrity. In CCS ’05: Proceedings of the 12th ACM conference on Computer and
communications security, pages 340–353, New York, NY, USA, 2005. ACM. 37

[3] Charles Reis Adam Barth, Collin Jackson and Google Chrome Team. The security
architecture of the Chromium browser. Technical report, Stanford University, 2008.
xviii

[4] Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49), November
1996. xvi

[5] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications. SIG-
PLAN Not., 37(1):4–16, 2002. xx

[6] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam Venkatesan. Proteus:
virtualization for diversified tamper-resistance. In DRM ’06: Proceedings of the
ACM workshop on Digital rights management, pages 47–58, New York, NY, USA,
2006. ACM. 52

[7] J.P. Anderson et al. Computer Security Technology Planning Study. Technical
report, ESD-TR-73-51, 1972. xvi

[8] Melvin J. Anderson, Micha Moffie, and Chris I. Dalton. Towards Trustworthy Virtu-
alisation Environments: Xen Library OS Security Service Infrastructure. Technical
Report HPL-2007-69, Hewlett-Packard Laboratories, April 2007. 54

[9] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap
architecture. In SP ’97: Proceedings of the 1997 IEEE Symposium on Security and
Privacy, page 65, Washington, DC, USA, 1997. IEEE Computer Society. 49

[10] Darren C. Atkinson and William G. Griswold. Implementation Techniques for Ef-
ficient Data-Flow Analysis of Large Programs. In ICSM ’01: Proceedings of the
IEEE International Conference on Software Maintenance (ICSM’01), pages 52–61,
Washington, DC, USA, 2001. IEEE Computer Society. 61

APPENDIX C. BIBLIOGRAPHY

[11] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM
Trans. Inf. Syst. Secur., 3(3):186–205, 2000. xix

[12] Fabrizio Baiardi, Diego Cilea, Daniele Sgandurra, and Francesco Ceccarelli. Mea-
suring Semantic Integrity for Remote Attestation. In Trusted Computing, Second
International Conference, Trust 2009, Oxford, UK, April 6-8, 2009, Proceedings,
volume 5471 of Lecture Notes in Computer Science, pages 81–100. Springer, 2009.
xxiv

[13] Fabrizio Baiardi, Dario Maggiari, and Daniele Sgandurra. Invariant Evaluation
through Introspection for Proving Security Properties. Information Assurance and
Security, 4(2):124–132, 2009. xxiv

[14] Fabrizio Baiardi, Dario Maggiari, and Daniele Sgandurra. Securing Health Infor-
mation Infrastructures through Overlays. In Lúıs Azevedo and Ana Rita Londral,
editor, Proceedings of the Second International Conference on Health Informatics,
HEALTHINF 2009, Porto, Portugal, January 14-17, 2009, pages 123–128. INSTICC
Press, 2009. xxiv

[15] Fabrizio Baiardi, Dario Maggiari, Daniele Sgandurra, and Francesco Tamberi. Psy-
coTrace: Virtual and Transparent Monitoring of a Process Self. In Didier El Baz,
François Spies, and Tom Gross, editors, Proceedings of the 17th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing, PDP
2009, Weimar, Germany, 18-20 Febuary 2009, pages 393–397. IEEE Computer So-
ciety, 2009. xxiii

[16] Fabrizio Baiardi, Dario Maggiari, Daniele Sgandurra, and Francesco Tamberi. Trans-
parent Process Monitoring in a Virtual Environment. Electronic Notes in Theoretical
Computer Science, 236:85 – 100, 2009. Proceedings of the 3rd International Work-
shop on Views On Designing Complex Architectures (VODCA 2008). xxiii

[17] Fabrizio Baiardi, Gaspare Sala, and Daniele Sgandurra. Managing Critical Infras-
tructures through Virtual Network Communities. In 2nd IEEE-IFIP International
Workshop on Critical Information Infrastructures Security (CRITIS ’07), volume
5141 of Lecture Notes in Computer Science, pages 71–82. Springer, 2007. xxiv

[18] Fabrizio Baiardi and Daniele Sgandurra. Building Trustworthy Intrusion Detection
through VM Introspection. In IAS ’07: Proceedings of the Third International
Symposium on Information Assurance and Security, pages 209–214, Washington,
DC, USA, 2007. IEEE Computer Society. xxiv

[19] Fabrizio Baiardi and Daniele Sgandurra. Towards High Assurance Networks of Vir-
tual Machines. In Proc. of 3rd European Conference on Computer Network Defense
(EC2ND), volume 30 of Lecture Notes in Electrical Engineering, pages 21–34, Her-
aklion, Greece, October 2007. xxiv

[20] Fabrizio Baiardi and Daniele Sgandurra. Secure Sharing of an ICT Infrastructure
through Vinci. In David Hausheer and Jürgen Schönwälder, editors, Resilient Net-
works and Services, Second International Conference on Autonomous Infrastructure,

186

BIBLIOGRAPHY

Management and Security, AIMS 2008, Bremen, Germany, July 1-3, 2008, Pro-
ceedings, volume 5127 of Lecture Notes in Computer Science, pages 65–78. Springer,
2008. xxiv

[21] Fabrizio Baiardi and Daniele Sgandurra. Virtual Interacting Network Community:
Exploiting Multi-core Architectures to Increase Security. In CF ’08: Proceedings of
the 2008 conference on Computing frontiers, pages 111–112, New York, NY, USA,
2008. ACM. xxiv

[22] S. Bajikar. Trusted Platform Module (TPM) based Security on Notebook PCs-White
Paper. Mobile Platforms Group, Intel Corporation, June, 20, 2002. 49, 110

[23] A. Baliga, X. Chen, and L. Iftode. Paladin: Automated detection and containment
of rootkit attacks. Technical Report DCS-TR-593, Department of Computer Science,
Rutgers University, April 2006. 43

[24] Mohammad Banikazemi, Dan Poff, and Bulent Abali. Storage-based file system
integrity checker. In StorageSS ’05: Proceedings of the 2005 ACM workshop on
Storage security and survivability, pages 57–63, New York, NY, USA, 2005. ACM
Press. 57

[25] Mohammad Banikazemi, Dan Poff, and Bulent Abali. Storage-Based Intrusion De-
tection for Storage Area Networks (SANs). In MSST ’05: Proceedings of the 22nd
IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies,
pages 118–127, Washington, DC, USA, 2005. IEEE Computer Society. 56

[26] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM. 16, 78, 117, 154

[27] Massimo Bartoletti, Gabriele Costa, Pierpaolo Degano, Fabio Martinelli, and
Roberto Zunino. Securing Java with Local Policies. Journal of Object Technology,
8(4):5–32, 2009. 38

[28] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino.
Model Checking Usage Policies. In Trustworthy Global Computing, 4th International
Symposium, TGC 2008, Barcelona, Spain, November 3-4, 2008, Revised Selected
Papers, volume 5474 of Lecture Notes in Computer Science, pages 19–35. Springer,
2009. 38

[29] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. vTPM: virtualizing the trusted platform module. In
USENIX-SS’06: Proceedings of the 15th conference on USENIX Security Sympo-
sium, pages 21–21, Berkeley, CA, USA, 2006. USENIX Association. 51, 111

[30] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V. Mancini. Operating system
enhancements to prevent the misuse of system calls. In CCS ’00: Proceedings of
the 7th ACM conference on Computer and communications security, pages 174–183,
New York, NY, USA, 2000. ACM. 95

187

APPENDIX C. BIBLIOGRAPHY

[31] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow Anomaly Detection.
In SP ’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages
48–62, Washington, DC, USA, 2006. IEEE Computer Society. 41

[32] P. Biondi and F. Desclaux. Silver needle in the Skype. BlackHat Europe, 6, 2006.
52

[33] M. Bishop and M. Dilger. Checking for Race Conditions in File Accesses. Computing
Systems, 2(2):131–152, 1996. 172

[34] Kevin Borders, Xin Zhao, and Atul Prakash. Securing sensitive content in a view-
only file system. In DRM ’06: Proceedings of the ACM workshop on Digital rights
management, pages 27–36, New York, NY, USA, 2006. ACM Press. 57

[35] R. Bradshaw, N. Desai, T. Freeman, and K. Keahey. A Scalable Approach To
Deploying And Managing Appliances. In TeraGrid 2007, pages 1–6, June 2007. 55

[36] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. An Efficient Technique for
Preventing Mimicry and Impossible Paths Execution Attacks. Performance, Com-
puting, and Communications Conference, 2002. 21st IEEE International, 0:418–425,
2007. 40

[37] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Static Analysis on x86 Ex-
ecutables for Preventing Automatic Mimicry Attacks. In DIMVA ’07: Proceedings
of the 4th international conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 213–230, Berlin, Heidelberg, 2007. Springer-Verlag.
40

[38] Bryan D. Payne and Martim Carbone and Wenke Lee. Secure and flexible monitoring
of virtual machines. Computer Security Applications Conference, Annual, 0:385–397,
2007. 44

[39] E. Bryant, J. Early, R. Gopalakrishna, G. Roth, EH Spafford, K. Watson, P. William,
and S. Yost. Poly2 Paradigm: A Secure Network Service Architecture. Computer
Security Applications Conference, 2003. Proceedings. 19th Annual, pages 342–351,
2003. 53

[40] Serdar Cabuk, Chris I. Dalton, HariGovind Ramasamy, and Matthias Schunter.
Towards automated provisioning of secure virtualized networks. In CCS ’07: Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pages 235–245, New York, NY, USA, 2007. ACM. 54

[41] Calvin Ko and George Fink and Karl Levitt. Automated detection of vulnerabil-
ities in privileged programs by execution monitoring. In Proceedings of the 10th
Annual Computer Security Applications Conference, pages 134–144, Orlando, FL,
1994. IEEE Computer Society Press. 35

[42] Martim Carbone, Diego Zamboni, and Wenke Lee. Taming Virtualization. IEEE
Security and Privacy, 6(1):65–67, 2008. 47

188

BIBLIOGRAPHY

[43] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing
data-flow integrity. In OSDI ’06: Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, pages 11–11, Berkeley, CA, USA,
2006. USENIX Association. 41

[44] Edjozane Cavalcanti, Leonardo Assis, Matheus Gaudencio, Walfredo Cirne, and
Francisco Brasileiro. Sandboxing for a free-to-join grid with support for secure site-
wide storage area. In VTDC ’06: Proceedings of the 2nd International Workshop
on Virtualization Technology in Distributed Computing, page 11, Washington, DC,
USA, 2006. IEEE Computer Society. 54

[45] Abhishek Chaturvedi, Sandeep Bhatkar, Eep Bhatkar, and R. Sekar. Improving
Attack Detection in Host-Based IDS by Learning Properties of System Call Argu-
ments. Technical Report SECLAB-05-03, Department of Computer Science, Stony
Brook University, Stony Brook, NY 11794, 2005. 35, 98

[46] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.R. Sadeghi, and C. Stüble. A
protocol for property-based attestation. In Proceedings of the first ACM workshop
on Scalable trusted computing, pages 7–16. ACM New York, NY, USA, 2006. 50

[47] Peter M. Chen and Brian D. Noble. When Virtual Is Better Than Real. In HOTOS
’01: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, page
133, Washington, DC, USA, 2001. IEEE Computer Society. 28

[48] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer.
Non-control-data attacks are realistic threats. In SSYM’05: Proceedings of the 14th
conference on USENIX Security Symposium, pages 177–192, Berkeley, CA, USA,
2005. USENIX Association. 98

[49] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A.
Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. Overshadow: a
virtualization-based approach to retrofitting protection in commodity operating sys-
tems. In ASPLOS XIII: Proceedings of the 13th international conference on Archi-
tectural support for programming languages and operating systems, pages 2–13, New
York, NY, USA, 2008. ACM. 45

[50] Tzi cher Chiueh, Matthew Conover, Maohua Lu, and Bruce Montague. Stealthy
Deployment and Execution of In-Guest Kernel Agents. In Black Hat USA, pages
1–12, 2009. 46

[51] Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgandurra, and
Diego Zamboni. Cloud security is not (just) virtualization security: a short paper.
In CCSW ’09: Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 97–102, New York, NY, USA, 2009. ACM. 46

[52] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. PlanetLab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003. 52

189

APPENDIX C. BIBLIOGRAPHY

[53] George Coker, Joshua Guttman, Peter Loscocco, Justin Sheehy, and Brian T. Snif-
fen. Attestation: Evidence and trust. In Liqun Chen, Mark Dermot Ryan, and
Guilin Wang, editors, ICICS, volume 5308 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2008. 115

[54] Christian Collberg, Clark Thomborson, and Douglas Low. Breaking abstractions
and unstructuring data structures, October 1997. 52

[55] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscat-
ing transformations. Technical Report 148, Department of Computer Science, The
University of Auckland, July 1997. 52

[56] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Principles of Programming Languages
1998, POPL’98, San Diego, CA, January 1998. 52

[57] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on Software Engineer-
ing, 28:735–746, 2002. 52

[58] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs.
In 2nd International Symposium on Programming, pages 106–130, April 1976. xx

[59] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In POPL, pages 238–252, 1977. xx

[60] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96, New
York, NY, USA, 1978. ACM. xx

[61] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks
and defenses for the vulnerability of the decade. In DARPA Information Survivability
Conference & Exposition – Volume 2, pages 119–129, Jan 2000. xv

[62] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Proc.
7th USENIX Security Conference, pages 63–78, San Antonio, Texas, jan 1998. xviii

[63] Alberto Daniel. Strategie di offuscamento del codice basate su macchine virtuali.
Master’s thesis, Università di Pisa, 2009. xxiv

[64] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-
detection systems. Comput. Netw., 31(9):805–822, 1999. xviii

[65] Victor DeMarines. Obfuscation - how to do it and how to crack it. Network Security,
2008(7):4 – 7, 2008. 52

190

BIBLIOGRAPHY

[66] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware
analysis via hardware virtualization extensions. In CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications security, pages 51–62, New York,
NY, USA, 2008. ACM. 49

[67] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
Robust signatures for kernel data structures. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications security, pages 566–577, New
York, NY, USA, 2009. ACM. 38

[68] C. Donnelly and R.M. Stallman. The Bison manual: using the YACC-compatible
parser generator. Boston, MA: GNU, 2006. 7

[69] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. ReVirt: enabling intrusion analysis through virtual-machine logging and
replay. In OSDI ’02: Proceedings of the 5th symposium on Operating systems design
and implementation, pages 211–224, New York, NY, USA, 2002. ACM Press. 43

[70] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. Graphviz - Open Source Graph Drawing Tools. Graph Drawing,
pages 483–484, 2001. 62

[71] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione. Dynamic virtual clus-
tering with Xen and Moab. Proceedings of ISPA Workshops: Workshop on Xen in
HPC Cluster and Grid Computing Environments (XHPC), pages 440–451, 2006. 54

[72] Paul England. Practical Techniques for Operating System Attestation. In Trust ’08:
Proceedings of the 1st international conference on Trusted Computing and Trust in
Information Technologies, pages 1–13, Berlin, Heidelberg, 2008. Springer-Verlag. 51

[73] Paul England and Jork Loeser. Para-Virtualized TPM Sharing. In Trust ’08: Pro-
ceedings of the 1st international conference on Trusted Computing and Trust in
Information Technologies, pages 119–132, Berlin, Heidelberg, 2008. Springer-Verlag.
51

[74] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically Discovering Likely Program Invariants to Support Program Evolution. In
International Conference on Software Engineering, pages 213–224, 1999. xix

[75] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007. xx

[76] E. Eskin, Wenke Lee, and S.J. Stolfo. Modeling system calls for intrusion detection
with dynamic window sizes. In Proceedings of DARPA Information Survivability
Conference & Exposition II, 2001. DISCEX ’01, volume 1, pages 165–175, 2001. 35

[77] D. Evans, J. Guttag, J. Horning, and Y.M. Tan. LCLint: a tool for using spec-
ifications to check code. Proceedings of the 2nd ACM SIGSOFT symposium on
Foundations of software engineering, pages 87–96, 1994. xix

191

APPENDIX C. BIBLIOGRAPHY

[78] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly Detection Using Call Stack Information. In SP ’03: Proceedings
of the 2003 IEEE Symposium on Security and Privacy, page 62, Washington, DC,
USA, 2003. IEEE Computer Society. 36

[79] H.H. Feng, J.T. Giffin, Yong Huang, S. Jha, Wenke Lee, and B.P. Miller. Formal-
izing sensitivity in static analysis for intrusion detection. In Proceedings of IEEE
Symposium on Security and Privacy, pages 194–208, May 2004. 36

[80] P. Ferrie. Attacks on Virtual Machine Emulators. Technical report, Symantec
Security Response, December 2006. 48

[81] P. Ferrie. Attacks on More Virtual Machine Emulators. Technical report, Symantec
Security Response, February 2007. 48

[82] Christof Fetzer and Martin Süsskraut. Switchblade: enforcing dynamic personalized
system call models. In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, pages 273–286, New York, NY,
USA, 2008. ACM. 38

[83] Renato J. Figueiredo, Peter A. Dinda, and José A. B. Fortes. A Case For Grid Com-
puting On Virtual Machines. In ICDCS ’03: Proceedings of the 23rd International
Conference on Distributed Computing Systems, page 550, Washington, DC, USA,
2003. IEEE Computer Society. 166

[84] Jeffrey Fischer, Ranjit Jhala, and Rupak Majumdar. Joining dataflow with pred-
icates. In ESEC/FSE-13: Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on Foun-
dations of software engineering, pages 227–236, New York, NY, USA, 2005. ACM.
41

[85] Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig,
and Leendert van Doorn. Remote detection of virtual machine monitors with fuzzy
benchmarking. SIGOPS Oper. Syst. Rev., 42(3):83–92, 2008. 47

[86] Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig,
and Leendert van Doorn. Towards Sound Detection of Virtual Machines. In Botnet
Detection, volume 36 of Advances in Information Security, pages 89–116. Springer,
2008. 47

[87] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS Software with
Generic Software Wrappers. In IEEE Symposium on Security and Privacy, pages
2–16, 1999. 42

[88] FuSyS. Kstat. http://www.s0ftpj.org/tools/kstat24_v1.1-2.tgz. 86

[89] Debin Gao, Michael K. Reiter, and Dawn Song. Gray-box extraction of execution
graphs for anomaly detection. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 318–329, New York, NY, USA,
2004. ACM. 36

192

http://www.s0ftpj.org/tools/kstat24_v1.1-2.tgz

BIBLIOGRAPHY

[90] Debin Gao, Michael K. Reiter, and Dawn Xiaodong Song. On Gray-Box Program
Tracking for Anomaly Detection. In USENIX Security Symposium, pages 103–118,
2004. 36

[91] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interposition
based Security Tools. In Proc. Network and Distributed Systems Security Sympo-
sium, February 2003. 42

[92] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility
is Not Transparency: VMM Detection Myths and Realities. In Proceedings of the
11th Workshop on Hot Topics in Operating Systems (HotOS-XI), May 2007. 22, 47

[93] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a
virtual machine-based platform for trusted computing. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Land-
ing, NY, USA., pages 193–206. ACM, October 2003. 52

[94] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A Delegating Architecture
for Secure System Call Interposition. In NDSS. The Internet Society, 2004. 42

[95] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based archi-
tecture for intrusion detection. In Proceedings of the 2003 Network and Distributed
System Symposium, 2003. 24, 43

[96] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, Marcel
Winandy, Rani Husseiki, and Christian Stüble. Flexible and secure enterprise rights
management based on trusted virtual domains. In STC ’08: Proceedings of the 3rd
ACM workshop on Scalable trusted computing, pages 71–80, New York, NY, USA,
2008. ACM. 55

[97] Pawel Gepner and Michal F. Kowalik. Multi-core processors: New way to achieve
high system performance. In PARELEC ’06: International symposium on Paral-
lel Computing in Electrical Engineering, pages 9–13, Washington, DC, USA, 2006.
IEEE Computer Society. 173

[98] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton P. Miller.
Environment-Sensitive Intrusion Detection. In RAID, pages 185–206, 2005. 37

[99] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Detecting Manipulated
Remote Call Streams. In Proceedings of the 11th USENIX Security Symposium,
pages 61–79, Berkeley, CA, USA, 2002. USENIX Association. 36

[100] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Efficient context-sensitive
intrusion detection. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2004, San Diego, California, USA. The Internet Society, 2004.
36

[101] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Automated Discovery of
Mimicry Attacks. In Diego Zamboni and Christopher Krgel, editors, RAID, volume
4219 of Lecture Notes in Computer Science, pages 41–60. Springer, 2006. 39

193

APPENDIX C. BIBLIOGRAPHY

[102] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A Secure Environ-
ment for Untrusted Helper Applications. In Proceedings of the 6th Usenix Security
Symposium, pages 1–13, San Jose, CA, USA, 1996. 41

[103] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop
on virtual computer systems, pages 74–112, New York, NY, USA, 1973. ACM Press.
14

[104] R. P. Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–45,
1974. 14

[105] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure tunnel
endpoints. Proceedings of the first ACM workshop on Scalable trusted computing,
pages 21–24, 2006. 54

[106] Rajeev Gopalakrishna, Eugene H. Spafford, and Jan Vitek. Efficient Intrusion Detec-
tion using Automaton Inlining. In SP ’05: Proceedings of the 2005 IEEE Symposium
on Security and Privacy, pages 18–31, Washington, DC, USA, 2005. IEEE Computer
Society. 37

[107] J.L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van Doorn, and R. Caceres. Trusted
Virtual Domains: Toward secure distributed services. Proc. of 1st IEEE Workshop
on Hot Topics in System Dependability (HotDep), 2005. 53

[108] Liang Gu, Xuhua Ding, Robert H. Deng, Yanzhen Zou, Bing Xie, Weizhong Shao,
and Hong Mei. Model-Driven Remote Attestation: Attesting Remote System
from Behavioral Aspect. Young Computer Scientists, International Conference for,
0:2347–2353, 2008. 51

[109] Shay Gueron and Jean-Pierre Seifert. On the impossibility of detecting virtual ma-
chine monitors. In Dimitris Gritzalis and Javier López, editors, Emerging Challenges
for Security, Privacy and Trust, 24th IFIP TC 11 International Information Secu-
rity Conference, SEC 2009, Pafos, Cyprus, May 18-20, 2009. Proceedings, volume
297 of IFIP, pages 143–151. Springer, 2009. 23

[110] Peter H. Gum. System/370 Extended Architecture: Facilities for Virtual Machines.
IBM Journal of Research and Development, 27(6):530–544, 1983. 14

[111] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attestation: a
virtual machine directed approach to trusted computing. In VM’04: Proceedings of
the 3rd conference on Virtual Machine Research And Technology Symposium, pages
3–3, Berkeley, CA, USA, 2004. USENIX Association. 50

[112] Vivek Haldar and Michael Franz. Symmetric behavior-based trust: a new paradigm
for internet computing. In NSPW ’04: Proceedings of the 2004 workshop on New
security paradigms, pages 79–84, New York, NY, USA, 2004. ACM. 50

[113] Ragib Hasan, Suvda Myagmar, Adam J. Lee, and William Yurcik. Toward a threat
model for storage systems. In StorageSS ’05: Proceedings of the 2005 ACM workshop

194

BIBLIOGRAPHY

on Storage security and survivability, pages 94–102, New York, NY, USA, 2005. ACM
Press. 56

[114] Brian Hay and Kara Nance. Forensics examination of volatile system data using
virtual introspection. SIGOPS Oper. Syst. Rev., 42(3):74–82, 2008. 45

[115] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
BLAST. Lecture Notes in Computer Science, 2648:235–240, 2003. xix

[116] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion Detection Using
Sequences of System Calls. Journal of Computer Security, 6(3):151–180, 1998. xviii,
35

[117] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Not., 39(4):229–243, 2004. 61

[118] T.W. Hou, H.Y. Chen, and M.H. Tsai. Three control flow obfuscation methods for
Java software. IEE Proceedings-Software, 153(2):80, 2006. 52

[119] V.M. Inc. VMware. http://www.vmware.com/. 16

[120] IOzone. Filesystem Benchmark. http://www.iozone.org/. 126, 167

[121] Daniel Jackson and Eugene J. Rollins. Chopping: A Generalization of Slicing.
Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994. 61

[122] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity measurement
architecture. In Proceedings of the eleventh ACM symposium on Access control
models and technologies, pages 19–28. ACM New York, NY, USA, 2006. 50

[123] Trent Jaeger, Kevin Butler, David H. King, Serge Hallyn, Joy Latten, and Xiaolan
Zhang. Leveraging IPsec for mandatory access control across systems. In Proceedings
of the Second International Conference on Security and Privacy in Communication
Networks, August 2006. 53

[124] Trent Jaeger, Serge Hallyn, and Joy Latten. Leveraging IPsec for Mandatory Access
Control of Linux Network Communications. Technical Report Technical Report
RC23642, IBM T.J. Watson Research Center, April 2005. 53

[125] K. Jain and R. Sekar. User-Level Infrastructure for System Call Interposition: A
Platform for Intrusion Detection and Confinement. In Proc. Network and Distributed
Systems Security Symposium, 1999. 42

[126] B. Jansen, H.G.V. Ramasamy, and M. Schunter. Policy enforcement and compliance
proofs for Xen virtual machines. Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, pages 101–110, 2008. 55

[127] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through
vmm-based ”out-of-the-box” semantic view reconstruction. In CCS ’07: Proceedings
of the 14th ACM conference on Computer and communications security, pages 128–
138, New York, NY, USA, 2007. ACM. 44

195

http://www.vmware.com/
http://www.iozone.org/

APPENDIX C. BIBLIOGRAPHY

[128] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. VMM-
based hidden process detection and identification using Lycosid. In VEE ’08: Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 91–100, New York, NY, USA, 2008. ACM. 44

[129] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting
past and present intrusions through vulnerability-specific predicates. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems principles, pages
91–104, New York, NY, USA, 2005. ACM Press. 43

[130] kad. Handling Interrupt Descriptor Table for fun and profit. Phrack, 11(59), July
2002. 102

[131] Nitin A. Kamble, Jun Nakajima, and Asit K. Mallick. Evolution in Kernel Debugging
using Hardware Virtualization With Xen. In Linux Symposium Proceedings, pages
9–24, 2006. 43

[132] Gaurav S. Kc and Angelos D. Keromytis. e-NeXSh: Achieving an Effectively Non-
Executable Stack and Heap via System-Call Policing. In ACSAC ’05: Proceedings of
the 21st Annual Computer Security Applications Conference, pages 286–302, Wash-
ington, DC, USA, 2005. IEEE Computer Society. 42

[133] Katarzyna Keahey, Karl Doering, and Ian Foster. From Sandbox to Playground:
Dynamic Virtual Environments in the Grid. In GRID ’04: Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, pages 34–42, Washington,
DC, USA, 2004. IEEE Computer Society. 53

[134] Vishal Kher and Yongdae Kim. Securing distributed storage: challenges, techniques,
and systems. In StorageSS ’05: Proceedings of the 2005 ACM workshop on Storage
security and survivability, pages 9–25, New York, NY, USA, 2005. ACM Press. 57

[135] Gene H. Kim and Eugene H. Spafford. The design and implementation of tripwire:
a file system integrity checker. In CCS ’94: Proceedings of the 2nd ACM Conference
on Computer and communications security, pages 18–29, New York, NY, USA, 1994.
ACM. xix

[136] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Trans. Comput.
Syst., 23(1):51–76, 2005. 56, 163

[137] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. SubVirt: Implementing malware with virtual machines. sp,
0:314–327, 2006. 47

[138] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure Execution
via Program Shepherding. In Proceedings of the 11th USENIX Security Symposium,
pages 191–206, Berkeley, CA, USA, 2002. USENIX Association. 42

[139] T. Klein. Scooby Doo - VMware Fingerprint Suite. http://www.trapkit.de/
research/vmm/scoopydoo/index.html. 47

196

http://www.trapkit.de/research/vmm/scoopydoo/index.html
http://www.trapkit.de/research/vmm/scoopydoo/index.html

BIBLIOGRAPHY

[140] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical pro-
grams in distributed systems: a Specification-based approach. In SP ’97: Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy, page 175, Washington,
DC, USA, 1997. IEEE Computer Society. 35

[141] Kenichi Kourai and Shigeru Chiba. HyperSpector: virtual distributed monitoring
environments for secure intrusion detection. In VEE ’05: Proceedings of the 1st
ACM/USENIX international conference on Virtual execution environments, pages
197–207, New York, NY, USA, 2005. ACM. 43

[142] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anomalous Sys-
tem Call Arguments. In Proceedings of the 8th European Symposium on Research in
Computer Security (ESORICS ’03), LNCS, pages 326–343, Gjovik, Norway, October
2003. Springer-Verlag. 35

[143] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Automating mimicry attacks using static binary analysis. In SSYM’05:
Proceedings of the 14th conference on USENIX Security Symposium, pages 11–11,
Berkeley, CA, USA, 2005. USENIX Association. 39

[144] Dirk Kuhlmann, Rainer Landfermann, Hari V. Ramasamy, Matthias Schunter, Gi-
anluca Ramunno, and Davide Vernizzi. An Open Trusted Computing Architecture
Secure Virtual Machines Enabling User-Defined Policy Enforcement. Technical Re-
port RZ3655, IBM Research, 2006. 50

[145] David Kyle and José Carlos Brustoloni. Uclinux: a Linux security module for
trusted-computing-based usage controls enforcement. In STC ’07: Proceedings of
the 2007 ACM workshop on Scalable trusted computing, pages 63–70, New York,
USA, 2007. ACM. 51

[146] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,
Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael Brudno, and Mahadev
Satyanarayanan. SnowFlock: rapid virtual machine cloning for cloud computing.
In EuroSys ’09: Proceedings of the 4th ACM European conference on Computer
systems, pages 1–12, New York, NY, USA, 2009. ACM. 55

[147] Lap Chung Lam. Program Transformation Techniques for Host-based Intrusion Pre-
vention. PhD thesis, Stony Brook University, 2005. 37

[148] Lap-Chung Lam and Tzi cker Chiueh. Automatic Extraction of Accurate
Application-Specific Sandboxing Policy. In RAID, pages 1–20, 2004. xx, 37

[149] Lap Chung Lam, Wei Li, and Tzi cker Chiueh. Accurate and Automated System
Call Policy-Based Intrusion Prevention. In DSN ’06: Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN’06), pages 413–424,
Washington, DC, USA, 2006. IEEE Computer Society. xx, 37

[150] M. Laureano, C. Maziero, and E. Jamhour. Protecting host-based intrusion detectors
through virtual machines. Comput. Networks, 51(5):1275–1283, 2007. 43

197

APPENDIX C. BIBLIOGRAPHY

[151] Wenke Lee and Salvatore J. Stolfo. Data mining approaches for intrusion detection.
In SSYM’98: Proceedings of the 7th conference on USENIX Security Symposium,
pages 79–94, Berkeley, CA, USA, 1998. USENIX Association. 35

[152] F. Leung, G. Neiger, D. Rodgers, A. Santoni, and R. Uhlig. Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualization. Intel Tech-
nology Journal, 10(3):167–178, August 2006. 22, 173

[153] Peng Li, Hyundo Park, Debin Gao, and Jianming Fu. Bridging the Gap between
Data-Flow and Control-Flow Analysis for Anomaly Detection. In ACSAC ’08: Pro-
ceedings of the 2008 Annual Computer Security Applications Conference, pages 392–
401, Washington, DC, USA, 2008. IEEE Computer Society. 41

[154] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resis-
tance to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference
on Computer and communications security, pages 290–299, New York, NY, USA,
2003. ACM. 52

[155] Lionel Litty and David Lie. Manitou: a layer-below approach to fighting malware.
In ASID ’06: Proceedings of the 1st workshop on Architectural and system support
for improving software dependability, pages 6–11, New York, NY, USA, 2006. ACM.
43

[156] Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, Angelos D. Keromytis,
and Salvatore J. Stolfo. Quantifying Application Behavior Space for Detection and
Self-Healing. Technical Report CUCS-017-06, Department of Computer Science,
Columbia University, April 2006. 38

[157] Hans Löhr, HariGovind V. Ramasamy, Ahmad-Reza Sadeghi, Stefan Schulz,
Matthias Schunter, and Christian Stüble. Enhancing Grid Security Using Trusted
Virtualization. In ATC, pages 372–384, 2007. 54

[158] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives with security
enhanced linux. In Proceedings of the 2001 Ottawa Linux Symposium, 2001. 154

[159] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Security
Policies into the Linux Operating System. In Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, pages 29–42, Berkeley, CA, USA, 2001.
USENIX Association. 154

[160] Jonathan M. McCune, Trent Jaeger, Stefan Berger, Ramon Caceres, and Reiner
Sailer. Shamon: A System for Distributed Mandatory Access Control. In ACSAC
’06: Proceedings of the 22nd Annual Computer Security Applications Conference on
Annual Computer Security Applications Conference, pages 23–32, Washington, DC,
USA, 2006. IEEE Computer Society. 53

[161] Jan Midtgaard and Thomas Jensen. A Calculational Approach to Control-Flow
Analysis by Abstract Interpretation. In SAS ’08: Proceedings of the 15th inter-
national symposium on Static Analysis, pages 347–362, Berlin, Heidelberg, 2008.
Springer-Verlag. 38

198

BIBLIOGRAPHY

[162] Jan Midtgaard and Thomas P. Jensen. Control-flow analysis of function calls and
returns by abstract interpretation. In ICFP ’09: Proceedings of the 14th ACM
SIGPLAN international conference on Functional programming, pages 287–298, New
York, NY, USA, 2009. ACM. 38

[163] James Morris. Networking in NSA security-enhanced Linux. Linux Journal,
2005(129):3, 2005. 160

[164] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Improving Xen secu-
rity through disaggregation. In VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments, pages
151–160, New York, NY, USA, 2008. ACM. 33

[165] Darren Mutz, William K. Robertson, Giovanni Vigna, and Richard A. Kemmerer.
Exploiting Execution Context for the Detection of Anomalous System Calls. In
Recent Advances in Intrusion Detection, 10th International Symposium, RAID 2007,
Gold Goast, Australia, September 5-7, volume 4637 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2007. 38

[166] Kara Nance, Matt Bishop, and Brian Hay. Virtual Machine Introspection: Obser-
vation or Interference? IEEE Security and Privacy, 6(5):32–37, 2008. 45

[167] Netfilter.org. Netfilter/Iptables project. www.netfilter.org/. 87, 154

[168] NetworkWorld. EMC, Intel, VMware team to secure private clouds, 2010. http://
www.networkworld.com/news/2010/030110-emc-intel-vmware-clouds.html. 51

[169] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Parallelizing
security checks on commodity hardware. In ASPLOS XIII: Proceedings of the 13th
international conference on Architectural support for programming languages and
operating systems, pages 308–318, New York, NY, USA, 2008. ACM. 49

[170] NIST. Definition of Cloud Computing v15. http://csrc.nist.gov/groups/SNS/
cloud-computing/cloud-def-v15.doc. 157

[171] Matunda Nyanchama and Slvia Osborn. Modeling mandatory access control in
role-based security systems. In In Database Security VIII: Status and Prospects.
Chapman-Hall, pages 31–40. Chapman & Hall, 1995. 151

[172] Chris Odhner. Security in NFS Storage Networks. Technical report, Network Ap-
pliance, February 2005. 159

[173] OpenVPN. An Open Source SSL VPN Solution. http://openvpn.net/. 118, 154

[174] R. Oppliger and R. Rytz. Does trusted computing remedy computer security prob-
lems? Security & Privacy Magazine, IEEE, 3(2):16–19, 2005. 50

[175] Andris Padegs. System/370 Extended Architecture: Design Considerations. IBM
Journal of Research and Development, 27(3):198–205, 1983. 14

199

www.netfilter.org/
http://www.networkworld.com/news/2010/030110-emc-intel-vmware-clouds.html
http://www.networkworld.com/news/2010/030110-emc-intel-vmware-clouds.html
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://openvpn.net/

APPENDIX C. BIBLIOGRAPHY

[176] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.
A fistful of red-pills: How to automatically generate procedures to detect CPU
emulators. In Proceedings of the 3rd USENIX Workshop on Offensive Technologies
(WOOT), Montreal, Canada. ACM, August 2009. 48

[177] Chetan Parampalli, R. Sekar, and Rob Johnson. A practical mimicry attack against
powerful system-call monitors. In ASIACCS ’08: Proceedings of the 2008 ACM
symposium on Information, computer and communications security, pages 156–167,
New York, NY, USA, 2008. ACM. 40

[178] Bryan Parno, Zongwei Zhou, and Adrian Perrig. Don’t talk to zombies: Mitigat-
ing DDoS attacks via attestation. Technical Report CMU-CyLab-09-009, Carnegie
Mellon University, jun 2009. 51

[179] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An Ar-
chitecture for Secure Active Monitoring Using Virtualization. Security and Privacy,
IEEE Symposium on, 0:233–247, 2008. 44

[180] S. Pearson. Trusted Computing Platforms, the Next Security Solution. Technical
Report HPL-2002-221, Trusted E-Services Laboratory & HP Laboratories Bristol,
November 2002. 49, 110

[181] Adam G. Pennington, John D. Strunk, John Linwood Griffin, Craig A. N. Soules,
Garth R. Goodson, and Gregory R. Ganger. Storage-based intrusion detection:
watching storage activity for suspicious behavior. In SSYM’03: Proceedings of the
12th conference on USENIX Security Symposium, pages 138–151, Berkeley, CA,
USA, 2003. USENIX Association. 56

[182] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
Automatically patching errors in deployed software. In SOSP ’09: Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles, pages 87–102,
New York, NY, USA, 2009. ACM. 39

[183] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copi-
lot - a Coprocessor-based Kernel Runtime Integrity Monitor. In USENIX Security
Symposium, pages 179–194, 2004. 48

[184] Nick L. Petroni, Jr., Timothy Fraser, AAron Walters, and William A. Arbaugh.
An architecture for specification-based detection of semantic integrity violations in
kernel dynamic data. In USENIX-SS’06: Proceedings of the 15th conference on
USENIX Security Symposium, pages 289–304, Berkeley, CA, USA, 2006. USENIX
Association. 51

[185] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of persistent ker-
nel control-flow attacks. In CCS ’07: Proceedings of the 14th ACM conference on
Computer and communications security, pages 103–115, New York, NY, USA, 2007.
ACM. 37

200

BIBLIOGRAPHY

[186] Jonas Pfoh, Christian Schneider, and Claudia Eckert. A formal model for virtual
machine introspection. In VMSec ’09: Proceedings of the 1st ACM workshop on
Virtual machine security, pages 1–10, New York, NY, USA, 2009. ACM. 46

[187] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412–421, 1974. 15

[188] J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidner. Property attesta-
tion: scalable and privacy-friendly security assessment of peer computers. Technical
Report RZ3548, IBM Corporation, 2004. 50

[189] Danny Quist and Val Smith. Detecting the Presence of Virtual Machines Using the
Local Data Table. Technical report, Offensive Computing, 2006. 47

[190] Nguyen Anh Quynh and Kuniyasu Suzaki. Xenprobes, a lightweight user-space
probing framework for Xen virtual machine. In ATC’07: 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical Conference,
pages 1–14, Berkeley, CA, USA, 2007. USENIX Association. 44

[191] Nguyen Anh Quynh and Yoshiyasu Takefuji. Towards a tamper-resistant kernel
rootkit detector. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, pages 276–283, New York, NY, USA, 2007. ACM. 43

[192] Thomas Raffetseder, Christopher Krügel, and Engin Kirda. Detecting system em-
ulators. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta,
editors, Information Security, 10th International Conference, ISC 2007, Valparáıso,
Chile, October 9-12, 2007, Proceedings, volume 4779 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2007. 48

[193] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting. Authenticated system
calls. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. Interna-
tional Conference on, pages 358–367, June-1 July 2005. 36

[194] Hans P. Reiser and Rdiger Kapitza. VM-FIT: Supporting Intrusion Tolerance with
Virtualisation Technology. In Proceedings of the 1st Workshop on Recent Advances
on Intrusion-Tolerant Systems (in conjunction with Eurosys 2007, Lisbon, Portugal,
March 23, 2007), pages 18–22, 2007. 55

[195] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Defeating Dynamic
Data Kernel Rootkit Attacks via VMM-Based Guest-Transparent Monitoring. Avail-
ability, Reliability and Security, International Conference on, 0:74–81, 2009. 45

[196] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-Transparent Prevention of Ker-
nel Rootkits with VMM-Based Memory Shadowing. In RAID ’08: Proceedings of
the 11th international symposium on Recent Advances in Intrusion Detection, pages
1–20, Berlin, Heidelberg, 2008. Springer-Verlag. 45

[197] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s ability
to support a secure virtual machine monitor. In SSYM’00: Proceedings of the 9th

201

APPENDIX C. BIBLIOGRAPHY

conference on USENIX Security Symposium, pages 10–10, Berkeley, CA, USA, 2000.
USENIX Association. 16, 17, 47

[198] J. Rutkowska. Subverting Vista Kernel For Fun And Profit. BlackHat Briefings
USA, August, 2006. 48

[199] Ahmad-Reza Sadeghi and Christian Stüble. Property-based attestation for comput-
ing platforms: caring about properties, not mechanisms. In NSPW ’04: Proceedings
of the 2004 workshop on New security paradigms, pages 67–77, New York, NY, USA,
2004. ACM. 49

[200] Hassen Säıdi. Guarded models for intrusion detection. In PLAS ’07: Proceedings
of the 2007 workshop on Programming languages and analysis for security, pages
85–94, New York, NY, USA, 2007. ACM. 38

[201] R. Sailer, X. Zhang, and T. Jaeger. Design and implementation of a TCG-based
integrity measurement architecture. Proceedings of the 13th conference on USENIX
Security Symposium-Volume 13 table of contents, pages 16–16, 2004. 50

[202] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon Caceres, Ronald Perez, Stefan
Berger, John Linwood Griffin, and Leendert van Doorn. Building a MAC-Based
Security Architecture for the Xen Open-Source Hypervisor. In Proceedings of the
2005 Annual Computer Security Applications Conference, pages 276–285, December
2005. 53

[203] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. Attestation-
based policy enforcement for remote access. In CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security, pages 308–317, New
York, NY, USA, 2004. ACM Press. 50

[204] Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert van Doorn,
John Linwood Griffin, and Stefan Berger. sHype: A secure hypervisor approach to
trusted virtualized systems. Technical Report RC23511, IBM Research, 2005. 53

[205] Gaspare Sala, Daniele Sgandurra, and Fabrizio Baiardi. Security and Integrity of a
Distributed File Storage in a Virtual Environment. In SISW ’07: Proceedings of the
Fourth International IEEE Security in Storage Workshop, pages 58–69, Washington,
DC, USA, 2007. IEEE Computer Society. xxiv

[206] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975. 160

[207] Ravi Sandhu and Xinwen Zhang. Peer-to-peer access control architecture using
trusted computing technology. In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 147–158, New York,
NY, USA, 2005. ACM. 50

[208] Luis Sarmenta. TPM/J: Java-based API for the Trusted Platform Module (TPM).
http://projects.csail.mit.edu/tc/tpmj/. 118

202

http://projects.csail.mit.edu/tc/tpmj/

BIBLIOGRAPHY

[209] Dries Schellekens, Brecht Wyseur, and Bart Preneel. Remote attestation on legacy
operating systems with trusted platform modules. Sci. Comput. Program., 74(1-
2):13–22, 2008. 51

[210] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited. In
WCRE ’02: Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), page 45, Washington, DC, USA, 2002. IEEE Computer Society. 52

[211] Love H. Seawright and Richard A. MacKinnon. VM/370 - A Study of Multiplicity
and Usefulness. IBM Systems Journal, 18(1):4–17, 1979. 14

[212] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-Based
Method for Detecting Anomalous Program Behaviors. In SP ’01: Proceedings of the
2001 IEEE Symposium on Security and Privacy, page 144, Washington, DC, USA,
2001. IEEE Computer Society. 35

[213] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems
from high-level specifications. In SSYM’99: Proceedings of the 8th conference on
USENIX Security Symposium, pages 6–6, Berkeley, CA, USA, 1999. USENIX Asso-
ciation. 35

[214] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and Daniel C. Du-
Varney. Model-carrying code: a practical approach for safe execution of untrusted
applications. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Op-
erating systems principles, pages 15–28, New York, NY, USA, 2003. ACM. 35

[215] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Externally verifiable code execution. Commun. ACM, 49(9):45–49, 2006.
50

[216] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: a tiny hyper-
visor to provide lifetime kernel code integrity for commodity OSes. In SOSP ’07:
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems princi-
ples, pages 335–350, New York, NY, USA, 2007. ACM. 44

[217] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems. In SOSP ’05: Proceedings of the twentieth ACM sym-
posium on Operating systems principles, pages 1–16, New York, NY, USA, 2005.
ACM. 50

[218] Monirul I. Sharif, Kapil Singh, Jonathon T. Giffin, and Wenke Lee. Understanding
Precision in Host Based Intrusion Detection. In RAID, pages 21–41, 2007. 37

[219] Sriranjani Sitaraman and S. Venkatesan. Forensic Analysis of File System Intrusions
Using Improved Backtracking. In IWIA ’05: Proceedings of the Third IEEE Interna-
tional Workshop on Information Assurance, pages 154–163, Washington, DC, USA,
2005. IEEE Computer Society. 56

203

APPENDIX C. BIBLIOGRAPHY

[220] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux security
module. Nai labs report, NAI Labs, Dec 2001. Revised May 2006. 160

[221] Alexey Smirnov and Tzi cker Chiueh. DIRA: Automatic Detection, Identification
and Repair of Control-Hijacking Attacks. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2005, San Diego, California, USA. The
Internet Society, 2005. xvi

[222] SourceForge.net. gtk-gnutella: The Graphical Unix Gnutella Client. http://
gtk-gnutella.sourceforge.net/. 118, 122

[223] SourceForge.net. Trusted Boot. http://sourceforge.net/projects/tboot. 114

[224] Eugene H. Spafford. The internet worm program: an analysis. SIGCOMM Comput.
Commun. Rev., 19(1):17–57, 1989. xvi

[225] S. Sparks and J. Butler. Shadow Walker: Raising the bar for rootkit detection.
Black Hat Japan, 2005. xix

[226] A. Srivastava, K. Singh, and J. Giffin. Secure Observation of Kernel Behavior.
Technical Report GT-CS-08-01, Georgia Institute of Technology, 2008. 46

[227] Paul Stanton. Securing Data in Storage: A Review of Current Research. CoRR,
409034:2004, 2004. 56

[228] Stephanie Forrest and Steven A. Hofmeyr and Anil Somayaji and Thomas A.
Longstaff. A Sense of Self for Unix Processes. In Proceedinges of the 1996 IEEE
Symposium on Research in Security and Privacy, pages 120–128. IEEE Computer
Society Press, 1996. xviii, 3, 35

[229] Mario Strasser and Heiko Stamer. A Software-Based Trusted Platform Module
Emulator. In Trust ’08: Proceedings of the 1st international conference on Trusted
Computing and Trust in Information Technologies, pages 33–47, Berlin, Heidelberg,
2008. Springer-Verlag. 51

[230] Geoffrey Strongin. Trusted computing using amd ”pacifica” and ”presidio” secure
virtual machine technology. Inf. Secur. Tech. Rep., 10(2):120–132, 2005. 142

[231] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Soules, and G. R. Ganger.
Self-Securing Storage: Protecting Data in Compromised Systems. In Proc. of the
4th Symposium on Operating Design and Implementation (OSDI), 2000. 56

[232] Sufatrio and Roland H. C. Yap. Improving Host-Based IDS with Argument Abstrac-
tion to Prevent Mimicry Attacks. In Recent Advances in Intrusion Detection, 8th
International Symposium, RAID 2005, Seattle, WA, USA, September 7-9, volume
3858 of Lecture Notes in Computer Science, pages 146–164. Springer, 2006. 40

[233] Francesco Tamberi, Dario Maggiari, Daniele Sgandurra, and Fabrizio Baiardi.
Semantics-Driven Introspection in a Virtual Environment. In IAS ’08: Proceed-
ings of the 2008 The Fourth International Conference on Information Assurance

204

http://gtk-gnutella.sourceforge.net/
http://gtk-gnutella.sourceforge.net/
http://sourceforge.net/projects/tboot

BIBLIOGRAPHY

and Security, pages 299–302, Washington, DC, USA, 2008. IEEE Computer Society.
xxiv

[234] G. Tandon and P. Chan. Learning Rules from System Call Arguments and Sequences
for Anomaly Detection. Workshop on Data Mining for Computer Security, 2003. 35

[235] P. Traynor, M. Chien, S. Weaver, B. Hicks, and P. Mc Daniel. Non Invasive Methods
for Host Certification. ACM Trans. on Information and System Security, vol. 11,
No. 3, pages 1–23, 2008. 51

[236] Hsin-Yi Tsai, Yu-Lun Huang, and David Wagner. A graph approach to quanti-
tative analysis of control-flow obfuscating transformations. Trans. Info. For. Sec.,
4(2):257–267, 2009. 52

[237] Timothy K. Tsai and Navjot Singh. Libsafe: Transparent System-wide Protection
Against Buffer Overflow Attacks. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, page 541, Washington, DC, USA,
2002. IEEE Computer Society. xviii

[238] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Marting, A.V. Anderson,
S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel Virtualization Technology.
Computer, 38(5):48–56, May 2005. 151

[239] Alfonso Valdes and Diego Zamboni, editors. Behavioral Distance for Intrusion De-
tection, volume 3858 of Lecture Notes in Computer Science. Springer, 2006. 39

[240] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009. 156

[241] G. Vigna. Malware Detection, chapter Static Disassembly and Code Analysis. Ad-
vances in Information Security. Springer, 2007. 130

[242] VMWare. VMsafe: A Security Technology for Virtualized Environments. http:
//www.vmware.com/technology/security/vmsafe.html. 26, 173

[243] David Wagner and Drew Dean. Intrusion Detection via Static Analysis. In SP
’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 156,
Washington, DC, USA, 2001. IEEE Computer Society. xx, 36, 39, 99

[244] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications security, pages 255–264, New York, NY, USA, 2002. ACM. 5, 39

[245] David A. Wagner. Static analysis and computer security: new techniques for software
assurance. PhD thesis, University of California at Berkeley, 2000. xx, 36

[246] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical report, University of
Virginia, Charlottesville, VA, USA, 2000. 52

205

http://www.vmware.com/technology/security/vmsafe.html
http://www.vmware.com/technology/security/vmsafe.html

APPENDIX C. BIBLIOGRAPHY

[247] Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat Bhargava. Secure and efficient
access to outsourced data. In CCSW ’09: Proceedings of the 2009 ACM workshop
on Cloud computing security, pages 55–66, New York, NY, USA, 2009. ACM. 57

[248] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel rootkits
with lightweight hook protection. In CCS ’09: Proceedings of the 16th ACM con-
ference on Computer and communications security, pages 545–554, New York, NY,
USA, 2009. ACM. 46

[249] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmutter. Detecting In-
trusions using System Calls: Alternative Data Models. In IEEE Symposium on
Security and Privacy, pages 133–145, 1999. 35

[250] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning. Man-
aging security of virtual machine images in a cloud environment. In CCSW ’09:
Proceedings of the 2009 ACM workshop on Cloud computing security, pages 91–96,
New York, NY, USA, 2009. ACM. 58

[251] Lap-chung Lam Wei Li and Tzi cker Chiueh. Automatic Application-Specific Sand-
boxing for Win32/X86 Binaries. In Proceedings of Program Analysis for Security
and Safety Workshop (PASSWORD) co-located with ECOOP 2006, Nantes, France,
2006. 37

[252] Paul D. Williams and Eugene H. Spafford. CuPIDS: An exploration of highly
focused, co-processor-based information system protection. Comput. Networks,
51(5):1284–1298, 2007. 48

[253] S.J.Stolfo W.Lee and P.K.Chan. Learning patterns from UNIX processes execu-
tion traces for intrusion detection. In AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management, pages 50–56, 1997. AAAI Press. 35

[254] David Isaac Wolinsky, Abhishek Agrawal, P. Oscar Boykin, Justin Davis, Arijit
Ganguly, Vladimir Paramygin, Peter Sheng, and Renato J. Figueiredo. On the
Design of Virtual Machine Sandboxes for Distributed Computing in Wide Area
Overlays of Virtual Workstations. In First Workshop on Virtualization Technologies
in Distributed Computing (VTDC), November 2006. 54

[255] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. Linux Security Modules: General Security Support for the Linux Kernel.
In Proceedings of the 11th USENIX Security Symposium, pages 17–31, Berkeley, CA,
USA, 2002. USENIX Association. 160

[256] Zhuowei Li XiaoFeng Wang and Rui Wang. Leapfrog: Enhancing Information Pro-
tection in Commodity Applications with Dataflow Control. Technical Report TR670,
Indiana University at Bloomington, 2005. 41

[257] Haizhi Xu, Wenliang Du, and Steve J. Chapin. Context Sensitive Anomaly Moni-
toring of Process Control Flow To Detect Mimicry Attacks and Impossible Paths.
In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID, pages 21–38. Springer, 2004. 40

206

BIBLIOGRAPHY

[258] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving
application security with data flow assertions. In SOSP ’09: Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pages 291–304,
New York, NY, USA, 2009. ACM. 41

[259] Aaram Yun, Chunhui Shi, and Yongdae Kim. On protecting integrity and confiden-
tiality of cryptographic file system for outsourced storage. In CCSW ’09: Proceedings
of the 2009 ACM workshop on Cloud computing security, pages 67–76, New York,
NY, USA, 2009. ACM. 58

[260] Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner Sailer.
Secure coprocessor-based intrusion detection. In EW10: Proceedings of the 10th
workshop on ACM SIGOPS European workshop: beyond the PC, pages 239–242,
New York, NY, USA, 2002. ACM Press. 48

[261] Youhui Zhang, Yu Gu, Hongyi Wang, and Dongsheng Wang. Virtual-Machine-
based Intrusion Detection on File-aware Block Level Storage. In SBAC-PAD ’06:
Proceedings of the 18th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’06), pages 185–192, Washington, DC,
USA, 2006. IEEE Computer Society. 57

[262] Ming Zhao, Jian Zhang, and Renato J. Figueiredo. Distributed File System Virtual-
ization Techniques Supporting On-Demand Virtual Machine Environments for Grid
Computing. Cluster Computing, 9(1):45–56, 2006. 57

[263] Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment
for untrusted grid applications. In MGC ’05: Proceedings of the 3rd international
workshop on Middleware for grid computing, pages 1–6, New York, NY, USA, 2005.
ACM Press. 53

[264] Xin Zhao, Kevin Borders, and Atul Prakash. Towards Protecting Sensitive Files in
a Compromised System. In SISW ’05: Proceedings of the Third IEEE International
Security in Storage Workshop (SISW’05), pages 21–28, Washington, DC, USA, 2005.
IEEE Computer Society. 56

207

	Introduction
	I Background
	Measuring the Semantic Integrity
	Process Self
	Description of the Process Self
	Context-Free Grammar
	Assertion Generation

	Formal Models for Static Analysis
	Reaching Definition Model
	Abstract Interpretation Model

	Virtualization-based Security
	Virtualization Technology
	Current Products
	Hardware Support
	Transparency

	Virtual Machine Introspection
	Passive Virtual Machine Introspection
	Trigger-Based Virtual Machine Introspection
	Mitigation of Threats
	Vulnerabilities

	Applications of Virtualization to Security
	Checking Kernel Integrity
	Remote Attestation of System Integrity
	Code Obfuscation
	Trusted Overlay of Virtual Networks

	Related Works
	Sense of Self
	Virtualization for Security
	Hardware-based Security and Remote Attestation
	Code Obfuscation
	Collaborative Virtual Environments

	II Principles and Implementation
	Description of the Process Self
	Abstract Syntax Tree in PsycoTrace
	Grammar Generating Algorithm
	Grammar Generating Algorithm Rules

	Assertion Generator
	Invariant Table
	Assignment Variables

	Run-Time Architecture
	Run-Time Components
	Assumptions
	Transparency

	Kernel Integrity
	Introspection Library
	Integrity Checks
	Context-Agent Injection

	Checking the Process Self
	System Call Tracing
	The Analyst
	Sliced Execution

	Results
	Protecting the Kernel Integrity
	Checking the Process Self

	III Applications of the Proposed Approach
	Remote Attestation of Semantic Integrity
	Virtual Machine Integrity Measurement System Architecture
	Formal Model
	Assurance Virtual Machine
	Start-up Attestation and Monitoring
	Trust in the Measurements and in the Node Configuration
	Handling of Anomalous Behavior

	Current Implementation
	Remote Attestation Module
	Description of the Attestation Protocol
	Measurements in a P2P Overlay

	Performance Results
	Attestation

	Code Obfuscation in a Virtual Environment
	Threat Model
	System Blocks and Program Representation
	Representing the Program Through System Blocks
	Algorithm to Build the System Block Graph

	Architecture of the Obfuscation Mechanism
	Control-Flow Partitioning
	Encryption
	Run-Time Components

	Performance Results

	Trusted Overlays of Virtual Communities
	Introduction
	Virtual Interacting Network Community Architecture
	File Sharing
	Application Virtual Machines
	Storage Virtual Machines
	Communication and Control Virtual Machines
	Assurance Virtual Machines
	Infrastructure Virtual Machines

	Performance Results

	IV Final Remarks
	Conclusions
	List of Acronyms
	Meta-Compiler-Compiler Approach
	Retrieving Data-Structures through the Introspection Library
	Source Code of the Testbed Program
	Bibliography

