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Chapter 1

Introduction

The term Mathematical Programming refers to the study of problems having
the aim of minimizing or maximizing a real function of real or integer variables,
subject to constraints on the variables. In this light, the problems can be studied
from both a theoretical point of view (that is their mathematical properties),
an algorithmic point of view (development and implementation of algorithms to
solve them) and an applicative one (application of properties and algorithms to
real world problems).

Among the huge literature of Mathematical Programming, one of the topics
more often approached and studied is the so called “d.c. programming”, which
deals with problems described by means of differences of convex functions.

The origin of d.c. programming can be represented by the pioneering paper
by P. Hartman “On Functions Representable as a Difference of Convex Func-
tions”, published in 1959 on the Pacific Journal of Mathematics [31].

After a fast development in the years 70s-80s [23, 26, 27, 32, 54, 55, 77, 85,
86, 88, 94, 95], d.c. programming became a consolidated field in the years 90s
[29, 57, 58, 60, 62].

The relevance of d.c. programming is not only theoretical but also lies on its
usefulness in applicative problems (see for all [4, 5, 10, 29, 57, 62, 67, 68, 87, 100]
and references therein).

In this Ph.D. thesis the following d.c. program is studied from both a theo-
retical and an algorithmic point of view:

P :
{
min f(x) = c(x)−

∑k
i=1 gi(d

T
i x)

x ∈ X ⊆ Rn (1.1)

The set X is a polyhedron given by inequality constraints Ax ≤ b and/or equal-
ity constraints Aeqx = beq and/or box constraints l ≤ x ≤ u, where A ∈ Rm×n,
b ∈ Rm, l, u ∈ Rn, Aeq ∈ Rh×n, beq ∈ Rh, di ∈ Rn for all i = 1, . . . , k. The
functions c : Rn → R and gi : R → R, i = 1, . . . , k, are convex and continuous.
It is also assumed that there exists α̃, β̃ ∈ Rk such that α̃i ≤ dTi x ≤ β̃i ∀x ∈ X
∀i = 1, . . . , k.

In [82] the particular case of c(x) = 1
2x

TQx+qTx, with q ∈ Rn andQ ∈ Rn×n
symmetric and positive semi-definite, is studied in the following form (where

1



CHAPTER 1. INTRODUCTION

dTi x = yi for all i = 1, . . . , k):

PQ :

 min f(x) = 1
2x

TQx+ qTx−
∑k
i=1 gi(yi)

(x, y) ∈ X × Y ⊆ Rn × Rk
Y = {y ∈ Rk : yi = dTi x, x ∈ X}

(1.2)

In [53] problem PQ is studied in the particular case yi = xi ∀i = 1, · · · , n, while
in [81] the concave case Q = 0 is analyzed.

In this thesis this class of problems is computationally studied with a “branch
and bound” and a “branch and reduce” approaches, pointing out the effective-
ness of partitioning rules and of stack policies for managing the branches. In
this light, the results appeared in the literature are extended and deepened on.
This study can be virtually divided into three main steps.

First of all, problem (1.1) is solved by means of a rectangular branch and
bound approach based on two fundamental rules: the stack policy needed to
manage the stored subproblems and the partitioning criterion needed to create
the subproblems themselves. In this light, we aim to analyze from a compu-
tational point of view different kinds of stacks and diverse partitioning criteria
in order to point out their performance efficiency. Deeply speaking, the results
provided in [53, 82] will be deepened on, devoting a particular attention to the so
called “ω-subdivision process” and “largest distance bisections”. In particular,
it is pointed out that the “ω-subdivisions” provide the better performance just
for small values of k, while when k increases they become the worst criterion
among the compared ones. It is shown also that, for the three considered classes
of functions, the “largest distance bisections” and the “ω-subdivisions” are not
actually computationally equivalent as suggested in [53]. The obtained results
are collected in [7] and submitted to “Operations Research Letters”.

In a second part of this study the class of programs P are approached by
means of a branch and reduce method based on Lagrangean cuts. The main
aim is to deepen on the study proposed in [7] by means of a branch and reduce
approach based on some acceleration devices. In particular, it will be analyzed
the opportunity of using Lagrangean cuts based on duality properties and of
recalculating some of the bounds needed to determine the relaxed convex sub-
problems within the branch process. Seven different partitioning rules are also
evaluated. It will be pointed out that the use of the proposed acceleration de-
vices improves the results given in [7, 82] and deepens on the study in [53, 81].
It will be also shown that the “ω-subdivision” partitioning rule, which is com-
monly used in the literature, is not the better choice. The obtained results
are collected in [8] and submitted to “Central European Journal of Operations
Research”.

The third goal of this work is to deepen on the study of the branch and
reduce method proposed in [8] by analyzing techniques aimed to emphasize
the effectiveness of the Lagrangean cuts. In particular, there are some open
problems related to the resize operations which deserve to be deepened on:

• how many resize operations have to be done in order to improve the per-
formance of the method;

• how often the resize operations should be applied in order to decrease as
much as possible the average CPU time.

2
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In other words, it is wondered which is the most profitable set of indices to be
used for applying the resize operations and whether they have to be applied to
all of the evaluated subproblems or just to some of them. Within this study,
the role of the seven different partitioning rules is also evaluated, pointing out
that the “ω-subdivision” partitioning rule, commonly used in the literature,
is not the better choice. Finally, for the sake of completeness, the proposed
approach is compared with the so called “DCA” method by Le Thi Hoai An
et al, which frequently appeared in the recent literature of global optimization.
The obtained results are published in the Journal of Computational and Applied
Mathematics (see [9]).

The thesis is divided into the following chapters. Chapter 2 contains a survey
of the existent d.c. programming literature. Chapter 3 provides an extended
presentation of the considered class of d.c. programs, the theory and the code
of the algorithms, first the branch and bound version and then the branch and
reduce modification. Chapter 4 contains the results of deep computational tests
and the in-depht study of them. After the great impact of the priority stack
is established, the so called “ω-subdivisions” and “largest distance bisections”
are compared with five further different bisection criteria. The obtained compu-
tational results are presented and deeply analyzed. Chapter 5 contains a brief
presentation of the DCA approach and its underlying theory. The results of
the comparison between DCA and the branch and reduce method are proposed.
Finally, for the sake of completeness two appendixes are provided. Appendix
A contains some applications to real world problems, formulated as d.c. pro-
grams, and solved with the proposed branch and reduce algorithm. Appendix
B contains the tables collecting all of the results of the deep preliminary tests
that lead to obtain the ones exposed in Chapter 4.

The original results of this Ph.D. thesis have been collected in the following
research papers:

1. R. Cambini, F. Salvi, (2009): Solving a class of low rank d.c. programs
via a branch and bound approach: a computational experience, Techni-
cal Report n. 320, Department of Statistics and Applied Mathematics,
University of Pisa, submitted to Operations Research Letters

2. R. Cambini, F. Salvi, (2009): Solving a class of low rank d.c. programs via
a branch and reduce approach: a computational study, Technical Report
n. 321, Department of Statistics and Applied Mathematics, University of
Pisa, submitted to Central European Journal of Operations Research

3. R. Cambini, F. Salvi, (2009): A branch and reduce approach for solving
a class of low rank d.c. programs, Journal of Computational and Applied
Mathematics, vol.233, pp.492-501, ISSN 0377-0427
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