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Grazia Scutellà. She has been a source of support, ideas and encouragement.
I am very grateful to her because she has been an example for me.

I am greatly indebted to Professor Riccardo Cambini, his availability has
been providential every times I needed.

I wish to thank the referees Professors Reha Tütüncü and David B. Brown
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Tütüncü and Professor Byrne who kindly provided me with used data for
the computational analysis.

I heartily thank my colleague and friend Francesca Salvi; we spent a lot of
time together, overlapping troubles and sharing joys. She has often been my
source of inspiration and my model. Affectionately, I want to thank Fausto
and Lorenzo for their advice, their help and their liking, as well as Roberta,
Rossana and Mauro; finally all my colleagues of the Department of Computer
Sciences where I worked during these years and those one of the Department
of Statistics and Applied Mathematics.

A sincere thanks to my family: they have never once failed to support me
when I needed. I am grateful to my mother, her love has been my greatest
strength and it has been of use to go on in the difficult situations; I thank my
father for believing in me all times and my brother for his ever present good
humor and for the technical (and not only) support. I am grateful to Aldo
who supported me unconditionally throughout these years with patience and
affect; and I thank Anna, she has always cheered up me even if she was far.

Finally, I thank all friends and people that have touched my life in special
ways.

ii



Ringraziamenti

Questo lavoro non sarebbe stato possibile senza l’aiuto e il sostegno di
diverse persone. Prima di tutto, vorrei ringraziare il mio supervisore, la
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Sono grata ai Professori Tütüncü e Brown per aver accettato di revisio-
nare la mia tesi e per avermi offerto utili commenti e suggerimenti; il Professor
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Chapter 1

Introduction

1.1 Optimization under uncertainty

Optimization problems very often involve input data and parameters that
are uncertain due to measurement or modeling errors, or simply because they
correspond to quantities that will only be realized in the future, or cannot
be known exactly at the time the problem must be formulated and solved.
Over the years, the interest about this kind of problems has increased, and
a certain number of methodologies have been developed for their solution.

The oldest such method, the “sensitivity analysis” deals with uncertainty
after an optimal solution is obtained. The aim is to determine the parameter
ranges over which the current solution remains optimal, assuming that one
or more parameters can deviate from their nominal value.

Other methods incorporate the uncertainty directly into the computation
of the optimal solution.

The Stochastic Programming approach for example utilizes an underlying
probability model to handle the uncertainty. This approach has been suc-
cessfully applied in a different number of areas, but it remains challenging to
implement it because probability distributions are often unknown in practice
and also because of the intractability of the models when the problem size
grows.

Robust Optimization is a relatively recent framework in which the uncer-
tainty is treated as deterministic. Unlike the traditional approach, robust
optimization incorporates the notion that inputs have been estimated with
errors. In this case, the inputs are not the traditional forecasts, but rather
uncertainty sets including these point estimates. The optimal solution to
the optimization problem is required to remain feasible for any values of the
parameters that fall within these specified uncertainty sets.

1



Introduction 2

In this work we will focus on the Robust Optimization approach in the
context of asset allocation problems, considering however an extension of the
standard notion of robustness that involves also some probability aspects.

1.2 Motivation and overview

Many problems, particularly in financial field, involve necessarily uncer-
tain parameters, like future values of security prices, interest rates and ex-
change rates. This is true, for example, in asset allocation problems. Our
focus is to handle the uncertainty in this kind of problems using a flexi-
ble robust approach [5], in which robustness incorporates some probabilistic
aspects.

The remainder is organized as follows. Chapter 2 provides an overview
of the theory and the applications of robust optimization in the field of ro-
bust asset allocation problems. Starting from the classical mean-variance
optimization problems introduced by Markowitz, we review several robust
models proposed in literature, from the most traditional one to the most
recent developments. We also give an overview of some of the algorithmic
approaches and relative computational results.

By emphasizing the role played by convex risk measures in this environ-
ment, we then describe an innovative approach to robustness which relaxes
the traditional notion of robustness and that specifies not only the values of
the uncertainty parameters, but also their degree of feasibility.

Based on the relaxed robustness related to convex risk measures, Chapter
3 proposes a new family of models that we call norm-portfolio models, that
include as special cases linear programming (LP) and second order cone
programming (SOCP) problems, i.e., computational tractable models. To
define these models we focus on the notion of the penalty function appearing
in the characterization of convex risk measures, and we propose models in
which this function is defined in terms of the general norms in order to obtain
models which are computationally tractable.

Then we study a variant of the proposed family, i.e., the case in which
the used risk measure is a coherent one (a sub-case of the convex one) and
we conclude the chapter with considerations about some used parameters,
that describe an interesting link between this coherent variant of the norm-
portfolio models and one of the most known coherent risk measures studied
in literature, i.e., the Conditional Value at Risk (CVaR).

Chapter 4 provides the implementation of some described models, with
real market data. The aim of the computational analysis is to observe how
different risk measures utilize the scenario information based on past history
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in producing a successful portfolio. We work on three different data sets and
for each of them we lead a twofold analysis: an in-sample analysis through
that we determine suitable values of the parameters in the models, and an
out-of-sample analysis in which we present in a certain sense the “actual”
performance of the models.

Finally, in order to conduct a preliminary comparison among several ro-
bustness types, we compare some norm-portfolio models and their coherent
variant with the following models described in literature: the classical CVaR,
some standard robust models and a soft robust model. Our aim is to un-
derstand how the greater flexibility influences the optimal portfolio values.
To compare the models we use the following statistics: the out-of-sample
mean, variance, Sharpe Ratio of realized return, portfolio turnover and the
computational cost (i.e., the time needed to solve each model).

In general, from the computational analysis the following key observations
are drawn: in the first experiment between a traditional robustness and a
more relaxed robust approach, the second type always outperforms the first
one. In other words, by relaxing the robustness constraints in a flexible way,
one can potentially gain out-of-sample performance for not too high of a
price. Among the flexible type robustness, the soft one (incorporated by a
so-called entropic model) is without doubts the best approach in terms of
almost all criteria adopted in order to compare the models, even if it results
the most expensive in terms of the transaction costs, i.e., by evaluating the
variability of assets into portfolio and above all in terms of the computational
cost.

In the second computational test, the standard robustness shows a better
performance than relaxed one in terms of variability, risk-return relation and
portfolio turnover. The standard approach results more robust than relaxed
one, although soft robustness incorporated by the entropic model produces
by far the best performance.

In the last computational test the related robustness incorporated by
the norm-portfolio approach and the soft one incorporated by the entropic
model provide a better performance with respect to the traditional approach.
In particular, traditional robustness produce the worst performance at the
highest cost in terms of portfolio turnover.

Finally, Chapter 5 presents some final comments and directions for future
research.



Chapter 2

Robust asset allocation
problems: a literature review

2.1 Asset Allocation Problems

Portfolio selection problems were formulated for the first time by Markowitz
in 1952. They consist in allocating capital over a number of available assets
in order to maximize the “return” on the investment while minimizing the
“risk” using mathematical techniques. In the proposed models, the return
is measured by the expected value of the random portfolio return, while the
risk is quantified by the variance of the portfolio (mean-variance models).

Despite the strong theoretical support proved by mean-variance models,
their elegance and the availability of efficient computer codes for solving
them, these models present various practical pitfalls: optimal portfolios are
not well diversified, in fact they tend to concentrate on a small subset of the
available securities and, above all, they are often very sensitive to changes in
input parameters.

2.1.1 Formulations of asset allocation problems

Let n be the number of available assets and X be the set of feasible
portfolios defined as

X =

{

x ∈ R
n|

n
∑

j=1

xi = 1, xj ≥ 0, j = 1, · · · , n

}

(2.1)

i.e., a non-empty and bounded set where no short sales are allowed.
The set X in (2.1) is only an example of feasible portfolio set, additional

constraints in fact, could be added to describe it.

4



Chapter 2. Robust asset allocation problems 5

Then, the classical Markowitz’ mean-variance optimization (MVO) models
can be formulated as follows:

1) maximize the expected return subject to an upper limit on the variance:

max µT x

s.t. xT Qx ≤ σ (2.2)

x ∈ X;

2) minimize the variance subject to a lower limit on the expected return:

min xT Qx

s.t. µTx ≥ R

x ∈ X;

(2.3)

3) maximize the risk-adjusted expected return:

max µT x − λxT Qx

s.t. x ∈ X
(2.4)

where µ and Q denote the estimated expected return vector and the
covariance matrix of the given assets respectively and λ ∈ R indicates a
risk-aversion parameter.

These three models are parametrized by the variance limit, the expected
return limit and the risk-aversion parameter, respectively. Let us observe that
while the first formulation can not be classified as convex QP problem because
of nonlinear variance constraint, the latter two are convex QP problems [53,
79].

Mean-variance portfolios generated using the sample expected return and
covariance matrix of the asset returns perform poorly out of sample due to
estimation errors [17, 20, 25, 56].

A study of Black and Litterman [17] for example demonstrated that small
changes in the expected returns, in particular, had a substantial impact in the
portfolio composition. It is indeed commonly accepted that estimation errors
in the sample expected return are much larger than in sample covariance
matrix [24, 45]. For this reason, researchers have recently focused on the
so-called minimum-variance optimization models:

min xT Qx

s.t. x ∈ X,
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which rely solely on estimates of the covariance matrix.
However, also these portfolios are quite sensitive to estimation errors and

have unstable weigths that fluctuate substantially over time. The main mo-
tivation is that the sample covariance matrices, on which minimum-variance
portfolios are based on, are the maximum likelihood estimators (MLE) for
normally distributed returns, and the efficiency of these estimators is highly
sensitive to deviations of the asset-return distribution from the implicitly
assumed normal distribution. This is particular relevant for portfolio asset
allocation, where extensive evidence shows that the empirical distribution of
the asset returns usually deviates from the normal distribution, [28].

For this, incorporating the uncertainty about the accuracy of the es-
timates in the portfolio optimization process becomes crucial for practical
applications.

A way to handle the uncertainty in minimum-variance models is to use
suitable robust estimators of the portfolio return characteristics, that allow
one to generate portfolios with better stability properties. A robust estimator
is one which should have good properties not only for the assumed (normal)
distribution, but also for distributions in a neighborhood of the assumed
one (see [44]). The class of models based on robust estimators will be not
reviewed in this dissertation. The interested reader is referred to [22, 62, 55]
for two-steps approach and [28, 49] for innovative one-step approach.

2.2 Robust Optimization

Robust Optimization refers to modeling of optimization problems with
uncertain data to obtain a solution that is guaranteed to be “good” for all
or most possible realizations of the uncertain parameters. Uncertainty in the
parameters is described through uncertainty sets that contain many possible
values that may be realized for the uncertain parameters. The size of the
uncertainty set is determined by the level of desired robustness.

2.2.1 Absolute robustness

Let us consider a general formulation of an optimization problem:

min {c(x) | x ∈ X} (2.5)

where c(x) is a generic objective function, x ∈ R
n is a decision vector and X

represents the set of feasible solutions.
In general, uncertainty could affect either the constraints (constraint ro-

bustness) or the objective function (objective robustness); in the first case we
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seek solutions that are feasible for all possible values of the uncertain inputs,
in the second one we seek solutions that minimize the maximum value of the
objective function value considering all possible realizations of the uncertain
parameters inside the uncertainty set.

Let us consider an optimization problem in which the uncertainty appears
in constraints, i.e.:

min
x

c(x)

s.t. G(x, p) ∈ K
(2.6)

where like before x and c() are the decision vector and the objective function,
respectively; G and K are the structural elements of the constraints that are
assumed to be certain. Let us consider an uncertainty set U that contains
all possible values of the uncertain parameters p, then a constraint-robust
optimal solution can be found by solving the following problem:

min
x

c(x)

s.t. G(x, p) ∈ K, ∀p ∈ U.
(2.7)

The vector x∗ that solves (2.7) is called a robust solution of the uncertain
problem. A robust feasible solution to the robust counterpart (2.7) should,
by definition, satisfy all realizations of the constraints from the uncertainty
set U, and a robust optimal solution to (2.7) is a robust feasible solution with
the best possible value of the objective function.

Now, let us observe that an optimization problem in which uncertain pa-
rameters appear in both the objective function and constraints can be easily
reformulated like (2.7) simply introducing an auxiliary variable. Indeed, let
us consider the following problem

min
x

c(x, p)

s.t. G(x, p) ∈ K
(2.8)

in which the uncertain parameters p appear both in the objective function
and in the constraints. Problem (2.8) is equivalent to the following one:

min
t,x

t

s.t. t − c(x, p) ≥ 0

G(x, p) ∈ K

(2.9)
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i.e., a problem in which all uncertainties are in the constraints.
There is an alternative procedure to handle uncertainty in the case in

which it affects the objective function; this procedure consists in finding
solutions whose worst-case behaviour is optimized. The worst-case behaviour
of a solution corresponds to the value of the objective function for the worst
possible realization of the uncertain data for that particular solution. Let us
consider the following optimization problem:

min
x

c(x, p)

s.t. x ∈ X.
(2.10)

As before, let us denote by U the uncertainty set that contains all possible
values of the uncertain parameter p. Then an objective robust solution can
be obtained by solving:

min
x∈X

max
p∈U

c(x, p). (2.11)

2.2.2 Relative robustness

Measuring the worst case in absolute way as seen in the previous sub-
section is much conservative and it is not consistent with the risk tolerances
of many decision-makers. This is the starting observation of the relative ro-
bustness approach. The idea of relative robustness is to measure the worst
case in a relative manner, i.e., relative to the best possible solution under
each scenario.

In other words, the relative robustness criteria, also called minimax regret,
consists in finding a solution x∗ ∈ X such that the maximum deviation
between the objective function c(x, p) and the optimal value function z∗(p)
is minimized under each scenario, i.e., a relative-robust solution is a vector x

that minimizes the maximum regret:

min
x∈X

max
p∈U

c(x, p) − z∗(p) (2.12)

where
z∗(p) = min

x∈X
c(x, p) .

While it is intuitively attractive, relative robust formulations can also be
more difficult than the standard absolute-robust formulations. Indeed, since
z∗(p) is the optimal-value function and involves an optimization problem
itself, problem (2.12) is a three-level optimization problem as opposed to
the two-level problems in absolute-robust formulations. Furthermore, the
optimal value function z∗(p) is rarely available in analytic form and it is
hard to analyze.
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2.2.3 Adjustable robust optimization

Robust optimization formulation we described above assumes that un-
certain parameters will not be observed until all decision variables are de-
termined and therefore do not allow for recourse actions that may be based
on realized values of some of these parameters. Indeed, for example, multi-
period decision models involve uncertain parameters, some of which are re-
vealed during the decision process. Adjustable robust optimization (ARO)
formulations model these decision environment and allow recourse action.
These models are closely related to stochastic programming formulations
with recourse. Let us consider a two-stage linear optimization problem whose
first-stage decision variables x1 need to be determined now, while the second-
stage decision variables x2 can be chosen after the uncertain parameters of
the problem, A1, A2 and b, are realized:

min
x1,x2

{

cT x1 : A1x1 + A2x2 ≤ b
}

. (2.13)

Let U denote the uncertainty set for parameters A1, A2 and b.
Instead of the standard constraint-robust optimization formulation in

which both sets of variables must be chosen before the uncertain parameters
can be observed and therefore cannot depend on these parameters, the ad-
justable robust optimization formulation allows to choice the second-period
variables x2 on the basis of the realized values of the uncertain parameters.
As a result, the adjustable robust counterpart problem is given as follows:

min
x1

{

cT x1 : ∀ (A1, A2, b) ∈ U, ∃x2 ≡ x2(A1, A2, b) : A1x1 + A2x2 ≤ b
}

.

Soyster [75] was one of the first researchers to investigate explicit ap-
proaches to robust optimization.

Then, Ben-Tal and Nemirovski in [7, 8] as well as separately El Ghaoui,
Oustry and Lebret in [32, 33] continued to investigate this innovative ap-
proach focusing also on computational issues.

Robust optimization techniques have been applied in several fields: telecom-
munications, control theory, network flow problems, engineer design, supply
chain problems and finance.

In the whole work we will present, we will focus on models characterized
by a robustness of absolute type applied in the financial optimization prob-
lems field in which future values of security prices, interest rates and exchange
rates are not known in advance, but can only be forecast or estimated.
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2.2.4 Robust mean-variance models

Recalling the portfolio asset allocation problems reviewed in section 2.1.1,
let us assume now that the uncertain expected return vector µ and the un-
certain covariance matrix Q of the asset returns belong to uncertainty sets
having the following form of intervals:

Uµ =
{

µ : µL ≤ µ ≤ µU
}

and UQ =
{

Q : Q � 0, QL ≤ Q ≤ QU
}

, (2.14)

where the relation ≤ is intended to hold true componentwise (both con-
sidering vectors and matrices), while the restriction Q � 0 is a necessary
condition so that Q is a covariance matrix, i.e., we assume that Q is a posi-
tive semidefinite matrix.

Based on the above introduced uncertainty sets, in [79] Tütüncü and
Koenig have formulated some robust counterparts of problems (2.4) and (2.3)
by exploiting formulations previously introduced in [41, 43]. In order to
generate the extreme values of the intervals (2.14), the authors use percentiles
techniques, but several other methods could be used to do this, both using
the available time series and by generating estimates of parameters needed.

The first robust model looks for a feasible portfolio x such that its mini-
mum risk-adjusted expected return, when both parameters vary in the given
uncertainty sets, is the maximum one among the feasible portfolios. On the
other hand, the latter robust model looks for a feasible portfolio which gua-
rantees the lower limit R on the expected return also in the worst case, i.e.,
for the worst realization of parameter µ in Uµ, and which minimizes the vari-
ance in the worst realization of parameter Q in the uncertainty set UQ. The
resulting robust counterparts are therefore:

max
x∈X

{

min
µ∈Uµ,Q∈UQ

µT x − λxT Qx

}

(2.15)

and

min max
Q∈UQ

xT Qx

s.t. min
µ∈Uµ

µT x ≥ R, (2.16)

x ∈ X

Under certain simplifying assumptions, that is when QU is a positive
semidefinite matrix, these robust problems can be reduced to pure MVO
problems. In such a special case, the best asset allocation can in fact be
determined by first fixing the worst-case input data in the considered uncer-
tainty sets, that is µL for the uncertain mean return vector µ and QU for
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the uncertain covariance matrix Q, and then solving the resulting QP pro-
blems [79]. Without these assumptions, it is not possible to solve the robust
asset allocation problems as standard QPs. In the general case, the robust
counterparts (2.15) and (2.16) can be solved using a nonlinear saddle-point
formulation that involves semidefinite constraints, [43].

Let Ψλ(x, µ, Q) = µT x−λxT Qx be the objective function of the problem
(2.15), with x ∈ X and (µ, Q) ∈ U = (Uµ × UQ). For fixed (µ, Q) ∈ U and
given λ ≥ 0, Ψλ is a concave quadratic function of x. On the other hand,
fixed x and λ, the function Ψλ is a linear function of µ and Q. Moreover,
X and U are non-empty and bounded sets. Then, from [43] (see Lemma
2.3), we have that the optimal values of the following pair of primal and dual
problems

max
x∈X

{

min
(µ,Q)

Ψλ (x, µ, Q)

}

min
(µ,Q)∈U

{

max
x∈X

Ψλ(x, µ, Q)

}

(2.17)

are equal, and they are obtained at a saddle-point of the function Ψλ(x, µ, Q).
That is, there exists a vector x̄ ∈ X and a vector-matrix pair (µ̄, Q̄) ∈ U such
that:

Ψλ(x, µ̄, Q̄) ≤ Ψλ(x̄, µ̄, Q̄) ≤ Ψλ(x̄, µ, Q), ∀x ∈ X, (µ, Q) ∈ U. (2.18)

Moreover, x̄ ∈ X and (µ̄, Q̄) ∈ U solve both problems in (2.17). Therefore,
the robust counterpart (2.15) can be solved using the literature on saddle-
point problems and related algorithmic approaches, such as the one in [43].
In a similar way it is possible to solve the robust counterpart (2.16).

From a computational point of view, the authors describe an algorithm to
generate the so-called robust efficient frontier. Given µ, Q and X, the efficient
frontier is the collection of portfolios that are Pareto-optimal solutions to
problem (2.16) when R varies (or to problem (2.15) when λ varies), [53].
Since the methods proposed in the literature to generate the efficient frontier,
such as the method of critical lines in [53], are either not available or not
implemented for the robust case, the authors propose and implement the
following approach, that generates a discrete approximation to the robust
efficient frontier. Firstly they determine the robust efficient portfolios with
the lowest and highest expected returns, discretize the range between these
two extremes to obtain a finite number of set levels of the expected return,
and then solve problem (2.16) for each level of the expected return. To
obtain the robust efficient portfolios with the lowest and highest expected
returns, as well as to solve problem (2.16) for each intermediate value, they
use the saddle-point algorithm developed by Halldörsson and Tütüncü in
[43] which is an interior-point path-following method with computationally
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attractive polynomial-time convergence guarantees. The authors apply the
robust asset allocation methods to two market data sets, and compare the
robust efficient frontier to the classical efficient frontier, generated solving
model (2.3). The first data set is composed of 5 asset classes, spanning the
period January 1979 to July 2002, for a total of 283 months. The second
data set addresses 8 asset classes over the period July 1983 to July 2002, for
a total of 229 months. The computational analysis demonstrates that the
portfolios generated using the proposed robust techniques have a significantly
better worst-case behaviour than the classical MVO portfolios, i.e., the robust
approaches guarantee a risk reduction for worst-case scenarios. For example,
in one considered data set, the robust efficient portfolio achieving a 7.5%
worst-case annualized expected return has an 8% standard deviation, while
the classical efficient portfolio with a 7.5% worst-case annualized expected
return has approximately 12% standard deviation, indicating that it is signifi-
cantly riskier. Moreover, the generated robust portfolios show more stability
over time, that is, they remain relatively unchanged over long periods of
time. The overall conclusion of the authors is that, “by directly addressing
some of the weaknesses of classical MVO models, the proposed robust models
provide a valuable asset allocation vehicle to conservative investors ”.

An alternative method for modeling the uncertainty was proposed in [41]
using the factor model.

Let us consider a standard factor model for representing the return vector
r ∈ R

n, that is
r = µ + V T f + ε

where, according to the previous notation, µ is the expected return vector.
In the formula, f ∈ R

m is the vector of random returns of the m (< n) factors
that drive the market, V ∈ R

m×n denotes the matrix of factor loading and
ε is the vector of residual returns. The parameters (µ, V ) are estimated by
linear regression. Given market data consisting of samples of asset return
vectors and the corresponding factor returns, the linear regression procedure
computes the least squares estimates (µ0, V0) of (µ, V ).

The covariance matrix of the returns, Q, can be expressed as

Q = V T FV + D,

where F is the covariance matrix of the factor returns and D is the diagonal
matrix of the error term variances.

The individual elements di of the diagonal matrix D are assumed to be-
long to intervals [di, d̄i], i.e., the uncertainty set Sd for the error matrix D is
given by:

Sd =
{

D : D = diag(d), di ∈ [di, d̄i], i = 1, . . . , n
}

.
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On the other hand, the uncertainty set for the matrix of factor loading
V is the following ellipsoidal set:

Sv = {V : V = V0 + W, ‖Wi‖G ≤ ρi, i = 1, . . . , n}

where V0 = [V̄1 · · · V̄n] is the least square estimate of V , ρi are given bounds
and Wi denotes the i-th column of W , for i = 1, · · · , n, while ‖w‖G =√

wT Gw denotes the Euclidean (elliptic) norm of w with respect to a sym-
metric positive definite matrix G 1. Finally, the expected return vector µ is
assumed to lie in the uncertainty set Sm given by:

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n}

where γi are given bounds (i.e., each component of µ is assumed to lie within
a certain interval).

According to the factor model, the return of a portfolio x is:

rx = rT x = µT x + fTV x + εTx

where µ and V are the uncertain parameters. Similarly, its variance is:

xT Qx = xT V T FV x + xT Dx,

where V and D are assumed to be uncertain.

By considering the uncertainty sets Sd, Sv and Sm above defined, Goldfarb
and Iyengar derive the following robust analog of the Markowitz’s mean-
variance optimization problem (2.3):

min max
{V ∈Sv,D∈Sd}

xT Qx

s.t. min
{µ∈Sm}

E(rx) ≥ R, (2.19)

x ∈ X

where E(rx) represents the expected value of the portfolio return.
At the same way, the authors derive the following robust counterpart of

problem (2.2):
max min

{µ∈Sm}
E(rx)

1“A way to define G is related to probabilistic guarantees on the likelihood that the

actual realization of the uncertain coefficients will lie in the ellipsoidal uncertainty set

Sv. Specifically, the definition of matrix G can be based on the data used to produce the

estimates of the regression coefficients of the factor model” [35].
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max
{V ∈Sv,D∈Sd}

xT Qx ≤ σ (2.20)

x ∈ X

Under the hypothesis of normality of rx (it is in fact assumed that rx

follows a normal distribution N(µT x, xT (V T FV + D)x)), and considering
the uncertainty sets above defined, the authors prove that the robust op-
timization problem (2.19) can be reduced to a second order cone program-
ming problem (SOCP) that can be solved very efficiently using interior point
algorithms,[1, 51, 60, 76].

In fact, both the worst case and the practical computational effort re-
quired to solve a second order cone programming problem is comparable to
that for solving a convex quadratic program of similar size and structure;
in practice, the computational effort required to solve these robust portfo-
lio selection problems is comparable to that required to solve the classical
Markowitz mean-variance portfolio selection problems. The reduction to a
second order cone programming problem is subsequently shown for the robust
counterpart (2.20).

In [41], the authors further improve the factor model by addressing uncer-
tainty also in the factor covariance matrix, and show that, for natural classes
of uncertainty sets, all robust counterparts continue to be second order cone
programming problems. They also show that these natural classes of uncer-
tainty sets correspond to the confidence regions associated with the maxi-
mum likelihood estimation of the covariance matrix. Finally, computational
experiments are performed using the Sharpe ratio variant of the proposed
robust framework. This variant and the related computational results will
be reviewed in Section 2.2.5.

2.2.5 The Sharpe ratio problem and its robust coun-

terparts

A way to incorporate in asset allocation models also assets considered
essentially riskless is to study the following optimization problem, called the
Sharpe Ratio Problem:

max
µT x − rf
√

xT Qx

x ∈ X,

where rf represents the known return on a riskless asset. The Sharpe ratio,

i.e., h(x) =
µT x−rf√

xT Qx
, is a measure that evaluates the excess return per unit of

risk.
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Since this maximization problem has a nonlinear and nonconcave objec-
tive function, and therefore it may be difficult to solve it directly in [41] the
authors proposed an elegant argument to formulate the problem in terms of
a convex minimization problem. All is based on the observation that eT x = 1
whenever x ∈ X (e represents an n-dimensional vector of 1’s) since propor-
tions in all securities must sum 1. Therefore the Sharpe ratio h(x) can be
rewritten as a homogeneous function of x, say g(x), as follows:

h(x) =
µT x − rf
√

xT Qx
=

(µ − rfe)
T x

√

xT Qx
=: g(x) = g

(x

k

)

k > 0. (2.21)

The term µ − rfe is the excess return of the risk-free rate. In [41], the
authors proved that when X has the form (2.1), the optimal solution is not
influenced if the normalization constraint eT x = 1 is replaced with constraint
(µ − rfe)

T x = 1 .
In [79] the authors proved that a similar reduction can be achieved even

when X is not in the form in (2.1), as long as x ∈ X implies eT x = 1. Under
this assumption, and using the observation that h(x) = g(x) and g(x) is
homogeneous, a portfolio x∗ with the maximum Sharpe ratio can be found
by solving the following problem:

min xT Qx

s.t (µ − rfe)
T x = 1 (2.22)

(x, k) ∈ X+

where X+ is a cone that lives in a one higher-dimensional space than X, and
which is defined as follows:

X+ =
{

x ∈ R
n, k ∈ R | k > 0,

x

k
∈ X

}

∪ {(0, 0)} . (2.23)

Moreover, the normalizing constraint can be relaxed to (µ − rfe)
T x ≥ 1 by

recognizing that this constraint will always be tight at an optimal solution.
Based on this observation, in [79] is proposed the following robust counter-

part of the relaxed maximum Sharpe ratio problem, where the sets
Uµ =

{

µ : µL ≤ µ ≤ µU
}

and UQ =
{

Q : Q � 0, QL ≤ Q ≤ QU
}

are pre-
viously defined:

min

{

max
Q∈UQ

xT Qx

}

(x, k) ∈ X+ (2.24)

min
µ∈Uµ

(µ − rfe)
T

x ≥ 1.
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This robust counterpart, too, can be solved by reducing it to a second order
cone programming problem [41], [79].

Let us consider the computational results about the robust counterpart
(2.22) as reported in [41]. Like in the computational experiments performed
in [79] for problems (2.15) and (2.16), the aim is to contrast the performance
of the classical portfolio selection strategies with that of the robust portfolio
selection strategies. Two types of computational tests are conducted, on
simulated data and on real market data, by selecting the classical and robust
portfolios via the corresponding maximum Sharpe ratio problems.

Consider the simulated data. By varying a confidence threshold ω from
0.01 to 0.95, where ω is used to generate the uncertainty sets the authors
perform some independent runs; in particular, if ω is chosen very high, the
uncertainty sets will be very large, leading to very conservative portfolios; on
the other hand, if ω is chosen too low, the portfolio choice will not be robust
enough. Then, they compare the mean Sharpe ratio of the robust portfolios
to that of the classical portfolios, as well as the worst-case Sharpe ratio of
the robust portfolios to that of the classical portfolios, where the worst-case
Sharpe ratio of a portfolio is the minimum Sharpe ratio when the parameters
vary in the uncertainty sets Sd, Sv and Sm introduced in Section 2.2.4.

The main result is that the mean performance of the robust portfolios
does not significantly degrade as ω increases. On the other hand, the worst-
case performance of the robust portfolios is about 200% better than the one
of the classical portfolios. Moreover, robust portfolios are able to withstand
noisy data considerably better than classical portfolios.

Concerning the real data, the authors perform an out-of-sample analysis
in order to compare the classical and the robust strategies on a universe
of 43 assets and 5 factors, spanning the period January 1997 to December
2000. Specifically, they divide the whole time series into investment periods
of length 90 days; for each investment period they estimate the covariance
matrix and the factor matrix, then setting all other parameters required in
their model, they compute the robust and the classical portfolios solving
the robust and the classical maximum Sharpe ratio problems, respectively.
Finally, they compute the “actual” return of the generated portfolios by
evaluating the return of the portfolios generated at period t with the return
data available at t+1, and plot the relative performance of the robust strategy
with respect to the classical strategy. For the particular data sequences used,
the robust strategy appears to be clearly superior; i.e., it generates a larger
return at a smaller computational cost when ω is sufficiently large. On the
other hand, for small values of ω, i.e., when the portfolios generated through
the robust strategy are not robust enough, no discernible trend is observed
by the authors.
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2.3 Robustness and risk measures

2.3.1 Risk measures

Recently, there has been an increasing interest in defining quantitative
methods for assessing the risk of financial positions. Simplistically speaking,
it is possible to distinguish between two types of risk measures: dispersion
and downside measures [35]. Dispersion measures consider both positive
and negative deviations from the expected return, and treat these devia-
tions as equally risky. A well-known dispersion measure is portfolio standard
deviation (and portfolio variance), used in the previously reviewed minimum-
variance and mean-variance optimization models. On the other hand, down-
side risk measures traditionally address the probability that the portfolio
return is above a minimal acceptable level.

The theory of risk measures has made significant progress in recent years.
Here we introduce some advanced concepts of risk measures, together with
related mean-risk optimization models.

Let Y be a real-valued function on a set Ω of possible scenarios that
represents the return from an investment portfolio over a fixed period of time.
A negative value for Y indicates loss. Then, a quantitative measure of risk
can be modelled as a mapping ρ from the space of these return functions into
the real line. This is the classical definition of measure of risk, as provided
in [2] in their seminal contribution. In that paper, the authors have initiated
a systematic analysis of the concept of risk measure, by formulating certain
axioms which should be satisfied by any reasonable measure of risk. See also
[30] for a review of risk measures in the framework of setting solvency capital
requirements for a risky business.

In this paper, we introduce the definition of “monetary measure of risk”
as in [38], as well the corresponding definitions of convex and coherent risk
measures. From these definitions, Föllmer and Schied in [38] provided some
risk measure characterizations that have been used, quite recently, to model
interesting robust optimization models for asset allocation problems.

Let us denote by Φ the set of all bounded measurable functions on a set
of scenarios Ω, and P be the set of all probability measures on Ω. For any
Y, Z ∈ Φ, the shortand notation Y ≤ Z denotes Y (ω) ≤ Z(ω) ∀ω ∈ Ω. We
define the following, [38]:

Definition 2.1. A mapping ρ : Φ → R is called a monetary measure of risk
if it satisfies the following conditions for all Y, Z ∈ Φ:

Monotonicity : if Y ≤ Z, then ρ(Y ) ≥ ρ(Z).

Cash Invariance: if m ∈ R, then ρ(Y + m) = ρ(Y ) − m.
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The financial meaning of monotonicity is that the downside risk of a
position is reduced if the payoff profile is increased. Cash invariance, also
called translation invariance, is motivated by the interpretation of ρ(Y ) as
a capital requirement. Thus, if the amount m is added to the position and
invested in a risk-free manner, the capital requirement is reduced by the same
amount.

Definition 2.2. A monetary measure of risk ρ : Φ → R is called a convex
measure of risk if it satisfies

Convexity: ρ (λY + (1 − λ) Z) ≤ λρ (Y ) + (1 − λ) ρ (Z)∀0 ≤ λ ≤ 1,
∀Y, Z ∈ Φ.

The axiom of convexity states that diversification should not increase the
risk.

Definition 2.3. A convex measure of risk ρ is called a coherent risk measure
if it satisfies 2

Positive homogeneity: if λ ≥ 0, then ρ (λY ) = λρ (Y ) .

If a measure of risk ρ is positively homogeneous, then it is normalized,
i.e., ρ(0) = 0.

In [2], Artzner et al. provided the following characterization of coherent
risk measures (also recalled in [38]):

Theorem 2.3.1. A functional ρ : Φ → R is a coherent measure of risk if
and only if there exists a subset Q⊆ P such that

ρ (Y ) = sup
q∈Q

Eq [−Y ] , Y ∈ Φ, (2.25)

where Eq [−Y ] denotes the mean value of −Y (i.e., the expected loss)
with respect to the probability q.

Such a characterization can be generalized to convex measures of risk in
the following way, [36]:

2In [2], a mapping ρ : Φ → R is called a coherent measure of risk it it satisfies the four
axioms of translation invariance, positive homogeneity, monotonicity and subadditivity,
where subadditivity states that, ∀Y, Z ∈ Φ, ρ(Y + Z) ≤ ρ(Y ) + ρ(Z); convexity is a
consequence of these axioms.
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Theorem 2.3.2. Suppose that Ω is a finite set 3. Then ρ : Φ → R is a
convex measure of risk if and only if there exists a penalty function α : P→
R ∪ (−∞, +∞] such that

ρ(Y ) = sup
q∈P

(Eq [−Y ] − α (q)) . (2.26)

The function α satisfies α(q) ≥ −ρ(0) for any q ∈ P, and it can be taken to
be convex and lower semicontinuous on P.

In the above characterization, function α has the role to assign a possibly
different weight to the probabilities in P, by suitably penalizing some of them.
In particular, by choosing α (q) = 0 for all q ∈ Q, and +∞ otherwise, the
characterization of coherent measures of risk stated by Theorem 2.3.1 can be
derived as special case. The characterization expressed by Theorem 2.3.2 has
been recently exploited in order to propose more flexible robust models for
asset allocation problems. This will be the subject of Section 2.3. Here let
us review some well-known measures of risk together with related mean-risk
optimization models.

In the literature, a well-known measure of risk is Value at Risk (VaR),
developed by engineers at J.P. Morgan. VaR represents the predicted maxi-
mum loss with a specified probability level over a certain period of time. Let
fx(ω) denote the loss function of a portfolio x ∈ X when ω is the realization
of some random events (so, fx(ω) = −Y according to our previous notation).
Then, the α-VaR risk measure of x is defined as follows:

V aRα(x) = min {γ : Prob (fx(ω) ≥ γ) ≤ 1 − α} ,

where α is a given probability level, and Prob denotes the probability with
respect to a given reference probability on the set of scenarios Ω, say p ∈
P . In other words, VaR is defined as the minimum level γ such that the
probability that the portfolio loss exceeds γ is less than or equal to 1 − α.

Some practical and computational issues related to VaR are discussed
in [39], where the authors describe a method of calculating the portfolio
giving the smallest VaR among those which yield at least a specified ex-
pected return. The method consists in approximating the historic VaR by a
“smoothed” VaR which filters out local irregularities. Therefore, it is based
on historic simulation. Several other approaches to VaR optimization are
used in practice; in some contexts it is proved that VaR can be a suitable
measure of risk, as in [59].

3There exists also a generalization of this theorem to the case where Ω is an infinite
set [36].
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However, VaR has also some undesirable properties as a risk measure.
First, if studied in the framework of coherent risk measures [2], it lacks
subadditivity (and therefore convexity). An additional difficulty with VaR
may be in its computation and optimization. In fact, when VaR is calculated
from generated scenarios, it turns out to be a nonsmooth and nonconvex
function of the positions in the investment portfolio.

Another criticism of VaR is that it pays no attention to the magnitude
of losses beyond the VaR value. This and other undesirable features of VaR
led to the development of alternative risk measures. One well-known modi-
fication of VaR is the Conditional Value at Risk (CVaR), which measures
the expected loss exceeding VaR. With respect to the classification of risk
measures previously reviewed, CVaR classifies as a coherent risk measure (it
is also a concave distortion risk measure), whereas VaR is a distortion risk
meausure but it is not coherent (and therefore it is not a concave distortion
risk measure).

Specifically, given a probability level α, the α-CVaR associated with a
portfolio x is defined as follows:

CV aRα (x) =
1

1 − α

∫

fx(ω)≥V aRα(x)

fx(ω)p (ω) dω

where, as before, fx(ω) denotes the loss function when the portfolio x is
choosen from the set X of feasible portfolios and ω is the realization of the
random events, while p (ω) denotes the reference probability of ω.

In [70], the authors showed that minimizing CVaR can be achieved by
minimizing a more tractable auxiliary function without predetermining the
corresponding VaR first. They introduced the following simpler auxiliary
function

Fα(x, γ) = γ +
1

1 − α

∫

fx(ω)≥γ

fx (ω)p (ω) dω. (2.27)

This formulation can be written in the following equivalent way:

Fα(x, γ) = γ +
1

1 − α

∫

(fx(ω) − γ)+p (ω) dω (2.28)

where a+ = max {a, 0}. The authors showed that Fα(x, γ) verifies some
interesting properties such that minimizing CVaR is equivalent to minimize
the auxiliary function Fα(x, γ), i.e., :

min
x∈X

CV aRα(x) = min
x∈X,γ

Fα(x, γ).

Moreover, if fx (ω) is a convex (linear) function of the portfolio variables x,
then Fα(x, γ) is also a convex (linear) function of x. In this case, conside-
ring that the feasible portfolio set X is also convex, the above optimization
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problem is a smooth convex optimization problem that can be solved using
well-known optimization techniques. In particular, the authors formulated
the problem in the discrete case, obtaining a tractable formulation. Assume
that the set of scenarios Ω comprises N scenarios ω1, . . . , ωN , and that all
scenarios have the same probability (so, p (ω) = 1

N
∀ω). In this case the

auxiliary function Fα(x, γ) can be approximated by the following function:

F̃α(x, γ) = γ +
1

(1 − α)N

N
∑

k=1

(fx (ωk) − γ)+
. (2.29)

Hence, the problem min
x∈X

CV aRα(x) can be approximated by replacing Fα(x, γ)

with F̃α(x, γ), obtaining the following formulation:

min
x,z,γ

γ +
1

(1 − α)N

N
∑

k=1

zk

s.t. zk ≥ 0, k = 1, . . . , N

zk ≥ fx(ωk) − γ, k = 1, . . . , N

x ∈ X,

where zk are artificial variables used to model (fx(ωk) − γ)+, k = 1, . . . , N .
This formulation of CVaR usually results in convex programs and even

linear programs (when fx(ω) is a linear loss function). Thus, Rockafellar
and Uryasev’s work opened the door to the application of CVaR to financial
optimization and risk management in practice.

In the following section we review some robust models that are based on
VaR and CVaR.

2.3.2 Robust VaR and CVaR models

According to the previous definition, the portoflio α-VaR optimization
problem consists in determining a portfolio x which minimizes the VaR risk
measure with respect to a given confidence level α, i.e. :

min γ

s.t. P rob(fx(ω) ≥ γ) ≤ 1 − α (2.30)

x ∈ X.

Assuming that the asset returns are multivariate normally distributed
(Normal VaR), in [41] the authors derived a robust counterpart of this for-
mulation using the factor model to describe the future returns, and assuming
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that there is some errors in the estimation of the expected return vector and
of the covariance matrix. No computational results have been provided by
the authors concerning this robust counterpart.

However, in some contexts it may be not realistic to assume that the
asset returns follow a multivariate normal distribution, as observed before.
For this reason, El Ghaoui et al. in [34] proposed an alternative formulation.
The authors assume that the distribution of the returns is partially known,
in the sense that only bounds on the first two moments (mean and covariance
matrix) are available. In particular, let Q denote the set of allowable distri-
butions. For example, Q could represent the set of Gaussian distributions
with mean x̂ and covariance matrix Γ, where x̂ and Γ are only known up to
a given componentwise bound.

Then, given a probability level α ∈ (0, 1) and a portfolio x ∈ X, the
authors introduce the notion of Worst-case VaR with respect to Q as follows:

min γ

s.t. sup
q∈Q

Probq(fx(ω) ≥ γ) ≤ 1 − α, (2.31)

where Probq denotes here the probability with respect to q. Calling VQ(x) the
Worst-case VaR, i.e., the optimum value of problem (2.31), the corresponding
robust portfolio optimization problem is defined as follows:

min VQ(x) s.t. x ∈ X. (2.32)

In [34], El Ghaoui et al. prove that, for a large class of allowable probability
distribution sets Q, problem (2.32) can be solved via a semidefinite program-
ming reformulation (SDP). Specifically, the authors examine two kinds of
bounds, i.e., polytopic and componentwise, as well as uncertainty structures
arising from factor models. A numerical example is then provided which
compares the worst-case VaR of a nominal portfolio with that of its robust
counterpart, computed via SDP. The results show that, if one chooses the
nominal portfolio, data errors can have a dramatic impact on the VaR. On
the other hand, taking into account the uncertainty via problem (2.32) damp-
ens such a negative effect. For a review of SDP the interest reader is referred
to [61, 71, 78, 80].

An attempt of robust optimization of the CVaR was proposed in [65],
where the authors implemented in a robust way the bicriteria model 4 pro-
posed by Rockafellar and Uryasev in [70], obtaining a robust linear reformu-
lation of the problem. Three different versions are implemented and tested

4The goal is to form a portfolio in which the expected return is maximized, while some
index of risk is minimized.
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using market data. Also in this case, the experiments show that the robust
counterpart of each model is able to select qualitatively good portfolios in
terms of realized return.

Another variant of the CVaR optimization problem was formulated in
[85], where the concept of Worst-case CVaR (WCVaR) is introduced. Given
a probability threshold α > 0, the Worst-case CVaR of a portfolio x ∈ X,
with respect to a certain set Q of probability distributions, is defined as:

WCV aRα(x) = sup
p∈Q

CV aRα (x) .

In other words, as for the Worst-case VaR definition, the α-CVaR is computed
for each probability p ∈ Q, and the supremum value is then returned. Like
CVaR, Worst-case CVaR remains a coherent risk measure.

In [85] the authors investigated the problem of minimizing WCVaR for
several structures of Q, reformulating the problem in a tractable form that
can be efficiently solved. First, the authors consider the Worst-case CVaR
in the case in which only partial information on the underlying probability
distribution is given, i.e., the distribution p is known to belong to a set of dis-
tributions which consists of all convex combinations of some predetermined
likelihood distributions ph, h = 1, ..., H :

p ∈ QM =

{

H
∑

h=1

λhp
h :

H
∑

h=1

λh = 1, λh ≥ 0, h = 1, . . .H

}

. (2.33)

Following Rockafellar and Uryasev’s approach in [69], Zhu and Fukushima in
[85] introduce the auxiliary functions

F h
α (x, γ) = γ +

1

1 − α

∫

ω

[fx(ω) − γ]+ph(ω)dω (2.34)

where, as before, ω denotes the random events. Then, for each portfolio x,
they prove that

WCV aRα (x) = min
γ

max
h∈H

F h
α (x, γ)

where H = {1, 2, · · · , H}. Denoting F H
α (x, γ) = max

h∈H

F h
α (x, γ), minimizing

the Worst-case CVaR over X can then be achieved by minimizing F H
α (x, γ)

over X × R, i.e., :

min
x∈X

WCV aRα (x) = min
(x,γ)∈X×R

F H

α (x, γ). (2.35)

Under the hypothesis that each likelihood distribution is characterized by
a finite set of possible scenarios, and denoting by Nh the number of scenar-
ios related to ph, through a discretization procedure similar to that in [69]
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the authors obtain the following formulation, which is linear when the loss
function fx(ω) is linear, too, and the set X is a polyhedron:

min θ

s.t. x ∈ X

γ +
1

1 − α
(ph)T uh ≤ θ h = 1, . . .H

uh
k ≥ fx(ω

h
[k]) − γ k = 1, · · ·Nh h = 1, . . .H

uh
k ≥ 0, k = 1, · · ·Nh, h = 1, . . .H,

(2.36)

where uh
k is the k-th component of uh and ωh

[k] denotes the k-th sample of the

likelihood distribution ph.
In the second part of their work, the authors generalize the above model

and, among various uncertainty structures, they focus on the minimization
of WCVaR under box and ellipsoidal uncertainty sets associated with the
distribution p. The considered box uncertainty set is the following:

p ∈ QB =
{

p : p = p0 + η, eTη = 0, η ≤ η ≤ η
}

(2.37)

in which p0 is a nominal distribution that represents the most likely distri-
bution of the random component ω, e denotes the vector of ones, and η and
η are given lower and upper bound vectors; in this case the problem is linear
when fx(ω) is a linear function and it is convex when the function is convex.

The ellipsoidal set is defined as follows:

p ∈ QE =
{

p = p0 + Aη, eT Aη = 0, p0 + Aη ≥ 0, ‖η‖ ≤ 1
}

(2.38)

in which p0 is a nominal distribution that is the center of the ellipsoid, A is
the scaling matrix of the ellipsoid and ‖η‖ =

√

ηT η. In this case the problem
is convex when the loss function fx(ω) is convex and it is a second order cone
program when the function is linear.

The authors discuss robust portfolio selection problems corresponding to
the types of uncertainties just described through two numerical examples.
Market data simulation analysis and Monte Carlo simulation analysis are
presented. Concerning the market data simulation, four sectoral sub-indices
of Hang Seng Index of Hong Kong Stock Exchange (SEHK) are chosen, for
which it is reasonable to assume a mixture distribution of the random returns,
and therefore it makes sense to perform a Worst-case CVaR minimization.
Numerical experiments for the nominal and the robust portfolio optimization
problems are performed via the linear programming model (2.36), where it
is assumed that the investor has an initial wealth, bound constraints are
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imposed on the portfolio, and a minimum expected return R is required. The
former model employs the original CVaR as the risk measure to minimize,
while the latter minimizes the Worst-case CVaR. Various nominal portfolio
strategies and robust portfolio strategies are computed by setting different
values of R. The authors show that the robust optimal portfolio almost
always outperforms the nominal optimal portfolio in terms of portfolio value.

Concerning the Monte Carlo simulation analysis, the authors investigate
the robust portfolio optimization model under the ellipsoidal uncertainty set
(2.38). Considering the example given in [70], where the portfolio is to be
constructed by three assets, the samples are generated via the Monte Carlo
simulation approach by assuming a joint normal distribution. The scaling
matrix of the ellipsoid, i.e., A, is assumed to be a diagonal matrix ρI, where ρ

is a non-negative parameter which models uncertainty aspects. In particular,
the nominal optimal portfolio is obtained by setting A = 0, i.e., ρ = 0.
The main result is that the gap between the two curves (nominal versus
robust portfolio value) becomes larger as ρ increases, which demonstrates
the advantage of the robust optimization formulation in the situation where
the uncertainty grows.

The numerical experiments thus imply that the portfolio selection models
using the Worst-case CVaR as the risk measure in minimizing perform ro-
bustly in practice and provide flexibility in portfolio decision analysis; more-
over, the experiments confirm that the specification of the uncertainty set is
the key issue for successful practical applications.

2.3.3 Alternative robust models

Some critical aspects of traditional robust optimization took some au-
thors to propose alternative robust models. Traditional robust approach is
sometimes criticized for being overly conservative; moreover, this approach
only guards against data realizations that are allowed by the given uncer-
tainty set, while potentially becoming very vulnerable to realizations outside
of the uncertainty sets considered. Finally, it tends to give the same weight to
all possible data realizations (within the considered uncertainty sets), which
may be unrealistic in practice.

A major critique that Bienstock moves in [16], and that he wants to
overcome with his work, is tied to the notion of tractability of the models.
The notion of tractability is without doubts a positive attribute, and cer-
tainly when a model is relevant, then ease of solution should be a worthwhile
goal. However (and this is the critique moved by Bienstock) the solution
methodology is often chosen at the expense of the richness and flexibility of
the uncertainty model. Further, the underlying assumptions that often are
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used to justify convex uncertainty sets (such as normally distributed asset
returns) potentially expose the user to a structural lack of robustness. Bien-
stock’s view is that it is preferable to rank the risk modeling flexibility higher
than the theoretical algorithmic performance.

Based on these observations, the author presents two non standard robust
models for shortfalls in asset returns, which achieve an enhanced risk mod-
eling flexibility by incorporating probability distribution and risk measure
elements into the models. In constructing the models, the author assumes
that a time series is available from which expected returns (and variances)
are computed. This time series is used to construct rough distributions of the
return shortfalls. In particular, Bienstock does not assume that the returns
are normally distributed.

In the first of these models, called the histogram model, returns are seg-
mented into a fixed number of categories, or bands, according to the mag-
nitude of each shortfall; the distribution is obtained by employing an ap-
proximate count of the number of assets falling within each band. In the
second model, the ambiguous chance constrained model, suitable probability
distributions for the shortfalls are generated. Both models are solved using
a cutting plane algorithm that runs a sequence of two step iterations: the
first one solves an implementor problem which picks values for the decision
variables of the model, the second one solves an adversarial problem which
finds the worst-case data corresponding to the decision variables just selected
by the implementor problem. The adversarial problem, in both cases, is a
mixed-integer linear program. On the contrary, the implementor problem is,
in the first case, a quadratic convex problem, while in the second case it is a
quadratically constrained program solvable using SOCP techniques.

Starting from the risk-adjusted expected return model of Markowitz, Bi-
enstock proposes the following formulation of the histogram problem:

min
x

max
µ∈U

{

λxT Qx − µT x
}

where U is the uncertain set of allowable return vectors. This problem is
equivalent to

min
x

{

λxT Qx − min
µ∈U

µTx

}

= min
x

{

λxT Qx − A(x)
}

where A(x) denotes the worst case return achieved by the asset vector x in
the uncertainty set U. The implementor problem consists on approximatively
solving the problem

min
x

{

λxT Qx − min
µ∈U

µT x

}

, (2.39)
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generating a portfolio x∗. Then, the corresponding adversarial problem yields
a vector of asset returns corresponding to A(x∗), which is incorporated into
the implementor problem. Specifically, let us consider the iteration h of the
basic cutting plane algorithm, and let µ(j), 1 ≤ j ≤ h − 1 be the return
vectors produced by the priors runs of the adversarial problem. Then the
implementor model at the iteration h is the following:

min
x

λxT Qx − r

s.t. Ax ≥ b

r − µ(j)x ≤ 0 1 ≤ j ≤ h − 1

where the constraints Ax ≥ b reflects a variety of restrictions on decisions. As
we have said before, this is a convex quadratic program. After the solution of
this model, the adversarial problem generates a new return vector, say µ(h+1),
which is the worst case return achieved by the current optimum portfolio in
the considered uncertainty set U. This return vector determines an additional
constraint, r−µ(h+1)x ≤ 0, which is incorporated into the implementor model
at the next iteration.

The nature of the uncertainty set in the histogram model is tied to the
concept of discretization of the risk, which is obtained by constructing suit-
able bands around an estimate of the expected value of the return short-
falls. Specifically, the return shortfalls are classified into a certain number
of bands, whose width depends on the target of risk protection of the mod-
eler. Then, given the specification of such an uncertainty set U, and given
the current optimum portfolio x∗, the adversary behavior is modeled via a
mixed-integer linear programming formulation, which generates the worst
case return achieved by x∗ in U, i.e., A(x∗). For more details and formal
proofs, the interested reader is referred to [16].

In the ambiguous chance constrained model, risk measures such as VaR
and CVaR are used to modeling the risk. In this model, at each iteration
the adversary produces a probability distribution according to the so-called
random model and, on the basis on such a distribution, he generates an adver-
sarial return vector. This is obtained via a mixed-integer linear programming
formulation, [16]. Then, the implementor chooses a portfolio x∗ that min-
imizes the Worst-case VaR, say V aRmax(x) (or the Worst-case CVaR, say
CV aRmax(x)), which is the maximum VaR (CVaR) that can be incurred by
the portfolio under the random model, that is under the choices made by
the adversary. The implementor problem in the VaR (or CVaR) case has the
following form:

min V
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s.t. λxT Qx − µTx ≤ v∗ + ε (2.40)

Ax ≥ b (2.41)

V ≥ V aRmax(x) (2.42)

(V ≥ CV aRmax(x)) (2.43)

where v∗ = min λxT Qx − µTx subject to Ax ≥ b, and ε > 0 is a positive
tolerance parameter chosen by the modeler.

Constraint (2.40) formulates a concept of near-optimality, i.e., rather than
focusing only on the minimization of V aRmax(x) (or CV aRmax(x)), produc-
ing a possible conservative solution, the model finds solutions that are simul-
taneously near-optimal (with respect to the risk-adjusted expected return
measure) and robust. Note that constraint (2.40) is a convex quadratic con-
straint, whereas constraint (2.42) (and its analogous (2.43)) is non-convex.
To handle this kind of constraints, the author suitably approximates con-
straint (2.42) (and with analogous procedure constraint (2.43)), leading to a
convex, quadratically constrained program, which depends on the adversarial
returns which have been generated until the current iteration.

As far as the histogram model is concerned, using real-life data the au-
thor compares the robust portfolios generated via the histogram model to the
classical optimal mean-variance portfolios, by comparing their composition
and their nominal and worst-case returns. The performed experimentation
shows that the robust portfolios take more positions than the mean-variance
portfolios, and generally provide a higher worst-case return. On the other
hand, considering the ambiguous chance constrained model, the author eval-
uates the performance of the model when some parameters change and for
some data perturbation, by comparing the V aRmax(x) and the CV aRmax(x)
formulations. The conclusion is that, in all cases, the proposed cutting plane
approach is very fast and accurate, often requiring few seconds of computa-
tion, and it is capable of handling realistic uncertainty models with explicit
non-convexities.

2.3.4 Risk measures theory and robust optimization

In a recent work [5], Ben-Tal et al. proposed a framework for robust
optimization which relaxes the standard notion of robustness. Specifically,
the authors focus on a relaxed approach in which not only the values of
the uncertain parameters, but also their degree of feasibility are specified.
The authors take the soft robust approach as starting point, link it to the
theory of convex risk measures and then focus on tractability, structural prop-
erties, conservatism results and probabilistic implications in the framework
of optimization under ambiguity.
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Let us introduce such an idea of relaxed robustness in the context of loss
functions. Given n assets, let r̃ denote the corresponding random return
vector. Then, given a feasible portfolio x ∈ R

n, define its associated loss
function as fx(ω) = −r̃T x (so, the random events ω in the general expression
fx(ω) are modeled here in terms of random returns). Consider the following
probabilistic constraint related to the loss of x:

−r̃T x ≤ b, (2.44)

stating that the random loss of portfolio x must not exceed a threshold b,
where b is a generic linear expression. According to the classical notion of
robustness, the standard robust counterpart of constraint (2.44) should have
the form:

−rT x ≤ b ∀r ∈ U (2.45)

where U denotes a given uncertainty set for the random return vector.
The robust counterpart (2.45) can be equivalently written as:

−rT x ≤ b + β(r) ∀r ∈ R
n (2.46)

where β(r) = 0 if r ∈ U and +∞ otherwise. In other words, we can say
that the robust counterpart’s feasibility is ensured by employing a particular
“extreme” penalty function, the indicator of U.

The main observation in [5] is that milder penalty functions could be used
in constraints like (2.46). These penalty functions arise by considering the
risk-aversion of the investor. Specifically, the choice of alternative penalty
function leads to penalize certain solutions rather than others. In presenting
the soft robustness approach, we refer here to the Ph.D. Dissertation of D.
Brown [21], where emphasis is just put on the concept of penalty functions.

The use of different “milder” penalty functions is related to the theory
of convex risk measures developed by Föllmer and Schied in [38], as shown
below. Let us assume that we have a number N of scenarios, say {r1, . . . , rN},
that represent the possible realizations of the uncertain parameter r̃; let us
denote by P the set of all probability measures on this discrete set of scenarios
and let R be the convex hull of {r1, . . . , rN}, so that any return vector r ∈ R

can be expressed as r =
N
∑

r=1

riqi,
N
∑

r=1

qi = 1, qi ≥ 0, i = 1, . . . , N . Then:

Theorem 2.3.3. Let ρ be a convex risk measure, α(q) be the penalty function
associated with ρ according to Theorem 2.3.2 and r̃ be the uncertain return
vector. Then the following relations are equivalent:

(A) ρ(r̃T x) ≤ b



Chapter 2. Robust asset allocation problems 30

(B) −rT x ≤ b + β(r) ∀r ∈ R

where

β(r) = inf

{

α(q)|q ∈ P, r =
N

∑

r=1

riqi

}

Proof. Let P(r) =

{

q ∈ P|r =
N
∑

r=1

riqi

}

.

ρ(r̃T x) ≤ b ⇔ sup
q∈P

{

Eq

(

−r̃T x
)

− α (q)
}

≤ b (from Theorem 2.3.2)

⇔ Eq

(

−r̃T x
)

− α (q) ≤ b, ∀q ∈ P

⇔ −
N

∑

i=1

rT
i xqi − α (q) ≤ b, ∀q ∈ P

⇔ −rT x − α(q) ≤ b, ∀q ∈ P(r), ∀r ∈ R

⇔ −rT x ≤ b + α(q), ∀q ∈ P(r), ∀r ∈ R

⇔ −rT x ≤ b + inf
q∈P(r)

α (q) , ∀r ∈ R

⇔ −rT x ≤ b + β(r), ∀r ∈ R.

Theorem 2.3.3 thus states that the relaxed notion of robustness above
introduced corresponds to defining probabilistic type constraints, based on
convex risk measures. The authors analyze different penalty functions in
such convex risk measure constraints, so deriving different types of relaxed
robustness. In particular, given a non-negative value δ, they consider par-
ticular penalty functions defined only for values less than or equal to δ, i.e.,
they focus on the following kind of constraints:

sup
{q:α(q)≤δ}

(Eq(−r̃T x) − α(q)) ≤ b. (2.47)

In [5] they prove that the left hand side of (2.47) is equivalent to:

min
c≥0

{

cδ + sup
q∈P

(Eq(−r̃T x) − (c + 1)α(q))

}

=

= min
c≥0

{

cδ + (c + 1) ρ

(

r̃T x

c + 1

)}

(2.48)

where ρ is the normalized convex risk measure induced by the penalty func-
tion α.
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As proved by the authors, the function in (2.48) is jointly convex in (c, x).
In the case in which we pose b = 0 in constraint (2.47), for each x ∈ X

and δ > 0, the expression

min
c≥0

{

cδ + (c + 1) ρ

(

r̃T x

c + 1

)}

≤ 0 (2.49)

is equivalent to choose a portfolio x ∈ XS
δ , where XS

δ , called the soft robust
set, is defined as follows:

XS
δ =

{

x ∈ X : inf
q∈P(ε)

Eq

[

r̃T x
]

≥ −ε ∀ε ∈ [0, δ]

}

. (2.50)

The sequence of families P(ε) ⊆ P represents sets of probability measures
non decreasing on ε ≥ 0.

Working on the particular penalty functions described above (i.e., those
ones defined for values less than or equal to the threshold δ), the authors
suggest several forms of soft robustness. Several chosen penalty functions
are described in terms of the so-called φ-divergence. One of them is the
following one:

α(q) =







N
∑

i=1

piφ
(

qi

pi

)

if
N
∑

i=1

piφ
(

qi

pi

)

≤ δ

+∞ otherwise

(2.51)

where δ ≥ 0, while φ : R → R ∪ {+∞} is a closed and convex function

such that φ(0) = 1 and dom φ ⊆ R
+. The term

N
∑

i=1

piφ
(

qi

pi

)

is called the φ-

divergence from q to the reference probability p. It represents a distance-like
measure from q to p.

In their work, Ben Tal et al. study the following φ-divergence function
φ(t) = γ−1 (t log(t) − t + 1) at level γ. Scaling the φ-divergence penalty
function by a positive factor 1

γ
, they study the relative entropy from q to p,

i.e., α(q) = 1
γ

N
∑

i=1

log qi

pi
, and they show that, in such a case, the correspond-

ing convex risk measure under consideration is ργ(r̃
Tx) = 1

γ
log(

N
∑

i=1

pie
−γrT

i x),

known as the entropic risk measure at level γ.
Now, suppose we wish to protect against all distributions q contained

within δ-relative entropy of p in a soft way. Then the equivalence

x ∈ XS
δ ⇔ min

c≥0

{

cδ + (c + 1)ρ

(

r̃Tx

c + 1

)}

≤ 0 (2.52)
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(recalled before), becomes the following one:

x ∈ XS
δ ⇔ min

c≥0

{

cδ + (c + 1) log Ep

(

e
−r̃T x
c+1

)}

≤ 0 (2.53)

where like before the function cδ + (c + 1) log Ep

(

e
−r̃T x
c+1

)

is jointly convex

in (c, x).
In this way, Ben-Tal et al. use the relative entropy as the basis for deriving

a specific soft robust approach.
In [5] the authors show that the complexity of this approach is equivalent

to that of solving a small number of standard robust approaches and they
illustrate the methodology on asset allocation example consisting of historical
market data. Their focus is to investigate the performance of using a soft
robust approach as opposed to a standard robust one.

Let us consider an investor who wishes to allocate wealth among n assets;
the decision vector x ∈ R

n denotes the vector of weights the investor allocates
to each asset, and X is the set of the feasible decision vectors x. Let us
denote by r̃ the random return vector, as before. Then the investor solves
the following problem:

max E(r̃T x)

s.t. x ∈ XS
δ

(2.54)

for some value δ chosen on the basis of the α value (the confidence level
characterizing the CVaR model).

The above problem is then solved using monthly historical data related to
11 publicly traded asset classes spanning the period April 1981 to February
2006. The obtained portfolios are compared, via an out-of-sample analysis
(such as the one described in Section 2.2.5) to the portfolios obtained by a
variant of the soft approach called the “comprehensive soft robust approach”
and to the portfolios generated imposing that CVaR is less than or equal
to zero. The main result is that, on the considered data set, relaxing the
standard robustness constraints to soft robustness constraints, such as the
one expressed by the entropic risk measure constraint, guarantees a higher
out-of-sample performance, expressed in terms of realized expected return,
for not too high of a price in increased downside risk, expressed in terms of
realized CVaR.



Chapter 3

A new class of robust asset
allocation problems

3.1 Risk measure based models

A new family of robust asset allocation problems is here proposed. Start-
ing from the relation between a relaxed type robustness and the convex risk
measures recalled in previous chapter, we formulate risk measure based mod-
els in which alternative penalty functions α(q) are chosen.

The idea is to define penalty functions based on distance-like measures
such as general norms, in order to propose portfolio optimization models that
are computationally tractable.

The chapter begins with a more general formulation of Markowitz’s prob-
lems, by exploiting then the relation between a relaxed robustness and convex
risk measures, the so-called norm-portfolio family is introduced. Working on
the penalty functions, we prove that this family includes, as special cases,
linear programming (LP) and second order cone programming (SOCP) prob-
lems, i.e., tractable computational models.

Finally, we study a coherent variant of norm-portfolio family, i.e., we focus
on the case in which the considered risk measures are also coherent. Some
of the models proposed in this chapter will be tested with real market data
in Chapter 4 in which also a comparison with different robust approaches
described in literature is conducted.

3.2 The norm-portfolio models

Let us consider an environment with a set of n risky financial securities.
Let x ∈ R

n represent a portfolio of n securities where xj corresponds to the

33
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amount invested in security j. As in Chapter 2, let us denote by µ the mean
return vector associated with the given positions and let r̃ be the vector of
the random returns of the n positions.

Let us consider the following generalization of Markowitz’s formulations,
i.e., :

sup µT x inf g(r̃Tx) sup µT x − λg(r̃Tx)

(P1) s.t. g(r̃Tx) ≤ b (P2) s.t. µTx ≥ R (P3) s.t. x ∈ X

x ∈ X x ∈ X

where g(r̃Tx) is a generic convex risk function of portfolio’s return, b is a
generic linear expression which upper bounds the risk associated with the
feasible portfolios, R is a threshold value on the expected return and

X =

{

x ∈ R
n|

n
∑

j=1

xj = 1, xj ≥ 0, j = 1, . . . , n

}

(3.1)

is the feasible portfolio set.
Let us observe that by setting g(r̃Tx) = xT Qx with Q (symmetric) pos-

itive semidefinite covariance matrix of r̃, then (P1), (P2) and (P3) collapse
to the classical Markowitz’s models for portfolio optimization.

In this work we investigate the problem (P2) when g(r̃Tx) = ρ(r̃T x) is a
given convex risk measure, i.e.,:

inf ρ
(

r̃T x
)

s.t. µT x ≥ R (3.2)

x ∈ X.

Let us reformulate the problem (3.2) by introducing an auxiliary variable γ

as follows:

inf γ

s.t. ρ
(

r̃Tx
)

≤ γ

µT x ≥ R

x ∈ X.

(3.3)

Let us now exploit the relation between convex risk measures and the type
of probabilistic constraints, previously reviewed.

Let us assume to know a set of return vectors r1, . . . , rN , and let us denote
by P the set of all probability measures on the finite set of scenarios r1, . . . , rN .
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This assumption captures a prevailing situation in many practical problems,
when one has at his/her disposal N samples of the uncertain vector r̃, in the
most of cases obtained from historical data. Then, from Theorem 2.3.3, the
problem (3.3) is equivalent to the following one:

inf γ (3.4)

s.t. sup
q∈P

{

−
N

∑

i=1

qir
T
i x − α (q)

}

≤ γ (3.5)

µTx ≥ R (3.6)

x ∈ X. (3.7)

The formulation (3.4)-(3.7) describes the family of models on which we will
work. According to the observations in Section 3.1, constraint (3.5) captures
a relaxed notion of robustness. Such a constraint states that the weight of
the probability q depends on a penalty function α(q) suitably defined, which,
in turn, can be interpreted as a kind of distance between q and a reference
probability, say p ∈ P.

Mathematically, the notion of distance is often tied to the concept of
norm. Based on this, we will study the special case of (3.4)-(3.7) where the
penalty function α(q) is defined in terms of an arbitrary norm || · ||. The
aim is to define relaxed robust models that can be computed in a very effi-
cient way. Indeed, this choice of α(q) will lead to the investigation of special
convex risk measures in formulation (3.4)-(3.7) that allows to obtain lin-
ear programming problem (LP) or second order cone programming (SOCP)
problem, i.e., tractable models. The risk measures under investigation will
be called the norm-risk measures, while the related models will be called the
norm-portfolio models.

The most general formulation of norm-portfolio is therefore the following:

inf γ

s.t. sup
q∈P

{

−
N

∑

i=1

qir
T
i x − λ ‖·‖

}

≤ γ

µTx ≥ R

x ∈ X

(3.8)

where ‖·‖ describes an arbitrary norm that measures the distance between
a generic probability q and the reference probability p. The non-negative
scalar λ is used to gauge this distance, as we will see better below.
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In this work, the following norms will be addressed: the || · ||∞ norm,
the || · ||1 norm, the D-norm [15] and the Euclidean norm. In the first three
cases, we will prove that the norm-portfolio models (3.8) can be formulated
in terms of linear programming problems (LP); whereas, in the last case, i.e.,
when the penalty function is described in terms of the Euclidean norm, the
model is reduced to a second order cone programming problem (SOCP).

Finally, in Chapter 4 we will test several models on real-world portfolio
optimization data by performing a comparison with other robust models in
literature.

3.2.1 The || · ||∞ norm case

Let p ∈ R
N and q ∈ R

N denote the reference probability and a generic
probability, respectively with pi = 1

N
for each i. Let us consider the vector

(p − q) ∈ R
N and its infinity norm (indicated with || · ||∞):

||p − q||∞ = max
i

|pi − qi| ∀ i = 1, . . . , N. (3.9)

The first class of norm-portfolio models is obtained by setting the penalty
function α(q) as follows:

α(q) = λ||p − q||∞ = λ max
i

|pi − qi| (3.10)

where, as previously mentioned, the parameter λ is a non-negative scalar
used to gauge the distance between the probabilities. In other words, we use
the λ parameter to give different weights to probability q on the basis of its
“distance” from the reference probability p.

Let us now replace the generic penalty function α(q) in the formulation
(3.4)-(3.7) with the (3.10), obtaining the following problem

inf γ

s.t. sup

r=
N
∑

i=1

riqi

N
∑

i=1

qi=1

qi≥0,i=1,...,N

{

−rT x − λ max
i

|pi − qi|
}

≤ γ

µT x ≥ R, x ∈ X.

(3.11)

Let us analyze the role of parameter λ in the problem (3.11). λ = 0 is the case
in which the investor gives the same weights to the probability measures q

without considering the distance from the reference probability p; increasing
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the value of λ, the investor gives less weight to probabilities that are far
away from the reference probabilities. The extreme case λ → ∞ is the case
in which the investor considers only q = p.

In terms of robustness, the case λ = 0 describes a model more conservative
and hence more robust. The model becomes less robust as the parameter λ

increases.
Returning on the problem (3.11), let us note that it is not a linear pro-

gramming problem. However, it is well known that the norm || · ||∞ can be
linearized. Therefore:

Theorem 3.2.1. Under the norm || · ||∞, the norm-risk measure leads to a
LP model.

Proof. Let us consider the inner problem of (3.11), i.e.:

sup
{

−rT x − λ max
i

|pi − qi|
}

s.t r =

N
∑

i=1

riqi

N
∑

i=1

qi = 1

qi ≥ 0, i = 1, . . . , N.

(3.12)

The objective function of the problem (3.12) can be easily linearized by
introducing auxiliary variables zi which bound from above the N absolute
values, and an auxiliary variable z that models the maximum among the
absolute values:

sup

{

−
N

∑

i=1

qir
T
i x − λz

}

s.t.

N
∑

i=1

qi = 1

pi − qi ≤ zi, i = 1, . . . , N

−pi + qi ≤ zi, i = 1, . . . , N

z ≥ zi, i = 1, . . . , N

qi ≥ 0, i = 1, . . . , N.

Observe that now we can replace the sup operator by the max operator.
Indeed the optimal value of a linear function on a polytope is always attained,
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i.e.:

max

{

−
N

∑

i=1

qir
T
i x − λz

}

s.t.

N
∑

i=1

qi = 1 → (u)

−qi − zi ≤ −pi, i = 1, . . . , N → (w+
i )

qi − zi ≤ pi, i = 1, . . . , N → (w−
i )

−z + zi ≤ 0, i = 1, . . . , N → (vi)

qi ≥ 0, i = 1, . . . , N.

where the variables are qi and zi, i = 1, . . . , N , plus z. Since the above lin-
ear programming problem is non-empty, and its objective function is bounded
from above using the strong duality we can replace it with its dual:

min u −
N

∑

i=1

(

w+
i

)

pi+
N

∑

i=1

(

w−
i

)

pi

s.t. u − (w+
1 ) + (w−

1 ) ≥ −rT
1 x

...

u − (w+
N) + (w−

N) ≥ −rT
Nx

− w+
1 − w−

1 + v1 = 0

...

− w+
N − w−

N + vN = 0

− v1 − v2 − ... − vN = −λ

w+
i , w−

i , vi ≥ 0 i = 1, . . . , N.

Equivalently:

min u −
N

∑

i=1

(w+
i −w−

i )pi

s.t. u − w+
i + w−

i ≥ −rT
i x i = 1, . . . , N

− w+
i − w−

i + vi = 0 i = 1, . . . , N

−
N

∑

i=1

vi = −λ

w+
i , w−

i , vi ≥ 0 i = 1, . . . , N.
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The problem (3.11) can be then formulated in the following compact way
where the inf operator has been replaced again by the min operator since
the optimal value is always attained:

min γ

s.t. u −
N

∑

i=1

(w+
i −w−

i )pi ≤ γ

u − w+
i + w−

i ≥ −
n

∑

j=1

(rijxj) i = 1, . . . , N

− w+
i − w−

i + vi = 0 i = 1, . . . , N

N
∑

i=1

vi = λ

w+
i , w−

i , vi ≥ 0 i = 1, . . . , N

µT x ≥ R
n

∑

j=1

xj = 1

xj ≥ 0 j = 1, . . . , n.

(3.13)

This is a Linear Programming problem. The result follows.

3.2.2 The || · ||1 norm case

Let p ∈ R
N and q ∈ R

N denote the reference and a generic probability
respectively. As before, pi = 1

N
for each i. Let us consider the vector (p−q) ∈

R
N and its L1 norm (indicated with ‖·‖1):

||p − q||1 =

N
∑

i=1

|pi − qi|. (3.14)

The second family of norm-portfolio models is obtained by setting the
penalty function α(q) as follows:

α(q) = λ||p − q||1 = λ

N
∑

i=1

|pi − qi| (3.15)

where the parameter λ ∈ R
+ is a non-negative scalar used to gauge the

distance between the probabilities as previously mentioned.
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Let us now replace the generic penalty function α(q) in the formulation
(3.4)-(3.7) with the (3.15). The following theorem holds true:

Theorem 3.2.2. Under the L1 norm, the norm-risk measure leads to a LP
problem:

Proof. Let us consider the inner problem:

sup −
N

∑

i=1

qir
T
i x − λ

N
∑

i=1

|pi − qi|

s.t.

N
∑

i=1

qi = 1

qi ≥ 0, i = 1, . . . , N.

As before, let us introduce the auxiliary variables zi, for i = 1, . . . , N , which
bound from above the absolute values, and rewrite the problem in the fol-
lowing way:

sup −
N

∑

i=1

qir
T
i x − λ

N
∑

i=1

zi

s.t.

N
∑

i=1

qi = 1

pi − qi ≤ zi i = 1, . . . , N

− pi + qi ≤ zi i = 1, . . . , N

qi ≥ 0 i = 1, . . . , N.

Now we can replace the sup operator by the max operator. In fact, the
optimal value of a linear function on a polytope is always attained:

max −
N

∑

i=1

qir
T
i x − λ

N
∑

i=1

zi

s.t.

N
∑

i=1

qi = 1 → (u)

−zi − qi ≤ −pi i = 1, . . . , N → (w+
i )

−zi + qi ≤ pi, i = 1, . . . , N → (w−
i )

qi ≥ 0 i = 1, . . . , N.
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Since this linear programming problem is a maximization problem over a
non-empty polytope and the objective function is bounded from above we
can replace it with its dual within the overall formulation by referring to the
strong duality theory:

min u −
N

∑

i=1

piw
+
i +

N
∑

i=1

piw
−
i

s.t. u − w+
i + w−

i ≥ −rT
i x, i = 1, . . .N,

−w+
i − w−

i = −λ, i = 1, . . .N,

w+
i , w−

i ≥ 0, i = 1, . . .N.

The overall formulation is therefore:

min γ

s.t. u −
N

∑

i=1

(

w+
i − w−

i

)

pi ≤ γ

u − (w+
i − w−

i ) ≥ −
n

∑

j=1

rijxj , i = 1, . . .N,

w+
i + w−

i = λ, i = 1, . . .N,

w+
i , w−

i ≥ 0 i = 1, . . .N,

µT x ≥ R, x ∈ X

which is a LP problem.

3.2.3 The D-norm case

In this section we address a particular norm, called the D-norm, which
has been introduced by Bertsimas et al. in [15]. We show that also under this
scenario the norm-portfolio model can be reduced to a LP problem. Firstly,
let us introduce the following definition:

Definition 3.1. Given a non-negative integer m (m ≤ N), let us define the
D-norm of vector (p − q) ∈ R

N in the following way:

‖p − q‖m = max
S⊆{1,...,N}
|S|≤m

{

∑

i∈S

|pi − qi|
}

.

In other words, the D-norm can be defined as the sum of the m largest
absolute values of the entries of a vector p − q.
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Notice that, when m = 1, then this norm coincides with the L∞ norm
and when m = N then the D-norm coincide with the L1 norm, i.e., L1 and
L∞ norms are special cases of the D-norm.

Let us consider the norm-portfolio model, and set

α(q) = λ||p − q||m, λ ≥ 0 (3.16)

within the model. The analogous of Theorem 3.2.1 and Theorem 3.2.2 is the
following one:

Theorem 3.2.3. Under the D-norm, the norm-risk measure leads to a LP
model.

Proof. Let us consider the inner problem:

sup−rT x − λ||p − q||m

s.t. r =

N
∑

i=1

riqi

N
∑

i=1

qi = 1

qi ≥ 0, i = 1, . . . , N.

(3.17)

Introducing an auxiliary variable z in order to bound the D-norm from above,
we have the following problem:

sup −
N

∑

i=1

qir
T
i x − λz

s.t. ‖p − q‖m ≤ z

N
∑

i=1

qi = 1

qi ≥ 0 i = 1, . . .N.

(3.18)

By exploiting then the definition of D-norm the following problem is
obtained:
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sup−
N

∑

i=1

qir
T
i x − λz

s.t. max
S⊆{1,...,N}
|S|≤m

{

∑

i∈S

|pi − qi|
}

≤ z

N
∑

i=1

qi = 1

qi ≥ 0 i = 1, . . . , N.

(3.19)

Let us introduce additional variables ϕi in order to model the absolute values
|pi − qi|, so the problem becomes:

sup −
N

∑

i=1

qir
T
i x − λz

s.t. max
S⊆{1,...,N}
|S|≤m

∑

i∈S

ϕi ≤ z

pi − qi ≤ ϕi, i = 1, . . . , N

−(pi − qi) ≤ ϕi, i = 1, . . . , N
N

∑

i=1

qi = 1

qi ≥ 0 i = 1, . . . , N.

(3.20)

Constraint
max

S⊆{1,...,N}
|S|≤m

∑

i∈S

ϕi ≤ z (3.21)

includes the second inner problem of the given problem, that is:

max
S⊆{1,...,N}
|S|≤m

∑

i∈S

ϕi (3.22)

where {ϕi} for i = 1, . . . , N are considered as constant values.
Let us observe that the second inner problem (3.22) can be formulated
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as the following knapsack problem:

max
N

∑

i=1

ϕiyi

s.t.

N
∑

i=1

yi ≤ m

yi ∈ {0, 1} , i = 1, . . . , N.

(3.23)

Let us consider the linear relaxation of the problem (3.23):

max

N
∑

i=1

ϕiyi

s.t.

N
∑

i=1

yi ≤ m → (π) (3.24)

yi ≤ 1 i = 1, . . . , N → (πi)

yi ≥ 0 i = 1, . . . , N.

In such a special case, the linear relaxation provides the optimum objec-
tive function value of (3.23). Since the feasible set of the linear relaxation is
bounded and not empty, using the strong duality we can replace it with its
dual:

min m · π +
N

∑

i=1

πi

s.t. π + πi ≥ ϕi i = 1, . . . , N

π, πi ≥ 0 i = 1, . . . , N.
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Therefore, the inner problem (3.17) can be equivalently rewritten as :

sup −
N

∑

i=1

qir
T
i x − λz

s.t. mπ +
N

∑

i=1

πi − z ≤ 0 → (δ)

− π − πi + ϕi ≤ 0, i = 1, . . . , N → (vi)

π ≥ 0, πi ≥ 0, i = 1, . . . , N (3.25)

−qi − ϕi ≤ −pi, i = 1, . . . , N → (w+
i )

qi − ϕi ≤ pi, i = 1, . . . , N → (w−
i )

N
∑

i=1

qi = 1 → (u)

qi ≥ 0, i = 1, . . . , N

where the variables are (qi, z, π, πi, ϕi).
By replacing now the sup operator by the max operator since the optimal

value of a linear function on a polytope is always attained and by considering
that the inner problem (3.25) is not empty as well as its objective function
is bounded from above, we replace it by its dual problem in order to get the
following linear programming model:

min −
N

∑

i=1

(w+
i )pi +

N
∑

i=1

(w−
i )pi + u

s.t. − w+
i + w−

i + u ≥ −rT
i x i = 1, . . . , N

− δ = −λ

mδ −
N

∑

i=1

vi ≥ 0

δ − vi ≥ 0 i = 1, . . . , N

vi − w+
i − w−

i = 0 i = 1, . . . , N

w+
i , w−

i , vi, δ ≥ 0 i = 1, . . . , N.

Rewriting the variables vi in terms of w+
i and w−

i and the variable δ in
terms of λ, we can simplify the problem in the following way:
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min −
N

∑

i=1

(w+
i )pi +

N
∑

i=1

(w−
i )pi + u

s.t. − w+
i + w−

i + u ≥ −rT
i x i = 1, . . . , N

mλ −
N

∑

i=1

(w+
i + w−

i ) ≥ 0 i = 1, . . . , N

λ − w+
i − w−

i ≥ 0 i = 1, . . . , N

w+
i , w−

i ≥ 0 i = 1, . . . , N.

The complete problem is the following:

min γ

s.t. −
N

∑

i=1

(w+
i − w−

i )pi + u ≤ γ

−w+
i + w−

i + u ≥ −
n

∑

j=1

rijxj i = 1, . . . , N

mλ −
N

∑

i=1

(w+
i + w−

i ) ≥ 0 i = 1, . . . , N

λ − w+
i − w−

i ≥ 0 i = 1, . . . , N

vi = w+
i + w−

i i = 1, . . . , N

w+
i , w−

i ≥ 0 i = 1, . . . , N

µT x ≥ R

x ∈ X

which is a Linear Programming problem.

3.2.4 The Euclidean norm case

Finally, let us consider the case in which the penalty function α(q) is de-
scribed by the Euclidean norm. In this case we prove that the norm-portfolio
model can be formulated in terms of a Second Order Cone Programming
(SOCP) problem.
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Let us specialize the problem as follows:

inf γ

s.t. sup

r=
N
∑

i=1

riqi

N
∑

i=1

qi=1

qi≥0,i=1,...,N

{

−rT x − λ ‖p − q‖2

}

≤ γ

µT x ≥ R, x ∈ X

where λ ≥ 0 is a given value and pi = 1
N

for each i denotes the reference
probability.

Theorem 3.2.4. Under the Euclidean norm, the norm-risk measure leads to
a SOCP model.

Proof. Let us consider the following inner problem:

sup −
N

∑

i=1

qiri
T x − λ ‖p − q‖2

s.t.

N
∑

i=1

qi = 1

qi ≥ 0, i = 1, . . . , N.

By introducing an auxiliary variable z, the problem is equivalent to:

sup −
N

∑

i=1

qiri
T x − λz

s.t.

N
∑

i=1

qi = 1

qi ≥ 0, i = 1, . . . , N

‖p − q‖2 ≤ z

Now, we replace the sup operator by the max operator, in fact the optimal
value of a linear function (hence a continuous function) on a compact set is
always attained and we set y = p − q. So, let us rewrite the formulation
above replacing q = p − y, recalling then that pi = 1

N
for each i represents
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the reference probability, we obtain:

max −
N

∑

i=1

(
1

N
− yi)ri

T x − λz

s.t.

N
∑

i=1

(

1

N
− yi

)

= 1

1

N
− yi ≥ 0, i = 1, . . . , N

‖y‖2 ≤ z.

The last expression of the above problem is equivalent to say (z, y) ∈ Cq,
where Cq is a second-order cone.

Introducing additional auxiliary non-negative variables, we have:

− 1

N

N
∑

i=1

rT
i x + max

N
∑

i=1

yir
T
i x − λz

s.t.

N
∑

i=1

yi = 0 → (w0)

yi + si =
1

N
i = 1, . . . , N → (wi)

‖y‖2 ≤ z (≡ (z, y) ∈ Cq)

si ≥ 0 i = 1, . . . , N (≡ s ∈ Cl nonnegative orthant)

Since the problem is feasible (y = 0, z = 0, si = 1
N

∀i is a feasible solution),
from the Conic duality theorem [6] the optimum objective function value is
equal to the one of its dual:

− 1

N

N
∑

i=1

rT
i x + min

1

N

N
∑

i=1

wi

s.t. w0 + wi ≥
C∗

q

rT
i x i = 1, . . . , N

0 ≥
C∗

q

−λ

wi ≥
C∗

l

0 i = 1, . . . , N,

where C∗
q and C∗

l denote the dual cones of Cq and Cl respectively.
The first two groups of constraints (i.e., the ones related to the dual cone

C∗
q ) are equivalent to ((w0 +w1−rT

1 x), . . . , (w0 +wN −rT
Nx), λ) ∈ C∗

q . There-
fore, since the second order cone is equal to its dual cone, these constraints
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can be equivalently rewritten as:

∥

∥(w0 + w1 − rT
1 x), . . . , (w0 + wN − rT

Nx)
∥

∥

2
≤ λ.

Moreover, since the dual cone of the non-negative orthant is the non-
negative orthant, constraints wi ≥

C∗

l

0, i = 1, . . . , N are equivalent to con-

straints wi ≥ 0, i = 1, . . . , N . Therefore, the overall model is equivalent
to:

min γ

s.t. − 1

N

N
∑

i=1

rT
i x +

1

N

N
∑

i=1

wi ≤ γ

∥

∥(w0 + w1 − rT
1 x), . . . , (w0 + wN − rT

Nx)
∥

∥

2
≤ λ

wi ≥ 0 i = 1, . . . , N

µT x ≥ R, x ∈ X

which is a SOCP model.

3.3 Coherent variant of the norm-portfolio

models

The family of the norm-portfolio models described in the Section 3.2 has
a common feature: the norm-risk measure used within each model is a convex
risk measure based on an arbitrary norm. In this section we study the variant
of norm-portfolio models where the considered risk measure is also coherent.

As proved in [36] and reviewed in Section 2.3, a coherent risk measure
arises from some families Q of probability measures by computing the ex-
pected loss under q ∈ Q and then by taking the worst result as q varies over
Q, i.e.:

ρ (Y ) = sup
q∈Q

Eq [−Y ] , Y ∈ Φ. (3.26)

By exploiting such a characterization, the coherent version of the norm-
portfolio family (3.8) can therefore be defined as follows:
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inf γ

s.t. sup

r=
N
∑

i=1

riqi

N
∑

i=1

qi=1

qi≥0, i=1,...,N
||·||≤π,

−rT x ≤ γ

µT x ≥ R, x ∈ X

(3.27)

where || · || is a generic norm and the parameter π represents an upper bound
on the distance measure.

Let us now specialize the family (3.27) using the infinity norm in the
following way (analogously we can specialize the family considered using the
other three norms defined in the previous sections):

inf γ

s.t. sup

r=
N
∑

i=1

riqi

N
∑

i=1

qi=1

qi≥0, i=1,...,N
||p−q||∞≤π,

−rT x ≤ γ

µT x ≥ R, x ∈ X.

(3.28)

As previously mentioned parameter π represents an upper bound on the
distance measure between the probability q and the reference probability p.
Consequently, the bound π belongs to the interval [0, 1] where the extreme
values describe the case in which the distance between the probabilities is
null, i.e., the case in which the probability q coincides with the reference
probability p, and the case in which one considers the set of all probabilities
on the given set of scenarios respectively.

In terms of robustness the case π = 0 is therefore the least conservative
and hence the least robust one.

We prove that, under the norm || · ||∞, problem (3.27) can be reduced to
a Linear Programming Problem.
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Let us consider the inner problem of the (3.28):

max −
N

∑

i=1

qir
T
i x

s.t.

N
∑

i=1

qi = 1

(pi − qi) ≤ π, i = 1, . . . , N

(−pi + qi) ≤ π, i = 1, . . . , N

qi ≥ 0 i = 1, . . . , N

in which we replace the sup operator by the max operator (since the maxi-
mum of a linear function over a polytope set is achieved).

Equivalently:

max −
N

∑

i=1

qir
T
i x

s.t.

N
∑

i=1

qi = 1 → (u)

−qi ≤ π − pi, i = 1, . . . , N → (w+
i )

qi ≤ π + pi, i = 1, . . . , N → (w−
i )

qi ≥ 0, i = 1, . . . , N.

Now, let us write the dual of the above problem (DP):

min u +
N

∑

i=1

w+
i (π − pi) +

N
∑

i=1

w−
i (π + pi)

s.t. u − (w+
1 ) + (w−

1 ) ≥ −rT
1 x

...

u − (w+
N) + (w−

N) ≥ −rT
Nx

w+
i , w−

i ≥ 0 i = 1, . . . , N.

Equivalently:

min u +
N

∑

i=1

(w+
i + w−

i )π −
N

∑

i=1

(w+
i − w−

i )pi

s.t. u − w+
i + w−

i ≥ −rT
i x i = 1, . . . , N

w+
i , w−

i ≥ 0 i = 1, . . . , N.
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The complete problem is the following:

min γ

s.t. u +
N

∑

i=1

(w+
i + w−

i )π −
N

∑

i=1

(w+
i − w−

i )pi ≤ γ

u − w+
i + w−

i ≥ −
n

∑

j=1

(rijxj) i = 1, . . . , N

w+
i , w−

i ≥ 0 i = 1, . . . , N

µT x ≥ R
n

∑

j=1

xj = 1

xj ≥ 0 j = 1, . . . , n

(3.29)

that is a Linear Programming Problem. Let us observe that also the coher-
ent variant (3.29) of norm-portfolio models implements a relaxed form of
robustness under a particular penalty function that assumes value 0 for all
probability q distant from the reference probability p at most π, and infinity
otherwise.

3.3.1 Some considerations about the bound π

Among the values that the parameter π can assume in the model (3.27),
there is one, denoted by π∗, that allows us to describe an interesting relation
between the coherent risk measure introduced in Section 3.3, based on the
norm || · ||∞, and the most note CVaR measure (that is also coherent).

As before, let N denote the number of the considered samples. In addi-
tion, let α be the confidence level chosen to define the CV aRα risk measure.
Let us assume that (1−α) ≥ 1

N
and let η and τ be the quotient and the rest

respectively obtained by dividing the quantity (1 − α) by 1
N

. Let us denote
by p∗ the following value:

p∗ =
pi

1 − α
+

τ

η(1 − α)
=

1

N(1 − α)
+

τ

η(1 − α)
. (3.30)

Let us assume η < N and define

π∗ = max

{

1

N
,

∣

∣

∣

∣

1

N
− p∗

∣

∣

∣

∣

}

. (3.31)

Then:
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Proposition 3.3.1. If a discrete probability distribution is associated with
the random events, and all scenarios have the same probability, then setting
π = π∗ the coherent variant (based on the norm || · ||∞) is equivalent to the
CV aRα model (in terms of optimal portfolio).

Proof. W.l.o.g. consider the case in which the loss function of a feasible
portfolio x is −r̃T x where, as previously introduced, r̃ denotes the vector of
the random returns. Let us recall the definition of V aRα:

V aRα(x) = min
{

γ : Prob(−r̃Tx ≥ γ) ≤ 1 − α
}

. (3.32)

Assume now that a discrete probability distribution is associated with the
random return r̃. In particular, let r1, . . . , rN be the samples related to r̃,
and let pi = 1

N
denote the probability of the sample i, i = 1, . . . , N . Under

these assumptions, the CVaR of portfolio x, CV aRα(x), can be calculated
as follows [26]:

CV aRα(x) =
1

1 − α

∑

i:−rT
i x≥V aRα(x)

1

N
(−rT

i x). (3.33)

Let us distinguish two cases:

Case τ = 0

Let us assign the probability p̃i = p∗ = 1
N(1−α)

to the η scenarios

with greatest loss, and p̃i = 0 otherwise (remember that η < N by
assumption). Now, if we choose a bound π ≥ π∗ within the coherent
variant of the norm-portfolio models, then such a probability is feasible
for the coherent variant; in fact the following constraints are satisfied:

1) p̃i ≥ 0 for i = 1, . . . , N

2)
N
∑

i=1

p̃i = 1 ⇔

⇔
N−η
∑

i=1

p̃i +
N

∑

i=N−η+1

p̃i = 1

⇔ 0 + (η)
1

N(1 − α)
= 1

⇔ N(1 − α)
1

N(1 − α)
= 1
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3) max
i

|pi − p̃i| ≤ π∗

To prove the above condition, let us distinguish the following two
sub-cases:

a) p̃i = 0:

max
i

|pi − 0| ≤ π∗ ⇔ 1

N
≤ max

{

1

N
,

∣

∣

∣

∣

1

N
− p∗

∣

∣

∣

∣

}

that is always satisfied;

b) p̃i 6= 0:

max
i

|pi − p̃i| ≤ max

{

1

N
,

∣

∣

∣

∣

1

N
− p∗

∣

∣

∣

∣

}

⇔

⇔
∣

∣

∣

∣

1

N
− 1

N(1 − α)

∣

∣

∣

∣

≤ max

{

1

N
,

∣

∣

∣

∣

1

N
− 1

N(1 − α)

∣

∣

∣

∣

}

where the last inequality is always satisfied.

In addition, setting π = π∗ the probability {p̃i} is also the probability
that maximizes the objective function of the inner problem (3.27). In-
deed, the maximum possible increment of the probability (with respect
to the reference probability pi = 1

N
for each scenario i) is given by the

scenarios with greatest loss.

But this is exactly the probability addressed in (3.33). Hence, we can
state that an optimal portfolio for the coherent variant is optimal also
for the CV aRα model. The result follows.

Case τ 6= 0

The proof is the same of the case τ = 0. In this case, we assign the
probability p̃i = p∗ = 1

N(1−α)
+ τ

η(1−α)
to the η scenarios with greatest

loss, and p̃i = 0 otherwise. Again, setting π = π∗ the probability
{p̃i} is such that maximizes the objective function of the inner problem
(3.27). In fact, the maximum possible increment of the probability
(with respect to the reference probability pi = 1

N
for each scenario i)

is given by the scenarios with the highest loss. However, the optimum
value of the objective function does not necessarily coincide with the
optimum value returned by the CV aRα model.

Corollary 3.3.2. For each π ≥ π∗, the coherent variant of the || · ||∞-
portfolio models is “more robust” than the CV aRα model, in the sense that
the considered probability set includes the one (implicitly) addressed by the
CV aRα model.
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Computational analysis

In this chapter we use real market data set in order to describe the perfor-
mance of some models proposed in Chapter 3. The analysis could be ideally
divide in two parts. In the first one we focus on the norm-portfolio family
with norm ‖ ‖∞ and on its coherent variant in order to shed light on their
“actual” performances; in the second part we compare these two families
with a classical CVaR model, a slight variant of Tütüncü-Koenig model in
[79] and the entropic one in [5].

The models have been chosen as benchmark to provide a preliminary
comparison among the related concepts of robustness: the relaxed robust-
ness (characterizing the norm-portfolio models and their coherent variant),
a classical robustness based on uncertainty sets for the covariance matrix
(characterizing Tütüncü-Koenig model) and the soft robustness (character-
izing the entropic model). In addition, we compare these approaches to an
approach based on CVaR that is related to a relaxed robustness of the coher-
ent variant, as proved in Chapter 3. Hence, the second part of our analysis
aims at examining how the different concepts of robustness influence the
optimal value and its regularity in the long term.

The three data sets for conducting the numerical experiments are pro-
vided by Tütüncü (the first two) and by Byrne, and by them used in [79]
and [18] respectively.

Each case study consists of a twofold analysis: an in-sample analysis,
whose aim is to determine suitable values of parameters that describe the
models, and an out-of-sample analysis, in which we utilize the scenario in-
formation based on past history in producing a portfolio strategy.

55
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4.1 Plan of the experiments

4.1.1 Input Data

Before proceeding to a detailed description of the in-sample and the out-
of-sample analysis, we provide the input data of the models we are study-
ing (norm-portfolio models, Coherent variant, CVaR model, Tütüncü-Koenig
model, entropic model). Let us now distinguish the data common to all mod-
els and those specific one for each model.

The common input data are the following:

- a matrix D of data whose elements rij with i = 1, . . . , N and j =
1, . . . , n describe the monthly returns of each asset j;

- the vector µ calculated as the mean of the columns of the data matrix
D, i.e., µj - the jth component of vector µ - denotes the mean return

of security j, that is µj =

N
∑

i=1

rij

N
for j = 1, . . . , n.

- the upper bound R in the constraint µTx ≥ R, calculated as the mean
value of the vector µ.

Let us observe that the parameter R represents the minimum return that
the investor would be willing to receive. To describe a realistic behaviour,
we always take a non-negative value of R (in the cases in which R results a
negative value, we set R = 0).

The specific input data of each family of models are the following:

- the reference probability pi = 1
N

for i = 1, . . . , N used in the norm-
portfolio models, in their Coherent variant and in the entropic model ;

- the confidence level α = 0.9 used for the CVaR and the entropic models
(this value of α is one of the most used values in CVaR optimization
problems).

- the parameter δ = γ−1log
(

1
α

)

used in the entropic model which is
described in a detailed way below (this choice has been suggested in [5]);

- the upper bound matrix QU in Tütüncü-Koenig model, recalled below,
which denotes an upper bound of the covariance matrix Q generated
through a method based on quantiles like in [79].
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Let us recall the following robust counterpart of the Markowitz’s problem
(2.3) described in Chapter 2:

min max
Q∈UQ

xT Qx

s.t. min
µ∈Uµ

µTx ≥ R

x ∈ X

(4.1)

where the covariance matrix Q and the expected vector µ belong to the un-
certain sets UQ =

{

Q : QL ≤ Q ≤ QU , Q � 0
}

and Uµ =
{

µ : µL ≤ µ ≤ µU
}

respectively.
One solving method for (4.1) is to study the following formulation:

min xT QUx

s.t. (µL)T x ≥ R

x ∈ X

(4.2)

that it is correct when QU is a positive semidefinite matrix. In this way, the
problem (4.2) becomes a standard quadratic problem (QP).

In our work, we investigate a slight variant of (4.1) (and hence of (4.2)) in
which the uncertainty is described only in terms of covariance matrix. The
problem we study is the following one:

min xT QUx

s.t. µT x ≥ R

x ∈ X.

(4.3)

To generate the upper bound matrix QU we choose moving windows of
four years and compute the covariance matrix in each such window. Let us
then consider the first covariance matrix and let us extract the component
corresponding to the first raw and the first column; we repeat this procedure
for all covariance matrices putting all extracted elements in a unique vector
b11 (where the subscript indicates the position of the components, i.e., the
components in the first raw and in the first column of each submatrix). In
analogous way, we extract all components of the covariance matrices obtain-
ing n2 vectors bij for i, j = 1, . . . , n.

For each vector bij , we compute the 95 percentile and then we construct
a matrix Q̃ that contains all such percentile’s values. The obtained matrix
thus represents an upper bound for Q (because Q corresponds to the 50
percentile). Unfortunately, nothing assures that the matrix Q̃ is a positive
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semidefinite (and hence a covariance) matrix. So, in the cases this property
does not hold, we solved the following subproblem that enables to compute a
covariance matrix “nearest” to Q̃, which bounds Q̃ from above. Given a n×n

matrix Q̃, a general formulation of the problem we solve is the following:

min

n
∑

i=1

n
∑

j=1

qU
ij

s.t. QU � 0 (4.4)

qU
ij ≥ q̃ij i = 1, . . . , n j = 1, . . . , n.

The problem (4.4) is a semidefinite programming problem that has been
implemented in a MatLab 7.7 (R2008b) environment with Yalmip toolbox.

Concerning the soft robust approach, the model used in this experiment
is a slight variant of that one described by Ben Tal et al. in [5]. Following
the standard formulation of the portfolio asset allocation problem until now
used, we minimize a risk measure subject to constraints on the return. Like
penalty function we choose the φ-divergence measure at level γ = 1, i.e.:

α(q) = logEp

[

φ

(

dq

dp

)]

and like loss function the expression −r̃T x, in which r̃ is the random return
vector 1.

Following then the equivalence (2.48), we obtain the problem below:

min
c,x

c δ + (c + 1)log

[

Ep

(

e
−r̃T x
c+1

)]

s.t. µT x ≥ R (4.5)

x ∈ X

where X =

{

x ∈ R
n|

n
∑

j=1

xj = 1, xj ≥ 0, j = 1, . . . , n

}

is the feasible portfo-

lio set and δ = log
(

1
α

)

.
The problem (4.5) is a convex programming problem in variables (c,x)

that we solve by performing a binary research on the variable c: we look

1The choice of γ reflects the degree of the investor’s risk-aversion. As observed in [5], γ

could be interpreted as the reciprocal of the risk tolerance for a CARA utility. A low value
of γ corresponds to a high risk aversion. In this preliminary comparison it has been chosen
γ = 1 in order to describe a more conservative approach, but in the future researches it
could be interesting observing as the performance of the model changes increasing γ.



Chapter 4. Computational Analysis 59

for a rounded value of c that minimizes the objective function of the (4.5).
Setting then this value, we compute the optimal portfolio x that solves the
problem (4.5). To implement the problem, the MatLab system cvx 6.1 for
convex optimization is used.

4.1.2 In-sample analysis

As it has been said, the in-sample analysis lies in defining the most suit-
able parameters values of the models we investigate in this work. Let us start
from the family of the norm-portfolio models (3.11), described in Section 3.2;
as we have shown, the family (3.11) can be formulated as a λ-parametric lin-
ear programming problem family. In order to choose the most suitable values
of λ, we proceed in the following way: at first, by fixing all other parameters
we solve the norm-portfolio models for all integer λ values belonging to the
interval [0, 120], plus a further λ value that describes the performance of the
models at infinity (we choose λ = 107). Observing then the composition of
the portfolio, its risk and its return we choose the suitable values for the
out-of-sample experiment. This procedure is adopted for all three considered
data sets.

Regarding the second family of models, i.e., the coherent variant of the
norm-portfolio models, we test the model for some values of parameter
π ∈[0, 1] (by fixing the other input data) and we choose again the suitable
values of π in terms of composition of portfolio, risk and return. Among
the considered values of π, there is one that is of particular interest, de-
noted by π∗, that describes the relation between the coherent variant of the
norm-portfolio models and the CVaR model, as proved in Chapter 3, i.e.,:

π∗ = max

{

1

N
,

∣

∣

∣

∣

1

N
− p∗

∣

∣

∣

∣

}

(4.6)

where N is the number of periods considered and p∗ is defined in the (3.30).

4.1.3 Out-of-sample analysis

The out-of-sample procedure enables to observe how the different models
utilize the scenario information in producing a successful portfolio. To com-
pare the different models we use a sort of moving windows method; the length
of each window is T = 12 which for monthly data correspond to 1 year (i.e.,
we subdivide the whole time period in subperiods 1 year long). Using the
monthly return data input in the windows, we work out the mathematical
models described in Chapter 3: we compute the composition of the optimal
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portfolio and its value obtained choosing the return of the following month
as return vector.

Like example (concerning the first data set that we will see in the next
section) let us take the 12 monthly returns from January 1979 to December
1979 as the initial historical data for constructing the first portfolio to invest
in, and calculate the portfolio’s realized value by observing the historical
returns for the following month, i.e., for January 1980. Then, we move
a month and we consider the second subperiod, i.e., from February 1979
to January 1980; we observe the historical return for February 1980 and
calculate the value of the portfolio obtained. We continue doing this until
the end of data set is reached and we repeat the procedure for each family
of the considered models (norm-portfolio models, coherent variant, CVaR
model, Tütüncü-Koenig model and entropic model) and for each value of the
parameters chosen in the in-sample analysis. At the end of this process we
generate N − T portfolio vectors xt for t = T, . . . , N − 1 with N the total
numbers of samples in considered data set.

Finally, we evaluate the out-of-sample performance of each model accord-
ing to the following statistics: mean-realized returns, variance and Sharpe
Ratio of realized return and the portfolio turnover. In other words, holding
the portfolio xt for one period gives the following out-of-sample realized re-
turn at time t + 1: r̂t+1 = xT

t rt+1 where rt+1 denotes the historical return
at that time. After collecting the time series associated to N − T realized
returns r̂t we evaluate the out-of-sample mean µ̂, the out-of-sample variance
σ̂2, the out-of-sample Sharpe Ratio ŜR and the portfolio turnover defined as
follows:

µ̂ =
1

N − T

N−1
∑

t=T

xT
t rt+1

(σ̂)2 =
1

N − T − 1

N−1
∑

t=T

(xtrt+1 − µ̂)2

ŜR =
µ̂

σ̂

Turnover =
1

N − T − 1

N−1
∑

t=T

n
∑

j=1

|xj,t+1 − xj,t|

where xj,t+1 and xj,t are the portfolio weight in asset j at time t + 1 and at
t respectively.

The out-of-sample mean evaluates the mean of realized returns in each
subperiod; the out-of-sample variance is a measure of sample variation of
realized returns with respect to the mean value.
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The out-of-sample Sharpe Ratio measures the realized return per unit of
risk. Finally, the portfolio turnover is a measure of variability in the portfolio
holdings and can indirectly indicate the magnitude of the transaction costs
associated to each strategy.

In the following sections we present a detailed description of the out-of-
sample analysis for each data set considered and comment the final results.

The tested linear programming problems, i.e., the norm-portfolio models,
the coherent variant and the CVaR model have been implemented both in
the in-sample and in the out-of-sample analysis using Tomlab/Cplex v11.2
within MatLab 7.7 (R2008b).

The experiments related to Tütüncü-Koenig model (i.e. a quadratic pro-
gramming problem) have been conducted using Yalmip MatLab’s toolbox.

Finally, the entropic soft robust model, as we have said, has been solved
with MatLab system cvx 6.1.
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4.2 The first computational test

In this first experiment we use a universe of five asset classes: large and
small cap growth stocks, large and small cap value stocks and fixed income
securities. Each class is represented through the monthly log-return time
series of corresponding market indices: Russel 1000 growth, Russell 1000
value, Russell 2000 growth, Russell 2000 value and Lehman Brothers U.S.
Government/Credit Bond, that span the period January 1979 to July 2002,
i.e., a total of N = 283 months. For each index we have the monthly returns
(in percentages), so the complete data consist of a matrix D (283 × 5) in
which the raws and the columns correspond to the time periods and the
market indices respectively.

In this first test, the suitable values of the parameter λ chosen using the
in-sample analysis are the following: λ = 0, λ = 5, λ = 10, λ = 15, λ = 20,
λ = 25, λ = 30, λ = 35 and λ = 107, where this last value (as it has been
said) describes the performance of the model when λ goes to infinity.

For the coherent variant (3.27) described in Section 3.3, the parameter
we have to choose is π that represents, as it has been said, a sort of dis-
tance between the reference probability p and the generic probability q. The
parameter π assumes values between 0 and 1. Again, using the in-sample
analysis we choose the following values: π = 0 and π = 1 as extreme values,
and π = 0.25, π = 0.5 and π = π∗ like intermediate values, where π∗ is
obtained as in (4.6).

Following now the moving-windows procedure, we subdivide the whole
time period in subperiods 1 year long obtaining in this case a total of
N − T = 271 subintervals. For each subinterval (to which corresponds a
submatrix of data) we compute the composition of the optimal portfolio xt

and its realized return r̂t+1 calculated as r̂t+1 = xtrt+1 for t = T, . . . , N − 1.
We start applying this procedure to the norm-portfolio models described

in the (3.11). The figures 4.2-4.4 illustrate the historical trajectories of opti-
mal portfolio value (realized return) calculated under different values of the
parameter λ; let us observe that we chose to plot the performance of the
norm-portfolio models only for a subset of the parameters λ computed in
the in-sample analysis, i.e., the most significant ones. We divide the whole
time period in four subperiods to provide a clear representation of this per-
formances.

Let us note that on the Y axis we report the portfolio’s “realized” value
in percentages relatively to the initial portfolio value and on the X axis the
corresponding time period that goes from t = 13 (January 1980) to t = 283
(July 2002).

All performances are quite similar approximately, but let us note that in-
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creasing λ leads to a slight increase of the portfolio value, but also it produces
severe drops. In other words, increasing the value of this parameter, in some
cases enables to attain higher returns (such as at t = 254 that corresponds to
February 2000), but also may produce drops such as at t = 263 (November
2000).
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Figure 4.1: Evolution of realized return related to the norm-portfolio models
for different λ values in the first subperiod
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Figure 4.2: Evolution of realized return related to the norm-portfolio models
for different λ values in the second subperiod
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Figure 4.3: Evolution of realized return related to the norm-portfolio models
for different λ values in the third subperiod
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Figure 4.4: Evolution of realized return related to the norm-portfolio models
for different λ values in the fourth subperiod
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This straightforward observation is confirmed by the statistics reported
in the table below:

Norm-portfolio
models

Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

λ = 0 0.8951 6.8783 0.3413 0.3649
λ = 5 0.9582 5.8995 0.3945 0.3440
λ = 20 1.0501 10.4485 0.3249 0.3854
λ = 107 1.2134 29.6181 0.2230 0.4831

Table 4.1: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.

Table 4.1 reports the out-of-sample mean, variance, Sharpe Ratio and
portfolio turnover related to the norm-portfolio models for different values of
parameter λ.

Our first observation is that the out-of-sample variance degrades signifi-
cantly with the increase in the out-of-sample mean; indeed, variance increases
from approximately 6 to approximately 30 (or in percentages from 2.4% to
5.4%, by calculating the square root of variance), whereas mean increases
from 0.9 to 1.21 approximately.

The second observation is that no model performs better than others
among all four the out-of-sample criteria (mean, variance, Sharpe Ratio and
turnover). For example, the case λ = 107 shows the best performance in
terms of the out-of-sample mean, but the worst one in terms of the out-
of-sample variance; instead the case λ = 5 performs better in terms of the
out-of-sample variance, Sharpe Ratio and portfolio turnover.

As it has been said, from a theoretical point of view when λ = 0 the
investor considers all probabilities q and not only the nearest to the reference
probability measure p. Although this choice provides the lowest value of the
out-of-sample mean, it reacts in a better way in terms of the out-of-sample
variance, producing a low level of variability; in addition, in terms of the last
two statistics, it produces good results even if not the best one. In other
words, in this case the investor tends to overprotect himself.

Increasing the values of parameter λ, the investor gives less weight to
probabilities that are far away from the reference probability, so he focuses
on a subset of probabilities. This choice produces positive results but only for
values of λ not too high; in fact, the case λ = 5, as it has been noted, is the
best one in terms of the out-of-sample variance, Sharpe Ratio and portfolio
turnover.
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Increasing farther on the value of λ improves only the out-of-sample mean,
showing instead the worst results in terms of the remaining statistics.

In accordance to that, for small values of λ the portfolio’s realized values
show a more regular behaviour, at least in this first set of experiments. On
the other hand, increasing the value of parameter λ, the models result less
conservative.

Let us now plot the coherent model, i.e., the variant of the norm-portfolio
family where the risk measure verifies also the property of positive homogen-
eity as we have described in Section 3.3. Figures 4.5-4.8 depict the behaviour
of the coherent variant for the different values of the chosen parameter π.
From a theoretical point of view, the parameter π measures the distance
between the generic probability q and the reference one p. Let us observe
that a value of π equal to zero describes the case in which the distance
between the probabilities is null; in other words, the investor considers only
the case p = q. Increasing π, the investor considers all probabilities measures
q such that the absolute value |pi − qi| is at most π for all i. The case π = 0
is theoretically the less conservative case.

The values of parameter π that we represent in figures 4.5-4.8 are the
following: π = 0.25, π = 0.5, π = 1 and π = π∗, where π∗ is calculated like in
(4.6); by rounding up the theoretical value, we obtain π∗ = 0.92. Moreover,
we exclude the trivial case π = 0 because it does not fit a realistic behaviour
of the investor.

Also in this case, we divide the whole time period in four subperiods to
provide a clear representation of the model.

Table 4.2 provides the result of statistics for the coherent variant.

Coherent variant Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

π = 0.25 0.9835 6.1545 0.3964 0.3207
π = 0.5 0.9240 6.2106 0.3708 0.3384
π = π∗ = 0.92 0.8951 6.8783 0.3413 0.3649
π = 1 0.8951 6.8783 0.3413 0.3649

Table 4.2: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.

Let us note that increasing π, the values of corresponding statistics do not
vary significantly. Different from the norm-portfolio models just analyzed,
the empirical behaviour of their coherent variant does not seem to confirm
the theoretical expectation in terms of robustness. This would seem to reveal
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Figure 4.5: Evolution of realized return related to coherent variant of the
norm-portfolio models for different π values in the first subperiod
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Figure 4.6: Evolution of realized return related to coherent variant of the
norm-portfolio models for different π values in the second subperiod
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Figure 4.7: Evolution of realized return related to coherent variant of the
norm-portfolio models for different π values in the third subperiod
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Figure 4.8: Evolution of realized return related to coherent variant of the
norm-portfolio models for different π values in the fourth subperiod
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that, from a practical point of view, assigning the same weight to all the
considered probabilities might influence the regularity of the robust optimal
portfolio value.

From the experiment it results that among all four statistics, the best
behaviour is described by the case π = 0.25 in which one has the highest
out-of-sample mean and Sharpe Ratio and the lowest out-of-sample variance
and turnover.

Then, let us note that the cases π = π∗ and π = 1 are identical each
others.

Figures 4.9-4.11 depict the behaviour of the CVaR, the Tütüncü-Koenig
and the entropic models respectively. To solve CVaR model, as it has been
anticipated in the previous sections, we model random event by a finite set of
scenarios, obtaining a linear programming problem like in [70]. For π = π∗,
let us note that the coherent variant is not equivalent to the CVaR model in
terms of the optimal portfolio value; the slight difference might depend on
the rounding error generated in calculating the empirical value of π∗ (so, the
empirical value of π∗ is just an approximation of the theoretical value (3.31)
in the subsection 3.3.1).
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Figure 4.9: Out-of-sample performance for the CVaR model

As it has been said, the Tütüncü-Koenig model we use in these experi-
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ments is a slight variant of the model described in [79] where the robustness
appears only at the covariance matrix level. Like for the previous models,
we work on annual subintervals and solve problem (4.3) for each of them.
At each iteration, the procedure that generates the upper bound QU of the
covariance matrix Q is described in Section 4.1.1; let us note that working
on annual subintervals we choose moving windows of sixt months in order to
generate QU .

Figure 4.10 is a plot of the performance of the Tütüncü-Koenig model
which incorporates a standard robustness type. Notice that at t = 15 as well
as at t = 106 there is a precipitous drop in the relative performance of the
standard robust model. These drops are slightly higher (in modulus) with
respect to drops achieved in the previous models.
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Figure 4.10: Performance of the Tütüncü-Koenig model

Figure 4.11 depicts the trajectory of the entropic soft robust model de-
scribed in subsection 4.1.3. Chosen the parameter δ = log

(

1
α

)

with α the
confidence level of CVaR model, we effect a binary search like described in
subsection 4.1.1 in order to find an approximate value of variable c that
minimizes the objective function; then, we set c and compute the optimal
portfolio x and its corresponding value in terms of return.
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Figure 4.11: Performance of the entropic model

Let us observe that with respect to the previous models the entropic one
never attains severe drops, but rather it always reaches a positive value of the
portfolio (there are only two exceptions corresponding to the cases t = 193
and t = 194 as signed in the figure 4.11 with a red circle). This major
regularity is confirmed also by other cases like at t = 15 where all models
until now analyzed attain severe drops, whereas entropic model states up the
zero (exactly around the value 4%) signed in the figure with a blue rectangle.

As next step we compare the performance of all considered models to
evaluate how the different concepts of robustness influence the optimal port-
folio value and its regularity in the long term. First of all, we choose the
value of the parameters λ and π that produce the best performance of the
norm-portfolio models and the coherent variant respectively.

The “best value” chosen from Table 4.1 is λ = 5; although it does not
produce the higher mean of returns, however it results the best in terms of
variance, Sharpe Ratio and portfolio turnover; in analogous way, from Table
4.2, we choose the case π = 0.25 that performs better among all four criteria.

Table 4.3 gives the out-of-sample results for all considered models (and
hence for all robustness types).

Let us observe that Table 4.3 above reports the values of the statistics
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Models Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover Time

Norm-portfolio
(λ = 5)

0.9582 5.8995 0.3945 0.3440 0.0235

Coherent variant
(π = 0.25)

0.9835 6.1545 0.3964 0.3207 0.0626

CVaR 0.8797 6.7174 0.3394 0.3415 0.1953
T-K 0.9358 7.8912 0.3331 0.3116 0.1328
Entropic 1.7223 1.2034 1.5700 0.4495 91.1330

Table 4.3: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover
and computational time for all models chosen.

for each chosen model. In addition to the statistics defined in Subsection
4.1.3, we report also the computational time, i.e., the average cpu-time (in
seconds) needed to produce the optimal solution of each problem.

Observing the cpu-time shown in Table 4.3, it is quite evident that the
entropic model is computationally expensive; indeed, it requires a computa-
tional time almost 4 ·103 times larger than all other models. The main source
of time complexity could be the nature of the problem that is a convex pro-
gramming problem solved with cvx software using a successive approximation
method.

About the other statistics, the following considerations could be drawn:

- Between a traditional robustness incorporated by Tütüncü-Koenig model
and a more flexible robust approach (described through the norm-
portfolio, its coherent variant and the entropic models) let us note that
the second approach always outperforms the first one among almost all
considered criteria (exactly mean, variance and Sharpe Ratio). In the
other words, by relaxing the robustness constraints in a flexible way,
one can potentially gain out-of-sample performance for not too high of
a price.

- Without doubts, the entropic model results the best approach in terms
of the out-of-sample mean, variance and Sharpe Ratio even if it results
the most expensive in terms of variability of the assets in the portfolio
and hence, in terms of the transaction costs as well as in terms of
computational cost as it has been said above.

- The best approach in terms of turnover is the traditional one described
by Tütüncü-Koenig model. Anyway, it was to be expected that relaxing
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robust constraint it could have required higher costs, but the supported
major costs have been compensated for the major mean return and
Sharpe Ratio value and for the minor variance value.

- Finally, let us observe that the norm-portfolio model and its coherent
variant show a quite similar behaviour with a slight better performance
of the coherent one in terms of the out-of-sample mean, Sharpe Ra-
tio and turnover; the lowest variance that marks the norm-portfolio
model is not enough to provide a better performance of it. In addition,
the coherent variant results the least expensive immediately after the
Tütüncü-Koenig model.

From this first computational test, it results that a flexible robust ap-
proach can potentially outperforms a traditional one.

4.3 The second computational test

For the second experiment we used a wider set of market indices [79]:
growth and value stocks in large-cap, mid and small-cap categories, interme-
diate term fixed-income securities, international stocks, real estate securities
and high-yield corporate bonds. To represent each category we used Wilshire
Target indices, Lehman Brothers Intermediate Government/Credit index,
MSCI EAFE (Europe, Australasia, Far East) index, Wilshire Real Estate
Securities index and Lehman Brothers High-Yield Bond index. Time series
data covers the period July 1983-July 2002 for a total of N=229 months.

In this second experiment, we use the same procedure described in the
first computational test. Once fixed all other parameters, we solve the norm-
portfolio model for each integer value of λ chosen into a specified interval
(also in this case [0, 120]). The selected values of λ are the following: λ = 0,
λ = 5, λ = 10, λ = 15, λ = 20, λ = 25, λ = 30, λ = 35 and λ = 107. About
the π value, the same considerations of the first experiment hold. We choose
the following values: π = 0, π = 0.25, π = 0.5, π = π∗ and π = 1, where as
before π∗ is a rounding value of the theoretical one calculated like in (4.6).

Let us begin to present the results of the out-of-sample analysis for this
second data set.

Figures 4.12-4.14 plot the time evolution of the relative performance of the
norm-portfolio models for various values of λ; in particular for the following
ones: λ = 0, λ = 5, λ = 20 and λ = 107.

In order to show a clear performance of the models, we subdivide the
whole time period in three subperiods. Also in this case, it is verified an
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analogous behaviour in terms of regularity when λ increases: the models
show high peaks and severe drops. For example, the performance described
by the norm-portfolio models attains one of the highest peaks at t = 102
(Figure 4.13, signed with a circle) and falls headlong at t = 182 as well as at
t = 229 (Figure 4.14, signed with circles). Let us observe that all these three
extreme cases correspond to values of parameter λ very high, confirming the
role of this parameter in terms of robustness.

Figure 4.12: Second data set: evolution of realized return related to the norm-
portfolio models for different values of λ in the first subperiod.
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Figure 4.13: Second data set: evolution of realized return related to the norm-
portfolio models for different values of λ in the second subperiod.
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Figure 4.14: Second data set: evolution of realized return related to the norm-
portfolio models for different values of λ in the third subperiod.
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Let us now report in Table 4.4 the out-of-sample results of the norm-
portfolio models in terms of the three criteria chosen (out-of-sample mean,
variance, Sharpe Ratio and portfolio turnover).

Norm-portfolio
models

Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

λ = 0 0.9250 4.6469 0.4291 0.4028
λ = 5 1.0492 6.6965 0.4054 0.4351
λ = 20 1.2324 12.0267 0.3554 0.5136
λ = 107 1.5798 25.3376 0.3138 0.4815

Table 4.4: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.

As just shown in the relative figures, let us observe that by increasing the
values of the parameter λ, the out-of-sample variance degrades significantly
with the increase of the out-of-sample mean (as in the first experiment). The
case λ = 107 shows the worst result in terms of the variance and the best
one in terms of the mean; the opposite extreme case, i.e., λ = 0, shows the
best relation risk-return providing the highest value of the Sharpe Ratio and
yielding the lowest cost evaluated in terms of portfolio turnover. In other
words, in this second experiment, an approach more conservative provides
the best results among almost all adopted criteria.

If one increases little more the value of λ (case λ = 5) however it is
possible to obtain higher mean return at not too high of a price (notice that
the difference in terms of turnover between the case λ = 0 and the case λ = 5
is not too high).

Figures 4.15-4.17 depict the performance of the coherent variant. Again,
we subdivide the whole time period in three subperiods and for each of them
we report the following cases: π = 0.25, π = 0.5, π = π∗ and π = 1. Let us
observe that last two cases (π = π∗ and π = 1) are identical each others as
confirmed by the results of statistics reported in Table 4.5.

Furthermore, notice that increasing the value of parameter π, the out-of-
sample variance tends to decrease, even if not in a significant way; in other
words there is not a big difference among values. However, different from the
first computational test, the theoretical expectation in terms of robustness
is here confirmed, by increasing the value of π in fact the model becomes
more conservative (as shown by corresponding Sharpe Ratios). In addition,
the models with highest value of π are also the least expensive in terms of
portfolio turnover and hence in terms of the transaction costs.
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Coherent variant Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

π = 0.25 0.9745 5.5252 0.4146 0.4632
π = 0.5 0.8910 4.4600 0.4219 0.4360
π = π∗ = 0.92 0.9250 4.6469 0.4291 0.4328
π = 1 0.9250 4.6469 0.4291 0.4328

Table 4.5: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.
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Figure 4.15: Evolution of realized return related to Coherent variant of the
norm-portfolio models for different π values in the first subperiod
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Figure 4.16: Evolution of realized return related to Coherent variant of the
norm-portfolio models for different π values in the second subperiod
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Figure 4.17: Evolution of realized return related to Coherent variant of the
norm-portfolio models for different π values in the third subperiod

160 180 200 220

−5

0

5

Out−of−sample

Time Period

P
o
rt
fo
lio
 V
a
lu
e
 (
%
) π=0.25

160 180 200 220

−5

0

5

Out−of−sample

Time Period

P
o
rt
fo
lio
 V
a
lu
e
 (
%
) π=0.5

160 180 200 220

−5

0

5

Out−of−sample

Time Period

P
o
rt
fo
lio
 V
a
lu
e
 (
%
) π=π*

160 180 200 220

−5

0

5

Out−of−sample

Time Period

P
o
rt
fo
lio
 V
a
lu
e
 (
%
) π=1



Chapter 4. Computational Analysis 85

Figures 4.18-4.20 depict the performance (in terms of the portfolio value)
of the CVaR, the Tütüncü-Koenig and the entropic models respectively. The
behaviour of the CVaR model and of the coherent variant are quite similar,
even if there is no a complete overlapping of them (considering the case
π = π∗). The slight difference could depend on the rounding errors between
the theoretical value of π and the empirical one.

The Tütüncü-Koenig performance (figure 4.19) appears quite regular by
considering the values of the portfolio, even if the gap (in terms of return’s
values) between a time period and the following one is often high.

In addition, the absolute value of drops attained in this model is very
lower than this one generated by the others models; for example, let us
observe that at t = 52 the performance of Tütüncü-Koenig model shows
the worst drop, but its absolute value (about 8%) is lower than the value
produced by the other analyzed models (about 15%).

Figure 4.18: Out-of-sample behaviour of CVaR model.
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Figure 4.19: Out-of-sample behaviour of Tütüncü-Koenig model.

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6
Tutuncu−Koenig Model 

Time Period

P
o
rt
fo
lio
 V
a
lu
e
 (
%
)



Chapter 4. Computational Analysis 87

The entropic approach (figure 4.20) produces the most regular perfor-
mance among all studied models; the value of the portfolio very often states
up to zero. In addition, sometimes the trend of the entropic model seems to
go against the stream: for example at t = 52 all described models attain a
very low value of the portfolio, whereas the entropic model reaches a positive
value of the portfolio (between 3% and 4% with respect to initial portfolio
value). At t = 140 an opposite case is verified: the entropic model attains
its lowest value of the portfolio, whereas all other models accomplish values
between 2.5% and 3.5%.
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Figure 4.20: Out-of-sample behaviour of the entropic model

Table 4.6 reports the complete results of the out-of-sample analysis for
all models (among the indicators, also in this case we introduce the compu-
tational time).
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Models Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover Time

Norm-portfolio
(λ = 0)

0.9250 4.6469 0.4291 0.4028 0.0469

Coherent variant
(π∗ = 0.92)

0.9250 4.6469 0.4291 0.4328 0.0156

CVaR 0.9085 4.6196 0.4227 0.4621 0.0156
T-K 0.9317 2.5412 0.5844 0.3924 0.1875
Entropic 1.9583 1.6420 1.5282 0.4827 106.9952

Table 4.6: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover
and computational time.

The “best performance” of the norm-portfolio models and their coherent
variant is represented by the cases λ = 0 and π = π∗ respectively as reported
in Table 4.6.

From this second computational test the following observations are drawn:

- The entropic model produces again the best performance in terms of
the out-of-sample mean, variance and Sharpe Ratio but, as in the first
experiment, it requests the highest cost in terms of portfolio turnover
and computational time. Let us note that also in this case the compu-
tational time needed to solve the entropic problem is very large, indeed
it is more than 2 · 103 times larger than the time needed to solve all
other models.

- After the entropic model, the best one results the Tütüncü-Koenig
model. Indeed, it shows the best performance in terms of the out-
of-sample variance, Sharpe Ratio and portfolio turnover; whereas, in
terms of the out-of-sample mean it is overcame also by the norm-
portfolio model.

- The norm-portfolio model, its coherent variant and CVaR are quite sim-
ilar in terms of almost all adopted criteria except for portfolio turnover;
let us note that the norm-portfolio model shows the best performance
in terms of the portfolio turnover (in fact, the value of this statistic
is almost close to the result of Tütüncü-Koenig model that, as it has
been above said, is the least expensive); whereas, CVaR model results
the most expensive approach immediately after the entropic one.
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In general we can conclude that the standard robustness incorporated by
the Tütüncü-Koenig model shows a better performance than relaxed one
incorporated by the norm-portfolio model and the coherent variant; but with
respect to the entropic model, it produces a worse behaviour.

4.4 The third computational test

The data used in this last experiment are used by Byrne in [18]. They
represent the total monthly returns for 10 market segment indices: Standard
Retail Southeast (SRSE), Standard Retail Rest of UK (SRRUK), Shopping
Centres (SHC), Retail Warehouse (RW), Offices in the City of London (OC-
ITY), Offices in the West End (OWE), Offices Rest of Southeast (ORSE),
Offices Rest of UK (ORUK), Industrials Southern and Eastern (ISE) and In-
dustrials Rest of UK (IRUK) that span the period December 1987 to January
2002 for a total of N = 181 monthly returns. As before, in the in-sample
analysis we choose the values of the parameter λ and the values of π. The
chosen λ values are the following: λ = 0, λ = 5, λ = 10, λ = 25, λ = 50,
λ = 75, λ = 90 and, like in the previous experiments, λ = 107. About
the parameter π, we use the values of the previous two cases, i.e., π = 0,
π = 0.25, π = 0.5, π = 1 and π = π∗ calculated following the (4.6).

In the out-of-sample analysis, we apply the moving windows method and
calculate the portfolio value in each subperiod and for each family of de-
scribed models.

In figures 4.21 - 4.22 we plot the behaviour of the norm-portfolio models
for some values of λ, i.e.: λ = 0, λ = 5, λ = 10, λ = 25, λ = 107.

In this last computational test, when λ increases there are not precipitous
drops or high peaks, instead there are only minimal variations in the optimal
portfolio value. Like example let us note that by increasing the parameter
λ, the value of the portfolio at the starting time and at the ending time
increases.

Furthermore, in terms of optimal portfolio, the values of positive peaks
are almost four times greater than those generated in the first two tests; and
in terms of drops, the performance of the norm-portfolio models for different
λ values does not almost always decrease under the zero threshold.



Chapter 4. Computational Analysis 90

Figure 4.21: Behaviour of the norm-portfolio model for different values of λ

in the first subperiod
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Figure 4.22: Behaviour of the norm-portfolio model for different values of λ

in the second subperiod
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The similar performance in all chosen cases is confirmed by the results of
the statistics reported in Table 4.7 below.

Norm-portfolio
models

Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

λ = 0 17.4711 103.1393 1.7203 0.1482
λ = 5 17.7795 108.2132 1.7091 0.1364
λ = 10 17.7975 110.275 1.6948 0.1443
λ = 25 17.972 116.1047 1.6679 0.1424
λ = 107 17.8479 126.9886 1.5838 0.1190

Table 4.7: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.

The values of the statistics do not change too much increasing the value
of λ; let us observe that the out-of-sample variance does not degrade signif-
icantly with the increase in the out-of-sample mean, i.e., the out-of-sample
variance increases, but not in a significant way (differently from what it has
happened in the previous experiments).

In terms of Sharpe Ratio, increasing the λ value, the return in excess per
unit of risk decreases; for this reason the case λ = 0 describes the better
result.

In terms of the transaction costs, the best model is represented by the
opposite extreme case, i.e., the case λ = 107; of course, the minor costs
observed in this case depend on the weights assigned to the assets. Indeed,
the weights are not well distributed in the optimal portfolios, but rather
they tend to focus on a single asset, in other words the portfolios are not well
diversified.

Let us now describe the performance of the coherent variant (of the norm-
portfolio problems) and the CVaR model as depicted in figures 4.4-4.4. Since
the cases π = π∗ and π = 1 produce an identical behaviour in terms of
portfolio value, on the plot only one of them is reported; in addition, as
confirmed by the theory, the results of the coherent variant in the case π = π∗

and the CVaR model coincide almost everywhere. For this, the top figures
plot together the first two cases of the coherent variant (π = 0.25 and π = 0.5)
and the bottom ones plot together the case π = π∗ with the CVaR model.
Like before we do not report the performance of the case π = 0.

Let us observe that all models appear enough similar each others. In fact,
the trajectories overlap in the most of cases with some exceptions signed with
a circle in figures 4.4-4.4; a slight greater fluctuation for π = 0.25 (according
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to the theoretical results) is showed. So, increasing the value of the parameter
π the investor does not make different his behaviour.

To better show the performances related to the optimal portfolio value as
well as to compare the coherent models easily, we subdivide the whole time
period in two subperiods like reported in the following figures.
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Figure 4.23: Behaviour of Coherent models for each value of π and CVaR
model in the first subperiod
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Figure 4.24: Behaviour of Coherent models for each value of π and CVaR
model in the second subperiod
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All previous considerations are confirmed by the results related to the
chosen statistics that are resumed in the following table:

Coherent variant Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover

π = 0.25 17.6732 108.5106 1.6997 0.1332
π = 0.5 17.5536 106.6609 1.5193 0.1518
π = π∗ = 0.92 17.4706 103.1427 1.7202 0.1482
π = 1 17.4708 103.1414 1.7203 0.1489
CVaR 17.5269 104.3457 1.7158 0.1590

Table 4.8: Out-of-sample mean, variance, Sharpe Ratio and portfolio
turnover.

Table 4.8 indeed reports the performances of the considered models in
terms of the out-of-sample mean, variance, Sharpe Ratio and the portfolio
turnover. Let us note that the results described by adopted statistics are
quite similar each others. By increasing the value of π, the out-of-sample
mean and variance decrease, but not in a significant way.

The values of the Sharpe Ratio attain almost the same value (around 1.7)
except for the case π = 0.5 that shows the lowest value of the statistic.

The cases π = π∗ and π = 1 related to the coherent variant reveal an
identical behaviour that it is enough similar also to the CVaR model. As
confirmed by the theory as well as shown in the figures the coherent variant
is equivalent to the CVaR model in terms of optimal portfolio value (the
slight difference between coherent cases and the CVaR model could depend
on rounding errors in calculating π∗ value).

In terms of the portfolio turnover, increasing the value of π, the statistic
also increases with exception of the case π = 0.5 in which an unexpected
peak is observed.

Figure 4.25 depicts the performance of the Tütüncü-Koenig and the en-
tropic models. Let us observe that in terms of positive peaks and negat-
ive drops, the entropic model is more similar to the norm-portfolio model,
whereas the Tütüncü-Koenig model seems to show the worst performance.
In fact, Tütüncü-Koenig model attains lower positive peaks and higher (in
absolute value) drops than all other models.

If we plot all models together, we obtain a picture like that one described
by figures 4.4-4.27 where we show the performance of the norm-portfolio
model in the case λ = 0, the coherent variant in the case π = π∗ and the
CVaR, Tütüncü-Koenig and the entropic models.
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For the particular data sequence used in this experiment, the traditional
robust strategy incorporated by the Tütüncü-Koenig model results clearly
inferior with respect to the other models: it almost always generates the
lowest values of the portfolio.

The performances of the norm-portfolio model, its coherent variant and
CVaR approach are quite close; in the most of cases the trajectories of these
three models overlap.

Finally, let us observe the performance of the the norm-portfolio model
with respect to the entropic approach. Except for a few cases in which
both models generate close values of the portfolio (such as t = 43, t = 104,
t = 153), in the rest of the cases it is not easy to evaluate the performance of
the models because there is not a clear superiority of one model with respect
to the other one in terms of portfolio value. For example in the period that
spans from t = 13 to t = 43 the entropic model produce the highest value of
the portfolio while from t = 108 to t = 126 an opposite behaviour is plotted
with the norm-portfolio model that overcomes the entropic one in terms of
portfolio value. However, the final portfolio generated by the norm-portfolio
model produce a higher value than that generated by the entropic portfolio.

The results obtained in this last experiment are resumed in Table 4.9.
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Figure 4.25: Performances of Tütüncü-Koenig and entropic models
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Figure 4.26: Comparison among the chosen models
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Figure 4.27: Comparison among the chosen models
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Models Mean
(µ̂)

Variance
(σ̂2)

Sharpe
Ratio
(ŜR)

Turnover Time

Norm-portfolio
(λ = 0)

17.4711 103.1393 1.7203 0.1482 0.025

Coherent variant
(π = π∗)

17.4706 103.1427 1.7202 0.1482 0.0258

CVaR 17.5269 104.3457 1.7158 0.1590 0.0257
T-K 11.1195 61.0785 1.4228 0.4472 0.1915
Entropic 19.8666 124.1378 1.7831 0.1191 617.1563

Table 4.9: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover
and computational time.

Without doubts, as observed by the figures, the Tütüncü-Koenig model
shows the worst performance in terms of all adopted criteria (except for the
out-of-sample variance). It provides the lowest value of the out-of-sample
mean and Sharpe Ratio and the the highest value of turnover.

Again, also in terms of statistics adopted is confirmed what we have just
observed in the figures, i.e., the norm-portfolio model, its coherent variant
and CVaR model present a similar behaviour.

Finally, from Table 4.9, let us observe that the entropic model show
a better behaviour in terms of the out-of-sample mean, Sharpe Ratio and
turnover, but huge computational time is needed to solve it; let us observe
that it is required a mean time about 2.5 · 104 times larger than that one
required to solve all other models. As it has been said, this bad result could
be depend in part on the nature of the model that it has been solved using
approximation methods.

In concluding, the experimental results on this last data set show that
the relaxed robustness incorporated by the norm-portfolio model, its coher-
ent variant and the entropic approach provide a better performance than
the traditional one incorporated by the Tütüncü-Koenig model not only in
terms of portfolio value, but also in terms of costs; in fact, the Tütüncü-
Koenig model produce the worst performance at the highest cost in terms
of portfolio turnover. The bad performance of the Tütüncü-Koenig model
could partly depend on the nature of the data used in this experiment. In-
deed, this last data set consists of returns for different segments of the real
estate market. Coming from the same industry, the returns on these indices
are likely to be more correlated than arbitrary asset returns and they show
a non-normal distribution. In such cases portfolio-optimization strategies
using the variance as risk measure of risk could result inappropriate [50].
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Considering then the results related to the performance of the entropic
model and the norm-portfolio problem we can conclude that the entropic
model produce better results in terms of the out-of-sample mean, Sharpe
Ratio and turnover, but it is not able to provide the optimal solution in a
reasonable amount of CPU-time. In addition, if we focus on a long term
investment, the norm-portfolio model produce the best final portfolio value
at the lowest computational cost.



Chapter 5

Conclusions and future
researches

In many optimization models, the inputs to the problem are not known
at the time the problem must be solved, are computed inaccurately, or are
otherwise uncertain. Robust optimization provides an alternative approach
to handle this uncertainty.

In the last decades, many results have been obtained in this field above
all in terms of comparison with the classical Markowitz’s approaches. The
focus of this work has been to handle uncertainty using a more flexible robust
approach.

Firstly, we have provided an overview of the development in the field of ro-
bust optimization including the innovative recent additions to this literature.
Some important results from risk measure theory are then presented and the
interesting links between risk measures and robust optimization are pointed
out. In addition mathematical models and relative algorithmic approaches
have been highlighted.

The main theoretical contributions of the dissertation have been presented
in Chapter 3 where the notion of “soft robustness”is presented and a new
family of models has been introduced.

We start the chapter by discussing different formulations that represent
optimal trade-offs between expected returns and arbitrary convex risk mea-
sures. From the observation that the problem of choosing a suitable convex
risk measure in risk-return trade-off formulations is equivalent to choosing
a suitable penalty function α(q) over the set P of probability measures on
the scenario set, we have chosen a particular family of penalty functions by
us called norm-risk measures. The family of models corresponding to these
risk measures (called norm-portfolio models) characterizes a more flexible ap-
proach to robust portfolio asset allocation, i.e., an approach in which not only

103
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the values of the uncertainty parameters, but also their degree of feasibility
are specified.

Moreover, it has been proved that this new class of models includes as
special cases linear programming (LP) and second order cone programming
(SOCP) problems, i.e., solvable models. In order to obtain models computa-
tionally tractable, we have focused on penalty functions based on tractable-
like measures, such as general norms.

A variant of norm-portfolio models based on coherent risk measures has
been then proposed as well as an interesting link between this coherent vari-
ant and CVaR model has been proved in final session.

Chapter 4 provides a computational analysis of the proposed method-
ology. We have implemented various robust optimization approaches with
real market data including the ones proposed in the dissertation to generate
optimal portfolios and we have compared their relative performance. So, we
have observed how different risk measures utilize the scenario information
based on past history in producing a successful portfolio.

The tested models into computational analysis have been chosen as bench-
mark for a preliminary comparison among various robustness types: a relaxed
robustness incorporated by the norm-portfolio models and its coherent vari-
ant, the soft robustness described by the entropic model and a more standard
robustness (based on uncertainty sets for the covariance matrix). In addition,
a comparison with an approach based on CVaR has been put forward.

In this way, our aim has been to understand how different robustness types
influence the optimal portfolio value and its regularity in the long term.

Comparison has been conducted through the evaluation of the following
statistics: the out-of-sample mean, variance, Sharpe Ratio of realized return
and portfolio turnover. In addition a comparison of computational costs has
been conducted through the evaluation of the mean time needed to obtain
the optimal solution.

Generally speaking, the computational analysis has proved that a flexible
robustness in which not only the values of the uncertain parameter, but also
the degree of feasibility are specified produces better results than a traditional
one.

In particular in the first two experiments the best approach is resulted
the entropic one in terms of out-of-sample mean, Sharpe Ratio and variance
even if at higher cost in terms of portfolio turnover and mean time needed to
solve it. This means that by relaxing the robustness constraints in a flexible
way, it is possible gain out-of-sample performance for not too relatively high
of a price. About then the norm-portfolio model, it has outperformed the
traditional one in the first test and it has took up position close (from below)
to the traditional approach in the second test.
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In the last computational experiment, the performance of soft and relaxed
robustness is resulted by far higher than the performance obtained by the
traditional robustness. So, in terms of robustness, also in this last case, we
can conclude that a general flexible robust approach has gained out-of-sample
performance.

However, in all three experiments it is evident as a huge computational
cost (calculated in terms of time) is needed to solve the entropic model with
respect to that needed to solve all other models.

In the field of the relaxed robust portfolio optimization future researches
can be developed. Investigating the relation between robustness and convex
risk measures by working on alternative penalty functions might be an in-
teresting direction. In addition, a wider computational analysis that takes
further robust models into account might provide detailed evidence on the
goodness of a more relaxed robust approach to portfolio asset allocation
problems.
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