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Abstract 

Water is needed for energy. For instance, hydropower is the technology that generates 

more electricity worldwide after the fossil-fuelled power plants and its production 

depends on water availability and variability. Additionally, thermal power plants need 

water for cooling and thus generate electricity. On the other hand, energy is also needed 

for water. Given the increase of additional hydropower potential worldwide in the coming 

years, the high dependence of electricity generation with fossil-fuelled power plants, and 

the implications of the climate change, relevant international organisations have paid 

attention to the water-energy nexus (or more explicitly within a power system context, 

the water-power nexus). The Joint Research Centre of the European Commission, the 

United States Department of Energy, the Institute for Advanced Sustainability Studies, 

the Midwest Energy Research Consortium and the Water Council, or the Organisation for 

Economic Co-operation and Development, among others, have raised awareness about 

this nexus and its analysis as an integrated system. In order to properly analyse such 

linkages between the power and water sectors, there is a need for appropriate modelling 

frameworks and mathematical approaches. 

This report comprises the water-constrained models in electric power systems developed 

within the WATERFLEX Exploratory Research Project of the European Commission’s Joint 

Research Centre in order to analyse the water-power interactions. All these models are 

deemed modules of the Dispa-SET modelling tool.  

The version 1 of the medium-term hydrothermal coordination module is presented with 

some modelling extensions, namely the incorporation of transmission network 

constraints, water demands, and ecological flows. Another salient feature of this version 

of Dispa-SET is the modelling of the stochastic medium-term hydrothermal coordination 

problem. The stochastic problem is solved by using an efficient scenario-based 

decomposition technique, the so-called Progressive Hedging algorithm. This technique is 

an Augmented-Lagrangian-based decomposition method that decomposes the original 

problem into smaller subproblems per scenario. The Progressive Hedging algorithm has 

multiple advantages: 

— It is easy parallelizable due to its inherent structure. 

— It provides solution stability and better computational performance compared to 

Benders-like decomposition techniques (node-based decomposition). 

— It scales better for large-scale stochastic programming problems. 

— It has been widely used in the technical literature, thus demonstrating its efficiency. 

Its implementation has been carried out through the PySP software package which is part 

of the Coopr open-source Python repository for optimisation. 

This report also describes the cooling-related constraints included in the unit commitment 

and dispatch module of Dispa-SET. The cooling-related constraints encompass limitations 

on allowable maximum water withdrawals of thermal power plants and modelling of the 

power produced in terms of the river water temperature of the power plant inlet. 

Limitations on thermal releases or water withdrawals could be imposed due to physical or 

policy reasons. 

Finally, an offline and decoupled modelling framework is presented to link such modules 

with the rainfall-runoff hydrological LISFLOOD model. This modelling framework is able to 

accurately capture the water-power interactions. Some challenges and barriers to 

properly address the water-power nexus are also highlighted in the report. 
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1 Introduction 

1.1 Motivation 

Electricity generation worldwide is one of the major activities utilising freshwater 

resources due to hydropower generation and cooling of thermal power plants.  

Hydropower is a mature technology which provides multiple benefits to the power system 

(black start capability, spinning reserve, back-up and reserve with quick start and 

shutdown capabilities, frequency response, flexibility, or reactive power compensation) 

[1]. Hydropower supplies 16.3 % of the world’s electricity followed by nuclear power and 

other renewable technologies [1]. Apart from hydropower production, their associated 

reservoirs or dams can be used for water management of a wide variety of purposes 

such as water supply, flood control, irrigation, navigation, recreation activities, fish 

breeding or aquiculture, among others [2], as can be seen in Figure 1. The distribution 

for purposes of freshwater is uneven and highly depends on the availability and 

variability of freshwater. According to ICOLD (International Commission on Large Dams) 

database which contains 58 519 registered dams (1) around the world, irrigation is the 

most common purpose of both single-purpose and multipurpose dams, as shown in 

Figure 2. Moreover, hydropower production is the second largest use of single-purpose 

dams followed by water supply, whereas multipurpose dams are used more often for 

flood control and water supply than for hydropower production. However, hydropower 

production is still far from fossil-fuel power plants’ production (67.2 % of the world’s 

electricity), according to the International Energy Agency (IEA) [1]. 

Regarding the thermal power plants, the largest amount of freshwater withdrawals for 

cooling can be found in North America and Europe representing 86 % of the global water 

withdrawals [3], while the water used for cooling represents 43 % of the European 

Union’s water demand [3], [4]. 

On the other hand, the water sector needs electricity for abstraction, treatment, 

desalination, transport, or irrigation purposes. Thus, the power system is involved in a 

new paradigm of water for energy and energy for water, which would be further 

exacerbated in the coming years due to an increase of additional hydropower potential 

worldwide [1], the indispensable use of thermal power plants, and the implications of the 

climate change.  

From a power system perspective, due to water shortages or high river water 

temperatures, ‘the number of days with a reduced useable capacity is projected to 

increase in Europe and USA’ according to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) [5]. In fact, water impacts on 

European power systems have recurrently occurred in the last years and they led to 

monetary losses, power curtailments, temporary shutdowns, demand restrictions, and 

ultimately increased wear and tear of the power plants ([6] and references therein). On 

the other hand, the operation of the power system may impact on the quantity and 

quality of the water resources.  

Therefore, the water-power link ‒ which has been recently analysed by Pereira-Cardenal 

et al. [7] and Bertoni et al. [8] ‒ needs to be further explored in order to propose 

reasonable and realistic policy measures about water withdrawals and thermal pollution. 

Those analyses call for appropriate power system models in both the mid- and short-

term. 

                                           
(1)  ICOLD contains only large dams, which are defined as dams with a height of 15 metres or greater from 

lowest foundation to crest or a dam between 5 metres and 15 metres impounding more than 3 million 
cubic metres (See http://www.icold-cigb.org/GB/world_register/general_synthesis.asp). 
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Figure 1. Purposes of reservoirs. 

 

Source: JRC 2017. 

Figure 2. Distribution for purposes of registered dams. 

 
Source: ICOLD. 

1.2 Literature review 

As part of the WATERFLEX exploratory research project carried out at the European 

Commission’s Joint Research Centre, this report is focused on 1) the recent 

developments of the Dispa-SET Medium-Term Hydrothermal Coordination (Dispa-SET 

MTHC) module (i.e. some amendments to the deterministic problem and the 

implementation of the stochastic module); and 2) the implementation of cooling-related 

constraints for thermal power plants in the Dispa-SET Unit Commitment and Dispatch 

(Dispa-SET UCD) module. Therefore, this section provides a brief overview of three 

topics: 

— The medium-term hydrothermal coordination problem. 

— The progressive hedging algorithm whose popularity has been increased in the last 

years for solving large-scale stochastic problems. 

— Cooling-related constraints in electric power systems. 
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1.2.1 Medium-term hydrothermal coordination 

There is a large body of technical literature on the hydrothermal coordination problem 

including the short-, mid-, and long-terms. However, this work is focused on the 

medium-term hydrothermal coordination (MTHC) problem [7], [9]–[22], which is a power 

system tool used for operation planning of hydropower reservoirs and thermal power 

plants driven by the minimization of the expected system-wide generation costs over a 

given planning horizon (in the mid-term). Typically, the planning horizon ranges from 1 

year to several years with daily, weekly, or monthly time steps. In the MTHC problem, 

the degree of detail of hydropower reservoirs is greater than in short-term operation 

problems at expense of clustering the remaining power plants. Moreover, it takes usually 

into account uncertainties of water inflows or demand, among others. All in all, the MTHC 

problem can be characterised as a large-scale, nonlinear, and nonconvex optimisation. 

The MTHC problem can be solved from two perspectives: 1) the extensive form (also 

known as deterministic equivalent) or 2) the stochastic form. The deterministic MTHC 

problem basically assumes fixed water inflows and can be formulated by linear 

programming, nonlinear programming, or mixed-integer linear programming, depending 

on the modelling assumptions of hydro- and thermal-related technical features. The 

deterministic problem could be useful to perform a scenario analysis based on 

representative time periods, e.g. years. On the other hand, stochastic programming is 

more valuable when these models are used in production. In this case, the inherent 

uncertainty of different variables affects real-time operational decisions. 

Table 1 collects a summary of references addressing the stochastic MTHC problem. The 

second and third columns of Table 1 show the respective solution techniques applied to 

tackle such complex problem and information about the case study. Several solutions 

techniques have been proposed: stochastic dynamic programming (SDP) [7]; stochastic 

dual dynamic programming (SDDP) [7], [10], [11], [15], [17]; benders’ decomposition 

(BD) [9], [21], [22]; progressive hedging (PH) [16], [18], [20]; nonlinear programming 

(NP) [19]; interior point methods (IPMs) [12], [13]; semidefinite programming [14]; or 

other kind of algorithms or decompositions [18], [22]. Regarding the case studies, both 

Brazilian and Spanish systems have typically been suitable targets for applying these 

techniques on the corresponding MTHC problems due to the high share of hydropower 

production in their respective generation mixes.  

Traditionally, dynamic programming have been applied to reservoir operations [23] and 

SDP has been used to solve the MTHC problem, e.g. in [7]. However, computational 

difficulties are associated with dynamic programming techniques when solving large-

scale instances. The state variables need to be discretized and the computational 

requirements exponentially increase when the number of state variables increases. This 

is known as the ‘curse of dimensionality’ and it could limit its application to systems with 

a reduced number of reservoirs. Therefore, as suggested by Pereira and Pinto [9], it 

‘becomes necessary to develop methods able to approximate the solution of the 

operating problem with a reasonable computational cost’. 

Decomposition techniques are therefore required to overcome the ‘curse of 

dimensionality’ for solving large-scale multistage stochastic hydrothermal problems. 

Benders’ decomposition [24] has been applied to this planning problem in [9], [21], [22]. 

Benders-like algorithms decompose the problem by stage or time period and thus 

allowing for parallelization of the corresponding subproblems. In addition, the SDDP 

method proposed by Pereira [10] and Pereira and Pinto [11], which is based on Benders’ 

decomposition, makes it possible to optimise multi-reservoir systems. SDDP has been 

widely used in the open literature [7], [10], [11], [15], [17]. However, unlike dynamic 

programming techniques, SDDP relies on the approximation of the expected cost-to-go 

functions of SDP by convex functions [10], which may remove some of the advantages of 

dynamic programming. 

Other techniques have been applied to solve the MTHC problem. Medina et al. [12], [13] 

proposed the use of IPMs that seek the optimal solution through the interior of the 
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feasible region rather than the vertices of such region, as done by simplex methods. IPMs 

outperform simplex decomposition-based methods when solving large-scale 

hydrothermal coordination problems [12], [13]. Along the same lines, Fuentes-Loyola 

and Quintana [14] applied semidefinite programming to the convex medium-term 

hydrothermal coordination problem. Semidefinite programming is a technique that can 

efficiently solve convex problems in polynomial time. However, convexification of the 

problem may show some mismatches in the integer variables that should be corrected by 

a heuristic method [14]. Linear programming [18] or NP [19] have been directly applied 

to solve the MTHC by using commercial solvers. 

Table 1. Model characterisation, solution method, and case study for selected references (in 
chronological order) addressing medium-term hydrothermal coordination problems. 

Reference Method(s) Case study 

Pereira and Pinto [9] Benders’ decomposition Southeast and south regions of the 
Brazilian system 

Pereira [10] 

Pereira and Pinto [11] 

Stochastic dual dynamic programming Southeast and south regions of the 
Brazilian system. 

Medina et al. [12] 

 

Interior-point methods Spanish system up to 30 thermal 
power plants and 30 hydropower 
plants 

Medina et al. [13] Clipping-off interior-point algorithm Spanish system up to 25 thermal 
power plants and 12 cascaded hydro 
plants 

Fuentes-Loyola and 
Quintana [14] 

Semidefinite programming Spanish system up to 60 thermal 
power plants and 32 hydropower 
plants 

Tilmant and Kelman 
[15] 

Stochastic dual dynamic programming Turkish case study. 20 stages and 
time horizon of 60 months 

Santos et al. [16] Progressive hedging Brazilian system 

Gjelsvik et al. [17] Stochastic dual dynamic programming - 

Gonçalves et al. [18] Linear programming 

Nested decomposition 

Progressive hedging 

Brazilian system 

Ramos et al. [19] Nonlinear programming Spanish system with up to 118 
thermal power plants, 56 hydropower 
plants and 2 pumped storage hydro 

Gonçalves et al. [20] Classical and alternative progressive 
hedging 

Brazilian system. 1440 scenarios 

Gonçalves et al. [21] Benders’ decomposition 

Augmented Lagrangian-based 

decomposition 

- 

Pereira-Cardenal [7] Stochastic dynamic programming 

Stochastic dual dynamic programming 

Iberian Peninsula 

Ennes and Diniz [22] Linear programming 

Benders’ decomposition 

System up to 43 units, 8 periods and 
128 scenarios 

Source: JRC 2017. 
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Lagrangian relaxation techniques have also been proposed in the literature but they often 

lead to primal infeasible solutions [12]. However, decomposition frameworks based on 

Augmented Lagrangian (AL) make it promising for multistage stochastic linear programs 

[18] since AL methods obtain a feasible primal solution. PH is an AL-based decomposition 

technique which is currently becoming more popular to solve stochastic programming 

problems [25] since it can be parallelized with minimum amount of communication 

between each instance. Unlike BD, PH decomposes the original problem into smaller 

subproblems by scenario through relaxation of the non-anticipativity constraints. Then 

the optimal solution is found by penalising iteratively constraints violations. It has been 

successfully applied in [16], [18], [20], [22]. According to [18], it is also more stable 

than the Nested Decomposition (a Benders-like decomposition), allowing for good 

solutions with less computational time; and it may scale better for large-scale systems. 

Also, there are some statistical approaches (external sampling based) such as sample 

average approximation (SAA) [26], [27] which can be used when the stochastic problem 

is too large to be solved by exact solution techniques. However, the approach of random 

generation of scenarios is computationally intractable for solving multistage stochastic 

programs because of the exponential growth of the number of scenarios when increasing 

the number of stages [27]. 

1.2.2 Progressive Hedging algorithm 

Rockafellar and Wets [25] pioneered the PH algorithm to cope with stochastic 

programming problems. As mentioned in the previous subsection, PH is an AL-based 

decomposition technique that decomposes the original stochastic problem into smaller 

subproblems by scenario. The major advantages is the easy parallelization of all 

subproblems, the solution stability and its better computational performance compared to 

Benders-like decomposition techniques, and its better scalability for large-scale instances 

[18]. 

Since this algorithm was rigorously proved by Rockafellar and Wets [25], it has been 

applied to a wide variety of mathematical problems (see Table 2). Mulvey and Vladimirou 

[28] apply PH to solve stochastic generalized networks and different internal tactics were 

evaluated to improve algorithmic performance. Stochasticity can be found in many 

elements of an optimisation problem. In [29], PH was used to determine the optimal 

operation of a heat storage tank connected to a Combined Heat and Power (CHP) plant 

by assuming uncertainty attached to the future power production. 

Within power systems, uncertainty can be found in different modelling parameters such 

as water inflows, electricity prices, or power demand, to name a few. PH was used to 

solve hydrothermal scheduling problems in the short-term [30] and in the mid-term [16], 

[18], [20], [21]; unit commitment [31]–[34]; or multistage investment problems [35], 

[36]. Gil and Araya [30] analysed the computational performance of PH in short-term 

operational problems and concluded that parallelism and the potential use of high-

performance computing would be suitable alternatives to reduce simulation times. The 

previously discussed references [16], [18], [20], [21] take into account uncertainty on 

water inflows. Reliability unit commitment problems have also been solved by PH [31], 

[32], but the stochastic parameter was assumed to be demand and renewable generation 

in [31] and generator outages in [32]. PH was also used to solve stochastic unit 

commitment problems [33], [34]. Ryan et al. [33] considered demand and renewable 

uncertainty and demonstrated tractability for solving modest-scale systems with large 

number of scenarios. Ordouris et al. [34] took into account wind power uncertainty and 

tested different hedging and internal strategies to compare PH’s computational 

performance. Finally, stochasticity can also (and need to) be modelled in investment 

problems [35], [36]. Munoz and Watson [35] implemented a simple generation 

investment planning problem considering load, wind, solar and hydro power uncertainty, 

whereas Liu et al. [36] modelled large-scale uncertainties such as changes in investment 

costs and generating-fuel prices. 
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To the authors’ knowledge, the PH algorithm was first implemented as a part of a 

software package in 2012 [37] (PySP software package). The software package PySP is 

part of the Coopr open-source Python repository for optimisation, and the latter is 

distributed as part of IBM’s COIN-OR repository. 

Table 2. Mathematical problems solved by using the Progressive Hedging algorithm. 

Problem References 

Medium-term hydrothermal coordination problem Santos et al. [16] 

Gonçalves et al. [18], [20], [21] 

Multistage stochastic investment planning Munoz and Watson [35] 

Liu et al. [36] 

Reliability unit commitment Gu et al. [31] 

Li et al. [32] 

Resource allocation problem Watson and Woodruff [38] 

Stochastic generalized networks Mulvey and Vladimirou [28] 

Stochastic heat storage problem Palsson and Ravn [29] 

Short-term hydrothermal scheduling Gil and Araya [30] 

Stochastic unit commitment Ryan et al. [33] 

Ordoudis et al. [34] 

Source: JRC 2017. 

1.2.3 Cooling-related constraints on power system problems 

Recently, the vulnerability of thermal power plants to climate change have been assessed 

in the technical literature either in US and Europe [4] or only within the European Union 

[39]–[41]. Reference [4] analysed the effects of high river water temperatures or 

reduced river flows on electricity production as a consequence of climate change and it 

concluded that thermal power plants in southeastern Europe and US will be greatly 

impacted by changing climatological conditions. In addition, they highlighted that power 

plants with once-through cooling will be even more impacted by low river flows or high 

water temperatures. In [39], the water stress within the European Union is analysed on a 

river basin scale by 2030. Similar studies to [4] are shown at site-specific (Krümmel 

nuclear power plant) [40] or country scale (Germany) [41]. However, there is a lack of 

detailed representation of the power system, which may lead to distorted results when 

quantifying the water-power linkage on the electricity sector.  

On the other hand, the number of thermal power plants with once-through cooling (OTB, 

OTF and OTS) (2) represents 43 % of all European thermal power plants, as can be seen 

in Figure 3 (3). In addition, water used for cooling represents 43 % of the European 

Union’s water demand [3], [4]. Moreover, the current studies about the water-power 

nexus have stressed that potential aspects of the water-power nexus need further 

attention, e.g. ‘the impact of reduced river discharge on cooling of thermal power plants’, 

as suggested in [7]. Therefore, given these information and the conclusions from [4] and 

[39], there is a need for modelling cooling systems of thermal power plants in power 

system problems. 

                                           
(2)  According to Platts, OTB, OTF, and OTS refer to once-through cooling using brackish water, fresh water, 

and saline water, respectively. 
(3)  This figure accounts for gas, hard, lignite, nuclear and oil power plants of 36 European countries from 

Platts [46]. 
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Few references have accounted for cooling- and policy-related constraints on thermal 

power plants in a unit commitment or economic dispatch problem [8], [42], [43]. Zhao 

et al. [43] integrated the operation of cooling systems of gas-fired power plants into the 

unit commitment problem. They included both the dependence of gas-fired power plants’ 

efficiency with the inlet air temperature and costs of cooling systems (mainly operating 

and maintenance cost when running a cooling system).  

Within a water-energy nexus approach, the implementation of cooling-related constraints 

has been addressed recently. Bertoni et al. [8] implemented the thermal cooling water 

consumption constraint in its economic-dispatch-based model. This constraint is an 

adaptation of the cooling-related constraint proposed in [44], which relates the maximum 

permissible temperature rise of the water, the available capacity, and the maximum 

permissible withdrawal of fresh water. This constraint is suitable for thermal power plants 

with once-through cooling technologies, which are more sensitive to river water 

temperature changes. Finally, Gjorgiev and Sansavini [42] conducted a water-energy 

study at a river basin scale with an upstream hydropower plant with reservoir and a 

downstream thermal power plant. Two different cooling designs were analysed for the 

thermal power plant, namely once-through and wet tower cooling. In this study, they 

proposed the incorporation of cooling- and policy-related constraints such as constraints 

on water thermal pollution and on water withdrawals/consumptions. The former 

constraints are in line with the regulation policy for salmonid waters as defined by the 

European Fish Directive (4), whereas the latter ones impose bounds on the allowable 

water consumed for cooling purposes. 

Figure 3. Number of power plants for each cooling system at European level. 

 
Source: Platts. 

1.3 Challenges for the water-power nexus’ assessment 

In this report, we describe the power system models as well as the methodology to 

analyse the water-power nexus (or water-electricity nexus). However, such assessment 

is highly complex due to several barriers and challenges [45]. In subsections 1.3.1-1.3.3, 

we briefly discuss each of the challenges faced during the WATERFLEX exploratory 

research project; and subsection 1.3.4 summarises additional barriers and challenges 

identified by Khan et al. [45]. 

                                           
(4)  Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of 

fresh waters needing protection or improvement in order to support fish life. 
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1.3.1 Data collection 

The analysis of the water-power nexus depends on data availability (5). For instance, 

power plant characteristics, hydro-related information, water uses and demands or river 

water temperature time series are needed for performing such analysis. Also, the more 

disaggregated the data are, the more accurate the results will be. Therefore, there is a 

need for real and accurate data with high temporal and spatial resolution in power 

systems. 

Power system data can be found in the following sources: 

— National databases which may not contain easy-to-find accessible information. 

— Commercial databases such as Platts [46] with third-party use policies.  

— The transparency platform from ENTSO-E (6), which contains aggregated data but 

only from 2014 onwards (in European countries). 

Water-related data can be found, e.g. in ICOLD (7) or GRanD (8) databases. However, 

lack of data in critical locations is a common occurrence. Therefore, this time-consuming 

task could make it difficult to analyse the water-power nexus and thus data mining is one 

of the major challenges to a great extent when it comes to the water-power nexus’ 

assessment. 

1.3.2 Degree of model aggregation 

Identification of suitable temporal and spatial scales is highly important in order to 

produce sound results. Fine temporal and spatial scales could help identify water stress 

or excessive water withdrawal periods and locations with a high resolution, but data 

mining may be time-consuming and the computational complexity for solving detailed 

mathematical problems may exploit. On the other hand, coarse temporal and spatial 

resolution could limit the assessment of the water-power nexus, and thus overlooking 

some important metrics, e.g. at generating units’ level. Therefore, special attention 

should be paid to the degree of model aggregation and the objectives of the water-power 

nexus’ assessment should be clearly identified a priori. 

In line with model aggregation, system boundaries pose challenges from computational 

and technical perspectives. A wide scope with high resolution could lead to slow 

convergence or even problem intractability. National scopes (or even continental scopes) 

would be suitable targets for assessing the water-power nexus. A global scope would be 

more relevant for a water-energy analysis and a local scope would not capture the 

operation and planning activities of the power system. Finally, the power and water 

sectors are often managed in different jurisdictions, e.g. the power system can be 

operated on a country-level basis, whereas the water system is managed at catchment 

level. 

1.3.3 Computational complexity 

Related to data availability and model aggregation, one should pay also attention to the 

computational complexity of the proposed mathematical models. The trade-off between 

model complexity and accuracy is an everlasting debate in power systems. This trade-off 

depends on what research question(s) should be answered and how deep the analysis 

should be performed. 

For the water-power nexus’ assessment, hydropower modelling and cooling-related 

modelling on thermal power plants are essential to analyse the water-power interactions. 

However, hydropower economic modelling is a complicated problem itself due to its 

                                           
(5)  A full list of required data can be found in [55]. 
(6)  https://transparency.entsoe.eu/ 
(7)  http://www.icold-cigb.net/GB/icold/icold.asp 
(8)  http://www.gwsp.org/products/grand-database.html 
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inherent complexity, which can be aggravated when it comes to multipurpose hydro 

reservoirs.  

Uncertainty characterisation is used for modelling unforeseeable information such as 

water inflows, demand, or renewable profiles, rendering large-scale stochastic 

programming problems. Thus, the computational complexity is expected to grow as the 

possible realizations or scenarios increase, which may lead to slow convergence when 

solving large-scale instances. Then, it is crucial to appropriately reduce this number of 

scenarios with scenario reduction techniques. 

1.3.4 Other challenges and barriers 

Khan et al. [45] thoroughly reviewed the integrated water and energy models and 

identified some barriers or challenges to address such integrated model. The authors also 

proposed some recommendations to overcome water-energy issues in terms of both each 

individual sector and integration modelling. For a quick reference, we list below the 

challenges and barriers identified by Khan et al. [45] for an integrated assessment of the 

water-energy nexus, which can be also extended to the water-power nexus. 

— Traditionally independent and isolated sector management. 

— Distinct spatial, temporal and physical characteristics. 

— Complementary data availability requirements. 

— Degree of model aggregation and generalization. 

— Complexity of multipurpose reservoir topology and management. 

— Collaboration of expertise and research groups.  

— Tracking changes in infrastructure and technological aspects.  

— Uncertainty of energy and water futures. 

1.4 Aim 

The objective of the WATERFLEX Exploratory Research Project is to assess the potential 

of hydropower as a source of flexibility to the European power system, as well as 

analysing the water-energy nexus against the background of the EU initiatives towards a 

low-carbon energy system. Within this context, the aim of this report is to present: 

— The recent developments of the Dispa-SET MTHC module. 

— The cooling-related constraints included in the Dispa-SET UCD module. 

— An off-line methodology to analyse the water and power interactions in the electric 

power systems. 

1.5 Layout 

The structure of the report is organised as follows: 

— Chapter 2 describes the Dispa-SET MTHC module including both its deterministic and 

stochastic versions.  

— Chapter 3 explains how the Dispa-SET UCD module is extended to a water-

constrained unit commitment. 

— Chapter 4 gives an overview of the proposed methodology to analyse water-power 

interactions in electric power systems. 

— Conclusions are drawn in Chapter 5.  
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2 Dispa-SET medium-term hydrothermal coordination 

module 

The Dispa-SET MTHC module is explained in the next sections. The main notation used 

throughout Chapter 2 can be found in Section 2.1. A compact formulation of the MTHC 

problem is presented in Section 2.2. Finally, sections 2.3 and 2.4 provide the 

mathematical description and implementation details for the deterministic and stochastic 

versions of the MTHC problem. 

2.1 Notation 

The main notation used throughout this Chapter is listed in Table 3. 

Table 3. Main notation. 

A. Indices 

ℎ Index of time periods 

𝑗 Auxiliary index of time periods 

𝑙 Index of transmission lines 

𝑛 Index of nodes 

𝑢 Index of units 

B. Sets 

𝐻 Set of time periods 

𝐿 Set of transmission lines 

𝑁 Set of nodes 

𝑈 Set of units 

Ωℎ𝑦𝑑𝑟𝑜 Set of hydro units 

Ω𝑢 Set of upstream reservoirs of plant u 

C. Parameters 

𝑐𝑢 Variable cost (k€/GWh) 

𝑑ℎ𝑛
𝐸  Electricity demand at node 𝑛 and period ℎ (GW) 

𝑑ℎ𝑢
𝐸𝐹 

Environmental flow satisfied at period ℎ by hydro reservoir 𝑢 

(m3/s) 

𝑑ℎ𝑢
𝑊  Water demand satisfied at period ℎ by hydro reservoir 𝑢 (m3/s) 

𝑓1 Conversion factor to convert m3/s into hm3  

𝑓2 Conversion factor to convert m3/s into GWh  

𝐹𝐿𝑂𝑊𝑙
𝑚𝑎𝑥 Transmission line capacity (GW) 

𝑔 Gravitational constant (m/s2) 

𝐺𝑢
𝑚𝑎𝑥 Maximum generation level (GW) 

ℎ𝑒𝑎𝑑𝑢 Nominal head (m) 

𝑚𝑢𝑛 
Unit-node connection map (𝑚𝑢𝑛 = 1 if unit 𝑢 is located at node 

𝑛, 0 otherwise) 

𝑚𝑛𝑙 

Line-node connection map (𝑚𝑛𝑙 = -1 if node 𝑛 is the origin node 

of line 𝑙, 𝑚𝑛𝑙 = 1 if node 𝑛 is the destination node of line 𝑙, 0 

otherwise) 

𝑁𝐻 Number of time periods 

𝑞ℎ𝑢 Natural inflow (m3/s) 

𝑅𝐸𝑆𝑢
0 Initial water content (hm3) 

𝑅𝐸𝑆𝑢
𝑚𝑎𝑥 Maximum water content (hm3) 

𝑅𝐸𝑆𝑢
𝑚𝑖𝑛 Minimum water content (hm3) 

𝑥𝑙 Reactance of transmission line 𝑙 (Ω) 

Δ𝑡 Time step (h) 
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𝜌 Water density (kg/m3) 

𝜏𝑢 Water transport delay 

𝜂𝑢 Roundtrip pumping efficiency 

D. Variables 

𝐶𝐻ℎ𝑢 Water charge (m3/s) 

𝐶𝑂𝑆𝑇 Objective function value (k€) 

𝐷𝐼𝑆ℎ𝑢 Water discharge (m3/s) 

𝐹𝐿𝑂𝑊ℎ𝑙 Energy flow (GWh) 

𝐺ℎ𝑢 Generation (GWh) 

𝑃𝑈𝑀𝑃ℎ𝑢 Pumped energy (GWh) 

𝑅𝐸𝑆ℎ𝑢 Reservoir level or water content (hm3) 

𝑆𝑃𝐼𝐿𝐿ℎ𝑢 Water spillage (m3/s) 

𝑊ℎ𝑢 Water value (€/hm3) 

𝑇𝐻𝐸𝑇𝐴ℎ𝑛 Voltage phase angle (rad) 

Source: JRC 2017. 

2.2 Compact formulation 

The MTHC module of Dispa-SET can be mathematically expressed as: 

Minimise 𝐶𝑀(𝑥𝑀) (1a) 

subject to:  

𝑓𝑀(𝑥𝑀, 𝑦𝑀) = 0: (𝜆𝑀) (1b) 

𝑔𝑀(𝑥𝑀, 𝑦𝑀) ≤ 0 (1c) 

𝑥𝑀, 𝑦𝑀 ≥ 0, (1d) 

where 𝐶𝑀(∙) is the generation cost function, 𝑥𝑀 is the vector of continuous variables in 

energy units, 𝑓𝑀(∙) is the function involving all equality constraints, 𝑦𝑀 is the vector of 

continuous variables in water units, 𝜆𝑀 is the vector of dual variables or Lagrange 

multipliers associated with the equality constraints, and 𝑔𝑀(∙) is the function involving all 

inequality constraints associated with the mid-term. 

2.3 Deterministic medium-term hydrothermal coordination 

problem 

The deterministic problem can be formulated as the following mathematical program: 

𝐶𝑂𝑆𝑇 = ∑ ∑ 𝑐𝑢𝐺ℎ𝑢

𝑢∈𝑈ℎ∈𝐻

 (2a) 

subject to:  

∑(𝑚𝑢𝑛𝐺ℎ𝑢 − 𝑚𝑢𝑛𝑃𝑈𝑀𝑃ℎ𝑢)

𝑢∈𝑈

+ ∑𝑚𝑛𝑙𝐹𝐿𝑂𝑊ℎ𝑙

𝑙∈𝐿

= 𝑑ℎ𝑛
𝐸 ; ∀ℎ ∈ 𝐻, ∀𝑛 ∈ 𝑁 (2b) 
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𝑅𝐸𝑆ℎ𝑢 − 𝑅𝐸𝑆ℎ−1,𝑢 = 

𝑓1 (𝑞ℎ𝑢 + 𝜂𝑢𝐶𝐻ℎ𝑢 − 𝐷𝐼𝑆ℎ𝑢 − 𝑑ℎ𝑢
𝑊 − 𝑆𝑃𝐼𝐿𝐿ℎ𝑢 + ∑ (𝐷𝐼𝑆ℎ−𝜏𝑢,𝑗 + 𝑆𝑃𝐼𝐿𝐿ℎ−𝜏𝑢 ,𝑗)

𝑗∈Ω𝑢

) ∶ (𝑊ℎ𝑢); 

∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻 

(2c) 

𝐹𝐿𝑂𝑊ℎ𝑙 =
1

𝑥𝑙

(∑ 𝑚𝑛𝑙𝑇𝐻𝐸𝑇𝐴ℎ𝑛

𝑛∈𝑁

) ; ∀ℎ ∈ 𝐻, ∀𝑙 ∈ 𝐿 (2d) 

𝑇𝐻𝐸𝑇𝐴ℎ𝑛 = 0; ∀ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑛 = 1 (2e) 

𝐺ℎ𝑢 = 𝐷𝐼𝑆ℎ𝑢𝑓2ℎ𝑒𝑎𝑑𝑢; ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻 (2f) 

𝑃𝑈𝑀𝑃ℎ𝑢 = 𝐶𝐻ℎ𝑢𝑓2ℎ𝑒𝑎𝑑𝑢; ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻 (2g) 

𝐷𝐼𝑆ℎ𝑢 + 𝑆𝑃𝐼𝐿𝐿ℎ𝑢 ≥ 𝑑ℎ𝑢
𝐸𝐹; ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻 (2h) 

−𝐹𝐿𝑂𝑊𝑙
𝑚𝑎𝑥𝛥𝑡 ≤ 𝐹𝐿𝑂𝑊ℎ𝑙 ≤ 𝐹𝐿𝑂𝑊𝑙

𝑚𝑎𝑥𝛥𝑡; ∀ℎ ∈ 𝐻, ∀𝑙 ∈ 𝐿 (2i) 

𝑅𝐸𝑆𝑢
𝑚𝑖𝑛 ≤ 𝑅𝐸𝑆ℎ𝑢 ≤ 𝑅𝐸𝑆𝑢

𝑚𝑎𝑥; ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻 (2j) 

𝑅𝐸𝑆𝑁𝐻,𝑢 = 𝑅𝐸𝑆𝑢
0;  ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 (2k) 

0 ≤ 𝐺ℎ𝑢 ≤ 𝐺𝑢
𝑚𝑎𝑥Δ𝑡; ∀𝑢 ∈ 𝑈, ∀ℎ ∈ 𝐻 (2l) 

𝑆𝑃𝐼𝐿𝐿ℎ𝑢 ≥ 0; ∀𝑢 ∈ Ωℎ𝑦𝑑𝑟𝑜 , ∀ℎ ∈ 𝐻. (2m) 

The objective function (2a) is identical to (1a) and represents the total cost of operating 

the power system during the whole simulation period and is expressed as the sum of the 

variable costs of the generating units. 

The set of constraints (1b) encompass the equality constraints (2b)-(2g). The energy and 

water balance are respectively enforced in (2b) and (2c). The energy balance (2b) takes 

into account the energy produced by thermal, hydro, and renewable units as well as the 

energy flows so that the energy demand is satisfied for all time periods and nodes. The 

water balance (or continuity equation) (2c) is enforced for each hydropower plant and 

each time period and accounts for the difference on the water volume of each reservoir, 

its natural inflow, the energy pumped (if any), the water release (production and 
spillage), and the water release from upstream reservoirs. The dual variables 𝑊ℎ𝑢 

associated with these constraints represent the water value of each hydropower plant for 
each time period. Note that, to convert m3/s into hm3, the factor 𝑓1 is equal to 0.0036 Δ𝑡. 

By using a dc load flow model [47], the power flow can be written in terms of the voltage 

phase angles as in equation (2d) and equation (2e) sets at 0 the voltage phase angle at 

the slack bus of node 1. The last equality constraints are related to the water-energy 

conversion for hydropower discharges and pumped power, i.e. equations (2f) and (2g). A 
simple conversion unit approach is adopted by means of the conversion factor 𝑓2 =
𝑔𝜌Δ𝑡/109 to convert m3/s into GWh.  

The set of inequality constraints (1c) correspond to constraints (2h)-(2l). Constraint (2h) 

imposes the ecological flows that must be satisfied for each hydro reservoir and time 

period. The lower and upper bounds on energy flows and reservoir levels are imposed in 

(2i) and (2j), respectively. The border condition is enforced in (2k). Generation bounds 

on generation energy are set in (2l) for each power plant and time period.  
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Finally, the non-negativity of the water spillage is enforced in (2m), which correspond to 

constraints (1d). Needless to say, the water spillage could be easily bounded by 

minimum and maximum limits representing regulations in force aimed at protecting the 

fauna and flora of the water channel. 

This problem is thus characterised as a large-scale linear program and is solved by using 

the solver GLPK [48] in Pyomo [49], [50]. The formulated model is fully compatible with 

proprietary solver like CPLEX [51], GUROBI [52] which are preferred for larger problems.  

2.4 Stochastic medium-term hydrothermal coordination problem 

The stochastic MTHC problem is solved by using the PH decomposition technique. The 

uncertainty parameter is assumed to be the net inflow for each hydro reservoir. 

Therefore, encoding a scenario tree is required by the PH algorithm. Subection 2.4.1 

describes the scenario tree generation whereas subsection 2.4.2 provides an overview of 

the PH algorithm. 

2.4.1 Scenario tree generation 

A scenario tree is made up to nodes and stages. Each stage comprises of nodes which 

are linked to the nodes of the next time stages via edges based on a given probability. 

For this purpose, it is necessary to use proper scenario generation and reduction 

methods in order to capture all possible realizations of the stochastic time series with the 

minimum information [53], [54]. As a scenario generation method, we used the Gauss-

Markov model that was described in [55] using the statistical moments of available 

historical annual realizations. 

In order to reduce all the developed scenarios and encode them into a scenario tree, we 

selected the neural gas method. It is a simple algorithm for finding the optimal data 

representation based on feature vectors. This algorithm has been successfully used for 

the hydro-thermal coordination problem in [56], [57]. It can be considered as a 

generalization of the k-means algorithm. The difference is that every vector assigned to 

the closest class with a high weight and to other classes with smaller weights. After an 

iteration, the mean of a class is replaced by the weighted average of all assigned vectors. 

It is called neural gas because the way that the algorithm tries to find the optimal data 

representation resembles the movement of a gas diffusing into space. 

The first step is to describe the desired structure of the scenario tree. There are many 

ways to describe this tree but one way that is convenient for this purpose is by means of 

a scenario tree nodal partition matrix. In this representation, this matrix has [𝑁𝑆 x 𝑁𝛺] 
dimensions wherein 𝑁𝑆 is the number of stages and 𝑁𝛺 is the number of scenarios. Each 

value in the matrix represents the unique name of the node. As a result one single 

column shows which nodes are used at each stage. In order to decide how many 

branches we should use for each time stage, we have used the coefficient of variance 

(CV) as a metric, i.e. the ratio of standard deviation to the mean: the higher the 

coefficient of variance, the more branches this node would have. 

After the definition of the tree structure, the neural gas algorithm works based on the 

following steps: 

— Step 1 

Random initialization of tree based on given structure. 

— Step 2 

Weight by Euclidean distance order. 

— Step 3 

Node adjustment. 

— Step 4 
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Repeat steps 2 and 3 for desired number of iterations. The weights decay 

exponentially with the increasing distance-rank of the classes. 

— Step 5 

Compute probabilities of scenarios by assigning a realization to each computed node 

per time step. 

The results of this data structure is encoded as a graph using the networkx package [58]. 

Examples of a generated tree according to this method can be found below. 

The following nodal partition matrix was used for this case: 

𝑁𝑃 =

[
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67]

 
 
 
 
 

 

As discussed before the number of rows correspond to the stages (in this case 𝑁𝑆=6) and 

the number of columns correspond to the number of generated scenarios (in this case 
𝑁𝛺=24). Each value in this matrix corresponds to a unique node identifier. 

Figure 4 shows the values of the generated scenario tree. Figure 5 shows the unique 

nodes of the generated scenario tree and the edges show the transition probability from 

one node to the next one. 

Figure 4. Values of generated scenario tree imposed on possible realizations. 

 
Source: JRC 2017. 

PySP [37] uses the abovementioned scenario tree as an input. Then it creates one model 

object per network leaf (scenario) and solves all models in parallel based on the 

algorithm described in the next subsection. The non-anticipativity constraints are 

indicated by means of the variables that should remain the same at each stage for all 

scenarios. In our case, the hydro discharge is a non-anticipativity constraint.  

After the solution of this problem, all decision variables are given per scenario, i.e. we 
have 𝑁𝛺 and not one decision variable vectors. These show how the decision variables 

would be for a given realization of each scenario. However, the decisions on each stage 
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are made without knowing the realization but based on given probabilities of each 

scenario evolution. 

Figure 5. Nodal structure of a six-stage scenario tree. The values on the edges correspond to the 
transition probabilities. 

 
Source: JRC 2017. 

2.4.2 Overview of the Progressive Hedging algorithm 

Given the scenario tree of the uncertainty parameter(s), the deterministic equivalent of a 

stochastic optimisation problem can be rewritten in two different ways: 1) implicitly when 

the problem is written in terms of nodes and 2) explicitly when the mathematical 

problem is written in terms of scenarios [21]. Following a similar notation as defined in 

[36], the compact formulation of the explicit deterministic equivalent can be expressed 

as follows: 

Minimise ∑ 𝜋𝜔 ∑ 𝐶𝜔,𝑠
𝑀 (𝑧𝜔,𝑠)

𝑠∈𝑆𝜔∈Ω

 (3a) 
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subject to:  

𝑓𝜔,𝑠
𝑀 (𝑧𝜔,𝑠, 𝑧𝜔,𝑠−1) = 0: (𝜆𝜔,𝑠

𝑀 ); ∀𝜔 ∈ Ω, ∀s ∈ S (3b) 

𝑔𝜔,𝑠
𝑀  (𝑧𝜔,𝑠) ≤ 0; ∀𝜔 ∈ Ω, ∀s ∈ S (3c) 

𝑧𝜔,𝑠 = 𝑧𝜔′,𝑠; ∀𝜔 ∈ Ω,𝜔′ ∈ Ω̅𝑠, ∀s ∈ S (3d) 

𝑧𝜔,𝑠 ≥ 0, ∀𝜔 ∈ Ω, ∀s ∈ S, (3e) 

where 𝜔 is the index for scenarios, Ω is the set of scenarios, 𝜋𝜔 is the probability of 

scenario 𝜔, s is the index for stages, S is the set of stages, 𝐶𝜔,𝑠
𝑀 (∙) is the expected system-

wide generation cost function, 𝑧𝜔,𝑠 is the vector of continuous variables, 𝑓𝜔,𝑠
𝑀 (∙) is the 

function involving all equality constraints per scenario 𝜔 and stage s, 𝜆𝜔,𝑠
𝑀  is the vector of 

dual variables or Lagrange multipliers associated with the equality constraints for each 
scenario 𝜔 and stage s, 𝑔𝜔,𝑠

𝑀 (∙) is the function involving all inequality constraints 

associated with the mid-term for each scenario 𝜔 and stage s, 𝜔′ is an auxiliary index for 

scenarios, and Ω̅𝑠 is the set of scenarios that are indistinguishable from scenario 𝜔. 

Constraint (3a) is the minimisation of the expected system-wide generation cost in the 

mid-term over the set of scenarios and stages. Constraints (3b) and (3c) define all the 

technical constraints of the stochastic MTHC problem, which may model inter-temporal 

relationships between continuous variables. Constraints (3d) are the non-anticipativity 

constraints. Finally, constraints (3e) impose the nonnegativity of the continuous 

variables. 

Problem (3) is characterised as a large-scale multistage stochastic program, which can 

be parallelizable due to its inherent structure based on scenarios. Therefore, the PH 

algorithm, which is a scenario-based decomposition technique, is suitable to solve such 

problem. 

PH decomposes the original problem (3) into smaller subproblems per scenario, wherein 

the non-anticipativity constraints are relaxed. The relaxed subproblems are: 

{Minimise ∑ 𝜋𝜔 ∑ (𝐶𝜔,𝑠
𝑀 (𝑧𝜔,𝑠) + 𝑚𝜔,𝑠𝑧𝜔,𝑠 +

𝜌

2
‖𝑧𝜔,𝑠 − 𝑧�̅�‖

2
)

𝑠∈𝑆𝜔∈Ω

 (4a) 

subject to:  

𝑓𝜔,𝑠
𝑀 (𝑧𝜔,𝑠, 𝑧𝜔,𝑠−1) = 0; ∀s ∈ S (4b) 

𝑔𝜔,𝑠
𝑀  (𝑧𝜔,𝑠) ≤ 0; ∀s ∈ S (4c) 

𝑧𝜔,𝑠 ≥ 0, ∀s ∈ S∑ } ∀𝜔 ∈ Ω,  (4d) 

where 𝑚𝜔,𝑠 is the Lagrange multiplier used in the PH algorithm, 𝜌 (9) is a penalty factor 

that should be greater than 0, and 𝑧𝑠 is the probability-weighted average of 𝑧𝜔,𝑠. 

Constraint (4a) is the objective function of each relaxed subproblem and includes two 
penalisations: 1) the second term is penalised based on a Lagrange multiplier 𝑚𝜔,𝑠, and 

2) the third term penalises the deviation of the scenario solutions 𝑧𝜔,𝑠 from the average 

values 𝑧𝑠 by using a penalty factor 𝜌 > 0. Constraints (4b)-(4d) define the feasibility 

space for each stage s. 

                                           
(9)  Note that the symbol ‘𝜌’ has a different meaning in this subsection than in the rest of the report. 
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Based on [34], [36], we briefly explain the steps of the PH algorithm: 

— Step 1: Initialization 

Let us assume the iteration counter 𝜈 = 0. First, problem (4) is solved for all 𝜔 ∈ Ω 

while assuming no penalty terms. Then, a set of decision variables 𝑧𝜔,𝑠
(𝜈)

 is obtained. 

— Step 2: Computation of parameters 

The aggregated decision variables and the Lagrange multipliers used in the PH 

algorithm can be computed for the first iteration as follows:  

𝑧�̅�
(𝜈)

=
∑ 𝜋𝜔′𝑧

𝜔′,𝑠

(𝜈)
𝜔′∈Ω̅𝑠

∑ 𝜋𝜔′𝜔′∈Ω̅𝑠

;  ∀s ∈ S (5) 

𝑚𝜔,𝑠
(𝜈)

= 𝜌(𝑧𝜔,𝑠
(𝜈)

− 𝑧�̅�
(𝜈)

); ∀𝜔 ∈ Ω, ∀s ∈ S (6) 

— Step 3: Iteration 𝝂 > 𝟎 

The following steps should be done until satisfying the stopping criteria: 

● Iteration update: 𝜈 ← 𝜈 + 1 

● Problem (4) should be solved for all 𝜔 ∈ Ω in order to obtain the set of decision 

variables 𝑧𝜔,𝑠
(𝜈)

. 

● Parameters’ update: 

𝑧�̅�
(𝜈)

←
∑ 𝜋𝜔′𝑧

𝜔′,𝑠

(𝜈)
𝜔′∈Ω̅𝑠

∑ 𝜋𝜔′𝜔′∈Ω̅𝑠

;  ∀s ∈ S (7) 

𝑚𝜔,𝑠
(𝜈)

← 𝑚𝜔,𝑠
(𝜈−1)

+ 𝜌(𝑧𝜔,𝑠
(𝜈)

− 𝑧�̅�
(𝜈)

); ∀𝜔 ∈ Ω, ∀s ∈ S (8) 

● Computation of the gap ∑ 𝜋𝜔‖𝑧𝜔,𝑠
(𝜈)

− 𝑧�̅�
(𝜈)

‖𝜔∈Ω  

— Step 4: Stopping criteria 

The PH algorithm terminates when the gap is below a pre-specified threshold 𝜖. 
Otherwise, go to step 3. 
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3 Dispa-SET unit commitment and dispatch module 

3.1 Compact formulation 

The Dispa-SET UCD model is fully explained in [59]. Similar to the Dispa-SET MTHC 

module, this model can mathematically be written as: 

Minimise  𝐶𝐷(𝑥𝐷) (9a) 

subject to:  

𝑓𝐷(𝑥𝐷) = 0: (𝜆𝐷) (9b) 

𝑔𝐷(𝑥𝐷, 𝑧𝐷 , 𝑦𝑀∗) ≤ 0 (9c) 

𝑥𝐷 ≥ 0; 𝑧𝐷 ∈ {0,1} (9d) 

where 𝐶𝐷(∙) is the system-wide generation cost function, 𝑥𝐷 is the vector of continuous 

dispatching variables, 𝑓𝐷(∙) is the function involving all equality constraints, 𝜆𝐷  is the 

vector of dual variables or Lagrange multipliers associated with the equality constraints, 
𝑔𝐷(∙) is the function involving all inequality constraints, 𝑧𝐷 is the vector of binary 

commitment variables, and 𝑦𝑀∗ is a given vector of continuous variables in energy units 

which is the output from the mid-term planning problem. 

The unit commitment problem is driven by the system-wide generation cost minimisation 

(9a), which includes variable and fixed production costs of generating units, start-up and 

shutdown costs, ramp-up and ramp-down-related costs, and penalisations on some 

constraints to ensure feasibility.  

The unit commitment problem must satisfy technical constraints to provide feasible 

dispatch and commitment decisions on generating units, i.e. the on/off statuses and the 

corresponding power productions. The technical constraints that are or may be 

considered in the Dispa-SET UCD are listed below. 

— Nodal power balance per period. 

— Power balance in storage units. 

— The transmission network, which is represented by a pipeline model, typically used in 

transport problems. 

— Power flow capacity limits. 

— Inter-temporal constraints on thermal generators such as ramp-rate constraints or 

minimum up and down time constraints. 

— Storage-related constraints. 

— Emission limits. 

— Curtailment and load shedding limits. 

— Integrality constraints for modelling the on/off statuses of generating units. 

— Heating and cooling related constraints. 

— Cooling-related constraints for thermal power plants, which are fully explained in the 

next section. 

Due to the binary nature of the commitment decisions, this model is characterised as a 

large-scale mixed-integer linear program that can be solved by using CPLEX [51] under 

GAMS [60]. 
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3.2 Cooling-related constraints 

The unit commitment model has been modified to incorporate two sets of cooling- and 

policy-related constraints modelling 1) the maximum allowable water withdrawn for 

thermal power plants, and 2) the effect of river water temperature for cooling of thermal 

power plants with once-through cooling systems. These constraints may lead to 

curtailable power output of the thermal power plant or even its shutdown under certain 

environmental conditions and/or stringent policy measures. 

3.2.1 Water withdrawal constraints 

Policies on water withdrawals may be imposed for thermal power plants because of two 

reasons: 1) there is no enough water in the main stream of the river, or 2) there are 

large withdrawals which can affect the ecosystem in river waters. Currently, there are no 

unified policies on water withdrawals or consumptions and the regulations are site-

dependent and mostly imposed by local authorities [42]. 

The water withdrawal limit is imposed in constraint (10) for each thermal power plant 

𝑢 ∈ 𝑈𝑡 and for each time period 𝑡 ∈ 𝑇, where 𝑈𝑡 is the set of thermal power plants and 𝑇 is 

the set of time periods. The water withdrawn can be computed as the product of the 
power output 𝑝𝑡,𝑢 and the water withdrawal factor 𝐹𝑢

𝑤𝑤 and is limited by the maximum 

allowable water withdrawn 𝐹𝑡,𝑢

𝑤𝑤
. This value may be given in drought time periods due to 

either physical limitations or environmental policy measures. 

𝑝𝑡,𝑢 ∙ 𝐹𝑢
𝑤𝑤 ≤ 𝐹𝑡,𝑢

𝑤𝑤
; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (10) 

As can be seen in (10), the power output can be curtailed if 𝐹𝑡,𝑢

𝑤𝑤
/𝐹𝑢

𝑤𝑤 is below the 

nameplate capacity of the power plant or the power plant can be shut down if 𝐹𝑡,𝑢

𝑤𝑤
/𝐹𝑢

𝑤𝑤 is 

less than its minimum power output. This could be used for vulnerability analyses of 

cooling-constrained power plants since it caps their maximum capacity. However, a more 

sophisticated constraint based on the water stress index could be added to the unit 

commitment model to account for the water withdrawal. 

As defined in [6], the water stress index can be computed as the water withdrawn 

(𝑝𝑡,𝑢 ∙ 𝐹𝑢
𝑤𝑤) divided by the water runoff (𝑅𝑂𝑡,𝑢). This index varies between 0 if the plant is 

not stressed at all and 1 if all the water available is used for cooling. The computation of 

this index would be of highly importance in future power systems in order to maximise 

the societal welfare or minimise the net costs of both power and water sectors. Bearing 

in mind the definition of the water stress index, the following constraint could be 

imposed: 

𝑝𝑡,𝑢 ∙ 𝐹𝑢
𝑤𝑤

𝑅𝑂𝑡,𝑢

≤ 𝑊𝑆𝐼𝑢; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (11) 

Constraint (11) sets a maximum water stress index per power plant and time period 

based on the water runoff. 

3.2.2 Thermal release constraints 

On the other hand, the aquatic life could be harmed when the water for once-through 

cooling is returned to the main stream of the river, which may affect to the water flow 

and may increase the water temperature (also known as thermal pollution). Thermal 

pollution has been regulated through the European Fish Directive (10) because it has been 

a concern in many countries, however few papers address these policy constraints in 

electric operational problems [8], [42], [43]. The European Fish Directive imposes that:  

                                           
(10)  Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of 

fresh waters needing protection or improvement in order to support fish life. 
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— The temperature measured downstream of a point of thermal discharge must not 

exceed the unaffected temperature by more than 1.5 oC for salmonid waters (3 oC for 

cyprinid waters). 

— Thermal discharges must not cause the temperature downstream of the point of 

thermal discharge to exceed 21.5 oC for salmonid waters (28 oC for cyprinid waters). 

In addition, according to the European Environment Agency, the critical limit for the 

intake of cooling water is 23 oC [61]. This limit however could be exceeded if the relevant 

authorities allow for it. Therefore, nowadays there exists certain flexibility when applying 

limiting thermal pollution. 

The effect of river water temperature for cooling thermal power plants with once-through 

cooling technology is modelled by constraints (12) and (13).  

𝑝𝑡,𝑢 ≤ 𝑣𝑡,𝑢𝑃𝑡,𝑢

𝑤𝑐
; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (12) 

𝑣𝑡,𝑢 = 0 𝑖𝑓 𝑃𝑡,𝑢

𝑤𝑐
< 𝑃𝑢

𝑔
; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (13) 

where 𝑣𝑡,𝑢 is the on/off status of power plant 𝑢 in time period 𝑡, 𝑃𝑡,𝑢

𝑤𝑐
 is the water-

constrained capacity of power plant 𝑢 in time period 𝑡, and 𝑃𝑢
𝑔
 is the minimum power 

output of power plant 𝑢. Note that 𝑃𝑡,𝑢

𝑤𝑐
 can be computed as follows: 

𝑃𝑡,𝑢

𝑤𝑐
= {

𝑃𝑡,𝑢

𝑔
∙ 𝐹𝑢

𝑤𝑤 ∙ 𝜌 ∙ 𝑐 ∙ Δ𝑇𝑡,𝑢

Γ ∙ 3.6 ∙ 106
        𝑖𝑓   𝑇𝑡,𝑢

𝑖𝑛 ≠ 0

𝑃𝑡,𝑢

𝑔
                                             𝑖𝑓    𝑇𝑡,𝑢

𝑖𝑛 = 0

; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (14) 

Δ𝑇𝑡,𝑢 = {
0                                     𝑖𝑓   𝑇𝑡,𝑢

𝑖𝑛 ≥ 𝑇𝑡𝑢
𝑙𝑖𝑚𝑖𝑡

𝑇𝑡𝑢
𝑙𝑖𝑚𝑖𝑡 − 𝑇𝑡,𝑢

𝑖𝑛                 𝑖𝑓    𝑇𝑡,𝑢
𝑖𝑛 < 𝑇𝑡𝑢

𝑙𝑖𝑚𝑖𝑡 ; ∀𝑢 ∈ 𝑈𝑡 , ∀𝑡 ∈ 𝑇 (15) 

where 𝜌 is the water density, 𝑐 is the specific heat capacity, Δ𝑇𝑡,𝑢 is the river water 

temperature difference, Γ is a correction factor, 𝑇𝑡,𝑢
𝑖𝑛  is the river water temperature in the 

power plant inlet, and 𝑇𝑡𝑢
𝑙𝑖𝑚𝑖𝑡 is the river water temperature limit.  

Constraint (12) sets a cap on the maximum capacity depending on the river water 

temperature, whereas constraint (13) models the shutdown of the power plant provided 

the water-constrained cap on the maximum capacity is less than its minimum power 

output. This cap is computed according to equation (14) and depends on the maximum 

water withdrawal (𝑃𝑡,𝑢

𝑔
∙ 𝐹𝑢

𝑤𝑤) and the river water temperature difference. For 

implementation purposes, if the inlet water temperature is set to 0 Kelvin degrees, then 

the water-constrained cap is equal to the nameplate capacity, and thus no limitation is 

imposed. Finally, as can be observed, if the inlet water temperature is less than the 

temperature limit, the efficiency of the power plant may be reduced and may generate 
less electricity; otherwise if  𝑇𝑡,𝑢

𝑖𝑛 ≥ 𝑇𝑡𝑢
𝑙𝑖𝑚𝑖𝑡, the power plant will be shut down. 
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4 Methodology 

The proposed framework to address water-power nexus studies is presented in Figure 6. 

In this figure, we can see that both modules of Dispa-SET are linked to the rainfall-runoff 

hydrological LISFLOOD model [62] in an off-line mode. The steps are explained next:  

— Step 1: LISFLOOD is solved to feed water inflows and water demands into the Dispa-

SET model, which would impose constraints on hydropower plants and water-

constrained limitations in thermal power plants. 

— Step 2: Dispa-SET MTHC model runs at daily, weekly or monthly time steps during 

one or several years in order to provide the management of water resources in the 

mid-term, i.e. the reservoir levels from the dams are passed on to shorter-term 

problems. As mentioned earlier, water values for hydropower sources are an outcome 

of this model. 

— Step 3: Dispa-SET UCD model runs at hourly time steps during a target year and the 

following results can be obtained: 1) the power schedule and dispatch, 2) water-

related outcomes (e.g. water withdrawn and consumed by power plants), and 3) 

economic results (prices and costs). 

Note that ideally Dispa-SET MTHC and LISFLOOD should be run iteratively until reaching 

a stable solution. The stopping criteria may be based on the reservoir levels so that a set 

of adequate and optimised levels is derived. However, this issue should be further 

investigated and the methodology is non-iterative. 

Figure 6. Interactions between LISFLOOD, Dispa-SET MTHC, and Dispa-SET UCD models. 

 
Source: JRC 2017. 
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5 Conclusion 

Within the WATERFLEX exploratory research project of the European Commission’s Joint 

Research Centre, this report describes the main developments of the Dispa-SET medium-

term hydrothermal coordination module, the incorporation of the cooling-related 

constraints of thermal power plants into the Dispa-SET unit commitment and dispatch 

module, and an off-line methodology to analyse the water and power interactions in 

electric power systems. 

In the Dispa-SET medium-term hydrothermal coordination module, the optimisation 

horizon can range from 1 year to several years. The model can run in two different 

modes: deterministic or stochastic. The model includes hydro-specific features such as: 

— The continuity equation in water units. 

— Bounds on water release, spillage, and reservoir levels. 

— The consideration of the hydraulic network. 

— Water demands. 

— Ecological flows. 

From the power system point of view, the model takes into account generation 

constraints, transmission network constraints, and power balance. Unlike the previous 

version, the deterministic mode includes water demands or ecological flows as well as 

multiple nodes in the transmission network. The deterministic problem is thus 

characterised as a linear programming problem which can be directly solved with solvers 

for linear programming such as GLPK or CPLEX.  

Another salient feature of this version of Dispa-SET is the modelling of the stochastic 

medium-term hydrothermal coordination module, which is characterised as a linear 

stochastic program. The stochastic problem is solved by using an efficient scenario-based 

decomposition technique, the so-called Progressive Hedging algorithm. This technique is 

an Augmented-Lagrangian-based decomposition method that decomposes the original 

problem into smaller subproblems per scenario. Its implementation has been carried out 

through the PySP software, part of the Coopr open-source Python repository for 

optimisation, which embeds the progressive hedging algorithm. 

Moreover, the report includes how Dispa-SET unit commitment and dispatch module is 

modified to model cooling- and policy-related constraints on water withdrawals or cooling 

constraints of thermal power plants with once-through cooling systems. 

Finally, a decoupled and off-line methodology is proposed to analyse the water-power 

interactions in electric power systems by means of Dispa-SET, which needs data from the 

rainfall-runoff hydrological LISFLOOD model. This framework allows for scenario-based or 

stochastic assessments of the water-power linkage in current or future hydro-dominant 

power systems. The main challenges for assessing those linkages are also briefly 

discussed and include data collection, degree of model aggregation and computational 

complexity of models. 

Several areas of interest for future work are suggested next: 

— Modelling the water head effect of hydro reservoirs. This water head effect is 

represented by the Hill chart and links the water discharge, the reservoir level, and 

the power production. This effect is highly nonlinear and a precise model would be 

needed to accurately represent the Hill chart. Although a simple linear model could be 

adopted, the lack of publicly available data is a barrier to model this feature. 

— Modelling of pumped-hydro generating units in the medium-term optimisation 

problem by using various load levels per time period. 

— Incorporation of uncertainty features besides inflows such as demand or generation 

capacity. 
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— Water-power-food-environment nexus’ assessments call for joint modelling of 

irrigation and power. One possibility is to couple LISFLOOD and Dispa-SET models; 

however this task could be challenging due to the underlying assumptions of each 

model. Another possibility is the incorporation of explicit and simple irrigation models 

into the medium-term hydrothermal coordination problem. 
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