
Bioma platform advancements
during 2017

Fumagalli, Davide

Niemeyer, Stefan

EUR 29019 EN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/146996726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science

and knowledge service. It aims to provide evidence-based scientific support to the European policymaking

process. The scientific output expressed does not imply a policy position of the European Commission. Neither

the European Commission nor any person acting on behalf of the Commission is responsible for the use that

might be made of this publication.

JRC Science Hub

https://ec.europa.eu/jrc

JRC110317

EUR 29019 EN

PDF ISBN 978-92-79-77324-2 ISSN 1831-9424 doi:10.2760/713904

Luxembourg: Publications Office of the European Union

© European Union, 2017

Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents
is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39).

For any use or reproduction of photos or other material that is not under the EU copyright, permission must be

sought directly from the copyright holders.

How to cite this report: Fumagalli, Niemeyer, Bioma platform advancements during 2017 - JRC D5

Food Security Unit, EUR 29019 EN, Publications Office of the European Union, Luxembourg, 2017,
ISBN 978-92-79-77324-2, doi:10.2760/713904, JRC110317

All images © European Union 2017

i

Contents

Abstract ... 2

1 Advancements on the models implemented in the framework 3

1.1 Water balance bug solved in Wofost water balance component 3

1.1.1 Bug summary .. 3

1.1.2 Effects on the simulation results .. 4

1.1.3 Correction applied .. 7

1.1.4 Tests to check the correction ... 7

1.1.5 Further steps... 11

1.2 Modifications to the Bioma software for simulating vernalized winter wheat 12

1.2.1 Closed issues .. 12

1.2.2 Open issues .. 14

2 The .NET Core version of the Bioma framework ... 16

2.1 Porting from .NET Framework to .NET Core ... 16

2.1.1 Porting procedure .. 16

2.1.2 Running the ApiPort to discover not compatible code 17

2.1.3 Removing not compatible code .. 23

2.1.4 Final code modifications .. 23

2.2 Refactoring of the code... 24

2.2.1 Modification to the parameter management .. 24

2.2.2 Modifications to the CRA.AgroManagement component 25

2.2.3 Modifications to the agromanagement data provider interface 26

2.2.4 Modification in the composition layer’s simulation components 26

2.2.5 Modifications to the models ... 27

2.3 Code created ... 27

2.4 Compile and run under Linux .. 27

3 References .. 29

2

Abstract

In this report we describe the advancements on the Bioma Framework developed during

year 2017. Given that the Bioma platform is quite mature, its core was not recently

changed. So that the majority of changes concerns the implementation of the models

developed in the platform. Moreover, during 2017 we also set up an alternative version of

the framework itself, based on a new developing framework called .NET Core, with the

purpose of being able to create a version of Bioma runnable on Linux.

Therefore this document is organized in two chapters: the advancements on the models

and the creation of the new version of the platform.

Bioma is a framework for develop and run agronomical models. The Bioma framework is

used in the context of unit D5 since many years and, starting from year 2015, it is used

also in the operational chain for the Agri4Cast bulletin. The changes described in chapter

1 apply also to the operational use of Bioma, whereas the content of chapter 2 does not

have, for now, an impact on the activities of the unit.

The documentation of Bioma and of the other software cited in this document are in the

Reference chapter.

3

1 Advancements on the models implemented in the

framework

1.1 Water balance bug solved in Wofost water balance component

During 2017 we identified and solved a bug regarding the soil water balance component

user in the operational version. This component is used, together with the Wofost crop

model, to simulate the water available for the crop and the water limited yield of the crop.

The component was implemented following the algorithm described in the Alterra/WER’s

Wofost documentation.

We discovered the bug while making a comparison between the Alterra/WER PCSE software

(which is a python implementation of the same modelling solution) and the Bioma version

of the Wofost modelling solution.

1.1.1 Bug summary

There is a difference between the soil water calculation implementation between the

Alterra/WER’s PCSE version of Wofost and the Bioma version of Wofost.

The difference is on the calculation of the daily increase of water in the rooted zone. One

of the possible increases of the water in the rooted zone is the fact that the roots grow,

and so they intercept more water. The quantity of water to add to the rooted zone is the

daily increase of depth multiplied by WLOW (quantity of water in the unrooted layer). This

quantity can be seen as the magnitude of the movement of water from unrooted to rooted

zone.

This is the exact formula:

Δ WROOT = RATE OF INCREASE OF WATER IN THE ROOTED ZONE = WLOW * (NEW ROOT DEPTH

– ROOT DEPTH OF DAY BEFORE)/(MAX ROOT DEPTH – ROOT DEPTH OF DAY BEFORE)

WHERE

 WLOW = QUANTITY OF WATER IN THE UNROOTED LAYER

In PCSE this calculation happens before the update of WLOW for the current day, whereas

in Bioma this calculation happens after the update of WLOW.

The WLOW during the first phase of the growing season is usually decreasing day by day;

So, generally, the WLOW used by Bioma is lower. It can be easily seen in the explanatory

table below: in this example we imagine the root depth increases every day by 2 cm. In

the Δ WROOT column it is shown the value of the calculation of rate of increase of water in

the rooted zone for each day. It can be seen that Δ WROOT increases day by day. So, if the

previous day calculation is erroneously used instead of the current day calculation the

quantity of water in rooted zone would be less than the correct value. This is what happens

in the bugged version of the model: less water is added to the rooted zone and the bugged

simulations are in general ‘drier’ than the correct ones.

#DAY old root depth new root depth Max root depth Δ Wroot

1 0 2 100 2/100 = 0.0200

2 2 4 100 2/98 =0.0204

3 4 6 100 2/96 =0.0208

4

4 6 8 100 2/94 =0.0212

Figure 1 - An example of the calculation of increase of water in rooted zone. We imagine root depth

daily increase is constant and equal to 2 cm.

The difference on the water in rooted zone used to propagate also on the other variables

implied in the water balance, causing a not correct increase of transpiration and loss of

water to subsoil.

Figure 2 - Schema of the water balance. The rate of increase of water in the rooted zone is highlighted
in red (ΔWroot)

1.1.2 Effects on the simulation results

The bug affected simulations introduced an artificial water stress and so the water limited

yields calculated were lower than the correct values. The magnitude of the difference

depends on the crop and on the simulated area, being less important for places and crops

were the water stress is less frequent and important.

To estimate the impact of the change in the European bulletin simulation results, we

performed the simulation of the whole Europe, all the crops, and confronted the results to

the simulation run without the bug correction. The comparison was done at STU level to

catch entirely the differences in the soil water calculation. Only year 2016 was considered.

The total number of combinations CROP/GRID/STU for the European bulletin is circa 1.8

million.

In the following graphs it is shown the magnitude of the error in terms of percentage

difference between the PCSE correct results and the Bioma wrong results.

On the X axis it is shown the percentage difference calculated as

 Percentage difference = PCSE results - Bioma results / PCSE results

On the Y axis it is shown the number of locations that experienced the difference.

The area below the curve can be seen as the magnitude of the error.

5

Figure 3 - Distribution of percentage difference in water limited biomass for wheat in Europe

Figure 4 - Distribution of percentage difference in water limited biomass for winter rapeseed in Europe

Figure 5 - Distribution of percentage difference in water limited biomass for spring barley in Europe

6

Figure 6 - Distribution of percentage difference in water limited biomass for potato in Europe

Figure 7 - Distribution of percentage difference in water limited biomass for maize in Europe

From the figures above it can be seen that the crops most affected by the problem were

the summary crops (maize and potato) where the water stress is more frequent and where

its sensitivity on the final yield is higher. For wheat, sunflower, rapeseed, barley, rye and

beans the differences are in general below 5%. For maize, potato and sugar beet there is

a significant number of locations where the difference is greater than 5%, up to 20%.

The geographic distribution of the errors is shown in the next figure for maize. The majority

of the errors happened where the climate is drier and so the water limitation is in general

higher.

7

Figure 8 - Geographical distribution of the errors on water limited biomass for maize, in absolute
values (KG/ha)

1.1.3 Correction applied

The order of the calculations of WLOW and rate of increase of water in the rooted zone was

reversed.

1.1.4 Tests to check the correction

Many tests were performed to check that, after the correction was applied, the results of

PCSE and Bioma coincide. All the tests gave positive results. Here we report the results of

one of these tests.

The test was performed for a particular cell/year in which the discrepancy between the two

versions was big. Window: RUK (Russia and Kazakhstan), cell number: 2055090, STU

number: 1215, Year: 2007, Crop: maize.

By applying the described correction, the Bioma results coincide to the PCSE results, as

can be seen in the next figures (The last part of each season is very different but not

important: Bioma keeps crop ‘alive’ until December, whereas the PCSE simulation stops

crop just after maturity, which happens at time step number 118).

Only remains a little discrepancy in the final value of the water limited biomass, probably

due to some other factor not yet considered.

8

Figure 9 - Differences in soil moisture in rooted zone in the test case between PCSE and Bioma before

the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the
soil water content in m^3/M^3

Figure 10 - Differences in the soil moisture in rooted zone in the test case between PCSE and Bioma

after the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is
shown the soil water content in m^3/M^3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1
1

0
6

1
1

1
1

1
6

1
2

1
1

2
6

1
3

1
1

3
6

1
4

1
1

4
6

1
5

1
1

5
6

1
6

1
1

6
6

1
7

1
1

7
6

1
8

1
1

8
6

1
9

1
1

9
6

Soil water content in rooted zone before the modification

soil moisture rooted PCSE soil moisture BIOMA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6

Soil water content in rooted zone after the
modification

Soil moisture rooted PCSE Soil moisture rooted Bioma

9

Figure 11 - Differences in the transpiration daily rate in the test case between PCSE and Bioma before

the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the
transpiration in cm

Figure 12 - Differences in the transpiration daily rate in the test case between PCSE and Bioma after
the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the

transpiration in cm

0.000000000000

0.100000000000

0.200000000000

0.300000000000

0.400000000000

0.500000000000

0.600000000000

0.700000000000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Transpiration daily rate

TRA rate PCSE TRA rate Bioma

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6

Transpiration daily rate

TRA rate PCSE TRA rate Bioma

10

Figure 13 - Differences in the loss of water to subsoil in the test case between PCSE and Bioma before
the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the
loss of water in cm

Figure 14 - Differences in the loss of water to subsoil in the test case between PCSE and Bioma after
the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the
loss of water in cm

0.000

1.000

2.000

3.000

4.000

5.000

6.000
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Loss of water to subsoil (cumulative)

Loss PCSE Loss Bioma

0.0000000

2.0000000

4.0000000

6.0000000

8.0000000

10.0000000

12.0000000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

Loss of water to subsoil (cumulative)

Loss PCSE Loss Bioma

11

Figure 15- Differences in the loss of water to subsoil in the test case between PCSE and Bioma before

the bug correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the
water limited biomass in KG/ha.

Figure 16- Differences in WL biomass in the test case between PCSE and Bioma after the bug

correction was applied. On the X axis it is shown the Julian day, on the Y axis it is shown the water
limited biomass in KG/ha.

1.1.5 Further steps

The test results have been accepted, so it was planned to introduce the correction in the

operational system starting from the beginning of 2018 bulletin season.

0.000

2000.000

4000.000

6000.000

8000.000

10000.000

12000.000

14000.000

16000.000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

WL Biomass (kg)

Biomass water limited PCSE Biomass water limited BIOMA

0

2000

4000

6000

8000

10000

12000

14000

16000

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6

WL Biomass (kg)

Biomass water limited PCSE Biomass water limied Bioma

12

1.2 Modifications to the Bioma software for simulating vernalized

winter wheat

This chapter describes the modifications applied to the Bioma system to manage the

simulation of the vernalized winter wheat. The particularity of this crop is that it is a cross

annual crop, meaning that it is sown in autumn and harvested in spring. This is the first

crop with this behaviour simulated in the operational environment, so it was necessary to

make some modifications to the system.

The vernalized wheat simulations were run during 2017 by Alterra/WER on the operational

system. To make it possible, we provided an updated release of Bioma (operational console

version) to Alterra/WER and we gave them support in using it.

The main release of Bioma (provided on 02/02/2017) included the improvements to the

model to properly simulate vernalized winter wheat:

- The Bussel algorithms for simulating the vernalization was included in Wofost.

 The algorithm is the same described in the PCSE documentation of class

“Vernalisation”

(http://pcse.readthedocs.io/en/stable/_modules/pcse/crop/phenology.html)

 The four Bussel algorithm parameters were added in the list of Wofost

parameters managed by Bioma and read from the DB:

VERNSAT: SATURATED VERNALISATION REQUIREMENTS IN DAYS

VERNBASE: BASE VERNALISATION REQUIREMENTS IN DAYS

VERNRTB: RATE OF VERNALISATION AS A FUNCTION OF DAILY MEAN TEMPERATURE.

VERNDVS: CRITICAL DEVELOPMENT STAGE AFTER WHICH THE EFFECT OF VERNALIZATION IS

HALTED

 The call to the Bussel algorithm was added in the Bioma Wofost

“PotentialPhenologyC” strategy class. The call is subordinate to the value of the

IDSL parameter.

- It was introduced the crop parameter IDSL for switching on and off the photoperiod

and vernalization effects. The IDSL parameter was already present in the

operational CGMS database, but Bioma never used it, since neither photoperiod not

vernalization were previously considered. IDSL can assume these values:

o IDSL=0: consider temperature only

o IDSL=1: consider temperature and photoperiod

o IDSL=2: consider temperature, photoperiod and vernalization

IDSL can be defined at crop variety level. For example, for vernalized winter wheat

the default value (in CROP_PARAMETER_VALUE table) is set to 2. For some zones,

the value is overwritten to 1 (in VARIETY_PARAMETER_VALUE table).

In the next paragraphs we described the issues solved during 2017 and those ones still

open. Closed issues are presented in chronological order, as we solved them. All the

patches were promptly sent to Alterra/WER to be applied to their version of Bioma. The

dates of the patches represent the date the patch was distributed to Alterra/WER.

1.2.1 Closed issues

1.2.1.1 IDSL parameter was not read correctly

Issue: Bioma did not read correctly the IDSL parameter from database and so vernalization

and photoperiod were never applied.

13

Solution: bug corrected. (Patch 21/02/2017)

1.2.1.2 Modified the query for retrieving crop calendar data by filtering it only

on important crops

Issue: when Bioma reads from DB the crop calendar data, it tries to read crop calendar

data for every crop in the DB. In case some crops is misconfigured (e.g. grassland, which

is not used) Bioma could read erroneous data that cause a crash in the application.

Solution: now Bioma reads only the data of the crops specified in a specific configuration

file (called ‘CropNamesToAgromanCropNames.txt’, already existing and used by the

application to convert crop names to crop numbers). Moreover, now Bioma manages

properly invalid harvest dates, by setting the harvest date to 31st of December or crop

maturity. (Patch 01/03/2017)

1.2.1.3 Differences in photoperiod calculations between Bioma and PCSE

Issue: we spotted a difference in the calculation of biomasses between PCSE and Bioma

Wofost. The difference was in the calculation of the photoperiod effect: the PCSE (and

CGMS) implementation increases the latitude angle by 4 degrees to take into account the

twilight. The angle is needed to take into account that the photoperiodic day length is

slightly longer than the astronomic day length because the period of twilight (when the

sun is below the horizon) is still counting for the day length experienced by plants.

Solution: Bioma Wofost code was adapted to PCSE code. Now results are identical. (Patch

01/03/2017)

1.2.1.4 Simulation re-initialization after missing weather day

Issue: in case of days with missing weather, Bioma jumps to the next simulation start day

(it used to be First of January, now it is dynamical, see below). By doing this, in some

cases, it happened that the status of the crop simulation was not re-initialized and so the

simulation restarted from the status of the last simulated day. This happened when the

restart date was after the sowing date of the next growing season.

Solution: when there is a day with missing weather, now Bioma forces the re-initialization

of the status of the simulation. (Patch 10/04/2017)

1.2.1.5 Dynamical simulation restart after a missing weather day

Issue: in case of days with missing weather, Bioma used to jump to the next first of

January. This is ok for intra-annual crop, because there is no risk to miss a growing season.

This is not acceptable for cross-annual crops because there is the risk to miss a growing

season that could be simulated without problems. For example, if the missing weather is

during spring or summer, the following winter wheat growing season (which starts in

autumn) should be simulated. If the system jumps directly from spring to the next first of

January the sowing of that growing season would be skipped.

Solution: when there is a day with missing weather, now Bioma checks for the next day

having weather data, and restarts the simulation from that date. (Patch 20/04/2017)

1.2.1.6 Check on not completed growing seasons

Issue: when a growing season does not complete because of some errors (for example

because we miss some weather data) Bioma used to save it to the CSV output file and

then to the database. So that, in the database there were some growing seasons saved

only partially. This could introduce error and biases when calculating long term averages

and similar summary statistics.

14

Solution: now Bioma gives to the user the possibility to save the decadal values of a

growing season only when it is completed. By ‘growing season’ we mean all the decades between
sowing and harvest. By 'completed’ growing season we mean that the simulation reached the harvest
date defined in the crop calendar, so, for example, there was no gap in the weather data. It has no
importance whether the crop reached the maturity or not.

The option is defined as a 'configuration item' in the configuration of the persister (PCF file). The

item’s name is "Don’t save years not reaching harvest day" and Bioma sets it by default to "False",
meaning that if the user does not set explicitly the item, the old behaviour is followed.

When the item is set to "True", the persister checks if every growing season reached the harvest date.

If yes that growing season is saved to the CSV file, otherwise not and there will be a gap in the dates.

(Patch 20/04/2017)

1.2.1.7 Problem in crop calendar events in case of leap years, if sowing and

harvest are too close

Issue: if between the harvest of a growing season and the planting of the next growing

season there is only one day of gap, Bioma does not manage correctly the situation in case

of leap years. The result is that Bioma erroneously skips one growing season.

In a non-leap year situation we have, for example,

SEASON DAY OF PLANTING DAY OF HARVEST

1997-1998 304 303

1998-1999 304 303

Every year Bioma receives at day 303 an event of harvest, and at day 304 an event of

planting (the planting of the next growing season) so everything works correctly.

When there is a leap year, we have

SEASON DAY OF PLANTING DAY OF HARVEST

1995-1996 304 304

1996-1997 305 303

Correctly, the two dates of 1996 are 1 day higher. However, during season 1995-1996

Bioma receives at day 304 an event of planting and an event of harvest. Bioma manages

first the planting and then the harvest. Then, as a result, Bioma plants and harvests the

crop during the same day so season 1995-1996 is not simulated.

This happens for every season preceding leap years.

Solution: we should leave at least 2 days of gap between a harvest day and the next sowing

day. We all agreed this is not a problem because in reality the gap is much higher.

1.2.2 Open issues

1.2.2.1 How to manage a possible growing season longer than one year

Issue: one of the options taken into account for initializing the soil water content was to

start the simulations up to three months in advance, simulating only bare soil or some filler

crop. Unfortunately to extend the simulated growing season by three months causes a

problem: there could be an overlap between a growing season and the next growing

season. This happens in particular for wheat because there are usually less than three

months between an harvest and the next sowing.

15

The ideal solution is to add a ‘season identifier’ in the output tables (also in the aggregated

ones) besides the couple decade/year that we have now. This solution is going to be applied

to the operational system at the beginning of the bulletin season 2018.

Partial solution: for 2017, we decided to use the ISW tool to initialize the water content.

Therefore, there was no need to run the additional three months.

16

2 The .NET Core version of the Bioma framework

This chapter describes the changes made to the core of Bioma for running it in the .NET

core environment. The .NET Core environment is a free, cross-platform, open source

developer platform that Microsoft released during 2016. It is an alternative to the .NET

Framework, which is the software framework used to build the Bioma Platform.

To move Bioma from .NET Framework to .NET Core framework has a big advantage:

applications built in .NET Core can be run on any operative system (Windows, Linux, Mac)

whereas applications built in the .NET Framework are bound to the Windows operative

system.

In both the frameworks the programming language is the C#.

It was used version 2.0.2 of the .NET core framework SDK.

The Bioma layers modified are the Bioma Model Layer, the Bioma Composition Layer and

the Agromanagement libraries.

For the sake of testing the new code and analysing the impacts, besides of the Core

libraries, we converted also a modelling solution. The modelling solution chosen is the

Wofost Phenology model. It simulates just the potential phenology of the Wofost model so

it is quite simple. Anyway, we ported the whole CropML library to the new environment.

CropML contains Wofost, WARM and Cropsyst models and it is composed of circa 60

strategies and 10 domain classes.

At the end of the porting, described in paragraph 2.1, we were able to run the Wofost

Phenology modelling solution in the .Net Framework Core.

Later, we decided to make other changes to the Core libraries, to simplify some aspects of

the core components and solve problems identified since many years by the Bioma users.

These changes are not related to the porting to .NET Core (they could be applied also to

the original .Net Framework version) but we identified this moment as the right one to

apply them, given the fact that we are already creating a new Core version, not compatible

with the original one. These changes are described in paragraph 2.2.

2.1 Porting from .NET Framework to .NET Core

2.1.1 Porting procedure

For the porting from .NET Framework to .NET Core we followed the procedure described

on the official Microsoft developers blog:

https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/

Here an extract from the blog post:

A ROUGH APPROACH FOR PORTING:

1. IDENTIFY THE PROJECTS THAT YOU WANT TO MOVE TO .NET CORE.

2. UNDERSTAND THE EXTERNAL DEPENDENCIES THESE PROJECTS HAVE AND ENSURE THEY ARE

EITHER COMPATIBLE WITH .NET CORE, HAVE EQUIVALENT ALTERNATIVES, OR CAN BE FACTORED

OUT.

3. CHANGE THOSE PROJECTS TO TARGET .NET FRAMEWORK 4.6.1. THIS ENSURES THAT YOU CAN

USE API ALTERNATIVES WE’VE INTRODUCED FOR CASES WHERE .NET CORE COULDN’T SUPPORT

EXISTING APIS. MAKE SURE TO ALSO UPGRADE ANY CONSUMING PROJECTS, OTHERWISE YOU’LL

GET COMPILATION ERRORS DUE TO INCONSISTENT .NET FRAMEWORK VERSIONS.

4. RECOMPILE

5. RUN API PORT

6. CHANGE YOUR CODE TO ADDRESS API PORT ISSUES

https://blogs.msdn.microsoft.com/dotnet/2016/02/10/porting-to-net-core/

17

Here our approach to the procedure:

Point 1) We decided to port the minimum Core for creating a crop simulation modelling

solution: CRA.ModelLayer, CRA.CompositionLayer, CRA.Agromanagement,

CRA.Agromanagement.Rules, CRA.Agromanagement.Impacts,

EC.JRC.MARS.CompositionLayer.Core,

EC.JRC.MARS.AgromanagementProviderBaseInterfaces,

EC.JRC.MARS.WeatherProviderBaseInterfaces, EC.JRC.MARS.ModelLayer.Data,

JRC.IPSC.MARS.Utilities. Besides of the Core libraries, we ported the

WofostPhenologyModellingSolution library and its dependencies

Point2) No external libraries to remove. NOTE: in case of porting the Configuration Layer

and the CRA.Clima libraries there will be external dependencies to remove and to replace

with something else: Ionic.ZIP and NMath.

Point 3) We created a Visual Studio solution containing all the necessary projects. The

solution is called “BiomaNetCoreVersion”. We modified the target framework from the

original one (3.5 for some projects, 4.5 for others) to 4.6.1. It was done without changing

any code.

Figure 17- Screenshot of the Visual Studio created

Point 4) Recompilation gave no errors.

Points 5) and 6) are described in the next paragraphs

2.1.2 Running the ApiPort to discover not compatible code

18

We run the ApiPort utility on a ModelLayer project (EC.JRC.MARS.CropML and all the

dependencies). It gave the following feedback

Target type Target member Assembly .NE

T

Cor

e

App

Reco

mmen

ded

chang

es

T:System.Windo

ws.Forms.Messag

eBox

T:System.Windows.Forms.MessageB

ox

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Windo

ws.Forms.Messag

eBox

M:System.Windows.Forms.Message

Box.Show(System.String,System.St

ring)

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Windo

ws.Forms.Dialog

Result

T:System.Windows.Forms.DialogRes

ult

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Drawin

g.Bitmap

T:System.Drawing.Bitmap CRA.AgroMa

nagement2

014

Not

sup

port

ed

T:System.Drawin

g.Bitmap

T:System.Drawing.Bitmap EC.JRC.MAR

S.Crop.Crop

ML

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].#cto

r(System.Int32,System.Int32)

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].#cto

r(System.Int32,System.Int32)

EC.JRC.MAR

S.Crop.Crop

ML

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].Addr

ess(System.Int32,System.Int32)

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].Get(

System.Int32,System.Int32)

CRA.ModelL

ayer

Not

sup

port

ed

19

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].Get(

System.Int32,System.Int32)

EC.JRC.MAR

S.Crop.Crop

ML

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].Set(

System.Int32,System.Int32,System.

Double)

CRA.ModelL

ayer

Not

sup

port

ed

T:System.Double

[0:,0:]

M:System.Double[0:,0:][0:,0:].Set(

System.Int32,System.Int32,System.

Double)

EC.JRC.MAR

S.Crop.Crop

ML

Not

sup

port

ed

We run the ApiPort utility on the composition layer core project and all its dependencies.

It gave the following feedback

Target type Target

member

Assembly .NET Core App Recommended

changes

T:System.Config

uration.Configur

ationElementColl

ection

T:System.Config

uration.Configur

ationElementColl

ection

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElementColl

ection

M:System.Confi

guration.Configu

rationElementCo

llection.#ctor

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElementColl

ection

M:System.Confi

guration.Configu

rationElementCo

llection.BaseGet

(System.Int32)

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

20

configuration on

type.

T:System.Windo

ws.Forms.Messa

geBox

T:System.Windo

ws.Forms.Messa

geBox

CRA.ModelLayer Not supported

T:System.Windo

ws.Forms.Messa

geBox

M:System.Windo

ws.Forms.Messa

geBox.Show(Sys

tem.String,Syste

m.String)

CRA.ModelLayer Not supported

T:System.Config

uration.Configur

ationPropertyAtt

ribute

T:System.Config

uration.Configur

ationPropertyAtt

ribute

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationPropertyAtt

ribute

M:System.Confi

guration.Configu

rationPropertyAt

tribute.#ctor(Sy

stem.String)

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationCollectionAt

tribute

T:System.Config

uration.Configur

ationCollectionAt

tribute

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationCollectionAt

tribute

M:System.Confi

guration.Configu

rationCollectionA

ttribute.#ctor(S

ystem.Type)

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

21

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElement

T:System.Config

uration.Configur

ationElement

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElement

M:System.Confi

guration.Configu

rationElement.#

ctor

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElement

M:System.Confi

guration.Configu

rationElement.g

et_Item(System

.String)

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationElement

M:System.Confi

guration.Configu

rationElement.se

t_Item(System.

String,System.O

bject)

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationSection

T:System.Config

uration.Configur

ationSection

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

22

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Config

uration.Configur

ationSection

M:System.Confi

guration.Configu

rationSection.#c

tor

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Windo

ws.Forms.Dialog

Result

T:System.Windo

ws.Forms.Dialog

Result

CRA.ModelLayer Not supported

T:System.Config

uration.IConfigu

rationSectionHa

ndler

T:System.Config

uration.IConfigu

rationSectionHa

ndler

JRC.IPSC.MARS.

Utilities

Not supported Use

configuration

appropriate for

your application

model. For

portable

Framework

Components,

expose API for

configuration on

type.

T:System.Doubl

e[0:,0:]

M:System.Doubl

e[0:,0:][0:,0:].

#ctor(System.In

t32,System.Int3

2)

CRA.ModelLayer Not supported

T:System.Doubl

e[0:,0:]

M:System.Doubl

e[0:,0:][0:,0:].A

ddress(System.I

nt32,System.Int

32)

CRA.ModelLayer Not supported

T:System.Doubl

e[0:,0:]

M:System.Doubl

e[0:,0:][0:,0:].

Get(System.Int3

2,System.Int32)

CRA.ModelLayer Not supported

T:System.Doubl

e[0:,0:]

M:System.Doubl

e[0:,0:][0:,0:].S

et(System.Int32

CRA.ModelLayer Not supported

23

,System.Int32,S

ystem.Double)

In summary, these are the action points suggested by the ApiPort:

 Everything related to the Windows GUI must be removed (Forms, MessageBox,

Drawings, Icons management). The messages to the user must be diverted onto a

more generic message system (trace/log)

 The reflection method LoadFrom must be replaced. (In general, some concept in

the reflection has changed. More informations can be found at this link:

https://blogs.msdn.microsoft.com/dotnet/2012/08/28/evolving-the-reflection-

api/)

 The double matrix type (double[,]) is not fully compatible since the methods to

set/get a value using the indexes are not supported.

 Classes related to configuration files definitions (system.configuration) must be

deleted

2.1.3 Removing not compatible code

These are the actions we applied to the code to solve the problems showed by the ApiPort:

 We removed the classes MapperConfigurationSetting and

MapperConfigurationSettings from assembly JRC.IPSC.MARS.Utilities (there will be

no mapper in the .NET Core application). The classes gave error because they used

System.Configuration

 We replaced the reflection method Assembly.LoadFrom with supported method

Assembly.Load

 We replaced MessageBox calls with TraceHelper.TraceEvent calls. Then it is duty of

the application to manage properly the messages (e.g display in the console

output).

 We removed the usages of System.Drawing.Bitmaps: they were the definition of

the libraries icons and logos: icons and logos are should not appear in a Core library

 We removed any reference to the DataSet object because it does not exist in .NET

Core

 For bidimensional arrays:

o We modified instructions like v[j,k] to (double)v.GetValue(j,k) where v is a

double[,]

o We changed objects of type double[,] to objects of type double[][]

After applying all these changes, we compiled the code but we were not able to run it:

there were too many low level pieces of code not compatible (e.g. read/write file,

reflection). So it compiled but there were errors at run time, in particular when running it

under the Linux operative system.

2.1.4 Final code modifications

To solve the latest problems we also:

 removed the ImageMap class and all its references (ImageMap was the class used

to let ACG application dialog with the Agromanagement core. So it was de fact a

piece of graphical interface bounded in the Core.

 removed method for writing XML files (WriteXml) from the Agromanagement core

 removed methods related to cloning of classes

24

 removed the .NET Framework trace classes. These must be replaced with the Trace

mechanism defined in the .Net Core environment.

 replaced ApplicationException exception type to a more generic Exception type

2.2 Refactoring of the code

The refactoring of the code of the Bioma core components described in this chapter is not

mandatory for running Bioma in the .NET Core environment but it was applied for

improving the components interfaces and behaviour.

2.2.1 Modification to the parameter management

 The parameter class (interface IParameters) has been eliminated.

 Methods for setting and retrieving parameters values have been added directly to the

strategies, by creating extension methods of the IStrategy interface. Through these

methods, the consumer can now set the parameters to the strategy one-by-one (by

specifying the parameter name and value) or all together by setting a dictionary that

contains all the parameters values. The IStrategy interface itself is not changed.

 Other methods were added to manage parameter sets directly in the strategy. This

functionality replaces the use of ‘KeyValues’ and ‘ParameterSet’ objects which were

eliminated from the core. These objects were tightly related to ONE of the way

parameters could be stored (the XML, MPE format file). Now different sets of

parameters can be stored directly into the strategy and then one of the set can be

loaded when necessary. (e.g. each set corresponds to a crop parametrization, and then,

after an agromanagement event, the correct crop parametrization is loaded). Now this

mechanism is completely independent on the way parameters are stored (XMLfiles,

database,….). Obviously, users can still use MPE for parametrizing the models and save

the parameters to XML format, but this functionality is now out of the Bioma model

layer core.

 The ParametersIO class was a class designed for two purposes:

o To inspect through reflection the public properties of a class (e.g. the variables

of a domain class)

o To read/write a parameter class from/to an XML MPE file

The first functionality was kept, but moved to a class having a more explicit name:
ClassPropertiesHandler

The second functionality is no more needed since parameter classes have been

eliminated. The ParametersIO class has been eliminated too.

 The list of parameters VarInfo, exposed as list of static properties of the strategy

classes can be eliminated. The VarInfo of the parameters can now be requested to the

strategy. There was a dublication of the same VarInfo values both as static properties

and as non static strategy properties. This unnecessary dublication is now eliminated.

In case the varInfo list is needed as static context, the new static strategy method

GetParametersVarInfo can be used (present in every strategy)

 public static IEnumerable<VarInfo> GetParametersVarInfo()

 The property

 IDictionary<string, PropertyInfo> PropertiesDescription { get; }

used to be part of IDomainClass interface. Now it is part of the new IPropertiesDescribed

interface. This is to apply the method also to other object than domain classes.

Obviously the IDomainClass extends the IPropertiesDescribed interface.

 The composite design pattern for strategies composition has been improved: now a

composite strategy own the instances of the child strategies (before it used to know

25

only the Type of the child strategies). It was using the instances of the child strategies,

but it had no a direct and organized reference to them.

 The usage of the reflection was limited as much as possible. It is now used only to clone

classes (through the interface IPropertiesDescribed) and to check conformity of variable

types

 Method SetParametersDefaultValue of the strategy is now an extension method of

IStrategy interface and so can be removed from the body of the concrete strategy

classes.

 To keep the strategies class more readable, it is possible to split the class code into two

files, by using the ‘partial’ keyword. As a test, we converted two strategies:

Initialization and InstantaneousAssimilation

2.2.2 Modifications to the CRA.AgroManagement component

 The most generic representation of the agromanagement state was an abstract class

(StatesAgroMan) that had NOT abstract methods or properties. So the abstract class was

made coincident with its only implementation (StatesAgroMan). StatesAgroMan is now

the most generic representation of the agromanagement state, and so of course it could

be extended if other status variables are needed. In the signatures of the rules methods

this class was already used and so non changes are made to the rules. The CheckRule

method signature keeps to be

 public bool CheckRule(StatesAgroMan st, IManagement m)

NOTE: the fact that the CheckRule interface need an IManagement argument is, in

our opinion, meaningless and wrong. We did not change the interface for now but

it should be done. The IManagement argument is never used in any implementation.

 The PhenologicalStates was moved to an outer scope and now it is defined in its own

CS file

 The CurrentTime properties (the simulation timing) previously contained static variables.

Now the variables are no more static and the whole CurrentTime class was added to the

agromanagement state (StatesAgroMan)

 The Scheduling class used to include two different purposes. Now the class has been

eliminated and replaced with different classes each one with a single purpose:

o Load the agromanagement configuration, the rules/impact libraries and read the

XML agromanagement file. Now this functionality has been moved to class
AgromanagementFileReader

o Perform the time step rule check on the scheduled rules. Now this functionality

has been moved to class AgromanagementController, which is part of the model

runner. Please note that the eliminated Scheduling class did NOT implement the

IScheduling interface that, without any implementation, was practically useless.

The workflow for the agromanagement use is now more linear:

1) The consumer (e.g. an application) uses the AgromanagementFileReader for

loading the agromanagement libraries and for reading the agromanagement

XML file. As an output of this step, the consumer gets the SchEvents object

containing the scheduled rules/impacts list
2) At every time step, the consumer passes the SchEvents and the

agromanagement state (StatesAgroMan) to an implementation of

AgromanagementController (each modelling solution should have its own

specific implementation, where all the necessary status variables are set in

the specific child of StatesAgroMan)

26

 The prebuilt simulation component AgroManagementSimulationComponent, which was the

ready-to-use simulation component to put in a composition layer modelling solution,

has been deleted. Now the agromanagement processing is done by the

AgromanagementController class, which is a part of the ModelRunner. This means that the

agromanagement now is treated no more as one of the components of the simulation

but it gained an higher level in the modelling solution structure, being part of the fixed

architecture of any modelling solution. This allow to simplify the agromanagement data

workflow and to structure better the modelling solutions. Each modelling solution

should contain an implementation of the abstract class AgromanagementController. This

implementation will fill the agromanagement status with the proper variables, taken

from the run time data of the components. So that the AgromanagementController will

check the rules versus the specific status of the component. This allows for any

developer to extend the StatesAgroMan class, and use any variable as a possible

condition for a custom agromanagement rule.

 Simplification in the management classes, since there was a too complex and useless

logic abstraction. The IManagementBase interface has been deleted and its methods have

been moved into the IManagement interface. The ManagementCollection<IManagement>

generic class has been deleted and its methods have been moved to the ActEvents

class.

2.2.3 Modifications to the agromanagement data provider interface

The composition layer’s IAgromanagementProviderBase has been modified to mirror the

changes done in the CRA.AgroManagement component. Before the modification, the
interface used to have a method to return the Scheduling object. Now the interface has a

method to return the SchEvents object containing the scheduled rules/impacts list.

(Location identifier and solar year are passed as parameters because, in some cases, could

be that the scheduled events depends on the location/solar year. Otherwise are ignored.)

SchEvents GetAgromanagementScheduledEvents(string locationId, int year);

This change allow to include in the agromanagement data provider only the logics related

to the retrieve of the agromanagement data from a configuration file. A typical

agromanagement provider uses the AgromanagementFileReader class to read an

agromanagement file and obtain the SchEvents object. The SchEvents object is then used

by the simulation component that called the data provider.

In the previous version, the data provider used to return the Scheduling object, which used

to contain both the data and the methods to check the rules. The latter is something the

data provider should not be aware of.

2.2.4 Modification in the composition layer’s simulation components

The ParameterManager class, which was the equivalent at composition layer of the parameter

class, was deleted. To set parameters into the simulation component’s strategies the

consumer can use a set of new methods of the ISimulationComponent interface that mimic

the methods for setting the parameters to a single strategy.

The method AreParametersAcceptable of interface ISimulationComponent has been renamed

to CheckParameterValues and now it is an extension method

27

2.2.5 Modifications to the models

The consequences of the changes described in the paragraphs above are minimal on the

typical model component. Strategies code is not affected, whereas in the domain classes

the references to the ParametersIO class must be changed into references to the

ClassPropertiesHandler class.

In the simulation components must be removed any reference to the deleted

ParametersManager class and to the parameter classes. At its place, the consumer must use

calls to methods SetStrategyParameterValue, AddParameterSet, LoadParameters of interface
ISimulationComponent.

2.3 Code created

We created three code bases:

1) Solution BiomaCore.sln is the .NET Framework 4.6.1 version, the output of step 4

of the procedure described above in paragraph 2.1.

2) Solution BiomaNetCoreVersionBeforeRefactoring.sln is the .Net Core version

obtained at the end of the procedure described in paragraph 2.1, so before the

(optional) refactoring described in paragraph 2.2.

3) Solution BiomaNetCoreVersion.sln is the .Net Core version after the refactoring

described in paragraph 2.2.

All the three versions of the Wofost phenology modelling solutions give the same simulation

results and have the same behaviour.

2.4 Compile and run under Linux

One of the advantages to move to the .Net Core framework is to run the application on

different operative system without change any code. We tested the Wofost Phenology

console under both Windows 10 and Linux Ubuntu. The behaviour of the application and

the simulation results are the same.

Here the procedure for compiling the code to be run under Linux and to run it. The project

was built using Visual Studio in a Windows environment.

 In the project.json file of the executable project (in our case project

WofostPhenologyModellingSolution.Test) define the runtime appropriate for your linux

distribution. Here our example:

 "runtimes": {

 "win10-x64": {},

 "debian.8-x64": {}

 }

 Using the DOS command line, go to the folder where the project.json is

cd [your
path]\NetCoreVersion\Models\WofostPhenology\WofostPhenologyModellingSolution.Test

 Launch the command

dotnet publish -o bin\release\DebianOutput -f netcoreapp1.0 -r debian.8-x64

This command will build the project versus the specified framework (-f option) and

runtime (-r option) and will copy the output in the specified output directory (-o option).

 Copy in the output directory all the files needed for running the test console (e.g the

CSV files containing the input data)

 Copy all the output directory on your Linux machine (we used a docker virtual machine

for our tests)

28

 In your Linux machine, go in the folder where the compiled program is and run and

launch the program

./WofostPhenologyModellingSolution.Test

29

3 References

Bioma documentation can be found on the Bioma website run by D5 unit at the URL:

http://bioma.jrc.ec.europa.eu/documentation.htm

PCSE documentation can be found on the PCSE website run by WER/Alterra at the URL:

http://pcse.readthedocs.io/en/stable/

Wofost model documentation (including its water balance) is released in the following user

guide: Boogaard, H.L., Van Diepen, C.A., Rötter, R.P., Cabrera, J.M.C.A., Van Laar, H.H.,

1998. User’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST control

center 1.5. Technical Document 52. Winand Staring Centre, Wageningen, the Netherlands,

144 pp.

.NET framework documentation can be found on Microsoft web site, at the URL:

https://www.microsoft.com/net/learn/what-is-dotnet

http://bioma.jrc.ec.europa.eu/documentation.htm
http://pcse.readthedocs.io/en/stable/
https://www.microsoft.com/net/learn/what-is-dotnet

GETTING IN TOUCH WITH THE EU

In person

All over the European Union there are hundreds of Europe Direct information centres. You can find the
address of the centre nearest you at: http://europea.eu/contact

On the phone or by email

Europe Direct is a service that answers your questions about the European Union. You can contact this
service:

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),

- at the following standard number: +32 22999696, or

- by electronic mail via: http://europa.eu/contact

FINDING INFORMATION ABOUT THE EU

Online

Information about the European Union in all the official languages of the EU is available on the Europa
website at: http://europa.eu

EU publications
You can download or order free and priced EU publications from EU Bookshop at:

http://bookshop.europa.eu. Multiple copies of free publications may be obtained by contacting Europe

Direct or your local information centre (see http://europa.eu/contact).

http://europea.eu/contact
http://europa.eu/contact
http://europa.eu/
http://bookshop.europa.eu/
http://europa.eu/contact

 K
J-N

A
-29019-EN

-N

doi:10.2760/713904

ISBN 978-92-79-77324-2

