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Abstract 

The aims of this document are the description of the procedures adopted to assess the quality of the data 
hosted on the JRC data management system and the quality of the data itself. The main aim of the data 
management platform is to provide data to the users in the project, in particular to case study partners. 
Other aims are to provide a long term storage and web hosting the data provided by partners and legacy 
data. Finally the data collected during the project will be made available to external users after the end of 
the project. The quality check ensures that the data hosted meets the highest quality standards, which is 
critical for the data management system. 

This document is divided into chapters that can be briefly described as follows: 

 Chapter 1: Description of RECARE WP10 and the tasks that should be fulfilled 

 Chapter 2: Description of the procedures adopted to assess data quality 

 Chapter 3: Description Results of the data quality check for the hosted data 

 Chapter 4: Technical description of the metadata and data consistency 
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1 WP10 Description and tasks 

 

The aim of the web interface in the European Soil Data Centre is to locate, host and 

provide relevant information to RECARE partners. The European Soil Data Centre will 

inventory the data needed by other project partners, and will therefore help find such 

data within the various databases maintained at the European Soil Data Centre (ESDAC) 

in JRC. Although these data are generally publicly available, ESDAC will properly crop, 

resize and readapt data to the needs of partners. The data is then stored into Relational 

Database Management System (RDBMS) scheme, developed by ESDAC, taking into 

account the specifications of the Case Studies. 

Data is to be provided to users (WP and Case Studies) through an interactive web 

interface that allows them to explore, visualize and download both baseline data and 

spatial data hosted in the DMS. 

JRC will also assist other WPs, where needed, with GIS analyses and/or modelling, 

especially those at the European level.  

 

1.1 Access to databases at European level 

 

JRC will, based on requirements specified by other WPs, locate relevant information in 

the databases hosted by JRC, and will make that information available to RECARE 

partners. WP10 will inventory which data other WPs need, and will therefore help find 

such data within the various databases maintained at the European Soil Data Centre 

(ESDAC) in JRC. Although these data are generally publicly available, WP10 will play a 

facilitating role where needed. JRC will also assist other WPs, where needed, with GIS 

analyses and/or modelling, especially those at the European level. The GIS analysis will 

be performed using ESRI ArcGIS Spatial Analyst and the working scale will be European. 

Available data that will be managed (exported) in Raster or Shapefile format for the use 

of RECARE partners are all the datasets relevant to the 8 main threats of the Soil 

Thematic Strategy: soil erosion (PESERA, RUSLE, soil erodibility, rainfall erosivity), soil 

organic carbon (OCTOP, LUCAS topsoil, CAPRESE), soil biodiversity threat, statistics on 

soil sealing, Natural Susceptibility of Soils to Compaction, Saline and Sodic Soils in EU, 

European Landslide Susceptibility Map and contaminated sites.  

The working projection is ETRS LAEA. This will include making such data available in the 

appropriate formats and projections, supporting upscaling and downscaling of data, and 

performing GIS analyses that make use of the spatial data available in JRC databases. 

WP10 will also assist in the upscaling of (modelling) results as part of the EU-wide 

modelling (Task 8.2) as the output datasets are of European scale and will be hosted in 

ESDAC. Partner 13 has the technical capabilities to perform upscaling from regional scale 

to the European one using geostatistical methodologies.  

 

1.2 Development of a Relational Database Management System 

for the RECARE project  

 

WP10 will inventory which data will be generated in the different WPs. Partner 13 will 

develop an Relational DataBase Management System (RDBMS) scheme in Oracle taking 

into account the specifications of the Case Studies. The objective of this data 

infrastructure is to host the data for soil threats that will be collected in the project. The 

data infrastructure will also provide links with other soil-related FP7 projects hosted un 

the European Soil Data Centre (ESDAC) which aims to host those datasets. Spatial and 



6 

 

non-spatial data will be included, and will be made available to others after the end of 

the project. Data generated using WOCAT will be stored in the dedicated WOCAT 

databases by WPs 3 and 5, and will be available on-line. The RDBMS will not include 

WOCAT data, but will link to them. 

 

1.3 Templates for the data import/export from the RECARE Case 
Study sites 

The import templates will be developed in Microsoft Excel/Access in order to allow the 

partners to easily upload their Case Study data. Partner 13 will assist partners to enter 

their data. Data import software will be develop for performing a first quality check of the 

provided data and to subsequently upload the datasets in the central Oracle 

infrastructure. Queries will also be developed for the data export from the central Oracle 

data infrastructure. Templates were not deemed necessary at this stage as the data 

management system allows direct data import from excel. 

 

1.4 Web interface for making the data publicly available at the 

end of the project  

Data is to be provided to users (WP and Case Studies) through an interactive web 

interface that allows them to download both baseline data and spatial data. The web 

interface allows the partners to navigate and download (and perform other GIS 

operations) the main datasets hosted in the DMS. The web interface has been developed 

and incorporated in the ECAS web-portal using the open source CMS (Content 

Management System) Drupal 7.x. 
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2 RECARE datasets and quality check type 

The identified RECARE threats can be listed as follows, where the data quality check type 

is indicated if available.  

 

Soil threat RECARE WP2 identified 

threats 

 

Data quality check type 

Soil erosion 

by water  

 area affected by soil erosion 

(km2) and/or extent of area 

affected by soil erosion (%) 

 magnitude of soil 

erosion/deposition or sediment 

delivery (tons) 

 propagation of uncertainties 

from input data 

 map of the standard error of 

rainfall erosivity 

 map of soil texture standard 

error 

 

Soil erosion 

by wind 

 measured soil loss by wind (t 

ha-1 yr-1) 

 annual/periodic estimates of 

wind erosion 

 soils' susceptibility to wind 

erosion 

Proxy indicators 

 soil resistance (Ohms) 

 surface roughness (%) 

 wind velocity (km hr-1) 

 soil moisture content (%) 

 soil cover (%, ha) 

 propagation of uncertainties 

from input data 

 map of the standard error of 

rainfall erosivity 

 map of soil texture standard 

error 

 

Decline in OM 

in peat soils 

 peat stocks (Mt) 

Proxy indicators 

 water table (m) 

 soil moisture content (%) 

 (soil) temperature (°C) 

 vegetation type (species) 

 quality check not available. 

Legacy data 

Decline in OM 

in mineral 

soils 

 total carbon stocks to 1 m depth 

((t ha-1) 

 clay/SOC 

 TOP2 indicators by ENVASSO 

 map of soil texture standard 

error 

 map of the standard error of soil 

OC content 

Soil 

compaction 

 relative Normalized Density,  

 air-filled pore volume (%) 

 penetration resistance (Mpa) 

 

 map of soil texture standard 

error 

 map of the standard error of soil 

OC content 

Soil sealing  sealed area (ha, %) 

 transition index (TI) 

 sealed to green areas ratio 

 quality check not available. 

Legacy data 

Soil 

contamination 

TOP3 indicators by ENVASSO  quality check not available. 

Legacy data 

Soil 

salinization 

TOP3 indicators by ENVASSO  quality check not available. 

Legacy data 

Desertification TOP3 indicators by ENVASSO  propagation of uncertainties 

from input data 

 map of the standard error of 

rainfall erosivity 

 map of soil texture standard 
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error 

 map of the standard error of soil 

OC content  

Flooding  seasonality, magnitude and 

frequency of 

precipitation/rainfall intensity 

 extent of inundated area (ha) 

 flood frequency (number per 

year) 

 loss of crops due to inundation 

of fields (ha, Euro) 

 the threat has not been 

addressed 

Landslides TOP3 indicators by ENVASSO  occurrence of landslide activity 

(ha, km2 affected per ha or 

km2);  

 volume/weight of displaced 

material (m3, km3, ton of 

displaced material);  

 landslide hazard assessment 

(variable) 

Decline in soil 

biodiversity 

TOP3 indicators by ENVASSO  propagation of uncertainties 

from input data 

 

 

For each of the threats a set of field experiments has been implemented as part of WP6. 

The aim of the data management system is to provide the WP6 and other project 

partners with relevant data, in order to provide them with information suitable for the 

task of identifying and modelling the specific threat of their interest. 

For some of the threats a quality check cannot be performed as they are legacy data for 

which the development steps are not available or fully described or the data sources are 

not currently available.  

In the next chapter a list of specific soil threats and their related datasets, included in the 

data management system, will be described for reference. At the end of each section 

dealing with a specific threat, a list of supporting datasets is shown where datasets with 

uncertainty assessment are underlined. 
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3 Data quality check procedures for hosted data 

 

The aim of WP10 is to provide a data management system composed of a spatial data 

database, a database for non-spatial data and of a web interface accessible to RECARE 

partners, and after the end of the project to others. Evaluating the quality of the hosted 

data is essential for the project’s end users and stakeholders.  

RECARE WP2 identified a series of soil threats in Europe with due attention given to the 

Driving force-Pressure-State-Impact-Response to soil threats. A list of indicators and/or 

proxy indicators are suggested for each soil threat, such as soil erosion by wind, decline 

of OM in peat soils, decline of OM in mineral soils and a separate set of indicators for 

flooding. These indicators have been developed by taking into account the following key 

issues: 

 methodological soundness and data availability,  

 measurable and sensitivity to changes,  

 policy-relevance and utility for users, and  

 geographical coverage of the indicators 

 

Concerning the matter of quality assessment, still the focus is on the databases 

developed and hosted by JRC, given that most of the project data is to be provided to 

project partners. 

Depending on the type of indicator different methods to assess the quality of the data are 

available. The methods applied are described in the next paragraphs along with the data 

they are applicable to. 

  

3.1 Data quality metrics 

 

The following metrics have been used to estimate the quality, in terms of accuracy and 

precision of the models used to produce JRC based RECARE datasets. These metrics were 

often used alone, but in some cases they were summarized by other indices. 

3.1.1 Measurement quality estimation 

Measurement Accuracy: how close a measured value is to the true value (if it is 

known). If the true value is not known, then the accuracy of measurement can only 

be estimated. 

Measurement Precision: an indication of the reliability and/or repeatability of a 

measurement, as reflected by the number of significant figures used to represent the 

measured value. 

Measurement Uncertainty/Error: the estimated deviation of a measured value 

from the true value.  The true value may or may not be known.  There are three 

types (sources) of error: measurement mistakes, random errors, and systematic 

errors. 

Random errors result from (hopefully small) uncontrolled variability of the 

environment, equipment, and/or other subtle aspects of the measurement.  The 

individual measured values randomly deviate high or low of an average value. 

Systematic errors result in the consistent deviation of a measurement (on average, 

either high or low as compared to the true value) due to equipment problems or 

neglect (or ignorance) of some other important factor in the measurement process. 
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Measure quality metrics were only tested for the initial dataset (i.e. verifying the 

accuracy of the measures in the LUCAS dataset). In this sense a thorough validation of 

the measures and analytical procedures was carried out during the laboratory stage of 

the LUCAS survey. Using random repeated analyses of the same sample the laboratory 

could estimate the reliability and repeatability of analytical procedures. 

 

3.1.2 Model quality estimation 

Most of the dataset in the LUCAS web platform were obtained through statistical 

interpolation/extrapolation. In this context, their quality can be assessed through the 

commonly used statistical procedures and metrics. In particular the following  

 The Mean Value is the average of the estimated values.  The mean is calculated 

from the sum all Ai (from i = 1 to i = N) and then division of this sum by N.   

 The RMS Deviation is obtained by taking the square root of the mean of the 

squared deviations (hence, the RMS-deviation).   

 The Standard Deviation σ is similar to the rms-deviation, except the ‘mean-

squared-deviation’ is calculated by dividing the ‘sum-of-the-squared-deviations’ by 

the so-called “number of degrees of freedom” (DOF), instead of N.  Given this we can 

write a formula for the square of the Standard Deviation (the so-called “variance”):  

σ2 = [Σ (Ai – Ā)2]/DOF.   For a set of N measurements of the same quantity, the DOF 

is equal to N-1.  

 The Standard Error represents an estimate of our uncertainty for the measured 

mean value (as determined by the number of measurements and the variations in our 

set of values).   The Standard Error is an estimate of the standard deviation of the 

distribution of mean values expected if the same set of measurements was repeated 

many times. The Standard Error S is calculated by dividing the Sample Standard 

Deviation σ by the square root of the number of measurements N.  As a formula: S = 

σ /√N.   

These metrics have been evaluated as figures for the whole dataset, or where possible 

were mapped for the spatial extent of the dataset.  

Model fitting was evaluated by cross-validation. Cross-validation, is a model validation 

technique for assessing how the results of a statistical analysis will generalize to an 

independent data set. It is mainly used in settings where the goal is prediction, and one 

wants to estimate how accurately a predictive model will perform in practice. In a 

prediction problem, a model is usually given a training set on which the model is fit, and 

a testing dataset of unknown data against which the model is tested. The goal of cross 

validation is to define a dataset to "test" the model in the training phase (i.e., the 

validation set), in order to limit problems like overfitting, give an insight on how the 

model will generalize to an independent dataset (i.e., an unknown dataset, for instance 

from a real problem), etc. 

One round of cross-validation involves partitioning a sample of data into complementary 

subsets, performing the analysis on one subset (called the training set), and validating 

the analysis on the other subset (called the validation set or testing set). To reduce 

variability, multiple rounds of cross-validation are performed using different partitions, 

and the validation results are combined (e.g. averaged) over the rounds to estimate a 

final predictive model. 

One of the main reasons for using cross-validation instead of using the conventional 

validation (e.g. partitioning the data set into two sets of 70% for training and 30% for 

test) is that there is not enough data available to partition it into separate training and 

test sets without losing significant modelling or testing capability. In these cases, a fair 
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way to properly estimate model prediction performance is to use cross-validation as a 

powerful general technique. 

 

3.1.3 Uncertainty propagation 

Some datasets were not obtained directly from statistical modelling. As such it is not 

possible to directly assess their quality through procedures such as cross-validation (i.e. 

RUSLE soil erosion map). In these cases, quality assessment and uncertainty mapping 

can be derived only through uncertainty propagation. In statistics, propagation of 

uncertainty is the effect of uncertainty of variables used in the model (or  random errors) 

on the uncertainty of a function based on them. When the variables are the values of 

experimental measurements they have uncertainties due to measurement 

limitations (which propagate to the combination of variables in the function). 

The uncertainty u can be expressed in a number of ways. It may be defined by 

the absolute error Δx. Uncertainties can also be defined by the relative error (Δx)/x, 

which is usually written as a percentage. Most commonly, the uncertainty on a quantity 

is quantified in terms of the standard deviation, σ, the positive square root 

of variance, σ2.  

 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Random_error
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Observational_error
https://en.wikipedia.org/wiki/Observational_error
https://en.wikipedia.org/wiki/Absolute_error
https://en.wikipedia.org/wiki/Relative_error
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
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4 Description of the quality check procedures for soil threats 

4.1.1 Soil erosion by water 

Soil erosion by water in general can be defined as a three-stages process that consists 

of: (i) the detachment of individual soil particles from the soil surface; (ii) their 

subsequent transport by water; and, ultimately, (iii) their deposition when water lacks 

sufficient energy for further transport (Morgan, 2005). The risk of erosion by water has 

been assessed at the European scale using various models and expert-based approaches.  

Data included in the Data Management System (DMS) includes: (i) PESERA model 

predictions: the Pan-European Soil Erosion Risk Assessment (PESERA) model is a 

process-based and spatially distributed model that was developed to estimate the risk of 

soil erosion by water across Europe (Kirkby et al., 2004). (ii) RUSLE model predictions 

(Figure 3): Panagos et al. (2015) presented a new, extended version of the Revised 

Universal Soil Loss Equation (RUSLE). JRC has developed the RUSLE 2018 model (fig. 3) 

and carried out its quality check. 

The factors controlling soil erosion are commonly divided into:  

(i) erosivity of the erosive agent or its capacity to detach and transport soil particles;  

(ii) erodibility of the soil or the inverse of the soil’s resistance against the detachment 

and transport of its particles;  

(iii) plant and litter cover; and 

(iv) slope of the terrain (Morgan, 2005).  

In order to model these factors, data 

about climate in particular rainfall 

erosivity and soil texture is included in 

the DMS.  

Climatic data includes the R-factor, which 

is the erosivity index of rainfall as 

estimated by the RUSLE model. The R-

factor is a 

multi-

annual 

average 

index that 

measures 

rainfall's 

kinetic 

energy and 

intensity to 

describe 

the effect of rainfall on sheet and rill erosion. 

However, the erosive forces of runoff due to snowmelt, 

snow movement, rain on frozen soil, or irrigation are not 

included in this factor. Besides (R)USLE, the rainfall 

erosivity can be used as input in other models such as 

USPED, SEMMED and SEDEM. Further, this dataset could 

also be interesting for natural hazard predictions such as 

landslide and flood risk assessment that are mainly 

triggered by high intensity events.  

Figure 1 Map of rainfall erosivity in Europe (Panagos et al., 
2014) 

Figure 2 Uncertainty of the R-factor prediction calculated 
with the GPR spatial interpolation model. 
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The R-factor values calculated from precipitation data of different temporal resolutions 

were normalised to R-factor values with temporal resolutions of 30 min using linear 

regression functions. Precipitation time series ranged from a minimum of 5 years to a 

maximum of 40 years. The average time series per precipitation station is around 

17.1 years, the most datasets including the first decade of the 21st century. Gaussian 

Process Regression (GPR) has been used to interpolate the R-factor station values to a 

European rainfall erosivity map at 1 km resolution. 

The RUSLE is a purely deterministic model in which the product of physical measures is 

used to derive the amount of soil loss. As such, a rigorous assessment of uncertainties is 

not feasible, nor would it be meaningful, unless the uncertainties of the input layers and 

their propagation in the model scheme were quantified. Accordingly, the estimation of 

the uncertainty in the RUSLE model outputs remains in most case an unaddressed issue. 

A thorough quantification of uncertainty associated to the RUSLE model was provided 

only in a few local-scale studies, mainly dealing with a single model factor such as 

rainfall, soil type and topography.  

In this study a different approach was followed representing the uncertainty as a 

probability distribution through the use of a Bayesian modelling technique. The idea is to 

use the data distribution to estimate the uncertainty in the prediction. Given that the 

RUSLE is based on the product, for simplicity all the layers were log-transformed. Next, 

each of the input layers was treated as a spatial random field. A random field is a 

stochastic process defined in terms of expectation and covariance, once these two 

parameters are estimated, different simulation of the field can be created. Each of the 

simulation has the same parameters, but differs due to the stochasticity of the process. 

By combining a large number of simulations, one could, in principle, estimate how the 

uncertainty propagates to the model output (soil loss). As deriving spatially continuous 

simulations for each of the layers is impractical, a simulation approach based on Gibbs 

sampling and an additive model was used. 

The model is expressed as: 

𝑧 (𝑆0) =   𝑧(𝑅) +  𝑧(𝐿𝑆) +  𝑧(𝐾) +  𝑧(𝐶) +  𝑒(𝑠) 

where the z() values are realization of each of the log-transformed model input layers 

and e(s) is the spatial component of the model. 

A Markov Chain Monte Carlo (MCMC) algorithm, was used to derive realizations of z(S0) 

(soil loss) by simulating from the multivariate normal distribution with zero mean and 

covariance matrix Vb, where Vb is the Bayesian covariance matrix of the fitted model. 

MCMC was applied using the JAGS software through R interface. 

4.1.2 Rainfall erosivity 

uncertainty assessment 

The application of the Gaussian Process 

Regression (GPR) spatial interpolation 

model allowed us to derive not only the 

R-factor but also the standard error of the 

estimate. In this study, the map of 

standard error (fig. 2) was directly used 

to estimate the uncertainty of the 

prediction model. Using the standard 

error to estimate the dispersion of 

prediction errors, the highest uncertainty 

was found to be in north-western 

Scotland, north-western Sweden and 

northern Finland due to the relatively 

small number of precipitation stations and 
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high diversity of environmental features. The model prediction was also found to have 

increased uncertainty levels in the Southern Alps and the Pyrenees. Medium uncertainty 

is noticed in Spain, northern Poland, the west of Ireland, North Cyprus and the Aegean 

islands due to a lack of stations. In general, the model had a good prediction rate with 

low standard errors in the majority of the study area. 

 

According to the log statistics of the European Soil Data Centre, those spatial layers are 

highly requested for modelling activities in erosion by water and wind, biodiversity 

modelling, water capacity, crop growth, vegetation, soil conservation, moisture, land use, 

ecological analysis, groundwater vulnerability and hydrology. 

 

Data provided and hosted for soil erosion by water 

1. Climatic data 

1.1. Rainfall erosivity map of Europe 

2. Soil data 

2.1. Soil texture maps 

2.1.1.  Soil coarse fragments maps 

2.1.2.  Soil organic carbon maps 

3. Maps of soil erosion 

3.1. PERSERA map of soil erosion 

3.2. RUSLE map of soil erosion1 

  

                                           
1 Through uncertainty propagation 

Figure 3 Map of soil loss by water erosion (RUSLE) (Panagos et 
al., 2015) 
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4.1.3 Soil texture 

One of the key attributes of the European Soil Database is the soil texture along with soil 

coarse fragments content. It is determined by the proportion of sand, silt and clay (%) 

and it is expressed as a texture class (Jones et al., 2005).  

Texture was predicted using Multivariate Additive Regression Splines (MARS); this 

procedure constrains the prediction of every single particle size class to a physically 

meaningful range. Texture data was transformed using the additive log-

ratio. Table 1 shows prediction performance for model fitting (R2), k-fold cross validation 

(k-CV R2) and independent sample validation (CV R2). Independent sample validation 

was performed by selecting 5000 random samples (by a stratified random sampling) and 

using them to validate the model fitted on the remaining ~ 15,000 samples; in this case 

the metrics used to evaluate model performance is RMSE. The k-fold cross-validation was 

performed for a k = 5 and repeated 100 times using different random splits in order to 

obtain more stable estimates by averaging. 

 

Table 1 Prediction performances for texture and coarse fragments mapping from the LUCAS database using multivariate 
MARS. 

 CV-RMSE R2 k-CV R2 CV R2 CV R2 ESDB 

Clay 7.70 0.93 0.65 0.50 0.51 

Silt 12.60 0.92 0.62 0.47 0.49 

Sand 17.30 0.93 0.60 0.49 0.48 

Coarse f. 19.22 0.73 0.52 0.40 0.39 

 

The best predicted variable was the clay content, whilst silt content was less well 

predictable. However the differences are substantially negligible. Coarse fragments were 

treated as an independent variable and predicted by a different MARS model, as such the 

metrics for coarse fragments are presented in a different line of Table 1. Model fitting 

resulted in very good performance metrics both in fitting and cross-validation (Table 1), 

with only the prediction of coarse fragments performing quite differently from the others. 

Table 1 also depicts the change of CV R2 when soil units from the European Soil Database 

(ESDDB) are added as dummy variables (CV R2 ESDB), it should be noted that being the 

GCV term in MARS comparable to Akaike Information Criterion (Barron and Xiao, 1991) 

the fitting procedure of the model already selects the most efficient model. It is thus the 

model that selects the most informative variables or excludes the least informative. In 

this context we found that MARS models consistently rejected data from soil units. We 

will discuss this aspect below. 

Fig. 5 depicts the k-fold cross validation results by plotting the predicted versus observed 

values for the three variables for both the fitting and the validation sets. The variable 

colour scale in the same plot depicts the normalized standard deviation for a given 

observation as estimated through the 100 repetitions. From Fig. 5 we can see that the 

fitted values present a quite low dispersion with most of the values within the value of 

http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#t0005
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#t0005
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#t0005
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#t0005
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#bb0020
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#f0005
http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#f0005
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the standard deviation. In general the errors are homoscedastic, this contributes to the 

high R2 values of Table 1. However it is possible to notice a slight bias as the values are 

consistently over predicted for high observed values and under predicted for the lower 

ones. k-fold errors are more dispersed as usual with some quite large deviation, this is 

expected as cross validation tests the generalization capacity of the model on new 

samples. Nevertheless model performance is still quite good with most of the samples 

falling within the value of the standard deviation. 

 

Figure 4 Topsoil (0-20cm) Sand, Silt, Clay and coarse fragments content (%) modelled 

by Multivariate Additive Regression Splines (Ballabio et al, 2016) 

 

  

http://www.sciencedirect.com/science/article/pii/S0016706115300173?via%3Dihub#t0005
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A map of model standard deviation (Fig. 

6) was also produced. As the MARS 

models the variables as an ensemble, the 

resulting standard deviation map was 

obtained as an averaged composite of the 

standard error of the three variables. 

Areas above 1000 m evidence the high 

uncertainties and evidence the difficulty in 

predicting undersampled areas. In 

general the map depicts a quite low 

model standard deviation in relatively 

homogeneous areas such as plains. 

Regions with a more diverse morphology 

are in general less well predicted 

(western Scotland, Pyrenees, Apennines, 

western Greece, etc.). In this case 

topography seems to be the main 

controlling factor in determining model 

performance. In general the worst 

performance is obtained in mountain and 

hilly areas, this can be explained by the 

fact that these areas have a high diversity 

in terms of terrain, land cover and 

substrate, whilst being sampled with the 

same density as the rest of Europe, 

resulting in a larger model deviation. 

Areas above 1000 m of altitude show the 

highest uncertainties which are of the 

same order of the predicted values (up to 

and above 100%). 

 

 

 

 

 

 

 

 

 

 

  

Figure 5 Model accuracy tested by cross-validation. 

Figure 6 Averaged standard deviation of the Multivariate Additive 
Regression Splines model 
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4.1.4  Soil erosion by wind 

Soil erosion by wind is a serious 

environmental problem (Lal, 1994) 

causing severe soil degradation in 

arid, semi-arid and agricultural areas 

(Woodruff and Siddoway, 1965; Kalma 

et al., 1988). Wind erosion occurs 

where 1) the soil is loose, finely 

divided and dry; 2) where the soil is 

smooth and bare; and 3) wind is 

strong. 

In early 2014, the JRC proposed an 

integrated mapping approach to 

estimate soil susceptibility to wind 

erosion (Borrelli et al., 2014a). The 

wind-erodible fraction of soil (EF) is 

one of the key parameters for 

estimating the susceptibility of soil to 

wind erosion (Fryrear et al., 1994; 

Fryrear et al., 2000). It was computed 

for 18,730 geo-referenced topsoil 

samples (from the Land Use/Land 

Cover Area frame statistical Survey – 

LUCAS - dataset). The prediction of 

the spatial distribution of the EF 

(Figure 7) and a soil surface crust 

index drew on a series of related but 

independent covariates, using a digital 

soil mapping approach (Cubist-rule-

based model to calculate the 

regression, and Multilevel B-Splines to spatially interpolate the Cubist residuals) 

(Goovaerts, 1998). The spatial interpolation showed a good performance with an overall 

R2 of 0.89 (in fitting). Spatial patterns of the soils' susceptibility to wind erosion in line 

with the state of the art in the literature were achieved. 

A cross validation was carried out to evaluate the performance of the spatial prediction 

approach. The extremely limited number of studies that report soil erodible fraction 

estimations or similar types of soil erodibility by wind assessment did not allow for the 

application of further validation procedures for the calculated values of soil erodibility. 

Furthermore, we compared our findings with previous for the geographical areas where 

soil susceptibility to wind erosion had been reported (i.e., Geest area of Lower Saxony, 

Southern Great Plains of Hungary and the Dutch provinces of Groningen and Drenthe). 

The outcomes of the proposed modelling approach were subjected to a validation 

procedure to assess the model performance. A subset of the literature locations suffering 

from wind erosion reported by Borrelli et al. (2016) was employed. Out of 156 locations 

accurately georeferenced in GIS, 90 were found to be located within EU-28 arable land.  

In the European arable land, 85 of the 90 locations reported in literature (94.4%) were 

classified by the GIS-RWEQ model as being susceptible to erosion. 

 

Data provided and hosted for wind soil erosion 

1. Climatic data 

1.1. Map of wind intensity for Europe 

2. Soil data 

2.1. Soil texture maps 

2.1.1.  Soil coarse fragments maps 

Figure 7 Map of wind erosion susceptibility of European soils (500m 
spatial resolution) based on the estimation of the wind-erodible 
fraction of soil (EF) (Fryrear et al., 2000).  
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2.1.2.  Soil organic carbon maps 

3. Maps of soil erosion 

3.1. Map of estimated wind erosion2 

 

  

  

                                           
2 Through uncertainty propagation 
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4.1.5 Decline in Soil organic matter data quality check 

Soil, after the oceans, is the largest 

pool of carbon in the biosphere. The 

SOC pool is about twice the size of the 

atmospheric carbon pool and about 

three times the size of the biota carbon 

pool. The global SOC pool to a depth of 

1m is estimated at 1,500 billion tonnes 

(Batjes, 1996), ranging from 30 t ha-1 

in arid climates to 800 t ha-1 in 

permafrost-affected regions (Lal, 

2004).  

SOM decline has been widely 

recognised as a major threat for 

sustainable soil management because 

of the pivotal role played by the 

organic material on many soil 

functions, like food and biomass 

production, storage and filtering, 

biological habitat and gene pool, etc. 

 

Soil organic carbon decline strongly 

depends on physical, chemical and biological drivers of both natural and human origin. 

Since most of these drivers are the same as the ones that influence the composition of 

terrestrial ecosystems, SOM and ecosystem types show strong correspondences to one 

another 

• Climate (precipitation, temperature, solar 

radiation, etc.) 

• Topography 

• Soil type and properties (e.g. soil texture, 

soil temperature, moisture, pore structure) 

• Land cover/vegetation type 

Part of these factors are the same that have been 

provided for the estimation of soil erosion 

Data provided and hosted for soil organic carbon 

decline 

1. Climatic data 

1.1. Map of temperature and rainfall intensity 

for Europe 

2. Soil data 

2.1. Soil texture maps 

2.1.1.  Soil coarse fragments maps 

2.1.2.  Soil texture maps 

2.1.3.  Soil organic carbon maps 

3. Maps of Soil Organic Carbon 

3.1. Map of Soil Organic Carbon 

3.2. Map of Soil Organic Carbon stocks in agricultural fields3 

                                           
3 Through uncertainty propagation 

Figure 8 Map of Soil Organic Carbon (de Brogniez et al., 2015) 

Figure 9 Soil organic carbon (SOC) stock in the top-
soil layer (0–30 cm) of European agricultural soils 
(Source: Lugato et al., 2014.) 
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4.1.6 Quality check for Soil Organic Carbon map 

 

The quality of the SOC map for Europe (fig. 8) was thoroughly checked. The initial 

dataset was split into a calibration (85%) and a validation (15%) set by Latin hypercube 

sampling. The stratification was conditioned by the following variables: elevation, slope, 

net primary productivity, temperature, PP0, latitude, longitude, measured OC content 

and CORINE land cover. Knowing that land cover has a large impact on OC content, we 

developed a statistical model on samples for which observed land cover (from the LUCAS 

survey) and CORINE land-cover inventory were in agreement to avoid using wrong land-

cover classes to calibrate the model. However, using observed land cover (LUCAS) 

instead of mapped/predicted (CORINE) land cover has potentially the consequence of 

under-estimating the prediction error variance (Kempen et al., 2010). To check this, we 

fitted a model on the entire dataset and found no differences in cross-validation results. 

A generalized additive model (GAM) was fitted on the calibration set. To prevent an 

‘over-fit’, thin plate regression 

splines were fitted by maximum 

penalized likelihood. A backward 

stepwise approach was then 

followed to select the best set of 

covariates and to determine the 

relative influence of each of the 

covariates on the overall prediction 

capabilities of the model. The 

Akaike Information Criterion (AIC) 

and the deviances explained were 

calculated and compared for each 

of the models created (Akaike, 

1974). The selected model was 

then applied to the points of the 

validation set. Predicted and 

measured OC content were 

compared and both root mean 

square errors (RMSE) and 

normalized root mean square error 

(RMSE divided by the observed 

data range; NRMSE) were 

calculated. The coefficient of 

determination was calculated for 

the validation procedure. 

Large standard errors are 

observed in northern latitudes but also in inland wetlands or moors and heathlands 

(Figure 10). Few samples were taken in the highlands of Scotland, in Wales, in south-

western Ireland or in northern Sweden and Finland, where OC variation tends, moreover, 

to be very large (Figure 9). In all these areas, OC predictions have large standard errors. 

Mountain ranges such as the Alps (Italy, France and Austria), the Carpathians (the Czech 

Republic, Slovakia and Poland), the Apennines (Italy), the Central Massif and the Vosges 

(France) and the Pindus (Greece) had large standard errors in their areas below 1000 m 

altitude. Areas where a large standard error is estimated should be considered with 

caution. In contrast, areas where a small standard error is calculated (mostly 

corresponding to the croplands of Europe) give predictions of OC content that more 

accurately approximate the measured values. 

 

Figure 10 Standard error map for SOC distribution 
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4.1.7 Quality check for Soil Organic Carbon in agricultural land  

The Soil Organic Carbon obtained using the CENTURY in agricultural land map (fig. 9) 

was validated against two independent data sets:  

LUCAS (Land Use/Cover statistical Area frame Survey) direct field observations gathering 

fully harmonized data on land use/cover and their changes over time in the EU, that 

included a soil survey in 2009. Top-soil samples were collected from 10% of the general 

survey points, thus providing approximately 20000 soil samples. LUCAS soil samples 

were taken from all land use/land cover types, but mainly on agricultural areas 

(EUROSTAT, 2011). The samples were analysed in a single ISO-certified laboratory, 

providing the top-soil SOC expressed in g kg-1. To convert this concentration to a stock, 

an empirically derived pedotransfer function, developed by Hollis et al. (2012), was used 

to predict bulk density in European soils. A comparison was made using the LUCAS points 

and the simulated value of the intersected Soil-Climate-Land unit, for the matching land 

use category (arable, pasture and permanent crops). However, to avoid the comparison 

between one point vs. a polygon, data were aggregated at higher hierarchical level 

corresponding to administrative regions (NUTS2). The same level of aggregation (NUTS2) 

was adopted as the most suitable for the comparison of LUCAS data with OCTOP map 

(Panagos et al., 2013b).  

The EIONET-SOIL database containing SOC concentration (g kg-1) and SOC stocks (t ha-

1) for 1 km cells for the depth range of 0–30 cm (Panagos et al., 2013a). Six countries 

provided measurements or a best ‘estimate’ (e.g. based on models) which represents an 

official standpoint of the country. The model uncertainty was quantified at NUTS2 scale, 

since these territorial units are considered basic regions for the application of regional 

policies by EU. Precisely, the absolute errors (AE) were calculated in each NUTS2 region.   
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5 RECARE JRC datasets consistency check and metadata 

 

5.1 Soil erosion by water 

 

Title: Soil Loss by Water Erosion in Europe 

Dataset description: Dataset (GIS map) (2015) that shows the Soil Loss by Water 

Erosion in Europe and is the result of applying a modified version of the Revised 

Universal Soil Loss Equation (RUSLE) model, RUSLE 2015; resolution 100m.  

Methodology used to develop the dataset: Modified version of Revised Universal Soil 

Loss Equation (RUSLE) model (Renard et al., 1997). The proposed modified version is 

named RUSLE2015 and improves the quality of estimation by introducing updated 

(2010), high-resolution (100 m) peer-reviewed input layers. A major advancement in 

RUSLE2015 is the modelling of management (reduced/no till, plant residues, cover crops) 

and support practices (contour farming, maintenance of stone walls and grass margins). 

Consistency Check: The soil loss by water erosion rates have been verified with the 

data received from the Member States through the European Environment Information 

and Observation Network for soil (EIONET-SOIL) in 2009. The result of this data 

collection exercise was the EIONET-SOIL database which includes data at 1-km pixel size 

for ten countries: Austria, Belgium, Bulgaria, Estonia, Germany, Italy, the Netherlands, 

Poland, and Slovakia (Denmark was included in a later phase). There is a good 

correspondence both in spatial patterns and in erosion rates with the data received from 

7 countries while there are some differences with the national datasets in Slovakia, 

Wallonia forests (Belgium) and forestlands in Austria.  

The major sources of uncertainty are found in some highly erosion-prone CORINE land-

cover classes (e.g. sparsely vegetated areas) that demonstrate high variability between 

Mediterranean regions (bad-lands) and northern Europe (mixed vegetation with rocks). 

The use of remote sensing data on vegetation density has proven to be useful for fine-

tuning the erosion-factor values. The soil loss predictions in steep and arid areas can be 

further improved by separating the effects of erodible soil from the effects of rock and 

gravel surfaces. 

The major benefit of RUSLE2015 is its high-quality input layers (RUSLE2015 input layers 

have been also directly or indirectly validated with national or regional datasets) due to: 

a) the assessment of soil erodibility based on the sampling of topsoils in the field and 

laboratory analysis of soil properties, plus the K-factor data verification with local 

and regional published studies, 

b) the participation of the Member States in the extensive data collection of high-

resolution precipitation data, 

c) the use of the first ever high-resolution Digital Elevation Model at 25 m, 

d) the combination of the CORINE Land Cover database with remote sensing 

vegetation density data, plus the use of crop and management practices statistical 

data, and 

e) the first ever assessment of good management practices using LUCAS survey 

observations and the GAEC database 

A sensitivity analysis of RUSLE2015 model has been also performed. More information in 

Estrada-Carmona et al. (2017). 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: European Union 28 Member States 
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Resolution: 100m cell cize 

Measurement Unit: t ha-1 yr-1 

Format: Raster (Grid) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: LUCAS Topsoil, European Soil Database, Lucas Earth Observations, 

Rainfall Erosivity Database at European Scale (REDES), CORINE Land Cover 2006, 

COPERNICUS Remote Sensing, EUROSTAT (statistics on Crops, Tillage, Plant residues, 

cover crops), Digital Elevation Model (DEM) at 25m, Good Agricultural Environmental 

Condition (GAEC). 

Date Release: Semptember 2015 

Link: https://esdac.jrc.ec.europa.eu/content/soil-erosion-water-rusle2015  

Publication Reference: Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., 

Meusburger, K., Montanarella, L., Alewell, .C. 2015. The new assessment of soil loss by 
water erosion in Europe. Environmental Science & Policy. 54: 438-447.  

 

  

https://esdac.jrc.ec.europa.eu/content/soil-erosion-water-rusle2015
http://www.sciencedirect.com/science/article/pii/S1462901115300654
http://www.sciencedirect.com/science/article/pii/S1462901115300654
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Title: Rainfall erosivity in Europe 

Dataset description: Dataset (GIS map) (2015) and associated products for the 

"Rainfall erosivity" (R-factor), one of the input layers when calculating the Universal Soil 

Loss Equation (USLE) model, which is the most frequently used model for soil erosion 

risk estimation; for EU28+Switzerland; R-factor map at resolutions of 500m. 

Methodology used to develop the dataset: Rainfall erosivity equations for calculating 

the erosive power of rain. The equations are based on amount, intensity and duration of 

rainfall. The erosivity (R-factor) is the product of kinetic energy of a rainfall event (E) and 

its maximum 30-min intensity (I30) (Brown and Foster, 1987).  

Consistency Check: Rainfall erosivity in Europe is calculated using the best available 

datasets. We have developed the Rainfall Erosivity Database on the European 

Scale(REDES) which contains 1,541 precipitation stations in all European Union(EU) 

Member States and Switzerland, with temporal resolutions of 5 to 60 minutes. The R-

factor values calculated from precipitation data of different temporal resolutions were 

normalised to R-factor values with temporal resolutions of 30 minutes using linear 

regression functions. Precipitation time series ranged from a minimum of 5 years to 

maximum of 40 years. The average time series per precipitation station is around 17.1 

years, the most datasets including the first decade of the 21st century. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: European Union (28 Countries) & Switzerland 

Resolution: 500m cell size 

Measurement Unit: MJ mm ha-1 h-1 yr-1 

Format : Raster (Grid) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: REDES (Rainfall Erosivity Database at European Scale) 

Date Release: January 2015 

Link: https://esdac.jrc.ec.europa.eu/content/rainfall-erosivity-european-union-and-

switzerland  

Publication Reference: Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., 

Rousseva, S., Tadic, M.P., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, 

M., Rymszewicz, A., Dumitrescu, A., Beguería, S., Alewell, C. 2015. Rainfall erosivity in 

Europe. Sci Total Environ. 511:  801-814.  

https://esdac.jrc.ec.europa.eu/content/rainfall-erosivity-european-union-and-switzerland
https://esdac.jrc.ec.europa.eu/content/rainfall-erosivity-european-union-and-switzerland
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Title: Pan European Soil Erosion Risk Assessment - PESERA 

Dataset description: A 2003 GIS map of Soil erosion estimates (t/ha/yr) by applying 

the PESERA GRID (physical) model at 1km, using the European Soil Database, CORINE 

land cover, climate data from the MARS Project and a Digital Elevation Model. The 

resulting estimates of sediment loss are from erosion by water. 

Methodology used to develop the dataset: The Pan-European Soil Erosion Risk 

Assessment - PESERA - uses a process-based and spatially distributed model to quantify 

soil erosion by water and assess its risk across Europe. The conceptual basis of the 

PESERA model can also be extended to include estimates of tillage and wind erosion.  

Consistency Check: Local studies in regions of Italy, Netherlands and United Kingdom. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). Aknowledgements to PESERA project should be provided. 

Metadata 

Spatial Coverage: 23 EU Member states (Excluding Croatia, Sweden, Finland, Cyprus and 

Malta) 

Resolution: 1km cell size 

Measurement Unit: t ha-1 yr-1 

Format: raster 

Projection: : ETRS89 Lambert Azimuthal Equal Area 

Input datasets: 128 layers 

Date Release: 2004 

Link: https://esdac.jrc.ec.europa.eu/content/pan-european-soil-erosion-risk-assessment-

pesera  

Publication Reference: M. J. Kirkby, B. J. Irvine, R. J. A. Jones, G. Govers, and PESERA 

team, 2008. The PESERA coarse scale erosion model for Europe. Model rationale and 

implementation. European Journal of Soil Science 59 (6) , pp. 1293-1306. 

 

https://esdac.jrc.ec.europa.eu/content/pan-european-soil-erosion-risk-assessment-pesera
https://esdac.jrc.ec.europa.eu/content/pan-european-soil-erosion-risk-assessment-pesera
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Title: Topsoil physical properties for Europe (based on LUCAS topsoil 

data) 

Dataset description: This dataset (GIS maps)(2016) contains 7 soil property maps that 

have been derived using soil point data from the LUCAS 2009 soil survey (around 20,000 

points) for EU-25, using hybrid approaches like regression kriging. Properties: clay, silt 

and salt content; coarse fragments; bulk density; USDA soil textural class; available 

water capacity. Resolution 500m. 

Methodology used to develop the dataset: Multivariate Additive Regression Splines 

(MARS). The LUCAS topsoil database was used to map soil properties at continental scale 

over the geographical extent of Europe. Several soil properties were predicted using 

hybrid approaches like regression kriging. For those datasets, we predicted topsoil 

texture and related derived physical properties. Regression models were fitted using, 

along other variables, remotely sensed data coming from the MODIS sensor. The high 

temporal resolution of MODIS allowed detecting changes in the vegetative response due 

to soil properties, which can then be used to map soil features distribution. 

Consistency Check: Cross validation of the fittedmodels proved that the LUCAS dataset 

constitutes a good sample for mapping purposes leading to cross-validation R2 between 

0.47 and 0.50 for soil texture and normalized errors between 4 and 10%.  The spatial 

interpolation model showed a good performance (cross validation R2 = 0.65, 0.62, and 

0.60 corresponding to the clay, silt and sand prediction), and high prediction uncertainty 

was limited to relatively few areas. 

 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

 

Metadata 

Spatial Coverage: European Union (EU-25) as Coratia, Bulgaria and Romania are not 

inclued. An extrapolation version exists covering EU-28 plus Balkan countries, 

Switzerland and Norway. 

Resolution: 500m 

Measurement Unit: clay(%), Sand(%), Silt (%), Coarse fragments (%) 

Format: Raster 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: UCAS 2009 Topsoil 20,000 sample point data 

Date Release: September 2015 

Link: https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-

lucas-topsoil-data  

Publication Reference: Ballabio C., Panagos P., Montanarella L. Mapping topsoil physical 

properties at European scale using the LUCAS database (2016) Geoderma, 261: 110-

123. 

 
  

https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-lucas-topsoil-data
https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-lucas-topsoil-data
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5.2  Soil erosion by wind 

 

Title: Soil loss by wind erosion in European agricultural soils 

Dataset description: This dataset consists of various elements related to Soil loss by 

wind erosion in European agricultural soils (2016);  

Methodology used to develop the dataset: a modified version of Revised Wind 

Erosion Equation Model (RWEQ) for GIS named GIS-RWEQ. The new version is  a 

simplified GIS-based application of the RWEQ model  developed by ARS-USDA (USA). It 

follows a spatially distributed approach based on a grid structure, running in R and 

Python scripts. The model scheme is designed to describe the daily soil loss potential at 

regional or larger scale. 

Consistency Check: The outcomes of the proposed modelling approach were subjected 

to a validation procedure to assess the model performance. A subset of the literature 

locations suffering from wind erosion reported by Borrelli et al. (2016) was employed. 

Out of 156 locations accurately georeferenced in GIS, 90 were found to be located within 

EU-28 arable land.  In the European arable land, 85 of the 90 locations reported in 

literature (94.4%) were classified by the GIS-RWEQ model as being susceptible to 

erosion. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: EU-28 

Resolution: 1km cell size 

Measurement Unit: t ha-1 yr-1 

Format: Raster (Grid) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets:  Erodible Fraction, Soil crust factor, soil roughness factor, combined crop 

factors, Wind velocity data 

Date Release: December 2016 

Link: https://esdac.jrc.ec.europa.eu/content/Soil_erosion_by_wind  

Publication Reference: Borrelli, P., Lugato, E., Montanarella, L., & Panagos, P. (2017). A 

New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a 

Quantitative Spatially Distributed Modelling Approach. Land Degradation & Development, 

28: 335–344 

 

https://esdac.jrc.ec.europa.eu/content/Soil_erosion_by_wind
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Title: Wind erosion susceptibility of European soils 

Dataset description: The wind-erodible fraction of soil (EF) is one of the key 

parameters for estimating the susceptibility of soil to wind erosion.The predication of the 

spatial distribution of the EF and a soil surface crust index drew on a series of related but 

independent covariates, using a digital soil mapping approa 

Methodology used to develop the dataset: The wind-erodible fraction of soil (EF) is 

one of the key parameters for estimating the susceptibility of soil to wind erosion. It was 

computed for 18,730 geo-referenced topsoil samples (from the Land Use /Land Cover 

Area frame statistical Survey (LUCAS) dataset).  

Consistency Check: Our predication of the spatial distribution of the EF and a soil 

surface crust index drew on a series of related but independent covariates, using a digital 

soil mapping approach (Cubist-rule-based model to calculate the regression, and 

Multilevel B-Splines to spatially interpolate the Cubist residuals). The spatial interpolation 

showed a good performance with an overall R2 of 0.89 (in fitting). 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: 25 Member States of the European Union where data available (All EU 

member states except Bulgaria, Romania and Croatia). 

Resolution: 500m 

Measurement Unit: % of erodible fraction 

Format: Raster (Grid) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: LUCAS point data, European Soil Database. 

Date Release: October 2014 

Link: https://esdac.jrc.ec.europa.eu/themes/wind-erosion-susceptibility-soils  

Publication Reference: Borrelli, P., Ballabio, C., Panagos, P., Montanarella, L. 

(2014). Wind erosion susceptibility of European soils. Geoderma, 232, 471-478. 

 

  

https://esdac.jrc.ec.europa.eu/themes/wind-erosion-susceptibility-soils
http://www.sciencedirect.com/science/article/pii/S0016706114002389
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5.3 Decline in Soil organic matter 

 

Title: Topsoil Soil Organic Carbon (LUCAS) 

Dataset description: This dataset (2015) provides maps for Topsoil Soil Organic Carbon 

in EU-25 that are based on LUCAS 2009 soil point data through a generalized additive 

model. Map of predicted topsoil organic carbon content (g C kg-1) : The map of predicted 

topsoil organic carbon content (g C kg-1) was produced by fitting a generalised additive 

model between organic carbon measurements from the LUCAS survey (dependent 

variable) and a set of selected environmental covariates; namely slope, land cover, 

annual accumulated temperature, net primary productivity, latitude and longitude. It also 

includes a Map of standard error of the OC model predictions (g C kg-1). 

Methodology used to develop the dataset: Generalized additive model (GAM). GAMs 

are a generalization of linear regression models in which the coeficients can be expanded 

as s mooth functions of covariates (Hastie & Tibshirani, 1986). 

Consistency Check: A generalized additive model (GAM) was fitted on 85% of the 

dataset (R2 = 0.29), using OC content as dependent variable; a backward stepwise 

approach selected slope, land cover, temperature, net primary productivity, latitude and 

longitude as suitable covariates. The validation of the model (performed on 15% of the 

data-set) gave an overall R2 of 0.27 and an R2 of 0.21 for mineral soils and 0.06 for 

organic soils. Organic C content in most organic soils was under-predicted, probably 

because of the imposed unimodal distribution of our model, whose mean is tilted towards 

the prevalent mineral soils. This was also confirmed by the poor prediction in Scandinavia 

(where organic soils are more frequent), which gave an R2 of 0.09, whilst the prediction 

performance (R2) in non-Scandinavian countries was 0.28 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: EU-25 : All the European Union Member states except Croatia, 

Romania and Bulgaria 

Resolution: 1km cell size 

Measurement Unit: g C kg-1 

Format: Grid (Raster) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: LUCAS topsoil database; secondary inputs: CORINE LC, NASA SRTM, 

WorldClim, Moderate Resolution Imaging Spectroradiometer (MODIS), European Soil 

Database 

Date Release: Nov 2014 

Link: https://esdac.jrc.ec.europa.eu/content/topsoil-soil-organic-carbon-lucas-eu25  

Publication Reference:  de Brogniez, C. Ballabio, A. Stevens, R. J. A. Jones, L. 

Montanarella and B. van Wesemael (2015). A map of the topsoil organic carbon content 

of Europe generated by a generalized additive model. European Journal of Soil Science, 

66(1): 121-134 

 

  

https://esdac.jrc.ec.europa.eu/content/topsoil-soil-organic-carbon-lucas-eu25
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Title: Pan-European SOC stock of agricultural soils 

Dataset description: Data (2014) related to Pan-European SOC stock of agricultural 

soils, containing GIS maps for a) Pan-European SOC stock of agricultural soils 

(shapefile), b) Potential carbon sequestration by modelling a comprehensive set of 

management practices (shapefile), c) Average Eroded SOC in agricultural soils (raster). 

Methodology used to develop the dataset: A comprehensive model platform was 

established at a pan-European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, 

Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) using the 

agro-ecosystem SOC model CENTURY. The model was implemented with the main 

management practices (e.g. irrigation, mineral and organic fertilization, tillage, etc.) 

derived from official statistics. The model results were tested against inventories from the 

European Environment and Observation Network (EIONET) and approximately 20,000 

soil samples from the 2009 LUCAS survey, a monitoring project aiming at producing the 

first coherent, comprehensive and harmonized top-soil dataset of the EU based on 

harmonized sampling and analytical methods. 

Consistency Check: The simulated values were generally in agreement with 

measurements for all three aggregated land use (LUVCAS Topsoil 20,000 points) and 

EIONET data on soil organic carbon (Panagos et al., 2013). 

The uncertainty calculated was <40% in half of the NUTS2 regions. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: Pan-European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, 

Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) 

Resolution: 1km 

Measurement Unit: Soil organic stock (t C ha-1) ; b) ha = hectares under agricultural land 

use 

Format: Raster (Grid) and Shape files 

Projection: ETRS_1989_LAEA_L52_M10 

Input datasets: European Soil Database; CORINE LC; Monthly temperature and 

precipitation were taken from East Anglia university; Land use and management crop 

statistics (EUROSTAT) 

Date Release: Nov 2013 

Link: https://esdac.jrc.ec.europa.eu/content/pan-european-soc-stock-agricultural-soils  

Publication Reference: Lugato E., Panagos P., Bampa, F., Jones A., Montanarella L. 

(2014). A new baseline of organic carbon stock in European agricultural soils using a 

modelling approach. Global change biology. 20 (1), pp. 313-326. 

 

  

https://esdac.jrc.ec.europa.eu/content/pan-european-soc-stock-agricultural-soils
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5.4 Soil compaction 

 

Title: Relative normalized density (RND) for European subsoil horizons 

Dataset description: Relative normalized density (RND) for European subsoil horizons 

covering the depth 0.25 – 0.7 m as calculated by pedo-transfer rules based on the 

SPADE8 database (Koue et al., 2008). RND>1 may be considered a dense soil 

Methodology used to develop the dataset: The dataset hosted on the DMS is the 

SPADE8 soil database (Koue et al., 2008). This is a further development of the SPADE1 

database initiated in 1992 (Breuning-Madsen and Jones, 1995). The SPADE database was 

constructed to support the EU-soil map at scale 1:1,000,000 with soil analytical data for 

modelling purposes. The SPADE8 database includes a range of soil properties for a total 

of approximately 900 soil profiles (~3500 soil horizons) across 28 countries in Europe. 

Consistency Check: Not Avalable 

Terms and Conditions used (copyright): Data are not available. 

Metadata: Not Available 

 

 

Title: Soil bulk density 

Dataset description: Bulk density map at 500m rersolution derived from LUCAS clay 

and pedotransfer rules.  

Methodology used to develop the dataset: The bulk density was obtained from the 

packing density and the mapped clay content (Ballabio et al., 2016) following the 

equation of Jones et al. (2003). USDA classificaton was followed for the pedotransfer 

rules. 

Consistency Check: Derived from Pedotrasfer rules which have tested Jones et al. 

(2003). Range of values between limits reccomended inEuropean Soils 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: European Union (EU-25) as Coratia, Bulgaria and Romania are not 

inclued. An extrapolation version exists covering EU-28 plus Balkan countries, 

Switzerland and Norway. 

Resolution: 500m 

Measurement Unit: Mg (Tonnes) m-3  

Format: Raster 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: LUCAS 2009 Topsoil 20,000 sample point data  

Date Release: September 2015 

Link: https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-

lucas-topsoil-data  

Publication Reference: Ballabio C., Panagos P., Montanarella L. Mapping topsoil physical 

properties at European scale using the LUCAS database (2016) Geoderma, 261: 110-

123. 

  

https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-lucas-topsoil-data
https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based-lucas-topsoil-data
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5.5 Soil Sealing 

 

Title: Percentage of soil sealing according to EAA soil sealing layer, year 
2006 

Dataset description: Raster data set of built-up and non built-up areas including 

continuous degree of soil sealing ranging from 0 - 100% in aggregated spatial resolution 

(100 x 100 m and 20 x 20m).  

Methodology used to develop the dataset: Comparing the artificial surfaces of 

different version of CORINE Land Cover. The term “artificial surfaces” is used in the 

CORINE Land Cover nomenclature and refers to “continuous and discontinuous urban 

fabric (housing areas), industrial, commercial and transport units, road and rail networks, 

dump sites and extraction sites, but also green urban areas (Prokop et al., 2011).  

 

Consistency Check: CORINE Land Cover 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: EU 

Resolution: 20m 

Measurement Unit: sealed area (ha, %) 

Format: Raster Dataset 

Projection: 

Input datasets: CORINE Land Cover 

Date Release: 2011 

Link: https://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-

on-land-monitoring-degree-of-soil-sealing  

Publication Reference: 

 

 

 

Title: Soil Sealing & food security (Loss of Potential Agricultural 
Production Capability) 

Dataset description: This dataset (2015), an Excel file, contains the data associated to 

the peer-reveiwed paper: Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C., de 

Brogniez, D. 2015. Land take and food security: assessment of land take on the 

agricultural production in Europe. 

Methodology used to develop the dataset: As a first step, two land-take maps were 

generated by applying a number of GIS operations to CORINE datasets, one for the 

period 1990–2000 and another for the period 2000–2006. In a second step, each land-

take map was overlaid with NUTS2 polygons, in order to compute the extent of 

agricultural land taken in each NUTS2 administrative unit. Then the Potential Agricultural 

Production Capability (PAPC) for a certain area is defined as the potential agricultural 

https://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-sealing
https://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-sealing
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production in this area. The output of winter wheat production activities is taken as a 

proxy for PAPC, expressed in tonnes (t). 

Consistency Check: Input datasets have been validated and verified. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: 21 Member States of the European Union (Data were not available for 

Finland, Sweden, UK, Greece, Cyprus, Bulgaria, Latvia) 

Resolution: NUTS2 units 

Measurement Unit:  tonnes 

Format: Shape files 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: CORINE Land Cover; NUTS dataset; MARS input data on crop production 

Date Release: December 2014 

Link: https://esdac.jrc.ec.europa.eu/content/soil-sealing-food-security-loss-potential-

agricultural-production-capability  

Publication Reference: Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C., de 

Brogniez, D. 2015. Land take and food security: assessment of land take on the 

agricultural production in Europe. Journal of Environmental Planning and Management, 

58 (5) , pp. 898-912. 

 

  

https://esdac.jrc.ec.europa.eu/content/soil-sealing-food-security-loss-potential-agricultural-production-capability
https://esdac.jrc.ec.europa.eu/content/soil-sealing-food-security-loss-potential-agricultural-production-capability
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5.6 Soil Contamination 

 

Title: Heavy Metals in topsoils (version 2008) 

Dataset description: GIS Maps (2008) produced by mapping the concentrations of 

eight critical heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead 

and zinc) using the 1588 georeferenced topsoil samples from the FOREGS Geochemical 

database. The concentrations were interpolated using block regression-kriging over the 

26 European countries that contributed to the database 

Methodology used to develop the dataset: Geostatistical analysis with Block kriging. 

Consistency Check: The success of the technique was evaluated using the leave-one 

out cross validation method, as implemented in the krige.cv method of gstat.  

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: EU-28 without Romania, Bulgaria and Cyprus (plus Switzerland, 

Albania) 

Resolution: 5km 

Measurement Unit: Various units depending on the method 

Format: Grid 

Projection: European Terrestrial Reference System (ETRS) . 

Input datasets:  1588 analysed points of Forum of European Geological Surveys 

(FOREGS) 

Date Release: 2008 

Link: https://esdac.jrc.ec.europa.eu/content/heavy-metals-topsoils  

Publication Reference: Rodriguez Lado, L., Hengl, T., Reuter, H.I., (2008) Heavy metals 

in European soils: a geostatistical analysis of the FOREGS Geochemical database. 

Geoderma 148, 189-199. 

 

  

https://esdac.jrc.ec.europa.eu/content/heavy-metals-topsoils
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5.7 Soil Salinization 

 

Title: Saline and Sodic Soils in European Union 

Dataset description: The Saline and Sodic Soils Map shows the area distribution of 

saline, sodic and potentially salt affected areas within the European Union. 

Methodology used to develop the dataset: The accuracy of input input data only 

allows the designation of salt affected areas with a limited level of reliability (e.g. < 50 or 

> 50% of the area); therefore the results represented in the map should only be used for 

orientating purposes. 

Consistency Check: High uncertainty as the results fo this map have not been verified 

or validated. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: 27 Member States of the European Union  

Resolution: 1km 

Measurement Unit: Qualitative classes 

Format: Raster 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: Soil data - European Soil Database v2 , 1:1.000.000 scale Map of Salt 

Affected Soils in Europe (Szabolcs 1974) 

Date Release: 2008 

Link: https://esdac.jrc.ec.europa.eu/content/saline-and-sodic-soils-european-union  

Publication Reference: Tóth et al. (2008) Updated Map of Salt Affected Soils in the 

European Union.  In: Tóth, G., Montanarella, L. and Rusco, E. (Eds.) Threats to Soil 

Quality in Europe. EUR23438 – Scientific and Technical Research series Luxembourg: 

Office for Official Publications of the European Communities p.61-74 

  

https://esdac.jrc.ec.europa.eu/content/saline-and-sodic-soils-european-union
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5.8 Flooding and Landslides 

 

Title: European Landslide Susceptibility Map (ELSUS1000) v1 

Dataset description: The map shows landslide susceptibility levels at continental scale, 

derived from heuristic-statistical modelling of main landslide conditioning factors using 

also landslide location data 

Methodology used to develop the dataset: ELSUS1000 version 1 shows levels of 

spatial probability of generic landslide occurrence at continental scale. Basically, the map 

has been produced by regionalizing the study area based on elevation and climatic 

conditions, followed by spatial multi-criteria evaluation modelling using pan-European 

slope gradient, soil parent material and land cover spatial datasets as the main landslide 

conditioning factors. In addition, the location of over 100,000 landslides across Europe, 

provided by various national organizations or collected by the authors, has been used for 

model calibration and validation. 

Consistency Check: Landslides inventories in European countries are used to check the 

map 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: EU-28 Member States (except Cyprus) and Albania, Bosnia and 

Herzegovina, Croatia, Kosovo, FYR Macedonia, Montenegro, Norway, Serbia and 

Switzerland. 

Resolution: 1 km 

Measurement Unit: 5 classes (qualitative assessment| 

Format: Raster (ESRI GRID) 

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: Climato-Physiographic Regions, Classified Slope Gradient, Classified Soil 

Parent Material and Classified Land Cover maps 

Date Release: February 2013 

Link: https://esdac.jrc.ec.europa.eu/content/european-landslide-susceptibility-map-

elsus1000-v1  

Publication Reference: Günther, A., Van Den Eeckhaut, M., Malet, J.-P., Reichenbach, P., 

Hervás, J., 2014. Climate-physiographically differentiated Pan-European landslide 

susceptibility assessment using spatial multi-criteria evaluation and transnational 

landslide information. Geomorphology, 224: 69-85 

 

  

https://esdac.jrc.ec.europa.eu/content/european-landslide-susceptibility-map-elsus1000-v1
https://esdac.jrc.ec.europa.eu/content/european-landslide-susceptibility-map-elsus1000-v1
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5.9 Decline in biodiversity 

 

Title: Potential threats to soil biodiversity in Europe 

Dataset description: Three major components of soil biodiversity are assesed: a) soil 

microorganisms, b) fauna, and c) biological functions. The maps were developed based 

on 13 potential threats to soil biodiversity which were proposed to experts with different 

backgrounds in order to assess biodiversity threat. 

Methodology used to develop the dataset: use of 13 proxy datasets and the expert 

knowledge to create formulas of soil biodiversity risk. 

Consistency Check: The expert knowlegde is based on large pool of experts in the field.  

High uncertainty in spatializing the results of expert knoweldge based on the proxies. 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: European Union (27 Countries - Croatia was not included) 

Resolution: 500m 

Measurement Unit:  5 classes describing the level of risk 

Format: Raster  

Projection: ETRS89 Lambert Azimuthal Equal Area 

Input datasets: habitat fragmentation use of GMOs in agriculture, introduction of invasive 

species, climate change, soil compaction, soil sealing, soil erosion, soil salinization, land 

use change, nuclear pollution, soil pollution from industry, organic matter decline, 

intensive human exploitation  

Date Release: September 2015 

Link: https://esdac.jrc.ec.europa.eu/content/potential-threats-soil-biodiversity-europe  

Publication Reference: Orgiazzi, A., Panagos, P., Yigini, Y., Dunbar, M.B., Gardi, C., 

Montanarella, L., Ballabio, C. 2016. A knowledge-based approach to estimating the 

magnitude and spatial patterns of potential threats to soil biodiversity.  Science of the 

Total Environment, 545-546: 11-20. 

  

https://esdac.jrc.ec.europa.eu/content/potential-threats-soil-biodiversity-europe
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5.10 Template used for the Metadata description (including quality 

check, copyrights and info about the dataset). 

 

Title:  

Dataset description: 

Methodology used to develop the dataset: 

Consistency Check: 

Terms and Conditions used (copyright): Data can be downloaded from European Soil 

Data Centre (ESDAC). No particular copyright is applied. 

Metadata 

Spatial Coverage: 

Resolution: 

Measurement Unit:  

Format: 

Projection: 

Input datasets: 

Date Release: 

Link: 

Publication Reference: 
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In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 
address of the centre nearest you at: http://europea.eu/contact 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this 
service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: http://europa.eu/contact 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 
website at: http://europa.eu 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: 

http://bookshop.europa.eu. Multiple copies of free publications may be obtained by contacting Europe 

Direct or your local information centre (see http://europa.eu/contact). 
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http://europa.eu/contact
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