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Abstract 

The alarming data on world climatic change, resources impoverishment and increasing 

human diseases caused by environmental pollution has encouraged the modern society to 

feel committed in reducing the environmental issues and to adopt a sustainable approach 

to every human activity. Sustainability is an ambitious challenge for Europe development 

and European policy is addressed in investing massive resources for achieving sustainable 

goals.  

Construction is one of the most impactful industrial sector because of the high 

consequences it generates on the society, the environment and the economy. Indeed, 

building constructions involve social aspects, as safety and comfort, economic aspects, as 

construction investments and maintenance, and environmental aspects, as energy 

consumption and emissions. 

The present study derives from the development of a building design method, called 

Sustainable Structural Design (SSD) Methodology. This methodology is based on a multi-

performance and life cycle-oriented approach, which includes the environmental aspects, 

related to energy consumption and CO2 emissions, in structural design, performed with a 

simplified Performance Based Assessment (sPBA) methodology, in order to obtain a global 

assessment parameter in monetary terms. 

Moreover, the study derives from the awareness about the structural condition of the 

European building stock, which is old and, in some cases, far from the structural safety 

required by the European codes. Thus, a simply applicable methodology, allowing the 

identification of the territorial areas which need a more urgent intervention is necessary. 

The application of the SSD methodology at territorial level could allow the inclusion of the 

main aspects of sustainability, identifying the areas which an intervention could reduce the 

energy consumptions, the CO2 emissions and the structural losses of the included buildings. 

Thus, this report aims at studying the applicability of the SSD methodology at territorial 

level, considering three different area dimensions, as countries, regions and cities, and 

identifying the right approach for each of them. Consequently, an SSD methodology at 

territorial level is developed and illustrated. 
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Introduction 

Sustainable development is one of the most relevant topics of the last decades. It involves 

each branch of human activities, from agricultural to safety management areas. The global 

interest in sustainable development is also evident considering the massive investments 

that have been, and still are, carried out to guarantee a sustainable approach to the global 

growth and the management of human activities. In order to assure the sustainable 

development, interactions among environmental, social and economic parameters have to 

be involved. 

The construction sector provides high contributions to the three dimensions of the 

sustainability. Indeed, according to the social dimension, people spend most of their time 

inside buildings, so a healthy and quality indoor environment has to be guaranteed; 

moreover, according to 2013 EU-28 data by Eurostat [1][2], construction sector provides 

a high contribution to the employment, accounting for 12.2 million people and 5.2% of the 

total employees. Considering the economic dimension, EU-28’s construction sector was 

made up of more than 3.2 million enterprises in 2013 and generating EUR 487 billion of 

value added [1]. Moreover, 2014 data by Eurostat reveal that an 11.4% share of the EU-

28 population lived in households that spent 40% or more of their equalised disposable 

income on housing [3]. Finally, considering the environmental dimension, buildings are 

responsible for approximately the 40% of the total energy consumption and the 36% of 

the total greenhouse gases in Europe [4]. 

Among the three dimensions, in the last years more attention has been given to the 

environmental issue. The global warming is generated by the increasing atmospheric 

concentration of the greenhouse gases (GHG), including carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O). EU Commission has revealed that the building sector is 

responsible of 36% of GHG emissions [4] and that more than 50% of building energy 

consumption and at least 80% of carbon dioxide emissions can be reduced by taking 

suitable measures [4]. In order to face this issue, several global agreements have been 

signed, starting from the Kyoto Protocol in 1997. The Paris Agreement [5], was signed 

during the last United Nations Climate Change Conference, which was held in Paris in 

December 2015. Paris Agreement has fixed the global commitment in the reduction of 

climate change, focusing the attention on transports, agriculture and, finally, on building 

sector. The final aims of the Agreement are: holding the increase in the global average 

temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the 

temperature increase to 1.5°C above pre-industrial levels; increasing the ability to adapt 

to the adverse impacts of climate change and foster climate resilience and low greenhouse 

gas emissions development and, finally, making finance flows consistent with a pathway 

towards low greenhouse gas emissions and climate-resilient development. 

In order to follow the ways indicated by the Agreements, several European Regulations 

have been published. The directive of the Energy Performance of the Buildings (EPBD), 

also called Directive 2010/31/EU [6], was issued as a result of Kyoto Protocol Agreement. 

The Directive promotes the improvement of the energy performance of buildings within the 

Union, giving requirements about the common general framework for a methodology for 

calculating the integrated energy performance of buildings and building units and about 

the application of minimum requirements to their energy performance. Moreover, it states 

the necessity to issue an energy performance certificate in order to provide information on 

the building energy consumptions. Starting from this Directive, the Member States have 

developed a certification system, called “energy performance certificate, EPC” to provide 

the annual value of energy consumption of buildings. Other EU policy initiatives and 

Regulations, mainly directed to improve the environmental performance of buildings 

including energy efficiency and eco-friendly materials, are the following: 

-   Energy Efficiency Directive [7] 

-   EcoDesign Directive (energy related products) 

-   Energy Labelling Directive (energy related products) 
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-   EcoLabelling Regulation 

-   EcoLabel for Buildings (first priority office buildings) 

-   Energy Efficiency Action Plan (2007-2012, 2013-2020) 

-   Green Public Procurement (GPP) 

-   Construction and Demolition Waste (Waste Framework Directive) 

-   Lead Market Imitative (on Sustainable Construction) 

-   Resource Efficiency Roadmap–EC (DG/Env) communication on Sustainable buildings 

-   CPR →obligatory CE marking of CPs 1th July 2013–New: BRCW 7 Sustainable use of 

     natural resources [8]. 

The growing interest in achieving the environmental efficiency of buildings has prevailed, 

somehow, on an important aspect of the buildings’ performance: the structural safety. In 

some cases (Figure 1), this attitude has caused the annulment of the energy benefits and, 

consequently, the stultification of the investment plans. Indeed, as reported in the 

following images, the focus on energy efficiency of the buildings, neglecting their structural 

performances, can provoke significant economic and social consequences. 

 

Figure 1. Examples of safety neglect in buildings with energy improvements. a) roof collapse of a 
building in Emilia Romagna Region (Italy) after the 2012 earthquake; b) roof collapse of a 

Municipal library in Sardinia Region (Italy) for gravity loads, in 2015 

 

a) 

 

b) 

The necessity of focusing the attention on structural performances of buildings is clear if 

statistics on construction age of European building stock are considered. According to the 

Buildings Performance Institute Europe (BPIE) [9] (Figure 2), around 40% of residential 

buildings have been built before 1960, when seismic codes had not been developed, yet, 

or did not consider the effective seismic action.  

 

 

 

 

 

 

Figure 2. Highlights on the construction year of the European building stock 
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Source: BPIE 

For these reasons, it is clear that a combined approach for evaluating the performances of 

buildings is necessary for including both the energy and the safety featuresof the buildings 

themselves, in order to create and maintain a sustainable building stock and, in order to 

optimize the initial investments, avoiding that structural flaws foil energy efficiency 

subsidies. Figure 3 shows the virtuous investment cycle of buildings: the initial investment 

for energy efficiency finances the safety improvement, which in turn protects the initial 

investment. Energy savings, due to energy efficiency renovations, can also pay for 

structural improvements, which contribute to strengthening the investment. 

Figure 3.  The virtuous investment cycle 

 

In order to combine the environmental and the safety performances of buildings, the 

Sustainable Structural Design (SSD) methodology has been developed by Romano, Negro 

and Taucer in 2014 [10] and refined by Loli et al. [10]. The aim of the methodology is to 

equip the buildings with a single parameter, which includes environmental performances, 

regarding energy consumptions and equivalent CO2 emissions, and the safety 

performance, regarding the structural costs. This parameter is provided in economic terms.  

This methodology has been developed for single buildings. Nevertheless, it is interesting 

to enlarge the applicability field from building to territorial level in order to give the 

stakeholders a procedure for the identification of the areas where an environmental and 

structural intervention is more urgent and would be more efficient. Indeed, this 

methodology can support the administrations in addressing policy projects on the territory. 

Moreover, this combined approach is applicable considering each hazards occurring in the 

area of interest, being the seismic hazard an example. 

The present report aims at developing the SSD methodology at national/regional/urban 

level. Each step of the methodology is analysed and, for the structural performance 

assessment, the attention is focused on the seismic hazard. 
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Focus on SSD Methodology motivation 

Construction industry is one of the sectors that most contribute to the global environmental 

impacts. In recent years, the interest in achieving a more sustainable approach to the 

development of the built environment has been addressed mostly to the environment 

issues, as climate change and high-energy consumptions. The growing interest in attaining 

the environmental aims established by the global agreements, as Kyoto Protocol and Paris 

Agreement, has prevailed, somehow, on the structural performance of the buildings. The 

Sustainable Structural Design (SSD) methodology was developed for equipping the 

buildings with a single parameter, provided in economic terms, which includes 

environmental and structural performances. In the present report, the SSD methodology 

is developed at national/regional/urban level in order to give the construction industry 

stakeholders a procedure for the identification of the areas where an environmental and 

structural intervention is more urgent and would be more efficient. 
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1 SSD methodology at building level 

The Sustainable Structural Design (SSD) is a methodology aiming at supporting the general 

design process of buildings. It was developed by Romano, Negro and Taucer in 2014 [10], 

improved by Tsimplokoukou, Lamperti, Negro [8] and applied to a case study by Loli, 

Lamperti, Negro [10]. The methodology combines the structural and the environmental 

aspects of the buildings and summarises them in a single final parameter, provided in 

economic terms. It includes well-known approaches regarding the environmental 

assessment and the structural performance assessment of the buildings. 

According to the SSD methodology, the environmental assessment can be achieved by 

considering the two main aspects of the environmental issues of the buildings: the energy 

consumption and the greenhouse gas (GHG) emissions. For addressing the final aim of the 

methodology, these two aspects are analysed separately. 

The SSD Methodology is described by means of the framework shown in Figure 4. According 

to the figure, it is based on three main pillars, each of them corresponding to a procedure 

evaluation step: the Energy Performance Assessment; the Life-Cycle Assessment and the 

Structural Performance Assessment. The fourth step represents the conversion of the three 

identified pillars in economic terms, to address the Global Assessment Parameter of the 

SSD methodology. The four steps are better described hereafter. 

Figure 4.  Framework of the Sustainable Structural Design (SSD) Methodology 

 

1.1 Step I: Energy Performance Assessment 

The energy performance assessment step is formally part of the Life-Cycle assessment 

step, but it is performed separately from the second step of the methodology in order to 

easily address the operational costs of the buildings. In line with the life cycle energy 

assessment (LCEA) methodology, the total energy required during all the building life can 

be evaluated as: 

𝐸𝐿𝐶 = 𝐸𝐸 + 𝐸𝑂 + 𝐸𝐷 (1) 

where: 

— ELC is the life-cycle energy incurred at each phase of the building life; 

— EE is the embodied energy, i.e. the energy required for extracting, manufacturing and 

transporting the building materials and the energy required for the construction of the 

building (also called “pre-use phase”); 

— EO is the operating energy, including the energy required for space heating, space 

cooling, water heating, illuminating, running appliances and other end-uses. It is 

expressed as a function of the annual operating energy, EOA, and the life span of the 

building, LB: 
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𝐸𝑂 = 𝐸𝑂𝐴 ∙ 𝐿𝐵 (2) 

— ED is the demolition energy, i.e. the energy required for the demolition of the building, 

EDIS, and the transportation of the debris and the other building materials to the landfill 

or recycling plants, ET: 

𝐸𝐷 = 𝐸𝐷𝐼𝑆 + 𝐸𝑇 (3) 

The EO value is herein treated separately from the other energy components and it is the 

only component estimated in the first step on the methodology. One main reason for 

computing this value separately is that the European policies are moving towards the 

reduction of the energy consumptions, reaching the goal of the widespread diffusion of 

nearly zero energy buildings (nZEB), as reported at Art. 9 of EU Directive 2010/31/EU [6]. 

For this reason, the control on the EO component should be guaranteed by the 

methodology, in order to quantify the reductions. Another reason for considering the 

operating cost separately is that the energy prices can include energy taxes related to the 

carbon emissions related to the production of energy. In order to avoid that the CO2 

contribution is doubly evaluated in the cases the prices include the carbon-related taxes, 

two options can be chosen: 

(a) remove the tax component from the energy price and proceed with the following 

steps of the methodology; 

(b) consider the total energy price and, in the second step of the methodology, evaluate 

the CO2 emissions only for pre-use phase and demolition phase of the building life-

cycle. 

1.2 Step II: Life-Cycle Assessment 

Life-Cycle Assessment (LCA) is a methodology aiming at the evaluation of the 

environmental impacts of products and processes generated during their entire life cycle. 

For its generic nature, LCA methodology can be applied to each material/product/process 

entailing the generation of environmental impacts. 

LCA procedures are regulated by the International Organization for Standards (ISO) series 

ISO 14040 [12] and ISO 14044 [13]. According to ISO 14040, LCA is addressed by 

following four steps, also shown in Figure 5. The first step of the LCA procedure is the 

Goal&Scope definition, where the goal, the Functional Unit (FU)1 and the system boundary2 

of the LCA study are defined. The second step is the Inventory analysis (LCI), which 

involves the compilation and quantification of inputs and outputs for the studied system 

throughout its life cycle. The third step is the Impact assessment (LCIA) aiming at 

understanding and evaluating the magnitude and significance of the potential 

environmental impacts for a product system throughout the life cycle of the studied 

system. The last step of the LCA methodology is the Interpretation, in which the findings 

of either the inventory analysis or the impact assessment, or both, are evaluated in relation 

to the defined goal and scope in order to reach conclusions and recommendations [12]. 

 

 

                                           
1 The Functional Unit is the unit of measure of the studied system providing a reference to which the inputs and 

outputs can be related 
2 The system boundary is the system of the materials and processes included in the LCA analysis 
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Figure 5. Life Cycle Assessment steps 

 

Source: ISO 14040 [12] 

The life-cycle assessment can be performed by means of specific software, which include 

international databases, collecting the sustainability data of the 

materials/products/processes3 and impact assessment methodologies. Several LCIA 

methodologies are available for each LCA-based software, providing different 

environmental impacts, like IPCC 2007 GWP [14], Eco-Indicator 99 [15] and Cumulative 

Energy Demand (CED) [16]. Databases, methodologies and software are continuously 

updated. As discussed previously, in order to perform a LCA study, it is important to set 

the system boundary; for LCA analyses on buildings, EN 15978 [15] standardises the 

stages that should be included in the LCA study. Precisely, the system boundary of the 

buildings should include: (1) the pre-use phase (extraction and production of materials, 

E&P, and construction phases); (2) the use phase (ordinary maintenance of structural 

elements), and (3) the End of Life (EoL) phase (building demolition and material disposal) 

(Figure 6). 

Figure 6. Definition of the life-cycle stages and system boundary for building systems 

 

Source: EN 15978 [15] 

 

                                           
3 The international databases for LCA analyses generally include environmental information about compositions, 

production processes, disposal scenarios of most of the existing materials, industrial processes and 
construction materials. 
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1.3 Step III: Structural Performance Assessment 

The third step of the SSD methodology regards the assessment of the structural 

performance of the buildings.  

The modern structural performance assessment approach derives from the tragic losses 

caused by the earthquakes in Northridge, USA (1994) and in Kobe, Japan (1995), which 

have led to a complete re-examination of the building sector knowledges. Indeed, the last 

two decades have been characterized by the updates of the national technical codes for 

addressing the structural design with a Performance-Based approach. The performance-

based approach can be based on the identification of performance levels, called “limit 

states”, which the structure has to satisfy, in order to maintain some predefined features 

in case events of different natures occur. Therefore, it involves the implementation of 

probabilistic scenarios the structure could face during its lifespan in terms of uncertainties 

[18]. The uncertainties fall into three main categories, namely hazard uncertainties (as 

earthquakes, winds, flooding), structural uncertainties (as stiffness, material properties, 

structural capacity), and interaction mechanism uncertainties (as duration) [18]. To this 

regard, performance-based assessment (PBA) allows structural systems to be designed to 

fulfil the performance targets in terms of capacity, safety and quality. PBA approach also 

allows the costs associated to a structural solution and to a rehabilitation measure to be 

estimated, along with the expected losses the building could face during its lifespan, for 

the defined limit states. This can lead the different stakeholder categories to compare the 

alternative structural solutions and evaluate the more feasible/affordable one. 

According to the global applicability of the PBA concepts, performance-based assessment 

can be realised for all the events that may occur during the building lifespan: fire 

(Performance Based Fire Assessment, PBFA), wind (Performance Based Wind Assessment, 

PBWA), hurricanes (Performance Based Hurricane Assessment, PBHA), as well as others. 

Since the occurred earthquakes have led the development of a PBA concept, its first 

implementation has been realised for the earthquake events. The Pacific Earthquake 

Engineering Research (PEER) introduced the methodology framework for earthquakes, 

called PBEE (Performance Based Earthquake Engineering), which, nowadays, is the most 

robust methodology. 

The PEER PBEE methodology is divided into four steps: (1) the ground motion hazard 

estimation, (2) the response estimation, (3) the damage estimation and (4) the loss 

estimation (Figure 7). 

Figure 7. PEER PBEE framework methodology 

 

 

The ground motion hazard estimation phase aims at the assessment of the probability 

that a seismic hazard occurs, given a defined location, O, and the building’s design 

characteristics, D. This probability is defined as g(IM|O,D), where IM is the intensity 

measure. Examples of IMs are peak ground acceleration (PGA), spectral acceleration (Sa), 

spectral velocity (Sv).  

The response estimation phase aims at realising a structural analysis to estimate the 

structural response of a building, subjected to an earthquake having an intensity measure 
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IM. The response is measured in terms of Engineering Demand Parameters (EDPs). 

Examples of EDPs are inter-storey drifts and floor accelerations). The outcome of this phase 

is the value g(EPD|IM). 

The damage estimation phase aims at evaluating the probability of having a structural 

damage (DM), given an EDP. This phase is achieved by defining fragility functions. The 

outcome of this phase is the value g(DM|EDP). 

The loss estimation phase involves the probabilistic estimation of performance 

parameterised through decision variables (DV). Examples of DV are: economic loss, 

injuries, fatalities. DVs are related to DM of the previous phase. The outcome of this phase 

is the value g(DV|DM). According to this last value, stakeholders have the possibility to 

make decisions on structures. 

The four components of the PEER PBEE methodology are then combined in the triple 

integral: 

 

(4) 

1.3.1 Simplified Performance Based Assessment Method (sPBA) 

A simplified version of the PEER PBEE method, called Simplified Performance Based 

Assessment (sPBA) has been introduced by Negro and Mola [19] in order to reduce the 

complexity and the amount of data needed for the loss assessment of structures. The 

proposed procedure can be applied also considering other hazards. As for the PEER PBEE 

methodology, sPBA follows four phases, which are described hereafter. 

— Limit state definition 

According to the damageability of the structure, the limit states are defined and the 

expected costs related to each limit state are evaluated. The damage limit states can be 

defined as: low damage, heavy damage, severe damage and loss of the building/collapse. 

The structural damage is evaluated in terms of the inter-storey drift (IDR), which is 

evaluated by means of the fragility curves for each damage level. 

— Structural analysis 

The structural analysis aims at the evaluation of the peak ground accelerations (PGAs) 

causing the IDR values defined at the previous step. This correlation is assessed through 

skeleton curves obtained from Incremental Dynamic Analyses (IDA) or from Pushover 

analysis, which lead to the definition of the peak ground acceleration versus inter-storey 

drift ratio for each damage state. 

— Hazard analysis 

The PGAs provided by the previous step are converted in probability of exceedance. The 

relation between the return periods (TR) and the PGAs are provided by the modern technical 

codes. As an example, Italian seismic code [20] provides a set of values of PGA for nine 

return periods, and it is possible to evaluate the PGAs of different TR by using the following 

interpolating formula: 

𝑙𝑜𝑔(𝑎𝑔) = 𝑙𝑜𝑔(𝑎𝑔1) + 𝑙𝑜𝑔 (
𝑎𝑔2

𝑎𝑔1
) ∙ 𝑙𝑜𝑔 (

𝑇𝑅

𝑇𝑅1
) ∙ [𝑙𝑜𝑔 (

𝑇𝑅2

𝑇𝑅1
)]

−1

 (5) 
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where: 

● ag is the PGA referred to a defined damage state  

● TR is the return period corresponding to that damage state 

● agi are the previous and successive values of PGA, taken from the seismic map 

● TRi are the return period corresponding to agi 

Once the TR values are known, the probability of exceedance Rn, in n years is expressed as 

follows: 

𝑅𝑛 = 1 − (1 −
1

𝑇𝑅
)

𝑛

 
(6) 

— Cost analysis 

The total cost of the building is the sum of the initial costs for the building construction and 

the expected total losses during building lifespan. The expected total loss is the sum of 

repair costs, evaluated by the structural engineer, and downtime costs referred to each 

limit state. The latter represents the losses caused by the building lack of functionality and 

is estimated after the contractor evaluates the time needed to repair the damages. 

Therefore, the expected loss Ci, for the i-th limit state, is evaluated as follows: 

𝐶𝑖 = 𝐸(𝐿𝑜𝑠𝑠𝑟𝑒𝑝𝑎𝑖𝑟|𝐼𝑀) + 𝐸(𝐿𝑜𝑠𝑠𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒|𝐼𝑀) (7) 

Once the costs Ci associated to the attainment of each limit state and the respective 

probability of exceedance Ri have been calculated, the total expected loss, L, considering 

all the limit states is evaluated as follows: 

𝐿 = ∑ 𝐶𝑖 ∙ (𝑅𝑖 − 𝑅𝑖+1)

𝑖=1

 (8) 

Finally, the total cost for structural performance assessment is evaluated with the following 

expression: 

𝐶𝑇𝑂𝑇 = 𝐼 + 𝐿 (9) 

where I is the initial construction costs of the building. 
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1.4 Step IV: Global Assessment Parameter of the SSD Methodology 

The first three steps of the SSD methodology lead to the estimation of different quantities, 

having different units of measure: kWh or gas m3 for the energy (step I), kgCO2,eq for the 

equivalent environmental impacts (step II) and € for structural costs (step III). The last 

step of the methodology aims at unifying the building performance outputs in order to 

provide a unique sustainability value in monetary unit, called “global assessment 

parameter”, RSSD. 

The conversion of the energy outputs in monetary unit can be achieved by using the data 

provided by Eurostat [21] for each Member State and for households and industrial 

consumptions. Therefore, the total energy costs are evaluated as follows: 

𝑅𝐸(𝑒𝑛𝑒𝑟𝑔𝑦) = 𝑄𝐸 · 𝑃𝐸 (10) 

where: 

● QE is the amount of energy consumption (in kWh or m3) 

● PE is the energy price (in €/kWh or €/ m3) 

 

The conversion of the environmental impacts, evaluated as mass of equivalent carbon 

dioxide, in monetary unit can be addressed by means of the information given by the 

European Union Emission Trading System (EU ETS) [22]. The prices of equivalent carbon 

dioxide are estimated according to a procedure developed by EU ETS: each Member State 

agrees on the maximum national emission limit, approved by the European Commission; 

then the MS allocate allowance values to their industrial operators, who are able to buy or 

sell such allowances, named European Emission Allowances (EUA) [23] The price is finally 

set according to the number of permits issued. Therefore, the environmental impact costs 

referred to carbon footprint are evaluated with the following expression: 

𝑅𝐸(𝐶𝑂2) = 𝑄𝐶𝑂2
· 𝑃𝐶𝑂2

 (11) 

where: 

● 𝑄𝐶𝑂2
 is the amount of equivalent CO2 (in kg or tonne) 

● 𝑃𝐶𝑂2
 is the carbon dioxide price (in €/kgCO2,eq or €/tonneCO2,eq) 

 

The global assessment parameter, RSSD, can be evaluated with the following expression: 

𝑅𝑆𝑆𝐷 = 𝑅𝐸(𝐶𝑂2) + 𝑅𝐸(𝑒𝑛𝑒𝑟𝑔𝑦) + 𝐶𝑡𝑜𝑡 (12) 

where: 

● Ctot is the structural cost given by  the sum of building initial costs and building 

losses 
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Focus on the SSD Methodology at building level 

The Sustainable Structural Design (SSD) is a methodology is a methodology that aims to 

support the overall building design process. The SSD Methodology is based on three main 

pillars, each of them corresponding to a procedure evaluation step: the Energy 

Performance Assessment; the Life-Cycle Assessment and the Structural Performance 

Assessment. The fourth step represents the conversion of the three identified pillars in 

economic terms, to address the Global Assessment Parameter of the SSD methodology. In 

the energy performance step, the energy consumed during the operational phase of the 

building is evaluated; in the Life-Cycle Assessment step, the CO2 emissions generated 

during all the lifespan of the buildings are evaluated. In the structural performance 

assessment step, the initial costs and the expected economic losses caused by expected 

earthquakes are evaluated. Expected economic losses are calculated by means of the 

simplified Performance-Based Assessment methodology (sPBA). The fourth and last step 

aims at the conversion of the three parameters into a final one, called Global Assessment 

Parameter, RSSD, expressed in economic terms. The conversion affects only the energy 

performance parameter and the Life-Cycle Assessment parameter, because the structural 

performance parameter is already provided in economic terms. 
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2 SSD Methodology at National/Regional/Urban Level  

The Sustainable Structural Design methodology is a viable practical procedure providing 

each building with a parameter which summarizes the environmental and safety 

performances of the building itself. It is a useful procedure in the design phase, in order to 

establish the most efficient design solution for the building, but it is also very useful for 

existing buildings because it can provide a picture of the global performance condition of 

them. 

An important development of the SSD methodology is the application of it at territorial 

level. If the methodology was applied to small areas, like districts, cities or regions, or to 

big areas, like nations, it could be a sound method for supporting the administrations in 

addressing the policy projects on the territory. Indeed, if the building stock is classified 

into groups of buildings having similar structural and non-structural characteristics and the 

global assessment parameter is evaluated for each building group, the territory can be 

divided into areas having same RSSD range. According to this classification, areas with 

highest values of RSSD will result as the ones where a structural and energy intervention is 

more necessary. Figure 8 shows the results of the application of the SSD methodology at 

urban level: red areas represent the groups of buildings having the highest values of RSSD, 

which need an urgent structural and energy intervention; yellow areas represent the 

groups of buildings with moderate necessity of structural and energy intervention; green 

areas represent the groups of buildings with low necessity of structural and energy 

intervention. 

Figure 8. Example of the application of the SSD methodology at territorial level – red areas show 
groups of buildings with high values of RSSD, which would need an urgent structural and energy 
intervention; yellow areas represent groups of buildings with moderate necessity of intervention; 

green areas represent group of buildings with low necessity of intervention. 

 

 

In order to reach the described aims, the development of the SSD methodology at 

territorial level has to be described. Figure 9 shows the steps for developing the SSD 

methodology at national/regional/urban level. 
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Figure 9. Framework of the development of the SSD methodology at national/regional/urban level 

 

 

As shown in Figure 9, the SSD methodology at territorial level is based on the same steps 

of the SSD methodology at building level. 

Step I represents the energy performance assessment step. The energy performance 

parameter can be obtained following two different procedures:  

— Procedure A, for evaluations at national level 

— Procedure B, for evaluation at regional and urban levels 

Procedure B can be divided into two sub-procedures: B1, where the energy consumption 

is provided by the European energy databases; B2, where the energy consumption is 

provided by the Energy Performance Certificates. 

Step II represents the life-cycle assessment (LCA) step. The LCA performance parameter 

is evaluated by using the same procedure for national, regional and urban levels. 

Step III represents the structural assessment step. The structural assessment parameter 

is evaluated by using the same procedure for national, regional and urban levels. The third 

step consists in an initial phase of building data gathering and stock classification, followed 

by the loss assessment and the initial costs evaluation.  

In the SSD methodology at territorial level, the Step IV is included in the three previous 

steps; indeed, each step ends with the evaluation of the parameters in economic terms. 

Each step of the methodology is developed and described hereafter. 

 

2.1 Step I - Energy performance 

As described at the previous paragraph, energy performance assessment is achieved using 

two different procedures: procedure A, if energy consumptions are evaluated at national 

level, and procedure B, if energy consumptions are evaluated at regional or urban level. 

2.1.1 Step I.A - Energy performance at national level 

In order to provide information on energy consumptions of buildings at national scale, the 

support of the well-known European databases is required. Several European databases 

for building energy consumptions are available online. The present report refers to the 
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following databases: Eurostat, IEA (International Energy Agency), BPIE (Buildings 

Performance Institute Europe), ODYSSEE. Moreover, to estimate the correct information 

on the building stock floor area, also IVL (Swedish Environmental Research Institute) 

database has been analysed. In order to provide correct information about the energy 

consumption, a comparison among the data provided by the mentioned databases is 

necessary. 

 Databases used for the energy and floor area comparisons 

2.1.1.1.1 Eurostat 

Eurostat is a Directorate-General of the European Commission. Eurostat’s mission is to 

provide statistical information to the institutions of the European Union, promoting the 

homogeneity of statistical methods across Member States. 

Among the others, Eurostat provides data on supply, transformation and consumption of 

energy, energy prices and other indicators for the European countries from 1990 to 2014. 

Eurostat data on energy consumptions are yearly updated [24][25].  

Data gathering is achieved with the collaboration of International Energy Agency (IEA) and 

United Nation Economic Commission for Europe (UNECE). Indeed, the annual energy data 

collection is based on the five joint questionnaires among: Eurostat/European Commission 

- International Energy Agency/OECD – UNECE/United Nations. They cover the five major 

energy sources (Solid fuels, Oil, Natural gas, Electricity and Heat, Renewables and Wastes). 

The questionnaires are received regularly from all EU Member States and are sent back to 

Eurostat by the competent National Statistical Authorities (NSI, Ministries, and Energy 

Agencies) [26]. Data are then subjected to validation checks. If there are any doubts as 

regards data quality, Eurostat contacts the Member State to provide necessary 

justifications or corrections [25]. 

2.1.1.1.2 IEA 

The International Energy Agency (IEA) is an autonomous organisation, linked to the 

Organisation for Economic Co-operation and Development (OECD), which works to ensure 

reliable, affordable and clean energy for its 29 member countries and beyond. The IEA has 

four main areas of focus: energy security, economic development, environmental 

awareness and engagement worldwide.  

Basing on the data achieved from the Eurostat/IEA/UNECE questionnaires, IEA yearly 

develops  datasheets, available at [27], providing free aggregate data and monthly energy 

statistics on the energy balance of 34 OECD countries and 6 other regions (Africa, non-

OECD Americas, Asia, Non-OECD Europe and Eurasia, Middle East) for energy production 

and flows, separately. IEA also provides data on electricity generation and CO2 emissions, 

for production and flows, separately. Data cover the time period 1971-2014, and are 

constantly updated. 

2.1.1.1.3 BPIE 

The Buildings Performance Institute Europe (BPIE) is a European not-for-profit 

organisation, delivering policy analysis, advice and implementation support, and focusing 

on the field of energy performance of buildings [28]. BPIE is the European partner of Global 

Building Performance Network (GBPN), a global organisation whose mission is to provide 

policy expertise and technical assistance to advance building energy performance and 

realise sustainable built environments [29]. 

In 2011, BPIE organised a survey for collecting existing data related to buildings and 

building policies of EU27 (i.e. EU before Croatia accession), Norway and Switzerland 

countries [9]. National data were provided by national institutes, research institutes and 

individual experts listed in [28] and [9]. Data have been gathered on the floor area of the 

building stock. For some countries, data in terms of the age, size, ownership 

(private/public), tenure (owner occupied, private or social tenant) location (rural/urban) 
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and typical energy performance levels of the building stock have been also gathered [9]. 

The results of the 2011 BPIE survey can be consulted on the Data Search Tool by selecting 

a combination of countries, topics, building types and owner profiles. 

 

2.1.1.1.4 ODYSSEE 

The ODYSSEE-MURE Project is co-ordinated by ADEME [30], a French industrial and 

commercial institution, under the authority of the Ministers for research, ecology and 

energy, aiming at supporting and coordinating the transactions relating to the protection 

of the environment and energy management. ODYSSEE-MURE Project gathers 

representatives from the current 28 EU Member States plus Norway. It aims at monitoring 

energy efficiency trends and measures in Europe, using on two complementary internet 

databases: ODYSSEE, and MURE. ODYSSEE database is managed by Enerdata, an 

independent Research & Consulting firm on the global oil, gas, coal, power, renewable and 

carbon markets; it contains detailed energy efficiency and CO2 indicators with data on 

industry, transport and households energy consumption, their drivers (activity indicators) 

and their related CO2 emissions. MURE is managed by ISINNOVA, an independent Italian 

research institute supporting international, national and local public bodies for the analysis, 

the design, the implementation and the evaluation of sustainable policies in the fields of 

energy, environment, transport and mobility, urban planning, and knowledge society; 

MURE contains a description, with their impact evaluation whenever available, of all energy 

efficiency measures implemented at EU or national level [31]. Both the databases are 

updated once or twice a year. The partners of the projects include national Efficiency 

Agencies or their representatives within the European network of energy efficiency 

agencies [31]. 

ODYSSEE database provides, among others, data on energy consumption, stock of 

dwellings and floor area of dwellings for European and non-European countries and from 

1990 to 2014. The mentioned data can be consulted by means of the tool available online 

[32]. 

ODYSSEE data sources include government ministries, statistical institutions, industry and 

transport associations and research institutions. The energy consumption for household 

heating is estimated by specialised organisation on the basis of surveys and modelling and 

endorsed by national energy agencies or institutions [33]. 

2.1.1.1.5 IVL 

Other detailed data sets for the residential and commercial sectors for the EU27 countries, 

as well as Norway, Switzerland and Turkey, have been produced by the IVL, Swedish 

Environmental Research Institute, an institute which combines applied research and 

development with close collaboration between industry and the public sphere [34]. 

Precisely, the International Institute for Applied System Analysis (IIASA), an international 

scientific institute that conducts research into the critical issues of global environmental, 

economic, technological, and social change [35], has invited IVL to provide data to the 

GAINS Model, a model developed by IIASA to assess cost-effective response strategies for 

combating air pollution, such as fine particles and ground-level ozone. IVL has provided 

the following building stock statistics for 2005: total number of dwellings for each country 

from a variety of National statistic’s sources and from Werner [36]; average floor space 

for each country, calculated with the data from NBHBP [37] and adjusted to 2005 level 

[38].  

There are also other EU-funded projects, as ENTRA NZE [39], which provide further 

information using data obtained from the abovementioned databases. 
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 Database comparison on national energy consumption 

The comparison about the above-mentioned databases has been carried out by considering 

the energy consumption of household space heating, without considering data adjustments 

related to climatic variations (which are addressed to avoid the influence of cold winters 

on the final data). Indeed, according to ODYSSEE, at the EU level, around two thirds of the 

consumption of buildings is for residential buildings [40] (Figure 10). Moreover, according 

to Eurostat classification [41], energy-using activities in households can be summarized 

in: space heating, space cooling, water heating, lighting & appliances and other end-uses. 

Energy consumption related to household space heating covers more than the 50% of the 

total energy amount, as reported by IEA [42] (Figure 11). 

Figure 10. Share of building in final energy consumption 

 

Source: ODYSSEE, 2012 

Figure 11. Household Energy Use 

 

Source: IEA15 

In order to evaluate the correct percentage of space heating on the total energy 

consumption, Eurostat data about household energy consumption divided by end-uses, 

which is available on [41] for 12 out of 28 EU Member States (Austria, Bulgaria, France, 

Greece, Latvia, Luxembourg, Netherlands, Portugal, Romania, Slovenia, Spain and United 

Kingdom), have been analysed. Firstly, the 12 Member States (MS) have been divided into 

three geographical areas: North, Central, South, according to MS classification presented 

in Table 1. Then, the percentage of space heating on the total energy consumption has 

been evaluated (in Figure 12, values for Austria are shown). 
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Table 1. Member State classification according to geographical location 

Geo-Area EU-28 Member States 

NORTH Belgium, Czech Republic, Denmark, Estonia, Finland, Germany, 

Ireland, Latvia, Lithuania, Luxembourg, Netherlands, Poland, 

Sweden, United Kingdom. 

CENTRAL Austria, Bulgaria, Croatia, France, Hungary, Romania, Slovakia, 

Slovenia. 

SOUTH Cyprus, Greece, Italy, Malta, Portugal, Spain 

Figure 12. Evaluation of space-heating rate for Austria  

 

Results for the 12 EU Member States are reported in Table 2. It can be observed that the 

space-heating rate is similar for the MS belonging to the same Geo-Area. According to this, 

an average value of space-heating rate for each Geo-Area has been defined, as shown in 

Table 3. 

Table 2. Space-heating rate for 12 EU Member States, according to Eurostat data sources [41] 

  Space-Heating rate Geo-Area 

Austria 64.64% CENTRAL 

Bulgaria 48.08% CENTRAL 

France 63.17% CENTRAL 

Greece 32.55% SOUTH 

Latvia 67.43% NORTH 

Luxembourg 70.65% NORTH 

Netherlands 66.49% NORTH 

Portugal 21.81% SOUTH 

Romania 66.53% CENTRAL 

Slovenia 65.95% CENTRAL 

Spain 36.56% SOUTH 

UK 60.30% NORTH 
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Table 3. Space-heating rate for each European Geo-Area 

Geo-Area EU-28 Member States Space-Heating Rate 

NORTH Belgium, Czech Republic, Denmark, Estonia, 

Finland, Germany, Ireland, Latvia, Lithuania, 

Luxembourg, Netherlands, Poland, Sweden, 

United Kingdom. 

65% 

CENTRAL Austria, Bulgaria, Croatia, France, Hungary, 

Romania, Slovakia, Slovenia. 
60% 

SOUTH Cyprus, Greece, Italy, Malta, Portugal, Spain 30% 

 

In the present study, comparisons about household energy consumptions have been 

performed by considering the following databases: 

● Eurostat, providing values for the energy spent in households for all the purposes, 

in kTOE; 

● ODYSSEE, providing values for the energy spent in households for: all the end-

uses and for single end-use separately (space heating, water heating, cooking, air 

conditioning, electrical appliances/lighting, captive electricity) in MTOE. Moreover, 

data about energy for space heating in kTOE/m2 were available before September 

2016 update. Residential building floor area refers to living area, also called “useful 

floor area”. It is evaluated dividing total energy consumption for energy 

consumption related to 1 building’s square meter, and in this case the database will 

be called “ODYSSEE 1”, or multiplying the average building floor area by the number 

of permanently occupied dwellings, and the database will be called “ODYSSEE 2”: 

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑂𝐷𝑌𝑆𝑆𝐸𝐸 1 =  
(𝑘𝑊ℎ𝑇𝑂𝑇)𝑠𝑝𝑎𝑐𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔

(
𝑘𝑊ℎ𝑇𝑂𝑇

𝑚2⁄ )
𝑠𝑝𝑎𝑐𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔

 
(13) 

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑂𝐷𝑌𝑆𝑆𝐸𝐸 2 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑥 𝑁𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑠 (14) 

● BPIE, providing gross floor area and useful floor area for each Member State (for 

some MS, floor area is also related to residential building type) obtained from a 

survey, in 2011, and providing energy consumption in MWh for all the end uses and 

in kWh/m2 for heating. (BPIE also provides data for cooling, lighting and end-use 

energy consumptions); 

● IEA, providing values for household energy consumptions in kTOE. 

 

Analysing the total energy consumption for households, the components reported in Table 

4 are included for the considered databases. 
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Table 4. Total energy consumption components considered by each database 

Database Energy components 

Eurostat Electricity, Renewable energies, Gas, Heat, Solid Fuels, Total 
petroleum products 

ODYSSEE Coal, Oil, Gas, Heat, Wood and Electricity 

IEA Coal, Peat & Oil Shale, Crude, NGL & Feedstocks, Oil products, 
Natural Gas, Nuclear, Renewable & Waste, Electricity, Heat 

BPIE uses Eurostat reference for energy composition. All the differences among the energy 

components of the analysed databases are reported in Appendix A. 

Error! Reference source not found. summarizes the databases information described 

above. The table reports “N” if data regarding building stock (useful floor area), total 

energy consumption for all end-uses, for space heating and space heating/m2 are not 

provided by the database, “Y” if they are provided, “C” is they are computable on the basis 

of on provided data, “S” if data are available for some Member States. 

Table 5. Overall features of the analysed databases 

 Countries Years Useful 
Floor 
Area 

Total 
energy 

consump
tion for 
all end-

uses 

Total 
energy 

consumpti
on for 
space 

heating 

Total energy 
consumptio
n for space 
heating/m2 

Data 
Source 

Eurostat European 
Countries 
(EU-28 + 
Iceland, 

Norway + 
EU 

Candidate 
Countries + 
Potential EU 
Candidate 

Countries + 
Moldova and 

Ukraine) 

1990-
2014 

N Y S N Member 
States 

Question
naires 

IEA OECD 
Africa, non-

OECD 
Americas, 
Asia, Non-

OECD 
Europe and 

Eurasia, 
Middle East 

1971-
2014 

N Y N N Member 
States 

Question

naires 

ODYSSEE EU-28 1990-

2014 

C Y Y Y 
(Before 

September 2016) 

Member 

States 
informati

on 

BPIE EU-28 + 
Switzerland 
and Norway 

2011 Y Y C Y Member 
States 

informati
on 

IVL EU-27 + 
Norway, 

Switzerland 
and Turkey 

2005 Y N N N Member 
States 

informati
on, + 

[36][37] 
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As reported at page 21, in the present study evaluations on household space heating are 

addressed. Compared to other energy end-uses, space heating can better address the 

envelope performance of buildings, since heating is a consequence of construction and 

building design, more than of users’ energetic needs and behaviour. 

In order to provide data on space heating, a first comparison on household total energy 

consumption for all end-users among the abovementioned databases is needed. This value 

is then converted in space heating by means of the space-heating rate, according to Table 

3. 

Eurostat, ODYSSEE and IEA data are available for different years, but the most complete 

information are referred to 2011. On the other hand, BPIE data are collected 

heterogeneously for each country. Since BPIE survey was published in 2011, comparisons 

among the databases are achieved referring to 2011 and shown in Table 6. 

Table 6. Comparisons among household total energy consumption for all end-uses data provided 
by the by the analysed databases 

REFERENCE YEAR 2011 

[MTOE] 

 ISO code Eurostat IEA ODYSSEE BPIE 

European Union EU28 281.12  281.11  

Austria AT 5.86 6.29 6.36 6.63 

Belgium BE 7.94 7.61 7.71 7.43 

Bulgaria BG 2.38  2.39 2.38 

Croatia HR 2.63  2.63  

Cyprus CY 0.35  0.33 0.35 

Czech Rep. CZ 5.98 5.99 5.98 6.02 

Denmark DK 4.40 4.40 4.51 4.40 

Estonia EE 0.94 0.94 0.94 0.97 

Finland FI 5.08 5.07 5.13 5.42 

France FR 37.62 37.94 37.77 42.08 

Germany DE 54.56 54.49 55.73 57.51 

Greece GR 5.49 5.47 5.47 4.83 

Hungary HU 5.47 5.48 5.49 5.14 

Ireland IE 2.77 2.74 2.84 2.72 

Italy IT 32.38 31.32 28.39 31.33 

Latvia LV 1.33  1.33 1.38 

Lithuania LT 1.54  1.52 1.53 

Luxembourg LU 0.46 0.46 0.48 0.43 

Malta MT 0.07  0.07 0.08 

Netherlands NL 10.25 9.75 9.65 10.29 

Poland PL 20.08 20.08 20.08 19.60 

Portugal PT 2.78 2.78 2.79 2.71 

Romania RO 7.86  8.26 8.06 

Slovakia SK 2.12 2.12 2.12 2.07 

Slovenia SI 1.26 1.21 1.21 1.19 

Spain ES 15.63 15.62 15.63 15.51 

Sweden SE 7.47 6.96 7.27 7.40 

United Kingdom GB 36.43 35.81 36.57 39.69 

Norway NO 3.95 3.95 3.89 4.03 
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Figure 13 shows the differences among the databases. It can be observed that the 

maximum difference between the databases is 13%. Error analysis has been addressed in 

order to establish the weighted error on the EU28+Norway population, considering 

Eurostat as benchmark. For weighted error estimations, data about European population 

have been obtained by Eurostat “demo_pjan” data [43]. 

Figure 13. Comparisons among the analysed databases (Benchmark: Eurostat)  

 

Table 7 shows the weighted errors, referred to the EU-28+Norway population, evaluated 

as the sum, for all the MS, of the product of the error and the population: 

WEIGHTED ERROR = ∑ 𝑒𝑟𝑟𝑜𝑟𝑖 ∙ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖

𝑁

𝑖=1

 (15) 

where: 

— i is the i-th Member State 

— N is the number of MS+Norway 

 

It can be observed that IEA has the lowest error (1.36%); this is reasonable because IEA 

and Eurostat use the same data source. On the other hand, BPIE provides the highest error 

(5.28%). BPIE data for Austria, France, Greece and Malta are higher than 10%, if compared 

with Eurostat data; moreover, for 11 MS out of 29 analysed, data are higher than 5%. 

Considering ODYSSEE database, only Italy data are higher than 10% the Eurostat data, 

while in 6 MS out of 29, error is higher than 5%. Finally, IEA data are higher than 5% the 

Eurostat data only for Austria and Sweden; no countries have total energy consumption 

for all end-uses higher than 10%, if compared to Eurostat data.  
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Table 7. Weighted error referred to EU28+Norway population, Eurostat benchmark. 

 POPULATION ODYSSEE BPIE IEA 

European Union EU-28   502,964,837            9,840    

Austria       8,375,164       717,806       1,098,989       622,341  

Belgium     11,000,638       306,232          699,069       448,339  

Bulgaria       7,369,431          33,749               6,874   

Croatia       4,289,857            1,305    

Cyprus           839,751          51,111             14,420   

Czech Rep.     10,486,731               175             65,552            7,686  

Denmark       5,560,628       141,825                  834            1,537  

Estonia       1,329,660                    0             49,048            1,476  

Finland       5,375,276          55,427          357,759         14,067  

France     64,978,721       263,248       7,700,364       563,266  

Germany     80,222,065    1,719,446       4,327,517       105,218  

Greece     11,123,392          36,283       1,335,813         31,384  

Hungary       9,985,722          24,627          614,704         18,578  

Ireland       4,570,881       122,934             71,131         50,435  

Italy     59,364,690    7,312,663       1,921,034    1,946,488  

Latvia       2,074,605            1,250             76,356   

Lithuania       3,052,588          40,275               7,584   

Luxembourg           511,840          25,974             27,348               370  

Malta           414,989            8,396             49,951   

Netherlands     16,655,799       985,688             65,851       817,330  

Poland     38,062,718          12,698          914,816         16,295  

Portugal     10,572,721          14,825          257,253                 91  

Romania     20,199,059    1,023,882          516,571   

Slovakia       5,392,446               763          129,478            1,373  

Slovenia       2,050,189          90,409          124,036         89,495  

Spain     46,667,174          12,543          357,756         33,805  

Sweden       9,415,570       248,455             87,010       642,929  

United Kingdom     63,022,532       238,365       5,624,482    1,077,126  

Norway       4,920,305          71,105          102,635               763  

TOT EU28+Norway   507,885,142     

WEIGHTED ERROR  2.67% 5.28% 1.36% 
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Once the data referred to all end-uses have been assessed, the space heating energy 

consumption has been evaluated for all the EU28+Norway countries by using the space-

heating rate. Table 8 summarizes the values of total space heating energy consumption 

for households, considering the four energy databases. 

 

Table 8. Household final energy consumption for space heating – Comparisons among the databases 

MTOE ISO 
code 

Geo Area Space-
Heating rate 

Eurostat IEA ODYSSEE BPIE 

Austria AT CENTRAL 0.6 3.51 3.78 3.82 3.98 

Belgium BE NORTH 0.65 5.16 4.95 5.01 4.83 

Bulgaria BG CENTRAL 0.6 1.43  1.43 1.43 

Croatia HR CENTRAL 0.6 1.58  1.58  

Cyprus CY SOUTH 0.3 0.11  0.10 0.10 

Czech Rep. CZ NORTH 0.65 3.89 3.89 3.89 3.91 

Denmark DK NORTH 0.65 2.86 2.86 2.93 2.86 

Estonia EE NORTH 0.65 0.61 0.61 0.61 0.63 

Finland FI NORTH 0.65 3.30 3.29 3.34 3.52 

France FR CENTRAL 0.6 22.57 22.77 22.66 25.25 

Germany DE NORTH 0.65 35.47 35.42 36.23 37.38 

Greece GR SOUTH 0.3 1.65 1.64 1.64 1.45 

Hungary HU CENTRAL 0.6 3.28 3.29 3.29 3.08 

Ireland IE NORTH 0.65 1.80 1.78 1.85 1.77 

Italy IT SOUTH 0.3 9.71 9.39 8.52 9.40 

Latvia LV NORTH 0.65 0.86  0.86 0.89 

Lithuania LT NORTH 0.65 1.00  0.99 1.00 

Luxembourg LU NORTH 0.65 0.30 0.30 0.31 0.28 

Malta MT SOUTH 0.3 0.02  0.02 0.02 

Netherlands NL NORTH 0.65 6.66 6.34 6.27 6.69 

Poland PL NORTH 0.65 13.05 13.05 13.05 12.74 

Portugal PT SOUTH 0.3 0.83 0.83 0.84 0.81 

Romania RO CENTRAL 0.6 4.72  4.95 4.84 

Slovakia SK CENTRAL 0.6 1.27 1.27 1.27 1.24 

Slovenia SI CENTRAL 0.6 0.76 0.72 0.72 0.71 

Spain ES SOUTH 0.3 4.69 4.68 4.69 4.65 

Sweden SE NORTH 0.65 4.85 4.52 4.72 4.81 

United Kingdom GB NORTH 0.65 23.68 23.28 23.77 25.80 

Norway NO NORTH 0.65 2.57 2.57 2.53 2.62 
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 Energy costs assessment 

Once the building energy consumptions are evaluated, the consumptions have to be 

converted into costs. 

Energy cost depends on the energy typology; therefore, a classification of energy 

consumption is necessary. According to Eurostat, energy can be classified into: solid fuels, 

petroleum products, gas, electricity, derived heat, renewable energies. Eurostat provides 

only electricity and gas prices for each MS. As reported in Table 9, electricity and gas 

consumptions represent 61% of the total consumed energy in EU. Nevertheless, this value 

varies among 19%, for MS using alternative energies (as Latvia and Iceland), on the 

opposite side, the Netherlands have 93% of energy and gas consumption. 

Table 9. Electricity + natural gas consumption percentage on total consumption. 

MS 2011 

European Union (28 countries) 60.92% 

Euro area (19 countries) 61.28% 

Belgium 60.10% 

Bulgaria 41.77% 

Czech Republic 53.87% 

Denmark 34.52% 

Germany (until 1990 former territory of the FRG) 57.74% 

Estonia 23.28% 

Ireland 46.28% 

Greece 33.96% 

Spain 63.71% 

France 62.09% 

Croatia 42.11% 

Italy 74.19% 

Cyprus 42.15% 

Latvia 19.53% 

Lithuania 24.04% 

Luxembourg 63.50% 

Hungary 71.96% 

Malta 74.24% 

Netherlands 92.94% 

Austria 43.99% 

Poland 28.22% 

Portugal 51.79% 

Romania 42.34% 

Slovenia 30.82% 

Slovakia 73.54% 

Finland 36.86% 

Sweden 49.76% 

United Kingdom 88.67% 

Iceland 19.94% 

Norway 78.55% 

Montenegro 38.24% 

Former Yugoslav Republic of Macedonia, the 52.98% 

Albania 46.80% 

Serbia 46.82% 

Turkey 46.89% 

Bosnia and Herzegovina 52.57% 
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Kosovo (under United Nations Security Council Resolution 1244/99) 43.88% 

Moldova 48.51% 

Ukraine 73.59% 

 

Source: Eurostat 

 

In conclusion, for residential buildings, a selection criterion could be to choose the average 

energy consumption value between the two more similar data provided by Table 8 and to 

evaluate the respective gas and electricity amounts.  

Energy costs for gas and electricity are provided by Eurostat [21] and are shown in Figure 

14. As reported in [21], “prices presented in this article generally include taxes, levies and 

value added tax (VAT) for household consumers but exclude (deductible) VAT for 

industrial/business users”.  

Figure 14. Electricity and Gas prices  

 

Source: Eurostat [21] 

 Energy performance parameter at national level 

Finally, the energy performance parameter, corresponding to the households’ space 

heating, using national data, can be evaluated as: 

RE
Energy=[∑ ∑  𝑀

𝑗=1 (%𝑖 ·
𝑘𝑊ℎ𝑇𝑂𝑇,𝑖

𝑦𝑒𝑎𝑟
· (

€

𝑘𝑊ℎ
)

𝑖
)

𝑗

𝑁
𝑖=1 ] ∗ 𝐿𝐵 (16) 
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where: 

— i represents the i-th component of the energy (as electricity and natural gas); 

— j represents the j-th building occupancy class (as households, offices, schools,…); 

— N represents the number of energy component considered; 

— M represents the number of building occupancy class considered; 

— %i represents the percentage of the i-th energy component on the total, for the 

considered MS; 

— 
𝑘𝑊ℎ 𝑇𝑂𝑇,𝑖 

 

𝑦𝑒𝑎𝑟
 represents the annual total energy consumption of the i-th energy 

component; 

— (
€

𝑘𝑊ℎ
)

𝑖
 is the price of the i-th component; 

— LB is the life span of the building. 

 

Considered the available energy prices data, RE
Energy

 can be evaluated only for electricity 

and natural gas consumptions. The sum of these two components covers 60% of the total 

energy consumption in Europe. Nevertheless, this amount is equal to 20% for some 

Member States (Figure 15). For this reason, for some Member States, the evaluation of 

the energetic costs, including only electricity and gas, can be inaccurate. 

 

Figure 15. Percentage of natural gas and electricity consumption on total energy consumption for 

each Member State 
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2.1.2 Step I.B - Energy performance at regional/urban level 

Energy performance evaluation of buildings in smaller territorial areas, as regions or cities, 

strictly needs the quantification of the buildings’ useful floor area referred to the considered 

territorial area. Two different data sources can be used for assessing the energy 

performance of buildings: national databases (Procedure I.B1) and energy performance 

certificates data (Procedure I.B2). The former needs the evaluation of national and 

regional/urban useful floor area values; the latter needs the evaluation of only 

regional/urban useful floor area value. 

 Step I.B1 

In order to use the same data source of the national energy performance assessment, an 

analysis on the useful floor area data at national level has been realised. 

2.1.2.1.1 Building stock comparisons at national level 

In the present paragraph, a comparison among the floor area data of the national building 

stock declared by the above-mentioned databases is performed. 

Floor area can be reported in terms of gross floor area and useful floor area. Gross floor 

area is the total floor area of the building, including intermediately floored tiers, 

mezzanines, basements, etc., as measured from the exterior surfaces of the outside walls 

of the building [44]; useful floor area is the floor area of dwellings measured inside the 

outer walls, excluding cellars, non-habitable attics and, in multi-dwelling houses, common 

areas [45]. The building stock data here presented refer to useful floor area. Among the 

five databases listed at §2.1.1.1, only BPIE and IVL [38] declare the value of total useful 

floor area of buildings; nevertheless, according to energy consumption and building stock 

values declared by ODYSSEE, useful floor area can be evaluated (see §2.1.1.2). 

Figure 16. Useful floor area comparison 
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In addition, the area may also cover permanently occupied buildings or all buildings, 

including empty dwellings and non-primary residences. ODYSSEE clearly declares that 

useful floor area is referred only to permanently occupied households. BPIE and IVL do not 

specify it. Actually, according to [38], IVL data are evaluated by means of National Board 

of Housing, Building and Planning (NBHBP) Sweden [46] data; the NBHBP report [46] 

states that, for some countries, total dwelling stock is used instead of the permanently 

occupied building stock. For the mentioned reason, in the present report a more accurate 

analysis is not possible. 

Figure 16 and Figure 17 show the comparison between the useful floor areas of residential 

buildings referred to ODYSSEE 1 and 2, BPIE and IVL databases (reference year for 

ODYSSEE data is 2010, for IVL data is 2005). 

Figure 17. Useful floor area comparison (Benchmark: BPIE) 

 

 

The figures show that useful floor areas well match for Austria, Bulgaria, Czech Republic, 

Hungary, Italy, Lithuania, Netherlands (the maximum difference among the databases of 

the listed countries is 20%); while they do not well match for Estonia (max difference 

43%), France (max difference 46%), Greece (max difference 85%), Malta (max difference 

55%), Poland (max difference 96%), Portugal (max difference 746%) Romania (max 

difference 74%), Slovakia (max difference 69%), Slovenia (max difference 887%), Spain 

(max difference 54%) and Sweden (max difference 387%). ODYSSEE 1 values for Portugal, 

Slovenia and Sweden are not shown because they are out of range. 

 

Figure 18 also shows the comparisons of useful floor area of European building stock. 

Actually, BPIE data include all the EU28 Member States and Norway, while for other 

databases not all the MS are included. ODYSSEE 1 misses data from Belgium, Cyprus and 

United Kingdom; ODYSSEE 2 misses data from Austria, Belgium, Czech Republic, France, 

Ireland and Luxembourg; IVL misses data from Croatia. Data from BPIE are 10-15% higher 

than the total useful floor area provided by the other databases. 
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Figure 18. Overall comparison of building useful floor area  

 

 

3.1.2.1.1.1 Building stock comparison check for Italy 

A check on building stock for Italian households useful floor area has been carried out using 

the 2015 cadastre data provided by the Italian Agency of Revenue (Agenzia delle Entrate) 

[47]. The Agenzia delle Entrate (AE) aggregates the cadastre categories into 9 groups. 

Group A (from A/1 to A/11 excluding A/10, which regards data about offices and private 

practices) includes data about all the residential building typologies (rural, popular, 

terraced houses, villas, and others). According to the DPR 138-98 [48], the cadastre floor 

area is equivalent to the useful floor area. By summing the total area of the Group A 

buildings for each Italian province, the AE provides a value equal to 4.06 Billions of m2. 

eclared by the AE. 

Figure 19 shows the differences among the useful floor area values, considering the 

analysed databases (using the more recent data for a better comparison with the AE data) 

and data by Agenzia delle Entrate. Figure shows that data provided by AE are 37% to 76% 

higher than the analysed databases. Considering that the AE data correspond to the 

declared households’ floor areas for evaluating the estate duties, these data can be 

considered as a lower bound; for this reason, it is unlikely that the correct useful floor area 

of the Italian building stock is lower than the value declared by the AE. 

Figure 19. Italian comparison of building useful floor area, including data provided by the Agenzia 
delle Entrate - Osservatorio del mercato immobiliare [47] 
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2.1.2.1.2 Useful floor area energy consumption 

In order to use the energy consumption data provided by the energy databases for each 

Member State for the regional/urban energy assessment, consumptions related to useful 

floor area are requested. 

According to what already reported in Table 5, BPIE already provides values in kWh/m2; 

moreover, before September 2016, also ODYSSEE database provides space heating 

consumption, with climatic correction, in kWh/m2. Nevertheless, these data are not 

available for Eurostat and IEA databases. In order to provide these data, two options are 

possible: 

1. BPIE useful floor area data can be used, and Eurostat and IEA energy consumptions 

per square meter are evaluated as for equations (17) and (18); 

2. ODYSSEE 2 floor area data (number of dwellings * average floor area of dwelling) 

can be used, and Eurostat and IEA energy consumptions per square meter are 

evaluated as for equations (19) and (20). 

kWh/m2
𝐸𝑆_𝐵𝑃𝐼𝐸 =

𝑘𝑊ℎ𝐸𝑢𝑟𝑜𝑠𝑡𝑎𝑡

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝐵𝑃𝐼𝐸
    (17) 

kWh/m2
𝐼𝐸𝐴_𝐵𝑃𝐼𝐸 =

𝑘𝑊ℎ𝐼𝐸𝐴

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝐵𝑃𝐼𝐸
    (18) 
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kWh/m2
𝐸𝑆_𝑂𝐷𝑌𝑆𝑆𝐸𝐸 =

𝑘𝑊ℎ𝐸𝑢𝑟𝑜𝑠𝑡𝑎𝑡

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑂𝐷𝑌𝑆𝑆𝐸𝐸 2
   (19) 

kWh/m2
𝐼𝐸𝐴_𝑂𝐷𝑌𝑆𝑆𝐸𝐸 =

𝑘𝑊ℎ𝐼𝐸𝐴

𝑈𝑠𝑒𝑓𝑢𝑙 𝑓𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎𝑂𝐷𝑌𝑆𝑆𝐸𝐸 2
  (20) 

Differences among the databases, in kWh/(m2×year) are reported in Table 10 and shown 

in Figure 20. Note that, in this table, ODYSSEE values refer to space heating with climatic 

correction. 

Table 10. Comparisons among ES_BPIE, ES_ODYSSEE, ODYSSEE and BPIE in consumption/m2. 

REFERENCE YEAR 2011 

[kWh/m2 ] 

 ES_BPIE ES_ODYSSEE IEA_BPIE IEA_ODYSSEE ODYSSEE BPIE 

European Union     127.44  

Austria 113.10  121.50  154.54 163.38 

Belgium 158.14  151.69    

Bulgaria 68.54 58.54   75.47 179.71 

Croatia  120.85   176.11  

Cyprus 22.21 19.73    107.39 

Czech Rep. 144.22  144.33  162.80 298.92 

Denmark 131.97 96.34 131.94 96.31 143.50 177.92 

Estonia 106.40  106.28   175.00 

Finland 185.76 138.12 185.27 137.76 188.94 142.33 

France 139.14  140.35  137.12 261.45 

Germany 90.21 111.44 90.09 111.29 147.78 164.63 

Greece 62.00 33.35 61.82 33.26 103.59 121.17 

Hungary 105.68 87.00 105.87 87.17  305.83 

Ireland 149.57  147.92  110.79  

Italy 42.08 38.39 40.70 37.13 109.15 159.10 

Latvia 211.55 156.10   219.21 137.10 

Lithuania 138.41 136.58   151.45  

Luxembourg     101.22  

Malta 17.84 10.14   7.51  

Netherlands 97.80 87.38 93.00 83.09 97.87 155.83 

Poland 161.15 153.91 161.08 153.85 179.15 172.88 

Portugal 27.77 15.12 27.77 15.12 16.24 156.43 

Romania 128.67 163.08   155.75  

Slovakia 62.97 88.15 62.96 88.13 116.06 113.73 
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Slovenia 131.23 127.23 125.50 121.67 146.04 145.34 

Spain 30.19 23.09 30.17 23.08 60.63 12.01 

Sweden 101.10 120.39 94.20 112.17 133.93 182.20 

United Kingdom 112.04 109.34 110.13 107.47   

Norway 106.81 105.29 106.79 105.28  49.50 

 

Figure 20. Comparisons among ES_BPIE, ES_ODYSSEE, IEA_BPIE, IEA_ODYSSEE, ODYSSEE and 
BPIE in consumption/m2. 

 

Differences among the databases depend on the data provided by the considered MS. 

A selection criterion could be to choose the average energy consumption value between 

more similar data; i.e. considering Finland, the energy consumption can be considered as 

the average value between 185.76, 138.12, 185.27, 137.76, 188.94 and 142.33 kWh/m2 

(163.03 kWh/m2). 

Considering the information analysed, it is clear that more precise data on household space 

heating energy consumptions for European Member States is necessary. 

 

2.1.2.1.2.1 Member States Highlights 

In order to have an overview of the household energy consumption, the abovementioned 

data are reported for some Member State. Precisely, Figure 21a and Figure 21b shows, 

respectively, the MS presenting the best and the worse matches among the data referred 

to the analysed databases. 
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Figure 21a: MS Highlights on energy consumption and useful floor area comparisons – Malta, 

Lithuania and Belgium 
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Figure 21b: MS Highlights on energy consumption and useful floor area 

comparisons –Sweden and Portugal 
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Portugal 

 

 

 

 

 

Figures show that, even if the total energy consumption for household space heating has 

a maximum error of 13% (as already analysed at page 26), differences among the floor 

area provided by the databases can cause a great difference in data regarding space 

heating per square meter, as shown for Sweden (88 kWh/m2) and Portugal (141 kWh/m2) 

cases. For other Member States, as Malta, Lithuania and Belgium, the differences among 

databases are very small (10 kWh/m2, 15 kWh/m2 and 6.4 kWh/m2, respectively). As 

conclusion, it has to be asserted that a more uniform evaluation on floor area is needed in 

order to provide more correct information about the space heating consumption per square 

meter at national level. 

2.1.2.1.3 Energy performance parameter at regional/urban level – Procedure I.B1 

The energy performance parameter, corresponding to the households’ space heating of 

buildings at regional/urban level, using national data, can be evaluated as: 

𝑅𝐸,𝑒𝑛𝑒𝑟𝑔𝑦 = [∑ ∑  

𝑀

𝑗=1

(%𝑖 ∗ (
𝑘𝑊ℎ𝑇𝑂𝑇,𝑖

𝑚2 ∙ 𝑦𝑒𝑎𝑟
)

𝑀𝑆

∗ 𝑚2
𝑟𝑒𝑔𝑖𝑜𝑛/𝑐𝑖𝑡𝑦 (

€

𝑘𝑊ℎ
)

𝑖
)

𝑗

𝑁

𝑖=1

] ∗ 𝐿𝐵 

(21) 
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where: 

— i represents the i-th component of the energy; 

— j represents the j-th building occupancy class (as households, offices, schools,…); 

— N represents the number of energy component considered; 

— M represents the number of building occupancy class considered; 

— %i represents the percentage of the i-th energy component on the total, for the 

considered MS; 

— (
𝑘𝑊ℎ 𝑇𝑂𝑇,𝑖 

 

𝑚2∙𝑦𝑒𝑎𝑟
)

𝑀𝑆
 represents the annual total energy consumption per square meter of 

the i-th energy component, referred to the considered MS; 

— 𝑚𝑟𝑒𝑔𝑖𝑜𝑛/𝑐𝑖𝑡𝑦
2  is the useful area of buildings’ groups in the considered region or city; 

— (
€

𝑘𝑊ℎ
)

𝑖
 is the price of the i-th component; 

— LB is the life span of the building. 

The useful floor area of the buildings’ groups in the considered region or city, 𝑚𝑟𝑒𝑔𝑖𝑜𝑛/𝑐𝑖𝑡𝑦
2 , is 

a complicated value to be assessed. It can be obtained either according to the procedure 

described in §2.1.2.2.1 or by means of a field survey described at §2.3.1. 

 Step I.B2 

In order to obtain a more precise evaluation of the energy consumption of the buildings at 

regional or urban scale, information can be derived by the energetic classification of the 

buildings, which reveals their energy consumption. 

As discussed before, the Directive 2010/31/EU of the European Parliament [6] states the 

necessity of improving the energy performance of buildings within the Union. The Directive 

fixes seven requirements (from (a) to (g)) for addressing the buildings energy 

performance. Point (e) regards the energy certification of buildings, which addresses the 

building energy consumptions. Indeed, articles 11, 12 and 13 provide the basic information 

for realizing and granting the energy certifications, stating that Member States shall ensure 

that an energy performance certificate is issued for (1) buildings or building units which 

are constructed, sold or rented out to a new tenant and (2) buildings where a total useful 

floor area over 250 m2 is occupied by a public authority and frequently visited by the public. 

According to the Directive 2010/31/EU, all the Member States have adopted it issuing 

national codes [49] and have established independent control systems for energy 

performance certificates.   

For some of the Member States (Italy, United Kingdom, Spain, Austria and Belgium [50]), 

the commitment in managing the EPCs is given to the Regional Authorities.  

The methodology for addressing the regional energy costs is explained considering the 

case study of Italy. For all the other Member States having a regional management of the 

EPCs, the same procedure can be used, but regional information has to be obtained for the 

single Region according to the available data. On the other hand, for the Member States 

where the EPCs are managed by the National Authorities, the same procedure can be used, 

but the values regarding the energy consumption would not reflect the same data accuracy. 

2.1.2.2.1 Regional energy assessment – The case of Italy 

According to the Italian legislation, the Article 17 of the D.Lgs. 192/05 [51] that adopted 

the previous version of the Energy Performance of the Buildings Directive (EPBD), 

2002/91/CE [52], has allowed the Italian Regions to define their own methodologies for 

the EPCs. On one hand, this policy has led to a more territorial-related data management 

and results; but on the other hand, it has led to more uneven and discrepant results of the 

national building energy performances. For this reason the guidelines for the EPCs, DM 26-
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06-2015 [53], promotes the national management of the energy certificates. According to 

the guidelines, the non-renewable global energy performance index, expressed in kWh/(m2 

year) and leading to the building energy classification, is evaluated as follows: 

𝐸𝑃𝑔𝑙,𝑛𝑟𝑒𝑛 = 𝐸𝑃𝐻,𝑛𝑟𝑒𝑛 + 𝐸𝑃𝑊,𝑛𝑟𝑒𝑛 + 𝐸𝑃𝐶,𝑛𝑟𝑒𝑛 + 𝐸𝑃𝑉,𝑛𝑟𝑒𝑛 + 𝐸𝑃𝐿,𝑛𝑟𝑒𝑛 + 𝐸𝑃𝑇,𝑛𝑟𝑒𝑛 (22) 

where: 

— 𝐸𝑃𝐻,𝑛𝑟𝑒𝑛 is the non-renewable energy index for winter space heating 

— 𝐸𝑃𝑊,𝑛𝑟𝑒𝑛 is the non-renewable energy index for water heating 

— 𝐸𝑃𝐶,𝑛𝑟𝑒𝑛 is the non-renewable energy index for summer air-conditioning 

— 𝐸𝑃𝑉,𝑛𝑟𝑒𝑛 is the non-renewable energy index for internal mechanical ventilation 

— 𝐸𝑃𝐿,𝑛𝑟𝑒𝑛 is the non-renewable energy index for illumination 

— 𝐸𝑃𝑇,𝑛𝑟𝑒𝑛 is the non-renewable energy index for people transportation (lifts, escalators) 

 

While focusing on the Italian Regions, different results have been achieved. For some 

Italian Regions, information about the energy consumptions are provided hereafter. 

Lombardia Region provides EPH values for each Province and Municipality, for residential 

and non-residential buildings and for three different uses (hotels and pensions, 

permanently occupied households, temporary occupied households). Moreover, it provides 

EPW values for each Province and Municipality, for residential and non-residential buildings 

[54]. As an example, Figure 22 shows the average non-renewable energy index for winter 

space heating of each Province of Lombardia Region. In [54], also Municipality values are 

available. 

Figure 22. Average EPH for winter space heating of residential buildings, for each Lombardia 
Province 
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Lombardia Region also provides information about the CO2 generated by the energy 

systems of the buildings. Average CO2, expressed in equivalent CO2, is provided for each 

Province and Municipality for residential and non-residential buildings. As example, Figure 

23 shows the average CO2
eq

 of the residential buildings for each Lombardia’s Province. 

Figure 23. Average CO2
eq for residential buildings, for each Lombardia Province 

 

Sicily Region provides the total EPH values for each Municipality, for residential in 

kWh/(m2 year) and non-residential buildings in kWh/(m3 year) [55]. It also provides an 

interactive map showing these values (e.g. Figure 24 regards the map providing residential 

building EPH). 

Figure 24. Map of Sicily EPH for winter space heating of residential buildings 

 

The Regione Autonoma Valle D’Aosta provides a yearly report on the monitoring of energy 

certifications [56]. Precisely, the report shows the average energy performances of 
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residential buildings (in kWh/(m2 year)), considering three different degree day areas4: 

area with DD<3000 days; 3000<DD<4000 days; DD>4000 days; and considering different 

construction periods, divided in 8 classes (Figure 25) for each year after 2006 (Figure 26). 

Figure 25. Average energy performance in kWh/(m2 year) of residential buildings for DD<3000 
area in Valle D’Aosta Region 

 

Figure 26. Average energy performance in kWh/(m2 year) of residential buildings for DD<3000 
area in Valle D’Aosta Region, for each year after 2006 

 

Friuli Venezia Giulia (FVG) Region provides data regarding the average energy 

performance of: winter space heating, water heating, summer space cooling. Nevertheless, 

the data are available only for Regional Public Authorities and for regional notaries [57]. 

As for Lombardia Region, also FVG Region provides data about the CO2 emissions related 

to the energy systems use in residential and non-residential buildings. Moreover, CO2 

emissions are provided for building construction years and for building use (hotels and 

pensions, permanently occupied households and temporary occupied households for 

residential buildings; offices, hospitals, churches, schools, sport facilities, industrial 

activities, shops for non-residential buildings). Figure 27 shows the average CO2,eq values 

for FVG Region, for non-residential buildings, built in 2000, and considering each non-

residential use. 

 

                                           
4 Degree Day is the sum, extended to all the days of a conventional annual period of heating, of the daily 

differences (positive only) between the ideal conventional temperature for the heated environment (20° C), 
and the daily average temperature of the external environment. 
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Figure 27. Average CO2,eq for non-residential buildings, built in 2000 

 

 

In order to evaluate the regional energy costs, the energy performance index has to be 

converted in Euro. At this aim, regional floor area of the buildings, percentage of gas and 

electricity consumptions on the total energy consumptions, and gas and electricity regional 

costs should be addressed. 

Among the Italian considered Regions, only Lombardia Region provides the total useful 

area of residential and non-residential buildings (Figure 28). This value is given in square 

meter unit, for each Province and Municipality of the Region. By summing the square 

meters of the total buildings floor area for each Province, the total building floor area of 

the Region is assessed [54]. 

Figure 28. Total useful area of residential buildings for each Lombardia Region Province 
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Useful floor area for Italian buildings can be also obtained by the Agenzia delle Entrate 

report [58]. Figure 29 shows the Agenzia delle Entrate estimation of the total floor area in 

million square meters (third column), divided for each Italian Region and referred to 2012. 

Figure 29. Regional indicators of the household area 

 

 

Percentage of gas and electricity consumptions on the total energy consumptions can be 

extracted according to Eurostat data [59], for Italy (see Table 11). 

Table 11. Gas and electricity percentage on the total energy consumption for each Member State 
[59] 

 2014 Gas Percentage on the Total 
Energy Consumption 

%GAS 

[%] 

2014 Electricity Percentage on the 
Total Energy Consumption 

%ELECTRICITY 

[%] 

Austria 17.8 26.7 

Belgium 39.1 22 

Bulgaria 2.1 42 

Croatia 19.9 22.2 

Cyprus - 42.3 

Czech Rep. 29 21.4 

Denmark 14.4 22 
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Estonia 5.9 16.8 

Finland 0.6 36.2 

France 28.9 34.4 

Germany 35.5 21.6 

Greece 6.1 39 

Hungary 52.3 20.2 

Ireland 20.6 25.6 

Italy 51.3 18.7 

Latvia 8.2 12.1 

Lithuania 8.5 16.2 

Luxembourg 47.1 17 

Malta - 76 

Netherlands 70.1 21.6 

Poland 16.6 12.7 

Portugal 10 39.9 

Romania 29.4 13.8 

Slovakia 53.1 21.7 

Slovenia 8.5 25.8 

Spain 21 41.3 

Sweden 0.5 47.7 

United Kingdom 61.2 26.6 

Norway 0.1 83.2 

 

With regard to the energy costs, they vary if enhanced protection service market (Servizio 

di Maggior Tutela, in italian) or free market is considered. Free markets include all the 

energy companies, and the energy costs could be hard to extract. For this reason, the 

enhanced protection service market is considered. The AEEGSI (Italian Authority of the 

Electrical Energy, Gas and Water) [60] provides the Italian electricity and gas prices, 

variable every three months and equal for the Italian Regions. For the trimester October-

December 2016, the energy rates are: 

𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 0,159776
€

𝑘𝑊ℎ
 

(23) 

𝑃𝑔𝑎𝑠 = 0.7191
€

𝑚3
       [61] 

(24) 
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2.1.2.2.2 Energy performance parameter at regional/urban level – Procedure I.B2 

Once all the over mentioned values have been assessed, the energy costs can be evaluated 

according to the following expression: 

𝑅𝐸,𝑒𝑛𝑒𝑟𝑔𝑦 = [∑ ∑  

𝑀

𝑗=1

(%𝑖 × 𝐸𝑃𝑔𝑙 × 𝑚2
𝑟𝑒𝑔𝑖𝑜𝑛/𝑐𝑖𝑡𝑦 × 𝑃𝑖)

𝑗

𝑁

𝑖=1

] × 𝐿𝐵 

(25) 

where: 

— i represents the i-th component of the energy; 

— j represents the j-th building occupancy class (as households, offices, schools,…); 

— N represents the number of energy component considered; 

— M represents the number of building occupancy class considered; 

— %i represents the percentage of the i-th energy component on the total, for the 

considered MS; 

— 𝐸𝑃𝑔𝑙 represents the annual total energy consumption per square meter of the i-th 

energy component, referred to the considered region/city; 

— 𝑚𝑟𝑒𝑔𝑖𝑜𝑛/𝑐𝑖𝑡𝑦
2  is the useful area of buildings’ groups in the considered region or city; 

— Pi is the price of the i-th component; 

— LB is the life span of the building. 

 

By using the percentage of the energy component on the total energy provided by Eurostat 

[59], the same equations can be used after evaluating the national prices for the 

considered energy component. 

Focus on STEP I of SSD Methodology at national/regional/urban level: Energy 

The first step of the SSD methodology at national/regional/urban level is the energy 

performance assessment. Different methods for assessing the energy performance of 

buildings can be used, if considering the size of the building area. 

The energy consumption value considered in the present report is related to space heating, 

because space heating can better address the envelope performance of buildings; indeed, 

it is a consequence of construction and building design, more than of users’ energetic needs 

and behaviour. 

At national level (Step I.A), the energy consumption provided by the energy databases, as 

Eurostat, IEA and ODYSSEE can be used. A comparison on total energy consumption values 

provided by the databases is performed and maximum weighted error results equal to 5%. 

At regional and urban levels (Step I.B), data on building stock useful floor area are 

essential. Thus, a comparison on useful floor area provided by the databases has been 

performed, but high discrepancies have been observed. Should useful floor area values will 

be reliable, energy consumptions will we evaluated in two different ways: using the same 

data source of the Step I.A (Step I.B1), or using energy data provided by the energy 

performance certificates (Step I.B2). 

If energy data are referred to all end uses, space heating energy consumptions can be 

obtained by using a space-heating rate depending on the considered geographical area. 

The energy consumptions can be converted in economic terms by using the energy prices 

provided by Eurostat and the energy performance parameter RE
Energy is assessed. 
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2.2 Step II – Life-Cycle Assessment 

The second step of the SSD methodology aims at evaluating the total carbon dioxide 

emissions of the buildings at territorial level: 

𝐶𝑂2𝐿𝐶 = 𝐶𝑂2𝐸 + 𝐶𝑂2𝑂 + 𝐶𝑂2𝐷 (26) 

Life-cycle assessment studies are highly time-consuming. In order to realize a correct life-

cycle analysis of buildings, computation on materials, processes and transportation is 

required. 

 

To simplify the LCA analysis, the emissions from the operational phase are obtaining by 

running in the LCA tools the amount of energy consumed during the building lifespan. 

Moreover, the contributions of the pre-use phase and the end-of-life phase are evaluated 

as percentage of the use phase, because the latter provides the highest amounts of carbon 

dioxide [62]. 

𝐸𝑂 → 𝐶𝑂2𝑂 (27) 

𝐶𝑂2𝐸 = %𝐶𝑂2𝑂 (28) 

𝐶𝑂2𝐷 = %𝐶𝑂2𝑂 (29) 

Figure 30. Global Warming Potential impact for life-cycle categories, as reported in [64] 

 

 

The percentage can be derived by literature review. As example, information from Scheuer 

et al.  [63] and Adalberth et al. [64] can be used. According to Scheuer et al. 96,5% of 

CO2
eq emissions is generated by the use phase, 0,2% is referred to decommissioning phase 
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and the remaining 3,2% is referred to pre-use phase (extraction of materials, material 

transportation and construction). According to Adalberth et al. (Figure 30), the average (of 

the four cities) percentage of pre-use phase on use phase is equal to 18%; whereas the 

average percentage of end-of-life phase on use phase is equal to 4,2%. 

According to Loli et al. [10], the percentage of pre-use phase on use phase is equal to 11-

13% and the percentage of end-of-life phase on use phase is 1,6-1,8%. For these reasons, 

the following percentages are considered:  

𝐶𝑂2𝐸 = 15% 𝐶𝑂2𝑂 (30) 

𝐶𝑂2𝐷 = 3% 𝐶𝑂2𝑂 (31) 

As discussed at page 15, the parameter for converting the CO2 emissions in costs derive 

from international policies aiming at charging those who emit carbon dioxide. Indeed, this 

charge represents the price to pay in order to buy the right to emit one tonne of CO2. 

Carbon dioxide charge can take the form of a carbon tax or of the requirement to purchase 

the right to emit. The latter system is called “CO2 allowances” or “cap and trade”. 

In 2005 the European Union introduced the European Union Emissions Trading System (EU 

ETS), in order to reduce the EU emissions of man-made greenhouse gases. EU ETS controls 

the emissions of 11000 heavy energy-using installations (power stations and industrial 

plants) and airlines operating in 31 countries (all 28 EU countries plus Iceland, 

Liechtenstein and Norway). The number of plants controlled are responsible for 45% of the 

EU's greenhouse gas emissions [22]. The plant control is necessary to the EU ETS 

mechanism. EU ETS uses a “cap and trade” approach: indeed, a limit (cap) is set on the 

total amount of greenhouse gases that can be emitted by all participating installations. 

Allowances for emissions, called European Emission Allowances (EUA), are then sold or 

allocated for free, and can subsequently be traded. The EU ETS controls monitor and report 

the power stations and industrial plants emissions. If emission exceeds what is permitted 

by its allowances, a power station/plant must purchase allowances from others. 

Conversely, if an installation has performed well at reducing its emissions, it can sell its 

leftover credits. This approach gives companies the flexibility they need to cut their 

emissions in the most cost-effective way. The CO2 price is determined by the market: if 

more allowances compared to demand are requested, a lower carbon price results; 

otherwise, a higher carbon price results. 

Figure 31. Average carbon prices from 2008 to 2014 
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The EU ETS system has appointed the European Energy Exchange (EEX) [23] for auctioning 

general and aviation allowances on behalf of 25 Member States under the EU Emissions 

Trading System. EEX provides the CO2 prices in terms of €/CO2. Carbon dioxide price has 

undergone deep variations in the last decade (Figure 31); precisely, starting from 2005, 

the CO2 prices has decreased from around 30 to 6 €/CO2. Nevertheless, these values are 

referred to the yearly average, and moreover, they are very variable within the same year 

(in the last week of April 2006, the price dropped from 29 to 13 €/CO2).  

Once the equivalent amount of carbon dioxide generated by all the life cycle phases of the 

buildings is achieved, the cost of the environmental impact of global change, RE(CO2), can 

be evaluated as: 

𝑅𝐸(𝐶𝑂2) = 𝑄𝐶𝑂2
× 𝑃𝐶𝑂2

 (32) 

where: 

— 𝑄𝐶𝑂2
 is the amount of equivalent CO2 (in kg or tonne) 

— 𝑃𝐶𝑂2
 is the carbon dioxide price (in €/kgCO2,eq or €/tonneCO2,eq) 

In October 2016, PCO2 is equal to 5,81 €/CO2. 

Focus on STEP II of SSD Methodology at national/regional/urban level: LCA 

The second step of the SSD methodology aims at evaluating the greenhouse gas emissions 

generated during the entire building life-cycle, including pre-use phase (from extraction 

and production of materials to construction phase), use phase and end-of-life phase. Life-

cycle assessment of groups of buildings is a high resource-consuming activity. Thus, CO2 

emissions can be evaluated considering each building life phase as follows: a) CO2 

emissions related to use phase can be evaluated by converting in CO2,eq the energy 

consumed, as calculated in Step I, through the help of LCA software; b) CO2 emissions 

related to pre-use and end-of-life phases can be calculated as a percentage of carbon 

dioxide emission of use phase, evaluated in scientific studies. 

CO2 emission are then converted into costs with the help of the carbon dioxide price, 

provided by the EU ETS system, and the life-cycle performance parameter RE
CO2 is 

assessed. 

2.3 Step III - Safety performance 

Safety performance of buildings can be assessed by evaluating the expected losses 

generated by events that can occur during the building’s lifespan. 

According to Ramirez and Miranda [65], the methodologies for the loss assessment caused 

by natural hazards can be divided in two categories: methodologies for building-specific 

loss assessment and for regional loss assessment. The former, as described at § 1.3, can 

accurately identify the building vulnerability and the economic (and social) losses because 

of the rich information that can be provided by the single building. The latter can boast the 

ability of territorially identifying the vulnerability and the economic (and social) losses due 

to a defined hazardous event, which can lead to the estimation of the territorial risk 

mitigating operations. 

The evaluation of the building safety performance at territorial scale implies the economic 

loss estimation of a large number of buildings, which, according to the area size and 

location, can show different features regarding the building characteristics themselves and 

the hazards they are exposed to. 

Models for evaluating the economic losses caused by natural hazards, as floods, landslides, 

tsunamis, hurricanes, earthquakes, have been developed by different authors and can be 
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imported in the SSD methodology at territorial level. The present report focuses on the 

earthquake loss assessment since the methodologies regarding the seismic performances 

of buildings are the most solid and studied so far. Indeed, the economic loss assessment 

at territorial scale was born in the United States as support at the building insurance 

industries, in order to estimate the losses for future earthquakes. The first economic loss 

assessment studies were conducted by Freeman [66] and were aimed at estimating likely 

earthquake losses of some US areas and building types for the insurance industry. Soon 

after, Stainbrugge [67] reported the earthquake loss estimation by the insurance 

companies to identify insurance premiums. In 1973, Whitman et al. [68] identified the 

probabilistic nature of earthquake losses and introduced the concept of damage probability 

matrices into loss estimation methodology.  

Starting from these initial studies, earthquake loss estimation methodologies at territorial 

level have become more rigorous and the interest of the Applied Technology Council (ATC) 

[69] and the Federal Emergency Management Agency (FEMA) [70] led to the development 

of the first earthquake loss assessment software, called HAZUS® (HAZards U.S.) [71] 

[72]. Other software packages for the evaluation of the earthquake losses were developed 

during 1990s and 2000s; they all include the PEER PBEE methodology described at § 1.3, 

but they differ in the combination of the methods for developing the four steps of the 

methodology. Examples of earthquake loss estimation at territorial level are: ELER [73], 

SELENA [74], DBELA [75], StrucLoss [76], LNECLOSS [77], ESCENARIS [78], EQSIM [79], 

SIGE [80], and others. 

On the wave of the development of methodologies for earthquake loss assessment, sPBA, 

described at § 1.3, represents a simplified method that can be applied at territorial level 

as described soon after. By following the same procedure proposed for the sPBA 

methodology at building level, the safety performance assessment at 

national/regional/urban level is performed hereafter. 

Before developing the steps for the estimation of earthquake losses, two initial phases 

have to be highlighted: the collection of data referred to the buildings exposed to the 

considered hazards, and the classification of the buildings themselves into groups having 

similar structural and non-structural characteristics. Successively, paragraph §2.3.3 will 

deal with the development of the sPBA methodology steps at national/regional/urban level. 

Initial costs for buildings construction and, finally, total costs for structural performance 

are discussed in § 2.3.4 and § 2.3.5. 

2.3.1 Data gathering 

In order to apply the Sustainable Structural Design (SSD) at territorial scale, the existing 

building stock exposed to natural hazards and environmental risks has to be analysed. 

Data collection of buildings exposed to risks is a time-consuming and expensive activity. 

Several techniques for data gathering are available: 

— remote sensing systems, which allow the identification of building location, planar view, 

built-up density, roof type, building age, geometrical parameters (shape, perimeter, 

size height, volume) through the use of satellite sensors; 

— census survey, where data are available as statistical aggregations at the level of 

administrative units. Since they are sensitive information, rarely census data include 

cadastral data, providing information about: wall and roof material, age of construction, 

conservation state, number of floors, and number of households per building; 

— field survey, which is the most resource-consuming technique but aims at collecting 

more precise data.  In Italy, an ongoing field survey of all the existing building (CARTIS 

Project, founded by ReLUIS [81]) is collecting all the relevant building characteristics. 

Results from this survey could be used also for providing data on the total national floor 

area, which is useful for the energy performance assessment. 
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Moving from the first data gathering technique to the last one, more resources, in terms 

of time and money, are involved; nevertheless, it is clear that the quality and the quantity 

of the achievable information increase. 

 CARTIS Project 

CARTIS Project, founded by the Italian Civil Protection and developed by ReLUIS (2014-

2016) [81], is finalized at achieving a survey of residential and service buildings (excluding 

monuments, special and strategic structures) at municipality level, having similar 

characteristics in terms of urban fabric homogeneity (same construction age, construction 

materials, construction techniques, …). The group of similar buildings is called “comparto” 

(compartment). This field survey aims at investigating the national building stock for the 

identification of local construction characteristics. Indeed, different construction techniques 

have been developed on national territory during the centuries, according to different 

cultures and local conditionings that have influenced the construction quality.  

CARTIS survey is realized by means of a CARTIS form, which is divided into four sections: 

— Section 0, for the Municipal and Compartment identification; 

— Section 1, for the typological identification of each considered Compartment; 

— Section 2, for the identification of the generic characteristics of the Compartment 

typology; 

— Section 3, for the structural characterization of the buildings. Section 3 is also divided 

into three sections: section 3.1A, for masonry and mixed structures characterization; 

section 3.1B, for reinforced concrete structures characterization; section 3.2 for 

additional building information 
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Figure 32 shows the CARTIS form to be compiled for each identified Municipal 

compartment. 
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Figure 32. CARTIS Project form: a) Municipal and Compartment identification; b) typological 

identification of each considered Compartment; c) generic characteristics of the Compartment 
typology; d) structural characterization of masonry and mixed structures; e) structural 

characterization of reinforced concrete structures; f) additional building information 

 

a) 

 

b) 

 

c) 
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d) 

 

 

e) 
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f) 

CARTIS survey will lead to the national data gathering on building stock and to the 

identification of groups of similar buildings (compartments). 

 

2.3.2 Building stock classification 

When the building stock information are gathered, the building groups having similar 

characteristics have to be tagged with a territorially homogeneous label. Several building 

stock taxonomies have been developed in past and recent years. 

HAZUS software [72] and the European Commission funded RISK-UE project (RISK-UE, 

2001-2004) [82] have identified two different building taxonomies that typify, respectively, 

the US and the European building stocks.  

To account for structural and non-structural parameters of US building stock, HAZUS 

software has acquired the FEMA-178 classification [83], which includes 36 building classes 

having different structural materials (wood, steel, reinforced concrete, precast reinforced 

concrete and masonry), structural systems (framed structure, infill walls, bearing walls,…) 

and heights (three classes are distinguished depending of the number of floors). Moreover, 

to account for the occupancy parameters, HAZUS has developed a list of 33 building 

classes, grouped into seven macro categories. HAZUS classification is suitable for all the 

three considered hazard models (earthquake, wind and flood). 

In Table 12., the list of the 36 HAZUS structural building types, with corresponding labels, 

descriptions, and heights is provided on the left, while the list of the 33 building occupancy 

classes, with corresponding labels and examples is provided on the right.  
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Table 12. Building Structure (Model Building) Types (left) and Building Occupancy Classes (right) 

according to HAZUS software [72] 

  

 

The first Work Package (WP01) of the RISK-UE Project [82] has led to the analysis of the 

distinctive European features of existing buildings. To account for structural classification 

of the European and Mediterranean building stock, RISK-UE Project has proposed a list of 

23 building classes, grouped by the structural types and material of construction (Table 

13). Three different height classes (low-rise, mid-rise and high-rise) represent further sub-

groups. The classification system, referred to as the Building Typology Matrix (BTM), is 

essentially based on structural materials, structural systems and number of floor, and does 

not include information about age and occupancy. 
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Table 13. Matrix of typology of selected structured European buildings according to RISK-UE [82] 
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Label Description Sub-classification  

M1 Stone Masonry Bearing Walls made 

of 

Rubble stone, fieldstone (M11) Low-rise  1-2 floors 

M11L 

Mid-rise  3-5 floors 

M11M 

Simple stone (M12) Low-rise  1-2 floors 

M12L 

Mid-rise  3-5 floors 

M12M 

High-rise >6 floors 

M12H 

Massive stone (M13)  

M2 Adobe  Low rise  1-2 floors 

M2L 

M3 Unreinforced Masonry Bearing 

Walls with 

Masonry with wooden slabs 

(M31) 

Low-rise  1-2 floors 

M31L 

Mid-rise  3-5 floors 

M31M 

High-rise >6 floors 

M31H 

Masonry vaults (M32) Low-rise  1-2 floors 

M32L 

Mid-rise  3-5 floors 

M32M 

High-rise >6 floors 

M32H 

Composite steel and masonry 

slabs (M33) 

Low-rise  1-2 floors 

M33L 

Mid-rise  3-5 floors 

M33M 

High-rise >6 floors 

M33H 
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Reinforced concrete slabs  

(M34) 

Low-rise  1-2 floors 

M34L 

Mid-rise  3-5 floors 

M34M 

High-rise >6 floors 

M34H 

M4 Reinforced or confined masonry 

walls 

 Low-rise  1-2 floors 

M4L 

 Mid-rise  3-5 floors 

M4M 

 High-rise >6 floors 

M4H 

M5 Overall strengthened  Low-rise  1-2 floors 

M5L 

 Mid-rise  3-5 floors 

M5M 

 High-rise >6 floors 

M5H 

RC1 Concrete moment frame  Low-rise  1-2 floors 

RC1L 

 Mid-rise  3-5 floors 

RC1M 

 High-rise >6 floors 

RC1H 

RC2 Concrete shear walls  Low-rise  1-2 floors 

RC2L 

 Mid-rise  3-5 floors 

RC2M 

 High-rise >6 floors 

RC2H 

RC3 Concrete frames with unreinforced 

masonry infill walls 

Regularly infilled walls  

(RC 31) 

Low-rise  1-2 floors 

RC31L 
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Mid-rise  3-5 floors 

RC31M 

High-rise >6 floors 

RC31H 

Irregularly infilled walls (RC 

32) 

Low-rise  1-2 floors 

RC32L 

Mid-rise  3-5 floors 

RC32M 

High-rise >6 floors 

RC32H 

RC4 RC dual systems (RC frame and 

wall) 

 Low-rise  1-2 floors 

RC4L 

 Mid-rise  3-5 floors 

RC4M 

 High-rise >6 floors 

RC4H 

RC5 Precast concrete tilt-up walls  Low-rise  1-2 floors 

RC5L 

 Mid-rise  3-5 floors 

RC5M 

 High-rise >6 floors 

RC5H 

RC6 Precast Concrete Frames with 

Concrete Shear walls  

 Low-rise  1-2 floors 

RC6L 

 Mid-rise  3-5 floors 

RC6M 

 High-rise >6 floors 

RC6H 

S1 Steel moment frame  Low-rise  1-2 floors 

S1L 

 Mid-rise  3-5 floors 

S1M 
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 High-rise >6 floors 

S1H 

S2 Steel braced frame  Low-rise  1-2 floors 

S2L 

 Mid-rise  3-5 floors 

S2M 

 High-rise >6 floors 

S2H 

S3 Steel frame + unreinforced infill 

walls 

 Low-rise  1-2 floors 

S3L 

 Mid-rise  3-5 floors 

S3M 

 High-rise >6 floors 

S3H 

S4 Steel frame + cast-in-place shear 

walls 

 Low-rise  1-2 floors 

S4L 

 Mid-rise  3-5 floors 

S4M 

 High-rise >6 floors 

S4H 

S5 Steel and RC composite system  Low-rise  1-2 floors 

S5L 

 Mid-rise  3-5 floors 

5M 

 High-rise >6 floors 

S5H 

W Wood structures  Low-rise  1-2 floors 

WL 

 Mid-rise  3-5 floors 

WM 

Starting from the building stock classification introduced by the European Commission 

funded RISK-UE project, a new building classification has been developed by Giovinazzi 

in 2005 [84]. The classification is more similar to the one proposed by HAZUS because it 

includes additional information. For all building typologies three classes of height have been 

considered (_L=Low-Rise, _M=Mid-Rise, _H=High-Rise), but, differently from RISK-UE 
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building classification, the number of the floor differs from masonry (_L=1/2, _M=3/5, 

_H=≥6) and reinforced concrete buildings (_L=1/3,_M=4/7, _H=≥8). The building 

classification also takes in count the levels of seismic action (_I = zone I, _II = zone II, 

_III = zone III); and the ductility class (−WDC= without ductility class, −LDC= low ductility 

class, −MDC=medium ductility class, −HDC= high ductility class). Moreover, the type of 

horizontal structure has been considered for masonry buildings (wood slabs, M_w, masonry 

vaults, M_v, composite steel and masonry slabs, M_sm, reinforced concrete slabs M_ca). 

Jaiswal and Wald [85] have developed a global building stock using housing census and 

other statistical data coming from different sources, to be used in the PAGER (US Geological 

Survey’s Prompt Assessment of Global Earthquake for Response) tool. This classification 

identifies 16 main categories and considers the materials, the structural systems and the 

number of floors. 

Other considerable building taxonomies have been developed by Coburn and Spence 

[85], MSK-64 (Medvedev-Sponheuer-Karnik), EMS98 (European Macroseismic Scale) 

[86] and WHE (World Housing Encyclopaedia) [87]. Coburn and Spence building 

classification is based on the collected building typologies found in worldwide seismic areas. 

24 building classes have been identified by Coburn and Spence [85] by considering 

characteristics about construction materials, structural systems and construction 

techniques. MSK-64 and EMS98 scales, respectively developed in 1964 and in 1998, are 

building typology catalogues basically realised in order to estimate the damage intensity 

on the buildings, soon after an occurred earthquake. MSK-64 is mainly based on the 

structural materials, while EM298 also considers the structural systems; consequently, 

EMS98 can better model the European building stock. WHE [87] is an Earthquake 

Engineering Research Institute (EERI) founded Project, aiming at building an online 

encyclopaedia of housing construction types in seismically active areas of the world. The 

WHE building classification includes 33 building typologies, which have been grouped 

considering construction materials, lateral load resisting systems and structural 

characteristics of the system. 

Moreover, another building stock classification has been developed within the Syner-G 

project, a European collaborative research project funded by European Commission 

(Seventh Framework Program, Theme 6: Environment) to develop an integrated 

methodology for the systemic seismic vulnerability and risk analysis of buildings, 

transportation and utility networks and critical facilities. The Syner-G building classification 

[88] includes more information about buildings characteristics. The identified categories 

are shown in   
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Figure 33. The building typology can be defined using the label put in the brackets for each 

parameter within a given category and following the order of the categories and 

classifications. As example, a building can be labelled as: MRF/C-RC/X/X/RI-FB-H%/ND/R-

RC/X/L-2/NC; this building is a moment resisting frame (MRF), in reinforced concrete (C-

RC) with regular external infill panels in brick with a high percentages of voids (RI-FB-H%), 

with non-ductile design details (ND), with rigid reinforced concrete floor (R-RC), low-rise, 

2 storeys (L-2), not designed to a seismic code (NC). This taxonomy permits other 

categories and sub-categories to be easily added, in order to take into account all the 

different kinds of European buildings. The SYNER-G Project classification focuses only on 

masonry and RC buildings because they are identified as the main European building 

categories.  
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Figure 33. SYNER-G Taxonomy for RC and Masonry Buildings 

 

 

 

The analysed building classifications have different levels of detail. It is preferable to collect 

more information to better model the building stock that will conduct to the definition of 

building groups having similar damages and economic losses. For this reason, the SYNER-

G classification seems to be the most complete one.  

Starting from a CARTIS-like field survey, the buildings can be classified according to the 

SYNER-G taxonomy. Thus, a classification of the building stock is achieved and the 

following additional information would be available: 

— Number of building for each building class 

— Floor area of the buildings 

The latter information could be used also for energy performance assessment. 

Once the building stock assessment is performed and the exposed buildings are classified 

into groups having similar characteristics, the evaluation of the expected losses can be 

achieved for each building group. 

 

2.3.3 Expected earthquake losses evaluation 

Expected earthquake losses evaluation is performed by following five steps: definition of 

limit states, definition of probability of exceedance, estimation of repair/replacement costs, 

estimation of expected losses for each limit state and estimation of total losses (Figure 

34). 
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Figure 34. Flowchart for expected earthquake loss assessment 

 

 Definition of limit states 

The evaluation of the structural performance of buildings is necessary linked to the 

definition of the limit states. Four limit states (LS) are introduced for describing the building 

performances related to seismic actions. 

Limit State 1: the first limit state corresponds to slight damage of the building. The building 

maintains its operability and no use interruptions and significant damages are involved. 

Limit State 2: the second limit state corresponds to damage to non-structural elements. 

The building maintains its structural integrity but repairs on non-structural elements are 

necessary. 

Limit State 3: the third limit state corresponds to heavy damage. The building exhibits 

serious damages and collapse of the non-structural elements and significant damages to 

structural elements. The structure maintains a safety margin against collapse. 

Limit State 4: the fourth limit state corresponds to near collapse. The building exhibits 

serious damages and collapse of the non-structural elements and very serious damages to 

structural elements. For the sake of simplicity, if LS4 occurs, to demolish and rebuild a new 

building is considered. 

 

 Definition of probability of exceedance 

After defining the limit states, the probability that an event causing the over-mentioned 

damages for each limit state occurs during the building reference period has to be 

assessed. The probability that an event of low intensity occurs is higher than the probability 

that an event of high intensity occurs. Moreover, the return period of an event is directly 

proportional to its intensity: higher intensity events occur after higher number of years. 

The probability of exceedance for each limit state can be derived by national technical 

codes. Considering the Italian technical code [20], the probabilities of exceedance during 

building reference period (PVR) are reported in Table 14. 

Table 14. Probability of exceedance in the reference period for each limit state, according to 
Italian Technical Code [20] 

LIMIT STATE PVR% 

Operability Limit State 81% 

Damage Limit State 63% 

Life Safety Limit State 10% 
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Collapse Limit State 5% 

 Estimation of repair/replacement costs 

The evaluation of the cost repair/replacement the buildings after a seismic event of a 

defined intensity is an ongoing research topic. Cost estimation is not only related to the 

seriousness of the building damages, but also to the economic value of the building 

components, which are related to the surrounding market. For this reason, it is hard to 

estimate a global value of repair/replacement costs. 

Two ways can be taken for reaching this goal. As first option, a survey on existing post-

earthquake costs data should be realised. A second option could be the analytical 

assessment, realised for building classes, according to the simplified performance based 

assessment procedure, described by Negro and Mola [19], and applied by Loli et al. [10].  

Considering the first option, an example is presented herein. After L’Aquila earthquake, 

occurred in 2009 in Central Italy, a big amount of technical and economic data has been 

gathered. Starting from these data, techno-economic studies have been fulfilled to relate 

the structural characteristics of damaged buildings and their costs. Results from this study 

have been published in the “Libro Bianco”, by ReLUIS, FINTECNA and CINEAS [89]. The 

book presents the costs related to the rehabilitation of 2245 Reinforced Concrete buildings 

and 1256 Masonry buildings, classified according to the usability classes. Usability classes 

are defined by the usability form, called AeDES [90], which, according to the step 

procedure reported in the form, allows understanding the gravity of the building damages 

related to the building functionality. According to the AeDES form, six usability categories 

are defined: 

— A: the building is functional and usable 

— B: the building is temporarily not usable, but it can reach the usability with small 

interventions 

— C: the building is partially not usable 

— D: the building is considered not usable, but a more in-deep examination is needed 

— E: the building is not usable 

— F: the building is not usable because of external risks (surrounding buildings create a 

risk for the considered building) 

An approximated correlation between the building usability classes and the damage limit 

states can be realised as reported in Table 15. The fourth limit state has been correlated 

to the complete damage of the structure; this means that the related costs include the 

costs for building demolition and reconstruction, which can be obtained by national market. 

Table 15. Correlation between the building usability classes by AeDES form [90] and the damage 
limit states 

Usability class Limit State 

A LS1 

B-C LS2 

E LS3 

Demolition and reconstruction LS4 

According to what declared in the Libro Bianco, the repair/reinforcement costs listed in 

Table 16 can be used: 
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Table 16. Repair + reinforcement costs estimated after L’Aquila earthquake, considering structural 

materials, age of construction and number of floors, for B-C and E usability classes. 

Building class Usability 

Class 

Number of 

buildings for 

building class 

Repair + 

reinforcement 

cost 

[€/m2] 

Reinforced Concrete (RC) B-C 1598 217.76 

RC 1946-1961 B-C 40 269.18 

RC 1962-1971 B-C 128 215.10 

RC 1972-1981 B-C 359 228.47 

RC 1982-1991 B-C 458 175.27 

RC 1992-2001 B-C 273 169.28 

RC  >2001 B-C 202 155.31 

RC  1 floor B-C 51 164.88 

RC  2 floors B-C 220 173.91 

RC  3 floors B-C 532 161.55 

RC  4 floors B-C 394 204.02 

RC  5 floors B-C 142 249.36 

RC  6 floors B-C 87 240.17 

RC  7 floors B-C 29 264.35 

RC  8 floors B-C 5 134.97 

Masonry (M) B-C 899 285.13 

M  <1919 B-C 125 297.52 

M 1919-1945 B-C 161 263.13 

M 1946-1961 B-C 151 282.91 

M 1962-1971 B-C 144 293.25 

M 1972-1981 B-C 153 231.80 

M 1982-1991 B-C 58 204.13 

M 1992-2001 B-C 25 236.75 

M  >2001 B-C 13 240.55 
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M  1 floor B-C 82 246.72 

M  2 floors B-C 376 277.41 

M  3 floors B-C 303 249.44 

M  4 floors B-C 67 251.24 

M  5 floors B-C 2 274.52 

Reinforced Concrete E 447 925.80 

RC 1946-1961 E 20 978.94 

RC 1962-1971 E 76 975.04 

RC 1972-1981 E 140 962.99 

RC 1982-1991 E 106 908.29 

RC 1992-2001 E 55 941.52 

RC  >2001 E 29 847.95 

RC  1 floor E 2 665.99 

RC  2 floors E 33 896.45 

RC  3 floors E 97 906.77 

RC  4 floors E 118 934.54 

RC  5 floors E 84 986.82 

RC  6 floors E 63 1016.98 

RC  7 floors E 19 1016.98 

RC  8 floors E 10 1027.49 

Masonry E 313 837.28 

M  <1919 E 56 914.20 

M 1919-1945 E 49 994.62 

M 1946-1961 E 64 1001.03 

M 1962-1971 E 54 928.87 

M 1972-1981 E 44 915.43 

M 1982-1991 E 14 884.79 

M 1992-2001 E 7 941.10 
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M  >2001 E 4 901.00 

M  1 floor E 14 800.53 

M  2 floors E 97 848.92 

M  3 floors E 125 856.09 

M  4 floors E 47 842.38 

M  5 floors E 6 879.43 

M  6 floors E 3 772.40 

 

For limit state 1, corresponding to usability class “A”, no data from techno-economic 

analysis of L’Aquila earthquake are available. For this class, market information about small 

repair activities (i.e. wall painting) can be used.  

 

 Estimation of expected losses for each limit state 

Once the probability of exceedance and the repair/replacement costs are evaluated for 

each limit state, the estimation of the expected losses can be achieved by using the 

following expression: 

𝐿𝑖 = 𝐶𝑖 ∙ (𝑃𝑖 − 𝑃𝑖+1) (33) 

where: 

— Li is the expected earthquake economic losses related to the i-th limit state 

— Ci is the repair/replacement costs of the considered building, related to the i-th limit 

state 

— Pi and Pi+1 are, respectively, the probabilities of exceeding the i-th and the i+1-th limit 

state 

 

 Estimation of total losses 

The total earthquake expected losses, related to the whole lifespan of the building, can be 

evaluated as the sum of the expected losses for each limit state: 

𝐿 = ∑ 𝐶𝑖 ∙ (𝑃𝑖 − 𝑃𝑖+1)

𝑖=1

 (8) 

If yearly total loss is required, it can be obtained by dividing the total loss L by the building 

lifespan. 
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2.3.4 Initial costs 

As reported at page 15, the cost related to the structural performances of the buildings 

(CTOT) is the sum of building initial costs (I) and economic losses (L): 

𝐶𝑇𝑂𝑇 = 𝐼 + 𝐿 (9) 

The building initial costs can be evaluated by means of the market information provided 

by each Member State. 

As example, Italian Chamber of Commerce and the Construction Contractors Associations 

realise the price list of the construction typologies, for each building use, providing the 

€/m2 value of a benchmark building. Some examples are the “Prezzario delle tipologie 

edilizie di Napoli” (Figure 35 [91]) and the “Prezzi Tipologie Edilizie” (Figure 36 [92]).  

Figure 35. Initial construction cost for a new 
residential building in the Municipality and the 

Province of Napoli (IT) [91] 

 

 

 

 

 

Figure 36. Initial construction cost for a new 
residential building in the Municipality and the 

Province of Milan [92] 

 

𝐼 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑒𝑡𝑒𝑟 ∙ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 [
€

𝑚2
∙ 𝑚2] (34) 

2.3.5 Total structural performance costs 

The structural performance parameter CTOT is evaluated by summing the total expected 

losses, L, and the initial construction costs, I (Figure 37. CTOT is already provided in 

economic terms; for this reason no conversion is needed to evaluate the global assessment 

parameter RSSD. 

 

 

 



74 

Figure 37. Evaluation of total structural performance costs 

 

Focus on STEP III of SSD Methodology at national/regional/urban level: Structural 

The third step of the SSD methodology is the safety performance assessment. Seismic 

safety is taken as an example. 

For achieving the safety performance assessment of buildings, building stock survey cannot 

be avoided because the methodologies aiming at the evaluation of the expected economic 

losses are strictly dependent on structural and non-structural characteristics of buildings. 

Thus, step three needs a previous phase of identification and labelling of building groups 

having similar structural and non-structural characteristics. At this aim, Syner-G taxonomy 

applied at groups of buildings previously identified and analysed through a CARTIS-like 

field survey could be helping. 

After the identification of buildings groups, the third phase of the SSD methodology at 

territorial level can be developed by evaluating the expected earthquake losses and the 

initial construction costs.  

Earthquake loss assessment can be achieved by following five steps: 1) definition of limit 

states; 2) definition of probability of exceedance for each limit state; 3) estimation of the 

repair/replacement costs for each limit state; 4) estimation of expected losses for each 

limit state and 5) estimation of total losses. The first two steps of the loss assessment can 

be achieved with the help of national codes. The repair/replacement costs can be evaluated 

for each limit state in two different ways: a) by performing a survey on existing post-

earthquake costs data or; b) by performing a loss assessment analysis on building classes 

prototypes, according to the simplified performance based assessment procedure. 

Expected economic losses for each limit state can be evaluated by multiplying the 

probability of exceedance by the repair/replacement costs and, finally, the total expected 

losses can be assessed by summing the expected losses referred to each limit state. 

Initial construction costs are dependent on the market variables; thus, they can be 

evaluated by using the market information provided by each Member State. 

Structural performance parameter, CTOT, is the sum of total expected losses and initial 

construction costs. 

 

2.3.6 Conclusions and Future developments of the safety performance 
assessment 

According to the structural performance assessment described so far, it is clear that, in 

order to make the methodology directly available to the users, some activities should be 

realised.  

Firstly, as already mentioned for the energy performance step, the evaluation of the 

building stock floor area at urban, regional and national levels has to be obtained.  

A complete and accurate field survey on existing buildings at municipality/province level 

would be preferable; by aggregating the results at municipality/province levels, building 

stock information will be available also at regional and national levels. The total building 

stock can be classified into groups, according to the SYNER-G taxonomy. 

For identifying the repair/replacement costs, a survey on existing post-earthquake costs 

data should be realised and a correlation among the limit states, the observed damages 

and the respective costs has to be addressed. Indeed, according to the available data on 
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post-earthquake techno-economic analyses, a table, similar to Table 17, should be filled 

with the repair/replacement costs for each building stock class, which has been identified 

for the considered territory. At least, costs related to building classes including information 

about structural material, age (or code level) and number of floors should be considered 

(FRM1/FRMM1/X/X/X/X/X/X/HL-NS/CL). 

Table 17. Repair/replacement costs per square meter table to be filled for each SYNER-G building 
class 

Building class 

FRM1/FRMM1/X/X/X/X/X/X/HL-NS/CL 

Repair/replacement costs per square meter 

€/m2 

 LS1 LS2 LS3 LS4 

MRF/C-RC/X/X/X/X/X/X/L-2/NC     

MRF/C-RC/X/X/X/X/X/X/L-2/LC     

MRF/C-RC/X/X/X/X/X/X/L-2/MC     

MRF/C-RC/X/X/X/X/X/X/L-2/HC     

MRF/C-RC/X/X/X/X/X/X/L-3/NC     

MRF/C-RC/X/X/X/X/X/X/L-3/LC     

MRF/C-RC/X/X/X/X/X/X/L-3/MC     

MRF/C-RC/X/X/X/X/X/X/L-3/HC     

MRF/C-RC/X/X/X/X/X/X/M-4/NC     

MRF/C-RC/X/X/X/X/X/X/M-4/LC     

MRF/C-RC/X/X/X/X/X/X/M-4/MC     

MRF/C-RC/X/X/X/X/X/X/M-4/HC     

…     

MRF/M-URM/X/X/X/X/X/X/L-2/NC     

MRF/M-URM/X/X/X/X/X/X/L-2/LC     

MRF/M-URM/X/X/X/X/X/X/L-2/MC     

MRF/M-URM/X/X/X/X/X/X/L-2/HC     

MRF/M-URM/X/X/X/X/X/X/L-3/NC     

MRF/M-URM/X/X/X/X/X/X/L-3/LC     

MRF/M-URM/X/X/X/X/X/X/L-3/MC     

MRF/M-URM/X/X/X/X/X/X/L-3/HC     

MRF/M-URM/X/X/X/X/X/X/M-4/NC     

MRF/M-URM/X/X/X/X/X/X/M-4/LC     

MRF/M-URM/X/X/X/X/X/X/M-4/MC     

MRF/M-URM/X/X/X/X/X/X/M-4/HC     

…     
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If existing post-earthquake techno-economic analyses do not provide information about 

one (or more) building class(es), then the procedure described by Loli et al. [10] should 

be used for evaluating repair/replacement costs.  

 A new safety performance assessment approach: the Italian seismic 

building certification 

Another future development of the safety performance assessment could be represented 

by the seismic building certification. In Italy, the frequent occurrence of seismic events 

and, consequently, the impacts they have generated on the national economy have driven 

the institutions to propose a seismic certification that each new building must have, in 

order to notify the buyer about the building’s seismic performance. The seismic 

certification, which might be available in the near future, would be similar to the Energy 

Performance Certificate: a parameter describing the seismic performance would be 

evaluated for the building and a seismic class, labelled with a letter from A to F, would be 

attached to the building itself (Figure 38). The seismic parameter, according to which the 

seismic classification will be defined, could be the Expected Annual Loss (EAL). The seismic 

classification could be used for assessing the third phase of the SSD methodology at 

territorial level, simplifying the safety performance evaluation of buildings. 

Figure 38. Preview of the Italian seismic certification of buildings 

 

 

2.4 Global assessment parameter 

As reported at § 1.4, global assessment parameter, RSSD, is provided by the following 

expression: 

𝑅𝑆𝑆𝐷 = 𝑅𝐸(𝑒𝑛𝑒𝑟𝑔𝑦)+𝑅𝐸(𝐶𝑂2) + 𝐶𝑡𝑜𝑡 (12) 

where: 

— 𝑅𝐸(𝑒𝑛𝑒𝑟𝑔𝑦) = 𝑄𝐸 ∗ 𝑃𝐸 represents the energy performance parameter; 

— 𝑅𝐸(𝐶𝑂2) = 𝑄𝐶𝑂2
∗ 𝑃𝐶𝑂2

 represents the life-cycle performance parameter; 

— 𝐶𝑡𝑜𝑡 = 𝐿 + 𝐼 represents the structural performance parameter 

 

Low seismicity 

High seismicity 
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3 Conclusions 

The study herein performed derives from the sustainable structural design (SSD) 

methodology, an efficient and solid method aiming at guiding the sustainable construction 

sector toward a multi-performance approach, which jointly considers environmental and 

safety issues. 

The described study demonstrates that the SSD methodology is applicable and can be 

realized at territorial level. A framework of the possible SSD methodology at 

national/regional/urban level has been presented by developing the four steps of the 

methodology itself. Precisely, the following phases have been developed: I) energy 

performance assessment; II) life-cycle assessment; III) safety performance assessment; 

IV) global assessment parameter evaluation. In the first step, buildings’ energy 

consumptions have been analyzed considering two different approaches and data sources: 

international and European energy databases and energy performance certificates. 

Moreover, whereas some energy data are provided as energy consumption per square 

meter, a study on the available buildings’ useful floor area has been realized. In the second 

step, life-cycle assessment of buildings is performed by using the data provided by the first 

step and the percentage values provided by the research community; thus, equivalent 

carbon dioxide emissions of groups of buildings are evaluated. Third step aims at the 

evaluation of safety performance of buildings, and seismic safety is taken as an example. 

Economic losses due to hazard events and initial buildings’ costs are calculated. Buildings’ 

data gathering and classification are essential to perform safety assessment, in order to 

treat groups of building having similar characteristics as a single building. Losses 

assessment is then performed on the basis of the performance-based assessment 

methodology and using repair/replacement costs provided by existing post-earthquake 

costs data. The fourth and last step consists in the assembly of the previous steps’ results 

and the evaluation of the global assessment parameter, which includes in one value the 

buildings’ environmental (energy consumptions and equivalent carbon dioxide emissions) 

and safety (economic losses and construction costs) issues, provided in economic terms. 

The interest in developing this methodology derives from the powerful applications it could 

have. Indeed, if the methodology was applied to small areas, like districts, cities or regions, 

and to big areas, like nations, it could be a solid method for supporting the administrations 

in addressing the policy projects on the territory. If the building stock is classified into 

groups of buildings having similar structural and non-structural characteristics and the 

global assessment parameter is evaluated for each building group, the territory can be 

divided into areas having same RSSD range. According to this classification, areas with 

highest values of RSSD (resulting from high energy consumption, high CO2 emissions and 

high expected losses, caused by earthquake or other events) will result as the ones where 

a structural and energy intervention is more necessary. 

Nevertheless, the study herein presented has highlighted some critical aspects related to 

the methodology development. Firstly, no solid data on national and regional useful floor 

area of buildings are available. Consequently, it is hard to establish the correct value of 

energy consumption. A study on prices of all the energy components should be realized in 

order to provide a more complete value of energy performance parameter. Moreover, a 

field survey on buildings at regional/urban level is necessary in order to treat groups of 

buildings having similar characteristics as single building; the field survey should be 

finalized with a building group’s labeling, according to Syner-G taxonomy. Another aspect 

to consider is the necessity of collecting techno-economic studies regarding 

repair/replacement costs from worldwide-occurred earthquakes. 

Finally, a pilot study should be realised as application of the SSD Methodology at urban, 

regional and national levels, in order to show the methodology potentiality. 
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List of abbreviations and definitions 

AE: Agenzia delle Entrate (Italian Agency of Revenue) 
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Annexes 

Annex 1. Comparisons among total energy components for each end-uses 

declared in the databases 

 

Table 18. Comparisons among energy components declared in the analysed databases – Solid 
Fuels 

SOLID FUELS (2011) 

MTOE ODYSSEE 

 COAL 

Eurostat 

SOLID FUEL 

IEA  

Coal, peat and oil 
shale 

European Union 10.370 10.370   

Austria 0.049 0.037 0.048 

Belgium 0.098 0.098 0.098 

Bulgaria 0.256 0.244   

Croatia 0.003 0.004   

Cyprus     

Czech Rep. 0.605 0.605 0.610 

Denmark 0.001 0.001 0.011 

Estonia 0.011 0.012 0.011 

Finland 0.005 0.006 0.005 

France 0.160 0.168 0.170 

Germany 1.386 0.852 0.866 

Greece 0.005 0.005 0.004 

Hungary 0.172 0.172 0.172 

Ireland 0.471 0.457 0.451 

Italy 0.003 0.004 0.004 

Latvia 0.023 0.023   

Lithuania 0.051 0.072   

Luxembourg 0.001 0.001 0.001 

Malta     
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Netherlands 0.004 0.002 0.004 

Poland 6.805 6.810 6.806 

Portugal     

Romania 0.009 0.019   

Slovakia 0.048 0.048 0.048 

Slovenia  0.001   

Spain 0.122 0.122 0.122 

Sweden   0.004 

United Kingdom 0.690 0.609 0.627 

 

Table 19. Comparisons among energy components declared in the analysed databases – Gas 

GAS (2011) 

MTOE ODYSSEE  

GAS 

Eurostat 

GAS 

IEA 

Natural Gas 

European Union 101.714 101.714   

Austria 1.242 1.038 1.241 

Belgium 3.114 3.114 2.789 

Bulgaria 0.056 0.056   

Croatia 0.546 0.546   

Cyprus     

Czech Rep. 2.002 2.002 2.002 

Denmark 0.649 0.649 0.638 

Estonia 0.053 0.052 0.052 

Finland 0.030 0.031 0.031 

France 11.490 11.279 11.275 

Germany 20.191 19.758 19.752 

Greece 0.348 0.348 0.348 

Hungary 2.966 2.966 2.966 
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Ireland 0.569 0.568 0.568 

Italy 13.968 17.990 17.985 

Latvia 0.107 0.107   

Lithuania 0.145 0.145   

Luxembourg 0.216 0.216 0.216 

Malta     

Netherlands 7.030 7.547 7.029 

Poland 3.237 3.237 3.235 

Portugal 0.259 0.258 0.258 

Romania 2.289 2.332   

Slovakia 1.173 1.173 1.172 

Slovenia 0.113 0.113 0.113 

Spain 3.411 3.412 3.411 

Sweden 0.053 0.073 0.069 

United Kingdom 22.705 22.705 22.699 

 

Table 20. Comparisons among energy components declared in the analysed databases – Heat 

HEAT (2011) 

MTOE ODYSSEE 

HEAT 

Eurostat 

 DERIVED HEAT 

IEA 

HEAT 

European Union 21.708 21.708   

Austria 0.847 0.577 0.636 

Belgium 0.013 0.013 0.013 

Bulgaria 0.359 0.359   

Croatia 0.147 0.147   

Cyprus     

Czech Rep. 1.036 1.036 1.036 

Denmark 1.612 1.612 1.612 
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Estonia 0.333 0.333 0.333 

Finland 1.511 1.510 1.510 

France 1.420 1.533   

Germany 3.925 3.925 3.925 

Greece 0.054 0.054 0.054 

Hungary 0.529 0.529 0.529 

Ireland     

Italy 0.568 0.568 0.568 

Latvia 0.367 0.367   

Lithuania 0.486 0.486   

Luxembourg 0.003    

Malta     

Netherlands 0.230 0.250 0.278 

Poland 4.180 4.180 4.179 

Portugal  0.006 0.006 

Romania 1.120 1.121   

Slovakia 0.458 0.458 0.458 

Slovenia 0.089 0.089 0.089 

Spain     

Sweden 2.335 2.505 2.504 

United Kingdom 0.052 0.052 0.052 

 

Table 21. Comparisons among energy components declared in the analysed databases – Electricity 

ELECTRICITY (2011) 

MTOE ODYSSEE Electricity Eurostat 

 ELECTRICAL 
ENERGY 

IEA ELECTRICITY 

European Union 69.532 69.532   

Austria 1.442 1.539 1.499 
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Belgium 1.655 1.656 1.656 

Bulgaria 0.938 0.938   

Croatia 0.561 0.561   

Cyprus 0.148 0.148   

Czech Rep. 1.221 1.221 1.221 

Denmark 0.869 0.869 0.870 

Estonia 0.166 0.166 0.166 

Finland 1.842 1.842 1.842 

France 12.860 12.079 12.081 

Germany 11.746 11.746 11.748 

Greece 1.516 1.516 1.516 

Hungary 0.973 0.973 0.973 

Ireland 0.712 0.712 0.712 

Italy 6.031 6.031 6.032 

Latvia 0.152 0.152   

Lithuania 0.225 0.225   

Luxembourg 0.073 0.073 0.073 

Malta 0.046 0.051   

Netherlands 2.037 1.981 2.037 

Poland 2.430 2.430 2.430 

Portugal 1.183 1.183 1.183 

Romania 0.996 0.995   

Slovakia 0.387 0.387 0.387 

Slovenia 0.276 0.276 0.276 

Spain 6.545 6.544 6.545 

Sweden 3.611 3.642 3.133 

United Kingdom 9.595 9.595 9.598 
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Table 22. Comparisons among energy components declared in the analysed databases – 
Petroleum Products 

PETROLEUM PRODUCTS (2011) 

MTOE ODYSSEE 

OIL 

Eurostat 

Total petroleum 
products 

IEA 

Oil Products 

European Union 38.245 38.245   

Austria 1.246 1.091 1.238 

Belgium 2.590 2.613 2.613 

Bulgaria 0.028 0.027   

Croatia 0.207 0.208   

Cyprus 0.123 0.142   

Czech Rep. 0.004 0.004 0.004 

Denmark 0.416 0.401 0.400 

Estonia 0.009 0.009 0.009 

Finland 0.410 0.417 0.406 

France 6.170 6.641 6.605 

Germany 11.869 12.367 12.287 

Greece 2.583 2.600 2.583 

Hungary 0.118 0.104 0.115 

Ireland 1.035 0.997 0.973 

Italy 3.113 3.079 3.079 

Latvia 0.053 0.053   

Lithuania 0.053 0.053   

Luxembourg 0.172 0.150 0.151 

Malta 0.022 0.013   

Netherlands 0.074 0.039 0.074 

Poland 0.661 0.663 0.661 
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Portugal 0.587 0.587 0.587 

Romania 0.181 0.234   

Slovakia 0.007 0.007 0.007 

Slovenia 0.252 0.252 0.252 

Spain 2.906 2.903 2.892 

Sweden 0.135 0.052 0.052 

United Kingdom 2.525 2.538 2.485 

 

Table 23. Comparisons among energy components declared in the analysed databases – 
Renewable energies 

RENEWABLE ENERGIES (2011) 

MTOE Eurostat Renewable 
energies 

IEA 

Renewables and 
Waste 

European Union 39.546   

Austria 1.577 1.630 

Belgium 0.443 0.442 

Bulgaria 0.755   

Croatia 1.164   

Cyprus 0.062   

Czech Rep. 1.115 1.115 

Denmark 0.867 0.867 

Estonia 0.365 0.364 

Finland 1.276 1.274 

France 5.918 6.280 

Germany 5.916 5.915 

Greece 0.965 0.967 

Hungary 0.730 0.730 

Ireland 0.031 0.031 
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Italy 4.707 3.649 

Latvia 0.624   

Lithuania 0.558   

Luxembourg 0.015 0.015 

Malta 0.005   

Netherlands 0.433 0.327 

Poland 2.764 2.764 

Portugal 0.748 0.747 

Romania 3.159   

Slovakia 0.049 0.049 

Slovenia 0.531 0.477 

Spain 2.646 2.646 

Sweden 1.194 1.194 

United Kingdom 0.929 0.351 
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