
Università di Pisa

Dipartimento di Informatica
Scuola di Dottorato “Galileo Galilei”

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Niching in Particle Swarm Optimization

Alessandro Passaro

Supervisor

Antonina Starita

October 15th, 2007

Abstract

The Particle Swarm Optimization (PSO) algorithm, like many optimization

algorithms, is designed to find a single optimal solution. When dealing

with multimodal functions, it needs some modifications to be able to locate

multiple optima. In a parallel with Evolutionary Computation algorithms, these

modifications can be grouped in the framework of Niching.

In this thesis, we present a new approach to niching in PSO that is based

on clustering particles to identify niches. The neighborhood structure, on which

particles rely for communication, is exploited together with the niche information

to perform parallel searches to locate multiple optima. The clustering approach

was implemented in the k-means based PSO (kPSO), which employs the standard

k-means clustering algorithm. We follow the development of kPSO, starting from a

first, simple implementation, and then introducing several improvements, such as a

mechanism to adaptively identify the number of clusters.

The final kPSO algorithm proves to be a competitive solution when compared

with other existing algorithms, since it shows better performance on most

multimodal functions in a commonly used benchmark set.

Contents

1 Introduction 7

2 Particle Swarm Optimization 13

2.1 The Origins of the algorithm . 13

2.1.1 Bird flocking simulations . 13

2.1.2 Function optimization . 15

2.1.3 The optimization algorithm 16

2.1.4 PSO equations . 17

2.1.5 The particle swarm . 19

2.2 Comparison with evolutionary computation 20

2.2.1 Competition vs cooperation 21

2.2.2 Particles’ trajectories . 21

2.3 Enhancements . 22

2.3.1 Parameters selection . 22

2.3.2 Hybridization with EC operators 25

2.3.3 Other enhancements . 27

2.4 Swarm topology . 29

2.4.1 Social networks . 29

2.4.2 Information flow . 30

2.4.3 Neighborhood topologies . 31

2.4.4 Spatial interactions . 35

3 Niching 37

3.1 Multimodal function optimization . 38

3.2 Niching techniques in genetic algorithms 41

3.2.1 Sequential vs parallel niching 42

3.2.2 Fitness sharing . 44

3.2.3 Crowding . 47

3.2.4 Clearing . 51

3.3 Niching techniques in PSO . 53

3.3.1 Objective function stretching 54

3.3.2 Niche PSO . 56

3.3.3 Parallel Vector-based PSO . 58

3.3.4 Species-based PSO . 60

3.3.5 Adaptive Niching PSO . 61

4 Clustering Particles 65

4.1 The basic concept . 65

4.2 Stereotyping . 66

4.3 k-means . 68

4.4 k-means Particle Swarm Optimization 70

4.4.1 First experiments . 73

4.5 Comparison with other algorithms . 81

4.5.1 Experimental setup . 82

4.5.2 Results . 89

4.6 Un-niched particles . 90

4.6.1 Efficiency test . 93

4.7 Estimating the number of clusters . 94

4.7.1 Mixture Densities . 94

4.7.2 The Bayesian Information Criterion 95

4.8 Experiments with the improved kPSO 97

4.8.1 Benchmark functions . 97

4.8.2 Running kPSO . 100

4.8.3 Results . 102

4.9 Discussion . 104

5 Conclusions 109

Bibliography 121

Chapter 1

Introduction

The observation of natural phenomena has inspired important and promising

approaches in Computer Science. Many heuristic search and optimization

techniques have drawn inspiration from physics (simulated annealing [KGV83]),

evolution (genetic algorithms [Gol89], genetic programming [Koz92]), neurology

(artificial neural networks [Hay99, Bis95, Koh01]), immunology (artificial immune

systems [dCT02]), social behavior (ant colony optimization [BDT99], particle

swarms [KE01]), and other domains.

In this thesis, we will focus our attention on an important phenomenon observed

in nature: social behavior. Many animal species in nature show interesting social

interactions, like knowledge sharing or behavioral imitation, with varying degrees

of importance and complexity. In general, however, social animals gain a survival

advantage by joining in groups and interacting with each other. For instance, schools

of fish have an advantage in escaping predators, as each individual fish can be a kind

of lookout for the whole group. Herding animals are advantaged in finding food,

since if one animal finds a source of food, the others will watch and follow. Other

examples we will discuss later are flocks of birds and insect colonies.

The interesting aspect of this kind of processes is that they show self-organization

and emergent characteristics. In fact, social animals behave in a much more complex

and adaptable way when they are together than when they are considered alone.

Indeed, this is a much desired property for a computational model. The possibility of

a system, whose single parts are quite simple to program, but whose overall behavior

is indeed complex and adaptable, is very appealing. The field of research focused

on developing such systems and applying them to solve a wide range of problems is

often referred to with the term “Swarm Intelligence”.

8 CHAPTER 1. INTRODUCTION

Ant-colony systems are probably one of the most popular examples of swarm

intelligence [BDT99]. They are inspired by the behavior of ants in search for food:

when ant colonies are given access to a food source that has multiple approach

paths, most ants end up using the shortest and most efficient route. To expedite

this process, the ants deposit a chemical substance, called pheromone, on the

ground when traveling from the nest to the food source. While the process iterates,

pheromone is deposited at a higher rate on the shorter paths than on the longer ones.

When other ants arrive at a decision point, such as an intersection between various

paths, they tend to follow the path along which they smell the highest amount of

pheromone. After several trips, nearly all of the ants end up using the shortest path,

due to the high concentration of pheromone deposited.

In computer programs, ant-colony algorithms simulate basically the same

process, where paths are candidate solutions to the problem at hand [DC99]. The

optimal path, that is the best solution, is thus identified by the highest concentration

of virtual ants traveling on it. Ant-colony algorithms have been used to solve

numerous optimization problems, ranging from the classical traveling salesman

problem [DG97] to routing in telecommunication networks [GSB02].

Another promising technique in the field of swarm intelligence, on which we will

focus in this thesis, is the Particle Swarm Optimization (PSO) algorithm, inspired

by social behavior of bird flocking, fish schooling or bugs swarming.

In a particle swarm, the potential solutions are particles which fly through the

problem space by following the current best particles of the swarm. Each particle

keeps track of the coordinates in the problem space associated with the best solution

it has achieved so far. Another best value tracked by the particle swarm is the global

one, that is the best value obtained so far by any particle in the swarm. At each time

step, particles change their velocities, accelerating towards previous best locations.

As a whole, the swarm moves on the problem space with peculiar dynamics, which

provide for an interesting search methodology.

In the past years, the particle swarm approach has been successfully applied

in many research and application areas, proving to be a powerful and effective

optimization algorithm. Among the application areas in which PSO has been used

are classification, pattern recognition, data mining [SSN03], clustering [XDE+03],

training of Support Vector Machines [PE03], biological system modeling, protein

motif discovery [CRHW04], scheduling (planning), signal processing, games [FE03],

robotic applications, system design and control [YKFN99]. Moreover, it has been

used in conjunction with other methodologies, such as Artificial Neural Networks

9

(ANN), showing great potential. In particular, the use of PSO to replace the back-

propagation learning algorithm in ANNs has been proposed since its first conception

and in the last years many researches confirmed its validity [ESD96, ES98b, EH99,

KE01, GV03].

This thesis originates from a study on the adaptation of the particle swarm

approach to a particular field, that of multimodal function optimization. In fact,

the design of standard optimization algorithms, and of the PSO algorithm among

them, is usually targeted on the goal of finding a single optimal solution for a given

problem. However, in many situations setting this kind of goal is not a good choice.

Some problems have multiple possible solutions which are optimal according to

the criterion which has been chosen to drive the optimization. In such a case, an

optimization algorithm should ideally find all the optimal solutions. Then, these

solutions can be used in many different ways, which strongly depend on the specific

application field. In some cases, a successive selection process can be employed to

choose a particular solution among those retrieved by the optimization algorithm,

but using different criteria. Another possibility is to maintain a set of different

solutions and use some or all of them in different situations. In certain applications,

it is even possible to combine multiple solutions to a problem to build a new, better

one.

A formal and general way to treat the study of optimization problems is by

identifying the objective function which will be used to evaluate candidate solutions.

When such a function presents multiple global optima, or local optima whose values

are very close to the global one, the problem, and the function itself, are said to

be multimodal. In dealing with multimodal functions, the behavior of a standard

optimization algorithm may be less then ideal. In some cases, in fact, an algorithm

designed to look for a single optimum would arbitrarily pick just one of the optimal

solutions. However, often it would even be misled by the presence of more than a

single optimum and fail to reach a valid solution.

In general, it is possible to follow two different approaches to develop an

optimization algorithm which can deal with multimodal functions. The first is

to design a specific algorithm from the start, the second is to modify an existing

one in order to adapt it for this kind of problems. The latter approach has been

taken, for example, in the field of Evolutionary Computation (EC). In particular,

the optimization algorithms based on the principles of darwinian evolution have

been modified by introducing the concept of niching. This concept is based on

the observation that in an environment with limited resources, the evolutionary

10 CHAPTER 1. INTRODUCTION

process leads to the emergence of different species, which tend to exploit different

environmental niches, specializing in different tasks.

Niching techniques are an attempt to reproduce these phenomena in search and

optimization algorithms based on EC. Such techniques allow the search algorithm

to divide the problem space into different areas, which correspond to the multiple

optimal solutions, and to evolve different solutions, or species, in each of them.

In this way, evolutionary algorithms with niching can effectively be applied to

multimodal optimization problems.

Although the particle swarm is based on a different paradigm than evolutionary

algorithms, the two approaches have enough in common to allow the application

of niching techniques also in PSO. Both approaches, in fact, proceed by simulating

a population of individuals which undergo some kind of transformation over time.

Even if this transformation is different in the two cases, being an evolutionary process

in one, and a flight over the function landscape in the other, it is nonetheless based

on some kind of interactions between the elements of the populations. Moreover,

both approaches have a strong stochastic component which is crucial in providing

their typical robustness.

When introducing niching methodologies in the particle swarm, however, it

is important to consider also the fundamental differences it has from the EC

algorithms. Specifically, an aspect in which the two approaches really differ, and

which is of crucial importance in the application of niching techniques, is the way the

elements in the population interact with each other. While in EC, the interaction

is rather indirect, as it is mediated by the selection process, in PSO it is much

more direct and involves a sort of exchange of knowledge between particles. In

particular, it is tied to the specific social structure in which the swarm is organized,

and that is commonly called the neighborhood topology of the swarm. To obtain

the formation of multiple niches, any technique would have to actively intervene,

in a way or in another, on the swarm’s neighborhood topology, and thus alter the

standard interactions among particles.

Another peculiarity of the PSO algorithm lies in the memory particles keep of

the previous positions they have visited. This memory, which has no correspondent

in the evolutionary framework, plays a critical role in the swarm’s dynamics, and

can also be useful in designing a niching approach.

In our work on niching for the PSO algorithm, we exploited these peculiarities

of the particle swarm, together with another of its characteristics. Particles in a

swarm, in fact, naturally tend to group around regions of the search space which are

11

close to optimal solutions. In the classical swarm, this tendency is then balanced

by the attraction towards the best solution the swarm has visited, where all the

particles converge in the end of a run.

Our approach to niching is founded on the idea of identifying these natural

groups during the run using a clustering algorithm. Specifically, instead of using the

current positions of particles, the algorithm performs a clustering based on the best

positions they keep in their internal memory. In this way, the particles are grouped

according to the position towards which they are actually attracted. The clusters

obtained are then naturally exploited to delimitate niches in the population. To this

end, the neighborhood topology, which in general in the classical PSO is fixed at

the beginning of the simulation, is in this case adapted during the run. Particles are

constrained to communicate only with other particles in the same cluster (niche). In

this way, the swarm will be divided in several sub-swarms which will perform each

a local search for a specific solution.

In the following, we will introduce a first implementation of this approach, which

uses the k-means algorithm, one of the most popular clustering algorithms. Our

niching PSO algorithm has thus been called k-means Particle Swarm Optimization

(kPSO). The new algorithm will be analyzed in details and improved with a series of

enhancements to its first implementation. The most important goals of the refining

process which will lead to the final version of the kPSO algorithm are:

• Obtaining an optimization algorithm that is enough flexible so that it can be

applied to a wide variety of different problems without requiring too much

parameter tuning. Specifically, in our case, this means that we should contain

the number of new parameters introduced by adding the niching approach to

the standard PSO algorithm, or at least that the new parameters should not

be critically dependent on the problem at study.

• Demonstrating that the final version of the kPSO algorithm can be compared

and shows some advantages over the most effective among the other niching

approaches based on Particle Swarm. The comparison should take into account

primarily the efficiency in terms of number of function evaluations required to

locate all the optima of the benchmark functions, but also the computational

overhead added with the niching procedure.

The discussion of our research is organized as follows. This thesis starts

with an introduction to the Particle Swarm Optimization algorithm, presented in

12 CHAPTER 1. INTRODUCTION

Chapter 2. In the same chapter, we will also examine the relation between PSO

and Evolutionary Computation algorithms, and analyze the important role of the

neighborhood structure of the swarm.

In Chapter 3 we will discuss the second main topic of this thesis, which is

the optimization of multimodal functions. In particular, we will focus on the

introduction of niching approaches in the field of EC algorithms. Then, we will

review existing applications of niching techniques in the PSO field.

Our clustering approach to niching will be presented in Chapter 4. Here we

will discuss the concept of clustering applied to the particles of the swarm and the

specific algorithm we chose to employ, the k-means clustering algorithm. We will

introduce our first implementation of the clustering approach, the kPSO algorithm.

Then, we will follow in details the development of the algorithm, by testing it on

different functions and comparing it with other approaches at each step. At the end

of the chapter, the final version of the algorithm will be presented, which uses an

approach based on the Bayesian Information Criterion to adaptively determine the

number of clusters during the simulation. The performance of this algorithm will

thus be compared to that of other significant PSO niching algorithms in the final

set of experiments.

Finally, in Chapter 5, we provide a summary of the work that has been carried

out, in which we examine the current results and try to delineate future research

directions.

Chapter 2

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a relatively new family of algorithms

which can be used to find optimal (or near optimal) solutions to numerical and

combinatorial problems. It is easily implemented (the core of the algorithm can be

written in a few lines of code) and has proven both very effective and quick when

applied to a diverse set of optimization problems.

PSO was originally developed by Kennedy and Eberhart in 1995 [KE95], taking

inspiration both from the related field of evolutionary algorithms and in artificial

life methodologies. In fact, in the next sections we will discuss whether PSO can

actually be considered an evolutionary algorithm, pointing out main similarities and

differences with respect to (other) evolutionary techniques, in particular genetic

algorithms and evolutionary programming. First of all, however, we will briefly

depict the origins of the PSO algorithm, which are strongly tied to the artificial life

theory of bird flocking, fish schooling and swarming.

2.1 The Origins of the algorithm

2.1.1 Bird flocking simulations

Animal social behavior such as that seen in flocks, schools, or herds, has always

attracted many researchers, interested in discovering the underlying rules which

enable, as an example, large numbers of birds to flock synchronously, often scattering

and regrouping, and suddenly changing direction. Many models of this flocking

behavior were also used to create computer simulations, such as those by Heppner

and Grenander [HG90], and by Reynolds [Rey87].

14 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

These simulations relied on models which focused on local processes, thought

to underlie the unpredictable group dynamics of the birds in a similar way the

simple local rules for cell updating can yield complex global dynamics in cellular

automata [vN51, vNB66, Bur70]. In particular, they explained the flocking behavior

as the overall result of the individual birds’ efforts to maintain an optimal distance

between themselves and their neighbors.

A simple, although quite realistic, graphical simulation of a flock of birds

was realized implementing two rather simple properties: nearest-neighbor velocity

matching and craziness. A population of birds was represented by a set of

points moving on the screen, whose starting positions and velocities were randomly

assigned. At each step in the simulation, each bird set its own velocity to match

that of its nearest neighbor, thus reproducing the flock’s beautiful synchrony of

movement. Moreover, a stochastic factor, craziness, introduced a slight change in

some randomly chosen velocities, giving the simulation a more interesting and almost

life-like appearance.

Other bird simulations, realized by Heppner, introduced a dynamic force,

attracting birds towards a target position on the screen, identified as a roost or

as a cornfield. In this way the craziness factor became unnecessary, because the

simulation took on a life of its own. In fact,

[. . .] the flock swirled around the goal, realistically approaching

it, swinging out rhythmically with subgroups synchronized, and finally

landing on the target. ([KE95])

Such a kind of behavior was obtained adding the following rules:

1. Each bird evaluated its position in term of its distance from the target:

E(x, y) =
√

(x− xt)2 + (y − yt)2 (2.1)

where (xt, yt) was the position of the target.

2. When updating its velocity, each bird remembered the best position it had

previously visited and adjusted its velocity on each axis by a random amount

(weighted by the pincr parameter) in that direction. Moreover it knew the best

position ever found by any member of the flock and performed another velocity

adjustment towards it (using another parameter: gincr). Varying the two

2.1. THE ORIGINS OF THE ALGORITHM 15

increment parameters, one could obtain different flock behaviors, essentially

controlling the speed with which the flock approached the target.

The introduction of a roost (or cornfield) in the second variation of bird

simulation led to a lot of intriguing questions. While in the simulation the target

was at a fixed known position, in real life birds in a flock can efficiently find food,

without previously knowing its location nor appearance. It seems possible that

flock’s dynamics enable single members to gain advantage of each others’ experience.

Citing sociobiologist E. O. Wilson, although in reference to fish schooling:

In theory at least, individual members of the school can profit

from the discoveries and previous experience of all members of the

school during the search for food. This advantage can become decisive,

outweighing the disadvantages of competition for food items, whenever

the resource is unpredictably distributed in patches” ([Wil75], p. 209).

Indeed individuals group in herds, flocks, schools or swarms in order to avoid

predators, seek food and mates and so on, thus gaining an evolutionary advantage by

socially sharing information. The key aspect in this case is the cooperation between

conspeciates to reach a certain goal. In the previous simulation, for example, a bird

which had found a good position (near the target) led its neighbors towards it, thus

increasing the odds that they would all find the target. This is perfectly in line with

the view by which intelligence is actually a social process [KE01, Ken97].

It should be noted that the simulated birds have no direct knowledge of the

target position, although they can evaluate their distance to it. In fact they are

actually minimizing this distance, as expressed by the evaluation function E in

Equation (2.1). What if we replace E with an arbitrary function? We could thus

employ our flock of birds to look for the function’s minima, transforming an artificial

life simulation in a function optimization algorithm.

2.1.2 Function optimization

A general way to search for a solution of a problem is to determine an objective,

or cost function which describes the problem and to optimize it. Thus the field of

function optimization is of wide interest. Optimizing a function f(x) means either

minimizing or maximizing it, however one problem can be easily converted into the

other by considering the function with the reverse sign:

16 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

f ′(x) = −f(x). (2.2)

Thus, although in the rest of this thesis we will face both kind of problems,

now we can define the next concepts considering only the problem of minimization,

without in fact losing generality. The minimization of a function f : Ω → R can be

formally described as finding the global minimizer x∗, such as

f(x∗) ≤ f(x), ∀x ∈ Ω. (2.3)

In this thesis we will generally consider Ω ⊆ Rd and thus x = (x1, . . . , xd).

Sometimes it is acceptable or it is only possible to find local minimizers, that is

solutions which minimize the function in a subset of Ω. When considering Ω ⊆ Rd,

a local minimizer x∗` must satisfy

∃ε > 0 : f(x∗`) ≤ f(x), ∀x : ‖x− x∗`‖ < ε. (2.4)

Thus a local minimizer x∗` is the point with the lowest function value of its

neighborhood, which is the set of points whose distance from x∗` is less than a

certain ε.

2.1.3 The optimization algorithm

The particle swarm bears much resemblance to flocks’ simulations, but in place of

birds we have, more generically, particles flying around following similar simple rules.

From an optimization point of view, it is straightforward to see the particles’ flight

as a trajectory in the solution space. In this way the PSO algorithm can be used to

minimize a generic function in the form: f(x, y) : R2 → R, by simply replacing the

function E in Equation (2.1) with f .

By the way, since we are not seeking a graphical simulation, we are no more

limited to a two-dimensional (or three-dimensional) space, but we can consider

particles moving in Rd and an evaluation function f : Rd → R. Thus from now

on we will describe the basic PSO version used to solve the minimization problem

of a function in Rd. As a matter of fact, however, different optimization problems

can be faced with specific variations in the algorithm, some straightforward, like the

switch to a maximization problem, others a little more complex, like the use of a

binary encoding [KE97].

2.1. THE ORIGINS OF THE ALGORITHM 17

Algorithm 2.1 The pseudocode for the Particle Swarm Optimization in its standard

version.

1: procedure PSO

2: Initialize particles with random positions and velocities.

3: Set particles’ pbests to their current positions.

4: Calculate particles’ fitness and set gbest.

5: for T generations do

6: Update particles’ velocities.

7: Update particles’ positions.

8: Recalculate particles’ fitness.

9: Update particles’ pbest and gbest.

10: end for

11: end procedure

For the same reason, the choreographic effect of the flock’s flight is no longer

needed, so the nearest-neighbor velocity matching can be removed. Although the

general effect is more like a swarm than like a flock, experiments have shown that

optimization actually occurs slightly faster in this way.

Finally, another revision to the algorithm involves the way velocities are

updated. In previous simulations the velocity along a given axis was incremented or

decremented by a random amount if the best known position was respectively after

or before the current position along that axis. It seems much simpler, and empirically

has proven more performing, to adjust velocities by an amount proportional to the

(signed) distance of the best location from the current one (along each axis).

The pseudocode for the resulting PSO algorithm, in its simplest version, is given

in Algorithm 2.1. The rules for velocity and position updating used in the algorithm

are described in details in the following section.

2.1.4 PSO equations

Let d be the dimension of the search space, then xi = (xi1, xi2, . . . , xid) denotes the

position of the particle i ∈ (1, 2, . . . , N) of the swarm, and pi = (pi1, pi2, . . . , pid)

denotes the best position it has ever visited. The index of the best particle in the

population (the one which has visited the global best position) is represented by

the symbol g. At each time step t in the simulation the velocity of the ith particle,

18 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

represented as vi = (vi1, vi2, . . . , vid), is adjusted along each axis j following the

equation:

vij(t + 1) = vij(t) + ϕp · (pij(t)− xij(t)) + ϕg · (pgj(t)− xij(t)) (2.5)

where ϕp is a random number uniformly distributed in [0, pincr] and ϕg is a

random number uniformly distributed in [0, gincr]. pincr and gincr are the same

positive constants used in flock’s simulations and are respectively called the cognitive

and social acceleration coefficient.

Moreover, the particle’s velocity can be constricted to stay in a fixed range, by

defining a maximum velocity value Vmax and applying the following rule after every

velocity updating:

vij ∈ [−Vmax, Vmax] (2.6)

In this way the likelihood of particles leaving the search space is reduced,

although indirectly, by limiting the maximum distance a particle will cover in a

single step, instead of restricting the values of xi.

The new position of a particle is calculated using:

xi(t + 1) = xi(t) + vi(t + 1). (2.7)

The personal best position of each particle is updated using:

pi(t + 1) =

{
pi(t) if f(xi(t + 1)) ≥ f(pi(t))

xi(t + 1) if f(xi(t + 1)) < f(pi(t))
(2.8)

while the global best index is defined as:

g = arg min
i

f(pi(t + 1)), 1 ≤ i ≤ N. (2.9)

An essential feature of the PSO algorithm is the way in which the local and

global best positions, pi and pg, and their respective acceleration coefficients, are

involved in velocity updates. Conceptually, pi (also known as pbest) resembles

the particle’s autobiographical memory, i.e. its own previous experience, and the

velocity adjustment associated with it is a kind of simple nostalgia, as it leads the

particle to return in the position where it obtained its best evaluation. On the other

hand, pg (gbest) is a sort of group knowledge, a common standard which every single

particle seeks to attain.

2.1. THE ORIGINS OF THE ALGORITHM 19

vi(t)

xi

vi(t + 1)

pi

pg

Figure 2.1: At each step t a particle i updates its velocity and position. The new

velocity vi(t + 1) is the sum of three terms: the previous velocity vi(t), and two

terms proportional to the distance from pi, the best position visited so far by the

particle, and from pg, the best position visited so far by the whole swarm. The new

position of the particle is then computed by just adding the new velocity.

The overall effect is such that when particles find a good position, they begin

to look nearby for even better solutions, but, on the other hand, they continue

to explore a wider area, likely avoiding premature convergence on local optima

and realizing a good balance between exploration of the whole search space and

exploitation of known good areas [OM98].

2.1.5 The particle swarm

While in the previous paragraphs we have discussed quite in details the origins of the

PSO algorithm, it may still be unclear where its name, “Particle Swarm”, exactly

comes from.

In their original paper [KE95], Kennedy and Eberhart discuss their choice of the

term particle to denote the members of the swarm, as mainly due to their physical

behavior: they have velocities and accelerations, although can be considered to have

arbitrarily small masses and volumes. Moreover they refer to the models developed

by Reeves [Ree83] for diffuse objects such as clouds, fire, and smoke, constituted

by particle systems which were based on quite similar rules for the simulation of

particles’ movements.

The term swarm was used as to better describe the behavior of the particles,

20 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

since, as discussed above, along the path from a flock simulation to an optimization

algorithm, they lost their choreographic movements. However, the term has also

references in artificial life literature. In particular Millonas [Mil94] introduced five

basic principles to define what he called swarm intelligence. This principles can

easily be seen to apply in the particle swarm:

1. Proximity – particles can perform simple space and time computations as

they fly through a d-dimensional space;

2. Quality – particles can respond to environmental quality factors as they are

accelerated towards pbest and gbest;

3. Diverse Response – the population as a whole does not commit its activities

along excessively narrow channels: this is ensured by the competition between

pbest and gbest;

4. Stability – the population mode of behavior does not change with every

change in the environment, since it does not change until gbest changes;

5. Adaptability – the population can change its behavior according to the

environment, when it’s worth the computational price: this is actually the

reverse coin of the stability principle; the particle swarm adheres to it since it

does change when gbest changes.

2.2 Comparison with evolutionary computation

The particle swarm has so much in common with the various Evolutionary

Computation (EC) paradigms that some authors claim it could be considered itself a

kind of evolutionary algorithm. Even without going so far, however, there is no doubt

that it shares many features and many goals with EC methods [ES98a, Ang98a].

First of all, they take inspiration by two natural processes, namely evolution of

species and social interaction, which are strongly related. In fact, many species of

animals put in effect social strategies which give them an evolutionary advantage.

Besides, an intriguing, although much discussed, view of cultural evolution, proposed

by Dawkins [Daw76], points out the similarity between cultural transmission in social

processes and genetic transmission in natural evolution.

Even from an implementation point of view, the two methods show striking

similarities: they both maintain, and adapt throughout time, a population of

2.2. COMPARISON WITH EVOLUTIONARY COMPUTATION 21

individuals, which represent problem’s candidate solutions. The adaptation process

is led by a fitness measure which explicitly refers to the environment adaptation

in EC, but is substantially identical to the evaluation measure in PSO. Moreover,

it proceeds by modifying population members both by a random factor and by

considering the interactions between them.

In particular PSO can be considered to lie somewhere between Genetic

Algorithms (GA) and Evolutionary Programming (EP). Like the latter, in fact,

it is highly dependent on stochastic processes. However, the adjustment towards

gbest and pbest in PSO is conceptually similar to the crossover operator in GA.

2.2.1 Competition vs cooperation

The particle swarm model, however, differs from the evolutionary approach in some

relevant aspects. The main difference is connected with one of the foundations

of evolutionary theory: the survival of the fittest. In fact, in EC methods, at each

iteration (or generation) population members are selected in function of their fitness.

The best individuals are reproduced in the next generation, while less fit individuals

are likely to be deleted. Thus the population as a whole evolves by constantly letting

its members compete against each other, replacing its members and promoting the

fittest ones.

Instead in the particle swarm, population members are never replaced. The

initial number of particles remains constant throughout the whole simulation.

Rather, single particles move through the space, changing their position and velocity,

thus individually evolving through time. Moreover, instead of fighting against each

other for the chance to survive and/or reproduce, they directly interact with each

others, exchanging their knowledge about function’s landscape, thus cooperating to

reach optima.

2.2.2 Particles’ trajectories

Another major difference between particle swarms and EC methods is that particles’

velocities are adjusted, rather than their positions. In EC a new candidate solution

is generated – typically by crossover or mutation – acting upon its position in the

search space, as well as its parents’ ones. Instead, in PSO both the interaction with

other particles and the stochastic factor influence the velocity of a particle. This is

responsible for the characteristic trajectories of the particles in a swarm, and results

22 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

in a quite effective search.

In fact, much of the success of particle swarms seems to lie in particles’ tendency

to hurtle past their target. Holland’s chapter on the “optimum allocation of

trials” [Hol92] points out the delicate balance between conservative testing of known

regions versus risky exploration of the unknown. In PSO, the stochastic factors allow

a thorough search of areas which are close to relatively good regions. Moreover, the

momentum effect, caused by the velocity update formula which modifies the current

velocities rather than replacing them, results in overshooting, thus in exploration of

unknown regions of the problem domain.

2.3 Enhancements

As an optimization algorithm, the particle swarm is an attractive choice and has

a number of desirable properties, including simplicity of implementation and good

empirical performance, even compared to evolutionary algorithms such as GAs.

Even so, it is not without problems: the basic PSO can suffer from premature

convergence, tending to get stuck in local minima. It can also suffer from an

ineffective exploration strategy around local minima, and thus in some cases it does

not find good solutions as quickly as it could. Moreover, like for most heuristic

algorithms, there is also the problem of adjusting the tunable parameters to obtain

improved performances.

In the following we will briefly review some of the many enhancements to the

basic PSO algorithm which have been proposed to address these issues.

2.3.1 Parameters selection

A common problem of many biologically-inspired algorithms is the high number of

parameters they need and, even worse, their dependence upon the problem to solve.

The basic version of the particle swarm we have discussed so far requires only a few

parameters, as can be seen in the equations reported in Section 2.1.4. Moreover the

original authors suggested a set of values by which the algorithm actually worked

quite well in various experiments, including optimization of many test functions and

neural networks weights training. The four parameters to set are: N , the number of

particles, Vmax, the maximum allowed velocity, pincr and gincr, the two acceleration

coefficients.

2.3. ENHANCEMENTS 23

The experiments conducted by the original authors on a series of test functions

with low dimensionality, had all N = 20 ÷ 60 and subsequent literature on the

subject essentially agrees on this order of magnitude [SG05]. In fact, such a low

number of individuals is quite unusual in population-based methods, even for quite

simple test functions. In the field of genetic algorithms, for example, populations

with hundred of members are more than common. For the PSO to require a small

number of particles is a real advantage, since the computational resources employed

are drastically reduced.

The Vmax parameter sets the maximum velocity particles are allowed to gain at

each iteration. In fact, the two random weighted terms in Equation (2.5) can lead

the swarm to a kind of explosion or drunkard’s walk [OM99, CK02], as particles

velocities and positions tend to infinity. The Vmax function is to contain this

explosion, reducing the likelihood of particles wandering far away in the search space.

Moreover, it determines the resolution of the search near best-so-far solutions: with

a high value, particles might fly past good solutions, with a too low one, they may

not explore enough and become trapped in local optima. In early experiments Vmax

was empirically set to about 10÷ 20% of the dynamic range on each dimension.

The cognitive (pincr) and social (gincr) acceleration coefficients determine the

intensity of particles attraction towards respectively pbest and gbest. A high value

of the cognitive coefficient, with respect to the social one, results in excessive

wandering of single particles through the problem space, while a relatively high

social coefficient results in the swarm rushing prematurely towards local minima.

Instead, approximately equal values of the two acceleration coefficients seem to

result in the most effective search of the problem domain, realizing a dynamic

balance between the attraction towards single particles’ best-so-far position and

the attraction towards the global one. Usually in experiments these two parameters

are both set to pincr = gincr ' 2, as to ensure half the probability of flying past the

current best position, thus exploring the nearby space.

In the end, the basic PSO was applied essentially unchanged on all test problems,

with the only exception of the Vmax parameters, which still required manual tuning.

In order to eliminate the need for such a tuning, many modifications to the basic

algorithm have been proposed. The two most important modifications that we are

going to discuss involve respectively the introduction of an inertia weight and of a

constriction factor.

Further studies on parameters selection and its influence on particles dynamics

can be found in [EGEHSK02, ZMZQ03, RHW04, Tre03, BPV02, CD01].

24 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

Inertia weight

The concept of an inertia weight was introduced by Shi and Eberhart in [SE98a,

SE98b] in order to better control the balance between exploration and exploitation,

and to eliminate the need to manually set the Vmax parameter. The velocity-

updating formula in Equation (2.5) is replaced with the one in Equation (2.10),

where the inertia weight w is included as a multiplying factor for vij:

vij(t + 1) = w · vij(t) + ϕp · (pij(t)− xij(t)) + ϕg · (pgj(t)− xij(t)). (2.10)

The inertia weight modifies the influence the particle’s previous velocity bears

on the new one: as an extreme, setting it to zero would result in no influence at all

(so no inertia). Suitable selection of the inertia weight provides a balance between

global and local exploration and exploitation, and results in fewer iterations on

average to find a sufficiently optimal solution. As originally developed, w was often

linearly decreased during a run from about 0.9 to 0.4. This resulted in a sort of

cooling off of the system, as particles began to slow down towards the end of a run,

and to better perform a local search near the best-so-far solution.

Although the introduction of the inertia weight made unnecessary the

constriction operated by Vmax, many experiments showed that including a velocity

clamping with Vmax set to the dynamic range of the variables resulted in better

performances.

In fact, the inertia weight introduction replaces the choice of the value for Vmax,

with the one for w. However, the latter seems to be much more problem-independent,

since the one suggested above performed very well in a number of applications.

Constriction factor

Another method for controlling the behavior of the particle swarm is the introduction

of a constriction factor. Such a method was first proposed by Clerc in [CK02], in the

framework of his studies of the mathematical foundations of the particles’ dynamics.

In its simplest form – Clerc’s Type 1” – the constriction factor is a coefficient χ

applied to both terms of the velocity updating formula:

vij(t + 1) = χ · (vij(t) + ϕp · (pij(t)− xij(t)) + ϕg · (pgj(t)− xij(t))). (2.11)

2.3. ENHANCEMENTS 25

χ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
, where ϕ = pincr + gincr > 4. (2.12)

Typically, when Clerc’s constriction method is used, ϕ is set to 4.1, thus χ ≈ 0.73,

simultaneously damping the previous velocity term and the two acceleration terms.

This constriction method results in particles’ convergence over time; that is, the

amplitude of the individual particle’s oscillations slowly decreases as it focuses on a

previous best point. Although in this way particles converge to a point over time,

another factor in the paradigm prevents the collapse of their trajectories, that is

the fact that the target point is actually a stochastically weighted average of two

points, pbest and gbest. In fact, if the swarm is still exploring various optima, and

a particle’s own previous best is in a different region from the global one, then the

particle’s cycles will remain wide. As particles begin to cluster in the same optimal

region, their trajectories will become narrower, intensely exploiting a focused region

of the search space.

However, if a new optimum is discovered, trajectories are free to expand again,

thus switching from exploitation to exploration. In this regard the constriction

method seems better than the inertia weight with its irreversible cooling off

mechanism.

2.3.2 Hybridization with EC operators

An interesting line of research is aimed at introducing features from the Evolutionary

Computation methods into Particle Swarm Optimization. The idea is to develop

hybrid systems which can exploit the strengths of both paradigms.

Selection

One of the first attempts was the introduction of a selection mechanism by

Angeline [Ang98b]. The main point is to let the swarm focus its resources in

promising areas, replacing less performing particles with new ones placed near the

global best. Thus, a tournament selection method is incorporated in the particle

swarm and applied on each iteration before normal velocity updates. The selection

operator allows to rank particles according to the number of particles they beat in

the tournament. Then all the particles in the lower half of the ranked swarm have

their positions replaced with those of the particles in the upper half, whilst their

26 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

personal best positions remain unchanged. The resulting hybrid system showed

some advantages over the standard one, although only on a limited set of functions.

Breeding

Løvbjerg et al applied a breeding operator [LRK01] which gives particles the ability

to generate offsprings. The method works by randomly selecting a subset of particles

with a uniform breeding probability pb, thus independently of their fitness. The

breeding particles are then randomly paired off until the breeding set is empty.

A crossover operator is applied to the parent particles i and j to generate their

offsprings. The offspring positions are calculated by:

x′i = pixi + (1− pi)xj (2.13)

x′j = pixj + (1− pi)xi (2.14)

where pi is from a uniform distribution on [0, 1]. The new velocities are set to

the normalized sum of the parents’ velocities:

v′
i =

‖vi‖
‖vi + vj‖

(vi + vj) (2.15)

v′
j =

‖vj‖
‖vi + vj‖

(vi + vj). (2.16)

The values for the personal best positions is inherited from the parents particles.

The introduction of the breeding operator improves the diversity of the swarm

population, and may result in avoiding stagnation on local optima.

The LifeCycle model

Other approaches try to integrate the evolutionary and the swarm methods in

different ways. As an example, inspired by the idea of life cycle stages found

in nature, the LifeCycle model [KL02] proposes to use a population of candidate

solutions which can modify their behavior during the simulation. In fact, each

member of the population, depending on its recent search progress, can decide to

behave as a particle of a swarm, as an individual of a genetic algorithm, or as a

stochastic hill climber. In this way, the optimizer can adapt to the characteristics

of the given function, using the specific mode of behavior which performs the most

successful search.

2.3. ENHANCEMENTS 27

2.3.3 Other enhancements

Division of Labour

The division of labour PSO (DoLPSO) modifies the standard PSO algorithm by

introducing a mechanism which improves convergence around optima [VRK02]. In

the DoLPSO particles can alternatively perform two tasks:

Task 1: Exploring the search space using the standard PSO.

Task 2: Performing a local search: the particle is moved to the global best position

found (gbest) and its velocity is randomly reinitialized to be no larger than

that of the global best particle.

The concept of division of labour involves a task switching process, which

constantly monitors each particle and tends to reassign it to the alternative task with

a higher probability the higher number of iterations it passed without improving its

pbest. Particles switching to the local search task decrease swarm diversity and

encourage a faster and improved convergence towards local optima.

The GCPSO

In-depth analysis of the PSO algorithm with inertia weight (but the same apply

for the constriction factor version) shows how it does not guarantee convergence

to either a global or local best solution, but only to the best position found by

the swarm [vdB02]. A possible cause is the behavior of particles around the gbest

position: in particular, when for a particle i it happens that xi = pi = pg, the

velocity update in Equation (2.10) depends only on the previous velocity term

wvi(t). Thus when a particle approaches gbest, its velocity will tend to zero, which

causes the swarm to eventually converge on that position, preventing exploration of

other areas.

Van den Bergh and Engelbrecht introduced a new algorithm, the Guaranteed

Convergence Particle Swarm Optimizer (GCPSO), which actively counters this

behavior and ensure convergence to a local optimum [vdBE02]. The GCPSO works

by modifying the rule to update the velocity of the best particle of the swarm:

vgj(t + 1) = −xgj(t) + pgj(t) + w · vgj(t) + ρ(t)rj (2.17)

where rj is a sequence of uniform random numbers sampled in [−1, 1]. ρ(t) is a

scaling factor determined using:

28 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

ρ(0) = 1.0

ρ(t + 1) =

2ρ(t) if #successes > sc

0.5ρ(t) if #failures > fc

ρ(t) otherwise

(2.18)

where sc and fc, are tunable threshold parameters. Whenever the best particle

improves its personal best position, the successes counter is incremented and the

failures counter is set to 0 and vice versa. The successes and failure counters are

both set to 0 whenever the best particle changes. Note that only the best particle

of the swarm uses the modified velocity update in Equation (2.17); the rest of the

swarm uses the normal inertia weight update rule in Equation (2.10).

The modifications introduced with GCPSO cause the best particle to perform

a directed random search around its best position in the search space. This

random search can dramatically speed up movement towards an optimum and also

guarantees the convergence to at least a local optimum [vdB02].

Self-Organized Criticality

Løvbjerg and Krink introduced an enhancement to the particle swarm applying the

principles of the Self-Oganized Criticality (SOC) model [LK02]. The SOC theory

was introduced in 1987 by Per Bak, Chao Tang, and Kurt Wiesenfeld to explain

common characteristics of different complex systems which are in a state at the

border of stability and chaos [BTW87]. SOC is based on the observation of the

effects that local interactions between many components in an open system can

have on a global scale. In fact, most state transitions between the components

only affect their neighborhood, but once in a while entire avalanches of propagating

state transitions can lead to a major reconfiguration of the system [Bak96]. Some

principles of the SOC theory had been previously applied also in an evolutionary

computation context [KT01].

The SOC PSO introduces for each particle i a critical value Ci (the criticality

of the particle), which is initialized to Ci(0) = 0. The criticality is in some way

associated to the diversity of the swarm: in fact its value is increased when two

particles become closer than a fixed threshold θSOC to each other. To balance this

mechanism, at each iteration the criticality is reduced by a percentage value ρSOC :

Ci(t + 1) = (1− ρSOC)Ci(t). (2.19)

2.4. SWARM TOPOLOGY 29

When a particle’s criticality becomes larger than a threshold CMAX , the particle

is relocated to a different position in the search space, and its criticality is set to:

Ci(t + 1) = Ci(t)− CMAX . (2.20)

Particle relocation has the effect of reducing crowding in over-populated regions,

thus promoting diversity in the swarm. The inertia weight can also be modified by

introducing a dependence on the criticality of the particle:

wi = 0.2 + 0.1 · Ci. (2.21)

In this way, particles in densely populated regions of the search space won’t

experience the typical cooling off effect associated with low inertia weight.

2.4 Swarm topology

In the previous sections, we have described swarms in which particles had access to

the accumulated knowledge of the whole population, as they were attracted by the

global best solution, gbest. However this is not by far the only possible choice. In

the following we will discuss about different ways particles can interact with each

other. Their interactions, in fact, can be modeled after what we will call different

social structures.

The study of the social behavior of many species was one of the starting points of

the research which led to the development of the particle swarm algorithm. Thus, it

is evident that the way particles interact is one of the core aspects of the algorithm.

As we will discuss in brief, by modifying the social structure of the swarm, one

can deeply influence its dynamics, with important consequences when the swarm

simulation is applied as an optimization algorithm. Moreover, we will see how

operating on the social structure that underlies particles’ interactions provides for

a natural approach to niching in the PSO algorithm.

2.4.1 Social networks

A general approach to define alternative social structures consists in introducing

the concept of neighborhood topology. The neighborhood of a particle is defined as

the specific subset of the population, whose particles it can communicate with. The

mathematical binary relation which defines the neighbors of each particle in a swarm

30 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

constitutes the neighborhood topology of the swarm. A common way to represent

the neighborhood topology of a swarm is by considering its graph, in which each

particle is a vertex and is linked by an edge towards each of its neighbors.

Although in theory it is possible to have a directed neighborhood graph, this

is very uncommon. In fact two particles usually interact reciprocally, so that the

neighborhood relation is symmetrical and the corresponding graph is undirected.

Another typical characteristic of the neighborhood graph is that in most cases it

is connected, that is there exists a path of adjacent edges linking any two given

particles. This means that every particle, although indirectly, can be influenced by

any other particle in the swarm. Exceptions to this rule are topologies consisting of

multiple isolated sub-swarms, which are used for multimodal function optimization

(see Chapter 3).

It is important to note that the neighborhood topology connects particles in a

way that is totally unrelated to their position in the search space. The neighbors

of a particle can be in regions of the search space which are at arbitrary distances

from one another. Moreover, whilst the position of particles changes throughout the

simulation, as they fly over the search space, the network topology usually remains

fixed, continuing to connect particles even if they happen to be far away in space.

In practice, it is quite straightforward to make the shift from the particle

swarm model we discussed in the previous chapter to a more general model with

a generic neighborhood topology. In fact, the major change in the algorithm is

the replacement of the single gbest, the global best solution in the swarm, with a

nbest, a neighborhood best, which is specific to each particle and represent the best

solution found among its neighbors. Thus all the equations will remain essentially

unchanged, except for the substitution of gbest with nbest. The only additional

burden is that we must maintain a different nbest for each particle, instead of a

single value for the whole swarm.

2.4.2 Information flow

The role of the neighborhood topology is to regulate the information flow among

particles in the swarm. In fact, in the PSO algorithm, particles communicate

essentially by sharing with their neighbors the high fitness solutions they previously

located.

Thus, the communication takes places along the channels defined by the

neighborhood structure. The different topologies regulate in different manners the

2.4. SWARM TOPOLOGY 31

Figure 2.2: Fully connected graph: each particle’s neighborhood is the whole swarm

(gbest Particle Swarm).

flow of information between particles. On a dense topology particles would have

many neighbors, so the knowledge of a good position would be rapidly shared.

Conversely, on more sparse structures, the information would spread at a slower

rate.

The intensity of the information flow has a noteworthy influence on the dynamics

of the particle swarm. In the following, we will present the most used neighborhood

topologies, along with some discussion about their effects on the PSO algorithm.

2.4.3 Neighborhood topologies

The swarm considered in the previous chapter, in which a global best position is

shared among all particles, also called the gbest particle swarm, is the special case

whose topology is a fully connected graph, so that each particle’s neighborhood is

the whole swarm (Figure 2.2). At the other extreme would be the case in which we

have no edges in the graph: a particle’s neighborhood would thus be empty: this is

what has been called the cognition only model [Ken97]. However, in this case we

would no longer have a swarm, but a group of isolated particles with no interactions,

which will each perform a local search as a sort of stochastic hill-climbers [RN95].

A more common variation is the so-called lbest particle swarm, in which particles

are modeled to have only local interactions [EK95]. The topology structure is a

regular ring lattice with k edges per vertex, so that each particle is influenced by

k neighbors. The best solution in a particle’s neighborhood is called lbest and its

32 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

(a) k = 2 (b) k = 4

Figure 2.3: Regular ring lattice (lbest Particle Swarm).

index l(i) is a function of the index i of the particle as in Equation (2.22).

l(i) = arg min
j

f(pj(t + 1)), j = (i± k′) mod N, k′ ≤ k

2
(2.22)

The velocity updating formula is thus only slightly modified, with the

substitution of the global index g with the local one l(i). In fact the gbest case

can be obtained considering k = N − 1.

Commonly used lbest cases are k = 2 (see Figure 2.3a) and k = 4 (Figure 2.3b).

The former, in particular, results in a swarm in which individuals are affected by

only their immediately adjacent neighbors. In such a swarm, it might be the case

that a segment of the population converges on a local optimum, while another

converges on a different optimum or keeps searching. However, as influence slowly

propagates along the ring, and if an optimum really is the best found by any part

of the population, eventually all the particles will be pulled towards it.

First experiments with PSO used mainly the gbest and lbest versions, the latter

usually with k − 2. The gbest topography allows direct communication between

all particles, resulting in rapid convergence of the whole population towards the

best solution found in the early iterations. However, this can prevent exploration

outside of locally optimal regions. The lbest topography, instead, limits the flow of

information between particles, as it is buffered by the presence of intermediaries.

Thus, lbest is thought to perform better on multimodal functions, since different

2.4. SWARM TOPOLOGY 33

(a) von Neumann (b) Star

Figure 2.4: The von Neumann topology - a two-dimensional lattice - and the star

topology - one central node connected with all the others.

group of particles can explore different regions.

Aside from this first two examples, many other topologies have been proposed

and studied. Suganthan [Sug99], for example, proposed a swarm in which

neighborhood relations extend over time, in order to increase cooperation towards

the end of a run. In fact the topology used is the same as lbest, but with k increasing

from 0 to N − 1.

Other interesting social structures are the star and the von Neuman topologies

(see Figure 2.4). The former represents the common organizational pattern with a

single chief which communicate with all the other individuals. Thus each particle

has only one neighbor, except for the central one whose neighborhood extends over

the whole swarm (Figure 2.4b). The latter, named von Neumann’s architecture

after its use in cellular automata pioneered by John von Neumann, consists of a

two-dimensional lattice, in which a particle’s neighbors are above, below, and on

each side of it (Figure 2.4a).

Comparison

The effects of employing different topologies on the performance of the PSO

algorithm have been considered in a number of studies [Ken99, KM03, MKN03].

Here we report briefly the results of a significant study by Kennedy and

34 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

Mendes [KM02].

The study considered the most used topologies we presented in the previous

section, gbest, lbest, star, and von Neumann. Moreover, a collection of structures

were randomly generated following some criteria derived from the analysis of

the information flow in social networks [WS98]. In particular, two factors were

considered:

k – the number of neighbors of each particle;

C – the number of neighbors a particle has in common with other neighbors (it

accounts for the level of clustering in the network).

The random graphs were generated by varying the average values and the

standard deviation for k and C. The authors’ hypothesis was that populations

with rather heterogeneous structures could provide for a good combination of the

gbest and lbest versions, resulting in both quick convergence and good performance

on multimodal functions.

The performance analysis was conducted on a set of five commonly used

benchmark functions: Sphere, Rastrigin, Griewank, Rosenbrock, and Shaffer’s f6.

In particular, the following performance measures were considered:

1. standardized performance, the mean standardized best function result after

1000 iterations;

2. proportion, the average proportion meeting success criteria by 10000 iterations;

3. iterations, the median number of iterations required to meet the criteria.

As expected, the conclusions of the study strongly depend on the performance

measure considered. By considering standardized performance and proportion, the

best topologies were among those randomly generated with k = 5, thus confirming

that a quite low number of connections helps to avoid premature convergence. By

considering the number of iterations to reach the success criteria, the best ones were

those with k = 10 and the gbest topology: highly connected topologies are the

quickest to converge – but they are also prone to get stuck in local optima.

The results obtained with the special topologies were also quite interesting. The

star topology showed among the worst performance considering all three measures,

thus censoring the use of a centralized architecture. The gbest topology confirmed

2.4. SWARM TOPOLOGY 35

to be characterized by a rapid convergence, thus showing good results as number

of iterations, but was often unable to find the global optimum, so its performance

with the other measures were quite low. The lbest topology showed to be better

than gbest in avoiding local optima, but had very poor performance compared with

other structures. Finally, the von Neumann topology proved to have the best overall

performance, with high success rate and quite good convergence speed, so it is the

one the authors recommend to particle swarm researchers.

2.4.4 Spatial interactions

Another area of research on the particle swarm, which is rather orthogonal to the

social structures, consists in introducing interactions between particles which are

close in the solution space, rather than connected in the topological graph.

Work in this direction has been carried out by Peram, Veeramachaneni, and

Mohan in [PVM03, VPMO03]. They propose a new algorithm in which particles

use the ratio between the fitness and the distance of other particles to determine

the direction in which their position needs to be changed. The resulting algorithm,

known as Fitness-Distance-Ratio-PSO, tends to avoid convergence at early stages of

particles evolution, thus could be well-suited to search for global optima in difficult

multimodal optimization problems.

In the same direction is the approach proposed by Krink, Vesterstrom, and Riget

in [KVR02], which provides particles of a spatial extension. Thus the algorithm

is enhanced by collision detection and bouncing mechanisms, aimed at avoiding

particles clustering near local optima, and favoring diversity.

36 CHAPTER 2. PARTICLE SWARM OPTIMIZATION

Chapter 3

Niching

In discussing the introduction of the Particle Swarm Optimization algorithm in the

previous chapter, we focused on the obvious goal in the design of an optimization

algorithm: that it should be able to find a single optimal solution to a problem.

In fact this is common among most techniques employed in optimization problems,

from simple hill-climbing to evolutionary algorithms.

However, there are many interesting scenarios in which the problem one wishes

to optimize is multimodal, that is it allows for multiple optimal or semi-optimal

solutions. In these cases finding only one solution may not be the best strategy.

Ideally, an optimization algorithm should find all the optimal solutions, then these

solutions can be used in different ways, which are dependent on the nature of the

problem and on the specific application field. In some cases a single solution can be

chosen from the set, according to some additional criteria which were not included

in the optimization. In other situations, as for example in the field of pattern

classification, it may be possible to combine different solutions to build more complex

– and effective – ones [Kun04].

In the following we will focus our attention on the optimization of multimodal

functions, since it is the more formal and general way of dealing with optimization

problems with multimodal domains. We will discuss the general techniques employed

for the optimization of multimodal functions. Then we will focus on the field of

evolutionary algorithms, where multimodal functions are dealt with by introducing

the concept of niching. Finally, we will present some approaches to niching in the

field of Particle Swarm Optimization.

38 CHAPTER 3. NICHING

Table 3.1: A classification of functions based on multimodality.

Without local optima With local optima

Single global optimum Unimodal functions Multimodal type 2

Multiple global optima Multimodal type 1 Multimodal type 3

 0

 2

 4

 6

 8

-4 -2 0 2 4

f(x
)

x

Figure 3.1: Function f(x) = x2, an example of a simple unimodal function, with a

unique global minimizer at x = 0.

3.1 Multimodal function optimization

Optimization problems can be divided in different classes depending on whether

they allow for a single or for multiple solutions. The first class is that of unimodal

problems. An optimization problem is considered to be unimodal when its objective

function f(x) has a single global optimum point x∗ and no local optima (see

Section 2.1.2). Figure 3.1 shows a really simple example of a unimodal function.

Conversely, optimization problems which allows for multiple solutions are

considered multimodal. Thus, the objective function has multiple optimizers,

although a further differentiation can be made depending on whether they are local

or global optimizers:

3.1. MULTIMODAL FUNCTION OPTIMIZATION 39

-2

-1

 0

 1

 2

 3

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(x
)

x

Figure 3.2: Function f(x) = x4 − 2x2, an example of a multimodal function with

two global minimizers at x = −1 and x = 1.

-2

-1

 0

 1

 2

 3

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(x
)

x

Figure 3.3: Function f(x) = 2x4 − x3 − 2x2, an example of a multimodal function

with a local minimizer at x ' −0.544 and a global one at x ' 0.919.

40 CHAPTER 3. NICHING

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(x
)

x

Figure 3.4: Function f(x) = x6 − 3.2x4 + 2x2, an example of a multimodal function

with two global minimizers at x ' ±1.324 and a local one at x = 0.

1. A particular kind of multimodal functions is characterized by the presence of

multiple global optimizers and no local ones. An example function is plotted

in Figure 3.2: its two optimizers have the same function value, so they are

both global. Optimizing a function of this kind usually means searching for

all the global optimizers.

2. Another kind is constituted by functions with a single global optimizers, but

additional local ones. In particular, the one plotted in Figure 3.3 has a local

minimizer besides the global one. The goal in the optimization of this kind of

function can be twofold. One can either look for all the optimizers, regardless

of them being local or global ones, or focus just on the single global optimizer.

3. Finally, the most complex kind of multimodal functions includes those with

multiple global optimizers and also local ones. In particular the example

plotted in Figure 3.4 shows a function with a local minimizer situated just

between two global minimizers. This is a typical case of a deceptive local

optimum, as many optimization algorithms can be fooled to converge on it,

missing one or both of the global optimizers.

As already stated, when trying to optimize a multimodal function, very different

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 41

problems arise in each of these cases. Optimization algorithms applied to functions

with a global optimizer and many local optimizers have usually the goal to locate

the single global optimizer. Thus their main problem is avoid deception by the

other optima of the multimodal function, which would otherwise result in premature

convergence to a suboptimal solution. Most optimization techniques are designed to

deal with multimodal functions of this kind. In fact, they usually assume that there

exists only a single best solution in the search space and put effort into isolating it

from other spurious solutions.

In the other cases, when the function has many optimizers corresponding to the

same value, the typical goal of an optimization algorithm is to locate all of them,

eventually considering also the local solutions. However, standard techniques are

generally not designed to fulfill such a goal, and will usually either favor a single

solution, or get confused by the multiple possible solutions and fail to converge to a

single one. Thus new specific algorithms need to be employed or the standard ones

need to be modified to be more effective on multimodal functions.

In this thesis we will focus on optimization algorithms which have the goal to

find multiple solutions, as we are interested in dealing with general multimodal

functions. However, it is interesting to note that even when facing a multimodal

function of the first kind and looking for the single optimal solution, an optimization

algorithm which looks for multiple solutions can still be useful. In fact, the methods

used to diversify the search and to locate different optimizers can also help in avoid

premature convergence on local solutions. Thus, although the algorithms we will

discuss are all designed to perform a search for multiple solutions, they can also be

applied effectively when the problem is to discover the global optimum.

3.2 Niching techniques in genetic algorithms

Niching techniques are modeled after a phenomenon in nature where animal species

specialize in exploiting different kinds of resources, resulting in several species

coexisting in the same environment [Mah95a, Hor97]. The introduction of this

specialization, or niching, in a search algorithm allows it to divide the space in

different areas and search them in parallel. The technique has proven useful when

the problem domain includes multiple global and local deceptive optimal solutions.

Niching was introduced in the field of Genetic Algorithms (GA), although it can

be quite easily generalized to the whole context of evolutionary algorithms. Niching

42 CHAPTER 3. NICHING

methods can reduce the effect of the genetic drift operated by the selection operator

in the standard GA. In fact they maintain diversity in the population and allow the

algorithm to investigate multiple peaks in parallel. Moreover they help in preventing

the premature convergence which can trap the algorithm in a local optimum of the

search space.

Genetic algorithms are based on the principles of genetics and basically try

to imitate natural evolution. However standard GAs tend to rapidly converge

to a population of very similar individuals, whilst natural evolutionary processes

maintain a variety of species which occupy different ecological niches. In a natural

environment, in fact, the competition among individuals of the population can

develop upon the exploitation of different kind of resources, leading to the evolution

of different species. In a biological context, a niche is a subspace of the environment

supporting different types of life. A species is a group of individuals sharing most

biological features and capable of interbreeding among themselves, while generally

unable to breed with individuals belonging to other groups. Thus competition,

which is at the core of the evolutionary process, develops along two levels. The first

level of competition is among individuals in the same group, that is inside a single

species. The second one is among different species contending the resources of the

same environmental niche.

The concepts of natural niching are implemented in genetic algorithms by

implicitly or explicitly dividing the population in different species which tend to

occupy different niches, that is different regions of the search space, possibly leading

to different optima. Therefore, in the context of the implementation of niching

methods we will indifferently talk about species and niches.

An important variety of niching methods have been reported in the literature,

including sequential niching [BBM93], immune systems [FJSP93], speciation with

implicit fitness sharing and co-evolution [DY97], ecological GAs [Mah95a, Dav91],

and crowding schemes. Our first analysis regards the special class of sequential

niching methods.

3.2.1 Sequential vs parallel niching

A clear distinction can be made amongst algorithms for multimodal function

optimization, which depends on whether they search for different solutions

sequentially or in parallel. The first choice logically allows for the slightest

modifications to the original optimization algorithm. In fact, an algorithm which

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 43

looks for a single solution can be applied repeatedly to discover different optima,

although usually some method is introduced to avoid or at least limit rediscovering

already known solutions. The second choice typically involves a deeper re-thinking

of the optimization algorithm, as it has to search in parallel for different solutions.

However, this can also result in an advantage, since this methodology allows to

exploit the information relative to the multiple optima being discovered.

In the niching framework, sequential methods, known as sequential niching,

probably occupy a special position. In fact, it can be argued that a niching approach

inspired by the natural differentiation of species in the environment must operate

in parallel, rather than sequentially. However, in literature both the approaches are

considered kinds of niching.

The most successful sequential niching method is probably the one proposed by

Beasley, Bull, and Martin [BBM93]. The method works by running a simple GA

multiple times and maintaining the best solution of each run off-line. To avoid

converging to the same optimum multiple times, the algorithm depresses the fitness

landscape at all the points within a fixed radius σ of previously discovered solutions.

In this way, at each run the GA is applied to a modified function, where the location

of an already known solution of the original function is no more an optimum point,

that is it has been derated.

The supposed advantages of this technique lie in its simplicity, as no major

modification is required to the standard GA, and in the smaller population size

required with respect to a parallel approach, since only one solution is searched

for during each run. Actually, sequential niching proved to be an effective niching

approach only on quite simple functions. In more complex cases, in fact, the deration

process can cause many problematic issues [Mah95b]:

• Derating the fitness landscape near previously located peaks can create new

false optima;

• or it can hide other actual optima which were too close to already discovered

ones.

• Moreover, especially in advanced runs, when many optima have already been

found, the fitness landscape will contain many derated regions, with plateaus

and small ridges, which can raise the difficulty to locate new solutions by a

high degree.

44 CHAPTER 3. NICHING

In the following discussion, we will focus our attention on parallel niching

methods or classes of methods which have been most commonly used or have proved

to be most successful: Fitness Sharing, Crowding, and Clearing.

3.2.2 Fitness sharing

The most known and used method to add niching capabilities to a genetic algorithm

is probably the sharing method. It was originally introduced by Holland [Hol75] and

improved by Goldberg and Richardson [GR87].

The core concept behind the fitness sharing method is to model environmental

niches with limited resources by making individuals in the same niche share their

fitness. From a different perspective, it can be seen that in fact the introduction

of fitness sharing modifies the search landscape by reducing the payoff in densely

populated regions. In practice, the sharing effect is obtained by reducing the fitness

of each individual in function of the number of similar individuals in the population.

Thus, in this context, we will define the shared fitness f ′i of an individual i with

original fitness fi as

f ′i =
fi

mi

(3.1)

where mi is the niche count which roughly measures the number of individuals

with whom the fitness is shared. Although the final goal of the niching algorithm

is to dynamically form species which adapt to environmental niches, we have no

knowledge of the exact number of individuals in a niche at every given time. Thus

the niche count must be estimated using a measure of similarity between individuals:

mi is calculated by summing a sharing function over all members of the population

mi =
N∑

j=i

sh(dij) (3.2)

where N denotes the population size and dij represents the distance between the

individual i and the individual j. The sharing function sh measures the similarity

level between two population elements. It is equal to 1 if the elements are identical,

to 0 if their distance is higher than a threshold of dissimilarity, and it is in the

interval]0, 1[for intermediate levels of dissimilarity. The most widely used sharing

function is given as follows:

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 45

sh(x) =

{
1−

(
x
σ

)α
, if x < σ

0 otherwise
(3.3)

where σ denotes the threshold of dissimilarity and α is a constant parameter

which regulates the shape of the sharing function. α is commonly set to one with

the resulting sharing function referred to as the triangular sharing function [Gol89].

The threshold of dissimilarity σ is also known as the distance cutoff or the niche

radius and plays a very important role in the niche formation process. In fact, it

sets the maximum range for individuals to influence their reciprocal niche counts,

thus establishing the radius of the resulting niches. As we will discuss in the next

section, the need to set a priori the niche radius is probably one of the most notable

limitations of fitness sharing methods.

The distance dij between two individuals i and j, and its related similarity metric

can be based on either genotypical or phenotypic similarity. Genotypical similarity

is related to the specific encoding used by the genetic algorithm, typically a bit-

string representation, and is generally the Hamming distance. Instead, phenotypic

similarity is directly linked to real parameters of the search space. It can be the

Euclidian distance for instance. There is some evidence [DG89] that sharing based

on phenotypic similarity gives slightly better results than sharing with genotypical

similarity, due to decreased noise in the decoded parameter space.

When implementing fitness sharing, particular attention must be paid also to

other elements of the evolutionary process, such as the selection mechanism and the

genetic operators. Any selection method can be used in conjunction with sharing,

however the choice can either increase or decrease the stability of the algorithm,

as it influences the maintenance of multiple niches in the population. Two widely

used methods are Stochastic Remainder Selection (SRS) and Stochastic Universal

Selection (SUS) which help to reduce bias in the selection algorithm [Bak87].

Tournament Selection (TS) can also be used, although with some modifications to

help promoting stability. In particular, Oei, Goldberg, and Chang [OGC91] propose

a tournament selection with continuously updated sharing, which calculates the

shared fitness with respect to the new population being filled.

Similarly to the choice of the selection method, also the design of the

recombination operators must take into account the need to stably maintain

multiple subpopulations. The main problem is that recombination operators such

as crossovers are subject to the formation of lethals, a phenomenon also known

as crossover disruption. Lethals are individuals with very low fitness originated

46 CHAPTER 3. NICHING

by the recombination of parents belonging to different niches. The most used

techniques to reduce the formation of lethals are based on mating restriction

schemes [DG89, YG93, MS96].

Limitations

Fitness sharing is one of the most popular niching techniques for GAs, as it both

favors the formation of stable niches and tends to perform search in unexplored

regions of the space. However, it has some limitations which can hinder its

effectiveness. In particular we can point out as a serious limitation the need to

set in advance the niche radius, which can actually prevent the application of fitness

sharing to a whole kind of multimodal problems. In fact, setting the dissimilarity

threshold σ requires a priori knowledge of how far apart the optima are in the search

landscape. When dealing with real optimization problems, however, in general no

or very few information about the search space and the distance between the optima

is available. Moreover, fitness sharing imposes that σ is the same for all individuals,

thus assuming that all peaks are nearly equidistant in the domain. Again, in real

world problems this could not at all be the case.

When trying to apply the fitness sharing technique to a multimodal function

for which we cannot correctly estimate the distance between peaks, or whose

peaks are not even roughly equidistant, the algorithm will often fail to maintain

all desired peaks. Various empirical formulas have been proposed to set the

dissimilarity threshold but this problem remains probably the major flaw of the

method [DG89, Mah95a].

Another limitation of the sharing scheme is its computational cost. In fact,

it is very expensive because it requires the computation of niche counts of

complexity O(N2) per generation. Among the methods developed to reduce

computational complexity and also increase sharing effectiveness we can cite

clustering analysis [YG93] and dynamic niching [MS96]. However, in many

domains the computational time to obtain the fitness of individuals dominates

the computational cost of comparisons. In that case, standard sharing can be

implemented with only a small increase in the computational requirements.

Fitness scaling

A particular variation of fitness sharing which tries to improve efficiency is fitness

scaling [Gol89]. A scaled shared function increases differentiation between optima

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 47

and reduces deception, as it lowers the attraction towards local optima [GDH92,

DY95], whilst making the global optima more attractive than the surrounding

regions of the space. A common technique to scale the fitness function is to use

a power scaling; Equation (3.1) can thus be modified as in the following:

f ′i =
fβ

i

mi

, (3.4)

where mi is the niche count as defined in Equation (3.1). The remaining problem

is the choice of an appropriate β for a given objective function. If the power of

the scaling function is too high, the predominance of fitness scaling can prevent

the reduction of genetic drift by the sharing method. The domination of “super-

individuals” in the population can cause the niching GA to converge prematurely.

On the other hand, if the power of the scaling function is too low, differentiation

between optima can be insufficient. This can hinder a perfect detection of the optima

by the sharing method. The compromise in the choice of the scaling power is directly

related to the accurate balancing between exploration and exploitation necessary to

all global stochastic optimization methods. To prevent premature convergence and

increase the efficiency of the sharing method, the scaling power β can be adapted

during the search, as recommended in [DY95].

3.2.3 Crowding

A different approach to promote the formation of niches in the population is based

on crowding methods. As we have seen in the previous section, fitness sharing acts

indirectly, by modifying the landscape of the search space penalizing too crowded

regions. Instead, crowding methods directly operate on the population, inserting

new individuals by replacing similar ones. Various flavors of crowding techniques

have been developed. Here we examine the most notable ones.

Standard crowding

In DeJong’s crowding [DJ75], only a fraction of the global population specified by

a percentage G (generation gap) reproduces and dies at each generation. In this

crowding scheme, an offspring replaces the most similar individual (in terms of

genotypical comparison) taken from a randomly drawn subpopulation of size CF

(crowding factor) from the global population.

48 CHAPTER 3. NICHING

Other methods very similar to De Jong’s standard crowding are preselection

schemes, previously introduced by Cavicchio [Cav70]. Preselection schemes work by

letting children directly replace the parent individuals which produced them. These

methods can be classified as a kind of crowding, since the parents which are replaced

are in fact usually similar to their children.

Although crowding was introduced to limit the genetic drift towards a uniform

population, thus favoring diversity, these characteristics seemed likely to provide also

for a good niching strategy. In fact, the way crowding works is somewhat similar to

how natural populations effectively maintain separate species.

However, when applied to multimodal function optimization, standard crowding

never obtained good results [DG89, Mah95a], as it failed to maintain more than two

niches even on quite simple functions. The reasons for this behavior can be found in

the high stochastic error in the replacement of population members. In fact, since

the new individuals pending insertion are compared to those in a set which is chosen

randomly, it is quite likely that a member of a niche is replaced by an individual

belonging to a different niche. In the long run, replacement errors bring in again

genetic drift, which do not allow the algorithm to maintain multiple niches.

Deterministic Crowding

Mahfoud’s Deterministic Crowding (DC) improved standard crowding by

introducing competition between children and their parents [Mah95a]. This behavior

is inspired by that of the preselection schemes cited above. However, other aspects

of the algorithm make it stand apart from previous crowding methods and effectively

perform as a niching algorithm.

As described in Algorithm 3.1, at each generation the DC algorithm randomly

pairs all population elements. Each pair undergoes crossover, and possibly mutation

or other genetic operators, yielding two children. Then the children individually

compete with one of the two parents, according to a similarity rule, to be included

in the new population. This behavior differs from that of preselection schemes for

two main reasons:

1. The selection mechanism. In preselection schemes, selection is usually fitness–

proportionate, and is performed before mating parents (up-front selection). It

is in fact the classical way of applying a selection pressure in a standard GA,

which is completely unaware of niches. In DC, instead, there is no up-front

selection: all individuals in the population are used in mating. Thus they

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 49

Algorithm 3.1 Mahfoud’s Deterministic Crowding pseudocode.

1: procedure Deterministic Crowding

2: for T generations do

3: for n/2 times do

4: Select two parents, p1 and p2, randomly without replacement

5: Apply crossover, yielding c1 and c2

6: Apply mutation (and possibly other operators), yielding c′1 and c′2
7: if d(p1, c

′
1) + d(p2, c

′
2) ≤ d(p1, c

′
2) + d(p2, c

′
1) then

8: if f(c′1) > f(p1) then

9: Replace p1 with c′1
10: end if

11: if f(c′2) > f(p2) then

12: Replace p2 with c′2
13: end if

14: else

15: if f(c′2) > f(p1) then

16: Replace p1 with c′2
17: end if

18: if f(c′1) > f(p2) then

19: Replace p1 with c′2
20: end if

21: end if

22: end for

23: end for

24: end procedure

50 CHAPTER 3. NICHING

always contribute to generate new offsprings and only then they compete for

a place in the new population (replacement selection). The resulting selection

pressure does not inhibit the formation of niches.

2. The tournament. In a preselection scheme, only one of the children is chosen

to compete its parents, while the other is discarded. If the new offspring has a

superior fitness than that of at least one parent, it replaces the worst parent.

However, this behavior was one of the causes for replacement errors. In DC

this scheme was modified: each of the two children compete with one of the

parents, and the winners of the two tournaments gain a place in the new

population. The choice of which child competes with which parent is made

according to a similarity measure, in order to favor competition of individuals

which are close in the search space. In this regard, DC can be applied both

using a genotypical and a phenotypic similarity measure, although the latter

usually provides better results.

Differently to standard crowding, the DC algorithm proved to be an effective

niching technique which can be applied to multimodal function optimization

problems. Thanks to the implicit elitism of the tournament mechanism it adopts,

DC can avoid the problem of crossover disruption, which is indeed very common in

GA on multimodal domains. In fact, when an offspring results from the crossover

of parents in different niches, and its fitness is lower than its parents, it loses the

competition against them and is simply discarded. Another advantage of DC over

standard crowding, and also fitness sharing, is its low computational complexity.

In fact, with two distance comparisons per set of tournaments and N/2 sets of

tournaments per generation, the resulting order of complexity of DC is O(N).

Restricted Tournament Selection

The Restricted Tournament Selection (RTS) resulted from an adaptation of standard

tournament selection to deal with multimodal function optimization [Har95]. RTS

works by initially selecting two elements from the population and applying to them

crossover and mutation. After this recombination process, a random sample of CF

individuals is taken from the population as in standard crowding. Each offspring

competes only with the closest element from this sample and the winners are inserted

in the new population. The order of complexity of RTS is O(CF ·N). It can vary

from O(N) to O(N2) according to the crowding factor value CF . Experiments show

3.2. NICHING TECHNIQUES IN GENETIC ALGORITHMS 51

that RTS is indeed an effective niching method, and can outperform DC on many

test functions [SK98]. However, its main limitation is probably the requirement

of the crowding factor parameter, which is very problem-specific, and of difficult

estimation.

3.2.4 Clearing

The clearing method introduced by Petrowski [Pet96], is based on the same concept

of limited resources in the environment which inspires fitness sharing methods. The

fundamental difference between the two methods is that instead of sharing the

resources between all individuals in a niche as in fitness sharing, clearing assigns

them only to the best members of the niche.

The clearing procedure is based on the assumption that the subpopulation in

each niche contains a dominant individual: the one that has the best fitness. If an

individual belongs to a given subpopulation, then its distance from the dominant

is less than a given threshold σ: the clearing radius. The basic clearing algorithm

preserves the fitness of the dominant individual while it resets the fitness of all the

other individuals of the same subpopulation to zero. Thus, the clearing procedure

fully attributes the whole resource of a niche to a single individual: it is a winner-

takes-all strategy rather than a sharing strategy as in sharing methods.

In practice, the capacity q of a niche specifies the maximum number of elements

that each niche can accept. Thus, clearing preserves the fitness of the q best

individuals (dominant individuals) of the niche and resets the fitness of the others

that belong to the same subpopulation (dominated individuals). The pseudocode

of the clearing procedure is given in details in Algorithm 3.2.

Clearing is often coupled with elitist strategies to preserve the best elements of

each niche along generations. The order of complexity of the clearing procedure is

O(k · N) where k is the number of niches maintained during the search. Although

clearing proved to be a quite effective niching technique [SK98], its major drawback

is the same as that of fitness sharing methods: the difficulty of estimating a fixed

niche radius.

Species Conserving Genetic Algorithm

A different approach was proposed by Li et al. which focuses on determining and

conserving species: the Species Conserving Genetic Algorithm (SCGA) [LBPC02].

A species in SCGA is the subpopulation occupying a niche in the environment, and

52 CHAPTER 3. NICHING

Algorithm 3.2 Petrowski’s Clearing pseudocode.

1: procedure Clearing

2: Sort individuals based on decreasing fitness values

3: for i = 1 → n do

4: if f(pi) > 0 then

5: dominants := 1

6: for j := i + 1 → n do

7: if f(pi) > 0 and d(pi, pj) < σ then

8: if dominants < q then

9: dominants := dominants + 1

10: else

11: f(pj) := 0.0

12: end if

13: end if

14: end for

15: end if

16: end for

17: end procedure

3.3. NICHING TECHNIQUES IN PSO 53

it is identified by a procedure very similar to clearing. But instead of operating on

the fitness of the dominant individuals, called the species seeds, it applies a form

of elitism on them. At each generation, the species seeds are saved in a separate

location, while the population undergoes the typical genetic operators. Then the

seeds are reintroduced in the new population, except if it already contains other

individuals of the same species.

The peculiarity of this approach is that it does not modify either the genetic

operators, or the selection mechanism. Rather, it performs niching by introducing

a species conserving elitist strategy in an otherwise standard GA. Our interest in

the species conserving approach, however, is mostly due to the fact that it was later

applied also to the PSO, as we will discuss in Section 3.3.4.

3.3 Niching techniques in PSO

Like most optimization algorithms, the Particle Swarm algorithm was designed with

the goal of finding a single global optimal solution. In fact most of the research on

PSO focused on its ability to avoid local optima in multimodal functions of the first

kind we described, i.e. with one global optimum among many local ones. How it

can deal with the goal of finding multiple solutions is quite a different issue.

In the previous section, we have seen how the standard genetic algorithm, which

per se could not deal with multimodal functions, could be improved by using niching

techniques. Given the similarities between the evolutionary and the particle swarm

approach, it is natural to consider a parallel development of niching for PSO. There

are however some peculiarities of the particle swarm approach which need to be

considered.

Niching methods for genetic algorithms modify the way individuals interact

with each other, in order to let them specialize on different areas of the search

space, instead of converging on a single one. In the evolutionary approach

individuals interact rather indirectly, as a combined effect of the selection and

recombination operators. In fact, the various niching methods we discussed use

different approaches, depending on the specific interaction factor they choose to

modify.

The situation with the PSO algorithm is rather different. The particles in the

swarm interact in a much more straightforward way than evolving individuals. In

fact, the interaction is implemented by sharing knowledge of the search space with

54 CHAPTER 3. NICHING

neighbor particles. Thus the neighborhood structure of the swarm is probably the

single most relevant aspect to consider in our analysis.

Let’s consider for example the gbest swarm, that is a PSO in its simplest form.

The gbest topology let particles interact with the whole swarm. As we have seen in

the previous chapter, this provides for very quick convergence towards a good region

of the space, which often is identified early in the search process. On a function

with multiple global optima, this approach most often will simply converge on one

of the optima and ignore the others.

Conversely, neighborhood topologies more sparsely connected lead to very

different outcomes. A good example is the lbest topology, where particles have

a very small neighborhood. In this case, the population tends to split in small

groups which explore independently the search space. Thus they can actually locate

different optima at the same time, resulting in a sort of implicit niching capability.

However, since the neighborhoods in the lbest swarm overlap, in many cases particles

end up to converge on the same optimum nonetheless. In the end, the implicit

niching performed by the swarm relies too much upon random events during the

running of the algorithm to be an efficient niching approach.

Thus, as pointed out by Engelbrecht et al. in [EMP05], the standard PSO must

be modified to allow the efficient location of multiple solutions. Notwithstanding

the differences between the approaches we will discuss for the particle swarm, with

respect to the evolutionary ones, we will still refer to them as niching strategies.

3.3.1 Objective function stretching

Objective Function Stretching, introduced by Parsopoulos et al. in [PPMV01b,

PPMV01a], was among the first strategies to modify the particle swarm algorithm

to deal with functions with multiple optima, in particular multimodal functions of

type 2, following our classification in Table 3.1. Specifically, the goal of the authors

was to overcome the limitations of PSO caused by premature convergence to a local

solution. The stretching approach operates on the fitness landscape, adapting it

to remove local optima. Considering a minimization problem, when the swarm

converges on a – possibly local – minimum, the fitness of that position is stretched

so that it becomes a local maximum. In this way, successive iterations of the PSO

algorithm will focus on other areas of the search space, leading to the identification

of other solutions.

In [PV01], Parsopoulos and Vrahatis further developed the same technique to

3.3. NICHING TECHNIQUES IN PSO 55

use it as a sequential niching approach. For this purpose, the algorithm proceeds by

identifying candidate solutions when their fitness is below a fixed threshold value ε.

Thus when the swarm finds a solution x∗ such that f(x∗) < ε, the fitness is redefined

as:

H(x) = G(x) + γ1
sign(f(x)− f(x∗)) + 1

2 tanh(µ(G(x)−G(x∗)))
(3.5)

and

G(x) = f(x) + γ2
‖x− x∗‖(sign(f(x)− f(x∗)) + 1)

2
(3.6)

where suggested values for the parameters are µ = 10−10, γ1 = 104, and γ2 = 1

and the sign function is defined as usual:

sign(x) =

+1 x > 0

0 x = 0

−1 x < 0

(3.7)

The transformation G in Equation (3.6) removes all the local minima located

above the detected solution x∗, while H in Equation (3.5) raise the fitness value

of the positions close to x∗. The new fitness function H is then used in the

successive iterations of the particle swarm algorithm to locate other minima. An

additional local search can be performed, using the original fitness function, in the

neighborhood of the position x∗ where the candidate solution was found, in order

to further refine it and detect whether it was a local or global minimum.

In the same way as other sequential niching approaches, the stretching

technique has some advantages, but critical issues. It requires no modifications

of the underlying PSO algorithm and actually shows good performance on many

multimodal functions. However, the effectiveness of the stretching transformation is

not uniform on every function. In fact, in some cases it can introduce false minima,

which render this method unreliable [vdB02].

Recently, this approach has been improved by the introduction of other two

techniques: Deflection and Repulsion [PV04]. The former is another form of

modification of the objective function which removes optima which have been

already located. The general definition for the deflection technique is:

F (x) = T1(x;x∗1, λ1)
−1 . . . Tm(x;x∗m, λm)−1f(x), (3.8)

56 CHAPTER 3. NICHING

where x∗1 . . .x∗m are the optima found in f(x), λ1 . . . λm are relaxation parameters

and T1 . . . Tm are suitable functions, like the following:

Ti(x;x∗i , λi) = tanh(λi‖x− x∗i ‖). (3.9)

The repulsion technique, instead, modifies the PSO algorithm by introducing

a repulsion force in an area surrounding the optimizers which have already been

detected. The combination of these techniques seems to alleviate the usual problems

of sequential niching approaches.

3.3.2 Niche PSO

In 2002 Brits et al. introduced the nbest PSO, reportedly the first technique to

achieve a parallel niching effect in a particle swarm [BEvdB02b]. The nbest PSO

was in particular aimed at locating multiple solutions to a system of equations, and

used local neighborhoods determined by spatial proximity.

The same authors subsequently proposed a new approach which used sub-

swarms to locate multiple solutions to multimodal function optimization problems:

NichePSO [BEvdB02a].

NichePSO, whose pseudocode is given in Algorithm 3.3, maintains a main swarm

which can generate a sub-swarm each time a possible niche is identified. The main

swarm is trained using the cognition only model [Ken97] (see also Section 2.4.3),

which updates the velocities of particles considering only their personal best position.

Since no social component is involved, each particle will perform a local search.

Conversely, the sub-swarms are trained using the GCPSO algorithm, described in

Section 2.3.3, which ensures convergence to a local optimum.

Niches in the fitness landscape are identified by monitoring changes in the fitness

of particles. Specifically, a new sub-swarm is created when the fitness of a particle

shows very little change over a fixed number of iterations. Therefore the variance

σp of the fitness of particle p is tracked over eσ iterations (usually eσ = 3). When

σp < δ, a new sub-swarm is generated containing the particle p and its closest

neighbor q such that:

q = arg min
i6=p

‖xp − xi‖. (3.10)

NichePSO has some rules to decide the absorption of particles into a sub-swarm

and the merging of two sub-swarms, which basically depends on the measure of the

3.3. NICHING TECHNIQUES IN PSO 57

Algorithm 3.3 NichePSO pseudocode.

1: procedure NichePSO

2: Initialize main particle swarm.

3: repeat

4: Perform one step of the cognition only model on the main swarm.

5: for each sub-swarm S do

6: Perform one step of the GCPSO algorithm on S.

7: Update swarm radius.

8: end for

9: Possibly merge sub-swarms.

10: Check for particles to be absorbed.

11: for each particle p in the main swarm do

12: if p meets the partitioning criteria then

13: Create a new sub-swarm with p and its closest neighbor.

14: end if

15: end for

16: until stopping criteria are met.

17: end procedure

58 CHAPTER 3. NICHING

sub-swarm radius. The radius Rj of a sub-swarm Sj is defined as:

Rj = max
x∈Sj

‖xg(j) − x‖, (3.11)

where g(j) denotes the index of the best particle in the sub-swarm Sj. A particle

p is absorbed into a sub-swarm Sj when it moves into it, that is:

‖xp − xg(j)‖ ≤ Rj. (3.12)

Two sub-swarms Sj and Si are merged when they intersect, that is when:

‖xg(j) − xg(i)‖ < Rj + Ri. (3.13)

This approach was compared empirically and shown to outperform two

niching genetic algorithms - sequential niching [BBM93] and deterministic

crowding [Mah95a] - on a set of benchmark multimodal function optimization

problems [BEvdB03].

3.3.3 Parallel Vector-based PSO

Schoeman and Engelbrecht proposed a different niching approach in [SE04], and

implemented it in the Vector-based PSO (VPSO). Their approach considered the

two vector components of the velocity update formula in Equation (2.5), which point

respectively towards the particle’s best position and the neighborhood best. When

this two vectors point roughly towards the same direction, the particle will modify

its trajectory towards the neighborhood best, otherwise, it will probably head for

another optimal solution. Niches are identified according to this criterion. In fact,

the dot product of the two vectors is calculated:

λi = vpi · vgi = ‖vpi‖‖vgi‖ cos θi, (3.14)

where the two vectors are:

vpi = pi − xi (3.15)

vgi = pg − xi. (3.16)

The dot product λi will be positive if the two vectors point in the same direction

and negative otherwise. Once λi is determined for each particle i in the swarm,

3.3. NICHING TECHNIQUES IN PSO 59

Algorithm 3.4 Parallel Vector-based PSO pseudocode.

1: procedure PVPSO

2: Initialize the particle swarm.

3: repeat

4: Set g to the index i of the unprocessed particle with the best pi.

5: Calculate λi for each particle.

6: Determine the niche radius Rj.

7: Process all particles whose distance from gbest lies within Rj and put

them into the niche Sj.

8: if the niche Sj contains less than 3 particles then

9: Spawn new particles in the niche.

10: end if

11: until each particle has been processed

12: for m steps do

13: for k steps do

14: Perform the particle swarm update.

15: end for

16: Update λi and Rj.

17: if the distance between the gbests of two niches is smaller than ε then

18: Merge the two niches.

19: end if

20: end for

21: end procedure

the niche radius can be defined as the distance from the neighborhood best of the

closest particle with a negative λi:

Rj = min
i:λi<0

‖xg − xi‖. (3.17)

The original VPSO algorithm identified and exploited niches in a sequential way,

starting from the global best and then repeating the procedure for the particles

outside its niche. In [SE05], the same authors developed the Parallel Vector-based

PSO (PVPSO), a more efficient version, based on the same principles, but which

followed a parallel approach. In this case, the different niches are identified and

maintained in parallel, with the introduction of a special procedure which can merge

60 CHAPTER 3. NICHING

Algorithm 3.5 The procedure for determining the species seeds in SPSO.

1: function Seeds(L: the set of particles in the swarm)

2: Sort particles in L based on decreasing fitness values.

3: Initialize the set of seeds: S = ∅.
4: for each particle i in L do

5: Let found = false.

6: for each seed j in S do

7: if d(xi, xj) < σ then

8: Let found = true.

9: Break.

10: end if

11: end for

12: if not found then

13: Add particle i to S.

14: end if

15: end for

16: return the set of seeds S.

17: end function

two niches when they become closer than a specified threshold ε. The pseudocode

for the PVPSO algorithm is given in Algorithm 3.4.

The vector-based approach has the appealing property of identifying niches by

using operations on vectors which are inherent to the particle swarm algorithm.

Thus it provides an elegant way to build a particle swam for multimodal function

optimization. However, when it was tested on common benchmark functions, the

results showed that its performances were lower than those of other approaches,

such as the NichePSO.

3.3.4 Species-based PSO

Another niching version of the particle swarm algorithm, the Species-based PSO

(SPSO) was proposed by Li [Li04]. The approach was the adaptation to the particle

swarm of the Species Conserving Genetic Algorithm [LBPC02], which we discussed

early, and of whom Li itself had been among the proponents. In particular, SPSO

adopted the same procedure for determining the species seeds, which identify the

3.3. NICHING TECHNIQUES IN PSO 61

Algorithm 3.6 Species-based PSO pseudocode.

1: procedure SPSO

2: Initialize the particle swarm.

3: repeat

4: Evaluate the particles in the swarm.

5: Execute function Seeds.

6: Assign each particle’s nbest to the closest seed.

7: Perform a standard particle swarm step.

8: until the termination criteria are met.

9: end procedure

niches in the population. This procedure, which we report in Algorithm 3.5, is

in fact essentially analogous to the clearing procedure proposed by Petrowski (see

Section 3.2.4).

Once the species seeds have been identified, all the other particles are assigned to

the niche formed by the closest seed, and the neighborhood structure is adapted to

reflect the division in niches. In fact, each species seed would serve as the nbest for

all the other particles in its niche. A description of the SPSO algorithm is reported

in Algorithm 3.6.

The SPSO niching approach can dynamically identify the number of niches in

the fitness landscape, and also proved to be suitable for the application on dynamic

environments [PL04]. However, it still requires a radius parameter σ to determine

the extension of the niches. Moreover, it implicitly assumes that all the niches have

roughly the same extension.

3.3.5 Adaptive Niching PSO

In [BL06], Bird and Li developed a new algorithm which could adaptively determine

the main niching parameters: the Adaptive Niching PSO (ANPSO).

The first step of the algorithm calculates r, the average distance between each

particle and its closest neighbor:

r =

∑N
i=1 minj 6=i ‖xi − xj‖

N
. (3.18)

This value is then used to determine the formation of niches. In fact, ANPSO

62 CHAPTER 3. NICHING

Algorithm 3.7 Pseudocode for the niche formation procedure in ANPSO.

1: function Niches(s: array of N ×N of integers ∈ [0, 4])

2: Determine r using Equation (3.18).

3: Create an undirected graph G with a node for each particle and no edges.

4: for i = 1 → N − 1 do

5: for j = i + 1 → N do

6: if ‖xi − xj‖ < r then

7: sij = min{sij + 1; 4}.
8: if sij ≤ 2 then

9: Create an edge in G from xi to xj.

10: end if

11: else

12: sij = max{sij − 1; 0}.
13: end if

14: end for

15: end for

16: Create the niches from the connected subgraphs in G.

17: return the niches.

18: end function

keeps track of the minimum distance between particles over a number of steps. At

each iteration, the graph G with particles as nodes is considered, and an edge is added

between every pair of particles which have been closer than r in the last 2 steps.

Niches are formed from the connected subgraphs of G, whilst all the particles which

end up with no edges remain outside any niches. The procedure for the formation

of niches is described in Algorithm 3.7. As it can be seen from Equation (3.18),

the computational cost of the niche formation procedure is O(N2) with respect to

distance calculations, which is quite expensive in comparison to other techniques.

ANPSO executes a particle swarm simulation with constriction factor, but

redefines the neighborhood topology at each step (see Algorithm 3.8). In fact,

once it determines the niches with the procedure in Algorithm 3.7, it uses a gbest

topology for each niche, and a von Neumann topology for non-niched particles. In

this way, the particles which have formed a niche will tend to perform a local search

around an optimum, whilst the others will continue searching the whole space.

3.3. NICHING TECHNIQUES IN PSO 63

Algorithm 3.8 ANPSO pseudocode.

1: procedure ANPSO

2: Initialize the particle swarm.

3: repeat

4: Evaluate the particles in the swarm.

5: Execute function NICHES.

6: for each particle i do

7: if i belongs to a niche Sj then

8: Assign i to a gbest topology on Sj.

9: else

10: Assign i to a global von Neumann topology.

11: end if

12: end for

13: Perform a standard particle swarm step.

14: until the termination criteria are met.

15: end procedure

ANPSO provides for a much more flexible technique when compared to others,

e.g. SPSO, which require critical, problem-dependent parameters, such as the niche

radius. However, this flexibility is paid with the rather higher computational cost of

the niche formation procedure. Although this added cost can seriously slow down

the algorithm, it should be considered that other approaches often require multiple

runs for the fine-tuning of the parameters, whilst ANPSO could be executed just

once. Moreover, for most complex problems, the cost of function evaluations is

much higher than that of distance calculations involved in the niching procedure,

rendering its overhead less significant.

64 CHAPTER 3. NICHING

Chapter 4

Clustering Particles

In this chapter we will introduce a new approach to niching for the particle swarm,

which is based on clustering. We will explain the basic concept behind the approach,

present the clustering algorithm we will use, the k-means, and discuss the first

implementation of the kPSO algorithm. Then we will follow the development of

the new algorithm, improving its performance and comparing it to other niching

approaches for PSO.

4.1 The basic concept

The Particle Swarm Optimization algorithm has many points in common with

evolutionary algorithms. Certainly enough to allow for the application of the concept

of niching, originated in the evolutionary framework. However, some peculiarities

of PSO must be taken into account. In PSO there is no selection mechanism: all

interactions among particles take place along the neighborhood structure. Therefore,

a niching mechanism should operate directly or indirectly on it, by modifying

neighborhood relationships among particles. Another aspect by which PSO differs

from the evolutionary approach consists of the fact that particles keep a memory

of their previous best positions. This information can definitely be exploited in the

discovery of niches.

We discussed in Section 3.3 about the implicit niching capabilities which the

PSO enjoys. Though they are not sufficient to provide for an effective method for

the location of multiple optima, they are a good starting point to build one. As

stated by Kennedy and Eberhart:

After a few iterations, particles in the particle swarm are seen to

66 CHAPTER 4. CLUSTERING PARTICLES

cluster in one or several regions of the search space. These clusters

indicate the presence of optima, where individuals’ relatively good

performances have caused them to attract their neighbors, who in moving

towards the optimal regions improved their own performances, attracting

their neighbors, and so on. ([KE01])

In fact, the tendency of particles to group near the optima of the function is

balanced in the end by the social influence of the particle which has found the

best position. Depending on the specific neighborhood topology, this influence will

extend to the other particles in the swarm at different rates. However, since the

graph representing the neighborhood relationship is in general a connected graph,

eventually all particles will tend to be attracted towards a single position.

The basic idea behind our approach is to dynamically adapt the neighborhood

structure in order to form different niches in the swarm. This is accomplished by

applying a standard clustering algorithm to identify niches and then restricting the

neighborhood of each particle to the other particles in the same cluster. In this way

each cluster of particles tends to perform a local search in the function domain and

to locate a different optimum.

4.2 Stereotyping

The use of clustering on the particles of a swarm is not new. In [Ken00], Kennedy

introduced the concept of stereotyping and discussed its impact on the performance

of the PSO algorithm. A stereotype is an individual or the idealization of an

individual which represents the norm of a group. The algorithm presented by

Kennedy used clustering to identify different groups in the swarm and defined the

centroid of each cluster as the stereotype which the particles in that cluster would

look at.

Kennedy’s study was related to the social metaphor underlying the particle

swarm. In the standard PSO, particles are attracted towards their personal best

position and the best position among their neighbors. This attraction simulated the

tendency to follow the best individual of a group. The application of stereotyping

shifted this attraction from the best individual to a statistical prototype (the centroid

of each cluster).

Stereotypes were identified by a cluster analysis on the particles’ previous best

positions. In particular, Kennedy used a version of the k-means clustering algorithm,

4.2. STEREOTYPING 67

Figure 4.1: Cluster A’s center (white circle performs better than any of the members

of the cluster, while Cluster B’s center performs better than some, and worse than

others. (Reproduced from [Ken00] – Figure 1)

which we will describe in Section 4.3. The experiments on stereotyping were aimed

at studying the swarm behavior when the cluster center was used in place of the

individual (i) best or of the neighborhood (g) best in the velocity update formula.

Thus, four variation were tried:

1. The formula used i’s and g’s individual previous best. (the standard swarm)

2. The individual best term was replaced with i’s cluster’s center.

3. The neighborhood best term was replaced with g’s cluster’s center.

4. Both best terms were replaced with cluster centers.

The performance of this variations of the particle swarm algorithm were tested

on a standard set of benchmark functions. Results showed that the 2nd version was

the only one with a clear advantage over the standard swarm. That is, substituting

the individual previous best with its cluster’s center gave it some advantage, while

substituting the neighborhood best with the respective centroid did not. A possible

explanation is that using a stereotype in place of an individual is in average a

quite good choice, whilst substituting the best individual with the stereotype will in

general lower its fitness (see 4.1).

In the end, the use of clustering for a stereotyping approach brought some useful

insight in the study of the particle swarm. However, its goals were completely

68 CHAPTER 4. CLUSTERING PARTICLES

unrelated to niching. In the following we will introduce a new variation of the

particle swarm technique which uses a very similar clustering procedure, but focuses

on the identification of niches.

4.3 k-means

In order to implement our clustering approach to niching, we chose to use

the k-means algorithm, which is probably the best-known partitional clustering

algorithm [DH73, XW05]. k-means is a very simple algorithm and, as we have

just seen, it had already been applied by Kennedy to cluster particles in a swarm in

his research on stereotyping.

In the following we will briefly describe the k-means algorithm in its application

to the particles of the swarm. The algorithm works by partitioning the search space

according to k randomly initialized points m1, . . . ,mk – the seeds. Each particle i

in the swarm is assigned to the cluster Ck′ associated with the seed which is closest

to its previous best position pi:

k′ = arg min
1≤j≤k

‖pi −mj‖. (4.1)

Then the seeds are recalculated as the means of the particles’ pbests in each

cluster:

mj =
1

Nj

∑
p∈Cj

p, (4.2)

where Nj is the number of particles in Cj. The partitioning is updated until no

change occurs. In Algorithm 4.1 the k-means procedure is reported in detail.

The time complexity of the k-means algorithm is O(N ·k), and since usually the

number of clusters k is much lower than the number of particles N , it is rather quick.

The clusters resulting from the application of the algorithm are typically compact

and hyperspherical, since k-means implicitly tends to minimize the squared error

(or scattering) J :

J =
∑

j

σj, (4.3)

where σj is the variance of the cluster Cj:

4.3. K-MEANS 69

Algorithm 4.1 k-means algorithm pseudocode.

1: procedure k-means

2: Initialize the seeds m1, . . . ,mk.

3: repeat

4: for each particle i do

5: Find the nearest seed mk′ (Equation (4.1)).

6: Assign i to the cluster Ck′ .

7: end for

8: for each cluster Cj do

9: Recalculate the new mean (Equation (4.2)).

10: end for

11: until no change occurs

12: end procedure

σ2
j =

1

Nj − 1

∑
p∈Cj

‖p−mj‖2. (4.4)

The main issues with the k-means algorithm are twofold:

1. It is a heuristic algorithm, which does not guarantee to converge on an optimal

solution, and, above all, strongly depends on the initial partition. For our goals

it is probably not a great issue not to have a perfect clustering, since we need

it just to roughly group particles in different niches. However, the dependency

on the initial seeds can be a problem. In fact, it is most commonly overcome

by repeating the k-means procedure a number rk of times with different

random seeds. In the end the clustering which minimizes J (Equation (4.3)) is

chosen. We chose to follow this approach, which, however, brings an additional

computational cost.

2. The number of clusters k is to be fixed a priori. In many applications this can

be a serious issue, as there may be no information about the natural number

of clusters in the data to be analyzed. In our case, the number of clusters

should be higher than the number of expected optima in the function under

consideration. Thus it is a parameter for our method which is much dependent

on the problem. In the following we will discuss in detail how different values

70 CHAPTER 4. CLUSTERING PARTICLES

for k influence our clustering–based PSO and how it can be modified to adapt

the value of k during the simulation.

4.4 k-means Particle Swarm Optimization

The algorithm we developed is the k-means Particle Swarm Optimization (kPSO),

the first version of which was introduced in [PS06]. It provides a basic

implementation of our clustering approach to niching. In particular, we employed

the standard k-means algorithm described in the previous section to cluster particles

according to their pbest, the previous best position.

kPSO uses the clusters of particles to modify the neighborhood topology so that

each particle can communicate only with particles in the same cluster. Therefore, the

swarm turns in a collection of sub-swarms which tend to explore different regions of

the search space. Since our goal is that the sub-swarms perform a rather local search,

each of them uses a gbest topology, with all the particles in a cluster connected to

each other.

Clustering is performed after the swarm random initialization and then repeated

at regular intervals during the swarm simulation. Between two clustering

applications the swarm (or more precisely, the sub-swarms corresponding to the

various clusters) follows its (their) normal dynamics. In fact, the multiple

applications of the clustering algorithm are meant to keep track of the swarm

dynamics: particles in different clusters at early stages of the simulation can end up

in the same cluster as they move towards the same local optimum or, in contrast,

a single cluster can be split into two as some of its particles fly towards a different

optimum.

A relevant difference between our approach and other niching PSO techniques is

the fact that the clustering algorithm is not applied at each step of the swarm

simulation, but only every c steps. The rationale behind this choice relies on

the natural tendency of the swarm to cluster around the function optima. The

application of a clustering procedure should just enhance this natural tendency

and, above all, maintain the clusters over time by blocking communication between

particles in different clusters. However, if the algorithm re-identified the sub-swarms

at each step, the particles would not have time to follow their natural dynamics.

Therefore, we let them evolve for some steps following the standard PSO dynamics.

In the following, we will discuss in detail the consequences of this approach, and

4.4. K-MEANS PARTICLE SWARM OPTIMIZATION 71

Algorithm 4.2 The procedure to identify niches in the kPSO algorithm.

1: procedure IdentifyNiches

2: Cluster particles’ pbests with the k-means algorithm.

3: Calculate the average number of particles per cluster, Navg.

4: Set Nu = 0.

5: for each cluster Cj do

6: if Nj > Navg then

7: Remove the Nj −Navg worst particles from Cj.

8: Add Nj −Navg to Nu.

9: end if

10: Adapt the neighborhood structure for the particles in Cj.

11: end for

12: Reinitialize the Nu un-niched particles.

13: end procedure

set up some experiments to determine the actual effect it has on the performance of

the algorithm. In the mean time, it should be noted that, as a side effect, this choice

has the obvious advantage of introducing a smaller computational overhead, since

the clustering procedure is applied only ∼ T/c times (T being the total number of

simulation steps).

After performing the clustering, a cutting procedure is applied: we measure the

average number of particles per cluster Navg and proceed by removing the exceeding

particles from the clusters which are bigger than the average. To this end, we keep

the particles in each cluster Cj sorted by their previous best position fitness, so that

we can remove the worst Nj −Navg particles of the cluster.

The goal of the cutting procedure is to avoid the formation of overcrowded niches,

which would end up in a waste of computational power, as too many particles

would explore the search space around a single optimum. Instead, the Nu exceeding

particles removed from the overcrowded clusters can be randomly reinitialized, in

order to explore new areas.

Niches are modeled after the reduced clusters, as described in Algorithm 4.2.

Each particle’s neighborhood is set to the ensemble of particles in the same cluster.

Thus we will have k (the number of clusters) niches whose particles are fully–

connected (see Figure 4.2), realizing a gbest topology in each niche.

72 CHAPTER 4. CLUSTERING PARTICLES

Figure 4.2: Particles are linked to all the other particles in the same cluster. Clusters

with a number of particles greater than the average are reduced and the exceeding

particles reinitialized (see the particle in white).

The remaining particles, which were removed from the overcrowded clusters and

reinitialized, are used to explore the search space for possible new interesting areas.

In the first implementation of the algorithm, these un-niched particles will have

no connections. Thus they will perform the kind of non-deterministic hill-climbing

associated with the cognition only model [Ken97] (see also Section 2.4.3).

Once the neighborhood structure has been set both for the niched and the un-

niched particles, the algorithm performs a fixed number c of steps of the constriction-

factor PSO (see Section 2.3.1). In this phase there are only two aspects in which

kPSO differs from the standard algorithm:

1. The particles assigned to a niche Cj will have their velocities clamped to

Vmax = 2σj (see Equation (4.4)), which is proportional to the width of the

cluster.

2. The un-niched particles will behave as in a cognition only model.

After c steps, the clustering and cutting procedures are repeated. The pseudo-

code for kPSO is reported in Algorithm 4.3.

The application of the kPSO algorithm requires to set a few additional

parameters with respect to the standard PSO. We already discussed about the first

4.4. K-MEANS PARTICLE SWARM OPTIMIZATION 73

Algorithm 4.3 kPSO algorithm pseudocode.

1: procedure kPSO

2: Initialize particles with random positions and velocities.

3: Set particles’ pbests to their current positions.

4: Calculate particles’ fitness and set gbest.

5: for step t = 1 → T do

6: if t mod c = 0 then . Every c steps.

7: Execute the procedure IdentifyNiches.

8: end if

9: Update particles’ velocities. . Perform the standard PSO step.

10: Update particles’ positions.

11: Recalculate particles’ fitness.

12: Update particles’ and neighborhood best positions.

13: end for

14: end procedure

one, c, the number of PSO steps between two clustering applications.

The other additional parameters are strongly tied to the specific clustering

algorithm chosen, k-means. Since the k-means algorithm depends on the initial

assignment of the seeds, it must be repeated a number rk of times for a single

clustering application. The optimal clustering is chosen by selecting the one with

minimal scattering J (see Section 4.3).

The second parameter for the k-means algorithm is k, the number of clusters,

which is also the most problematic, as it is strongly dependent on the number of

optima of the function under consideration. When this number is known, k can be

set to a value which is slightly larger than it. In this way, the algorithm will maintain

a sufficient number of clusters to be able to identify all the optima, while possibly

forming spurious clusters, that is clusters not corresponding to any optima. In the

following, we will set up some experiments which will better explain the dynamics

of kPSO.

4.4.1 First experiments

The first experiments on the kPSO algorithm have two main goals:

74 CHAPTER 4. CLUSTERING PARTICLES

1. to provide a first confirmation that the clustering approach is indeed feasible;

2. to help setting the new parameters and understanding their influence on the

performance of the algorithm.

Therefore, we chose to start the study using multimodal functions which have

been built ad hoc for the purpose. In fact, we will consider two functions which are

both the sum of multiple two-dimensional gaussians, each in the form:

G(x, y) =
1

2πσ2
e−

(x−µx)2+(y−µy)2

2σ2 , (4.5)

thus with mean (µx, µy) and variance σI2 (where I2 is the identity matrix in R2).

The resulting functions will have an optimum for each gaussian, and its position will

be the mean of the gaussian. The two functions we considered for the tests differ

for the number of optima:

1. The first function, G1, is the sum of 5 gaussians, all of them with σ = 0.4,

and with the following means:

G1 : {(0, 0), (1, 1), (−1, 1), (−1,−1), (1,−1)}. (4.6)

G1 was studied in the range (x, y) ∈ [−2, 2]× [−2, 2], as plotted in Figure 4.3.

2. The second one, G2, is the sum of 25 gaussians. The variance is still σ = 0.4

for all of them, while their means are:

G2 : {(0, 0), (1, 1), (−1, 1), (−1,−1), (1,−1),

(2, 0), (2, 2), (0, 2), (−2,−2), (−2, 0),

(−2,−2), (0,−2), (2,−2), (3, 1), (3, 3),

(1, 3), (−1, 3), (−3, 3), (−3, 1), (−3,−1),

(−3,−3), (−1,−3), (1,−3), (3,−3), (3,−1)}. (4.7)

G2 was studied in the range (x, y) ∈ [−4, 4]× [−4, 4], as plotted in Figure 4.4.

In all the tests reported in this section, we measured the performance of the

kPSO algorithm varying the main parameters of the algorithm. Regarding those

parameters which are in common with the standard constriction-factor PSO, we used

4.4. K-MEANS PARTICLE SWARM OPTIMIZATION 75

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

G1(x,y)

x

y

G1(x,y)

Figure 4.3: Function G1.

the common values of pincr = gincr = 2.05 and χ ' 0.730. The number of particles

obviously varied for the two functions: we used 30 particles in the experiments on

function G1 and 150 in the experiments on function G2.

We repeated each experiment 100 times, and calculated the average values of

two performance measures:

1. Optima (%): The percentage of optima the algorithm can find with respect

to the total number of optima of the function under consideration, within a

maximum of T = 1000 iterations. An optimum is considered to be found

when the best position of a particle in a niche is within a distance of dε = 0.1

from the optimal position and the function value is within ε = 0.001 from the

optimal value. The first threshold, dε, is needed just to distinguish between

different optima, so it can be set to a value roughly smaller than half the

minimum distance between two optima. Instead, the second one, ε, actually

defines the degree of refinement of the solutions.

76 CHAPTER 4. CLUSTERING PARTICLES

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

 0
 1

 2
 3

 4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

G2(x,y)

x

y

G2(x,y)

Figure 4.4: Function G2.

2. No. of steps : The number of steps required to find all the optima of the

function under consideration. Actually, we check that the algorithm also

maintains all the optima for at least 10 iterations after they have been found.

In order to study the influence of the new parameters introduced in the algorithm

by the niching strategy, our methodology devised a first exploratory phase which

had the aim to determine a good choice of values for each of the parameters on the

two functions G1 and G2. Then a series of tests were conducted in which we let one

of the parameters vary in a wide range while keeping the others fixed at their optimal

values. In Table 4.1 we report the parameters values which have been selected in

the exploratory phase and then used in the successive tests as fixed values for the

parameters which were not the subject of the tests.

4.4. K-MEANS PARTICLE SWARM OPTIMIZATION 77

Table 4.1: Selected parameters for the experiments on functions G1 and G2. In each

series of tests, one of the parameters c, k, and rk are varied, while the other two are

kept fixed at their optimal values.

Function Optima Particles c k rk

G1 5 30 6 7 10

G2 25 150 25 40 10

c: the number of steps before clustering

The first parameter under study is c, the number of steps between two applications

of the clustering procedure. We run the kPSO algorithm on the two test functions

using values for c from 1 to 50.

In Figure 4.5 we plotted the results obtained on the simpler function G1. The

first thing to note is that the algorithm succeeded in locating all the optima of

the function with every value of c larger than 1. When c = 1, that is, when the

clustering is repeated at every step, the algorithm could find on average only 98% of

the optima. The average number of steps required to find the optima, instead, was

very low when the clustering was repeated every a few iterations, roughly between

3 and 10, then it grew almost linearly with c. A possible explanation is that the

swarm needed a few steps to localize the optima, but then it remained stuck until a

new clustering was applied. After that, it could actually find new optima.

The behavior of kPSO when applied on function G2 followed a similar pattern

(see Figure 4.6). On this more complex function, the algorithm needed more steps

between two clustering applications. In fact, when c = 1 it could not find more than

∼ 88% of the optima, for greater values the percentage went up to ∼ 99%, then

after c ' 20 it stabilized on ∼ 99.9%. The average number of steps had its minimum

when 20 . c . 30, then it started growing in a similar way to the previous case.

In the end, we concluded that there is a minimal threshold for the c parameter

in order for the kPSO algorithm to work at its full potential regarding the number

of optima it can find. Conversely, setting c to a too high value has no negative

influence on the percentage of optima, but deteriorates its performance regarding

the number of required steps. Thus, we selected as the optimal values for c on the

functions G1 and G2 respectively c = 6 and c = 25.

78 CHAPTER 4. CLUSTERING PARTICLES

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

O
pt

im
a

(%
)

N
o

of
 s

te
ps

c

Optima (%)
No of steps

Figure 4.5: Performance of kPSO on function G1 with varying c. Error bars

represent the standard deviation.

k: the number of clusters

The second parameter we studied was the number of clusters for the k-means

algorithm, k. Also this parameter proved to be rather critical for the kPSO

algorithm, since it is much dependent on the function under consideration. In a

way, the issue with k is similar to that with c: as we just discussed, in fact, also

the parameter c needs to be adapted to the degree of complexity of the function.

However, it is really important only to set c to a value that is high enough to pass a

lower threshold, whilst setting it too high has just a negative effect on performance

in term of number of steps.

In setting the parameter k, one should know a priori the number of optima of

the function. Obviously, with a value for k which is less than the number of optima,

the algorithm can not identify enough niches to look for all the optima. However, if

it is set to a too much higher value, the k-means algorithm can fail to identify the

4.4. K-MEANS PARTICLE SWARM OPTIMIZATION 79

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

O
pt

im
a

(%
)

N
o

of
 s

te
ps

c

Optima (%)
No of steps

Figure 4.6: Performance of kPSO on function G2 with varying c. Error bars

represent the standard deviation.

natural clusters the particles tend to form around the optima.

In our experiments we varied k from 1 to half the number of the particles in the

swarm, thus respectively 15 for function G1 (see Figure 4.7) and 75 for function G2

(see Figure 4.8). In both cases, the algorithm started locating all the optima for

values of k higher than the actual number of optima. On the other hand, with much

higher values, the percentage of optima started going down again. This is probably

related to the fact that increasing k too much, the algorithm ended up with clusters

with just 1 or 2 particles, which could not properly behave as sub-swarms.

The second performance measure, the number of steps required to locate the

optima, was strongly related to the first. In fact, it achieved the lowest values

respectively with 6 . k . 9 on function G1 and with 35 . k . 45 on function G2.

Thus we selected the two values of k = 7 and k = 40 as the optimal ones.

80 CHAPTER 4. CLUSTERING PARTICLES

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16
 20

 30

 40

 50

 60

 70

 80

 90

 100

O
pt

im
a

(%
)

N
o

of
 s

te
ps

k

Optima (%)
No of steps

Figure 4.7: Performance of kPSO on function G1 with varying k. Error bars

represent the standard deviation.

rk: the number of runs of k-means

The number of runs of the k-means algorithm for each clustering application, rk,

was the most easier parameter to set. As discussed in Section 4.3, since k-means

strongly depends on the initial random seeds, it must be executed multiple time to

obtain a fairly good clustering.

We run the kPSO algorithm on the functions G1 and G2 with rk varying from 1

to 50. As shown in Figure 4.9 and Figure 4.10, a number of repetitions in the order

of rk = 10 is sufficient in both cases to find a good clustering.

4.5. COMPARISON WITH OTHER ALGORITHMS 81

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

O
pt

im
a

(%
)

N
o

of
 s

te
ps

k

Optima (%)
No of steps

Figure 4.8: Performance of kPSO on function G2 with varying k. Error bars

represent the standard deviation.

4.5 Comparison with other algorithms

The first experiments we presented in the previous section were mostly intended to

investigate the potential of the kPSO algorithm and to gain some information about

parameter settings. For this reason, the functions employed were built ad hoc for

the task.

In this section, our goal is to provide a first comparison of our algorithm with

other niching techniques for the particle swarm. Therefore, we will report and

slightly extend on the analysis published in [PS06], where kPSO was introduced for

the first time.

The analysis will focus on the capability of the niching algorithm to locate all

the optima of the functions in a benchmark set which is widely used in literature.

In this phase we are not yet considering neither the accuracy of the solutions the

82 CHAPTER 4. CLUSTERING PARTICLES

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50
 20

 40

 60

 80

 100

 120

 140

 160

O
pt

im
a

(%
)

N
o

of
 s

te
ps

rk

Optima (%)
No of steps

Figure 4.9: Performance of kPSO on function G1 with varying rk. Error bars

represent the standard deviation.

algorithm can find, nor the computational cost of the optimization.

4.5.1 Experimental setup

Our experiments reproduce the same setup reported in [SE05], in order to perform

a fair comparison with the performance of the other algorithms. The benchmark set

of multimodal functions include 4 one-dimensional functions and 3 two-dimensional

ones.

The first 4 one-dimensional functions are defined by the following equations:

F1(x) = sin6(5πx). (4.8)

F2(x) = e−2 log(2)(x−0.1
0.8)

2

sin6(5πx). (4.9)

4.5. COMPARISON WITH OTHER ALGORITHMS 83

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

O
pt

im
a

(%
)

N
o

of
 s

te
ps

rk

Optima (%)
No of steps

Figure 4.10: Performance of kPSO on function G2 with varying rk. Error bars

represent the standard deviation.

F3(x) = sin6(5π(x
3
4 − 0.05)). (4.10)

F4(x) = e−2 log(2)(x−0.08
0.854)

2

sin6(5π(x
3
4 − 0.05)). (4.11)

All of them have been studied in the range x ∈ [0, 1], in which they all have 5

maxima. Function F1 is the simplest one of the set: its optima are evenly spaced

and have the same height (see Figure 4.11). The successive functions start adding

some degree of complexity: function F2 has its optima located at the same positions,

but with exponentially decreasing heights (see Figure 4.12); function F3 has again

all the 5 optima at the same height, but they are unevenly spaced (see Figure 4.13).

Finally function F4 combines the previous two, with unevenly spaced optima at

different heights (see Figure 4.14).

The remaining 3 two-dimensional functions are:

84 CHAPTER 4. CLUSTERING PARTICLES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
1(

x)

x

Figure 4.11: Function F1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
2(

x)

x

Figure 4.12: Function F2.

4.5. COMPARISON WITH OTHER ALGORITHMS 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
3(

x)

x

Figure 4.13: Function F3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
4(

x)

x

Figure 4.14: Function F4.

86 CHAPTER 4. CLUSTERING PARTICLES

-4
-2

 0
 2

 4 -4
-2

 0
 2

 4

-200
-150
-100

-50
 0

 50
 100
 150
 200

F5(x,y)

x

y

F5(x,y)

Figure 4.15: Function F5 (Himmelbrau).

4.5. COMPARISON WITH OTHER ALGORITHMS 87

-4
-2

 0
 2

 4 -4
-2

 0
 2

 4

 0

 0.5

 1

 1.5

 2

F6(x,y)

x

y

F6(x,y)

Figure 4.16: Function F6 (Griewank).

• Function F5, also known as the Himmelbrau function. It is defined by the

equation:

F5(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2. (4.12)

It has been studied in the range (x, y) ∈ [−5, 5] × [−5, 5], in which it has 4

maxima (see Figure 4.15).

• Function F6, also known as the Griewank function, defined as:

F6(x, y) =
x2 + y2

4000
− cos(x)cos(

y√
2
) + 1. (4.13)

The range is the same as the Himmelbrau function, (x, y) ∈ [−5, 5]× [−5, 5].

Here the Griewank function has 5 minima (see Figure 4.16).

• Function F7, the Rastrigin function. It can be defined by:

88 CHAPTER 4. CLUSTERING PARTICLES

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

 0

 10

 20

 30

 40

 50

F7(x,y)

x

y

F7(x,y)

Figure 4.17: Function F7 (Rastrigin).

4.5. COMPARISON WITH OTHER ALGORITHMS 89

Table 4.2: Performance results. Figures indicate the number of experiments out of

100 in which the algorithm located all optima.

% experiments locating all optima

F NichePSO Parallel Vector-based PSO kPSO

F1 100% 100% 100%
F2 100% 100% 100%
F3 100% 100% 100%
F4 100% 100% 100%
F5 100% 98% 100%
F6 100% 95% 98%
F7 100% 91% 99%

F7(x, y) = x2 + y2 − 10(cos(2πx) + cos(2πy)) + 20. (4.14)

The Rastrigin function was studied in the range (x, y) ∈ [−1.25, 1.25] ×
[−1.25, 1.25], where it has 9 minima (see Figure 4.17).

The kPSO algorithm was applied using quite standard particle swarm

coefficients, such as c1 = c2 = 2.05, resulting in χ ' 0.730. Both the number of

particles and the number of clusters were chosen to be proportional to the number

of the expected optima of the function under consideration. In particular, let m be

the number of optima for a given function, then kPSO was applied using N particles

and k clusters such that:

N = 6m and k =
3

2
m. (4.15)

Thus we used 30 particles for functions F1 to F4 and Griewank (F6), 24 particles

for Himmelbrau (F5), and 54 for Rastrigin (F7). For all test functions the swarm

was allowed to fly for 30 iterations, during which the clustering procedure was carried

on every c = 6 steps.

4.5.2 Results

Results are summarized in Table 4.2, where the figures indicate the number of

experiments in which the algorithm found all the optima on a total number

90 CHAPTER 4. CLUSTERING PARTICLES

of 100 experiments for each function. The corresponding figures for the

NichePSO [BEvdB02a] and the Parallel Vector-based PSO [SE05] are also reported.

The results show that kPSO is quite on par performance-wise with the other

particle swarm niching algorithms. In particular, on the one-dimensional functions,

all the algorithms could locate all the optima, thus achieving a figure of 100%. On

the two-dimensional functions, instead, only the NichePSO approach could always

achieve maximum performance. However, the kPSO outperformed the Parallel

Vector-based PSO, although it achieved slightly worse results than NichePSO.

4.6 Un-niched particles

The experiments of the previous section proved that kPSO is quite competitive

with respect to other PSO niching approach, but still needs some refinement. In

particular, it could not find all the optima of some of the most complex functions

of the benchmark set, unlike NichePSO.

One of the aspects of the algorithm which can be improved is the behavior of

the un-niched particles. In the basic version of kPSO, in fact, the particles which

are re-initialized after the application of the clustering procedure, perform a simple

local search, behaving as in the cognition only model. It is possible that the poor

capabilities of this model hinder the search of new solutions, leading to the less-

than-optimal performance on some more complex functions.

In order to investigate this issue, we modified the kPSO algorithm so that

the un-niched particles are organized in a more efficient social structure. We run

experiments using the lbest neighborhood topology with varying values for k (the

number of connections on the ring) and the von Neumann lattice neighborhood (see

Figure 4.18). The particles which are re-initialized after each clustering application

are then organized on the new topology. In particular for the von Neumann lattice,

we arrange the Nu un-niched particles in rows of b
√

Nu + 1
2
c particles, with the

possibly uneven number of particles on the last row connected as in Figure 4.19.

The von Neumann topology showed the best results, allowing the algorithm to

consistently locate all the solutions in every run. Thus we decided to use it in all

subsequent experiments. In fact, we repeated the test performed in the previous

section with the new topology, and obtained a success rate of 100% in locating all

the optima even for the most complex functions.

4.6. UN-NICHED PARTICLES 91

Figure 4.18: The particles not belonging to any niche (drawn in white) are organized

in a von Neumann lattice topology.

92 CHAPTER 4. CLUSTERING PARTICLES

Figure 4.19: An example of a von Neumann lattice with an uneven number of

particles. The connections of the particles on the last two rows are wrapped to the

left or to the bottom as showed in figure.

4.6. UN-NICHED PARTICLES 93

Table 4.3: Number of evaluations required to locate all the optima of the respective

functions. The average and standard deviation values over 100 runs are reported.

The results in parentheses indicate the number of evaluations required to locate only

the single global optimum of functions F2 and F4. The p-values for an algorithm

refer to the t-test comparing its results with those of kPSO on the same function.

F kPSO NichePSO SPSO
p-value p-value

F1 1382± 243 1628± 288 < 0.001 2372± 109 < 0.001
F2 1599± 391 (674± 311) 2934± 475 < 0.001 (352± 202) < 0.001
F3 1501± 346 2404± 195 < 0.001 1248± 319 < 0.001
F4 1530± 395 (651± 318) 2820± 517 < 0.001 (503± 280) < 0.001
F5 2032± 340 2151± 200 0.003 3155± 402 < 0.001

4.6.1 Efficiency test

The new version of the kPSO algorithm with the un-niched particles organized

on a von Neumann topology proved to be capable of matching NichePSO in its

ability to locate all the optima of the functions in our benchmark set. At this

point it is interesting to consider another important aspect of the performance of

an optimization algorithm, that is its efficiency, which is usually measured in terms

of the number of function evaluations required to locate all the optima with an

accuracy of ε = 0.0001.

In order to evaluate the efficiency, we repeated a selection of the experiments

performed in Section 4.5. In particular, the main goal of the new experiments

was to compare the performance of kPSO with those of NichePSO and of SPSO,

respectively reported in [Bri02] and in [Li04]. An analysis of the statistical

significance of the results was carried out by performing two t-tests between the

results obtained with kPSO and respectively NichePSO and SPSO on the same

function. The α-level was set to 0.001, thus accepting only very significant results.

The results are reported in Table 4.3, along with the p-values corresponding to

the t-tests comparing the results of kPSO and the competing algorithm. In all the

experiments, kPSO performed quite well, requiring a significantly smaller number of

evaluations than NichePSO on all the functions except for F5, where the difference

was not significant. The comparison with the other particle swarm niching algorithm

94 CHAPTER 4. CLUSTERING PARTICLES

was more controversial, since SPSO performed better on functions F1 and F3, but

worse on F5. Functions F2 and F4 are to be considered on their own, since they

have 1 global optimum and 4 local ones and SPSO was set up to locate only the

global optimum. In fact, the results reported in parentheses in Table 4.3, for both

SPSO and kPSO, refer to the number of evaluations required to find just the global

optimum.

4.7 Estimating the number of clusters

One of the major issues with our approach in kPSO is the fact that one needs to

specify the number of clusters k, which is strongly related to the number of optima

of the function under consideration. Unfortunately, often the number of optima of

a function cannot be estimated a priori ; rather, it would be desirable that it could

be discovered by the optimization algorithm itself.

The need to know the number of clusters is inherited by kPSO from the specific

clustering algorithm we chose, k-means, although it is a problem which is common

to a wide class of clustering algorithms. Significant research has focused on the

problem of estimating k, using very different approaches [XW05]. Here we will

discuss an approach which leads to the estimation of k by the optimization of a

criterion function in a probabilistic mixture-model framework.

4.7.1 Mixture Densities

In this framework, the objects to be clustered (the particles’ position in our case)

are assumed to be generated by several probabilistic distributions. In particular,

to each cluster corresponds a different distribution. Thus, a general model for the

whole set of objects will be given by a combination of different probability densities,

the Mixture Densities [MP00], which can be defined as:

ρ(x|θ) =
k∑

j=1

P (Cj)ρ(x|Cj, θj). (4.16)

In Equation (4.16), P (Cj) is the prior probability of an object x to belong to the

cluster Cj, with the condition that:

k∑
j=1

P (Cj) = 1. (4.17)

4.7. ESTIMATING THE NUMBER OF CLUSTERS 95

Instead, ρ(x|Cj, θj) is the conditional probability distribution associated with

the same cluster (component density). Finally, θ = (θ1, . . . ,θk) is the vector of the

parameters of the distributions for all clusters.

Assuming that the number of clusters k, the prior probabilities, and the form

of each of the probability densities are known, it is possible to estimate the

best parameters of a model by maximizing the probability of generating all the

observations (Maximum Likelihood):

ρ({x1, . . . ,xN}|θ) =
N∏

i=1

ρ(xi|θ), (4.18)

or, in a logarithm form:

`(θ) =
N∑

i=1

log ρ(xi|θ). (4.19)

It has been proven [DH73], that the k-means algorithm implicitly performs a

maximization of the likelihood under the assumption that the component densities

are spherical Gaussian distributions.

Extending on these considerations, finding the number of clusters k is equivalent

to fitting the model with the observed data and optimizing some criterion. This can

be done by applying the k-means algorithm with k varying in a range of possible

values and then choosing the best clustering.

However, the problem arises of choosing a valid criterion to select the best

clustering. Here the maximum likelihood is not helping, since it invariably leads

to the choice of the highest k. Thus, a large number of alternative criteria have

been proposed, which combine concepts from information theory. The most typical

examples include the Akaike’s information criterion (AIC) [Aka74] [WC92] and

the Bayesian Information Criterion (BIC) [Sch78] [PM00]. However, there is no

criterion that is superior to others in general. The selection of different criteria is

still dependent on the particular problem at hand.

4.7.2 The Bayesian Information Criterion

In our approach, we found that we had very similar results using either AIC or BIC,

with a slightly better performance for the latter. Thus, we chose to integrate the

Bayesian Information Criterion (BIC), also known as the Schwarz criterion, in order

96 CHAPTER 4. CLUSTERING PARTICLES

to estimate the best choice of k. Given a clustering Ck, formed by k clusters of a

swarm with N particles, we can calculate its BIC value with:

BIC(Ck) = `(Ck)−
p

2
· log N, (4.20)

where `(Ck) is the log-likelihood of the clustering and p is the number of

parameters. The formula for the log-likelihood can be calculated considering that

we are assuming components densities in the form of spherical Gaussians:

ρ(x|mj, σj) =
1√

2πσd
j

e
− 1

2σ2
j

‖x−mj‖2
, (4.21)

and the class probabilities are estimated with the ratios between the number of

particles in a cluster and the total number of particles:

P (Cj) =
Nj

N
. (4.22)

After a few mathematical transformations, the log-likelihood of the clustering,

`(Ck), can be written as:

`(Ck) =
N∑

i=1

log ρ(xi|Ck) =
k∑

j=1

`(Cj)−N · log N, (4.23)

where the term `(Cj) is the log-likelihood for each cluster Cj:

`(Cj) = −Nj

2
· log 2π − Nj · d

2
· log σ2

j −
Nj − 1

2
+ Nj · log Nj. (4.24)

The number of parameters p is given by the sum of k−1 class probabilities (given

the condition in Equation (4.17)), d · k centroid coordinates, and the k variance

estimates σj. Thus we have:

p = (k − 1) + d · k + k. (4.25)

In the improved version of the kPSO algorithm, at each clustering application,

k-means is thus repeated with varying values for k, then the clustering with the

highest BIC is chosen. In this way there is no need to set a value for k at the

beginning of the run. Rather, it can vary across the execution of the algorithm, as

the particles in the swarm slowly discover new promising areas and organize in new

niches.

4.8. EXPERIMENTS WITH THE IMPROVED KPSO 97

4.8 Experiments with the improved kPSO

In the previous series of tests, we showed how the basic version of the kPSO

algorithm, without the automatic selection of the number of clusters, could

outperform existing algorithm such as NichePSO and Parallel Vector-based PSO. In

general, however, its performance was not as good as that of SPSO. In this section

we will set up a new experiment in which we will compare the improved kPSO, which

can adaptively identify the number of clusters using BIC, to the SPSO algorithm

and also to the ANPSO algorithm.

The relationship between ANPSO and SPSO is in a way similar to that between

the improved kPSO and its basic version. In fact, while SPSO does not require in

input the number of clusters, it does need to know a priori some information about

the function to optimize, specifically, the niche radius σ. Thus, the same author of

SPSO, Li, contributed to the introduction of ANPSO, specifically to overcome this

limitation, as the latter algorithm can adaptively determine the niche radius.

4.8.1 Benchmark functions

The study was conducted on a new benchmark set of multimodal functions, chosen

to be consistent with the one used in [BL06] to compare the performance of SPSO

and ANPSO. In the following, we describe the multimodal functions on which the

experiments have been carried out.

Branin RCOS

The first function in the study was the Branin RCOS function, a two-dimensional

function defined as:

M1(x, y) =

(
y − 5.1x2

4π2
+

5x

π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x) + 10. (4.26)

It was studied in the range (x, y) ∈ [−5, 10]× [0, 15], where it has 3 minima, as

plotted in Figure 4.20.

Six-Hump Camel Back

The second function was the Six-Hump Camel Back, plotted in Figure 4.21, and

defined as:

98 CHAPTER 4. CLUSTERING PARTICLES

-4 -2 0 2 4 6 8 10 0
 2

 4
 6

 8
 10

 12
 14

 0
 50

 100
 150
 200
 250
 300
 350

M1(x,y)

x

y

M1(x,y)

Figure 4.20: Function M1 (Branin RCOS).

M2(x, y) = −4

[(
4− 2.1x2 +

x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2

]
. (4.27)

It was studied in the range (x, y) ∈ [−1.9, 1.9]× [−1.1, 1.1], where it has 2 global

maxima, but several deceptive local ones.

Deb’s 1st function

The third function, the Deb’s 1st function, was the same simple mono-dimensional

function F1 used in the experiments in Section 4.5. It has with 5 equally spaced

global maxima in the considered range x ∈ [0, 1] (see Figure 4.11). The Deb’s 1st

function was defined in Equation (4.8). We report it here for clarity:

M3(x) = F1(x) = sin6(5πx). (4.28)

4.8. EXPERIMENTS WITH THE IMPROVED KPSO 99

-1.5 -1 -0.5 0 0.5 1 1.5 -1
-0.5

 0
 0.5

 1

-25
-20
-15
-10

-5
 0
 5

M2(x,y)

x

y

M2(x,y)

Figure 4.21: Function M2 (Six-Hump Camel Back).

Himmelblau

The fourth function was the Himmelblau function, again the same used as F5 in

Section 4.5 (Figure 4.15). It is a two-dimensional function, defined as (see also

Equation (4.12)):

M4(x, y) = F5(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2. (4.29)

In these experiments, it was studied in the slightly extended range (x, y) ∈
[−6, 6] × [−6, 6]. However, this does not actually change anything, since in this

range it still has the same 4 maxima.

Shubert 2D

Finally, the fifth and last function of the study was the Shubert 2D function, with

18 global optima grouped in 9 clusters and surrounded by a very high number of

local optima (Figure 4.22). The Shubert 2D function is defined as:

100 CHAPTER 4. CLUSTERING PARTICLES

!10

!5

0

5

10

x

!10

!5

0

5

10

y

!20

0

20

!x,y"

10

!5

0

5
x

M5(x,y)

Figure 4.22: Function M5 (Shubert 2D).

M5(x, y) =
5∑

i=1

i cos[(i + 1)x + i]
5∑

i=1

i cos[(i + 1)y + i], (4.30)

and it was studied in the range (x, y) ∈ [−10, 10]× [−10, 10].

4.8.2 Running kPSO

In order to show how the improved version of our algorithm can effectively identify

niches surrounding the optima of a function, we report in Figure 4.23 several

significant steps of kPSO running on the Branin RCOS function M1. In the

snapshots we plotted, it is shown how, at the beginning of the run, the particles

of the swarm are randomly distributed on the search space. Then, during the first

steps of the particle swarm simulation, they naturally start to split in different

4.8. EXPERIMENTS WITH THE IMPROVED KPSO 101

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

30

(a) Step 1

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

30

(b) Step 6

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

5
7
7
3

(c) Step 10

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

5
7
7
3

(d) Step 17

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

3
7
7
7

(e) Step 41

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10

9
9
8

(f) Step 65

Figure 4.23: Significant steps of a kPSO run on function M1. In the first step

particles are randomly distributed on the search space. At step 6, the swarm is

naturally splitting in different groups of particles around the global optima of the

function. At step 10, the first clustering is performed, which identifies 4 niches.

Step 17 shows how particles belonging to different niches can get mixed up when

their niches are actually related to the same global optimum. Finally, at step 65,

the algorithm stabilizes on 3 niches corresponding to the 3 global optima.

102 CHAPTER 4. CLUSTERING PARTICLES

groups, roughly adapting to the fitness landscape.

When the first clustering application occurs (see Figure 4.23c), it identifies 4

niches, of which 3 actually correspond to the global optima, whilst the other is a

spurious one. In the particular case that is shown here, the algorithm will eventually

converge to exactly 3 clusters, as it is shown in Figure 4.23f, relative to the 62nd

simulation step. However, such convergence is not the final goal of kPSO: as long

as a sufficient number of clusters has formed to cover all the optima, the presence

of spurious clusters is really of no harm to the optimization algorithms. Besides, in

early phases of the optimization, the presence of additional clusters can be helpful

in locating new interesting regions of the search space.

4.8.3 Results

In Table 4.4 we report the results obtained on the five benchmark functions with

kPSO, SPSO, and ANPSO. The experiments were carried out so that for each

function the optimization algorithm was executed with two different population sizes

(N). Each execution was repeated 50 times, setting the threshold for the maximum

number of iteration to 2000 simulation steps.

In all the experiments, the goal of the optimization algorithm was to locate all

the global optima with an accuracy of ε = 0.00001 and to maintain them for at least

10 simulation steps. Since all the algorithms could actually fulfill the goal within the

maximum number of 2000 iterations, we only report in Table 4.4 their performance

in term of the number of function evaluations they required.

The first four functions in the benchmark, M1, . . . ,M4, proved to be quite easy

to optimize. A population size of just 30 particles was more than sufficient to identify

all the global optima with a quite low number of function evaluations. In Table 4.4,

we report also the results with a population of 60 particles in order to compare them

to those in [BL06]. kPSO proved to have a clear advantage on all of these functions

with respect to SPSO and ANPSO. In particular, we performed a t-test between

the results obtained with kPSO and the other two algorithms and it showed that

the performance advantage of kPSO is significant within an α-level of 0.001.

In the experiments with functions M1 to M4 we used a value of c = 10 for

the number of steps between two clustering applications. With higher values the

performances of the algorithm did not vary significantly, meaning that it was a

sufficient number of steps for the particles to adjust to the changed social structure

after a clustering application.

4.8. EXPERIMENTS WITH THE IMPROVED KPSO 103

Table 4.4: Number of evaluations required to find all global optima of the benchmark

functions with different population sizes (N). The average and standard deviation

values over 50 runs are reported. The p-values for an algorithm refer to the t-test

comparing its results with those of kPSO on the same function.

F N kPSO SPSO ANPSO
p-value p-value

M1 30 2084± 440 3169± 692 < 0.001 5220± 3323 < 0.001
60 3688± 717 6226± 1707 < 0.001 6927± 2034 < 0.001

M2 30 1124± 216 2872± 827 < 0.001 2798± 857 < 0.001
60 2127± 341 5820± 1469 < 0.001 4569± 1316 < 0.001

M3 30 1207± 688 2007± 703 < 0.001 6124± 2465 < 0.001
60 1654± 705 4848± 2092 < 0.001 8665± 2974 < 0.001

M4 30 2259± 539 4096± 731 < 0.001 16308± 13157 < 0.001
60 3713± 570 7590± 2018 < 0.001 17168± 12006 < 0.001

M5 300 81194± 45646 166050± 42214 < 0.001 82248± 10605 0.874
500 117503± 77451 219420± 80179 < 0.001 114580± 18392 0.796

A special analysis was conducted regarding the optimization of function M5,

which was the most complex function of the set, in particular because it presented

many local optima surrounding the global ones. As showed in Figure 4.24, even if

kPSO was able to find all the optima in all the runs, the number of evaluations

required changed greatly depending on the value of c. We found that a good value

was c = 50, so we used it for the other experiments (Table 4.4 and Figure 4.25).

The higher degree of complexity of function M5 also led to the use of a much

larger population. In the experiments reported in Table 4.4, we employed the

two population sizes of 300 and 500 in order to compare the results to those of

ANPSO and SPSO as reported in [BL06]. The performance of kPSO appears to

be significantly better than those of SPSO and comparable to those of ANPSO,

although they exhibit a larger variance over the 50 runs. However, kPSO successfully

located all the optima in M5 also with smaller population sizes, as plotted in

Figure 4.25, requiring rather fewer function evaluations than the other algorithms.

In particular, with a population of only 200 particles, kPSO was able to locate all

the global optima performing just 59165± 32646 function evaluations.

104 CHAPTER 4. CLUSTERING PARTICLES

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 20 40 60 80 100

N
o

of
 e

va
lu

at
io

ns

c

Figure 4.24: Performance of kPSO on function M5 using different values for c, the

number of steps between clusterings, and a fixed population size of N = 300. Error

bars represent the standard deviation.

4.9 Discussion

The last set of experiments was intended to test the performance of the improved

version of kPSO and to compare it with two of the best existing niching PSO

algorithms, SPSO and ANPSO. The results we obtained were quite good: the kPSO

algorithm, with the new mechanism to adaptively determine the number of clusters,

outperformed by a good margin the other algorithms on most of the test functions.

The situation was rather more elaborated regarding the most complex function of

the group, the Shubert 2D function. In this case, kPSO still showed very good results

on average, but also a very large variance. Moreover it needed an adjustment of the

newly introduced parameter, the number of simulation steps between two clustering

applications. In fact, while for the simple functions this number was kept constant

at a quite low value, the application to the Shubert function required a much higher

value, in a way that is consistent with what we found out in earlier study on the

4.9. DISCUSSION 105

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700

N
o

of
 e

va
lu

at
io

ns

N

Figure 4.25: Performance of kPSO on function M5 using different population sizes

N , and a fixed value of c = 50 for the number of steps between two clustering

applications. Error bars represent the standard deviation.

influence of c (see Section 4.4.1).

Another important aspect to consider in the evaluation of the different

approaches to niching is the computational cost of the niching procedure itself.

In general, when considering the efficiency of an optimization algorithm, the most

significant measure is the one we used in our last experiments, that is the number

of function evaluations the algorithm requires to reach the predefined goal. In

fact, calculating the function value is usually the single operation with the highest

computational cost in a real-world problem.

However, in certain cases, the computational overhead added by other operations

required by the optimization algorithm should be taken into account. In the

comparison we are discussing, all the algorithms implement a version of the particle

swarm approach, thus they share roughly the same (quite low) computational costs

related to the simulation of particles’ dynamics. In this regard, the only aspect in

which they differ is the specific niching procedure they use.

106 CHAPTER 4. CLUSTERING PARTICLES

Table 4.5: Computational overhead of the niching procedure employed in different

algorithms, averaged per single iteration. N is the swarm size, k the number of

niches, rk the number of runs of k-means, and c the number of steps before clustering.

Algorithm Cost

SPSO O(N · k)

ANPSO O(N2)

kPSO O(N2 · rk/c) ' O(N2)

In particular, SPSO uses the procedure to identify the species seeds which is

reported in Algorithm 3.5, ANPSO the niche formation procedure in Algorithm 3.7,

and kPSO the k-means based procedure in Algorithm 4.2, enhanced with the

automatic selection of the best number of clusters reported in Section 4.7.2. The

computational cost of this procedures can be evaluated in terms of the number of

distance calculations. For the SPSO algorithm, this leads to a computational cost at

each iteration that is O(N ·k), where N is the swarm size and k the number of seeds

or niches. The ANPSO algorithm, instead, implements a more complex procedure,

which has a cost of O(N2).

Our approach basically inherits the computational complexity of the k-means

algorithm, that is O(N · k · rk). But considering that the improved version actually

repeats the k-means application in order to determine the best number of clusters,

the final computational cost is in the order of O(N2·rk). It should be noted, however,

that kPSO, unlike the other algorithms, only executes the niching procedure every

c simulation steps, thus leveraging its computational overhead by the same factor.

Considering the order of magnitude of the parameters rk and c we used in all the

experiments, the cost per iteration is O(N2 · rk/c) ' O(N2), therefore in the same

order as ANPSO. A summary of the computational overhead of the various niching

procedure, averaged per single iteration, is given in Table 4.5.

Whilst in this analysis it emerges that the SPSO algorithm is the one which

adds the lowest computational overhead to identify niches, compared to ANPSO

and kPSO, whether this is really important or not depends mainly on two factors:

1. In many real-world optimization problems, the most relevant component of the

computational cost is the number of function evaluations. Thus, an algorithm

with an highest overhead in term of distance calculations, but which requires

4.9. DISCUSSION 107

significantly less evaluations is surely to be preferred.

2. Fine-tuning parameters adds another computational cost. This is just one of

the main issues Bird and Li tried to assess with the introduction of ANPSO

over SPSO. The latter, in fact, requires the specification of a fixed niche radius,

thus it realistically needs to be executed multiple times to find the best value,

while ANPSO can adaptively determine it during a single run. In this regard,

kPSO is more similar to ANPSO, as it can adaptively determine k, the most

problem dependent parameter. However, it still needs a value for c to be

chosen, which can significantly influence its efficiency, although does not really

hinder its ability to locate all the optima.

108 CHAPTER 4. CLUSTERING PARTICLES

Chapter 5

Conclusions

The research we presented in this thesis originated from two fundamental topics,

which we treated in the first two chapters.

The first topic is the particle swarm algorithm, an optimization technique

which was developed starting from artificial life simulations and is now an effective

alternative to more established methods, like those in the evolutionary computation

field.

The second topic is related to the optimization of multimodal functions, and

thus to the development of optimization algorithms which can look for multiple

solutions. In particular, our interest is focused on niching techniques, inspired

from the tendency of natural species to occupy different niches of the environment.

Niching techniques have been introduced in the context of evolutionary computation

precisely with the intent to enable evolutionary algorithms to deal with multimodal

functions.

The same path can be taken to modify the particle swarm algorithm in order

to optimize multimodal functions. In this thesis we reviewed existing approaches to

niching for PSO and then presented our new approach, which is based on clustering.

The particles in the swarm, in fact, naturally tend to group around optimal regions

of the function landscape. By applying a clustering algorithm, we can identify

promising niches and use the swarm to locate multiple solutions.

We implemented the clustering approach, using the popular k-means clustering

algorithm, in the kPSO algorithm. In this thesis, we described the development of

the new algorithm from its first implementation to a more effective version, pointing

out the issues we wanted to address at each step.

The new algorithm was put to test on some functions which have been built

110 CHAPTER 5. CONCLUSIONS

in order to investigate kPSO ability to locate multiple optima. Successive tests,

instead, were performed on commonly used benchmark functions, which allowed for

a comparison with other niching algorithms for the particle swarm. The results

of the tests were also used to analyze the aspects of the algorithm which could

be improved. In particular, the first modification we made to kPSO involves the

way it manages un-niched particles. In fact, in the first implementation as well, we

employed a mechanism which removes particles from overcrowded clusters, randomly

re-initializes them, and leaves them outside of any niche. The role of these particles

is to search for interesting regions that are not covered by existing niches. In

our first trials, however, they were left to wander on the search space without

any interactions with other particles, following the so-called cognition only model.

Successive experiments showed that a much more efficient path is to constrain them

on a particular kind of neighborhood structure, the von Neumann topology, which

allowed the kPSO algorithm to consistently locate all the optima of the functions

in the benchmark set.

At this point of the development, kPSO proved to outperform other niching

algorithms for PSO, such as NichePSO and PVPSO. In our experiments, in fact,

it showed that it could locate all the optima of the functions under consideration

more consistently in multiple runs and / or with fewer function evaluations. In the

same tests, we compared kPSO also with SPSO, one of the most successful niching

approach for the particle swarm. In this case, the results were more ambiguous,

since the two algorithms performed differently in different tests. Nonetheless, kPSO

showed to be a competitive alternative.

In the comparison between different optimization algorithms, an important

aspect to consider is the influence of problem dependent parameters. An ideal

algorithm, in fact, would be one that can be applied to a wide range of problems

without having to fine-tune its parameters for each of them. Conversely, when the

algorithm needs to be adapted for its application to new functions, the additional

computational cost must be taken into consideration.

The kPSO algorithm uses essentially two critical parameters which are highly

problem dependent. The first one is c, the number of simulation steps between two

clustering applications. Our experiments showed that, although different values

of c influence the performance of the algorithm in term of number of function

evaluations, they could be chosen in a wide range without hampering the ability

to locate all the optima. Moreover, while setting c to rather high values indeed

worsened the performance of kPSO, it also lowered the computational overhead due

111

to the clustering. Thus, tuning c is essentially a matter of selecting the best balance

between the costs of function evaluations and of clustering applications.

The second parameter which depends on the function under consideration is k,

the number of clusters, that must be specified a priori to employ the k-means

algorithm. Setting k can be much more troubling, since it strongly depends

on the number of optima of the multimodal function. Especially in real-world

applications, it is rarely possible to effectively determine a good value for k before the

optimization. It should be noted, however, that most niching algorithms suffer from

a rather similar problem. In many cases, such as for SPSO, the niching procedure

needs setting the niche radius σ, which requires some knowledge about the width

of the niches, rather than their number. Nonetheless, tuning σ is a rather equally

problematic issue.

The final version of our kPSO algorithm enhances the clustering process by

incorporating a mechanism to adaptively determine the number of clusters k.

Essentially, the algorithm repeats the application of the k-means clustering varying

the value of k and then selects the most natural among the obtained clusterings,

by choosing the one with the highest value for the Bayesian Information Criterion.

The price to pay is a higher computational overhead, but the improved kPSO gains

in immediate applicability to different problems and also in better performance, due

to the ability to adapt the number of clusters during the run.

In conclusion, the clustering approach to niching we propose in this thesis

proved to be rather effective. Its implementation in the final version of the kPSO

algorithm was competitive with other niching algorithms. In particular, it markedly

outperformed one of the best existing algorithms, SPSO, in term of the number of

function evaluations needed to discover all the optima of the test functions. Even

though the computational cost of the clustering procedure in kPSO is higher than

that of SPSO, we thought that it is balanced by the better ability to adapt without

manual tuning to any function landscape, other than by the better performance. In

this respect, the advantages of kPSO are rather similar to those of ANPSO, another

interesting algorithm which adaptively determines the main niching parameters.

The two algorithms, in fact, introduce a comparable computational overhead with

the procedure to identify niches. kPSO, however, showed a better or comparable

performance in all the test we conducted.

Research on the clustering approach will continue in several directions. To begin

with, the kPSO algorithm will be put to test with higher-dimensionality benchmark

functions together with real-world problems, in order to better assess its capabilities.

112 CHAPTER 5. CONCLUSIONS

Another interesting research line involves the development of a more flexible version

of kPSO, which will avoid the need to set c, the number of steps between clusterings.

This could be accomplished for example by developing an algorithm which could

estimate when a new clustering application is needed, rather than performing it at

fixed intervals. Further research will also be devoted to investigate the employment

of different clustering algorithms rather than the k-means.

List of Tables

3.1 A classification of functions based on multimodality. 38

4.1 Selected parameters for the experiments on functions G1 and G2. In

each series of tests, one of the parameters c, k, and rk are varied,

while the other two are kept fixed at their optimal values. 77

4.2 Performance results. Figures indicate the number of experiments out

of 100 in which the algorithm located all optima. 89

4.3 Number of evaluations required to locate all the optima of the

respective functions. The average and standard deviation values over

100 runs are reported. The results in parentheses indicate the number

of evaluations required to locate only the single global optimum of

functions F2 and F4. The p-values for an algorithm refer to the

t-test comparing its results with those of kPSO on the same function. 93

4.4 Number of evaluations required to find all global optima of the

benchmark functions with different population sizes (N). The average

and standard deviation values over 50 runs are reported. The p-values

for an algorithm refer to the t-test comparing its results with those

of kPSO on the same function. 103

4.5 Computational overhead of the niching procedure employed in

different algorithms, averaged per single iteration. N is the swarm

size, k the number of niches, rk the number of runs of k-means, and

c the number of steps before clustering. 106

114 LIST OF TABLES

List of Figures

2.1 At each step t a particle i updates its velocity and position. The new

velocity vi(t + 1) is the sum of three terms: the previous velocity

vi(t), and two terms proportional to the distance from pi, the best

position visited so far by the particle, and from pg, the best position

visited so far by the whole swarm. The new position of the particle

is then computed by just adding the new velocity. 19

2.2 Fully connected graph: each particle’s neighborhood is the whole

swarm (gbest Particle Swarm). 31

2.3 Regular ring lattice (lbest Particle Swarm). 32

2.4 The von Neumann topology - a two-dimensional lattice - and the star

topology - one central node connected with all the others. 33

3.1 Function f(x) = x2, an example of a simple unimodal function, with

a unique global minimizer at x = 0. 38

3.2 Function f(x) = x4 − 2x2, an example of a multimodal function with

two global minimizers at x = −1 and x = 1. 39

3.3 Function f(x) = 2x4−x3−2x2, an example of a multimodal function

with a local minimizer at x ' −0.544 and a global one at x ' 0.919. . 39

3.4 Function f(x) = x6−3.2x4+2x2, an example of a multimodal function

with two global minimizers at x ' ±1.324 and a local one at x = 0. . 40

4.1 Cluster A’s center (white circle performs better than any of the

members of the cluster, while Cluster B’s center performs better than

some, and worse than others. (Reproduced from [Ken00] – Figure 1) . 67

4.2 Particles are linked to all the other particles in the same cluster.

Clusters with a number of particles greater than the average are

reduced and the exceeding particles reinitialized (see the particle in

white). 72

116 LIST OF FIGURES

4.3 Function G1. 75

4.4 Function G2. 76

4.5 Performance of kPSO on function G1 with varying c. Error bars

represent the standard deviation. 78

4.6 Performance of kPSO on function G2 with varying c. Error bars

represent the standard deviation. 79

4.7 Performance of kPSO on function G1 with varying k. Error bars

represent the standard deviation. 80

4.8 Performance of kPSO on function G2 with varying k. Error bars

represent the standard deviation. 81

4.9 Performance of kPSO on function G1 with varying rk. Error bars

represent the standard deviation. 82

4.10 Performance of kPSO on function G2 with varying rk. Error bars

represent the standard deviation. 83

4.11 Function F1. 84

4.12 Function F2. 84

4.13 Function F3. 85

4.14 Function F4. 85

4.15 Function F5 (Himmelbrau). 86

4.16 Function F6 (Griewank). 87

4.17 Function F7 (Rastrigin). 88

4.18 The particles not belonging to any niche (drawn in white) are

organized in a von Neumann lattice topology. 91

4.19 An example of a von Neumann lattice with an uneven number of

particles. The connections of the particles on the last two rows are

wrapped to the left or to the bottom as showed in figure. 92

4.20 Function M1 (Branin RCOS). 98

4.21 Function M2 (Six-Hump Camel Back). 99

4.22 Function M5 (Shubert 2D). 100

117

4.23 Significant steps of a kPSO run on function M1. In the first step

particles are randomly distributed on the search space. At step 6, the

swarm is naturally splitting in different groups of particles around

the global optima of the function. At step 10, the first clustering

is performed, which identifies 4 niches. Step 17 shows how particles

belonging to different niches can get mixed up when their niches are

actually related to the same global optimum. Finally, at step 65, the

algorithm stabilizes on 3 niches corresponding to the 3 global optima. 101

4.24 Performance of kPSO on function M5 using different values for c, the

number of steps between clusterings, and a fixed population size of

N = 300. Error bars represent the standard deviation. 104

4.25 Performance of kPSO on function M5 using different population sizes

N , and a fixed value of c = 50 for the number of steps between two

clustering applications. Error bars represent the standard deviation. . 105

118 LIST OF FIGURES

List of Algorithms

2.1 The pseudocode for the Particle Swarm Optimization in its standard

version. 17

3.1 Mahfoud’s Deterministic Crowding pseudocode. 49

3.2 Petrowski’s Clearing pseudocode. 52

3.3 NichePSO pseudocode. 57

3.4 Parallel Vector-based PSO pseudocode. 59

3.5 The procedure for determining the species seeds in SPSO. 60

3.6 Species-based PSO pseudocode. 61

3.7 Pseudocode for the niche formation procedure in ANPSO. 62

3.8 ANPSO pseudocode. 63

4.1 k-means algorithm pseudocode. 69

4.2 The procedure to identify niches in the kPSO algorithm. 71

4.3 kPSO algorithm pseudocode. 73

120 LIST OF ALGORITHMS

Bibliography

[Aka74] H. Akaike, A new look at the statistical model identification, IEEE

Transactions on Automatic Control 19 (1974), no. 6, 716–723.

[Ang98a] P. J. Angeline, Evolutionary optimization versus particle swarm

optimization: Philosophy and performance differences, EP ’98:

Proceedings of the 7th International Conference on Evolutionary

Programming VII, Springer-Verlag, 1998, pp. 601–610.

[Ang98b] , Using selection to improve particle swarm optimization,

IEEE International Conference on Evolutionary Computation

(Anchorage, Alaska), May 1998.

[Bak87] James E. Baker, Reducing bias and inefficiency in the selection

algorithm, Proceedings of the Second International Conference on

Genetic Algorithms on Genetic algorithms and their application

(Mahwah, NJ, USA), Lawrence Erlbaum Associates, Inc., 1987,

pp. 14–21.

[Bak96] P. Bak, How nature works, 1 ed., Copernicus, Springer-Verlag, New

York, 1996.

[BBM93] D. Beasley, D. R. Bull, and R. R. Martin, A sequential niche technique

for multimodal function optimization, Evolutionary Computation 1

(1993), no. 2, 101–125.

[BDT99] E. W. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence:

from natural to artificial systems, Oxford University Press, 1999.

[BEvdB02a] R. Brits, A.P. Engelbrecht, and F. van den Bergh, A niching particle

swarm optimizer, Proceedings of the 4th Asia-Pacific Conference on

Simulated Evolution and Learning (SEAL’02) (Singapore) (L. Wang,

122 BIBLIOGRAPHY

K. C. Tan, T. Furuhashi, J. H. Kim, and X. Yao, eds.), vol. 2,

November 2002, pp. 692–696.

[BEvdB02b] R. Brits, A.P. Engelbrecht, and F. van den Bergh, Solving

systems of unconstrained equations using particle swarm optimization,

Proceedings of the IEEE 2002 Conference on Systems, Man, and

Cybernetics (Tunisia), 2002.

[BEvdB03] R. Brits, A.P. Engelbrecht, and F. van den Bergh, Scalability of niche

pso, Proceedings of the IEEE Swarm Intelligence Symposium (SIS

2003) (Indianapolis, Indiana, USA), 2003, pp. 228–234.

[Bis95] C. M. Bishop, Neural networks for pattern recognition, Oxford

University Press, Inc., 1995.

[BL06] Stefan Bird and Xiaodong Li, Adaptively choosing niching parameters

in a pso, GECCO ’06: Proceedings of the 8th annual conference on

Genetic and evolutionary computation (New York, NY, USA), ACM

Press, 2006, pp. 3–10.

[BPV02] T. Beielstein, K. Parsopoulos, and M. Vrahatis, Tuning pso

parameters through sensitivity analysis, Tech. report, Collaborative

Research Center 531 Computational Intelligence CI, University of

Dortmund, January 2002.

[Bri02] R. Brits, Niching strategies for particle swarm optimization, Master’s

thesis, University of Pretoria, 2002.

[BTW87] Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality:

An explanation of the 1/f noise, Phys. Rev. Lett. 59 (1987), no. 4,

381–384.

[Bur70] A. W. Burks (ed.), Essays on cellular automata, University of Illinois

Press, Urbana, Illinois, 1970.

[Cav70] D. J. Cavicchio, Adaptive search using simulated evolution, Tech.

Report Report 03296-4-T, Computer and Communication Sciences

Department, University of Michigan, Ann Arbor, Michigan, 1970.

[CD01] A. Carlisle and G. Dozier, An off-the-shelf PSO, Proceedings of the

Workshop on Particle Swarm Optimization (Indianapolis), 2001.

123

[CK02] M. Clerc and J. Kennedy, The particle swarm - explosion,

stability, and convergence in a multidimensional complex space, IEEE

Transactions on Evolutionary Computation 6 (2002), no. 1, 58–73.

[CRHW04] B. C. H. Chang, A. Ratnaweera, S. K. Halgamuge, and H. C. Watson,

Particle swarm optimisation for protein motif discovery, Genetic

Programming and Evolvable Machines 5 (2004), no. 2, 203–214.

[Dav91] Y. Davidor, A naturally occurring niche and species phenomenon:

The model and first results, Proceedings of the 4th International

Conference on Genetic Algorithms (San Mateo, CA) (R. Belew and

L. Booker, eds.), Morgan Kaufmann, 1991, pp. 257–263.

[Daw76] R. Dawkins, The selfish gene, Oxford University Press, New York,

1976.

[DC99] Marco Dorigo and Gianni Di Caro, The ant colony optimization meta-

heuristic, 11–32.

[dCT02] L. N. de Castro and J. Timmis, Artificial immune systems: a new

computational intelligence approach, Springer, 2002.

[DG89] Kalyanmoy Deb and David E. Goldberg, An investigation of niche

and species formation in genetic function optimization, Proceedings

of the third international conference on Genetic algorithms (San

Francisco, CA, USA), Morgan Kaufmann Publishers Inc., 1989,

pp. 42–50.

[DG97] M. Dorigo and L.M. Gambardella, Ant colony system: a

cooperative learning approach to the travelingsalesman problem, IEEE

Transactions on Evolutionary Computation 1 (1997), no. 1, 53–66.

[DH73] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,

Wiley, 1973.

[DJ75] Kenneth Alan De Jong, An analysis of the behavior of a class of

genetic adaptive systems., Ph.D. thesis, University of Michigan, Ann

Arbor, MI, 1975.

124 BIBLIOGRAPHY

[DY95] P. J. Darwen and X. Yao, A Dilemma for Fitness Sharing with

a Scaling Function, Proceedings of the Second IEEE International

Conference on Evolutionary Computation (Piscataway, New Jersey),

IEEE Press, 1995.

[DY97] , Speciation as automatic categorical modularization, IEEE

Transactions on Evolutionary Computation 1 (1997), 101–108.

[EGEHSK02] A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, Enhancing

the particle swarm optimizer via proper parameters selection, IEEE

Canadian Conference on Electrical and Computer Engineering

(CCECE 2002), vol. 2, 2002, pp. 792–797.

[EH99] R.C. Eberhart and X. Hu, Human tremor analysis using particle

swarm optimization, Proceedings of the Congress on Evolutionary

Computation (CEC 99), 1999, pp. 1927–1930.

[EK95] R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm

theory, Proceedings of the Sixth International Symposium on Micro

Machine and Human Science (MHS ’95) (Nagoya, Japan), Oct 1995,

pp. 39–43.

[EMP05] A.P. Engelbrecht, B.S. Masiye, and G. Pampara, Niching ability

of basic particle swarm optimization algorithms, Proceedings of the

IEEE 2005 Swarm Intelligence Symposium (SIS 2005) (Pasadena,

California, U.S.A.), 2005, pp. 397–400.

[ES98a] R. C. Eberhart and Y. Shi, Comparison between genetic algorithms

and particle swarm optimization, EP ’98: Proceedings of the

7th International Conference on Evolutionary Programming VII,

Springer-Verlag, 1998, pp. 611–616.

[ES98b] R. C. Eberhart and Y. Shi, Evolving artificial neural networks,

Proceedings of the International Conference on Neural Networks and

Brain (Beijing, P.R.C.), 1998.

[ESD96] R. C. Eberhart, P. K. Simpson, and R. W. Dobbins, Computational

intelligence pc tools, Academic Press Professional, Boston, MA, 1996.

125

[FE03] N. Franken and A. P. Engelbrecht, Evolving intelligent game-playing

agents, SAICSIT ’03: Proceedings of the 2003 annual research

conference of the South African institute of computer scientists

and information technologists on Enablement through technology,

South African Institute for Computer Scientists and Information

Technologists, 2003, pp. 102–110.

[FJSP93] S. Forrest, B. Javornik, R. E. Smith, and A. S. Perelson, Using genetic

algorithms to explore pattern recognition in the immune system,

Evolutionary Computation 1 (1993), no. 3, 191–211.

[GDH92] David E. Goldberg, Kalyanmoy Deb, and Jeffrey Horn, Massive

multimodality, deception, and genetic algorithms, Parallel Problem

Solving from Nature, 2 (Amsterdam) (R. Männer and B. Manderick,

eds.), Elsevier Science Publishers, B. V., 1992.

[Gol89] David E. Goldberg, Genetic algorithms in search, optimization, and

machine learning, Addison-Wesley, Reading, MA, 1989.

[GR87] David E. Goldberg and Jon Richardson, Genetic algorithms with

sharing for multimodal function optimization, Proceedings of the

Second International Conference on Genetic Algorithms and their

application (Mahwah, NJ, USA) (J. J. Grefensette, ed.), Lawrence

Erlbaum Associates, Inc., 1987, pp. 41–49.

[GSB02] M. Gunes, U. Sorges, and I. Bouazizi, Ara-the ant-colony based routing

algorithm for manets, Proceedings of the International Conference on

Parallel Processing Workshops, 2002., 2002, pp. 79– 85.

[GV03] V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle

swarm optimization and backpropagation as training algorithms

for neural networks, Proceedings of the IEEE Swarm Intelligence

Symposium (SIS ’03), April 2003, pp. 110–117.

[Har95] Georges R. Harik, Finding multimodal solutions using restricted

tournament selection, Proceedings of the Sixth International

Conference on Genetic Algorithms (San Francisco, CA) (Larry

Eshelman, ed.), Morgan Kaufmann, 1995, pp. 24–31.

126 BIBLIOGRAPHY

[Hay99] S. Haykin, Neural networks, A comprehensive foundation, 2nd ed.,

Prentice Hall, 1999.

[HG90] F. Heppner and U. Grenander, A stochastic nonlinear model for

coordinated bird flocks, The Ubiquity of Chaos (S. Krusna, ed.), AAAS

Publications, Washington, DC, 1990, pp. 233–238.

[Hol75] J. H. Holland, Adaptation in natural and artificial system, The

University of Michigan Press, Ann Arbor, MI, 1975.

[Hol92] , Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, MIT Press, Cambridge, MA,

1992.

[Hor97] Jeffrey Horn, The nature of niching: Genetic algorithms and the

evolution of optimal, cooperative populations, Ph.D. thesis, University

of Illinois at Urbana Champaign, 1997.

[KE95] J. Kennedy and R. C. Eberhart, Particle swarm optimization,

Proceedings of the IEEE International Conference on Neural

Networks, IV (Piscataway, NJ), IEEE Service Center, 1995, pp. 1942–

1948.

[KE97] J. Kennedy and R. C. Eberhart, A discrete binary version of the

particle swarm algorithm, Proceedings of the World Multiconference

on Systemics, Cybernetics, and Informatics (Piscataway, NJ), 1997,

pp. 4104–4109.

[KE01] J. Kennedy and R. C. Eberhart, Swarm intelligence, Morgan

Kaufmann Publishers Inc., 2001.

[Ken97] J. Kennedy, The particle swarm: Social adaptation of knowledge,

Proceedings of the 1997 International Conference on Evolutionary

Computation (Piscataway, NJ), IEEE Service Center, 1997, pp. 303–

308.

[Ken99] J. Kennedy, Small worlds and mega-minds: effects of neighborhood

topology on particle swarm performance, Proceedings of the 1999

Congress on Evolutionary Computation, 1999. CEC 99., vol. 3, 1999,

pp. –1938.

127

[Ken00] , Stereotyping: Improving particle swarm performance with

cluster analysis, Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2000) (San Diego, California, U.S.A.), 2000,

pp. 1507–1512.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by

simulated annealing, Science 220 (1983), no. 4598, 671–680.

[KL02] T. Krink and M. Løvbjerg, The LifeCycle model: Combining particle

swarm optimisation, genetic algorithms and hillclimbers, Proceedings

of Parallel Problem Solving from Nature VII (PPSN-2002), Springer

Verlag, 2002, pp. 621–630.

[KM02] J. Kennedy and R. Mendes, Population structure and particle

swarm performance, Proceedings of the Congress on Evolutionary

Computation (CEC ’02), vol. 2, 2002, pp. 1671–1676.

[KM03] , Neighborhood topologies in fully-informed and best-of-

neighborhood particle swarms, Proceedings of the 2003 IEEE Interna-

tional Workshop on Soft Computing in Industrial Applications, 2003.

SMCia/03., 2003, pp. 45–50.

[Koh01] T. Kohonen, Self-organizing maps, 3rd ed., Springer-Verlag, Berlin,

2001.

[Koz92] J. R. Koza, Genetic programming — on the programming of computers

by means of natural selection, MIT Press, Cambridge, MA, 1992.

[KT01] T. Krink and R. Thomsen, Self-organized criticality and mass

extinction in evolutionary algorithms, Proceedings of the Third

Congress on Evolutionary Computation (CEC-2001) (Seoul, South

Korea), vol. 2, 2001, pp. 1155–1161.

[Kun04] Ludmila I. Kuncheva, Combining pattern classifiers: Methods and

algorithms, Wiley-Interscience, 2004.

[KVR02] T. Krink, J. S. Vesterstrøm, and J. Riget, Particle swarm optimisation

with spatial particle extension, Proceedings of the Fourth Congress

on Evolutionary Computation (CEC-2002) (D. B. Fogel, X. Yao,

128 BIBLIOGRAPHY

G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, eds.), vol. 2,

2002, pp. 1474–1479.

[LBPC02] Jian-Ping Li, Marton E. Balazs, Geoffrey T. Parks, and P. John

Clarkson, A species conserving genetic algorithm for multimodal

function optimization, Evolutionary Computation 10 (2002), no. 3,

207–234.

[Li04] X. Li, Adaptively choosing neighbourhood bests using species in

a particle swarm optimizer for multimodal function optimization,

Proceeding of Genetic and Evolutionary Computation Conference

2004 (GECCO’04) (Seattle, U.S.A.) (K. Deb et al., ed.), Lecture

Notes in Computer Science, vol. 3102, Springer-Verlag, 2004, pp. 105–

116.

[LK02] M. Løvbjerg and T. Krink, Extending particle swarms with

self-organized criticality, Proceedings of the Fourth Congress on

Evolutionary Computation (CEC-2002) (D. B. Fogel, X. Yao,

G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, eds.), vol. 2,

2002, pp. 1588–1593.

[LRK01] M. Løvbjerg, T. Kiel Rasmussen, and T. Krink, Hybrid particle swarm

optimiser with breeding and subpopulations, Proceedings of the third

Genetic and Evolutionary Computation Conference (GECCO-2001),

vol. 1, 2001, pp. 469–476.

[Mah95a] S. W. Mahfoud, Niching methods for genetic algorithms, Ph.D. thesis,

University of Illinois at Urbana-Champaign, 1995.

[Mah95b] Samir W. Mahfoud, A comparison of parallel and sequential niching

methods, Proceedings of the 6th International Conference on Genetic

Algorithms (San Francisco, CA, USA), Morgan Kaufmann Publishers

Inc., 1995, pp. 136–143.

[Mil94] M. M. Millonas, Swarms, phase transitions, and collective intelligence,

Artificial Life III (C.G. Langton, ed.), Addison Wesley, Reading, MA,

1994.

129

[MKN03] R. Mendes, J. Kennedy, and J. Neves, Watch thy neighbor or how the

swarm can learn from its environment, Proceedings of the 2003 IEEE

Swarm Intelligence Symposium, 2003. SIS ’03., 2003, pp. 88–94.

[MP00] G.J. McLachlan and D. Peel, Finite mixture models, Wiley series in

Probability and Mathematical Statistics: Applied Probability and

Statistics Section, no. xvii, John Wiley and Sons, New York, 2000.

[MS96] Brad L. Miller and Michael J. Shaw, Genetic algorithms with dynamic

niche sharing for multimodal function optimization, International

Conference on Evolutionary Computation, 1996, pp. 786–791.

[OGC91] C. Oei, D. E. Goldberg, and S. Chang, Tournament selection, niching,

and the preservation of diversity, IlliGAL Report 91011, University

of Illinois at Urbana-Champaign, Illinois Genetic Algorithms

Laboratory, Urbana, 1991.

[OM98] E. Ozcan and C. Mohan, Analysis of a simple particle swarm

optimization system, Intell. Eng. Syst. Through Artif. Neural

Networks 8 (1998), 253–258.

[OM99] E. Ozcan and C. K. Mohan, Particle swarm optimization: surfing the

waves, Proceedings of the Congress on Evolutionary Computation

(CEC 99), vol. 3, 1999, pp. 1939–1944.

[PE03] U. Paquet and A.P. Engelbrecht, Training support vector machines

with particle swarms, Proceedings of the International Joint

Conference on Neural Networks, vol. 2, July 2003, pp. 1593–1598.

[Pet96] A. Petrowski, A clearing procedure as a niching method for

genetic algorithms, Proceedings of IEEE International Conference on

Evolutionary Computation, 1996.

[PL04] D. Parrott and X. Li, A particle swarm model for tracking multiple

peaks in a dynamic environment using speciation, Proceeding of the

2004 Congress on Evolutionary Computation (CEC’04), IEEE Service

Center, 2004, pp. 98–103.

[PM00] Dan Pelleg and Andrew Moore, X-means: Extending k-means with

efficient estimation of the number of clusters, Proceedings of the

130 BIBLIOGRAPHY

Seventeenth International Conference on Machine Learning (San

Francisco), Morgan Kaufmann, 2000, pp. 727–734.

[PPMV01a] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, and M.N. Vra-

hatis, Improving particle swarm optimizer by function ”stretching”,

Nonconvex Optimization and Applications, vol. 54, ch. 3, pp. 445–

457, Kluwer Academic Publishers, The Netherlands, 2001.

[PPMV01b] , Stretching technique for obtaining global minimizers through

particle swarm optimization, Proceedings of the Particle Swarm

Optimization Workshop (Indianapolis (IN), U.S.A.), 2001, pp. 22–29.

[PS06] A. Passaro and A. Starita, Clustering particles for multimodal

function optimization, Proceedings of EC2AI - ECAI Workshop on

Evolutionary Computation (Riva del Garda, Italy), 2006.

[PV01] K.E. Parsopoulos and M.N. Vrahatis, Modification of the particle

swarm optimizer for locating all the global minima, Artificial

Neural Networks and Genetic Algorithms (V. Kurkova, N.C. Steele,

R. Neruda, and M. Karny, eds.), Computer Science series, Springer,

Wien, 2001, pp. 324–327.

[PV04] K.E. Parsopoulos and M. N. Vrahatis, On the computation of all global

minimizers through particle swarm optimization, IEEE transactions

on evolutionary computation 8 (2004), no. 3, 211–224.

[PVM03] T. Peram, K. Veeramachaneni, and C. K. Mohan, Fitness-distance-

ratio based particle swarm optimization, Proceedings of the IEEE

Swarm Intelligence Symposium (SIS 2003) (Indianapolis, Indiana,

USA), 2003, pp. 174–181.

[Ree83] W. T. Reeves, Particle systems - a tecnique for modeling a class of

fuzzy objects, ACM Transactions on Graphics 2 (1983), no. 2, 91–108.

[Rey87] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral

model, in computer graphics, Proceedings of the SIGGRAPH ’87

Conference, 1987, pp. 25–34.

[RHW04] A. Ratnaweera, S.K. Halgamuge, and H.C. Watson, Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration

131

coefficients, IEEE Transactions on Evolutionary Computation 8

(2004), no. 3, 240–255.

[RN95] Stuart J. Russell and Peter Norvig, Artificial intelligence: a modern

approach, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

[Sch78] Gideon Schwarz, Estimating the dimension of a model, The Annals of

Statistics 6 (1978), no. 2, 461–464.

[SE98a] Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, The

1998 IEEE International Conference on Evolutionary Computation

Proceedings (Anchorage, AK), May 1998, pp. 69–73.

[SE98b] Y. Shi and R. C. Eberhart, Parameter selection in particle swarm

optimization, EP ’98: Proceedings of the 7th International Conference

on Evolutionary Programming VII, Springer-Verlag, 1998, pp. 591–

600.

[SE04] I.L. Schoeman and A.P. Engelbrecht, Using vector operations to

identify niches for particle swarm optimization, Proceedings of the

IEEE 2004 Conference on Cybernetics and Intelligent Systems, 2004,

pp. 361–366.

[SE05] , A parallel vector-based particle swarm optimizer, Interna-

tional Conference on Artificial Neural Networks and Genetic Algo-

rithms (ICANNGA 2005) (Portugal), 2005.

[SG05] J. F. Schutte and A. A. Groenwold, A study of global optimization

using particle swarms, Journal of Global Optimization 31 (2005),

no. 1, 93–108.

[SK98] B. Sareni and L. Krahenbuhl, Fitness sharing and niching methods

revisited, IEEE Transactions on Evolutionary Computation 2 (1998),

no. 3, 97–106.

[SSN03] T. Sousa, A. Silva, and A. Neves, A particle swarm data miner.,

Progress in Artificial Intelligence, 11th Protuguese Conference on

Artificial Intelligence, EPIA, 2003, pp. 43–53.

132 BIBLIOGRAPHY

[Sug99] P.N. Suganthan, Particle swarm optimiser with neighbourhood

operator, Proceedings of the Congress on Evolutionary Computation

(CEC 99), vol. 3, 1999, pp. 1959–1962.

[Tre03] I. C. Trelea, The particle swarm optimization algorithm: convergence

analysis and parameter selection, Inf. Process. Lett. 85 (2003), no. 6,

317–325.

[vdB02] Frans van den Bergh, An analysis of particle swarm optimizers, Ph.D.

thesis, Department of Computer Science, University of Pretoria,

Pretoria, South Africa, 2002, Supervisor-A. P. Engelbrecht.

[vdBE02] F. van den Bergh and A. P. Engelbrecht, A new locally convergent

particle swarm optimizer, IEEE Conference on Systems, Man, and

Cybernetics, 2002.

[vN51] John von Neumann, The general and logical theory of automata,

Cerebral Mechanism in Behavior (New York) (L.A. Jeffress, ed.), John

Wiley and Sons, 1951.

[vNB66] John von Neumann and Arthur W. Burks, Theory of self-reproducing

automata, University of Illinois Press, Champaign, IL, USA, 1966.

[VPMO03] K. Veeramachaneni, T. Peram, C. K. Mohan, and L. A. Osadciw,

Optimization using particle swarms with near neighbor interactions.,

Proceeding of Genetic and Evolutionary Computation Conference

2003 (GECCO’03), 2003, pp. 110–121.

[VRK02] J. S. Vesterstrøm, J. Riget, and T. Krink, Division of labor in

particle swarm optimisation, Proceedings of the Fourth Congress

on Evolutionary Computation (CEC-2002) (D. B. Fogel, X. Yao,

G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, eds.), vol. 2,

2002, pp. 1570–1575.

[WC92] Michael P. Windham and Adele Cutler, Information ratios for

validating mixture analyses, Journal of the American Statistical

Association 87 (1992), no. 420, 1188–1192.

[Wil75] E. O. Wilson, Sociobiology: The new synthesis, Belknap Press,

Cambridge, MA, 1975.

133

[WS98] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of

’small-world’ networks, Nature 393 (1998), no. 6684, 440.

[XDE+03] X. Xiao, E. R. Dow, R. C. Eberhart, Z. B. Miled, and R. J. Oppelt,

Gene clustering using self-organizing maps and particle swarm

optimization, IPDPS ’03: Proceedings of the 17th International

Symposium on Parallel and Distributed Processing, IEEE Computer

Society, 2003, pp. 154–163.

[XW05] R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE

Transactions on Neural Networks 3 (2005), no. 16, 645–678.

[YG93] X. Yin and N. Germay, A fast genetic algorithm with sharing

scheme using cluster methods in multimodal function optimization,

Proceedings of the International Conference on Artificial Neural Nets

and Genetic Algorithms (R. F. Albrecht, C. R. Reeves, and N. C.

Steele, eds.), Springer-Verlag, 1993, pp. 450–457.

[YKFN99] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi, A particle

swarm optimization for reactive power and voltage control considering

voltage stability, Proceedings of the International Conference on

Intelligent System Application to Power Systems (Rio de Janeiro,

Brazil) (G. L. Torres and A. P. Alves da Silva, eds.), 1999, pp. 117–

121.

[ZMZQ03] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian, On

the convergence analysis and parameter selection in particle swarm

optimization, International Conference on Machine Learning and

Cybernetics, vol. 3, Nov. 2003, pp. 1802–1807.

