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Introduction

The theory of local holomorphic foliations in C2 deals with the study of com-

plex dynamics and invariant curves (separatrices) of germs of holomorphic

vector fields, regardless their parametrizations.

Let F be a germ of a holomorphic foliation at 0 defined by

X = A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
.

The origin is a singularity for F if A(0, 0) = B(0, 0) = 0. The Poincarè

problem consists in the study of the existence of invariant curves through a

point. If the origin is not singular the Cauchy-Kowaleskaya theorem provides

the existence of a unique, non singular, invariant, holomorphic curve through

the origin. Namely, the differential holomorphic equation

{
ẋ = A(x, y)

ẏ = B(x, y)
x(0) = y(0) = 0

has a unique analytic solution through (0, 0).

In case (0, 0) is a singularity the dynamics of F around (0, 0) was first

studied at the end of the XIX century by Briot-Bouquet [14] and Dulac [30].

They studied the problem for a particular class of singularities, nowadays

called reduced singularities. Let (0, 0) be a singularity for F and let J1
(0,0)X

denote the linear part of the the vector field X which defines F . If both

eigenvalues are different from zero and their ratio is not a positive rational
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number, then (0, 0) is a singularity of type (∗1). If one of the eigenvalues

of J1
(0,0)X is zero but the other is different from zero, then, we say that the

singularity is reduced of type (∗2). Briot-Bouquet [14] and Dulac [30] proved

that for a singularity of type (∗1) there exist exactly two separatrices through

0 which are not singular and intersect transversally at (0, 0). In case of a

(∗2) singularity it can be proved that there exists a separatrix through 0, but

there might exists another one.

In 1968 Seidenberg [51] shows the importance of this class of singularities.

He proves that, after a finite number of blows-up, it is possible to reduce

the foliation to one having only reduced or dicritical singularities, namely,

singularities for which there exist infinitely many separatrices.

In 1982 Camacho and Sad [18] prove that through every singularity

passes at least one, possibly singular, separatrix, thus completely solving

the Poincarè problem.

The new ingredient in their proof is the possibility of relating the dy-

namics of a holomorphic foliation on a compact non singular separatrix to

the topological properties of the separatrix itself. More precisely, if S is a

complex compact non singular curve, on a complex surface M , which is in-

variant by a holomorphic foliation F , then, for every point p ∈ S one can

define a complex number Ind(F , S, p), called index, that reads the dynam-

ics of F near p. The sum of all these indices is equal to the self intersection

number of S, namely, to the way S sits into M . This “index theorem” was

generalized to the case of a singular curve by Lins Neto [40] and Suwa [55]

and in higher dimension by Lehmann [38] and Lehmann-Suwa [39]. By this

index theorem, Camacho and Sad prove that the reduced foliation always

admits a good reduced singularity. This means that there exists a reduced

singularity through which passes a separatrix that projects to a separatrix
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for the original vector field.

Subsequently J. Cano in 1997 [20] found an easier strategy to find the

good singularity in the resolved foliation. He introduces a special class of

points among the points of the exceptional divisor S:

- a point p ∈ S is of type (C1) if S is not singular at p and

Ind(F , S, p) 6∈ Q+ ∪ {0}.

- a point p ∈ S is of type (C2) if S has exactly two irreducible non sin-

gular branches S0, S1 that intersect transversally at p and there exists

a number r > 0 such that:

Ind(F , S0, p) ∈ Q≤− 1
r

:= {x ∈ Q | x ≤ −1

r
}

Ind(F , S1, p) 6∈ Q≥−r := {x ∈ Q | x ≥ −r}.

Cano proves that blowing-up a (C1) or a (C2) singularity one gets another

(C1) or a (C2) singularity. Then, after a finite number of blows-up this gives

a good singularity.

The study of local holomorphic foliations is very much related to the

study of local holomorphic diffeomorphisms. In one direction, because the

exponential flow of a holomorphic vector field is a holomorphic diffeomor-

phism and, on the other direction, because the holonomy along a separatrix

of a holomorphic foliation, is a holomorphic diffeomorphism.

The local dynamics of diffeomorphisms in dimension one is mostly well

understood (see e.g. [21]). The most interesting case is when |f ′(0)| = 1,

which corresponds to the local holonomy around a singularity for a local

holomorphic foliation. In the other cases the map is, indeed, linearizable.

When f ′(0) = 1 (or more generally when f ′(0) is a root of 1) the map is said

to be tangent to the identity and its dynamics is completely described by the
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Leau and Fatou theorem. The dynamical picture appears as a flower where

each petal is, alternatively, an attractive and repelling domain.

Figure 1: Leau-Fatou dynamics with three attractive petals and three re-
pelling petals. The arrows go from z to f(z).

When f ′(0) = e2πiθ with θ ∈ R \ Q the germ is for almost every θ lin-

earizable [52]. Cremer finds in [25] and [26] a family of maps that are not

linearizable.

One of the goal of this work is to understand something more on dynamics

of tangent to the identity maps in C2.

Ècalle [31] and Hakim [36] proved that, if f is a germ of holomorphic

diffeomorphism of Cn and df0 = Id, then generically there exist f−invariant

curves whose closure contains the origin and such that the dynamics is at-

tractive (such curves are called parabolic curves for f in 0).

Successively Abate [2] proved the existence of such parabolic curves for

every germ tangent to the identity in C2.

Abate technique retraces Seidenberg and Camacho-Sad strategy. In par-

ticular Abate introduces an index Ind(f, S, p) for a diffeomorphism f at a

point p of a curve S of fixed points and gets an index theorem, similar to the
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Camacho-Sad index one, that links the dynamics to the topological proper-

ties of the curve. Abate, as Camacho and Sad, blows-up the map and reduces

to the case of a map with a smooth curve of fixed points for which he can

use the index theorem.

This formal analogy with the continuous dynamics theory was studied in

more detail in [3], [11], [12]. In [3] and [11] Abate, Bracci and Tovena relate

discrete and continuous dynamics (see Chapter 2) associating to a map a

family of local vector fields, whose flows approximate, at the first order, the

map. In [2], [11] and [12] the crucial concept of tangentiality of a map along

a curve of fixed points is introduced (and generalized in [3]), i.e. something

analogous to the ”continuous” concept of invariant curve for a vector field

[28].

In [11] Bracci notes the possibility of simplifying Abate’s technique, as

Cano did in case of foliation. So the presence of a (C1) or a (C2) point

guarantees the existence of a parabolic curve. A point that admits, in its

resolution, a (C1) or (C2) point is called appropriate singularity.

At this point natural questions arise:

- by Camacho-Sad theorem we know that through every singularity of a

holomorphic vector field a separatrix passes. So, when does another

separatrix exist?

- given a diffeomorphism tangent to the identity with a singular curve of

fixed points through which points does a parabolic curve pass?

We start with a holomorphic foliation (respectively a diffeomorphism tan-

gent to the identity) with a separarix (respectively curve of fixed points) and

we want to know if, and through which points, another separatrix (parabolic

curve) passes.
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A first step in this direction is made by Bracci, that in [11] examines

the case of generalized cusps, i.e., curves of type {yn = xm}. The strategy

consists in finding which conditions guarantee that a point is an appropriate

singularity.

To make this we have to analyze the behavior of the index during the

resolution of singularities of the foliation (map) but also of the separatrix

(curve). This last analysis creates a lot of complications on the study of the

evolution of the index, because we find points that can belong to one, two or

even three irreducible branches of the total transform and in every of these

cases the bheavior of the index changes.

An accurate study of the evolution of such index allows to state:

Theorem 0.1. Let M be a complex two dimensional manifold, F a holo-

morphic foliation on some open subset of M , S ⊂ M a possibly singular

curve locally irreducible at a point p ∈ M , such that it is a separatrix for

F at p. If Ind(F , S, p) 6∈ Q+ ∪ {0} then there exists (at least) another

separatrix for F at p.

The answer we find to the second question is specular to the previous

one:

Theorem 0.2. Let M be a two dimensional complex manifold, f : M −→ M

a holomorphic map such that Fix(f) = S with S a locally irreducible, possi-

bly singular curve at a point p ∈ M . Assume that f is tangential on S and

Ind(f, S, p) 6∈ Q+ ∪ {0}. Then there exists (at least) a parabolic curve for

f at p.

These results generalize the results of Camacho-Sad and Abate. It is

sufficient to perform a blow-up and remember that the self intersection of the

exceptional divisor is −1 to find the conditions required by these theorems.
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Both results are of local flavour, in fact they allow to find exactly through

which points a separatrix (parabolic curve) passes. We note that this criterion

of localization is the same in the two contexts.

All these facts underline, another time, the strict relation between the

two settings.

If this connection is so deep, as it seems, how can we read definitions and

objects of one setting in the other one?

Differently from [2], [3] and [11], in [28] we associated to a germ f of

diffeomorphism tangent to the identity, having a curve S of fixed points, a

formal vector field X such that exp(X) = f .

Under this construction we have only to work with one vector field, in-

stead of a family of vector fields as in [3] and [11], but we loose the con-

vergence of the vector field. This construction is proposed even in a very

recent preprint of Brochero Martinez, Cano and López Hernanz [15]. These

authors consider the case of a map with an isolated singularity. They, as

always, make a blow-up and reduce to a map with a particular curve of fixed

points, i.e. the exceptional divisor. According to the philosophical idea that

the natural setting is a map with a generic curve of fixed points, we start

with this general assumption. So we find their results as particular cases.

Naturally, this construction is useful only if we can get an index theorem

for the vector field X which is exacltly the same of that of the map’s one.

Such an index theorem might not exist for formal vector fields.

So, does the vector field X have some additional useful structure?

To answer to this question let observe what happens when the vector

field is the blow-up of a formal one and the invariant curve is the exceptional

divisor. If

X := A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,
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where A,B ∈ C[[x, y]] then, when we formally blow-up X, in the chart

x = u; y = uv, the vector field becomes:

A(u, uv)
∂

∂u
+

(
B(u, uv)− vA(u, uv)

u

)
∂

∂v
.

Now, it is easy to see that the coefficients of such vector field live in

C[v][[u]]⊕ C[v][[u]].

Namely, the coefficients are convergent (polynomial) in the coordinate transver-

sal to the exceptional divisor {u = 0}. This structure is preserved even in

the general case? The answer is positive and X is said transversely formal.

Theorem 0.3. Let f be a germ of holomorphic diffeomorphism of C2 with

Fix(f) = S, where S is a non singular complex curve and suppose f is

tangential to S. Then, the formal vector field X such that exp(X) = f is

transversely formal along the separatrix S, namely

X ∈ C{x}[[y]]⊕ C{x}[[y]].

The transversely formality is the right condition to get an index theorem

of Camacho Sad type [28].

Theorem 0.4. Let X be a transversely formal vector field on a complex

manifold of dimension two tangent to a compact, connected non singular

curve S ⊂ M. Then, for every p ∈ S there exists an index Ind(X,S, p) ∈ C
such that: ∑

p∈S

Ind(X,S, p) = S · S.

The existence of such an index allows to get the same dynamical result

found for holomorphic vector fields, even for transversely formal ones.
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Theorem 0.5. Let

A(x, y)
∂

∂x
+ B(x, y)

∂

∂y

be a transversely formal vector field with an invariant smooth curve S and

let p ∈ S be such that Ind(X,S, p) 6∈ Q+ ∪ {0}. Then there exists another

formal separatrix through p.

If we want to study by mean of this construction the dynamics of maps

with a curve of fixed points we need that the vector field X does not have

a discrete set of singularities on the separatrix S. To reduce to this case we

have to algebraically normalize it. Such an operation will be made very often

and we refer to the new vector field as the normalization of X.

In this way, the condition of tangentiality assumes an easy geometric

interpretation: f is tangent to S if and obly if S is invariant for the normal-

ization of X along S.

This construction shows that the study of the evolution of the index

during the reduction is the same for maps and vector fields. So, even by this

way, we recover Theorem 0.2.

All the techniques used to study the dynamics of maps until now, always,

refer to foliation techniques.

So a natural question arise: can all the parabolic curves be found by

a blow-up process? Abate and Tovena in [5] noticed that the parabolic

curves found in this way have an additional structure, in fact they survive

under blows-up. Such parabolic curves are called robust parabolic curves.

Abate and Tovena find in [5] a family of self-maps of C3 tangent to the

identity and with the origin as an isolated fixed point with parabolic curves

but with no robust parabolic ones. So in dimension three the two concepts

are not the same. Until now we do not know if such difference exists even

in dimension two. However, when we try to find an upper bound for the
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number of parabolic curves, with our method, we have to restrict to robust

parabolic curves.

In [29] we study the dynamics flows of vector fields tangent to the identity

. Such a set, denoted by Φ≥2(C2, 0), is a dense subset of the space of germs

of maps tangent to the identity in C2. In this work we give a geometric

interpretation of some concepts of discrete dynamics, such as tangentiality,

and examine with more attention the relationship of some concepts, such as

dicriticity, for vector fields and maps.

We find that the concept of dicriticity passes from the map to the asso-

ciated vector field and viceversa.

Proposition 0.6. Let f ∈ Φ≥2(C2, 0) be a map tangent to the identity in

C 2 and let X be the vector field such that exp(X) = f. Then f is dicritical

in 0 if and only if X is dicritical in 0.

So we have that a dicritical map has infinitely many robust parabolic

curves if and only if the vector field has infinitely many separatrices.

For what concerns the non dicritical case the robust parabolic curves are

exactly the parabolic curves living inside a separatrix of the associated vector

field:

Proposition 0.7. Let f ∈ Φ≥2(C2, 0) be a holomorphic map and let X

be vector field such that exp(X) = f . Let ϕ be a robust parabolic curve.

Then ϕ is contained in a formal separatrix of X. Conversely in every formal

separatrix of X there exists at least one robust parabolic curve for f .

If we can estimate the number of robust parabolic curves inside a separa-

trix and the number of separatrices, we get an upper bound for the number

of robust parabolic curves. According to the work of Corral and Fernandez-

Sanchez in [24] an upper bound for the number of separatrices exists and we

find the following estimation for the number of robust parabolic curves.
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Theorem 0.8. Let f = (f1, f2) ∈ Φ≥2(C2, 0) be a non-dicritical holomorphic

map. Set η(f) := max{ord(f1 − Id), ord(f2 − Id)} and µ(f) the Milnor

number of f. Then the number of robust parabolic curves is at most

(µ(f) + 1)(η2(f)− η(f)).



Chapter 1

Continuous dynamics

In this chapter we recall the basic facts about holomorphic foliations. We

start with the definition of a non singular foliation and then generalize it to

the singular case, that is the most interesting case for this study. We end up

by studying singular foliations in C2.

1.1 Holomorphic foliations

In this section we briefly recall the basic definitions of holomorphic foliations.

For more details we refer to [16], [17] and [34].

Definition 1.1. Let M be a complex manifold of complex dimension m.

A holomorphic foliation F on M of complex codimension k is given by a

holomorphic maximal atlas

{ϕj : Uj → ϕj(Uj)}j

of M such that the transition maps are of the form:

ϕj ◦ ϕ−1
i :ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

(x, y) 7→ (gi,j(x, y), hi,j(y))
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with gi,j and hi,j holomorphic maps. The charts ϕj are called trivialization

charts.

Remark 1.2. A holomorphic foliation F is a real codimension 2k foliation

of M which is given by a holomorphic atlas of M whose transition maps

preserve the complex structure.

Let us consider a real foliation F of real codimension k on an n + k

manifold M , let ϕj : Uj → ϕj(Uj) be a chart as in the definition. The

plaques of F in U are given by ϕ−1(R2n×{y}). Let P and P̃ be two plaques

of the charts ϕ and ϕ̃. Then either P ∩ P̃ = ∅ or P ∩ (U ∩ Ũ) = P̃ ∩ (U ∩ Ũ).

On M we can define the following equivalence relation: two points p, q ∈ M

are equivalent if and only if there are some plaques P1, · · · , Pr such that

p ∈ P1, q ∈ Pr and Pi ∩ Pi+1 6= ∅∀i.

Definition 1.3. A leaf of F is a class [p] ⊂ M under the previous introduced

equivalence relation.

Definition 1.4. The leaves of a holomorphic foliation F are the leaves of

the underlying real foliation.

Remark 1.5. The leaves, endowed with the natural complex structure, be-

come complex immersed submanifolds of M .

We can now recall what a singular foliation is.

Definition 1.6. A holomorphic foliation with singularities on a complex

manifold M is a pair F = (F ′, X) where X ( M is a proper analytic subset

of M with codim(X) ≥ 2 and F ′ is a (non singular) holomorphic foliation

on M ′ = M \X.

The leaves of F are the leaves of F ′ on M ′. The set X is called the

singular set of F , Sing(F) = X.
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Definition 1.7. A singular holomorphic foliation is called saturated if it is

not possible to find an analytic subset X ′ ⊂ X such that F ′ extends as a non

singular holomorphic foliation to M \X ′.

1.1.1 Holomorphic foliations on complex surfaces

In complex dimension two it is easy to relate holomorphic foliations to holo-

morphic vector fields [41], [47]. Let ζ be a holomorphic vector field in a

neighborhood of the origin U and suppose that Sing(ζ) = {0}. Let observe

that if

ζ = A(x, y)
∂

∂x
+ B(x, y)

∂

∂y

with {A(x, y) = 0} ∩ {B(x, y) = 0} = {0} then ζ defines a complex ordinary

differential equation by:

ξ̇ = ζ(ξ),

i.e. {
ẋ = A(x, y)

ẏ = B(x, y).

The set of solutions defines a singular foliation in U .

Viceversa, let F be a holomorphic foliation in a neighborhood U of the

origin in C2 with Sing(F) = {0}. Let be p ∈ U \{0} and define the function:

f : U \ {0} → C

p 7→ f(p),

where f(p) is the inclination of the complex line tangent to the leaf of F for

p in p. Such a function is a meromorphic function f : U \ {0} → C. Now we

recall two basic fact of complex analysis (see [35]):

Theorem 1.8 (Hartogs’ Theorem). Let M be a complex manifold, X ⊂
M an analytic subset of codimension bigger or equal then two. Let ω be
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a meromorphic q-form in M \ X. Then ω admits a unique meromorphic

extension ω̃ to M .

Theorem 1.9 (Cartan’s Theorem). In a neighborhood of a ball in Cn with

n ≥ 2 any meromorphic function f is the quotient of two holomorphic func-

tions A and B such that {A = 0} ∩ {B = 0} has no components of positive

dimension.

From this two theorems we easily deduce that f = A
B

and

dy

dx
=

A(x, y)

B(x, y)
.

so, the leaves of F are the integral curves of

A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
.

Proposition 1.10. Any holomorphic foliation F in a neighborhood of the

origin of C2 can be given by a holomorphic vector field ζ and the singularities

of F are the singularities of the vector field.

Let ζ be a holomorphic vector field in U ⊂ C2 such that {ζ = 0} contains

some one dimensional component S and suppose S is described by a holo-

morphic function h : U → C, i.e., S = {h = 0}. We can always assume that

h is reduced in the following sense: if a local function F vanishes on {ζ = 0}
then F = hmF ′ where m ∈ N and {F ′ = 0} ∩ {ζ = 0} has dimension zero.

So we can write the vector field in the following way

hmA1
∂

∂x
+ hnB1

∂

∂y

and so

ζ = hm′
ζ1,
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where m′ = min{m,n} and ζ1 is a holomorphic vector field in U such that

{ζ1 = 0} has dimension zero. Thus the foliation Fζ admits an extension Fζ1

which satisfies Codim(Sing(ζ1)) = 2.

In conclusion we can always assume in case of foliations in C2 that:

(i) the foliation, locally, is given by a holomorphic vector field;

(ii) the foliation is saturated, namely, it has only isolated singularities.

Proposition 1.11. Let F be a saturated holomorphic foliation on M2. Then

it exists an open covering {Ui} of M such that F|Ui
is given by a holomorphic

vector field ζi in Ui and the number of singularities of ζi is at most one. For

any i, j such that Ui ∩ Uj 6= ∅ there exists a holomorphic non vanishing

function hi,j : Ui ∩ Uj → C such that ζi = hi,jζj.

Remark 1.12. By the previous proposition we find a family of functions hi,j

satisfying a cocycle condition. Thus defining a holomorphic line bundle L∗

over M and a natural morphism L → T 1,0M (here L is the dual of L∗).

This line bundle, L, is called the tangent bundle to the foliation. In fact,

an equivalent way to define a holomorphic foliation on a two dimensional

complex manifold M is by means of a holomorphic line bundle L over M and

a morphism ϕ : L → T 1,0M [34].

Let us observe that on the open set Uj the vector field vj, defining the

foliation, in the local coordinates (z, w), assumes the form:

vj = Aj(z, w)
∂

∂z
+ Bj(z, w)

∂

∂w
, (1.1)

for some Aj, Bj ∈ O(Uj). Therefore, vj, where vj 6= 0, generates the kernel

of the holomorphic 1−form ωj defined by:

ωj = Bj(z, w)dz − Aj(z, w)dw. (1.2)
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In conclusion a holomorphic foliation in C2 (or more generally on a com-

plex two dimensional manifold) can be seen as an equivalence class of vector

fields or as an equivalence class [{Uj}j∈J , {ωj}j∈J ]∼ of holomorphic 1−forms

where {{Uj}j∈J , {ωj}j∈J} ∼ {{U ′
i}i∈I , {ω′i}i∈I} if and only if for every i, j

such that Uj ∩ U ′
i 6= ∅ it exists a function, f ∈ O∗(Uj ∩ U ′

i), such that

ωj = fω′i.

1.2 Singularities and normal forms

A normal form for a holomorphic vector field is a particulary easy to handle

expression of the vector field which we can obtain after some manipulations.

If we are interested in the analytic (formal) structure of the vector field then

the equivalence relation is the analytic (formal) conjugation.

Definition 1.13. Two germs of holomorphic vector fields (C2, 0), X1, X2 are

holomorphically (formally) conjugated if there exists a germ of holomorphic

(formal) diffeomorphism Φ of (C2, 0) such that:

dΦ ◦X1 ◦ Φ−1 = X2.

If instead we were interested in the geometric structure determined by

the vector field, i.e., in the foliation determined by the vector field, we can

consider the following equivalence relation:

Definition 1.14. Two germs of holomorphic vector fields in (C2, 0), X1, X2

are holomorphical (formally) equivalent if there exists a germ of holomor-

phic (formal) diffeomorphism Φ of (C2, 0) such that:

dΦ ◦X1 = Ψ ·X2 ◦ Φ,

where Ψ is a holomorphic (formal) function with Ψ(0, 0) 6= 0.



1.2 Singularities and normal forms 18

Remark 1.15. Let λ1, λ2 be the eigenvalues of the linear part of the vec-

tor field X. Up to conjugation, we can assume that the linear part of the

vector field is diagonal (or triangular). This linear part is equivalent (if the

eigenvalues are not both zero) to:
(

1 0
0 λ2

λ1

)
.

According to the type of eigenvalues of the vector field we can divide the

singularities in the following way:

Definition 1.16. Let X be a holomorphic vector field in (C2, 0) which is

singular at the origin. Let λ1, λ2 be the eigenvalues of the linear part of X.

The singularity is

- in the Poincarè domain if:

1. λ1λ2 6= 0; and

2. λ1

λ2
∈ C \ R−.

- in the Siegel domain if:

1. λ1λ2 6= 0;

2. λ1

λ2
∈ R−.

- a saddle-node if an eigenvalue is zero and the other is not zero;

- a nilpotent singularity if both eigenvalues are zero but the linear part

is not zero i.e. the linear part is equivalent to x2
∂

∂x1
.

1.2.1 Poincarè domain

In this section we recall some results of Poincaré. The proofs can be found,

e.g., in [19].
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Theorem 1.17. Let X be a holomorphic vector field in (C2, 0) singular at

the origin. Suppose that the singularity lies in the Poincarè domain. If

λ1

λ2
6∈ N∪ 1

N (where 1
N = { 1

n
| n ∈ N \ {0}}) the vector field is holomorphically

conjugated to its linear part.

The case in which λ1

λ2
∈ N ∪ 1

N was studied by Poincarè and Dulac:

Theorem 1.18. Let X be a holomorphic vector field in (C2, 0). If λ1

λ2
= n ∈

N ∪ 1
N , then X is holomorphically equivalent to:

(nx1 + axn
2 )

∂

∂x
+ x2

∂

∂x2

.

1.2.2 Siegel domain

In this section we assume the singularity is in the Siegel domain i.e. the

quotient of the eigenvalues is negative real. For the proofs we refer to [19].

Theorem 1.19. Let X be a holomorphic vector field in (C2, 0) which is

singular at the origin. Suppose the singularity is in the Siegel domain. Then

it is holomorphically conjugated to:

(λ1x1 + x1x2a(x1, x2))
∂

∂x1

+ (λ2x2 + x1x2b(x1, x2))
∂

∂x2

,

where a, b ∈ C{x1, x2}.

From a formal point of view we have:

Theorem 1.20. Let X be a holomorphic vector field in (C2, 0) singular at

the origin and suppose the singularity is in the Siegel domain, then:

1. if λ1

λ2
∈ Q− the vector field is formally conjugated to:

(λ1x1 +
∑

k≥1

ψ1,kx
nk+1
1 xkm

2 )
∂

∂x1

+ (λ2x2 +
∑

k≥1

ψ2,kx
kn
1 xkm+1

2 )
∂

∂x2

;

2. if λ1

λ2
∈ R− \Q then the vector field is formally linearizable.
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1.2.3 Saddle node

Saddle-node singularities were first studied by Briot, Bouquet and Dulac [19],

[30].

Theorem 1.21. Let X be a holomorphic vector field in (C2, 0) with a saddle

node type singularity at the origin. Then is holomorphically conjugated to:

(x1 + x2g(x1, x2))
∂

∂x1

+ (x2h(x1, x2))
∂

∂x2

,

with g, h ∈ C{x1, x2}.

from the formal point of view we can say something more on the structure

of g and h.

Theorem 1.22. Let X be a holomorphic vector field in (C2, 0) with a saddle

node singularity at the origin. Then is formally conjugated to:

xp+1
1

∂

∂x1

+ (x2(1 + ωxp
1))

∂

∂x2

,

with p ∈ N and ω ∈ C.

1.2.4 Nilpotent singularity

In case of nilpotent singularities the problem of normal forms is more compli-

cated and not completely solved. Generally, we have the Takens pre-normal

forms:

Theorem 1.23 ([56]). Let X be a holomorphic vector field in (C2, 0) with a

nilpotent singularity at the origin. Then is formally equivalent to:

(2x2 + xp
1U(x1))

∂

∂x1

− nxn−1
1

∂

∂x2

, (1.3)

where 2 ≤ n− 1, p ≥ 2 and U(x1) ∈ C{x1} with U(0) 6= 0.
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We can suppose that, up to conjugation, every nilpotent singularity is of

the form:

(x2 + a(x1))
∂

∂x1

+ b(x1)
∂

∂x2

with a(x1) = arx
r
1 + · · · and b(x1) = bs−1x

s−1
1 + · · · .

Theorem 1.24 ([54]). The pre-normal form of Takens is analytic (i.e. the

series that reduces the vector field in the pre-normal form is convergent) if

s < ∞.

In order to specify the structure of the function U we have to make some

distinctions.

The numbers r and s are not invariant for the vector field but their

relations are invariant. Thus we can make a classification of nilpotent singu-

larities according to these relations:

1. we have a generalized cusp if bs−1 6= 0 and s < 2r;

2. we have a generalized saddle-node if ar 6= 0 and 2r < s;

3. we have a generalized saddle if s = 2r, ar 6= 0 and bs−1 6= 0.

Generalized cusp singularities have been classified by Stróżyna and Żola̧dek

in [54]. To express such a classification we set:

XH = 2x2
∂

∂x1

+ sxs−1
1

∂

∂x2

;

EH = 2x1
∂

∂x1

+ sx2
∂

∂x2

n0 =
r

s
− 1

2
.

Theorem 1.25 ([54]). Let X be a holomorphic vector field in (C2, 0) with a

generalized cusp singularity at the origin in the pre-normal form (1.3). Then
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is formally equivalent to one of the following normal forms Js
r,φ. These forms

are classified by a formal series φ(x) =
∑∗ cjx

j (the star means that the

summation is taken over a particular subset of integers), by the class modulo

s of the exponent r 6= 0 or by r = ∞.

- Js
∞,0 = XH ;

- Js
r,φ = XH + xr−1

1 (1 + φ(x1))EH , where

∑ ∗ =
∑

j 6=0,−r(mod s)

,

if r < ∞ e n0 6∈ Z;

- the vector field (1.25) where:

φ = cn0sx
n0s
1 ,

if r < ∞ e n0 ∈ Z;

- the vector field (1.25) where:

∑ ∗ =
∑

j∈{n0s,j0}
+

∑

j>j0 j 6=0,−r(mod s), j 6=j0+n0s

.

If two vector field with normal forms Js
r,φ e Js′

r′,φ′ are formally equivalent

then r = r′, s′ = s′ and φ(x1) ≡ φ(αx1) for some constant α that satisfies

α2r−s = 1, when r 6= ∞.

The study of generalized saddle node is in [53]. Let consider:

n0 =
s

r
− 2

EH = x1
∂

∂x1

+ ry
∂

∂x2

.
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Theorem 1.26 ([53]). Every holomorphic vector field with a generalized sad-

dle node singularity at the origin is formally equivalent to one of the fol-

lowing normal forms Js,φ
r . Such forms are classified by the exponents s =

2r + 1, 2r + 2, · · · ,∞ and by the formal series φ(x1) =
∑ ∗djx

j
1 :

- J∞,0
r = (x2 − xr

1)
∂

∂x1
;

- Js,φ
r = (x2 − xr

1)
∂
∂1

+ xs−r−1
1 (1 + φ(x1))EH where

∑ ∗ =
∑

j 6=0(mod r)

,

if s < ∞ and n0 6∈ Z;

- Js,φ
r with φ = dn0x

n0r
1 , if s < ∞ and n0 ∈ Z;

- Js,φ
r with: ∑ ∗ =

∑

j∈{n0r,j0}
+

∑

j>j0, j 6=0(mod r), j 6=j0+n0r

,

if s < ∞ and n0 ∈ Z and there exists a non zero coefficient dj0 with

j0 6= 0modr.

If two vector field with a generalized saddle node singularity and with normal

forms Js,φ
r and Js′,φ′

r′ are formally equivalent then r = r′, s = s′ and φ′(x1) ≡
φ(αx1) for some constant α such that αs−2r = 1.

1.3 Desingularization theorem

1.3.1 Blow-up of a complex surface

The blow-up of a complex surface M at a point p ∈ M consists of substituting

the point p by a complex projective line, called exceptional divisor. In this

way we find a new manifold of complex dimension two where, in place of p,
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we have a complex projective line that we can interpret as the set of tangent

directions of M at p. Let M be a complex surface, p a point of M and let

TpM be the tangent space of M in p. Let:

[·] : TpM \ {0} −→ TpM \ {0}
∼

∼= CP(1)

where CP(1) is a complex projective line.

Let define:

Mp = (M − p)
◦∪ CP(1)

and introduce on it a structure of differentiable manifold as follows.

If U is a coordinate open set of M that does not contain p then the

corresponding chart on M is even a chart on Mp. If, instead, U is a coordinate

neighborhood of p in M and χ : U ⊆ M −→ C2 is a chart on M such that

χ(p) = (x(p), y(p)) = (0, 0) we define:

V1 = (U − χ−1({0} × C )) ∪ (CP1 − [K1])

V2 = (U − χ−1({0} × C )) ∪ (CP1 − [K2])

where K1 = ker(dx)p and K2 = ker(dy)p, that is K1 =< [ ∂
∂y
|p] > and

K2 =< [ ∂
∂x
|p] > . Notice that V1 ∪ V2 = U and V1 ∩ V2 6= ∅. Let define:

χ1 : V1 −→ C2

q 7−→
(

x(q),
y(q)

x(q)

)
, if q ∈ U − χ−1({0} × C )

[
α1

∂

∂x
|p + α2

∂

∂y
|p

]
7−→

(
0,

α2

α1

)
, if

[
α1

∂

∂x
|p + α2

∂

∂y
|p

]
∈ CP1 \ [K1].

and:

χ2 : V2 −→ C2

q 7−→
(

x(q)

y(q)
, y(q)

)
if q ∈ U − χ−1({0} × C )

[
α1

∂

∂x
|p + α2

∂

∂y
|p

]
7−→

(
α1

α2

, 0

)
if

[
α1

∂

∂x
|p + α2

∂

∂y
|p

]
∈ CP1 \ [K2].
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Then {(Vi, χi)}i=1,2 is an atlas for Mp.

The projection:

πp :Mp −→ M

u 7−→
{

u if u ∈ M \ {p}
p if u ∈ CP1

is a holomorphic function and, in local coordinates, assumes the form:

πp(u, v) = (u, uv) in V1 ,

πp(u, v) = (uv, v) in V2.

1.3.2 Desingularization of a foliation

Let consider a germ of holomorphic foliation in C2 which is singular at the

origin. We have seen that it can be expressed in the following form:
{

ẋ = A(x, y)

ẏ = B(x, y)

where A(0, 0) = B(0, 0) = 0. If we denote by ν the algebraic multiplicity of

this equation at 0 ∈ C2, i.e. the least order of its expression at 0 ∈ C2, then

we can write the previous equation in the form:
{

ẋ = Aν(x, y) + Aν+1(x, y) + · · ·
ẏ = Bν(x, y) + Bν+1(x, y) + · · ·

where Ai and Bi are the homogenous part, of degree i, of the power series

expression of A and B.

In the chart of the blown-up manifold for which the projection assumes

the form π(u, v) = (u, uv) the foliation becomes:




u̇ = Aν(u, uv) + Aν+1(u, uv) + · · ·
v̇ =

ẏ − vu̇

u
=

Bν(u, uv) + Bν+1(u, uv) + . . .− v(Aν(u, uv) + . . .)

u
,
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or, in a better form:

{
u̇ = uν(Aν(1, v) + uAν+1(1, v) + · · · )
v̇ = uν−1(Pν+1(1, v) + u(· · · )),

where Pν+1(x, y) = xBν(x, y) − yAν(x, y). If we use the other chart we find

another vector field that is equivalent to this one on the intersection. So, we

have a global foliation on the blown-up manifold. We have two cases: the

dicritical one and the non dicritical one.

In case Pν+1(x, y) ≡ 0 the singularity is called dicritical and the foliation

becomes: {
u̇ = uν(Aν(1, v) + uAν+1(1, v) + · · ·
v̇ = uν(· · · ).

Dividing by the factor uν we obtain a saturated foliation that is equivalent to

the previous one outside (u = 0). Let observe that in this case the exceptional

divisor (u = 0) is not invariant for the foliation.

In case Pν+1(x, y) 6≡ 0 we have a non dicritical singularity and to get a

saturated foliation we can only divide by uν−1. In this way the curve (u = 0)

is an invariant curve for the foliation.

Let observe that in both cases we find a discrete set of singularities and

so we can repeat the construction for every singularity. In this way we

can reduce the vector field to have only a particular class of singularities:

dicritical ones and reduced ones.

Definition 1.27. Let M be a complex surface, F an holomophic foliation

on M and p ∈ M , an isolated singularity of F . The point p is a reduced

singularity for F if one of the following conditions holds:

(∗1) λ1 6= 0, λ2 6= 0 and λ1

λ2
6∈ Q+ ∪ {0}

(∗2) λ1 6= 0, λ2 = 0 or λ1 = 0, λ2 6= 0.
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Theorem 1.28 (Seidenberg Theorem [16], [43], [51]). After a finite num-

ber of blows-up we can reduced the foliation to one that has only dicritical

singularities and reduced singularities.

1.4 Separatrices of foliations

Let us consider the foliation:
{

ẋ = 3y2

ẏ = 2x.

The foliation is singular at (0, 0), the curve {x2 − y3 = 0} \ {(0, 0)} is a leaf

for the foliation and its closure {x2 − y3 = 0} is a singular curve, containing

(0, 0). In order to analyze such a situation we start with a definition:

Definition 1.29. Let M be a complex surface, F a holomorphic foliation on

M and p a point of M . A local separatrix of F at p is a germ of irreducible

complex curve C ⊂ M , such that p ∈ C and C \{p} is a leaf of F |
M\Sing(F)

.

Namely, if vj represents the foliation F on the open set Uj that contains the

point p, then:

spanC{vj(q)} = TqC.

Remark 1.30. Let C be a separatrix for F . If j : C −→ M is the immersion

of C in M and the foliation, F , is defined by {ω = 0} with ω a holomorphic

1−form on M , then j∗(ω |C\{p}) ≡ 0.

If the point p is not a singularity for the foliation F then the Cauchy-

Kowaleskaya theorem assures the existence of exactly one non singular com-

plex curve C such that p ∈ C and C is a leaf of F . This means that a

separatrix C is such that Sing(C) ⊂ Sing(F).

If the point p is a dicritical singularity then infinite separatrices pass

trough it.
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Lemma 1.31 ([16]). Let M a complex surface and F an holomorphic folia-

tion on it. Let p be a point of M . If p is a dicritical singularity for F then

there exist infinitely many separatrices through p.

In case of reduced singularity the problem of existence of separatrices can

be solved using the normal forms we have described in the previous section.

if p is a reduced singularity of type (∗1) then there exist exactly two sepa-

ratrices passing through p and they intersect each other transversally,

if p is a singularity of type (∗2) then there exist two formal separatrices

passing through p, one is always convergent and it is called strong

separatrix, and the other is generally only formal and it is called

weak separatrix.

1.5 Camacho-Sad index theorem

In this section we recall the Camacho-Sad index theorem [18] in its general

form [55], [39]. Let S be a singular curve on a complex surface M and let

suppose that S is compact and irreducible. Let F be a holomorphic foliation

on M with a discrete set of singularities on S. Let S ′ := S \ (Sing(S) ∪
Sing(F)).

Lemma 1.32 (Baum-Bott vanishing lemma for the Camacho-Sad theorem

[39]). There exists a connection ∇ for the normal bundle NS′ of S ′ in M ,

such that its curvature K ≡ 0 on S ′.

By the previous lemma we can prove the following index theorem in case

S is even singular [39] [55] (Camacho and Sad proved the result only in

case S is not singular). The proof is based on the localization around the

singularities of the curvature K of the previous connection.
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Theorem 1.33 (Suwa, Lehmann [39], [55]). Let S be a compact irreducible

curve in M . Let F be a holomorphic foliation in M with Sing(F) discrete

and such that S is F−invariant. Then for every point p ∈ Sing(F)∩S there

exists a complex number Ind(F , S, p) ∈ C that depends only on the behavior

of F near S in p such that:
∑

p∈Sing(F)∩S

Ind(F , S, p) = S · S.

Moreover, if S is defined by {f = 0} at p, and F is defined by ω = fdτ+hdf =

0 at p, then:

Ind(F , S, p) =
1

2πi

∫

L

dτ

h

where L = S ∩ S3 and S3 is a sphere centered in p with a small radius.

As we can see in the following section it will be convenient to use this

index together with blow-up techniques. So we describe the behavior of the

index under blow-up.

Proposition 1.34. Let M be a two dimensional complex manifold, F a

holomorphic foliation, S an F -separatrix and p ∈ Sing(S). We denote

by π : M̃ −→ M the blow-up of M at p, by F̃ the saturated foliation and

by D := π−1(p) and Ŝ := π−1(S \ {p}), respectively, the exceptional divisor

and the strict transform of S. Then Ŝ is an F̃ separatrix. Moreover if

{p̃} := D ∩ Ŝ then

Ind(F̃ , Ŝ, p̃) = Ind(F , S, p)−m2

where m ≥ 1 is the multiplicity of S in p.

1.6 Camacho-Sad and Cano results

The general problem of the existence of a separatrix for holomorphic foliations

on complex surfaces was solved by Cesar Camacho and Paulo Sad in 1982:
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Theorem 1.35 (Camacho-Sad theorem [18]). Let M be a complex surface

and F a holomorphic foliation on M . Then through every singularity p of F
passes at least a separatrix.

We recall the steps of the proof of this results:

1. study of the existence of separatrices through reduced singularities,

2. Seidenberg reduction theorem,

3. Index Theorem,

4. combinatoric part.

By Seidenberg theorem we can assume, after a finite number of blows-up,

that all singularities on the exceptional divisor are only of type (∗1) or (∗2).

In fact, in case of presence of dicritical singularities Lemma 1.31 assures the

existence of infinite separatrices and so the problem is solved. Now, the prob-

lem is that it could happen that all singularities of type (∗1) are intersections

of irreducible components of the exceptional divisor and all singularities of

type (∗2) are smooth points of the exceptional divisor that have not conver-

gent weak separatrix. To prove that this situation cannot happen Camacho

and Sad exploited an index theorem that link the singularities of F on every

irreducible component of the exceptional divisor with the geometry of its

immersion in the ambient space. By this tool and a combinatoric argument

they proved that it must exist a good (∗1) singularity, i.e., a (∗1) singularity

on an irreducible component of the exceptional divisor which is not a cor-

ner. Thus, through this singulariy, there passes a separatrix which is not

contained in the exceptional divisor and this projects down into a separatrix

for the original foliation.
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We quote here a result of Cano that is extremely useful to generalize the

Camacho-Sad result [20].

Definition 1.36. Let M be a complex surface, F a holomorphic foliation on

M and S a separatrix of F through p ∈ M .

• the point p ∈ S is of type (C1) if S is not singular at p and

Ind(F , S, p) 6∈ Q+ ∪ {0}.

• the point p ∈ S is of type (C2) if S has exactly two irreducible non

singular branches S0, S1 that intersect transversally at p and there exists

a number r > 0 such that:

Ind(F , S0, p) ∈ Q≤− 1
r

:= {x ∈ Q | x ≤ −1

r
}

Ind(F , S1, p) 6∈ Q≥−r := {x ∈ Q | x ≥ −r}.

This class of points is stable under blow-up in the sense described by the

following lemma.

Lemma 1.37 ([20]). Let M be a complex surface, F an holomorphic foliation

and S a separatrix for F passing through p ∈ M . Let suppose that p ∈ S

is a point of type (C1) or (C2). Let π : M̃ −→ M the blow-up of M at p,

S̃ := π−1(S) the total transform of S and F̃ the saturated foliation associated

to F . Then there exists a point of type (C1) or (C2) on S̃.

According to this lemma we get the following definition:

Definition 1.38. Let M be a complex surface, F a holomorphic foliation on

M and S a separatrix of F trough p ∈ M . The point p is an appropriate

singularity for F if after a finite number of blow-ups there exists a point of

type (C1) or (C2) on the total transform of S.
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In case we can find a (C1) or a (C2) point, Cano proves that if we blow-up

only these points, after a finite number of blows-up, we eventually find a good

(∗1) singularity and thus we get the existence of a separatrix.

Proposition 1.39 ([20]). Let M be a complex surface, F a holomorphic

foliation and S a separatrix of F through p ∈ M . Let suppose that p ∈ S

is an appropriate singularity for F . Then there exists at least a separatrix

through p.



Chapter 2

Discrete dynamics

In this chapter we concentrate our attention on the dynamics of maps tangent

to the identity in C2. Firstly, we recall how things work in dimension one.

2.1 Discrete dynamics in dimension one

We recall some basic facts about complex dynamics in dimension one. For

more details see [21], [45]. A formal diffeomorphism is every formal series

ϕ̂ ∈ C[[x]] such that ϕ̂(0) = 0 and ϕ̂′(0) 6= 0.

Proposition 2.1. Let be f = az + . . . ∈ Diff(C, 0), a ∈ C∗ = C \ {0}. Then

there exists a formal change of coordinates, ϕ̂, such that:

1. ϕ̂∗f(z) := ϕ̂−1 ◦f ◦ ϕ̂(z) = az, if a is not periodic, i.e. an 6= a for every

n ∈ N;

2. ϕ̂∗f(z) = az if a is of order q ∈ N∗, aq = 1, and f ◦q = Id,

3. ϕ̂∗f(z) = a exp(Xkq,λ) with k ∈ N∗ and Xp,λ = zp+1

1+ λ
2πi

zp

∂
∂z

if a is of order

q ∈ N∗ but f ◦q 6= Id.

We are interested in the case where the conjugation is holomorphic.
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Theorem 2.2 (Koenigs). With the notations of the Proposition 2.1, if |a| 6= 1

then the conjugation to the linear part is holomorphic.

From a dynamical point of view is interesting to know what happen to

the iterates of the map. With this aim we introduce the following definition:

Definition 2.3. Let be f : D ⊂ C → f(D) ⊂ D an holomorphic map such

that 0 ∈ D and f(0) = 0. The map is attractive on D if for every p ∈ D

lim
n→+∞

f (n)(p) = 0,

where f (n) := f ◦ · · · ◦ f If the map is a diffeomorphism and f−1 is attractive

on f−1(D) then the map is called repelling on D.

According to this definition, if | f ′(0) |6= 1, then the map is attractive (if

| f ′(0) |< 1) or repelling (if | f ′(0) |> 1). So, from a dynamical point of view,

the more interesting maps are those with | f ′(0) |= 1.

In this class of holomorphic maps the most important, for the intent of

this thesis, are the maps tangent to the identity i.e. such that f ′(0) = 1. The

dynamics of these maps is completely described by the Leau-Fatou flower

Theorem [45].

Theorem 2.4 (Leau-Fatou flower theorem). Let f(z) = z + akz
k + . . ., with

k ≥ 2 and ak 6= 0, be a holomorphic function fixing the origin. Then there

are k − 1 disjoint domains D1, · · · , Dk−1 with the origin in their boundary,

invariant under g (i.e.g(Dj) ⊂ Dj) and over which g is attractive.

2.2 Dynamics in C2

We are interested in the study of the dynamics of germs of maps f of (C2, 0)

tangent to the identity, i.e., df0 = Id. To find a dynamical behavior similar

to the one dimensional case, first we generalize the concept of petals:
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Definition 2.5. Let M be a complex surface, f : M → M a holomorphic

function and p a point in M . A parabolic curve for f at p is an injective

holomorphic map φ : ∆ → M, with ∆ := {ζ ∈ C | |ζ| < 1}, satisfying:

(1) φ is continuous on ∆̄ and p = φ(1);

(2) f(φ(∆)) ⊂ φ(∆);

(3) for all q ∈ φ(∆) limn→∞ fn(q) = p.

We want to analyze the existence and the number of this objects. To get

this goal we convert the problem in terms of continuous dynamics.

In the following sections we recall how to construct this dictionary fol-

lowing [2], mainly [11] and [3].

2.2.1 Singularities of maps

Let M be a complex surface and p a point in M . Let f : M → M be a

holomorphic function such that f(p) = p and dfp = Id.

For every z, w ∈ Op let us consider the 1−form:

ωw,z,p := (w ◦ f − w)dz − (z ◦ f − z)dw,

and construct the family of germs of holomorphic foliations:

Ωf,p := {ωw,z,p = 0 | w, z ∈ Op, dwp ∧ dzp 6= 0}.

For every ωw,z,p ∈ Ωf,p we can construct the form ω̂w,z,p dividing the given

form ωw,z,p by the greatest common divisor of the coefficients.

Remark 2.6. ω̂w,z,p = ωw,z,p if and only if p is an isolated fixed point of f .

In this way we have linked the study of discrete dynamics to the contin-

uous one.
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Definition 2.7. Let M be a complex surface. Let p be a point in M and

f : M → M a holomorphic function such that f(p) = p and dfp = Id. The

point p is a singular point for f if ω̂w,z,p[p] = 0 for every ωw,z,p ∈ Ωf,p.

Using this construction we can translate to discrete dynamics all the defi-

nitions given for foliations. In particular we still have points of type (∗1) and

(∗2). Let us observe that the definition of (∗1) and (∗2) points is independent

of the coordinates. The following lemma assures that the definition is well

posed:

Lemma 2.8 ([11]). Let w̃, z̃ ∈ Op be such that dw̃p∧dz̃p 6= 0 and let z, w ∈ Op

with dzp ∧ dwp 6= 0. Then there exists u ∈ O∗
p such that ωz̃,w̃,p

p = uωz,w,p
p .

In particular if both the eigenvalues of the linear part are non zero, the quo-

tient λ1
z,w,p

λ2
z,w,p is independent by z, w and if it exist z0, w0 such that one of the

eigenvalues λz0,w0,p
j = 0 then it holds for every z, w.

We can now give the definition of reduced singularities for maps.

Definition 2.9 ([2],[11]). Let M be a complex surface, p a point of M and

f : M → M a holomorphic map such that f(p) = p and dfp = Id. The point

p is a reduced singularity for f if it is a reduced singularity for some and

hence for all ωz,w,p, i.e., one of the following conditions holds:

(∗1) λz,w,p
1 λz,w,p

2 6= 0,
λz,w,p
1

λz,w,p
2

6∈ Q+,

(∗2) λz,w,p
1 = 0, λz,w,p

2 6= 0 or λz,w,p
2 = 0, λz,w,p

1 6= 0.

2.2.2 Curves of fixed points

Now we have to convert in the language of the foliation the case of a map with

curve of fixed points. Let M be a complex surface and S a (possibly singular)

irreducible curve in M . Let f : M → M be a holomorphic function such
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that f |S= IdS and f 6= IdM . Let U be an open set of M and φ : U → C 2

a local chart on M . If l ∈ Op is a defining function of the curve S near the

point p then:

φ ◦ f ◦ φ−1 = Id + (l ◦ φ)T G (2.1)

for some germ G = (G1, G2) of holomorphic function at p with G |φ(S) 6≡ (0, 0)

and T ≥ 1.

The exponent T in the decomposition (2.1) is called order of f on S in

p and we denote it with Tp(f, S).

Remark 2.10 ([12]). We observe that ∀q ∈ U∩S we have Tq(f, S) = Tp(f, S)

.

If p ∈ U ∩ (S \ Sing(S)) the defining function l of S in p is such that

dlp 6= 0. Let τ be a function on U such that dτp ∧ dlp 6= 0 (we say that τ is

transverse to l in p). So we can construct:

ω̂l,τ,p :=
τ ◦ f − τ

alT
dl − l ◦ f − l

alT
dτ,

with a ∈ O(U), a |S 6≡ 0. We see that S is a leaf of ω̂l,τ,p if and only if
l◦f−l

lT
≡ 0 modulo the ideal of functions identically vanishing on S at p.

Definition 2.11. Let M be a complex surface, S an irreducible complex

curve (possibly singular) in M . Let f : M → M be a holomorphic function

such that f |S= IdS and f 6= IdM . If p is a point of S we say that f is

tangential on S at p if for every function l that defines S near p:

l ◦ f − l

lT
≡ 0 mod I(S)p. (2.2)

where I(S)p is the ideal of functions identically vanishing on S at p.

Proposition 2.12 ([12]). If the curve S is globally irreducible then f is non-

tangential at p ∈ S if and only if f is non-tangential at q ∈ S for every

q ∈ S.
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In terms of foliations we can read the tangentiality conditions in the

following way:

Proposition 2.13 ([11]). The map f is tangential on S ∩U if and only if S

is a leaf for the family of holomorphic foliations on U given by {ωl,τ} where:

ωl,τ :=
τ ◦ f − τ

lT
dl − l ◦ f − l

lT
dτ,

for any defining function l of S and transverse to S τ .

Assumes f is tangential on S. If p ∈ Sing(S) then dlp = 0 for any

defining function of S at p. Therefore in this case ωl,τ [p] = 0 for any defining

function l of S and any transverse τ . So p is a singularity for all the family

of foliations ωl,τ = 0. Also in this case we say that p ∈ S is a singularity of

f .

Now we can define even dicritical singularities for maps. To do this we

have to define how to transfer the map f on the blown-up surface M̃ . In [1]

Abate proves that there exists a unique f̃ : M̃ → M̃ such that π ◦ f̃ = f ◦ π

and whose action on the exceptional divisor is induced by the action of dfp

on P(TpM).

Definition 2.14. Let M be a complex surface, p a point of M and f :

M → M a holomorphic function such that f(p) = p and dfp = Id. Let

π : M̃ → M be the projection of the blow-up of M in p and let D := π−1(p)

be the exceptional divisor. The point p is dicritical for f if f̃ : M̃ → M̃ is

non tangential on D.

After these definitions we can expect that even a sort of reduction of

singularities holds for maps. Indeed:

Theorem 2.15 ([11] [2]). Let M be a complex surface, S a (possibly singular)

curve in M . Let p be a singularity of M and f : M → M an holomorphic
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map such that f(p) = p and dfp = Id. Then there exists a complex surface

M̃, a holomorphic proper function π : M̃ → M and a holomorphic function

f̃ : M̃ → M̃ such that:

(1) D := π−1(p) = ∩n
i=1Di where Di are complex projective line that intersect

each other transversally;

(2) π : M̃ \D → M \ {p} is a biolomorphism;

(3) π ◦ f̃ = f ◦ π;

(4) f̃ |D= Id |D;

(5) f̃ has only reduced singularities or dicritical singularities on D.

2.2.3 Index Theorem

In the previous section we introduced a link between separatrices and curves

of fixed points. We know that in the study of separatrices is extremely useful

to have an index theorem. So one of the first step in the study of discrete

dynamics is to find an index theorem [2], [3], [11].

Using the foliations {ωl,τ = 0} defined before and observing that all the

{ωl,τ = 0} are equal to the first tangential order in S [2], [11], we find that:

Theorem 2.16 ([2] [11] [12]). Let M be a complex surface, S a globally

irreducible compact complex curve and f : M → M a holomorphic function

such that f |S= IdS and f is tangential on S. Then for every p ∈ S there

exists a number Ind(f, S, p) ∈ C, that depends only on f near S in p, such

that: ∑
p∈S

Ind(f, S, p) = S · S.
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If l defines S in p and τ is transversal to l the index assumes the form:

Ind(f, S, p) =
1

2πi

∫

∂L

{
l ◦ f − l

l(τ ◦ f − τ)

}
dτ,

where L = S3 ∩ S with S3 a sphere centered in p with enough small radius.

As for foliation we want to use the index theorem together with blow-up

techniques. So it is useful to know the behavior of the index under blow-up.

Proposition 2.17 ([11], [12]). Let M be a complex surface, f : M → M

a holomorphic function and S a curve in M such that f |S= IdS and f is

tangential on S. Let p ∈ S be a point such that S is irreducible at p and let

π : M̃ → M be the blow-up of M in p and f̃ : M̃ → M̃ the induced map by

f . If D := π−1(p) is the exceptional divisor and Ŝ := π−1(S \ {p}) the strict

transform of S then:

(1) the map f̃ is tangential on S̃,

(2) if {p̃} = D ∩ S̃ then Ind(f̃ , Ŝ, p̃) = Ind(f, S, p)−m2 where m ≥ 1 is the

multiplicity of S in p.

2.2.4 Parabolic curves

The constructions made until now suggest to retrace the proof of Camacho-

Sad [18] to get the existence of parabolic curves. To make this we need the

last ingredient i.e., the solution of the problem for some particular cases.

If the point p is not a singularity the problem was solved by Abate [2]:

Proposition 2.18. Let M a complex surface, S a curve in M and f : M →
M a holomorphic map such that Fix(f) = S near p. Let suppose that f is

tangential on S. If p is not a singularity for f on S then p is not an attractive

point for f and then there do not exist parabolic curves for p.
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If instead p is a singularity of f of type (∗1) a first result is achieved by

Hakim [36] (see also Abate [2] where a slightly simpler proof is given):

Proposition 2.19. Let M be a complex surface, S ⊂ M a complex curve.

Let f : M → M be a holomorphic map such that f |S= IdS. Let p be a non

singular point of S and suppose f is tangential on S at p. If Fix(f) = S near

p and p is a reduced singularity of type (∗1) for f then there exists at least

one parabolic curve for f at p.

The last special case is the dicritical one:

Proposition 2.20 ([2], [11]). Let M be a complex surface, p ∈ M . Let

f : M → M be holomorphic and such that f(p) = p, dfp = Id. Then p is

dicritical for f if and only if there exist infinitely many parabolic curves for

f at p.

Now we have all the ingredients for the general case. We can desingular-

ized the map f around an isolated singularity. At the end, if we do not find

dicritical singularities, we find a good (∗1) singularity and then there exists a

parabolic curve that projects into a parabolic curve for f . With this strategy

in mind we can follow Cano’s construction as proposed by Bracci in [11].

Definition 2.21. Let M a complex surface, S ⊂ M a complex curve. Let

f : M → M be a holomorphic map such that Fix(f) = S.

• the point p ∈ S is of type (C1) if S is non singular in p, the map f is

tangential on S in p and

Ind(f, S, p) 6∈ Q+ ∪ {0}.

• the point p ∈ S is of type (C2) if S has two non singular branches S0, S1

that intersect transversally each other in p and it exists a number r > 0
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such that:

Ind(f, S0, p) ∈ Q≤− 1
r

= {x ∈ Q | x ≤ −1

r
}

Ind(f, S2, p) 6∈ Q≥−r = {x ∈ Q | x ≥ −r}.

Definition 2.22. Let M be a complex surface, S a curve in M . Let f :

M → M be a holomorphic function such that Fix(f) = S. Suppose f is

tangential on S. The point p is an appropriate singularity for f if after

a finite number of blows-up there exists a point of type (C1) or (C2) on the

total transform of S.

Proposition 2.23 ([11]). Let M be a complex surface, S ⊂ M a complex

curve. Let f : M → M be a holomorphic map such that Fix(f) = S. Suppose

f is tangential on S. Let p ∈ S be an appropriate singularity for f then there

exists at least one parabolic curve for f in p.

2.2.5 Robust parabolic curves

As we have seen we have deduced the existence of parabolic curves proving

the existence of such curves for the desingularized map and then projecting

it to the map. A natural question arises: can all parabolic curves be obtained

in this way? As noticed by Abate and Tovena [5] the curves found by this

construction have some additional properties. So we introduce a new concept.

Definition 2.24. A robust parabolic curve is a parabolic curve that sat-

isfies the following conditions:

1. we can blow-up ϕ at level h for any h ≥ 1,

2. there is a formal power series Q ∈ (C[[x]])2 such that for every h ≥ 1

there is rh > 0 such that ϕ−Qh = O(ζh+1) in ∆rh
, where Qh denotes

the truncation at degree h of Q.
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Essentially when we say condition (1) we mean that the strict transform

of the parabolic curve is also a parabolic curve. Now we make more precise

such idea [5].

Let ϕ : ∆ → M be a parabolic curve for f at p. If there exists v ∈ P(TpM)

such that ϕ̃ = π−1 ◦ ϕ is a parabolic curve at v for f̃ (where π : M̃ → M

is the blow-up of M at p and f̃ is the blow-up of f), then we say that ϕ is

tangent to v at p and ϕ̃ is the strict transform of ϕ.

We say that we can blow-up at level 1 a parabolic curve ϕ if there exists

r0 > 0 such that ϕ |∆r0
is tangent to some direction v ∈ P(TpM), where

∆r0 ⊂ ∆ is a disc tangent to ∂∆ in the origin. Let ϕ1 denote the strict

transform of ϕ |∆r0
; if we can blow-up ϕ1 at level 1, we say that we can

blow-up ϕ at level 2, and we denote by ϕ2 the parabolic curve so obtained.

In an inductive way we can say that we can blow-up ϕ at level h if we can

blow-up ϕh−1 at level 1.

All the parabolic curves found by the techniques described in this chapter

are robust but it is known that not all parabolic curves are robust [5]. In the

last chapter we analyze in more detail this class of parabolic curves giving a

more geometric interpretation.



Chapter 3

Parabolic curves for maps
tangent to the identity near
singular curves

3.1 Introduction

In Chapter one we have seen that if F is a germ of holomorphic foliation in

(C2, 0) singular at zero then at least one separatrix passes through it [18].

A natural question is whether the knowledge of this separatrix S allows

to infer the existence of another separatrix. There are essentially two types

of results, one of local and the other of global flavor. The first kind of result

is essentially a re-formulation of Camacho-Sad theorem [20] which says that

if S is non singular and Ind(F , S, p) 6∈ Q+ ∪ {0} then there exists another

separatrix through p. The second type of result requires global conditions

on S, like S compact (but possibly singular), globally and locally irreducible

and S ·S < 0 to provide the existence of another separatrix at some point of

S [50].

The aim of this chapter is to prove a result of local nature when S is

possibly singular, using the index defined by Suwa [55]. We prove:



3.1 Introduction 45

Theorem 3.1 ([27]). Let M be a complex two dimensional manifold, F a

holomorphic foliation on same open subset of M , S ⊂ M a possibly singular

curve locally irreducible at a point p ∈ M , such that it is a separatrix for

F at p. If Ind(F , S, p) 6∈ Q+ ∪ {0} then there exists (at least) another

separatrix for F at p.

In chapter two we have seen that Abate, Bracci and Tovena [3], [11], [12]

found a way to translate results about foliations to holomorphic diffeomor-

phisms. The proof of Theorem 3.1 respects their dictionary and so the results

about the existence of separatrices for foliations can be translated in results

about the existence of parabolic curves for diffeomorphisms. So we get the

following result in discrete dynamics:

Theorem 3.2 ([27]). Let M be a two dimensional complex manifold,

f : M −→ M a holomorphic map such that Fix(f) = S with S a locally

irreducible, possibly singular curve at a point p ∈ M . Assume that f is

tangential on S and Ind(f, S, p) 6∈ Q+ ∪ {0}. Then there exists (at least) a

parabolic curve for f at p.

Theorem 3.2 has been proved by Abate [2] in case S is non singular and

by Bracci in [11] in case S is a generalized cusp, i.e. of the form {xm = yn}.
As we can see these two results give conditions that guarantee the ex-

istence of separatrices or parabolic curves. In [29] and in Chapter five we

pursue an analysis of the converse problem, i.e., to find an upper bound for

the number of separatrices and parabolic curves.

This chapter is devoted to the proof of the two previous results. The

idea is to prove that, in both cases, the point is an appropriate singularity

for which we know the existence of a separatrix [20] and a parabolic curve

[11]. We have seen that the index shows strong similarities in the continuous
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and discrete case (this will be analyzed with much more attention in chapter

four). In particular index theorems have the same expression and the indices

have the same behavior under blows-up. In the proof we will use only these

two properties and so we only provide the proof of Theorem 3.1 because the

proof of Theorem 3.2 is formally the same.

3.2 Proof of the result

In order to get Theorem 3.1 we need to prove that the point p is an appro-

priate singularity.

We know that the theorem of resolution of singularities curves [37] en-

sures that after a finite number of blow-ups we have the geometric structure

required for the existence of (C1) or (C2) points. In order to prove our result

we need to analyze the Camacho-Sad-Suwa index (C.S.S. index for short)

under this process. The behavior of the index is strongly related to the evo-

lution of the geometric structure under blow-up. We can divide the proof in

two steps:

1. study of the geometric structure under the resolution of singularities,

2. study of the C.S.S. index under this process.

3.2.1 Geometric structure under blow-up

In order to get step one we give the following definition:

Definition 3.3. Let M be a two dimensional complex manifold and S1, · · · ,

Sn ⊂ M given complex curves. We say that a point p is a double intersec-

tion point if p belongs to exactly two distinct curves among S1, · · · , Sn. If

instead p belongs to exactly three of them it is called a triple intersection

point.
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Remark 3.4. In the study of curve desingularization the set of curves that we

find is formed by the strict transform of the curve S and many exceptional

divisors obtained by successive blow-ups. Because of the structure of the

blow-up process we can only have double and triple intersection points (see

[37]). A triple intersection point belongs to the strict transform of S and to

two exceptional divisors. To distinguish these two C P(1) we will call old

exceptional divisor the strict transform of a given exceptional divisor. Instead

we will call new exceptional divisor the exceptional divisor produced by the

last blow-up.

Now we can describe the geometric evolution under blow-up. Note that

the only intersection point that can be triple is the one made up by the strict

transform of S. We will prove the following:

Proposition 3.5. Let S be a singular curve and let p be a singularity of S.

The resolution process of S in p is related to the behavior of the multiplicity

of S in p in the following way:

• If we blow-up a singularity and the multiplicity does not reduce we have

two cases:

1. if we are in a double intersection point at the next blow-up we find

another double intersection,

2. if we are in a triple intersection point at the next blow-up we

can find either a double intersection or a triple intersection point.

More precisely we find a double intersection point if the tangent

cone to the curve does not coincide with any exceptional divisor,

while we find a triple intersection point if the tangent cone coin-

cides with one of the two exceptional divisors and the new triple
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intersection point belongs to the strict transform of the old excep-

tional divisor.

• If we blow-up a singularity and the multiplicity reduces we have two

cases:

1. if we are in a double intersection point at the next blow-up we find

a triple intersection point,

2. if we are in a triple intersection point at the next blow-up we find

a triple intersection point that belongs to the strict transform of

the new exceptional divisor.

Remark 3.6. In the previous proposition we have used improperly the ex-

pression “the tangent cone coincides with one of the two exceptional divisors”

to mean that the tangent cone of S in p coincides with the tangent space of

D in p.

In order to get Proposition 3.5 we need some elementary lemmas.

Lemma 3.7. Let M be a two dimensional complex manifold, S an analytic

irreducible curve on M and p ∈ S a singularity of S. Blow-up M in p and

let Ŝ be the strict transform of S, D the exceptional divisor and p̂ := Ŝ ∩D.

The multiplicity of Ŝ in p̂ is strictly smaller than the multiplicity of S in p

if and only if D coincides with the tangent cone of Ŝ in p̂.

Proof. We can assume that p = (0, 0) and S = {l(x, y) = 0} with l(x, y) =

ym + lm+1(x, y) + · · · . Blow-up in p and using the chart such that the

projection becomes π(u, v) = (u, uv) we have: Ŝ = {l̂(u, v) = 0}, with

l(u, v) = vm + ulm+1(1, v) + · · · = vm + uqk−1 + · · · and D = {u = 0}. The

multiplicity of Ŝ in (0, 0) is strictly less then m if and only if k < m and then

if and only if the tangent cone is {uqk−1(u, v) = 0} and so if and only if D
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is included in the tangent cone. Because S is irreducible this can happen if

and only if qk−1(u, v) = uk−1, i.e. if and only if D is the tangent cone.

Lemma 3.8. Let M be a two dimensional complex manifold, S an analytic

irreducible curve on M and p ∈ S a singularity of S. Blow-up M in p and let

Ŝ be the strict transform of S, D the exceptional divisor and p̂ := Ŝ∩D. The

exceptional divisor D is the tangent cone of Ŝ in p̂ if and only if blowing-up

in p̂ we get a triple intersection point.

Proof. Let D̂ be the strict transform of D and D1 the new exceptional divisor.

Now D̂ intersects D1 in the point corresponding to the tangent of D in p, so

D̂ ∩ ˆ̂
S 6= ∅ if and only if D and Ŝ have the same tangent in p. So we get a

triple intersection point if and only if the tangent cone of Ŝ coincides with

D.

Using the previous two lemmas we obtain the following:

Lemma 3.9. Let S ⊂ M be an analytic irreducible curve of multiplicity m

in the singular point p. Suppose that after a finite number of blows-up the

strict transform of S, S̃, intersects the exceptional divisor in a point p̃ and

denote by D the irreducible component of the exceptional divisor containing

p̃, i.e. p̃ is a double intersection point. Blow-up in p̃ and let D1 be the new

exceptional divisor and Ŝ the strict transform of S̃. If the multiplicity of Ŝ

in p̂ := D1 ∩ Ŝ is equal to the multiplicity of S̃ in p̃ then at the following

blow-up we find again a double intersection point.

By Lemma 3.8 we also get:

Lemma 3.10. Let S ⊂ M be an analytic irreducible curve of multiplicity m

in the singular point p. Suppose that after a finite number of blows-up we

have a triple intersection point. At the following blow-up we have two cases:
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1. if the tangent cone in the singularity contains one of the two exceptional

divisors then at the next blow-up we find again a triple intersection

point,

2. if the tangent cone in the singularity does not contain any of the two ex-

ceptional divisors then at the next blow-up we find a double intersection

point.

Remark 3.11. Observe that the method of proof used in Lemma 3.10 does

not give information on which of the exceptional divisors goes to create the

new triple intersection. To get this information we need some more com-

putations. Let Ŝ be the strict transform of S after some blow-ups and sup-

pose to have a triple intersection point. We can assume that p = (0, 0) and

Ŝ = {l̂(u, v) = 0} with l̂(u, v) = vm+uk1 [qk2−k1(u, v)+· · · ], and D1 = {v = 0}
, D̂ = {u = 0} where D1 is the new exceptional divisor and D̂ is the old one

(according to Remark 3.4). Let examine the various cases:

1. If m > k2 then the tangent cone is {uk1qk2−k1(u, v) = 0} and by the

irreducibility of S is {cuk2 = 0} with c 6= 0 and so it contains an

exceptional divisor, D̂. Blow-up again (0, 0) and using the chart such

that the projection is π(x, y) = (xy, y) we have:

l̂(xy, y) = ym + cxk2yk2 + xk1yk2+1[qk2−k1+1 + · · · ]

and because m > k2

ˆ̂
l(x, y) = ym1−k2 + cxk2 + xk1y[qk2−k1+1(x, 1) + · · · ]

with D2 = {y = 0} e
ˆ̂
D = {x = 0}. So (0, 0) is a triple intersection

point made up by D2,
ˆ̂
S,

ˆ̂
D. If instead we use the other chart we find

only a double intersection points.
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2. If m1 < k2 we proceed in the same way obtaining a triple intersection

point made by D2, D̂1 and
ˆ̂
S.

3. If m1 = k2 the tangent cone is given by {vm1 +uk1qk2−k1(u, v) = 0} and

by the irreducibility of the curve it is {(v + cu)m1 = 0} with c 6= 0 and

it does not contain any exceptional divisor. So by Lemma 3.10 at the

next blow-up we find only double intersection points.

3.2.2 C.S.S. index under blow-up

Now we can proceed in order to get step two by studying the behavior of the

index in a general resolution process via blow-up. The upshot is to prove

that in the resolution process we necessarily find a (C1) or (C2) point ,i.e., p

is an appropriate singularity and then Theorem 3.1 holds.

The intent is to analyze the C.S.S. index in all possible geometric evolu-

tions (see Proposition 3.5).

Remark 3.12. In the analysis we will omit the case in which at some blow-

up we find a dicritical point. In fact in this case the goal is obtained by

Proposition 1.31.

We will consider resolution processes only at a combinatoric level in a

sense that will be specified later.

Thanks to Proposition 3.5 the structure of a resolution process of a sin-

gular point p is completely described by the behavior of the multiplicity of

the strict transform at the intersection with the exceptional divisor. We can

then consider a sequence of blow-ups only as a sequence of positive numbers

(representing the evolution of the multiplicity) and forgetting any type of

geometric obstruction.
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Definition 3.13. A process is an ordinate list of the form:

P = {(k, m), (α1,m1), · · · , (αn, mn)}

where k, αi,mi ∈ N and m > m1 ≥ · · · ≥ mn. We associate to P, from

a purely formal point of view, a blow-up sequence for a curve S where the

blows-up are made at the beginning at the point p and then at the intersection

point of the strict transform of the curve and the exceptional divisor. The

blow-up sequence satisfies the following rules:

- from the first to the k − th blow-up we find only double intersection

points and the curve multiplicity is constantly equal to m,

- from the (k + 1) − th to the (k + α1) − th blow-up we find a triple

intersection point and the multiplicity of the strict transform of S is

constantly equal to m1 < m,

...
...

- from the (k+α1 + · · ·+αn−1 +1)− th to the (k+α1 + · · ·αn)− th blow-

up we find a triple intersection point and the multiplicity is constantly

equal to mn ≤ mn−1.

Remark 3.14. At the end of P the curve S is not desingularized, in fact we

have triple points and this type of point are not admitted in the desingularized

curve.

Now, according to Proposition 3.5 we start analyzing all the possible

cases.
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3.2.3 Case of double intersection

It corresponds to a process P = {(k,m)}, i.e. we start with multiplicity

m and we remain with this multiplicity for k blows-up finding only double

points.

Let S be the separatrix of the holomorphic foliation F through the point

p. Let blow-up in p and denote by Ŝ the strict transform of S with D the

exceptional divisor.

By proposition 1.34 Ind(F̃ , Ŝ, p̃) = Ind(F , S, p)−m2 and remembering

that Ind(F , S, p) 6∈ Q+ ∪ {0} we have that Ind(F̃ , Ŝ, p̃) 6∈ Q≥−m2 .

If there are not (C1) points on D \ {p̃} the index theorem implies

Ind(F̃ , D, p̃) ∈ Q≤−1.

Let blow-up, in p̃, the foliation and denote, again, with F̃ the saturated

foliation, with
ˆ̂
S the strict transform of Ŝ ( that still has multiplicity m ),

with D̂ the strict transform of D and with D the new exceptional divisor.

Let be q1 := D̂ ∩D and q0 :=
ˆ̂
S ∩D. By proposition 1.34

Ind(F̃ ,
ˆ̂
S, q0) 6∈ Q≥−2m2

Ind(F̃ , D̂, q1) ∈ Q≤−2.

If there are not (C1) points on D \ {q0, q1} we have, by index theorem:

Ind(F̃ , D, q0) + Ind(F̃ , D, q1) ∈ Q≤−1.

If Ind(F̃ , D, q1) 6∈ Q− 1
2

then q1 is a (C2) point; if Ind(F̃ , D, q1) ∈ Q− 1
2

then Ind(F̃ , D, q0) ∈ Q− 1
2
.

Iterating this type of reasoning, if we do not find (C1) or (C2) points in

the total transform then at the k−th blow-up the indices are of type

Ind(F̃ , D, q) ∈ Q≤− 1
k

Ind(F̃ , Ŝ, q) 6∈ Q≥−km2 .
(3.1)

where q := Ŝ ∩D.
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3.2.4 Case of triple intersection

We consider now a slightly more complicated process, P = {(k, m), (1,m1),

· · · , (1,mn)}. Let us suppose not to find (C1) or (C2) points during P .

We denote by S the strict transform of the curve, F the saturated foli-

ation, D1, D2 the two exceptional divisors that intersect S at the last triple

intersection point q.

Proposition 3.15. In this situation at the last blow-up of P , if we have not

found (C1) or (C2) points, we can find x, y ∈ N and a, b ∈ N ∪ {0} such that

the indices are:
Ind(F , S, q) 6∈ Q≥−km2−m2

1−···−m2
n

Ind(F , D1, q) ∈ Q≤−x
y

Ind(F , D2, q) ∈ Q≤− yk+a
xk+b

.

(3.2)

Proof. At the k-th blow-up the indices are of type (3.1). Let blow-up again.

If some point of the new exceptional divisor D1 is of type (C1), then p is an ap-

propriate singularity and we have the assertion. Otherwise Ind(F , D1, p) ∈
Q≥0 ∀p ∈ D1 \ {q} and then by the Index Theorem 1.33:

Ind(F , D1, q) ∈ Q≤−1.

Then by Proposition 1.34 and observing that D has multiplicity one:

Ind(F , Ŝ, q) 6∈ Q≥−km2−m2
1

Ind(F , D̂2, q) ∈ Q≤− k+1
k

.

Proceeding by induction on n we can assume the assertion true for n and we

prove it for n+1. We have to analyze separately two different cases that can

occur blowing-up:

1. the new triple point is made by {Ŝ, D̂2, D};
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2. the new triple is made by {Ŝ, D̂1, D},

where D is the new exceptional divisor and D1 and D2 are the ones of the

n blows-up whose indices satisfy (3.2) by inductive hypothesis. We consider

only the case (1) because the others are similar. By Proposition 1.34 the

indices are of type:

Ind(F , Ŝ, q1) = Ind(F , S, p)−m2
1 − · · · −m2

n −m2
n+1

Ind(F , D̂2, q1) ∈ Q≤− (x+y)k+(a+b)
xk+b

Ind(F , D̂1, q0) ∈ Q≤−x+y
y

,

where q1 is the new triple point and q0 := D̂1∩D. If there are not (C1) points

on D \ {q0, q1} then by Index Theorem q0 is a (C2) point or Ind(F , D, q1) ∈
Q≤− x

x+y
. In the last case the indices satisfy:

Ind(F , Ŝ, q1) = Ind(F , S, p)−m2
1 − · · · −m2

n −m2
n+1

Ind(F , D̂2, q1) ∈ Q≤− (x+y)k+(a+b)
xk+b

Ind(F , D, q1) ∈ Q≤− x
x+y

.

(3.3)

and then the assertion follows putting y′ = x+y, x′ = x, a′ = a+b, b′ = b.

Remark 3.16. A general process can always be written in the form P =

{(k, m), (α1,m1), · · · , (αn,mn)} with mi 6= mj if i 6= j. The coefficients

(x, y, a, b) that occur in Proposition 3.15 depend only on the αi and to the

order in which they appear but not on the multiplicities mi and the coefficient

k.

We list now some simple properties of the index under a process that will

be useful later:

Lemma 3.17. In (3.2) it follows that xa− yb = 1.
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Proof. We proceed by induction on the number of blows-up and argue as in

the proof of Proposition 3.15

With the same arguments we can also prove:

Lemma 3.18. Let consider a process P = {(k,m), (1,m1), · · · , (1,mn)} and

denote by S, D1, D2 the curves that create the triple intersection point. Then

if (x, y, a, b) are the coefficients that appear in the indices (3.2) we have,

according to Remark 3.4:

if x > y then D2 is the new exceptional divisor and D1 is the old one,

if x ≤ y then D1 is the new exceptional divisor and D2 is the old one.

Using Lemma 3.18 and Remark 3.11 we can easily prove:

Lemma 3.19. If we blow-up a triple intersection point and the multiplicity

decreases then the coefficients (x′, y′, a′, b′) of the indices of the new triple are

such that:

if x > y then x′ = x, y′ = x + y,

if x ≤ y then x′ = x + y, y′ = y.

In the analysis of the C.S.S. index in the triple intersection case the knowl-

edge of the index is equivalent to the knowledge of the coefficients (x, y, a, b).

According to Remark 3.11 the reduction of of the multiplicity creates dif-

ferent coefficients. In the next subsections we are going to investigate these

cases. To make clearer the possible evolutions of the coefficients we report in

the figure the coefficients (x, y, a, b) that can appear in the first five blows-

up in triple intersection. We indicate in black the coefficients related to a

decrease of multiplicity and in grey the others.
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[1,3,1,0]

[1,4,1,0] [4,1,1,3][3,4,3,2][2,5,3,1]

[3,8,3,1]

[3,5,2,1]

[3,2,1,1]

[5,2,1,2] [4,3,1,1]

[8,5,2,3] [5,7,3,2] [7,2,1,3] [4,7,2,1] [7,3,1,2] [1,5,1,0]

[3,1,1,2]

[2,1,1,1]

[2,3,2,1]

[5,3,2,3]

[1,2,1,0]

[1,1,1,0]

[5,4,1,1] [5,8,5,3] [8,3,2,5][2,7,4,1][7,5,3,4] [3,7,5,2] [7,4,3,5] [3,4,3,2] [4,1,1,3]

3.2.5 Transition from triple intersection with multi-
plicity lowering to triple with constant multiplic-
ity

We now consider a process of type P = {(k, m), (α1, m1), · · · , (αn−1,mn−1),

(αn,mn)} with mi 6= mj if i 6= j. We want to relate the coefficients of

the last blow-up with the ones obtained at the first lowering of multiplic-

ity mn−1 → mn, i.e., we want to relate the last indices of the process

{(k, m), (α1,m1), · · · , (αn−1,mn−1), (1, mn)} to the last ones of P .

Proposition 3.20. Suppose to have indices of type:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αn−1m2

n−1−m2
n

Ind(F , D1, p) ∈ Q≤−x
y

Ind(F , D2, p) ∈ Q≤− yk+a
xk+b

(3.4)

with mi 6= mj if i 6= j, i.e., n is the number of multiplicity lowering. The

indices at the end of the process P are of type:

if x > y

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αn−1m2

n−1−αnm2
n

Ind(F , D1, p) ∈ Q≤−x+(αn−1)y
y

Ind(F , D2, p) ∈ Q≤− yk+a
(x+(αn−1)y)k+((αn−1)a+b)

(3.5)
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if x ≤ y

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αn−1m2

n−1−αnm2
n

Ind(F , D1, p) ∈ Q≤− ((αn−1)x+y)k+(a+(αn−1)b)
xk+y

Ind(F , D2, p) ∈ Q≤− x
(αn−1)x+y

.

(3.6)

Proof. By Proposition 3.5 blowing-up with constant multiplicity we know

that the new triple point is made up by the curve, the new exceptional

divisor and the strict transform of the old one (see Remark 3.4). We have to

analyze separately the case in which the old exceptional divisor is D1 or D2.

This distinction can be made in terms of x > y or x ≤ y thanks to Lemma

3.18. Suppose, for instance, x > y in the indices (3.4), then we conclude

that the old exceptional divisor is D1. Now blowing-up again and using

Proposition 1.34, the Index theorem and the assumption of non existence of

(C1) or (C2) points we can prove the result for αn = 1, 2. Then proceeding

by induction and repeating the same argument for the case x ≥ y we have

the assertion.

3.2.6 Transition from triple to double intersection

Suppose that, after k blows-up in double intersection and a finite number of

blows-up in triple intersection, we return to double intersection. Let consider

the generic indices of the triple (3.2) and write the index along S in the form:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αnm2

n
,

with mi 6= mj if i 6= j. Using Lemma 3.17 we obtain that the indices in the

double point are:

Ind(F , S, q) 6∈ Q≥−km2−α1m2
1−···−αnm2

n−m2
n

Ind(F , D, q) ∈ Q≤− 1
(x+y)2k+(x+y)(a+b)

.
(3.7)
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3.2.7 Estimate of the term km2

We estimate the term −km2−α1m
2
1− · · · −αnm

2
n−m2

n showing that, if the

curve is resolved, then q is a point of type (C2); otherwise we obtain indices

of the form (3.1) and so we can use again the results found in the previous

sections in order to get a desingularization. In this subsection we estimate

the term km2.

Proposition 3.21. If we indicate with (xj
i , y

j
i , a

j
i , b

j
i ) the coefficients that

appear in the indices of the triple intersection point at the j−th blow-up with

multiplicity mi then, if n ≥ 2:

m = x
αn−1

n−1 mn−1 + y
αn−1

n−1 mn if x
αn−1

n−1 ≥ y
αn−1

n−1 , (3.8)

m = y
αn−1

n−1 mn−1 + x
αn−1

n−1 mn if y
αn−1

n−1 ≥ x
αn−1

n−1 . (3.9)

Proof. We proceed by induction on the number n of changes of multiplicity.

For n = 2 the indices are of the form:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−α2m2

2
,

Ind(F , D1, p) ∈ Q≤−α1α2+1
α1

,

Ind(F , D2, p) ∈ Q≤− α1k+1
(α1α2+1)k+α2

.

The indices we find at the α1−th blow-up with multiplicity m1 are:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1
,

Ind(F , D2, p) ∈ Q≤−α1k+1
k

,

Ind(F , D1, p) ∈ Q≤− 1
α1

.

(3.10)

Because we make α1 blows-up with multiplicity m1 and because the curve is

irreducible by the Enriques-Chisini theorem ([13] pg. 516) we have:

m2 = m− α1m1
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and then the assertion. We prove the inductive step. The index along S is:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αn−1m2

n−1−αnm2
n−αn+1m2

n+1

We consider the case x
αn−1

n−1 ≥ y
αn−1

n−1 ( the other is similar ). Because we make

αn blows-up with multiplicity mn we have:

mn+1 = mn−1 − αnmn and then mn−1 = αnmn + mn+1.

By inductive hypothesis and the above relation we find an expression of m

in terms of mn and mn+1. Now we have to prove that this expression is

the one of the statement. Using Lemma 3.19 we have that x1
n ≤ y1

n and for

Proposition 3.20 the indices at the αn−th blow-up with multiplicity mn are:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αn−1m2

n−1−αnm2
n
,

Ind(F , D2, p) ∈ Q≤− (y1
n+(αn−1)x1

n)k+(a1
n+(αn−1)b1n)

x1
nk+b1n

,

Ind(F , D1, p) ∈ Q≤− x1
n

(αn−1)x1
n+y1

n

.

Clearly xαn
n ≤ yαn

n and so computing the expression yαn
n mn +xαn

n mn+1, using

the above form of the coefficients and Lemma 3.19 we get the assertion.

Proposition 3.22. When in the resolution process we return in double in-

tersection the indices:

Ind(F , S, p) 6∈ Q≥−km2−α1m2
1−···−αnm2

n−m2
n
,

Ind(F , D, q0) ∈ Q≤− 1
(x

αn
n +y

αn
n )2k+(x

αn
n +y

αn
n )(a

αn
n +b

αn
n )

,
(3.11)

satisfy

m ≥ (xαn
n + yαn

n )mn.

Proof. It follows directly from the previous proposition and from Lemma

3.19.
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3.2.8 Estimate of the terms km2 + α1m
2
1 · · ·+ αnm

2
n + m2

n

Proposition 3.23. The indices at the return in double intersection (3.11),

with n ≥ 2, satisfy:

α1m
2
1 + · · ·αnm2

n + m2
n ≥ (xαn

n + yαn
n )(aαn

n + bαn
n )m2

n.

Before proving this statement we consider the following one:

Proposition 3.24. Let P = {(k, m), (α1,m1), · · · , (αn,mn)} be a process

and let denote by (x, y, a, b) the coefficients of the indices that appear at the

last blow-up described by P . We associate to P the process P̄ = {(k, m),

(α2,m2), · · · , (αn,mn)} and we denote by (x̄, ȳ, ā, b̄) the coefficients of the

indices that appear at the last blow-up described by P̄ . Then:

b = ȳ x = α1ȳ + ā

a = x̄ y = α1x̄ + b̄

Proof. We proceed by induction on the number n of multiplicities decreases.

By a direct computation the proposition is true for n = 2. Suppose the

assertion true for n and let prove it for n + 1.

Let consider the two processes P ′ = {(k, m), (α1, m1), · · · , (αn,mn), (αn+1,

mn+1)} and P̄ ′ = {(k, m), (α2,m2), · · · , (αn, mn), (αn+1,mn+1)} with respec-

tively end coefficients (x′, y′, a′, b′) and (x̄′, ȳ′, ā′, b̄′).

Let now construct the following two processes P = {(k, m), (α1,m1), · · · ,

(αn,mn)}, P̄ = {(k, m), (α2,m2), · · · , (αn,mn)} with end coefficients

(x, y, a, b) and (x̄, ȳ, ā, b̄). Starting by coefficients (x, y, a, b) we get (x′, y′, a′, b′)

after one blow-up with multiplicity decrease and other αn+1−1 blows-up with

constant multiplicity mn+1. By Propositions 3.5 and 3.20:

(x′, y′, a′, b′) = (x, y + αnx, a + αnb, b) if x > y,

(x′, y′, a′, b′) = (x + αny, y, a, αna + b) if x ≤ y.
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Similarly we get:

(x̄′, ȳ′, ā′, b̄′) = (x̄, ȳ + αnx̄, ā + αnb̄, b̄) if x̄ > ȳ,

(x̄′, ȳ′, ā′, b̄′) = (x̄ + αnȳ, ȳ, ā, αnā + b̄) if x̄ ≤ ȳ.

The processes P e P ′ differs only on one multiplicity decrease. Propositions

3.5 and 3.20 say that x and y relations invert only when a multiplicity de-

crease occurs. Then we can conclude that x̄ > ȳ if and only if x ≤ y. If, for

instance, x > y, by inductive hypothesis:

b′ = b = ȳ = ȳ′,

a′ = a + αnb = x̄ + αnȳ = x̄′,

x′ = x = α1ȳ + ā = α1ȳ
′ + ā′,

y′ = y + αnx = α1x̄ + b̄ + αnȳ + αnā = α1(x̄ + αnȳ) + (b̄ + αnā) = α1x̄
′ + b̄′.

and then the assertion.

Now we can prove Proposition 3.23.

Proof. Let proceed by induction on the number of changes of multiplicity. If

n = 2 the structure of the indices can be easily computed to obtain the asser-

tion. Let prove the inductive step. Let P = {(k, m), (α1,m1), · · · , (αn,mn),

(αn+1,mn+1)} be a generic process. Thanks to the inductive step applied on

the process P̄ = {(k, m), (α2,m2), · · · , (αn+1,mn+1)} we have:

α1m
2
1 + · · ·αnm2

n + αn+1m
2
n+1 ≥ α1m

2
1 + (x̄ + ȳ)(ā + b̄)m2

n+1.

In order to estimate α1m
2
1 we consider the process P ′ = {(α1, m1), (α2, m2), · · · ,

(αn+1,mn+1)} and thanks to Remark 3.16 and Proposition 3.22 we have:

m2
1 ≥ (x̄ + ȳ)2m2

n+1.
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Then:

α1m
2
1 + · · ·αnm

2
n + αn+1m

2
n+1 ≥ α1(x̄ + ȳ)2m2

n+1 + (x̄ + ȳ)(ā + b̄)m2
n+1

= (x̄ + ȳ)(α1x̄ + α1ȳ + ā + b̄)m2
n+1.

We conclude thanks to Proposition 3.24.

Remark 3.25. The estimate of km2 and of the remaining terms are valid

only if n ≥ 2. The case n = 1 can be easily proved using equation (3.10),

Section 3.2.6 and observing that because of the α1 + 1 blows-up m ≥ (α1 +

1)m1.

3.2.9 Proof of the Theorem

All the previous separately considered particular cases can now be glued

together to get Theorem 3.1. We have observed that in the resolution process

we can have only double or triple intersection points and so we studied the

index in these cases.

The triple point case presents two different subcases, linked to the mul-

tiplicity of the curve: it can decrease or not. This information is extremely

useful for the study of the index evolution because it identifies the right ex-

ceptional divisor that will occur in the next triple point. Now we observe

that if at the end of a process P = {(k, m), (α1,m1), · · · , (αn,mn)} we find a

double point and the curve is desingularized we are in the geometric condi-

tions of a (C2) point. The indices are the ones given by equation (3.7) and by

Propositions 3.22 and 3.23 we can estimate them in such a way they became:

Ind( F , S, p) 6∈ Q≥−[(x+y)k2+(x+y)(a+b)]

Ind( F , D, p) ∈ Q≤ 1
(x+y)2k+(x+y)(a+b)

and so p is a (C2) point. Otherwise we are not in the right geometric condi-
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tions, i.e. the resolution is not ended, but the same propositions give indices:

Ind( F , S, p) 6∈ Q≥−[(x+y)k2+(x+y)(a+b)]m2
n

Ind( F , D, p) ∈ Q≤ 1
(x+y)2k+(x+y)(a+b)

and so we have indices exactly of the form of the ones associated to a process

P = {hm2} and then we can apply all the previous argument to the new

process which is starting. Such process ends after a finite number of blows-

up by the theorem of resolution of singularities [37].

3.3 Applications

The demonstrative method used to get Theorem 3.1 allows us to generalize

to the case in which we start with more than one separatrix:

Proposition 3.26. Let M be a two dimensional complex manifold, F a

holomorphic foliation on M and S0, S1, · · · , Sn separatrices of F passing

through a point p ∈ M . Let assume that S1, · · · , Sn are non singular and

transverse each other and to S0. If, besides, the indices are of the following

form:
Ind(F , S0, p) 6∈ Q≥−m2

Ind(F , Si, p) ∈ Q≤−(2n−1) ∀i ≥ 1,

then another separatrix through p exists.

Proof. We prove that p is an appropriate singularity. We observe that after

the first blow-up, if we have not finished, we have the same indices found

in the study made to prove Theorem 3.1 and so we conclude with the same

argument.

We show briefly that Theorem 3.1 includes as particular cases the classical

results in discrete and continuous dynamics.
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Corollary 3.27 ([18]). Let M be a two dimensional complex manifold, F a

holomorphic foliation on M and p ∈ M a singularity of F . Then a separa-

trix of F for p exists.

Proof. We blow-up M in p. If the exceptional divisor is not a separatrix

for the saturated foliation, then p is dicritical and we conclude. Otherwise

using the index theorem (see [55]) and remembering that D · D = −1, we

obtain the existence of a singularity p̃ of the saturated foliation F̃ such that

Ind(F̃ , D, p̃) 6∈ Q+∪{0} and then by Theorem 3.1 we have the existence of

another separatrix for p̃ that projects in a separatrix for F in p.

With similar arguments we also have:

Corollary 3.28 ([50]). Let M be a two dimensional complex manifold, F a

holomorphic foliation on M . Let S ⊂ M be a compact, globally and locally

irreducible curve with S · S < 0. If S is a separatrix for F then there exists

a point p ∈ S for which passes another separatrix for F .

Remark 3.29. Analogously to what done for Theorem 3.2 we can obtain,

in local discrete dynamics, a similar result to Proposition 3.26 and find as

particular cases results of Abate [2] and Bracci [11].

Proposition 3.30. Let M be a two dimensional complex manifold, f :

M −→ M a holomorphic map on M with Fix(f) = S0∪, S1, · · · ,∪Sn with

S0, · · · , Sn analytic curves passing through the same point p ∈ M . Let sup-

pose that S1, · · · , Sn are non singular and transverse each other and to S0.

If, besides, the indices are of the following form:

Ind(f, S0, p) 6∈ Q≥−m2

Ind(f, Si, p) ∈ Q≤−(2n−1) ∀i ≥ 1,

then there exists a parabolic curve for f through p.
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Corollary 3.31 ([2]). Let M be a two dimensional complex manifold, f :

M −→ M a holomorphic map on M and p ∈ M an isolated singularity of

f such that dfp = Id. Then there exists a parabolic curve for f through p.

Corollary 3.32 ([50]). Let M be a two dimensional complex manifold, f :

M −→ M a holomorphic map on M . Let S ⊂ M be a compact, globally and

locally irreducible curve with S ·S < 0. If f |S= Id and f is tangential along

S then there exists a point p ∈ S for which passes a parabolic curve for f .



Chapter 4

Transversely formal vector
fields

4.1 Introduction

We have just noticed the strict relation between discrete and continuous dy-

namics. Abate, Bracci and Tovena [2], [3], [11] show that this link is well

expressed by the presence of indices, in both cases, that have the same prop-

erties (index theorem) and the same behavior under blow-up. This analogy,

as seen in the previous chapter, is expressed also by the existence of separa-

trices and parabolic curves under the same assumptions.

The aim of this chapter is to analyze more in detail this relationship. The

more intuitive construction to link maps to vector fields is to associate to a

map tangent to the identity F in C2 a formal vector field X such that

exp(X) = F.

In this way the vector field associated to the map is not, generally, holomor-

phic but only formal. Thus, in order to know if this construction is useful

we have to see if the vector field preserves the dynamical properties we are

interested in for our study. In particular, that means, to know if the vector
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field admits an index theorem. The right assumption to take in discrete dy-

namics is to consider a germ of diffeomorphism in C2 with a smooth curve

of fixed points. The case of an isolated singularity can be reduced to this

setting exploiting a blow-up of the map. So the general setting is: F a germ

of diffeomorphism of (C2, 0) tangent to the identity with a smooth curve of

fixed points and X a formal vector field such that exp(X) = F .

The first thing we want to analyze is the general setting in which the

C.S.S. index lives i.e. the minimum geometric setting that assures Camacho-

Sad-Suwa results. In order to explore this problem we observe that if we

blow-up a formal vector field the blown-up vector field admits a very good

geometric structure on the exceptional divisor: the vector field is transversely

formal on it [43], [44] i.e. if the exceptional divisor is {y = 0} then the vector

field belongs to

C{x}[[y]]⊕ C{x}[[y]].

This is an additional structure that has the formal vector field and we will see

that it is sufficient in order to guarantee the existence of an index theorem

[49].

Theorem 4.1. Let F be a germ of holomorphic diffeomorphism of C2 with

Fix(F ) = S, where S is a smooth holomorphic curve, and let suppose F is

tangential on S. Then the formal vector field X such that exp(X) = F is

transversely formal along the separatrix S.

We observe that the standard hypothesis in discrete dynamics of tangen-

tiality of the map [2], [3], [11] assumes an easily geometric interpretation in

this construction: it means that S is a separatrix for the reduced vector field

X. This intuitive method for studying discrete dynamics allows to read from

a more geometric point of view the dictionary discrete/continuous dynamics.
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This it will useful in Chapter five [29] to convert in discrete dynamics other

results of continuous one.

4.2 Singularities of formal vector fields

In this section we traduce in the formal category all the definitions we have

used in the study of holomorphic vector fields. First of all, we will make

precise the notion of singularity of a formal vector field. In the holomorphic

category, we have seen that a vector field

X := A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

is singular at the origin if A(0, 0) = B(0, 0) = 0, i.e., the power series expres-

sions of A and B have not terms of degree zero. This last interpretation is

valid even in the formal category:

Definition 4.2. Let consider a formal vector field,

X := A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

where A, B ∈ C[[x, y]]. Let call the complexity parameter of the vector field

X the quantity

r(X) = min{subdeg(A), subdeg(B)},

where subdeg(·) is the smaller degree of the monomial appearing in the series

expression of ·. We say that the origin (0, 0) is a singularity of X if r(X) ≥ 1.

4.3 Transversely formal vector fields

Let consider a complex surface M and let S ⊂ M be a complex non singular

curve.
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Let consider the following exact sequence of sheaves that defines the nor-

mal sheaf NS:

0 → ΘM,S → ΘM → NS → 0, (4.1)

where ΘM,S is the sheaf of holomorphic vector fields tangent to S, ΘM is

the sheaf of holomorphic vector fields tangent to M and NS is the sheaf of

holomorphic vector fields normal to S.

Remark 4.3. Note that the exact sequence 4.1 of locally free sheaves is the

one associated to the holomorphic sections of the corresponding vector bun-

dles.

Let consider

ÔM := lim
←
OM

In
S

, (4.2)

where IS := {f ∈ OM | f |S≡ 0}.

Remark 4.4. In local coordinates, if S = {y = 0}, then

ÔM
∼= C{x}[[y]].

Tensoring by (4.2) the sequence (4.1), by Proposition (10.14) of [7] (pg.

109), we get the following exact sequence:

0 → Θ̂M,S → Θ̂M → N̂S → 0

where:

Θ̂M,S := ΘM,S ⊗ ÔM , Θ̂M := ΘM ⊗ ÔM , N̂S := NS ⊗ ÔM .

We can read the previous objects as:

- Θ̂M,S the transversely formal sheaf of tangent vector fields to S,
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- Θ̂M the transversely formal sheaf of vector fields,

- N̂S the sheaf of transversely formal normal vector fields to S.

Remark 4.5. The previous sheaves generally are not locally free and so they

are not associated to vector bundles but we can see them as the transversely

formal extension of the holomorphic ones.

After this construction is natural to give the following definition:

Definition 4.6. A transversely formal vector field tangent to S is a section

of the sheaf Θ̂M,S.

4.4 Index Theorem for transversely formal

vector fields

Let consider a section X̂ of Θ̂M,S. According to the Camacho-Sad index

theory [18] we are interested only on the liner part of X̂ along S, so let

consider the following sequence of sheaves:

0 → Θ̂M,S ⊗ IS → Θ̂M,S → N̂ 1
M,S → 0,

where,

N̂ 1
M,S :=

Θ̂M,S

Θ̂M,S ⊗ IS

.

Remark 4.7. Let observe that a section of N̂ 1
M,S is of the form:

a(x)
∂

∂x
+ b(x)y

∂

∂y
,

where a(x), b(x) ∈ C{x}.
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Now we have the following isomorphism:

N̂ 1
M,S

∼= N 1
M,S,

where N 1
M,S is the holomorphic analogous of N̂ 1

M,S.

The previous isomorphism says that we can see N̂ 1
M,S as the sheaf of

sections of a holomorphic bundle.

Lemma 4.8. If X̂ is a transversely formal vector field on M then it defines

a global section of N̂ 1
M,S.

Proof. Let X̂ be a global transversely formal vector field. In the (non empty)

intersections of the two local charts Uα ∩ Uβ 6= ∅ we have:

Xβ = φ∗βα(Xα),

where the φβα’s are the transition functions. If we choose coordinate adapted

to S, i.e. such that S ∩ Uα = {yα = 0} for all α, then φβα is of the form:

φβα(xβ, yβ) = (φ1
βα(xβ, yβ), φ2

βα(xβ, yβ)) = (
∑

i≥h

νi(xβ)yi
β,

∑

i≥k

µi(xβ)yi
β).

with h ≥ 0, k ≥ 1 and h < k. We have to prove that, denoting by [Xα] ∈ N̂ 1
M,S

the class of Xα, then

[φ∗βαXα] = [Xβ].

So it is sufficient to prove that φβα transforms terms of order k with respect

to yβ in terms at least of order k with respect to yα.

For this, it is enough to observe that the inverse of φβα, φαβ, has the same

order with respect to yα. In fact:

∂

∂xα

=
φ1

αβ

∂xα

∂

∂xβ

+
∂φ2

αβ

∂xα

∂

∂yβ

= o(yh)
∂

∂xβ

+ o(yk)
∂

∂yβ

,
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and analogously:
∂

∂yα

= o(yh−1)
∂

∂xβ

+ o(yk−1)
∂

∂yβ

.

Definition 4.9. Let X ∈ ÔM,S be a transversely formal vector field on a

complex surface M with S a non singular curve. If, in local coordinates,

X = A(x, y) ∂
∂x

+ B(x, y) ∂
∂y

and S = {y = 0} then X is reduced on S if X

has only isolated singularities on {y = 0}.

We can now state and prove the announced Index Theorem:

Theorem 4.10. Let X̂ be a transversely formal vector field on a complex

manifold of dimension two tangent to a compact, connected non singular

curve S ⊂ M. Then for every p ∈ S there exists an index Ind(X̂, S, p) ∈ C
such that: ∑

p∈S

Ind(X̂, S, p) = S · S.

Proof. The vector field X̂ has only a finite number of singularities on S. Let

Σ := {p1, · · · , pn} be the singular set on S and let be V := S −Σ. For every

i = 1, · · · , n let be Ui a coordinate neighborhood such that Ui∩Σ∩S = {pi}.
By Lemma (2.5) of [10] it exists a basic connection ∇ ( see Definition (3.24)

of [10] ) for N1
M,S |S−Σ . Let be Wi be a simply connected open set in S such

that W̄i ⊂ Ui ∩ S. On each Ui ∩ S let ∇i be a connection for N1
M,S |Ui∩S .

Let ψ be a C∞ function on S such that ψ has support in ∪i(Ui ∩ S) and

ψ |Wi
≡ 1 for i = 1, · · · , n. Let ∇1 := ψ

∑∇i + (1 − ψ)∇ a connection for

N1
M,S and K1 its curvature. By Proposition (3.27) of [10] we get that K1

localizes around the singularities and so we get the index theorem by the

following relations:

S · S =
−1

2πi

∫

S

K1,
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and

Ind(F, S, p) :=
−1

2πi

∫

Vp

K1,

where Vp is a simply connected open set in S containing p such that Vp ∩
∪i(Ui ∩ S) = ∅ if p 6∈ Σ and Vp = Ui ∩ S if p = pi.

Let observe that in this way we have localized near singularities the first

Chern class c1(N
1
M,S). To conclude we have to observe that c1(N

1
M,S) =

c1(NS) = S · S. The last equality follow from the fact that:

N1
S,M |S= NS,M |S,

and then: ∫

S

K1 =

∫

S

K = S · S,

where K is the curvature of NS,M .

4.5 Flows of formal vector fields

The aim of this section is to find a definition of the flow of a formal vector

field that in the convergent case coincides with the usual one. In order to

get this goal we consider the following power series expression of the flow of

a convergent vector field.

Proposition 4.11. Let X be a germ of holomorphic vector field in (C2, 0).

Then its flow can be written has:

F t(x, y) =

(
x +

∞∑
n=1

tn

n!
Xn.x, y +

∞∑
n=1

tn

n!
Xn.y

)
, (4.3)

where Xn.x is defined by X applied to Xn−1.x and X.x is the application of

X to x.

This proposition allows to give the following definition:
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Definition 4.12. Let be X̂ a formal vector fields in (C2, 0) i.e.

X̂ = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
(4.4)

with a(x, y), b(x, y) ∈ C[[x, y]]. The formal flow of X̂ is defined by the

formal map (4.3).

Remark 4.13. If X̂ is a formal vector fields in (C2, 0) then its time one

map is given by:

exp(X̂) =

(
x +

∞∑
n=1

1

n!
X̂n.x, y +

∞∑
n=1

1

n!
X̂n.y

)
. (4.5)

4.6 Formal vector fields associated to holo-

morphic maps

Let F be a holomorphic germ of diffeomorphism at (C2, 0) tangent to the

identity at (0, 0), i.e.:

F (x, y) =

(
x +

∑
i+j>1

Ai,jx
iyj, y +

∑
i+j>1

Bi,jx
iyj

)
. (4.6)

By equation (4.5) we can associate to F a formal vector field X̂ such that

exp(X̂) = F. The vector field X̂, determined by comparing the two series. It

is easy to see that it has the form:

X̂ =
∑

i+j>1

ai,jx
iyj ∂

∂x
+

∑
i+j>1

bi,jx
iyj ∂

∂y
. (4.7)

If {y = 0} is a curve of fixed points for F then F has the form:

F (x, y) = (x + yµF1(x, y), y + yµF2(x, y)).

In this case the vector field is of the form (4.7) with the additional condition

j ≥ 1.



4.7 Transversely formal vector fields associated to holomorphic
maps 76

Then if {y = 0} is a curve of fixed points for F then we can write the

associated formal vector field in the form:

X̂ =
∑
j≥1

aj(x)yj ∂

∂x
+

∑
j≥1

bj(x)yj ∂

∂y
. (4.8)

4.7 Transversely formal vector fields associ-

ated to holomorphic maps

In this section we investigate in more detail the structure of X̂ in case the

map F has a non singular curve of fixed points. We will prove that, under

generic hypothesis for F , the vector field has a transverse formal structure,

i.e., in the expression (4.8) the power series aj(x) and bj(x) are convergent.

To prove this we proceed with a method of majorant series due to Cauchy.

Proposition 4.14. If Xn. is the operator defined before we have:

Xn.y = (
∑
i0≥n

∑
i1+···+in=i0

bi1,1 · · · bin,1x
i0)y + Tn(x, y),

where Tn(x, y) contains only terms that are of order at least two in y.

Proof. We proceed by induction on n. For n = 1 we have:

X.y =
∑

i+j>1j≥1

bi,jx
iyj =

∑
i0≥1

bi0,1x
i0y +

∑
i0+j>1,j≥2

bi0,1x
i0yj,

and we have the assertion with:

T1(x, y) :=
∑

i0≥1,j≥2

bi0,1x
i0yj.

Suppose the assertion true for n and let go to prove it for n + 1.

Xn+1.y = X.(Xn.y) =

(
∑

i+j>1

ai,jx
iyj)[

∑
i0≥n

∑
i1+···+in=i0

bi1,1 · · · bin,1i0x
i0−1y +

∂

∂x
Tn(x, y)]+

+ (
∑

i+j>1

bi,jx
iyj)[

∑
i0≥n

∑
i1+···+in=i0

bi1,1 · · · bin,1x
i0 +

∂

∂y
Tn(x, y)] =
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∑
i+j>1

∑
i0≥n

∑
i1+···+in=i0

i0ai,jbi1,1 · · · bin,1x
i0+i−1yj+1 + O(y2)

+
∑

i+j>1

ai,jx
iyj ∂

∂x
Tn(x, y) + O(y2)

+
∑

i+j>1

∑
i0≥n

∑
i1+···+in=i0

bi,jbi1,1 · · · bin,1x
i+i0yj+

+
∑

i+j>1

bi,jxiy
j ∂

∂y
Tn(x, y)O(y2) =

=
∑

i+j>1

∑
i0≥n

∑
i1+···+in=i0

bi,jbi1,1 · · · bin,1x
i+i0yj + O(y2).

We now observe that:
∑

i+j>1

∑
i0≥n

∑
i1+···+in=i0

bi,jbi1,1 · · · bin,1x
i+i0yj =

∑
i≥1

∑
i1≥n

∑
i0+···+in=i0

bi,1bi1,1 · · · bin,1x
i+i0y+

+
∑

j≥2, i+j>1

∑
i0≥n

∑
i1+···+in=i0

bi,jbi1,1 · · · bin,1x
i+i0yj.

Then the part of degree one in y is:

∑
i≥1

∑
i0≥n

∑
i1+···+in=i0

bi,1bi1,1 · · · bin,1x
i+i0y =

=
∑

j0≥n+1

∑
i1+···+in+in+1=j0

bi1,1 · · · bin,1bin+1,1x
j0y.

Where the last equality is obtained putting j0 = i + i0.

Now we can get the following:

Corollary 4.15. Using the notations of (4.6) and of (4.7):

Bi0,1 =

i0∑

k=1

1

k!

∑
i1+···+ik=i0

bi1,1 · · · bik,1∀i0 ∈ N. (4.9)
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Proof. We have to consider the terms of

∑
n≥1

1

n!
X̂n.y

that have degree one with respect to y and degree i0 with respect to x. By

the previous Proposition the terms of the required degree are:

∑
i1+···+in=i0

bi1,1 · · · bin,1.

By proposition 4.14, the terms in X̂n.y with degree one with respect to y are

at least of degree n with respect to x and so we can conclude.

In order to prove the convergence of the series

b1(x) :=
∑
n≥1

bn,1x
n

we have to solve the system of infinite equations found in Corollary (4.15).

After, we have to prove the convergence of the series by a majorant argument.

Remark 4.16. We are going to study only terms that appear in equation

(4.9) and so we will write simply Bn instead of Bn,1 and bn instead of bn,1.

Proposition 4.17. By inversion of the system of equations (4.9) we obtain:

bn =
∑

i1+ · · ·+ in = n

0 ≤ ij ≤ n

ai1···inBi1 · · ·Bin ,

where B0 = 1.

Proof. Let proceed by induction on n. For n = 1 it is true. Let prove it for

n. By equation (4.9) we have:

Bn = bn +
n∑

k=2

1

k!

∑
i1+···+ik=n

bi1 · · · bik .
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Because in the last sum ij < n for every j ∈ {1, · · · , k} we can apply the

inductive hypothesis to every bij that appear in the last sum.

Then:

bij =
∑

h
ij
1 +···hij

ij
=ij

a
h

ij
1 ···h

ij
ij

B
h

ij
1

· · ·B
h

ij
n

∀ij < n.

So:

bn =Bn −
n∑

k=2

1

k!

∑
i1+···+ik=n




∑

h
i1
1 +···+h

i1
i1

=i1

a
h

i1
1 ···h

i1
i1

B
h

i1
1
· · ·B

h
i1
i1


 · · ·

· · ·




∑

h
ik
1 +···+h

ik
ik

=ik

a
h

ik
1 ···h

ik
ik

B
h

ik
1
· · ·B

h
ik
ik


 =

=Bn −
n∑

k=2

1

k!

∑

h
i1
1 +···+h

i1
i1

+···+h
ik
1 +···hik

ik
=

=i1+···+ik

a
h

i1
1 ···h

i1
i1

· · · a
h

ik
1 ···h

ik
ik

B
h

i1
1
· · ·B

h
ik
ik

=Bn −
∑

h1+···+hn=n

ah1···hnBh1 · · ·Bhn .

Now we can proceed by a majorant argument. For this we need the

following lemma that can be proved easily by induction:

Lemma 4.18. For every n ≥ 1 we have the following inequality:
(

2n− 1
n− 1

)
≤ 5n−1

Proposition 4.19. Every bn can be written in the form:

bn =
n∑

k=1

∑
i1+···ik=n

ai1···ikBi1 · · ·Bik (4.10)
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and this expression is made by less than 2n−1 terms and the coefficients ai1···ik
satisfy:

| ai1···ik |≤ 5n−1.

Proof. We easily get the expression (4.10) by using Proposition 4.17 (and

making the sum only with the ij > 0). Now let us count the number of

terms that appears in expression (4.10). This number is obviously less than

the number of terms that we have if all the ai1···ik are different from zero.

Then:
n∑

k=1

∑
i1+···+ik=n

1 =
n∑

k=1

(
n− 1
k − 1

)
=

n−1∑

h=0

(
n− 1

h

)
= 2n−1,

where the first equality is due to the solution to the linear Waring problem

( see [46] pg. 124 ) and the last one is due to the binomial formula (see [32],

pg. 52).

Let us prove the second statement of the proposition. Let proceed by

induction on n. For n = 1 we only have:

b1 = B1

and so the statement is true. Let suppose it is true for i < n and let go to

prove it for n. As we have seen in the proof of Proposition 4.17:

bn = Bn −
n∑

k=2

1

k!

∑
i1+···+ik=n

bi1 · · · bik .

Obviously the bij that appear in the previous equation are such that ij < n

and so we can apply the inductive hypothesis. So we can substitute at bij its

expression and then we have to sum similar terms. To sum similar terms we

consider the field C as a non commutative one. Before summing the similar

terms a generic terms is of type:

a
h

i1
1 ···h

i1
i1

· · · a
h

ik
1 ···h

ik
ik

B
h

i1
1
· · ·B

h
ik
ik



4.7 Transversely formal vector fields associated to holomorphic
maps 81

with h
ij
1 + · · · + h

ij
ij

= ij and i1 + · · · ik = n. By inductive hypothesis the

coefficient of each such term has modulus less or equal to 5n−h.

So to conclude it is sufficient to prove that the number of the similar

terms, in the non commutative field C, are less or equal to 5h−1. To prove

this it is sufficient to observe that the similar terms are less or equal to the

number of solutions in nonnegative integers of the linear Waring equation:

i1 + · · ·+ ih = h.

By [46] (pg.124) this number is

(
2h− 1
h− 1

)
. We get assertion by Lemma 4.18.

At this point we are ready to prove the convergence of the series:

Proposition 4.20. The series:

∑
n≥1

bnx
n

is convergent.

Proof. We proceed constructing a convergent majorant series. By equation

(4.10) and the Cauchy estimates ([22], pg. 135) for derivatives of the power

convergent series ∑
i,j

Bi,jx
iyj

we have:

| bn |≤ max | ai1···in | {number of terms of the equation (4.10)}Mn

R2n
,

where (R,R) is the polyradius of convergence of the series and we assume,

without loss of generality, R ≤ 1 and M ≥ R. Then by Proposition 4.19 we

have:

| bn |≤ 5n−12n−1 Mn

R2n
= 10n−1 Mn

R2n
.
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So the convergent majorant series is given by coefficients:

cn := 10n−1 Mn

R2n
.

Now we start to prove the convergence of all the aj(x) and the bj(x) ∀j ≥
1. We proceed by induction on j. For j = 1 it is true by Proposition 4.20.

We have only to prove the inductive step.

To simplify the notation we will denote by (Xk.x)j the part of Xk.x of

order j with respect to y.

Remark 4.21. With the preceding notation we have:

Aj(x) :=
∑

i

Ai,jx
i =

∑

k≥1

1

k!
(Xk.x)j,

Bj(x) :=
∑

i

Bi,jx
i =

∑

k≥1

1

k!
(Xk.y)− j.

Proposition 4.22. Using notations of (4.8) for every j0 ∈ N the following

recursive relation holds:

(Xk.x)j0 =

j0−1∑
i=1

ai(x)
∂

∂x
(Xk−1.x)j0−i +

j0∑
i=1

bi(x)(j0 − i + 1)(Xk−1.x)j0−i+1.

Proof. We observe that:

Xk.x =
∑
i≥1

ai(x)yi ∂

∂x
(Xk−1.x) +

∑
i≥1

bi(x)yi ∂

∂y
(xk−1.x).

The terms of degree j0 with respect to y are:

j0−1∑
i=1

ai(x)(
∂

∂x
Xk−1.x)j0−i +

j0∑
i=1

bi(x)(
∂

∂y
Xk−1.x)j0−i =

j0−1∑
i=1

ai(x)
∂

∂x
(Xk−1.x)j0−1 +

j0∑
i=1

bi(x)(j0 − i + 1)(Xk−1.x)j0−i+1.
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Where we have used the fact that the derivation ∂
∂x

does not change the

degree with respect to y while the derivation ∂
∂y

takes yi in iyi−1.

Remark 4.23. Let observe that the part:

bj0(x)(Xk−1.x)1 + b1(x)j0(X
k−1.x)j0

is the only part that contains the terms bj0(x) and aj0(x).

Let decompose (Xk.x)j0 in the following way:

(Xk.x)j0 = Pk(x)aj0(x) + Qk(x)bj0(x) + Rk(x).

Let go to study this decomposition.

Proposition 4.24.

Pk(x) = jk−1
0 b1(x)k−1.

Proof. Let proceed by induction on k. For k = 1 we have:

X.x =
∑
j≥1

aj(x)yj,

and so the part of degree j0 is simply aj0(x) according to the assertion. Let

go to prove the inductive step. By Proposition 4.22 the only part where we

find aj0(x) is:

b1(x)j0(X
k−1.x)j0 .

By inductive hypothesis we can conclude:

Pk(x) = b1(x)j0(j0b1(x))k−2 = (j0b1(x))k−1.

Lemma 4.25. With the preceding notations the following relation holds:

(Xk.x)1 = b1(x)k−1a1(x).
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Proof. Let proceed by induction on k. For k = 1 it is true because (X.x)1 =

a1(x). Let go to prove the inductive step. For inductive hypothesis we have

that Xk−1.x = b1(x)k−2a1(x)y + O(y2) where O(y2)is an expression of order

bigger than two in y.

Xk.x =X.(Xk−1.x) =
∑
i≥1

ai(x)yi[
∂

∂x
(b1(x)k−2a1(x))y +

∂

∂x
O(y2)]+

∑
i≥1

bi(x)yi[b1(x)k−2a1(x) +
∂

∂y
O(y2)].

We conclude observing that ∂
∂x

(b1(x)k−2a1(x))y + ∂
∂x

O(y2) and ∂
∂y

O(y2) have

degree bigger than one in y.

Proposition 4.26. With the preceding notations the following relation holds:

Qk(x) = ckb1(x)k−2a1(x)

for every k ≥ 1. Where the sequence {ck} is defined by recurrence by:
{

c1 = 0

ck = j0ck−1 + 1

Proof. Let proceed by induction on k. For k = 1 we have that (X.x)j0 =

aj0(x) and then c1 = 0. Let go to prove the inductive hypothesis. By Remark

4.23 the part containing bj0(x) is:

(Xk−1.x)1bj0(x) + b1(x)j0(X
k−1.x)j0 .

By inductive hypothesis and Lemma 4.25 we have that the part with bj0(x)

is given by:

(Xk−1.x)1 + b1(x)j0ck−1b1(x)k−3a1(x) =

b1(x)k−2a1(x) + j0b1(x)k−2a1(x)ck−1 =

(1 + j0ck−1)b1(x)k−2a1(x) = ckb1(x)k−2a1(x).
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The sequence {ck} is monotone and so admits a limit, then we have:

Lemma 4.27. The following series have non zero radius of convergence:

1.
∑

k≥1
jk−1
0

k!
zk−1,

2.
∑

k≥2
ck

k!
zk−2.

By this lemma and by Propositions 4.24 and 4.26 we get:

Corollary 4.28. With the previous notations the following series are con-

vergent:

1. P (x) :=
∑

k≥1
Pk(x)

k!
,

2. Q(x) :=
∑

k≥2
Qk(x)

k!
.

Proposition 4.29. Let fix j0 ∈ N, then the series

R(x) :=
∑

k≥1

Rk(x)

k!
,

is convergent.

Proof. We can easily prove by induction on k that:





R2(x) =

j0−1∑
i=1

ai(x)
∂

∂x
aj0−i(x) +

j0−1∑
i=2

(j0 − i + 1)bi(x)aj0−i+1(x),

Rk(x) =

j0−1∑
i=1

ai(x)
∂

∂x
(Xk−1.x)j0−i +

j0−1∑
i=2

(j0 − i + 1)bi(x)(Xk−1.x)j0−i+1+

+ j0b1(x)Rk−1(x)

Now we can prove that the the number of terms that appear in Rk are at

most

(k − 1)(2j0 − 3).
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Let proceed by induction on k.

For k = 2 we have j0−1+ j0−2 = 2j0−3 = (2−1)(2j0−3) terms. Then

by the previous relations for Rk and by the inductive hypothesis we have at

most j0 − 1 + j0 − 2 + (k − 2)(2j0 − 3) = (k − 1)(2j0 − 3) terms.

Now let observe, by induction on k, that in Rk we find expressions ho-

mogenous of degree k in ai,
∂
∂x

ai, bi,
∂
∂x

bi for i = 1, · · · , j0.

Let K be a compact set and let

M := max
i=1,··· ,j0

{max
K
{| ai |}, max

K
{| ∂

∂x
ai |}, max

K
{| bi |}, max

K
{| ∂

∂x
bi |}}.

So we have that:

| Rk(x) |≤ (k − 1)(2j0 − 3)Mk.

Then the series | R(x) | is majorized by the convergent series:

∑ (k − 1)(2j0 − 3)Mk

k!

and then is convergent.

Using the notations previously introduced we have:

Aj0(x) =
∑

k≥1

(Xk.x)j0

k!
= P (x)aj0(x) + Q(x)bj0(x) + R(x).

If we define

Ãj0(x) := Aj0(x)−R(x)

we have:

Ãj0(x) = xsP̃ (x)aj0(x) + Q(x)bj0(x),

where:

P (x) =: xsP̃ (x) with P̃ (0) 6= 0.

So that:

xsaj0(x) =
Ãj0(x)−Q(x)bj0(x)

P̃ (x)
. (4.11)
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For the symmetry of the problem we have also the following relation:

Bj0(x) =
∑

k≥1

(Xk.y)j0

k!
= P ′(x)aj0(x) + Q′(x)bj0(x) + R′(x), (4.12)

with P ′(x), Q′(x), R′(x) convergent.

Multiplying the (4.12) by xs and substituting the expression (4.11) we

get:

Bj0(x) =
P ′(x)Ãj0(x)

P̃ (x)
− P ′(x)Q(x)

P̃ (x)
bj0(x) + xsQ′(x)bj0(x) + xsR′(x).

Because all the terms are convergent except bj0(x) then even bj0(x) is con-

vergent and so even aj0(x).

In this way we proved the inductive step and so following it holds:

Proposition 4.30. According with equation (4.8) all the coefficients aj(x)

and bj(x) are convergent, i.e. X̂ is a transversely formal vector field.

4.8 Index Theorem for maps tangent to the

identity

Let us consider a germ of holomorphic diffeomorphism tangent to the identity

with a smooth curve of fixed points. In the previous section we proved that

the corresponding vector field X̂ is transversely formal with respect to S.

Such a vector field does not admit a discrete singular set along S. So we

have to consider the reduced associated vector field, i.e., we have to divide

X̂ by the highest power of an expression of S that divide the vector field.

We denote the reduced vector field always with X̂.

After this procedure the new vector field can not belong to Θ̂M,S. To as-

sure that this does not happen we have to impose some additional conditions

on the behavior of F near S.
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With this assumption we have:

Proposition 4.31. Let F be a germ of holomorphic diffeomorphism in (C2, 0)

with Fix(F ) = S, where S is a germ of irreducible smooth curve. If F is

tangential on S at some, hence every, point p ∈ S then the reduced associated

transversely formal vector field X̂ is in Θ̂M,S.

Proof. In Section 4.7 we have seen that the first not zero component of X̂ is

the one corresponding to the first power of y that appear in the corresponding

component of F . By this remark we get the assertion.

In this situation we can use the previous results in order to get the fol-

lowing:

Theorem 4.32. Let F be a germ of a holomorphic diffeomorphism of a

complex manifold of dimension two. Assume Fix(F ) = S, where S is a non

singular compact connected curve and suppose that F is tangential on S. For

every p ∈ S there exists an index Ind(F, S, p) ∈ C such that:

∑
p∈S

Ind(F, S, p) = S · S.

4.9 Reduction of singularities for transversely

formal vector fields

The aim of this section is to observe that Seidenberg’s reduction theorem is

true even in the transversely formal category. To make this more precise let

fix some notations.

Remark 4.33. The definition of isolated singularities and the ones of this

section are given in the formal category but are valid even in the transverse

formal one.
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As we have seen in Section 1.3 the reduction of singularity is an algorith-

mic strategy for decreasing the complexity parameter of the vector field X.

By this process we can assumes that singularities are of a special kind:

Definition 4.34. Let X be a formal vector field with r(X) = 1. Let λ1

and λ2 be the eigenvalues of the linear part of X. The origin is a reduced

singularity for X if one of the following conditions holds:

(∗1) λ1 6= 0, λ2 6= 0 and λ1

λ2
6∈ Q+ ∪ {0}

(∗2) λ1 6= 0, λ2 = 0 or λ1 = 0, λ2 6= 0.

In formal category a blow-up is simply a formal transformation of type

{
x = u

y = uv.

Theorem 4.35 ([51]). Let X := A(x, y) ∂
∂x

+ B(x, y) ∂
∂y

be a formal vector

field with (A,B) = 1 and let the origin be a singularity for X. Then after a

finite number of blow-ups we get a vector field with only reduced singularities.

In case of transversely formal vector fields we observe that the transverse

formal structure of X is invariant under blows-up.

Proposition 4.36. Let X := A(x, y) ∂
∂x

+ B(x, y) ∂
∂y

be a transversely formal

vector field with (A,B) = 1 and let the origin be a singularity for the vector

field. Then after a finite number of blow-ups we get a transversely formal

equation with only reduced singularities.

Now we briefly recall what we know about the solutions through non

singular points.
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Definition 4.37. Let X := A(x, y) ∂
∂x

+B(x, y) ∂
∂y

be a formal vector field. An

integral curve for X through the origin is a couple of formal series x(t), y(t) ∈
C[[t]] both not constantly zero and such that:

A(x(t), y(t))(
∑

icit
i−1) = B(x(t), y(t))(

∑
jdjt

j−1),

where x(t) =
∑

djt
j and y(t) =

∑
cit

i.

Theorem 4.38 ([51]). Let X := A(x, y) ∂
∂x

+ B(x, y) ∂
∂y

be a non singular

formal vector field. If the complexity parameter r(X) = 0 then only one

solution passes through the origin. If r(X) = 1 and the origin is a reduced

singularity then at least two solutions pass through the origin.

4.9.1 Existence of formal solutions

We want to get existence of formal solutions through points of a smooth

invariant curve of a transversely formal vector field. The idea is to use

Camacho-Sad type index techniques for transversely formal vector fields.

We recall the ingredients of the proof of existence of separatrices through

singular points used in [18]:

1. an index theorem,

2. a reduction of singularities process,

3. existence of solutions for reduced singularities

4. combinatorics to deduce from the existence of solutions for the reduced

equations the existence of solutions for the original equation.

Obviously in our case we need some modifications caused from the exis-

tence of an invariant curve through the singularity. As we have just made

in the holomorphic category the right modification is given by J. Cano’s

definition of (C1) and (C2) points [20].
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Definition 4.39. Let X be a transversely formal vector field on the separatrix

S.

• the point p ∈ S is of type (C1) if S is not singular at p and

Ind(X, S, p) 6∈ Q+ ∪ {0}.

• the point p ∈ S is of type (C2) if S has two irreducible non singular

branches S0, S1 that intersect transversally in p and it exists a number

r > 0 such that:

Ind(X, S0, p) ∈ Q≤− 1
r

:= {x ∈ Q | x ≤ −1

r
}

Ind(X, S1, p) 6∈ Q≥−r := {x ∈ Q | x ≥ −r}.

As usual, we introduce even in the transverse formal category the defini-

tion of appropriate singularity.

Definition 4.40. Let X be a transversely formal vector field on the separatrix

S. The point p ∈ S is an appropriate singularity for X if after a finite

number of blow-ups there exists a point of type (C1) or (C2) on the total

transform of S.

We have just constructed the first three ingredients. For the last one we

just observe that the combinatoric part is independent from the convergence

of the object under investigation, so it is also valid in our context.

We can then state the following:

Theorem 4.41. Let

A(x, y)
∂

∂x
+ B(x, y)

∂

∂y

be a transversely formal vector field with an invariant smooth curve S and

let p ∈ S be an appropriate singularity of the vector field. Then there exists

another formal separatrix through p.
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4.10 Existence of parabolic curves

If F = exp(X) then, as we have seen, the terms of lowest degree of F and

X are exactly the same with the the same coefficients. This guarantees that

the type of singularity of F and X are the same, i.e., the existence of (∗1)

and (∗2) singularities for one of them implies the existence of such a point

for the other.

This property is preserved even under blows-up as the following classical

lemma (see Proposition 4.2.4 pg. 267 of [6]) assures:

Lemma 4.42. Let F be a map tangent to the identity in ( C 2, 0) and set F̃

the blow-up of F . Let X be the vector field associated to F i.e., exp(X) = F .

We have that:

F̃ = exp(π∗X),

where π∗X is the pull-back of X by the blow-up map π.

Remark 4.43. This lemma says that the relationship between maps and

vector fields is preserved under blow-up if, instead of saturating the vector

field, we divide it only by the first power of a local expression of the exceptional

divisor.

According with the strategy described in the previous section we recover

even for maps the existence of parabolic curves:

Theorem 4.44. Let F ∈ Diff(C2, 0) be a germ of holomorphic map such

that Fix(F ) = S where S is a non singular complex curve. Let suppose F is

tangential on S. If p ∈ S is an appropriate singularity of F then at least one

parabolic curve passes through p.

Proof. Let consider the vector field X such that exp(X) = F . Then X has a

separatrix S passing through an appropriate singularity p. The resolution of
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singularities and the combinatorics of Cano ([20]) assures the existence of a

(∗1) point for the reduced vector field X̃. By the previous lemma this implies

the existence of a (∗1) point for the reduced map F̃ . So by Proposition 2.19

we have the existence of at least one parabolic curve for F .



Chapter 5

Upper-bound for the number of
robust parabolic curves of a
class of maps tangent to
identity

5.1 Introduction

In dimension two Hakim [36] and Abate [2] proved that if f is a holomorphic

map tangent to the identity in C2 and ν(f) is the degree of the first non

vanishing jet of f − Id then there exist ν(f)− 1 robust parabolic curves (RP

curves for short). The set of the exponential of holomorphic vector fields

(of order greater than or equal to two), Φ≥2(C2, 0), is dense in the space of

germs of maps tangent to the identity.

In this chapter we give an upper-bound for the number of robust parabolic

curves of f ∈ Φ≥2(C2, 0).

Theorem 5.1. Let f = (f1, f2) ∈ Φ≥2(C2, 0) be a non-dicritical holomorphic

map. Set η(f) := max{ord(f1 − Id), ord(f2 − Id)} and µ(f) the Milnor
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number of f. Then the number of RP curves is at most

(µ(f) + 1)(η2(f)− η(f)).

In the dicritical case in [11] Bracci proved that f is dicritical if and only

if it has infinite parabolic curves. Here we show that the parabolic curves at

a dicritical point are indeed robust ones:

Proposition 5.2. Let f = (f1, f2) ∈ Φ≥2(C2, 0) be a dicritical holomorphic

map. Then there exist infinitely many RP curves.

In case f is the exponential of a holomorphic vector field we notice a very

strict relation between the dynamics of the map and the dynamics of the

vector field. So, if the diffeomorphism f is such that there exists a vector

field X such that exp(X) = f, then it turns out that the RP curves are

”geometrically” determined by the fact they lay in a separatrix of X. We

can use a result of Corral and Fernandez Sanchez [24] concerning the upper-

bound of the number of separatrices of X to estimate the number of RP

curves .

5.2 Robust parabolic curves

In this section we analyze the relationship between the separatrices of the

vector field associated to f and the robust parabolic curves (see section 2.2.5).

According to the relation between f and X the geometric meaning of

Definition 2.24 is clarified by the following proposition:

Proposition 5.3. Let f ∈ Φ≥2(C2, 0) be a holomorphic map and let X be

a vector field such that exp(X) = f . Let ϕ be a robust parabolic curve.

Then ϕ is contained in a formal separatrix of X. Conversely in every formal

separatrix of X there exists at least one RP curve for f .
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Proof. Let be p ∈ ϕ(∆). Since

exp(X) = f

then the orbit {fn(p)} is contained in a separatrix, S, of X. We have only to

prove that every orbit generated by a generic point q ∈ ϕ(∆) stays inside S.

By contradiction we can find two orbits that converge to zero living in two

different separatrices , say S1 and S2 Let l1(x, y) and l2(x, y) be (respectively)

the local expressions of S1 and S2 and let h be the order of the first non zero

jet of l1 − l2. If we blow-up the vector field h times then, by property (1)

of the definition of RP curves, we have that the two orbits converge to zero

with two different directions and this contradicts property (2) of Definition

2.24.

Let prove the converse. Let S be a separatrix and let y = ϕ(x) = x
p
q + · · ·

be its expression in Puiseux series.

Remark 5.4. We can suppose p and q co-prime and that p
q
≥ 1. Indeed, if

this is not the case we can choose the parametrization of the separatrix in the

form x = ψ(y), which satisfies the required condition.

Let now make the following change of variables:

{
u =x

v =y − ϕ(x)

The vector field in the new coordinates is:
{

u̇ =A(u, v + ϕ(u))

v̇ =B(u, v + ϕ(u))− ϕ̇(u)A(u, v + ϕ(u))

If we compute the exponential of this new vector field restricted to the sep-

aratrix {v = 0}we find:

exp(A(u, ϕ(u))
∂

∂u
)
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Let us make the change of variables:

u = zq

and then the first component of the vector field is:

ż =
A(zq, ϕ(zq))

qzq−1
. (5.1)

By Remark 5.4 the left-hand side of (5.1) is expressed as a power series. Now

if we take the exponential of this new vector field we find a map tangent to

the identity conjugated to the original one given by (z, w) 7→ (z+zh+· · · , w).

By the Leau-Fatou Theorem ([21]) we get the assertion.

As a consequence of this last result we easily prove the existence of RP

curves for map in Φ≥2(C2, 0) [2],[36], [5].

Proposition 5.5. Let f ∈ Φ≥2(C2, 0) be a holomorphic map tangent to the

identity in C 2. Then there exists at least one RP curve.

5.3 Local invariants

In this section we briefly recall the local invariants we need in this study.

Let F be a foliation on a complex surface M and let p ∈ M a point and let

ω = a(x, y)dx + b(x, y)dy be a representant for the foliation F .

Definition 5.6. The Milnor number of F in p is:

µp(F) := dimC(
C{x, y}

a(x, y)C{x, y}+ b(x, y)C{x, y}).

Remark 5.7. Let observe that µp(F) = 0 if and only if F is not singular in

p.
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The analogous of the Milnor number in case of maps is the intersection

number. To give a rigorous definition of such invariant we need the following

result:

Definition 5.8. Let X ⊂ (C2, 0) be a germ of analytic irreducible curve of

equation f(x, y) = 0. A parametrization γ is called primitive if for every

parametrization µ there exists a function u such that µ = γ ◦ u.

Remark 5.9. By Puiseux theorem such a parametrization always exists.

Definition 5.10. Let f1, f2 be two germs of maps. Suppose f2 irreducible

and let γ be a primitive parametrization of f2 = 0. We define the intersection

number of f in 0:

I(f ; 0) := ν0(f1 ◦ γ),

where ν0(f1 ◦ γ) is the multiplicity of f1 ◦ γ in zero.

If f2 is not irreducible and f2 = gα1
1 · · · gαk

k then

I(f1, f2; 0) :=
k∑

i=1

αiI(f1, gi; 0).

Now we can express the relationship between these two invariants.

Proposition 5.11. Let f ∈ Φ≥2(C2, 0) be a holomorphic map tangent to the

identity in C 2 and let X be the associated vector field. Then the Milnor

number of X, at the origin, is equal to the intersection multiplicity of f − Id.

Proof. Let observe that, if

X = A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

then the Milnor number of X is equal to the intersection multiplicity at the

origin [9]. Now observe that the intersection multiplicity of two functions
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g(x, y) and h(x, y) depends only on the first non zero jet of g and on the lowest

exponent of the Puiseux parametrization of h [33]. The Newton-Puiseux

polygon shows that the lowest exponent of the parametrization depends only

on the part of the polygon determined by the first non zero jet of the function

[23]. This concludes the proof because the lowest non zero jets of f − Id, A

and B are the same.

5.4 Non-dicritical case

Proposition 5.3 shows that the RP curves live inside the separatrices of the

associated vector field. The idea is to estimate the number of separatrices

of the vector field and then the number of RP curves inside a separatrix. In

[24] Corral and Fernandez Sanchez find the optimal estimates of the number

of separatrices by means of the Milnor number of X [9].

Proposition 5.12 ([24]). Let X be a holomorphic vector field in C2, singular

at the origin. Let S be the curve determined by all the separatrices passing

trough the origin. Let r0(S) be the number of the irreducible components of

S. Then:

r0(S) ≤ µ0(X) + 1, (5.2)

where µ0 is the Milnor number of X at the origin.

The proof of this proposition can be found in [24]. In order to express the

previous estimation in terms of invariants of f we introduce the intersection

multiplicity [2].

Now we can start with the proof of the estimates of the number of RP

curves that are contained in a separatrix. Proceeding as in Proposition 5.3,

we can conjugate the restriction of f to the separatrix to a map of the kind

(z, w) 7→ (z + zh + · · · , w).
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We have now to estimate the exponent h. An easy computation shows

that the exponent h is the lowest degree of the expression of A(zq ,ϕ(zq))
qzq−1 . The

same computation proves that the order of A(x, y) is the same as the order,

ν1 of f1 − Id. Then

Aν1(z
q, ϕ(zq))

qzq−1
=

∑
i+j=ν1

zqiϕ(zq)jz1−q,

so the lowest degree is:

qi + pj + 1− j, (5.3)

for 0 ≤ i, j ≤ ν1. Let us maximize the quantity (5.3). According to the cases

p, q > 0 and p, q < 0 and by the assumption p
q
≥ 1 we have that:

qi + pj + 1− j ≤ ν1p + 1− q ≤ ν1p,

where the last inequality holds because q ≥ 1. By Remark 5.4 the number of

RP curves in S is bounded from above by:

max{ν1, ν2}p.

This estimate depends on p and q and then on the particular separatrix. It

is possible to improve this result removing the dependence on the separatrix

in the following way. Since:

dy

dx
=

B(x, y)

A(x, y)

and replacing y = ϕ(x) = xk + · · · , we find that:

k =
i1 − i1 + 1

j2 − j1 + 1
,

with i1 + j1 = ν1 and i2 + j2 = ν2. So we easily find:

k ≤ ν2 − 1

ν1 − 1
.

Then p ≤ (ν2 − 1) and q ≤ (ν1 − 1) because p and q are prime each other.

This proves Theorem 5.1.
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5.5 Dicritical case

We know that in case of dicritical singularities we have, for maps, the ex-

istence of infinite parabolic curves and, for vector fields, the existence of

infinite separatrices. This suggests the following:

Proposition 5.13. Let f ∈ Φ≥2(C2, 0) be a map tangent to the identity in

C 2 and let X be the vector field such that exp(X) = f. Then f is dicritical

at 0 if and only if X is dicritical at 0.

Proof. If X is dicritical then by Proposition 1.31 there exists infinitely many

separatrices and then, by Proposition 5.3, f admits infinitely many RP

curves. So f , by Theorem 5.1, has to be dicritical. Let us prove the converse.

Let X be not dicritical and let prove that f is not dicritical. Let denote by

f̃ and X̃ (respectively) the blow-up of the map f and of the field X. We

have to prove that if the exceptional divisor D is invariant by X̃ then f̃ is

tangential on D. We can suppose that:

X̃ = A(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

and D = {l(x, y) = x = 0}. The invariance of D is equivalent to the fact

that x divides A(x, y). Let be

T = max{s ∈ N | xs | A(x, y)},

i.e. A(x, y) = xT a(x, y). So we have:

X = xT a(x, y)
∂

∂x
+ B(x, y)

∂

∂y
,

with x - B(x, y) i.e. B(0, y) = yk + · · · . Now let be X̄ := π∗(X) and observe

that this field has the following structure:

X̄ = xαa(x, y)
∂

∂x
+ xβB(x, y)

∂

∂y
,
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where a(x, y) and B(x, y) are the previous ones and α > β. By Lemma 4.42

we know that exp(X̄) = f̃ and so we can reconstruct the map by formula

(4.5).

We find X̄j.x = xα(· · · ) for all j. On the other hand when we compute

X̄ i.y, we find a structure of the type X̄ i.y = xα(· · · ) + xiβ(· · · ). Then the

lowest power of x appears in the term X̄.y and it is xβyk. So the order of f̃

on D is min(α, β) = β and then

l ◦ f̃ − l

lT
=

f̃1 − x

xβ
= xα−β(· · · ) ≡ 0 mod I(S)p.

In this setting we have

Proposition 5.14. Let f ∈ Φ≥2(C2, 0) be a dicritical holomorphic map tan-

gent to the identity in C 2. Then there exist infinitely many RP curves.

Proof. Since f is dicritical then, by Proposition 5.13, X is dicritical. By

Proposition1.31 there exist infinite separatrices and then by Proposition 5.3

we get the assertion.
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icas, 16◦ Colòquio Brasileiro de Matematica, Publ. do IMPA, 1987;



BIBLIOGRAPHY 105

[20] J. Cano, Construction of invariant curves for singular holomorphic vec-

tor fields, Proc. Amer. Math. Soc., 125, (1997), 2649-2650;

[21] L.Carleson e T.W.Gamelin, Complex Dynamics , Springer, (1992);

[22] H. Cartan, Elementary theory of analytic functions of one or several

complex variables, Dover Publications, 1995;

[23] E. Casas Alvero, Singularities of plane curves , Cambridge University

Press, (2000);

[24] N. Corral, P. Fernandez-Sanchez, Isolated invariant curves of a foliation,

Proc. Amer. Math. Soc., 134, (2006), 1125-1132;

[25] H. Cremer, Zum zentrumproblem, Math. Ann., 98, 1927, 151-163;

[26] H. Cremer, Uber die häufigkeit der nichtzentren, Mat. Ann., 115, 1938,

573-580;

[27] F. Degli Innocenti, Holomorphic dynamics near germs of singular

curves, Math. Z., 251, (2005), 943-958;

[28] F. Degli Innocenti, Transversely formal vector fields, preprint;

[29] F. Degli Innocenti, C. Frosini, Upper bound for the number of robust

parabolic curves of a class of map tangent to the identity, preprint;

[30] H. Dulac, Recherches sur les points singulieres des èquations

diffèrentielles, J. Ecole Polytechnique, 2, 1904, 1-25;
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