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Abstract

This thesis presents some original results in the framework of program verification,
referred in particular to object-oriented languages. Object-oriented concepts and
programs are expressed using object calculi, since they allow to formalize the basic
ideas behind the object-oriented approach, without considering the details which
are peculiar of each particular language. We will initially present a very simple
object calculus, which models the classical object-oriented features, and which has
the computational power of Church’s untyped lambda-calculus. This calculus has a
functional behavior, and in the following of the thesis it will be extended to include
types, to formalize the natural imperative behavior of object-oriented languages,
and to extend the model to concurrent languages. The verification of the properties
of object-oriented programs will be based on abstract interpretation, since in many
cases it can be more precise than other widely used techniques of analysis, like for
example model checking or type inference. We will present in detail the theory
behind this verification method that will be used as a unified approach in the rest
of thesis. The approach will be used in three examples of analysis of object calculi,
applied to the fields of safety, optimization and security. The first analysis, related to
safety, is intended to verify that threads belonging to a unique concurrent program
do not access shared resources simultaneously. We will extend the simple calculi
presented at the beginning of the thesis with primitives for locking and unlocking
objects, and using a very simple abstraction, we will be able to be more precise in our
results than other approaches based on type systems. The second analysis, related to
optimization, is in some way complementary to the first one. In fact, in this second
case, our aim is to avoid the use of unnecessary locks in concurrent programs, since
they often cause an overhead in computation. We will further extend our language
with constructs for tracing the objects and the threads which acquire locks on them.
The analysis will then check the dependencies between the various locks, to see if
some of them may be safely deleted from programs without incurring in an erroneous
behavior due to simultaneous accesses to shared resources. The third analysis will
be intended to check a property of secure information flow in concurrent programs.
The language will be further extended to include information levels and the analysis
will check if, for each point of the computation, the values contained in variables
are, in some ways, dependent of other variables with higher information levels.
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Introduction

Nowadays, the importance of software systems is becoming larger and larger. Soft-
ware systems are used in almost all human activities, often with crucial tasks. These
systems manipulate enormous quantities of data and their complexity, as well as the
complexity of the data they manipulate, require sophisticated tools for design and
verification. It is impossible to think, in fact, that programmers may check every
single aspect of the software they produce, due to the increasing dimension of pro-
grams and to the enormous quantity of issues that programmers should look for.
These issues range from correctness of programs, to safety, security, efficiency, and
to many other aspects that may be desirable in a state-of-the-art computer system.

Since programs are too complex to be checked manually in a reasonable amount
of time and resources, code designers need automatic, flexible and efficient tools for
checking a wide range of program properties. This is why the field of formal methods
for program verification is having a great impact on industry and on applications.

The main idea behind formal verification methods is to define mathematical
models to represent computer systems and their behavior, as well as the properties
to check for these computer systems. Then, the precision of mathematical definitions
may be exploited to build algorithms that have a model and a property as their input
and that check the existence of the property, or enforce the property itself. The main
advantage of these approaches lies in the fact that the correctness of these algorithms
for program verification is established using mathematical proofs. Obviously, these
approaches could fail if the mathematical models do not represent systems correctly.

Several formalisms have been proposed in the past to verify properties of systems.
In particular we refer to Static Analysis techniques, which analyze the behavior of
programs without executing them. Static Analysis directly checks the program code
for inferring properties. Computer system properties are undecidable to compute,
in general, so static analyses check for approximated properties, in order to be com-
putable using a finite amount of time and memory. There are many examples of
static analysis techniques, the most notably of which are Type Checking, Model
Checking and Abstract Interpretation.

Type Checking techniques extend languages with the concept of type. A type
system is defined in order to model the properties which have to be analyzed, and
type checking algorithms attempt to give a correct type to programs according to
the defined type system. If a program may be typed according to the desired type
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system, then that program has the property enforced by the type system itself. In
the opposite case, nothing can be said, due to the approximation introduced by the
static analysis. Type Checking techniques may easily be applied as extensions to
language compilers.

Model Checking techniques verify if the abstract model for a computer system,
often derived from a hardware or software design, satisfies a formal specification.
The specification is often written as temporal logic formulas. Computer systems are
usually modeled using transition systems (i.e. directed graphs). Each state of the
transition system has an associated proposition which represents the basic properties
that hold in that state of the computation. In this kind of static analysis, the model
has to be chosen very carefully, in order to avoid a combinatorial explosion of the
states space.

Abstract Interpretation is a technique used to describe static analyses and to
derive their correctness. It is applied in a systematic way by modeling the property
to analyze in an abstract domain, by establishing relations between the two domains
of abstract computations and concrete ones (the ones which describe the semantic
of the language), and by finally deriving an abstract semantics of the language that
allows to execute programs in an approximated way, in order to compute the prop-
erties modeled by the abstract domain. This kind of analysis is usually more precise
(and more complex) of other widely used techniques, due to the fact that programs
are executed, even if in an approximated way. We will present the mathematical
foundations behind abstract interpretation techniques in chapter 1 of this thesis.

The mathematical model of object calculi has been chosen in this thesis in order
to represent computer systems. This because the object-oriented approach is becom-
ing more and more important in the design, project and development of computer
systems. Object calculi have proved useful to us since they represent object-oriented
languages in their basic constructs, without considering the peculiarities (and mod-
eling problems) of a specific object oriented language. Obviously there are also other
formalisms which allow to perform these kind of analyses. Featherweight Java [38]
is a well-known formalism in this sense, but we preferred the use of object calculi
since in this way we can abstract from the syntax and semantics of a particular
programming language (Java in this case).

Object calculi were first introduced in nineties by Martin Abadi and Luca Cardelli
[1], and in some other works [10, 25, 26, 36], also with extensions. These calculi con-
sider the notion of object as primitive, and model in a very simple and natural
way the classical object-oriented notions of methods, instance variables, self, and so
on. Even if these calculi are so simple, their computational power is equivalent to
the one of Church’s untyped lambda-calculus and then object calculi have the full
expressiveness of Turing machines. Object calculi may have functional or classical
imperative behavior, and can easily be extended (and they have been) with fea-
tures such as types, concurrency [33], and so on. We will present the basic notions
for object calculi in chapter 2, starting from a basic untyped object calculus which
provides only the notions of objects, self and methods. We will see how we can
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encode in this calculus the Church’s untyped lambda-calculus, with fixpoint and re-
cursion operators. Then we will examine some extensions to object calculi, referred
in particular to types, imperative behavior and concurrency in chapter 3.

Recently, the area of static analysis applied to object oriented calculi or languages
is becoming more and more important [30, 40]. This thesis is intended to show
the abtract interpretation approach to static analysis applied to the case of object
calculi. We will then show three applications of the abstract interpretation approach
for detecting properties belonging to three cornerstone areas of computer science:
safety, efficiency and security.

The first analysis we show in chapter 4 is a safety analysis that will be used to
detect possible race conditions in concurrent languages. A race condition happens
when two concurrent threads access a shared resource simultaneously, often pro-
voking incorrect behaviors of programs. We will present an extension of the object
calculi defined in the initial part of the thesis, define and prove the correctness of
an abstract interpretation, and apply this abstract interpretation to detect possible
race conditions.

Chapter 5 will present, instead, an analysis belonging to the area of efficiency,
and intended to remove unnecessary synchronization operations from a concurrent
language. Synchronization operations may be useful to enforce safety in programs,
but present a computational overhead which is avoidable if some of this operations
may be safely removed without causing any race condition. We will slightly extend
the object calculus presented in chapter 4 and, using its same abstract interpretation
we will be able to detect some families of unnecessary synchronization operations
which often are present also in real programming languages.

Finally, the last analysis we present in chapter 6 pertains to the area of secu-
rity and addresses one of the classical problems belonging to this area of computer
science: the one of insecure information flows. We have an insecure flow of informa-
tion when we are able to detect some information about secret data inside programs
using the results of programs themselves. We will present some cases of insecure
flows in concurrent programs, as well as another abstract interpretation that will be
proved to be correct, and used to detect such cases.

Examples of our abstract interpretations will be presented in all chapters, in
order to see the effectiveness of our approach, which can be applied easily to different
areas of computer science, as well as to different programming languages, without
considering their peculiarities, but keeping in mind only their basic behavior.
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Chapter 1

Preliminaries

Abstract

This chapter presents some basic notions behind the theory of semantics
of programming languages, as well as abstract interpretation [21, 19]. We will
start from the very beginning with the notions of relation, ordering, lattice,
function, chain and fixpoint. We will then continue with the description of
some classical approaches to the analysis of the semantics of programming
languages, and end with the abstract interpretation theory.

1.1 Basic mathematical notions

In order to fully understand the theory behind the semantics of programming lan-
guages, as well as Abstract Interpretation, some basic mathematical notions are
needed. In this section we will then introduce the notions of relation, function,
ordering and fixpoint. We will review some classical results, such as Tarsky theo-
rem for fixpoints. These concepts will be used later, in the study of semantics of
programming languages, as well as in the definition of the Abstract Interpretation
theory.

1.1.1 Relations

Let S and T be sets. The powerset of a set S, ℘(S), is defined as the set which
contains all subsets of S:

℘(S) = {X|X ⊆ S}

The cartesian product between S and T , S × T , is defined as the set which
contains all pairs having their first element belonging to S, and second element
belonging to T :

S × T = {(s, t)|s ∈ S ∧ t ∈ T}
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We can define in an analogous way the cartesian product between k sets S1, . . . , Sk
as the set of k-uple such that the i-th element belongs to set Si for each i.

A k-ary relation is a subset of the cartesian product S1 × . . .× Sk. In a similar
way, a binary relation R between two sets S and T is a subset of the cartesian
product S × T :

R ∈ ℘(S × T )

Given a binary relation R on S × S, we can define the following properties of R:

• Reflexivity: ∀x ∈ S. (x, x) ∈ R

• Symmetry: ∀s, t ∈ S. (s, t) ∈ R⇔ (t, s) ∈ R

• Antisymmetry: ∀s, t ∈ S. ((s, t) ∈ R ∧ (t, s) ∈ R)⇒ s = t

• Transitivity: ∀r, s, t ∈ S. ((r, s) ∈ R ∧ (s, t) ∈ R)⇒ (r, t) ∈ R

When a binary relation is reflexive, symmetric and transitive, it is called equivalence
relation, or simply equivalence, and it is usually represented by symbols like =, ≡, ↔
and so on. When an equivalence relation ≡ is defined on a set S, we have that S
may be partitioned into subsets according to the equivalence classes defined by the
relation itself. An equivalence class is a maximal subset of S such that all its elements
are in the relation ≡ to one another.

When a binary relation is reflexive, antisymmetric and transitive it is called
partial ordering, as we will see better in the next section.

1.1.2 Orderings and Lattices

A partial ordering ⊑ on a set S, is a binary relation on S which is reflexive,
antisymmetric and transitive. We usually use the infix notation s ⊑ t to say that
(s, t) ∈ ⊑. A set S with a partial ordering relation ⊑ is called partially ordered set
(or, shortly, poset), and is usually represented by the couple (S,⊑). We will use
symbols such as ⊑, ⊆, ≤, � for partial orderings. Strict orderings will be denoted
by the corresponding symbols ⊏, ⊂, <, ≺ to exclude equality (i.e. s ⊏ t ⇔ ((s ⊑
t) ∧ (s 6= t))).

Let (S,⊑) be a poset and let T be a subset of S, T ⊆ S. An upper bound of
T is an element s ∈ S which is greater or equal than each element of T , that is
∀t ∈ T. t ⊑ s. The least upper bound (lub(T ) or ⊔(T )) of T is defined as the upper
bound s ∈ S such that for each other upper bound s′ ∈ S, we have s ⊑ s′. In a
similar way, by using ⊒ instead of ⊑, we can define the concepts of lower bound and
greatest lower bound (glb(T ) or ⊓(T )) of T ⊆ S.

Let us consider the poset (S,⊑) and a set T ⊆ S. We say that T is an ascending
chain if every two elements of T are comparable according to ⊑, that is ∀s, t ∈
T. (s ⊑ t) ∨ (t ⊑ s). A chain is said to be finite if it is composed by a finite number
of elements. The elements belonging to a chain may be disposed in a sequence
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according to the ordering relation ⊑. If every ascending chain in S has a least upper
bound, S is said to be a complete partial order (cpo). The least upper bound of the
set containing all the elements of the chain, is called limit of the chain.

A lattice is a poset (S,⊑) such that every pair of elements in S has both lub and
glb. A complete lattice is a poset (L,⊑) such that every subset of L has both lub and
glb, that is ⊔X and ⊓X exist for all X ⊆ L. Complete lattices are usually denoted
by the t-uple 〈L,⊑,⊤,⊥,⊔,⊓〉, where ⊤ and ⊥ are respectively the top and bottom
elements and are defined as ⊤ = ⊔L and ⊥= ⊓L.

1.1.3 Functions

A binary function f : S 7→ T is a binary relation between S and T such that if
(s, t) ∈ f and (s, r) ∈ f , then t = r. In other words a function is a relation such
that for every s ∈ S, there exists at most one element t ∈ T such that (s, t) ∈ f . We
usually write f(s) = t do denote (s, t) ∈ f , when f is a function. In a similar way we
can define k-ary functions as particular relations (with the same property as above)
between sets S1, . . . , Sk, T , that is f : S1, . . . , Sk 7→ T . In this case we say that k is
the arity (number of arguments) of function f . Given two sets S and X, such that
X ⊆ S, and a function f : S 7→ T , we denote by f(X) the set {f(x)|x ∈ X}. We
call this set image of X under f .

A function f : S 7→ T is said to be total if the value f(s) is defined for every
argument s ∈ S, that is ∀s ∈ S. ∃t ∈ T. f(s) = t. If this is not true, the function
is said to be partial. A function is injective when for each pair of arguments s ∈ S
and s′ ∈ S, if s 6= s′, then f(s) 6= f(s′). A function f : S 7→ T is surjective if the
image of S under f is equal to T , that is ∀t ∈ T. ∃s ∈ S. f(s) = t. When a function
is both injective and surjective, it said to be bijective, or a bijection.

Given two posets (S,⊑) and (T,�), a function f : S 7→ T is monotone if s ⊑ s′

implies f(s) � f(s′) for all s and s′ in S. A function is said to be upper-continuous
when it preserves the existence of upper bounds for ascending chains, that is when
for allX ⊆ S, f(⊔SX) = ⊔Tf(X), whereX is an ascending chain. Lower-continuous
functions are defined in a similar way, by considering descending chains instead of
ascending ones, and glb instead of lub. Continuity implies monotonicity, since if
we consider s ∈ S and s′ ∈ S such that s ⊑ s′, we can build an ascending chain
containing only s and s′, and whose least upper bound is s′. Then, from continuity,
we have f(s) ⊑ ⊔{f(s), f(s′)} = ⊔f({s, s′}) = f(⊔{s, s′}) = f(s′).

Given two functions f : T 7→ U and g : S 7→ T we can consider the composition
between f and g. This is a new function, denoted by f ◦ g : S 7→ U which is
defined by (f ◦ g)(x) = f(g(x)) for all x ∈ S. The composition of functions preservs
continuity (if two functions are continue, then their composition is continue), as well
as monotonicity.
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1.1.4 Fixpoints

Given a function f : S 7→ S, we say that x ∈ S is a fixpoint of f if f(x) = x. By
Tarsky fixpoint theorem, we have that the set of fixpoints for a monotone function
f , that is {x ∈ S|f(x) = x} is a complete lattice. Then there exist both the least
fixpoint (lfp(f)) and the greatest fixpoint (GFP (f)) for all monotone functions. By
the same theorem, if f is defined on a complete lattice, and if f is upper continuous,
we have that the least fixpoint of f can be obtained as the limit of the chain fn(⊥)
which starts from the bottom element ⊥ of S:

lfp(f) = ⊔n≥0f
n(⊥)

where f 0(⊥) = ⊥ and fn+1(⊥) = f(fn(⊥)). Then, in general, the least fixpoint of
a function f cannot be obtained in a finite number of steps.

1.2 Semantics of Programming Languages

In this thesis we will use various approaches to describe the semantics of program-
ming languages, represented by object calculi. In general we can say that the syntax
of a programming language is the set of rules governing the formation of expressions
in the language. The semantics of a programming language is the meaning of those
expressions.

There are several forms of language semantics. Axiomatic semantics is defined
as a set of axiomatic truths about programming language expressions. Denotational
semantics involves modeling programs as static mathematical objects, namely as
set-theoretic functions with specific properties. In this thesis we will use a different
form of semantics called operational semantics.

An operational semantics is a mathematical model of programming language
execution. In practice it is an interpreter of the language defined mathematically.
However, an operational semantics is more precise than an interpreter, since its
mathematical definition makes the semantics independent from the meaning of the
language in which an interpreter should be defined.

In the following of this section we will outline the mathematical foundations, as
well as the main operational semantics approaches used in the following chapters.

1.2.1 Transition Systems

Transition systems are one of the basic models used to represent the computational
steps performed during the execution of a program. They are at the basis of almost
all the definitions of semantics of programming languages in operational style.

A transition system is a triple 〈Γ, T,→〉, where:

• Γ is a set which contains elements called configurations
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• T is a subset of Γ, T ⊆ Γ, which contains configurations called terminal
configurations

• → is a binary relation between elements of Γ.

We will denote by γ, γ′ two generic elements of Γ, and say γ → γ′ to represent
that the couple 〈γ, γ′〉 belongs to the relation →. Such a couple is called transition.

We can think about configurations as the states that a system may encounter
during a computation. In particular, we have that terminal configurations represent
those states where the system ends its execution. The transition relation represents
the behavior of the system. If the system moves from configuration γ to configuration
γ′ we write γ → γ′ to show the modification in the state of the system due to the
computation.

Given a transition system S = 〈Γ, T,→〉, a finite derivation in S is a sequence
of configurations γ1, γ2, . . . , γn such that, for each i ∈ {1, . . . , n − 1}, we have that
γi → γi+1. Finite derivations usually represent the behavior of terminating pro-
grams, but in an analogous way we can define infinite derivations, to represent the
behavior of non-terminating programs, as infinite sequences of configurations where
each element is in the relation → with its successor. When talking about deriva-
tions, it can be useful to consider the transitive and reflexive closure of the relation
→, in order to represent when a program is obtained as the result of a computation
starting from another program, without specifying every single step of the deriva-
tion. The reflexive and transitive closure of → is usually represented by →∗. Then
γ →∗ γ′ means that there exists a derivation γ1 → . . . → γn where γ = γ1 and
γ′ = γn.

Given a transition system S = 〈Γ, T,→〉, there may exist some configurations
γ ∈ Γ\T such that it does not exist γ′ ∈ Γ such that γ → γ′. Such configurations
are called blocked, and represent states where the program cannot further evolve,
even if it is not in a terminal configuration (i.e. inconsistent states).

Transition systems defined in this way are used not only in the definition of
semantics, but also in the definition of generic computations performed on programs,
such as type inference, verification processes, and Abstract Interpretation.

Conditional inference rules

In the following we will often define the transition relation → using conditional
inference rules. These rules are defined in the following way:

π1 π2 . . . πn
γ1 → γ2

(Name of the rule)

In this rule, π1, π2, . . . , πn are called premises, and in the most general case they are
logical formulae or transitions between configurations that must be verified before
the application of the rule. If the current configuration of the program is γ1, and all
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the premises π1, π2, . . . , πn are true in the current configuration, then, by applying
the rule, we can conclude that γ1 → γ2.

In general free variables are used inside rules, so that a single inference rule actu-
ally represents an infinite set of rules that, opportunely instantiated, are applicable
to specific program configurations.

Historically, there are two kind of approaches in the definition of transition sys-
tems used in the description of the semantics of programming languages. The main
difference between these two approaches lies in the level of detail chosen to describe
single steps of computation. If we are interested in the description of every single
step in the computation, we can use a small-step semantics, where the final result
of the evaluation of a program is reached at the end of a derivation containing all
intermediate steps. This is typical of the so-called structural operational seman-
tics, introduced by Plotkin. This approach allows for compact semantic definitions,
as well as simple and powerful proof methods, such as induction on rules, or on
the length of the derivations. Moreover, the set of rules constitutes a true abstract
machine to interpret the language under specification.

On the other hand, if we are simply interested in the results of computations we
can instead use a big-step semantics, where the transition relation directly describes
the correspondence between initial and final configurations of programs. In this
thesis we will concentrate on the first approach.

Transition systems may be extended to labeled transition systems where we add a
set of labels to denote the transitions. A labeled transition system is then denoted by
〈Γ, T, L,→〉 where L is the set of labels. The transitions between two configurations

γ1 and γ2 are then labeled using elements ℓ ∈ L, writing γ1
ℓ
→ γ2. As an example, a

labeled transition system may be built using as labels the names of the conditional
inference rules which define the transition relation →. In this way we are able to
identify which rule has been applied at each step of a derivation.

1.2.2 Reduction Semantics

A reduction semantics or rewriting semantics is a small-step operational semantics
which defines an evaluation function for programs. In particular, programs are
rewritten in other programs using this function. The definition of the evaluation
function is usually made using transition systems, with conditional inference rules.

Often a basic reduction function is defined, describing the elementary reduction
steps between simple terms. Then this basic reduction function is extended to
general terms using the concept of reduction context. A reduction context is a term
with an hole, usually denoted by [·]. This hole can be filled by other terms of the
language. Now, if we have a basic reduction rule saying s → t, we can apply the
rule to a general term T , which contains s, by considering T = C[s] (so that T is
represented as a context with its hole filled by s), by applying the basic reduction
rule to s, and by rewriting the new term C[t].
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As an example, we can consider the Church’s untyped lambda calculus, whose
syntax is defined by the following BNF grammar:

a, b ::= x | λx.b | b(a)

The above syntax says that the lambda calculus terms are variables, functions
with arity one, and function applications. We can define a reduction semantics for
the lambda calculus by defining the basic reduction function as the two following
rules: β-reduction and η-reduction:

(λx.b)(a)→ b{{x← a}}

(λx.(b(x)))→ b

The first reduction means that when we have a function λx.b and we have to apply
it to a term a, we have to rewrite the body of the function, b, and replace every free
occurence of the variable x in it with the term a. The second rule requires that b is
a function and that x does not occur as a free variable in b. It simply states that
the λ-abstraction is the inverse operation of functional application.

According to wath said before, we can extend the semantics to general terms by
defining evaluation contexts as follows:

C = [·] | λx.C | C(a) | b(C)

and by using the following rule:

a→ b
C[a]→ C[b] (Red-Context)

which formalizes the reduction of general terms.
Usually the reduction semantics is completed by considering the reflexive and

transitive closure of the transition relation →, denoted by →∗, in order to formal-
ize reductions which require many steps. Moreover, since programs may also be
non-terminating, the semantics of the language is defined as the least (or greatest)
fixpoint of the relation →∗.

In the following of the thesis this formalism will be the most used to represent
the semantics of object calculi.

1.2.3 Equational Theories and Structural Congruences

Equational theories give semantics to terms of programming languages by defining
an equivalence relation among terms of the language itself. In this way we can
represent the evolution of a system using the fact that the set of terms of the language
is partitioned into equivalence classes, and we can simplify a term C[s] by replacing
the subterm s with another term t such that s ≡ t. The most straightforward way to
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define an equational theory is to consider the reduction rules of a reduction semantics
as bidirectional, and add rules for reflexivity, symmetry, transitivity and replacement
of local subterms which are equivalent according to the equational theory itself. As
an example, we can consider the following equational theory for the untyped lambda
calculus:

⊢ a↔ a (Eq Ref) ⊢ (λx.b)(a)↔ b{{x← a}} (Eq β)

⊢ b↔ a
⊢ a↔ b (Eq Symm)

⊢ a↔ b ⊢ b↔ c
⊢ a↔ c (Eq Trans)

⊢ a↔ b
⊢ λx.a↔ λx.b (Eq λ)

⊢ a↔ b ⊢ c↔ d
⊢ c(a)↔ d(b) (Eq appl)

b is a function, x 6∈ FV (b)
⊢ λx.(b(x))↔ b (Eq η)

Equational theories define a semantics equivalence, and must not be confused
with Structural Congruences. A structural congruence defines an equivalence rela-
tion between terms based on the syntax of terms. When two terms are equivalent
according to a structural congruence, they are definitely the same term, and can
be interchanged with one another during the evolution of the program. Structural
congruences will be often used in the definition of the semantics of object calculi,
in order to make easier the application of reduction rules. In fact, when a rule does
not match directly the structure of a term, it may be possible to replace the term
with another equivalent one, in order to make the rule match. As an example, we
can consider the α-conversion rule for the untyped λ-calculus:

λx.b ≡ λy.b{{x← y}}

requiring that y does not occur free in b and is not bound by another λ-abstraction
when it replaces x. This rule states that two λ-terms are equivalent (are the same
term) if names are replaced with other names, provided that the new names are
fresh.

1.3 Abstract Interpretation Theory

Abstract Interpretation, introduced by Patrick and Radhia Cousot in 1977 [20], is
a theory that allows to describe and prove the correctness of static analyses. It is



1.3. ABSTRACT INTERPRETATION THEORY 11

based on semantic approximation, which allows to systematically derive program
analysis algorithms based on the semantics of programming languages. Nowadays,
the abstract interpretation theory is becoming more and more important in the
research field applied to object oriented languages and calculi [4, 5, 6, 7, 9, 24, 29,
30, 40, 52, 58].

Abstract Interpretation is primarily a theoretical framework, since it allows to
express many techniques used for static analyses into a unified formalism. Its main
purpose is to build Automatic Static Program Analyzers, in order to be able to
analyze dynamical properties of programs without executing them.

Unfortunately, we know that program properties are in general undecidable.
Early milestone works from Turing, Gödel, Kleene, Church and others showed that
a program cannot, in general, tell if another program has a certain property. Maybe
the most famous example is the halting problem: we know that it doesn’t exist a
program which can tell, in a finite number of steps, if another program halts on
all its inputs or not. This is why static analyses are based on the concept of ap-
proximation. Properties are analyzed in an approximated way with a correctness
constraint: if the static analyzer assigns a property to a program, then that program
must have the property when concretely evaluated. Obviously, the viceversa cannot
hold, due to undecidability, then there can be (and often there are) programs that
have a certain property, even if static analyzers cannot tell anything.

When the properties of a programs are analyzed using Abstract Interpretation,
they are modeled in an abstract domain, which is a static approximation of the
concrete domain where programs are executed. Then each property, defined on the
concrete semantic domain, is mapped in a corresponding abstract property, defined
on the abstract domain, so that it can be analyzed using a reasonable amount of
time and resources.

Given the concrete domain of execution of programs C, first of all it is necessary
to define an opportune abstraction, according to the properties to be checked. An
abstract domain A is then defined, where terms are built using features which make
easier the properties detection. For the sakes of finiteness and simplicity, we have
that each term in the abstract domain represents a set of terms in the concrete
domain, so that it is necessary to consider the concrete domain as a powerset.

Each of the two domains is then extended with an ordering relation, and given
the structure of a complete lattice. The ordering relations of the domains represent
precision: the lower the values, the more precise they are. The two domains are
then the following:

〈℘(C),⊆, C, ∅,∪,∩〉 Concrete domain

〈A,⊑,⊤,⊥,⊔,⊓〉 Abstract domain

As said before, each abstract value represents a set of concrete values, and then
the concrete domain must be a powerset, so that a binding can be made between
abstract values and sets of concrete values.
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Two functions are defined to bind abstract values and concrete ones:

• The abstraction function α maps each element of ℘(C) to an element of A
which is said to describe it:

α : ℘(C) 7→ A

• The concretization function γ maps each element a ∈ A to the set of elements
of C which are described by a:

γ : A 7→ ℘(C)

Since the ordering relations in the two domains reflect precision, if we abstract two
sets of concrete values S and T with S ⊆ T we would reasonably expect to obtain
two abstract values α(S) and α(T ) such that the latter one is less precise then
the former, since T contains S. Then we require monotonicity for the abstraction
function:

∀c1, c2 ∈ ℘(C). c1 ⊆ c2 ⇒ α(c1) ⊑ α(c2)

The converse must hold for the concretization function, since having two abstract
values a1 and a2 such that a1 ⊑ a2 means that a2 abstracts more concrete values
than a1, since it is less precise:

∀a1, a2 ∈ A. a1 ⊑ a2 ⇒ γ(a1) ⊆ γ(a2)

In order to guarantee the correctness of the analysis, two relations must hold be-
tween the abstraction and the concretization functions, which together make the
two functions a Galois connection:

∀c ∈ ℘(C). c ⊆ γ(α(c))

∀a ∈ A. α(γ(a)) ⊑ a

From the two conditions above, we have that the two functions α and γ mutually
determine each other. The first condition, in particular, states that there may be
loss of information (approximation) in describing an element of ℘(C) by an element
of A. If we have ∀a ∈ A. α(γ(a)) = a we have a stronger binding between the two
posets ℘(c) and A, called Galois insertion.

As said in section 1.2.2, the concrete semantics of a language is defined as the
least (or greatest) fixpoint of a concrete semantic evaluation function F , defined on
the domain C. The concrete semantic evaluation function is defined in terms of
primitive semantic operations fi on C (as an example, we can consider each fi as
one of the conditional inference rules which define the operational semantics of the
language). However, since the actual concrete domain is ℘(C), we need first to lift
the concrete semantics lfp(F ) to a collecting semantics defined on ℘(C).
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Lifting lfp(F ) to the powerset is simply a conceptual operation, since we have
that the collecting semantics may be defined as the set {lfp(F )}. Then we do not
need to define a new collecting semantics from scratch on ℘(C), but just need to
reason in terms of liftings of all the primitive operations (and of the whole concrete
semantic evaluation function F ) while designing the abstract operations and estab-
lishing their properties. In the following, by abuse of notation, we will use the same
notation for the standard and the collecting (lifted) operations.

Since we have to execute abstract programs, it is necessary to define an abstract
semantic evaluation function, in correspondence of the concrete one. Then, for each
concrete operator fi a correspondent abstract operator f#

i is defined. This operator
will be part of the abstract semantic evaluation function F#. For the abstract
semantics to be correct, the following requirement must be satisfied by each couple
of concrete and abstract operators:

∀c1, . . . , cn ∈ ℘(C). fi(c1, . . . , cn) ⊆ γ(f#
i (α(c1), . . . , α(cn)))

The concrete computation step must be more precise than the concretization of the
“corresponding” abstract computation step. In other words, whenever a concrete
computation is mapped to an abstract one, the result of the abstract computation
must represent a set of concrete elements in ℘(C) which contains the result of
the concrete computation. This is a very weak requirement, which is satisfied, for
example, by an abstract operator which always computes the worst abstract value
⊤ for each of its inputs. The real issue in the design of abstract interpretations is,
therefore, precision.

An abstract semantic operator f#
i is said to be optimal when it is the most pre-

cise abstract operator, correct with respect to the corresponding concrete semantic
operator fi. Then the following condition must hold:

∀a1, . . . , an ∈ A. f
#
i (a1, . . . , an) = α(fi(γ(a1), . . . , γ(an)))

This is more a theoretical bound and a basis for the design, rather than an imple-
mentable definition.

When the abstraction of the concrete computation step is exactly the same as the
result of the corresponding abstract computation step, we have also completeness of
the abstract operation, since we have no loss of information:

∀c1, . . . , cn ∈ ℘(C). α(fi(c1, . . . , cn)) = f#
i (α(c1), . . . , α(cn))

The abstract semantic evaluation function F# is obtained by defining, for each
concrete semantic operator fi, a corresponding locally correct abstract semantic
operator f#

i . Since the composition of locally abstract operations is locally correct
with respect to the composition of concrete operations, we obtain that the abstract
semantic evaluation function F# is locally correct as well:

∀c ∈ ℘(C). F (c) ⊆ γ(F#(α(c)))
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We have to say, however, that composition does not preserve optimality, so that
the composition of optimal abstract operators may be less precise than the optimal
abstract version of the composition.

Local correctness implies global correctness, since correctness is preserved when
fixpoints are computed:

lfp(F ) ⊆ γ(lfp(F#))

gfp(F ) ⊆ γ(gfp(F#))

Using the monotonicity of the abstraction function and the fact that α and γ
form a Galois connection, we obtain:

α(lfp(F )) ⊑ α(γ(lfp(F#)) ⊑ lfp(F#)

α(gfp(F )) ⊑ α(γ(gfp(F#)) ⊑ gfp(F#)

then the abstraction of the concrete semantics is more precise than the abstract
semantics. However the former, in general, is not computable in a finite number of
steps, while the latter may be computable in a finite number of steps, if the domain
is finite or, at least, noetherian.

Then it is interesting for static program analyses to compute lfp(F#), since
the fixpoint computation must terminate, and since, as said before, most program
properties are undecidable. Then a loss of precision is accepted, in order to make
the analysis feasible.

If the abstract domain is non-noetherian or if the fixpoint computation is too
complex, it is usual to use widening operators which force termination by computing
an upper approximation of lfp(F#), and by guaranteeing termination, even if more
approximation is introduced.



Chapter 2

The ς-calculus

Abstract

In this chapter we recall the formal definition of an untyped calculus of
objects, presented in [1] which constitutes the kernel for the other calculi
used in the thesis. In this calculus objects are primitive and functions are
not directly included. However we will show how to encode functions and
fixpoints operators in terms of objects.

2.1 Syntax

The basic calculus here presented has a minimal set of syntactic constructs and
computation rules, like the untyped version of the λ-calculus. Objects are the only
computational structures, and are constituted by collections of named methods.
Each method has a bound variable for self and the only operations on objects are
method invocation and update. The instance variables inside objects are represented
with methods that do not use the self parameter.

The following is the syntax of the pure ς-calculus terms:

a, b ::= terms
x variable
[li = ς(xi)bi

i∈1...n] object (∀i, j. li 6= lj)
a.l method invocation (field selection)
a.l ⇐ ς(x)b method update (field update)

Table 2.1: Syntax of the ς-calculus

To complete the formal syntax of the ς-calculus, we give the usual definitions of
free variables and substitutions for ς-terms, which will be used later to define the
formal semantics of the language:
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fv(ς(y)b) , fv(b)− {y}

fv(x) , x

fv([li = ς(xi)bi
i∈1...n]) ,

⋃

i∈1...n fv(ς(xi)bi)

fv(a.l) , fv(a)

fv(a.l⇐ ς(x)b) , fv(a) ∪ fv(ς(x)b)

Table 2.2: Free variables for ς-calculus

(ς(y)b){{x← c}} , ς(y′)(b{{y ← y′}}{{x← c}})
for y′ 6∈ fv(ς(y)b) ∪ fv(c) ∪ {x}

x{{x← c}} , c

y{{x← c}} , y for y 6= x

[li = ς(xi)bi
i∈1...n]{{x← c}} , [li = (ς(xi)bi){{x← c}} i∈1...n]

(a.l){{x← c}} , (a{{x← c}}).l

(a.l ⇐ ς(y)b){{x← c}} , (a{{x← c}}).l ⇐ ((ς(y)b){{x← c}})

Table 2.3: Susbtitutions for ς-calculus

As usual, a closed term is a term without free variables. Moreover we identify
any two objects that differ only in the order of their methods, and also identify ς(x)b
with ς(y)(b{{x← y}}) for any y not occurring free in b.

2.2 Semantics

In this section we describe the semantics of the ς-calculus, using three different
approaches. The first one uses reduction rules, while the second one uses an equa-
tional style which groups ς-terms into equivalence classes. The third one, finally,
defines an operational semantics for the ς-calculus, which has the advantage of being
deterministic and allows us to build an interpreter for the language.

First of all we give an informal semantics to the language saying that method
invocation corresponds simply to execute the body of the method binding the objects
which calls the method to the self variable. Method update, instead, produces a new
object with a method replaced with a new one. This informal notion of semantics
will be formalized in the following sections.

2.2.1 Reduction semantics

In the following, three reduction relations are defined: top-level one-step reduction
(), one-step reduction (→), and general many-step reduction (։). These relations
capture exactly the informal semantics given before. Error conditions are not made
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explicit in the relations, since we suppose that objects and method are correctly
used.

Definition 2.2.1 (Reduction relations).

• a b if for some o ≡ [li = ς(xi)bi
i∈1...n] and j ∈ 1 . . . n either:

a ≡ o.lj and b ≡ bj{{xj ← o}}, or
a ≡ o.lj ⇐ ς(x)c and b ≡ [lj = ς(x)c, li = ς(xi)bi

i∈(1...n)−{j}].

• Let a context C[−] be a term with a single hole and let C[d] represent the result
of filling the hole with the term d (possibly capturing some free variables of d).
Then a→ b if a ≡ C[a′], b ≡ C[b′], and a′ b′, where C[−] is any context.

• ։ is the reflexive and transitive closure of →.

The first relation models the behavior of the operators for selection and update.
In particular a selection o.lj reduces to the body of the selected method where the
object o replaces every occurrence of the self variable. An update, instead, reduces
to a new object (hence we have a functional behavior) in the intuitive way. The
second relation allows to reduce larger terms by reducing smaller components, while
the third one models the sequences of reduction steps.

As an example, let us consider the term o ≡ [l = ς(x)[]].l and the context
C[−] ≡ [k = ς(x)−]. We have that C[o] ≡ [k = ς(x)o] and from the above relations
we can derive o [], C[o]→ [k = ς(x)[]] and C[o].k ։ [].

2.2.2 Equational theory

The theory defined in this section is derived from the reduction rules presented
before. In particular, the aim of this theory is capturing a notion of equality for
ς-terms, useful for saying when two objects behave in the same way. The reduction
rules are then rewritten in the following equational theory, and rules are added to
have symmetry, transitivity and congruence. This last feature allows to substitute
equals for equals inside ς-terms. We have then the following rules:

⊢ b↔ a
⊢ a↔ b (Eq Symm)

⊢ a↔ b ⊢ b↔ c
⊢ a↔ c (Eq Trans)

⊢ x↔ x (Eq x)
⊢ bi ↔ b′i ∀i ∈ 1 . . . n

⊢ [li = ς(xi)bi
i∈1...n]↔ [li = ς(xi)b

′
i
i∈1...n] (Eq Object)

⊢ a↔ a′

⊢ a.l ↔ a′.l (Eq Select)
⊢ a↔ a′ ⊢ b↔ b′

a.l ⇐ ς(x)b↔ a′.l ⇐ ς(x)b′ (Eq Update)
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a ≡ [li = ς(xi)bi
i∈1...n] j ∈ 1 . . . n

⊢ a.lj ↔ bj{{xj ← a}} (Eval Select)

a ≡ [li = ς(xi)bi
i∈1...n] j ∈ 1 . . . n

⊢ a.lj ⇐ ς(x)b↔ [lj = ς(x)b, li = ς(xi)bi
i∈1...n−{j}] (Eval Update)

As it is easy to check, the equality notion above defined (↔) is the equivalence
relation generated by the one-step reduction (→) defined in the previous section.

2.2.3 Operational semantics

The reductions and equations defined in the previous sections do not impose any
specific evaluation order. In this section a reduction system for the closed terms of
the ς-calculus is defined. This system is deterministic. The purpose of the reduction
system is to reduce every closed expression to a result, which is defined to be a term
of the form [li = ς(xi)bi

i∈1...n]. The reduction system does not reduce the body
of methods until they are invoked, hence a weak reduction is defined (in the sense
that this reduction works only when the binding variables of methods are replaced
with the corresponding objects). The weak reduction relation is denoted by  and
defined by the following rules:

v ≡ [li = ς(xi)bi
i∈1...n]

⊢ v  v (RO)

v′ ≡ [li = ς(xi)bi
i∈1...n] ⊢ a v′ ⊢ bj{{xj ← v′}} v j ∈ 1 . . . n

⊢ a.lj  v (RS)

⊢ a [li = ς(xi)bi
i∈1...n] j ∈ 1 . . . n

⊢ a.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈1...n−{j}] (RU)

The first rule simply says that results are not reduced further. The second rule
says that in order to evaluate a method selection a.lj we must first calculate the result
of a, and then, if it is in the form of an object, evaluate bj with the usual binding.
Finally the third rule allows to evaluate method updates of the form a.lj ⇐ ς(x)b. It
requires first to reduce the term a to an object, and then to replace the old method
with the new one. Note that the terms b and bi are not subject to any computation.
The reduction system defined above is deterministic: if ⊢ a v and ⊢ a v′, then
v ≡ v′. This can be trivially seen using an induction on the derivations of ⊢ a v
and ⊢ a  v′. Moreover, by giving an order in the application of the rules, we
can easily build an interpreter for the language such that, given a closed term a, it
returns v if and only if ⊢ a v.
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We have two important results about soundness and completeness for this weak
reduction relation with respect to the general many-step reduction (։). We present
simply the results, and omit the proofs.

Proposition 2.2.1 (Soundness of weak reduction).
If a v, then a։ v and hence ⊢ a↔ v.

This proposition can be easily proved by induction on the derivation of a  v.
The next result is a weak form of completeness, which holds only if a term reduces
to a result (an object) using the general many-step reduction ։.

Theorem 2.2.1 (Completeness of weak reduction).
Let a be a closed term and v be a result. If a։ v, then there exists v′ such that

⊢ a v′.

It is important to point out that the results v and v′ can be syntactically different,
because the general many-steps reduction can reduce terms using contexts, and then
reductions can be applied also inside terms. Instead, the weak reduction relation
operates only on method invocations and updates which are outside of objects.
However, by putting together the two results above, we have as a consequence that
in the second theorem ⊢ v ↔ v′, and then the two objects obtained as results from
the reduction semantics and the weak reduction semantics are the same object up
to equivalence.

2.3 Expressive power

In this section we show how the ς-calculus can encode the whole untyped Church’s λ-
calculus. We will show also how to encode the fixpoint operator and, consequently,
the recursive λ-terms. This will allow us to write object methods using λ-terms,
even if the syntax of the calculus does not provide them directly.

2.3.1 Encoding λ-terms in ς-calculus

We define the following translation T from λ-terms to ς-terms. We recall that
λ-terms consist of variables, functional abstractions and applications.

T (x) , x

T (λx.b) , [arg = ς(x)x.arg, val = ς(x)T (b){{x← x.arg}}]
T (b(a)) , ((T (b)).arg ⇐ ς(x)(T (a))).val for x 6∈ fv(T (a))

According to the first row, variables are left unchanged. A functional abstraction
is translated into an object which has two methods. The first one will be used to
store the argument of the function in the case of an application (the initial value
is unimportant), while the second one stores the translation of the body of the
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function itself. Note that, in this translation, every occurrence of the variable x is
replaced with x.arg. This substitution allows to retrieve the value of the argument
of the function during an application, using the field arg of the object itself. An
functional application b(a) is translated into a modification of the first object T (b)
in a way that fills its arg field with the argument for the function T (a). After that,
the method val is invoked. Note that the translation maps nested λ’s into nested
ς’s, then we can emulate functions with multiple parameters using multiple nested
ς-binders.

As an example, let’s consider the simple λ-term (λx.x)y. According to the above
definition, its translation into ς-calculus is the following:

T ((λx.x)y) = ((T (λx.x)).arg ⇐ ς(x)(T (y))).val

= ((T (λx.x)).arg ⇐ ς(x)y).val

= ([arg = ς(x)x.arg, val = ς(x)T (x){{x← x.arg}}].arg ⇐ ς(x)y).val

= ([arg = ς(x)x.arg, val = ς(x)x.arg].arg ⇐ ς(x)y).val

Using the reduction relations defined in the previous section, we can obtain:

([arg = ς(x)x.arg, val = ς(x)x.arg].arg ⇐ ς(x)y).val։ y

which corresponds to the translation of the result of the λ-term (λx.x)y.
In general, under this translation we have that both α-conversion and β-conversion

are valid. In fact, α-conversion holds trivially because of the renaming properties of
ς-binders. For β-conversion we have the following argument:

let o ≡ [arg = ς(x)(T (a)), val = ς(x)T (b){{x← x.arg}}]

T ((λx.b)a) = ((T (λx.b)).arg ⇐ ς(x)(T (a))).val

= (([arg = ς(x)x.arg,

val = ς(x)T (b){{x← x.arg}}]).arg ⇐ ς(x)(T (a))).val

→ o.val

→ T (b){{x← x.arg}}{{x← o}}

= T (b){{x← o.arg}}

→ T (b){{x← T (a){{x← o}}}}

= T (b){{x← T (a)}} since x 6∈ fv(T (a))

= T (b{{x← T (a)}})

Differently from α-conversion and β-conversion, we have that η-conversion does
not hold under this translation. This comes basically from the fact that not ev-
ery object is the translation of a λ-term. For example in λ-calculus we have that
λy.(xy) = x, but using our translation we obtain:
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T (λy.(xy)) = [arg = ς(y)y.arg, val = ς(y)T (xy){{y ← y.arg}}]

= [arg = ς(y)y.arg, val = ς(y)((x.arg ⇐ y).val){{y ← y.arg}}]

= [arg = ς(y)y.arg, val = ς(y)((x.arg ⇐ y.arg).val)]

6= T (x)

2.3.2 Fixpoints and recursive terms

The encoding for λ-calculus presented in the previous section is sufficient to pro-
vide an object-oriented versions of all the encodings possible within the λ-calculus,
included the definitions of the fixpoint operator and of recursive λ-terms. In this
section, however, we will present some definitions that are much simpler than the
ones obtainable using directly the translation.

The fixpoint operator, for example, can be defined in the following way:

fix , [arg = ς(x)x.arg, val = ς(x)((x.arg).arg ⇐ ς(y)x.val).val]

We can verify the fixpoint property: fix(f) = f(fix(f)) by adding a constant fix

to the λ-calculus such that T (fix) = fix. Using the translation given before and
defining fixf , [arg = ς(x)T (f), val = ς(x)((x.arg).arg ⇐ ς(y)x.val).val], we
obtain:

T (fix(f)) = ([arg = ς(x)x.arg,

val = ς(x)((x.arg).arg ⇐ ς(y)x.val).val].arg ⇐ ς(x)T (f)).val

→ [arg = ς(x)T (f), val = ς(x)((x.arg).arg ⇐ ς(y)x.val).val].val

≡ fixf .val

→ (((x.arg).arg ⇐ ς(y)x.val).val){{x← fixf}}

→ ((fixf .arg).arg ⇐ ς(y)fixf .val).val

→ (T (f).arg ⇐ ς(y)fixf .val).val

= (T (f).arg ⇐ ς(y)T (fix(f))).val

≡ T (f(fix(f)))

Recursive terms µx.b can be translated into ς-calculus directly from their defi-
nition as T (fix(λx.b)). However, shorter definitions are findable, like the following
one:

T (µx.b) , [rec = ς(x)T (b){{x← x.rec}}].rec
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Using this translation we can easily verify that µx.b = b{{x← µx.b}}:

T (µx.b) ≡ [rec = ς(x)T (b){{x← x.rec}}].rec

→ T (b){{x← x.rec}}{{x← [rec = ς(x)T (b){{x← x.rec}}]}}

≡ T (b){{x← [rec = ς(x)T (b){{x← x.rec}}].rec}}

≡ T (b){{x← T (µx.b)}}

≡ T (b{{x← µx.b}})



Chapter 3

Extensions to the pure ς-calculus

Abstract

This chapter presents some object calculi derived from the core ς-calculus
presented in chapter 2. These calculi are presented because they are more used
in the literature than the pure ς-calculus, and because they provide some new
useful constructs.

The first extension here presented adds types to the ς-calculus, as well as
the notion of subtyping. This calculus is very useful when we need to model
some classical object-oriented features such as sub-classing or inheritance.
The second extension is an imperative calculus, useful to see the concept of
state for an object, and how side-effects can modify it. The last extension
here presented is a concurrent calculus, which uses some constructs from the
π-calculus to model concurrency.

3.1 The Ob1<:-calculus

The calculus presented in this section was defined in [1] in order to add types to
the ς-calculus and to provide the notion of subtyping, typical of all object-oriented
programming languages. We will present the syntax of the language, followed by a
formal system useful to calculate the type of a term of the language. The semantics
of the language will be extended from the operational semantics of the ς-calculus,
defined in the previous chapter.

3.1.1 Syntax

The syntax of the Ob1<:-calculus is extended from the one of the ς-calculus by
adding types and by annotating the definition of methods with the type of the self
parameter. The only type available in the following syntax is the object type, built
from the corresponding object by giving the return type of each method. However,
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basic types such as Bool, Nat, Int or others could be added, as an extension, when
needed. The syntax of the calculus is defined as follows:

A,B ::= types
[li : Bi

i∈1...n] object type
a, b ::= terms

x variable
[li = ς(xi : Ai)bi

i∈1...n] object (∀i, j. li 6= lj)
a.l method invocation (field selection)
a.l ⇐ ς(x : A)b method update (field update)

3.1.2 Typing

In this section we define a typing system for the Ob1<:-calculus. In the following
we will use three kind of typing judgments. A type judgment of the form E ⊢ ⋄
asserts that E is a well-formed typing environment. An environment is simply a
list of variables, annotated with their respective types. A type judgment E ⊢ B
states that the type B is well-formed in the environment E, while the last kind of
judgment, E ⊢ b : B, states that the term b has type B in the environment E. The
formal system defined below is composed by two fragments: the first one, composed
by the first three rules, describes how to build environments, and how to extract
the type of variables from them. The second part, instead, describes the typing of
objects. We have what follows:

∅ ⊢ ⋄ (Env ∅)
E ⊢ A x 6∈ dom(E)

E, x : A ⊢ ⋄ (Env x)

E ′, x : A,E ′′ ⊢ ⋄
E ′, x : A,E ′′ ⊢ x : A (Val x)

E ⊢ Bi ∀i ∈ 1 . . . n
E ⊢ [li : Bi

i∈1...n] (Type Object)

A ≡ [li : Bi
i∈1...n] E, xi : A ⊢ bi : Bi ∀i ∈ 1 . . . n
E ⊢ [li = ς(xi : A)bi

i∈1...n] : A (Val Object)

E ⊢ a : [li : Bi
i∈1...n] j ∈ 1 . . . n

E ⊢ a.lj : Bj
(Val Select)

A ≡ [li : Bi
i∈1...n] E ⊢ a : A E, x : A ⊢ b : Bj j ∈ 1 . . . n

E ⊢ a.lj ⇐ ς(x : A)b : A (Val Update)

The first rule simply says that the empty environment is well-formed, while the
second one explains how to construct environments. According to this rule, in order
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to add a new variable x in an environment E, we must check that x is not already
present in E (to this purpose we write x 6∈ dom(E)) and that the type for x is
well-formed. This rules forbids the existence of two or more variables with the
same name. The third rule explains how to extract the types of the variables from
an environment: it suffices to look for the variable inside the environment itself.
The rule “Type Object” asserts that an object type is composed by all the labels
of methods, along with their respective well-formed types. The rule “Val Object”
explains how to give a type to an object: we must first give a type to all methods,
assuming the type of the object for the self variable (note the circularity in assuming
something that we have still to determine). Finally, the last two rules explain how
to type method invocation and update. In the first case we must give a type to the
object which invokes the method, and then extract the type of the invoked method.
In the second case we have also to verify that the type of the new method is exactly
the same as the old one. Then the type for the modified object remain unchanged.

The rules presented so far allow to calculate the type of a Ob1<:-term but do not
contain any notion of subtyping. In order to add this notion we define the subtyping
relation <: by adding the following typing rules:

E ⊢ A
E ⊢ A <: A (Sub Refl)

E ⊢ A <: B E ⊢ B <: C
E ⊢ A <: C (Sub Trans)

E ⊢ a : A E ⊢ A <: B
E ⊢ a : B (Val Subsumption)

E ⊢ ⋄
E ⊢ Top (Type Top)

E ⊢ A
E ⊢ A <: Top (Sub Top)

E ⊢ Bi ∀i ∈ 1 . . . (n+m)

E ⊢ [li : Bi
i∈1...(n+m)] <: [li : Bi

i∈1...n] (Sub Obj)

The fist two rules are for reflexivity and transitivity of the subtyping relation.
The third rule allows to subsume an object of type A to type B whenever A is a
subtype of B. The next two rules introduce the supertype Top, which would not be
strictly necessary, but is useful in many practical situations. The last rule, finally,
expresses the classical situation in which a longer (with more methods) object type
is subtype of a shorter one.

We have two interesting properties about uniqueness of typing for Ob1<:-terms.
In particular, if we do not consider the subtyping relation just introduced we have
the following result:

Proposition 3.1.1 (Ob1 has unique types).

If E ⊢ a : A and E ⊢ a : A′ are derivable in Ob1 (that is in Ob1<: without
subtyping), then A ≡ A′.
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The above result is provable by induction on the derivation of E ⊢ a : A. Ob-
viously, the above property cannot hold when we consider the whole Ob1<:-calculus
because we have the rules for subsumption. In this case, however, we have the
following weaker property:

Proposition 3.1.2 (Ob1<: has minimum types).
In Ob1<:, if E ⊢ a : A then there exists B such that E ⊢ a : B and, for any A′,

if E ⊢ a : A′ then E ⊢ B <: A′.

3.1.3 Operational semantics

The operational semantics defined in the previous chapter for the untyped ς-calculus
can be easily extended in the case of a typed calculus like Ob1<:. Actually, in order
to adapt the rules previously defined, it is sufficient to ignore any type information
as follows:

v ≡ [li = ς(xi : Ai)bi
i∈1...n]

⊢ v  v (RO)

v′ ≡ [li = ς(xi : Ai)bi
i∈1...n] ⊢ a v′ ⊢ bj{{xj ← v′}} v j ∈ 1 . . . n

⊢ a.lj  v (RS)

⊢ a [li = ς(xi : Ai)bi
i∈1...n] j ∈ 1 . . . n

⊢ a.lj ⇐ ς(x : A)b [lj = ς(x : Aj)b, li = ς(xi : Ai)bi
i∈1...n−{j}] (RU)

Reduction in this calculus preserves types. This property is often called subject
reduction property. This result is stated by the following theorem:

Theorem 3.1.1 (Subject reduction for Ob1<:).
Let c be a closed term and v be a result, and assume ⊢ c v. If ∅ ⊢ c : C, then

∅ ⊢ v : C.

The proof is obtainable by induction on the derivation of ⊢ c v.
The calculus presented in this section is a first-order calculus. There exist some

examples of second-order and higher-order calculi, used to model more complex
situations. The calculus here presented is a very simple one, even if it shows how to
add type information to the ς-calculus previously presented.

3.2 The impς-calculus

The calculus presented in this section is an imperative variant of the ς-calculus
introduced in chapter 2. Object-oriented languages are naturally imperative, and
methods often perform side-effects on the internal state of objects. We will see that
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the semantics of this calculus is, in fact, based on the concept of a state, which is
modifiable through method invocation and update.

3.2.1 Syntax

The following is the syntax of the impς-calculus. It is extended from the syntax of
the ς-calculus by adding a clone operations and the usual let construct:

a, b ::= terms
x variable
[li = ς(xi)bi

i∈1...n] object (∀i, j. li 6= lj)
a.l method invocation (field selection)
a.l ⇐ ς(x)b method update (field update)
clone(a) cloning
let x = a in b let

As we will see better describing the semantics of the calculus, there are a few
differences between this calculus and the ς-calculus presented before. In particular,
method update is now imperative. In fact, while in the ς-calculus the method update
operator returned a new object, now the object whose method is updated is modi-
fied and returned. Moreover, the cloning construct allows to express an interesting
operation characteristic of some languages (called prototype-based languages) in
which a new object can be cloned from an existing one with the result of a sharing
of methods between the two objects. The let construct, finally, allows to imple-
ment side-effects and also to define the sequential evaluation typical of imperative
languages as a; b , let x = a in b for x 6∈ fv(b).

3.2.2 Lazy fields vs Eager fields

In the syntax of the ς-calculus we have identified fields with methods that do not
use their self parameter. This identification is valid also in the impς-calculus here
presented. Then a field selection is simply a method invocation, and a field update
is simply a method update. These similarities between fields and methods may
result useful to make the calculus simpler and compact, but have an unfortunate
drawback. In fact, in both field definition and update, the ς(x) binder suspends the
evaluation until selection. For what concerns fields, this semantics is both inefficient
and inadequate for an imperative calculus, since at every access to an object its
suspended fields must be reevaluated, with a consequent repetition of their side-
effects. In this sense the impς-calculus here presented may be considered a lazy
calculus, because fields are not evaluated until they are invoked. To overcome this
problem it is possible to define a new calculus with eagerly evaluated fields, impςf ,
as follows:
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a, b ::= terms
x variable
[li = bi

i∈1...n, lj = ς(xj)bj
j∈n+1...n+m] object (∀i, j. li 6= lj)

a.l method invocation (field selection)
a.l := b field update
a.l ⇐ ς(x)b method update
clone(a) cloning

Now an object is no more simply a collection of methods. In fact fields are
now different from methods and objects are no more identifiable up to the order of
their components. Evaluation proceeds from left to right, and fields are evaluated
(and possibly produce side-effects) when objects are created. The let construct and
sequencing are no more necessary, since we can define them as follows:

let x = a in b , [def = a, val = ς(x)b{{x← x.def}}].val
a; b , [fst = a, snd = b].snd

In order to better understand the difference between impς and impςf , it is pos-
sible to give a translation of the latter calculus into the former as follows:

T (x) , x

T ([li = bi
i∈1...n, lj = ς(xj)bj

j∈n+1...n+m]) , let y1 = T (b1) in . . . let yn = T (bn) in
[li = ς(y0)yi

i∈1...n, lj = ς(xj)T (bj)
j∈n+1...n+m]

yi 6∈ fv(bk
k∈1...n+m), yi distinct, i ∈ 0 . . . n

T (a.l) , T (a).l

T (a.l := b) , let y1 = T (a) in let y2 = T (b) in y1.l ⇐ ς(y0)y2

yi 6∈ fv(b), yi distinct, i ∈ 0 . . . 2

T (a.l ⇐ ς(x)b) , T (a).l ⇐ ς(x)T (b)

T (clone(a)) , clone(T (a))

Then we have two possibilities for an imperative calculus, which are translatable
one into the other: the former has a lazy evaluation of fields, but we can emulate
side-effects using let, while the latter has eager evaluation of fields, field selection
and update, and does not require the let construct.

3.2.3 Operational semantics

The semantics of the impς-calculus presented in this section is based on the concept
of store, since the calculus is imperative. In this semantics, object terms reduce
to object results consisting of a list of store locations, one location for each object
component. The semantics here described uses closures to evaluate methods. In
particular, a closure is a pair consisting of a method and a stack. The stack contains
the associations between variables and the corresponding values which will be used
to evaluate the method. A store maps locations to method closures.
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The semantics relies on three kinds of judgment, whose meaning is described
hereafter (in the following σ denotes a store, while S denotes a stack):

σ ⊢ ⋄ well-formed store judgment
σ · S ⊢ ⋄ well-formed stack judgment
σ · S ⊢ a v · σ′ term reduction judgment

The reduction relation  relates a store σ, a stack S, a term a, a result v,
and another store σ′. It means that with the store σ and the stack S, the term a
reduces to the result v, yielding an updated store σ′ in the process; the stack does
not change.

In the following we use the symbol ι to denote a generic store location. An
object result is represented using the notation [li = ιi

i∈1...n], to denote the fact
that every label is linked to a store location. The store relates locations to method
closures and is represented using the notation ιi 7→ 〈ς(xi)bi, Si〉

i∈1...n. Possibly, we
will represent single associations between locations and closures, leaving the rest of
the store undetermined. In that case we will use the notation σ, ι 7→ 〈ς(x)b, S〉. A
modification of the location ιi in the store σ will be represented as σ.ιi c, where c
is a method closure. Finally, a stack is represented using the notation xi 7→ vi

i∈1...n.
The following rules describe the operational semantics of the impς-calculus:

∅ ⊢ ⋄ (Store ∅)
σ · S ⊢ ⋄ ι 6∈ dom(σ)
σ, ι 7→ 〈ς(x)b, S〉 ⊢ ⋄ (Store ι)

σ ⊢ ⋄
σ · ∅ ⊢ ⋄ (Stack ∅)

σ · S ⊢ ⋄ x 6∈ dom(S) ∀i ∈ 1 . . . n
σ · (S, x 7→ [li = ιi

i∈1...n]) ⊢ ⋄ (Stack x)

σ · (S, x 7→ v, S ′) ⊢ ⋄
σ · (S, x 7→ v, S ′) ⊢ x v · σ (Red x)

σ · S ⊢ ⋄ ιi 6∈ dom(σ) ∀i ∈ 1 . . . n
σ · S ⊢ [li = ς(xi)bi

i∈1...n] [li = ιi
i∈1...n] · (σ, ιi 7→ 〈ς(xi)bi, S〉

i∈1...n) (RO)

σ · S ⊢ a [li = ιi
i∈1...n] · σ′ σ′(ιj) = 〈ς(xj)bj , S

′〉 xj 6∈ dom(S ′)
j ∈ 1 . . . n σ′ · (S ′, xj 7→ [li = ιi

i∈1...n]) ⊢ bj  v · σ′′

σ · S ⊢ a.lj  v · σ′′
(RS)

σ · S ⊢ a [li = ιi
i∈1...n] · σ′ j ∈ 1 . . . n ιj ∈ dom(σ′)

σ · S ⊢ a.lj ⇐ ς(x)b [li = ιi
i∈1...n] · (σ′.ιj  〈ς(x)b, S〉)

(RU)



30 CHAPTER 3. EXTENSIONS TO THE PURE ς-CALCULUS

σ · S ⊢ a [li = ιi
i∈1...n] · σ′ ιi ∈ dom(σ′) ι′i 6∈ dom(σ′) ∀i ∈ 1 . . . n

σ · S ⊢ clone(a) [li = ι′i
i∈1...n] · (σ′, ι′i 7→ σ′(ιi)

i∈1...n) (RC)

σ · S ⊢ a v′ · σ′ σ′ · (S, x 7→ v′) ⊢ b v′′ · σ′′

σ · S ⊢ let x = a in b v′′ · σ′′ (RL)

The first two rules explain how to build stores. Empty stores are well-formed
and an association between a location and a closure can be added whenever the
location isn’t already in the store. The same considerations hold for stacks. When
we add a new association to a stack, it is obviously necessary that all labels and
locations are distinct. The following rules are reduction rules. They express the
core of the semantics of the calculus. According to these rules a variable reduces to
the value it has in the current stack. When we reduce an object, we create a new
result which is a sequence of locations, and associate each location which a closure,
made by coupling each method with the current stack. In order to reduce a method
invocation, we have first to reduce the object which invokes the method, then we
look in the store for the closure containing the method invoked, we add to the stack
in this closure the new association for the self variable, and finally evaluate the body
of the method using the new resulting stack. The rule for method update modifies
the location where there is the closure for the old method, and stores in it a new
closure consisting of the new method and the current stack. The rule for cloning
reduces the cloned object, and then creates a new object result, whose locations
are associated with the method closures of the cloned object itself (hence we have
a sharing of methods). Finally, the rule for let reduces the first argument of the
construct, associates the result of the reduction to the variable in the current stack,
and then reduces the second argument of the construct in the resulting stack.

The calculus presented in this section shows how to give an imperative semantics
to the ς-calculus presented in chapter 2. Like the ς-calculus can encode the whole
λ-calculus, the calculus here presented can encode a version of the λ-calculus based
on procedure, instead of functions. Obviously, we can add type information to this
calculus, like we did in the previous section for Ob1<:, to obtain typed imperative
calculi of the first order, second order, or higher order.

3.3 The concς-calculus

The calculus presented in this section was introduced by Gordon and Hankin in
[33] to add concurrency to the impς-calculus presented in the previous section. The
concς-calculus is obtained from the impς-calculus by adding some primitives for
concurrency from the π-calculus. Eventually, mutexes can be added to the calculus
in order to have operators for synchronization. The semantics of the calculus is given
using a chemical-style reduction. To show the expressive power of this calculus, we
show an encoding of the asynchronous π-calculus into concς with mutexes.
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3.3.1 Syntax

The syntax of the concς-calculus is extended from the one of the impς-calculus by
adding two operators for parallel composition (�) and for restriction (ν). Moreover, a
new concept of result is introduced, in order to force the reduction of objects before
method invocation or update. In fact, method invocation or update are possible
only when the object which invokes or is updated is reduced to a result. Finally,
to formalize the imperative behavior of the calculus, we have also the concept of
reference, which is an association between a name and an object. The syntax of the
concς-calculus is defined as follows:

u, v ::= results
x variable
p name

d ::= denotations
[li = ς(xi)bi

i∈1...n] object (∀i, j. li 6= lj)
a, b ::= terms

u result
p 7→ d reference
u.l method invocation (field selection)
u.l⇐ ς(x)b method update (field update)
clone(u) cloning
let x = a in b let
a � b parallel composition
(νp)a restriction

The syntax given above is very general. Obviously there are terms which are not
well-formed and must be ruled out. For example, we have that names cannot be
associated with more than one denotation in the same term. We assume that syntax
is used consistently, and do not consider erroneous terms. We have some syntactic
conventions for the new terms introduced: (νp)a � b has to be read ((νp)a) � b;
u.l ⇐ ς(x)b � c has to be read (u.l ⇐ ς(x)b) � c; and let x = a in b � c has to be
read (let x = a in b) � c. Finally, we omit the formal definition of an operator fn(a)
which calculates the free names occurring inside a term a, since this definition is
analogous to the definition of the operator fv for variables (see chapter 2).

As an informal semantics of the calculus, we have that now the cloning operator
produces two distinct copies of an object (then we have no more a sharing of methods
like in the impς-calculus). Moreover, a term a � b means that the two expressions a
and b are running in parallel. The result of the whole term is the result of b (hence
this parallel composition is not commutative). Finally, the term (νp)a generates a
new fresh name p, whose scope is a.
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3.3.2 Reduction semantics

The semantics here described is based on structural congruence and on reduction
relations. In particular, reduction represents individual computation steps, and is
defined in terms of structural congruence. Structural congruence allow a syntactical
rearrangement of terms, so that the reduction rules may be applied. We begin the
formal treatment of the semantics of the concς-calculus by defining the structural
congruence as the least congruence which satisfies what follows:

(a � b) � c ≡ a � (b � c)
(a � b) � c ≡ (b � a) � c
(νp)(νq)a ≡ (νq)(νp)a
(νp)(a � b) ≡ a � (νp)b if p 6∈ fn(a)
(νp)(a � b) ≡ (νp)a � b if p 6∈ fn(b)
let x = (let y = a in b) in c ≡ let y = a in (let x = b in c) if y 6∈ fn(c)
(νp)let x = a in b ≡ let x = (νp)a in b if p 6∈ fn(b)
a � let x = b in c ≡ let x = (a � b) in c

The first equivalence is for associativity of the parallel composition. The second
equivalence shows that the parallel composition is commutative if we do not consider
the rightmost term. In fact, this is the term that produces the result for the whole
parallel composition, and then its position cannot change. Since all the other terms
are evaluated for effect, then they may be rearranged freely. The third rule shows
that the order of local names is not relevant in a restriction, while the next two
rules allow to extract a term out of a restriction, whenever the local name of the
restriction does not occur inside it. The next two equivalences allow to rearrange
let constructs on the basis of unused variables, while the last rule allows to compose
a term in parallel with the first argument of a let, since the first term of a parallel
composition is evaluated only for effect.

Now we can define the reduction relation for this calculus,⇒, as the least relation
on terms to satisfy:

let d = [li = ς(xi)bi
i∈1...n] and d′ = [lj = ς(x)b, li = ς(xi)bi

i∈(1...n)−{j}]

(p 7→ d) � p.lj ⇒ (p 7→ d) � bj{{xj ← p}} if j ∈ 1 . . . n
(p 7→ d) � (p.lj ⇐ ς(x)b)⇒ (p 7→ d′) � p if j ∈ 1 . . . n
(p 7→ d) � clone(p)⇒ (p 7→ d) � (νq)(q 7→ d � q) if q 6∈ fn(d)
let x = p in b⇒ b{{x← p}}
(νp)a⇒ (νp)a′ if a⇒ a′

a � b⇒ a′ � b if a⇒ a′

a � b⇒ a � b′ if b⇒ b′

let x = a in b⇒ let x = a′ in b if a⇒ a′

a⇒ b if a ≡ a′, a′ ⇒ b′, b′ ≡ b

The first reduction is for method invocation. As usual, we return the body of the
method with the self variable bound to the object which invokes the method. The
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reduction of method update yields a new reference between the name of the old
object and the new denotation for the updated object. The name of the new object
is returned as result. The cloning operator produces a copy of the cloned object and
returns the name of the new object. The following reduction is for the let construct,
which works as usual.

The other reductions are quite obvious, and correspond to a generalization of
the previous reductions to complex terms, using the basic reductions just explained,
as well as the structural congruence rules defined before.

According to the syntax of the calculus, now all method invocation, updates and
cloning are done using results instead of objects. Then, if a is not a result, a.l stands
for let x = a in x.l; while a.l ⇐ ς(x)b stands for let x = a in x.l ⇐ ς(x)b; and
clone(a) stands for let x = a in clone(x). Moreover, in contexts expecting a term, let
an object [li = ς(xi)bi

i∈1...n] be short for the term (νp)(p 7→ [li = ς(xi)bi
i∈1...n] � p),

where p 6∈ fn([li = ς(xi)bi
i∈1...n]).

3.3.3 Synchronization

In this section we show how to add synchronization mechanisms to the concς-
calculus. In particular, we add syntax for mutexes (binary semaphores), show a
semantics for them, and finally encode the asynchronous π-calculus in the obtained
extended calculus, in order to show its expressiveness.

In order to add synchronization, the syntax of the calculus is extended by adding
two new denotations: locked and unlocked; as well as two new terms: acquire(p)
and release(p). The semantics of the calculus must be extended consequently by
adding the following reduction rules:

(p 7→ unlocked) � acquire(p)⇒ (p 7→ locked) � p
(p 7→ d) � release(p)⇒ (p 7→ unlocked) � p for d ∈ {locked, unlocked}

The rules are quite simple, and simply show the classical behavior of mutexes. A
mutex acquisition, acquire(p), tries to lock the mutex denoted by p. If a reference
p 7→ unlocked is present, then it is changed into p 7→ locked, and p is returned as
result. A mutex release, release(p), changes the reference p 7→ d to p 7→ unlocked,
independently of the denotation d (which can be locked or unlocked), and returns
p as result.

Using the new operator just introduced, it is possible to give an encoding of
asynchronous communications channels as follows. A channel is an object named p.
It has two methods: read and write, and can be empty, or containing a result. The
operation p.write updates the content of the channel, but requires an empty channel
in order to work. If the channel is full the write operation blocks. On the other
hand, the p.read operation extracts the content of the channel p (and makes the
channel empty), requiring a full channel in order to work. If the channel is empty
the read operation blocks. Then, at each moment, only one of these two operations



34 CHAPTER 3. EXTENSIONS TO THE PURE ς-CALCULUS

may succeed, since the channel may be only in two different states. The term which
formalizes what just said is the following one:

Channel ,
let rd = locked in let wr = unlocked in
[reader = ς(s)rd, writer = ς(s)wr, val = ς(s)s.val,
read = ς(s)acquire(s.reader); let x = s.val in (release(s.writer) � x),
write = ς(s)λ(x)

(acquire(s.writer); s.val ⇐ ς(s)x; release(s.reader)) � x]

In the above term we used the operator for sequential composition which we defined,
using let, when we described the impς-calculus. Moreover we used the λ-notation in
the definition of the method write, since the encoding of λ-calculus defined for the
ς-calculus in chapter 2 may be easily extended to the impς-calculus and then to the
concς-calculus.

To show the expressive power of this object calculus, we can use the above
definition of channel to give the following encoding for the asynchronous π-calculus:

T (xy) , x.write(y)

T (x(y).P ) , let y = x.read in T (P )

T (P |Q) , T (P ) � T (Q)

T ((νx)P ) , let x = Channel in T (P )

T (!x(y).P ) ,
[rep = ς(s)let y = x.read in (T (P ) � s.rep)].rep for s 6∈ {x, y} ∪ fv(P )

The calculus presented in this section shows how to add concurrency to the
impς-calculus introduced in the previous section. The calculus is obtained by taking
some operators (the parallel composition and the restriction) from the π-calculus.
Obviously it is possible to add type information also to this calculus, in the way
seen before for the ς-calculus.
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Abstract

This chapter is a major revision of an article where we investigated the use
of abstract interpretation techniques in order to prevent race conditions [7].
A race condition occurs when two or more threads access a shared resource
simultaneously, often provoking unexpected behaviors of concurrent programs.
To detect race conditions, we present an abstraction of the concurrent object
calculus concς presented in section 3.3 which annotates terms with the set
of “locks” held at any time. We use this form of the object calculus to check
the absence of race conditions and show that abstract interpretation is more
flexible than other type analysis approaches used in this field, allowing to
certify as “race free” a larger class of programs.

4.1 The problem of Race Conditions

When programming with multithreaded languages, insidious errors, usually denoted
as race conditions, can arise [44]. A race condition occurs when two processes ac-
cess a shared resource simultaneously, often provoking an incorrect and unexpected
behavior.

A usual method to avoid such conditions is to provide each resource with a
lock. A process must acquire the lock on a resource before using it, and a locked
resource cannot be used by other processes. Concurrent object oriented languages
are often based on this approach: resources are embedded in an object and a lock
is attached to the object. Java methods adopt this strategy: a method or a block
can be declared synchronized. A lock is associated to every object which has a
synchronized code [34].
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Despite this synchronization method, it is not unusual to write multithreaded
programs which access objects without acquiring locks on them, thus creating error
conditions. The non-acquisition can be originated by different reasons, the most
common being mistakes or the conviction that an object is accessed by a single
thread.

We saw in the previous chapters that, in order to avoid the peculiarities of specific
programming languages, we can analyze the properties of concurrent object-oriented
languages, including race-free conditions, on object calculi like the ones presented
in this thesis. Here we refer to the concς-calculus, presented in section 3.3.

Many works have been devoted to the static analysis of programs to find possible
race conditions. Such methods are essentially based on type analysis [28, 27, 16,
15]: a program is well-typed iff an object is accessed only when a suitable set of
locks, corresponding to a policy of synchronization, is acquired. Obviously, the type
correctness can be checked statically by applying a set of typing rules. In particular,
in [27] a type analysis checks that an object, in a concς term, is accessed by a
process only if a lock on that object is held by the process itself.

All the mentioned type analyses check a program under correctness assumption
which are somewhat rigid. For example this last rule above could be relaxed when no
concurrent accesses to the same object can be done during the execution of processes
or when objects are accessed by only one process (locks are not necessary in this
case and may cause unnecessary overhead). A method for a less rigid analysis can
be based on abstract interpretation [21, 19]. We saw in fact that, since abstract
interpretation executes the program in an abstract (approximated) way to statically
check dynamic properties, it can be, in many cases, more precise than type analysis.

We will build an abstraction of the concς-calculus that will embody in the terms
the knowledge on the locks held at any time. On the basis of this information the
semantic definition can be aware, at the time of an access to an object, whether
the lock to that object is held. Thus an analysis can be performed to check that
processes accessing an object oare holding the right locks, or that no concurrent
accesses to an object are performed at the same time by different processes.

4.2 Type checking against races

In this section we describe the approach adopted in [27] in order to certify a program
as race-free. The approach described there is based on type-checking of an extension
of the concς-calculus presented in chapter 3. We present the syntax and semantics of
the extended calculus, as well as the type checking rules used to perform the static
analysis about race-freeness.
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4.2.1 Extensions to the concς-calculus

Here we describe the syntax of the calculus used in [27]. The authors define the sets
of results, denotations, lock states and terms as presented in table 4.1:

u ::= results
x variable
p location

d ::= denotations
[ℓi = ς(xi)t

i∈1...n
i ]l object

l ::= lock states
◦ unlocked
• locked

a, b ::= terms
u result
νp.a restriction
p 7→ d reference
u.ℓ method invocation
u.ℓ⇐ ς(x)t method update
let x = a in b let
a � b parallel composition
lock u in a lock acquisition
locked p in a lock acquired

Table 4.1: Syntax of the extension to the concς-calculus

The main novelties introduced by this new calculus are the elimination of the
cloning operation, the introduction of two lock states attached to objects (◦ for
unlocked objects and • for locked ones), and two new terms which describe the
request and the acquisition of a lock on an object.

The semantics of the calculus is largely the same as the one of the concς-calculus.
We present the additional rules necessary to reduce the new terms introduced:

(p 7→ [. . .]◦) � lock p in a ⇒ (p 7→ [. . .]•) � locked p in a (Red Lock)
(p 7→ [. . .]•) � locked p in u⇒ (p 7→ [. . .]◦) �u (Red Locked)

As it is easy to see, the first rule reduces a lock request on an object with lock
state ◦ (unlocked) to the same object with lock state • (locked) in parallel with the
execution of the term on which the lock was requested. The second rule releases
the lock on an object, when the term executed under the lock reduces to a result.
There is no need for unlock operators then, since locks are released automatically
when locked terms reduce to results.
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4.2.2 The type system

In this section we describe the type system proposed in [27] to check the absence of
race conditions. First of all, in table 4.2, we present the type language:

A,B ::= [ℓi : ς(xi)Ai · ri · si
i∈1...n] | Proc | Exp Types

r ::= {u1 . . . un} Permissions
s ::= u | + Protection annotations

Table 4.2: The type language

An object type [ℓi : ς(xi)Ai ·ri ·si
i∈1...n] describes an object containing n methods

labelled ℓ1 . . . ℓn. Each method ℓi has result type Ai, permission ri, and protection
annotation si. The permission ri is a set of results describing the locks that must
be held before the invocation of method ℓi. The protection annotation si is a result
describing the lock that must be held before the update of method ℓi. If a method
is never updated, then si may be the symbol ‘+’. In addition to these types the
type language also includes the types Exp and Proc. The type Exp describes the
results that may be returned by an expression, while the type Proc (supertype of
Exp) is used to cover terms that never return results, such as a reference p 7→ d.

Given a term a, the type system checks that the appropriate locks are held
whenever a method is invoked or updated. In addition to this, the system also
checks that each lock is held by at most one thread at a time, and that every name
introduced is associated with a unique denotation. To do this, the authors provide
the definitions of clean and defined names The following definition is given in terms
of evaluation contexts, as defined in section 1.2.2. We recall that an evaluation
context E [ ] is a term with the hole [ ], that can be filled by a statement. Thus E [a]
means the evaluation context E [ ] with the hole filled by the term a.

Definition 4.2.1 (Clean and defined names).
Given a term a, the sets clean(a) and defined(a) are defined by the following

rules:

p ∈ clean(a) if a = E [p 7→ [. . .]◦] or a = E [locked p in b] and p 6∈ bn(E)
p ∈ defined(a) if a = E [p 7→ d] and p 6∈ bn(E)

where bn is the function giving the bound names in a term, and E [ ] stands for
an evaluation context, defined by the following grammar:

E ::= [·] | let x = E in b | E � b | a � E | (νp)E | locked p in E

The type system here defined is based on six judgements, defined in table 4.3.
In these judgements, an environment E is a sequence of bindings of results to types,
of the form ∅, u1 : A1, . . . , un : An.
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E ⊢ ⋄ E is a well-formed environment
E ⊢ A given E, A is well-formed
E ⊢ r given E, permission r is well-formed
E ⊢ A <: B given E, A is a subtype of B
E ⊢ r <: r′ given E, r is a sub-permission of r′

E; r ⊢ a : A given E and r, the term a has type A

Table 4.3: Type judgements

In the following, we define the typing rules used to calculate the typing judge-
ments just described.

∅ ⊢ ⋄ (Env ∅)
E ⊢ A u 6∈ dom(E)

E, u : A ⊢ ⋄ (Env u)

E ⊢ ⋄ r ⊆ dom(E)
E ⊢ r (Perm)

E ⊢ ⋄
E ⊢ Proc (Type Proc)

E ⊢ ⋄
E ⊢ Exp (Type Exp)

E ⊢ ⋄ E, xi : [ ] ⊢ Bi <: Exp E, xi : [ ] ⊢ ri
si ∈ ri ∪ {+} ∀i ∈ 1 . . . n
E ⊢ [ℓi : ς(xi)Bi · ri · si

i∈1...n]
(Type Obj)

A = [ℓi : ς(xi)Bi · ri · si
i∈1...n] E = E1, p : A,E2 E ⊢ ⋄

E; ri{{xi ← p}} ⊢ bi{{xi ← p}} : Bi{{xi ← p}}
defined(bi) = clean(bi) = ∅ ∀i ∈ 1 . . . n
E; ∅ ⊢ p 7→ [ℓi = ς(xi)bi

i∈1...n]l : Proc

(Val Obj)

E, u : A,E ′ ⊢ ⋄
E, u : A,E ′; ∅ ⊢ u : A (Val u)

E; ∅ ⊢ u : [ℓi : ς(xi)Bi · ri · si
i∈1...n] j ∈ 1 . . . n

E; rj{{xj ← u}} ⊢ u.ℓj : Bj{{xj ← u}} (Val Select)

A = [ℓi : ς(xi)Bi · ri · si
i∈1...n] E; ∅ ⊢ u : A

E; rj{{xj ← u}} ⊢ b{{xj ← u}} : Bj{{xj ← u}} sj 6= +
j ∈ 1 . . . n defined(b) = clean(b) = ∅
E; {sj{{xj ← u}}} ⊢ u.ℓj ⇐ ς(xj)b : A

(Val Update)
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E; r ⊢ a : A E, x : A; r ⊢ b : B E ⊢ A <: Exp E ⊢ B <: Exp
defined(b) = clean(b) = ∅
E; r ⊢ let x = a in b : B

(Val Let)

E, p : A; r ⊢ a : B E ⊢ r E ⊢ B p ∈ defined(a) p ∈ clean(a)
E; r ⊢ (νp)a : B (Val Res)

E; ∅ ⊢ a : Proc E; r ⊢ b : B
defined(a) ∩ defined(b) = ∅ clean(a) ∩ clean(b) = ∅

E; r ⊢ a � b : B
(Val Par)

E; ∅ ⊢ u : [ ] E; r ∪ {u} ⊢ a : A defined(a) = clean(a) = ∅
E; r ⊢ lock u in a : A (Val Lock)

E; ∅ ⊢ p : [ ] E; r ∪ {p} ⊢ a : A p 6∈ clean(a)
E; r ⊢ locked p in a : A (Val Locked)

E; r ⊢ a : A E ⊢ A <: B E ⊢ r <: r′

E; r′ ⊢ a : B (Val Subsumption)

E ⊢ r E ⊢ r′ r ⊆ r′

E ⊢ r <: r′ (Subperm)

E ⊢ A
E ⊢ A <: A (Sub Refl)

E ⊢ A <: B E ⊢ B <: C
E ⊢ A <: C (Sub Trans)

E ⊢ A A 6= Proc
E ⊢ A <: Exp (Sub Exp)

E ⊢ A
E ⊢ A <: Proc (Sub Proc)

E ⊢ [ℓi : ς(xi)Bi · ri · si
i∈1...n+m]

E ⊢ [ℓi : ς(xi)Bi · ri · si
i∈1...n+m] <: [ℓi : ς(xi)Bi · ri · si

i∈1...n] (Sub Obj)

The majority of the rules just seen is very similar to the rules presented in chapter
3 for the Ob1<:-calculus. The most important rules are those which describe the last
typing judgement shown in table 4.3. These rules control that every invocation or
update of methods is performed while holding the necessary locks. In particular,
the rules for method invocation and update give a correct type to the corresponding
term only if all the locks which protect the respective method are held.

In our opinion, this requirement makes this algorithm too restrictive, and in the
following sections we will show how to address the same problem using abstract
interpretation techniques.
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4.3 The object calculus aconcς

This section describes a concurrent object calculus which is based on the concς-
calculus described in chapter 3. We will use this calculus in our abstract interpre-
tation to detect race-conditions. Since the calculus is very similar to the ones seen
before in this thesis, we will use this section to formally recall the calculus syntax
and semantics.

4.3.1 Syntax

The syntax of the calculus is largely the same as the calculus shown in table 4.1.
We added numeric results and an if construct in order to express terms more easily.
The Table 4.4 defines the following syntactic categories: results, denotations and
terms.

u ::= results
x variable
p location
n integer number

d ::= denotations
[ℓi = ς(xi)t

i∈1...n
i ]l object

l ::= lock states
◦ unlocked
• locked

r, s, t ::= terms
u result
νp.t restriction
p 7→ d reference
u.ℓ method invocation
u.ℓ⇐ ς(x)u field update
lock u in t lock acquisition
locked p in t lock acquired
let x = s in t let
s � t parallel composition
if r then s else t if

Table 4.4: Syntax of aconcς

Results are defined as variables, numbers or references to objects. A denotation
[ℓi = ς(xi)t

i∈1...n
i ]l describes as usual an object with a collections of methods named
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ℓi. In addition, the object has a lock state which can be either ◦, meaning that the
object is not locked by any process, or •, meaning that a process holds a lock on it.

A term is a result, a restriction, a reference, a method invocation, a method
update, a lock acquisition, a lock acquired, a let expression, a parallel composition of
terms or an if expression. The reference term says that an object is identified by the
reference, p, to it. The reference p is introduced by a restriction, νp.t, which binds
the reference p with scope t. The method invocation and field update are the usual
ones, with the only exception that fields are now constants. A lock acquisition is a
term which describes an execution after having acquired a lock to an object. A lock
acquired term, locked p in t, says that a lock on p is held and that the subterm t
can be executed under this lock. The parallel composition of terms, s � t, indicates
the parallel execution of s and t. The result of the construct is, like in the concς-
calculus, the result of t; s is evaluated only for effect. Integer expressions, let terms
and if terms are usual.

We suppose, as usual, that the syntax is used consistently, so that, for example,
the terms used as guards of if statements should return integer values.

4.3.2 Semantics of aconcς

The semantics of aconcς is given in terms of a structural congruence and a set of
reduction rules. Structural congruence allows to syntactically transform terms in
order to apply the reduction rules. The application of a reduction rule corresponds
to a computation step.

Both the structural congruence and reduction rules are given in terms of evalu-
ations contexts, like shown before for the calculus presented in [27].

The possible holes in a term are given in Table 4.5, where the syntax of contexts
is given. [.] means that the context can be the whole term.

E ::=
[.]
E � t
s � E
locked p in E
let x = E in t
if E then s else t
νp.E

Table 4.5: Reduction contexts

The structural congruence rules are given in Table 4.6.
The first rule says that the left term in a parallel composition can be inserted

or extracted from an evaluation context, provided that this insertion is capture-free
(the definition of free names fn is a straightforward extension of the definition in



4.3. THE OBJECT CALCULUS ACONCς 45

s � E [t] ≡ E [s � t] if fn(s) ∩ bn(E) = ∅
(νp)E [s] ≡ E [(νp)s] if p /∈ fn(E) ∪ bn(E)

Table 4.6: Structural congruence rules

table 2.1). The reason of such a congruence is that the left term is only evaluated
for effect. From this rule it is possible to prove both the associativity and the
commutativity, up to the last parallel term, of the parallel operator �. In fact, by
defining E = [·] � t we have that:

(r � s) � t ≡ E [r � s] ≡ r � E [s] ≡ r �(s � t)

For the commutativity, instead, by defining E = s �[·] we obtain:

(r � s) � t ≡ r �(s � t) ≡ r � E [t] ≡ E [r � t] ≡ s �(r � t) ≡ (s � r) � t

Moreover, this rule allows to prove also other equivalences, like for example:

r � let x = s in t ≡ let x = (r � s) in t

The second rule allows to get rid of names that do not bind anything in the
current context. This rule can be used to prove the commutativity between names
in restrictions. In fact, by defining E = (νq)[·] we have that:

(νp)(νq)t ≡ (νp)E [t] ≡ E [(νp)t] ≡ (νq)(νp)t

Moreover, using this same rule, we are able to prove the following equivalences:

(νp)(s � t) ≡ (νp)s � t if p 6∈ fn(t)
(νp)(s � t) ≡ s �(νp)t if p 6∈ fn(s)
(νp)let x = s in t ≡ let x = (νp)s in t if p 6∈ fn(t)

The reduction rules are given in Table 4.7. Here follows a brief explanation.
(Red invoke) requires a term, in parallel, which defines the reference to the object
the method of which is called; then the method is invoked with the instantiation
of the self parameter to the reference to the object itself. (Red update) updates a
method in an object; the result of the term is the reference to the modified object
(as in [27, 33]). We point out that the rule for method update allows only to update
instance variables of objects, assigning constants to them, as it is usual in object-
oriented programming languages. In fact, the requirement ℓj = ς(x)uj tells that the
updated method is actually a constant, and the syntax of method update allows to
update using only constants as arguments. (Red lock) acquires a lock to an object
and (Red unlock) unlocks the object when a result is computed. (Red let) performs
a substitution for the variable x when a result u is reached. (Red if0) and (red
ifn) reduce the if term in the standard way. Finally (Red context) says that the
reduction rules can be applied to any evaluation context.
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d = [ℓi = ς(xi)t
i∈(1...n)

i ]l j ∈ (1, . . . , n)
p 7→ d � p.ℓj −→ p 7→ d � tj{{xj ← p}} (Red invoke)

d = [ℓj = ς(x)uj , ℓi = ς(xi)t
i∈(1...n)−{j}

i ]l

d′ = [ℓj = ς(x)u, ℓi = ς(xi)t
i∈(1...n)−{j}

i ]l

p 7→ d � p.ℓj ⇐ ς(x)u −→ p 7→ d′ � p

(Red update)

d = [ℓi = ς(xi)t
i∈(1...n)

i ]◦ d′ = [ℓi = ς(xi)t
i∈(1...n)

i ]•

p 7→ d � lock p in t −→ p 7→ d′ � locked p in t (Red lock)

d = [ℓi = ς(xi)t
i∈(1...n)

i ]• d′ = [ℓi = ς(xi)t
i∈(1...n)

i ]◦

p 7→ d � locked p in u −→ p 7→ d′ �u (Red unlock)

let x = u in t −→ t{{x← u}} (Red let)

if 0 then s else t −→ t (Red if0)

n 6= 0
if n then s else t −→ s (Red ifn)

s −→ t
E [s] −→ E [t] (Red context)

Table 4.7: Concrete Reduction rules

4.4 Abstract interpretation of aconcς

In this section we define an abstract interpretation of aconcς. The concrete domain,
as usual, is represented by the powerset ℘(C), where C is the set containing all the
terms of the aconcς-calculus. The abstract interpretation is given with respect
to an abstract calculus which approximates the concrete one. In fact, since the
semantics is given using reduction rules, and there is not a concept of state of the
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computation separated from syntax, we have to chose as abstract domain a whole
abstract calculus.

The abstraction consists mainly in adding a concept of lock environment to the
terms of the calculus. A lock environment is a set of all the locks held by a term.
Using this abstraction, the abstract semantics can be aware wheter a term is access-
ing an object under a certain lock or not. This knowledge is our basis to detect race
conditions in the abstract calculus. Moreover, we will see that recursive calls will be
truncated in the abstract semantics, so that the set of possible terms which can be
generated by reduction and structural congruence, starting from a general abstract
term, is finite. We can then build a transition system, the states of which are ab-
stract terms, which can be finitely analyzed to establish properties of the concrete
program which originated it.

We call the abstract object calculus aconcς♯. Its syntax is given in Table 4.8.
We will denote by A the set of all abstract terms, that is the abstract domain of our
abstract interpretation.

u♯ ::= x | p | ⊙ | ⊤♯

d♯ ::= [ℓi = ς(xi)t
♯
i

i∈1...n
]l

l ::= ◦ | •

r♯, s♯, t♯ ::= u♯ | p 7→ d♯ | νp.t♯ | u♯.ℓ
u♯.ℓ⇐ ς(x)u♯ | lock u♯ in t♯ | locked p in t♯

let x = s♯ in t♯ | s♯ � t♯ | if r♯ then s♯ else t♯ | [[t♯]]L,S

L = {p1, . . . , pn}

S = {p1.ℓ1, . . . , pm.ℓm} multiset

Table 4.8: Syntax of aconcς♯

There are a few differences between the syntax of the concrete and the abstract
calculus. In the abstract calculus, for the sake of finiteness, integer values are col-
lapsed to a unique value, denoted by ⊙. Moreover, a new kind of result has been
inserted, ⊤♯. This particular result is the top element of the abstract domain A, so
that ∀a ∈ A. a ⊑ ⊤♯. It has been inserted among results in order to represent un-
known results, as well as non-terminating computations. In fact, since the language
allows recursion, we need a way to truncate loops, so that the analysis process can
be carried out in a finite number of steps. Finally, there is a new kind of term,
[[t♯]]L,S. Terms in this form have a set of locks (the lock environment), denoted by
L, and a multiset of method labels, denoted by S, attached to them. The set L
will be used to know which locks are held by the term, while the multiset S will
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register method calls, and will be used to find recursive calls during the execution
of methods.

To formalize the abstract interpretation we define abstraction functions, α, and
concretization functions, γ, between the concrete and abstract domains. In par-
ticular we define an abstract function for each syntactic category, thus we define
αr : u → u♯, αd : d → d♯, and so on. The definition of the abstraction functions is
given in Table 4.9.

αr(x) = x
αr(p) = p
αr(n) = ⊙

αd([ℓi = ς(xi)t
i∈1...n

i ]l) = [ℓi = ς(xi)α(ti)
i∈1...n]l

αt(u) = αr(u)
αt(νp.t) = νp.αt(t)
αt(p 7→ d) = p 7→ αd(d)
αt(u.ℓ) = αr(u).ℓ
αt(u1.ℓ⇐ ς(x)u2) = αr(u1).ℓ⇐ ς(x)αr(u2)
αt(lock u in t) = lock αr(u) in αt(t)
αt(locked p in t) = locked p in αt(t)
αt(let x = s in t) = let x = αt(s) in αt(t)
αt(s � t) = αt(s) �αt(t)
αt(if r then s else t) = if αt(r) then αt(s) else αt(t)

α(t) = [[αt(t)]]
∅,∅

Table 4.9: Abstraction functions

There are two abstraction functions for terms: αt and α. The first one collapses
all the integer values to the new abstract value ⊙, and is used to abstract all the
subterms of the initial program. The second one, instead, attaches to the initial term
(the program to be analyzed) an empty lock enviroment and an empty multiset of
method calls, and then calls αt. The initial lock enviroment and multiset of method
calls are empty because we assume (as it is reasonable) that the initial term does
not already hold any lock (i.e. there is no subterm of the form: locked p in t), and
starts with no already executed method calls.

The concretization functions, γ, are defined in Table 4.10. Note that γ functions
produce sets of concrete syntactic objects, since the concrete domain is a powerset.
The concretization of an abstract term simply discards the lock environments and
the multisets of method calls. Moreover, each abstract term ⊙ is replaced by the
set of all integer values.

The abstract semantics is given, analogously to the concrete one, by means



4.4. ABSTRACT INTERPRETATION OF ACONCς 49

γr(x) = {x}
γr(p) = {p}
γr(⊙) = {n | n is an integer number}
γr(⊤

♯) = C the set of all concrete terms

γd([ℓi = ς(xi)t
♯
i

i∈1...n
]l) = {[ℓi = ς(xi)t

i∈1...n
i ]l | ti ∈ γ(t

♯
i)}

γt(u
♯) = γr(u

♯)
γt(νp.t

♯) = {νp.t | t ∈ γ(t♯)}
γt(p 7→ d♯) = {p 7→ d | d ∈ γd(d

♯)}
γt(u

♯.ℓ) = {u.ℓ | u ∈ γ(u♯)}

γt(u
♯
1.ℓ⇐ ς(x)u♯2) = {u1.ℓ⇐ ς(x)u2 | u1 ∈ γ(u

♯
1), u2 ∈ γ(u

♯
2)}

γt(lock u♯ in t♯) = {lock u in t | u ∈ γ(u♯), t ∈ γ(t♯)}
γt(locked p in t♯) = {locked p in t | t ∈ γ(t♯)}
γt(let x = s♯ in t♯) = {let x = s in t | s ∈ γ(s♯), t ∈ γ(t♯)}
γt(s

♯ � t♯) = {s � t | s ∈ γ(s♯), t ∈ γ(t♯)}
γt(if r

♯ then s♯ else t♯) = {if r then s else t | r ∈ γ(r♯), s ∈ γ(s♯), t ∈ γ(t♯)}

γt([[t
♯]]L,S) = γ(t♯)

γ(t♯) = γt(t
♯)

Table 4.10: Concretization functions

of evaluation contexts, structural congruence and reduction rules. The evaluation
contexts are the same as the ones presented in Table 4.5, opportunely modified to
take into consideration the new syntactic categories of abstract terms instead of the
concrete ones.

For the congruence rules, we have the same rules presented in Table 4.6, slightly
modified to take into account the new abstract syntactic categories. Moreover,
we need to take into consideration the new kind of abstract terms, containing the
lock environment and the multiset of method calls. The new congruence rules are
shown in Table 4.11. Note the new rules which distribute the lock environments
to subterms. All rules are quite straightforward, except for the restriction and the
parallel. The rule for restriction performs a renaming with a fresh name, in order
to avoid capture in the lock environment or in the mulltiset of method calls names.
Finally, according to the rule for parallel, the set of locks held by a parallel term
may be propagated only to one of the subterms. This because otherwise we would
end with two parallel terms holding the same locks.

The abstract reduction rules are largely analogous to the ones defined in Table
4.7, the only conceptual differences being the treatment of the lock environments
and multisets of method calls. They are given in Table 4.12.

The first two rules deal with method invocation. We used, in these rules, a
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s♯ � E [t♯] ≡ E [s♯ � t♯] if fn(s♯) ∩ bn(E) = ∅
(νp)E [s♯] ≡ E [(νp)s♯] if p /∈ fn(E) ∪ bn(E)

[[locked p in t♯]]L,S ≡ locked p in [[t♯]]L,S

[[s♯ � t♯]]L,S ≡ [[s♯]]∅,S � [[t♯]]L,S

[[let x = s♯ in t♯]]L,S ≡ let x = [[s♯]]L,S in [[t♯]]L,S

[[if r♯ then s♯ else t♯]]L,S ≡ if [[r♯]]L,S then [[s♯]]L,S else [[t♯]]L,S

[[νp.t♯]]L,S ≡ νp′.[[t♯{{p← p′}}]]L,S p′ fresh

Table 4.11: New abstract structural congruence rules

function occ(p.ℓj , S), which is assumed to return the number of occurrences of the
method call p.ℓj inside the multiset S. We omit its definition, since it is straight-
forward. Methods are replaced with their bodies, and the usual substitutions are
performed. If methods are recursive, this expansion is done until the second recur-
sive call (then the third call from the beginning of the method) is performed. The
first call of the method is regularly expanded, as well as the first recursive call. This
can be seen from rule (Red invoke♯1). In fact, this rule expands method calls with
bodies of methods, and it is executed until the number of occurrences of the same
call is less than two. Since we add an element to the multiset S each time we expand
a method call, we have that occ(p.ℓj , S) = 2 when the method is called recursively
twice. When this happens (and since all execution paths are examined, this hap-
pens for all recursive methods), we are forced to execute rule (Red invoke♯2). This
rule simply replaces the method call with the new abstract result ⊤♯, truncating
the sequence of recursive calls. To understand clearly why two recursive calls are
needed, we can apply the following reasoning. A recursive method returns when the
sequence of its recursive calls (which may also be empty) reaches the base cases of
the recursive definition. The results of the base cases may be returned as they are,
or may be further manipulated by the method, before returning to the caller. In the
first case, we need only the initial method call to execute all the base cases, and all
recursive calls could be directly replaced by ⊤♯. When, instead, the recursive results
r1, . . . , rn are further manipulated by the method to produce the final result rf , we
need to know what kind of results r1, . . . , rn we may receive from the recursion, in
order to produce correctly the kind of the final result rf . Then the results from the
base cases are passed to recursive calls, so that we can produce the results of the
recursive cases. Then we allow the expansion of two successive calls of the same
method: the first as usual, and the second as a first recursive call. In this way we
are able to examine every path of a recursive definition. This is also true because of
the two rules for the if term. We point out in fact that, differently from the concrete
rules, the abstract reduction of an if term produces non-deterministically two dif-
ferent results, so that all execution paths may be correctly examined. Finally, note
that to examine all possible execution paths in the abstract calculus, we will use the
evaluation contexts E � b and a � E in order to analyze all possible interleavings of
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d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]l j ∈ (1, . . . , n) occ(p.ℓj , S) ≤ 1

p 7→ d♯ � [[p.ℓj ]]
L,S −→♯ p 7→ d♯ � [[t♯j{{xj ← p}}]]L,S⊎{p.ℓj}

(Red invoke♯1)

d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]l j ∈ (1, . . . , n) occ(p.ℓj, S) > 1

p 7→ d♯ � [[p.ℓj]]
L,S −→♯ p 7→ d♯ �⊤♯ (Red invoke♯2)

d♯ = [ℓj = ς(x)u♯j , ℓi = ς(xi)t
♯ i∈(1...n)−{j}
i ]l

d♯
′

= [ℓj = ς(x)u♯, ℓi = ς(xi)t
♯ i∈(1...n)−{j}
i ]l

p 7→ d♯ � [[p.ℓj ⇐ ς(x)u♯]]L,S −→ p 7→ d♯
′

� p

(Red update♯)

d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]◦ d♯

′

= [ℓi = ς(xi)t
♯ i∈(1...n)
i ]•

p 7→ d♯ � [[lock p in t♯]]L,S −→ p 7→ d♯
′

� [[locked p in t♯]]L∪{p},S
(Red lock♯)

d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]• d♯

′

= [ℓi = ς(xi)t
♯ i∈(1...n)
i ]◦

p 7→ d � locked p in u♯ −→ p 7→ d♯
′

� u♯ (Red unlock♯)

let x = u♯ in [[t]]L,S −→ [[t{{x← u♯}}]]L,S (Red let♯)

if ⊙ then s♯ else t♯ −→♯ s♯ (Red if♯1)

if ⊙ then s♯ else t♯ −→♯ t♯ (Red if♯2)

s♯ −→ t♯

E [s♯] −→ E [t♯] (Red context♯)

[[u♯]]L,S −→ u♯ (Red res♯)

[[p 7→ d♯]]L,S −→ p 7→ d♯ (Red den♯)

E [⊤♯] −→ ⊤♯ (Red ⊤♯)

Table 4.12: New abstract reduction rules

parallel threads. The other rules are quite similar to the ones presented in Table 4.7,
so we will explain only the differences between the concrete and the abstract case



52 CHAPTER 4. ABSTRACT INTERPRETATION AGAINST RACES

for these rules. Rule (Red update♯) simply discards the lock enviroment and the
multiset of method calls. This because the update construct returns a result, and
then all locks are released and results represent finished computations, so we are not
interested in L or S. Rule (Red lock♯) accumulates the newly acquired lock into the
lock environment, while rule (Red unlock♯) releases all locks ad done in the concrete
case. Rules for let and contexts are analogous to the concrete cases. Finally, note
the new rules for results, denotations, and ⊤♯. The first two rules simply discard the
lock environment and the method calls, because results or denotations are returned,
and in those cases locks are released and we have a finished computation, so also
the method calls are not considered. The rule for ⊤♯ simply reduces each context
where ⊤♯ occurs to ⊤♯. This is done in order to assure the termination of the static
analysis of the program by truncating recursive method calls.

4.5 Correctness of the Abstract Interpretation

We can state the correctness of the abstract interpretation by the following results.
First we have to show that α and γ form a Galois connection between the concrete
and abstract domains. We recall that the concrete domain is the powerset of the
set containing all concrete aconcς-calculus terms ℘(C), with ordering relation ⊆
between sets. Thus it is a lattice, with bottom element ∅ and top element C. The
abstract domain is instead represented by the set A containing all abstract aconcς♯-
calculus terms. Its ordering relation is defined by the conditions in table 4.13.

[[t♯]]L1,S1 ⊑ [[t♯]]L2,S2 ⇔ L1 ⊆ L2 ∧ S1 ⊆ S2

t♯1 ⊑ t♯2 ⇒ (νp.t♯1) ⊑ (νp.t♯2)

t♯1 ⊑ t♯2 ⇒ (locked p in t♯1) ⊑ (locked p in t♯2)

(s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (let x = s♯1 in t♯1) ⊑ (let x = s♯2 in t♯2)

(s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (s♯1 � t
♯
1) ⊑ (s♯2 � t

♯
2)

(r♯1 ⊑ r♯2) ∧ (s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (if r♯1 then s♯1 else t♯1) ⊑ (if r♯2 then s♯2 else t♯2)

Table 4.13: Abstract ordering relation

In practice, the elements of A are compared according to the lock environments
and the multisets of method calls. When two abstract terms have recursively the
same structure of subterms, we have that the more precise is the one which has
smaller lock environments and multisets of method calls. Using this ordering rela-
tion, we have that the least upper bound operator ⊔, given two terms which have
the same structure, computes the union of the corresponding lock environments and
multisets in the two terms, while the greatest lower bound operator, ⊓, computes
the intersection. All other couples of elements of A, are not comparable with each
other (apart, obviously, reflexivity).
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A is extended as a lattice by adding a top and a bottom element, which are
respectively greater and lesser than all the other elements of the domain. We will
denote the top and bottom elements of the abstract domain, respectively by ⊤♯

and ⊥♯. We recall that the top element of the abstract domain is already used in
the syntax of the aconcς♯-calculus. So, if any two terms do not share a common
structure as shown in Table 4.13, the two operators ⊔ and ⊓ return, respectively,
the top and bottom elements of the abstract domain.

Proposition 4.5.1. Let us consider two abstract terms t♯1 and t♯2 such that t♯1 ⊑ t♯2.
If both t♯1 and t♯2 are different from ⊥♯ and ⊤♯, we can conclude that γ(t♯1) = γ(t♯2).

Proof: The proof is done by induction on the rules of Table 4.13. For the base
case we must consider the rule

[[t♯]]L1,S1 ⊑ [[t♯]]L2,S2 ⇔ L1 ⊆ L2 ∧ S1 ⊆ S2

In this case we have:

γ(t♯1) = γ([[t♯]]L1,S1) = γt([[t
♯]]L1,S1) = γ(t♯)

γ(t♯2) = γ([[t♯]]L2,S2) = γt([[t
♯]]L1,S1) = γ(t♯)

and then γ(t♯1) = γ(t♯2).
For the inductive case, we have to consider all the other rules in Table 4.13.

Note that the premises of all these rules allow to use immediately the inductive
hypothesis, so that each of these proofs is trivial. As an example, we can consider
the proof for the rule regarding the let construct:

(s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2)⇒ (let x = s♯1 in t♯1) ⊑ (let x = s♯2 in t♯2)

In this case we can immediately apply the inductive hypothesis on s♯1 and s♯2 and on
t♯1 and t♯2 obtaining that:

γ(s♯1) = γ(s♯2)

γ(t♯1) = γ(t♯2)

Now we can apply the concretization function on the right part of the rule obtaining:

γ(let x = s♯1 in t♯1) = {let x = s in t | s ∈ γ(s♯1), t ∈ γ(t
♯
1)}

γ(let x = s♯2 in t♯2) = {let x = s in t | s ∈ γ(s♯2), t ∈ γ(t
♯
2)}

and since γ(s♯1) = γ(s♯2) and γ(t♯1) = γ(t♯2) we can conclude that the proposition is
true for the let term, that is:

γ(let x = s♯1 in t♯1) = γ(let x = s♯2 in t♯2)

�
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Proposition 4.5.2. Let t♯ be an abstract term, and S ∈ ℘(C) be a set of concrete
terms. α and γ form a Galois connection between the two domains ℘(C) and A.
That is:

• α and γ are monotonic,

• S ⊆ γ(α(S)), where α and γ are applied pointwise,

• α(γ(t♯)) ⊑ t♯.

Proof: First of all, we have to address the abuse of notation used on the
abstraction function α. In fact we have that α : C 7→ A while the two domains are
respectively ℘(C) and A. Then the abstraction function defined on concrete terms
should be considered as defined on sets of terms. The extension is straightforward,
since given a set S of concrete terms, its abstraction is represented by the least
upper bound on the domain A of the abstractions α(ti) performed for each element
ti in S. Let us denote this extended abstraction function as αSet:

αSet(S) =
⊔

ti∈S

α(ti)

Now, all the proofs have to be done for the couple of functions αSet and γ.

• Monotonicity: For the concretization function γ, we have that the premise
of the monotonicity condition:

t♯1 ⊑ t♯2 ⇒ γ(t♯1) ⊆ γ(t♯2)

is verified only for t♯1 = ⊥♯ or t♯2 = ⊤♯, and for the cases treated in Table 4.13.
We have already that γ(⊤♯) = C, so that if t♯2 = ⊤♯ we have obviously γ(t♯1) ⊆
γ(t♯2) = γ(⊤♯) = C for all abstract terms t♯1. When t♯1 = ⊥♯, it is sufficient to
extend γ so that γ(⊥♯) = ∅ in order to have γ(t♯1) = γ(⊥♯) = ∅ ⊆ γ(t♯2) for all
abstract terms t♯2. Finally, the result of proposition 4.5.1 covers the cases of
Table 4.13.

For the abstraction function, αSet, since we have that αSet(S) =
⊔

ti∈S
α(ti),

we can conclude that:

S1 ⊆ S2

⇒ S2 = S1 ∪ S3

⇒ αSet(S1) ⊑ αSet(S1) ⊔ α
Set(S3) = αSet(S1 ∪ S3) = αSet(S2)

• S ⊆ γ(αSet(S)): let us split this proof in three cases:

– αSet(S) = ⊥♯: this case is trivial, since αSet(S) computes the least upper
bound of the abstractions of all terms in S. If this upper bound results
to be ⊥♯, then S must be empty. Then: γ(αSet(S)) = γ(⊥♯) = ∅ and
S = ∅ ⊆ ∅.
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– αSet(S) = ⊤♯: this case is trivial, since γ(αSet(S)) = γ(⊤♯) = C and for
all S in ℘(C) we have that S ⊆ C.

– ⊥♯ ⊏ αSet(S) = t♯ ⊏ ⊤♯: in this case, consider again that the αSet func-
tion computes the least upper bound of the abstractions of the elements
of S. Now, the only cases where t♯1 ⊔ t

♯
2 = t♯ 6= ⊤♯ are the ones following

the definitions of Table 4.13. However, since α(t) = [[αt(t)]]
∅,∅ (note that

both L and S are always empty as an abstraction result), we have that
the first rule of Table 4.13:

[[t♯]]L1,S1 ⊑ [[t♯]]L2,S2 ⇔ L1 ⊆ L2 ∧ S1 ⊆ S2

is satisfied as an equality, since L1, L2, S1 and S2 are all empty. All
the following rules are built inductively and this first rule is the basis
of the induction, so we can conclude (with a proof analogous to the one
presented for proposition 4.5.1) that:

∀ti, tj ∈ S. α(ti) = α(tj) = t♯

Now, we have that the definition of γ is such that, for each concrete term
t, t ∈ γ(α(t)) (this comes directly from the definition of α and γ and can
be verified straightforwardly). Then we have that:

∀ti ∈ S. ti ∈ γ(α(ti)) = γ(t♯)

and thus we can conclude S ⊆ γ(t♯) = γ(αSet(S)).

• αSet(γ(t♯)) ⊑ t♯: let us split this proof in three cases:

– t♯ = ⊥♯: this case is trivial, since we have that:

αSet(γ(t♯)) = αSet(γ(⊥♯)) = αSet(∅) = ⊥♯ ⊑ ⊥♯ = t♯

– t♯ = ⊤♯: this case is trivial, since we have that:

αSet(γ(t♯)) = αSet(γ(⊤♯)) = αSet(C) = ⊤♯ ⊑ ⊤♯ = t♯

– (t♯ 6= ⊤♯) ∧ (t♯ 6= ⊥♯): in this case, the cases of the definitions of α and γ
are such that, given the abstract term t♯, for all concrete terms t ∈ γ(t♯),
we have α(t) ⊑ t♯. This because the γ function discards all the lock
environments and the multisets attached to terms, while the αt function
rebuilds empty lock environments and multisets of method calls, which
are then distributed to subterms by the abstract structural congruence
(considering α-convertion for the rule of restriction). Then the two ab-
stract terms α(t) and t♯ are in relation according to Table 4.13. Thus we
can conclude that αSet(γ(t♯)) ⊑ t♯.
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�

Proposition 4.5.3. Let t1 and t2 be concrete terms, if t1 −→
n t2 then there exists

an abstract term t♯ such that α(t1) −→
♯m t♯ and t2 ∈ γ(t

♯). −→ and −→♯ include
the congruence rule applications which make possible the reduction. −→n denotes
then a sequence of applications of n consecutive reduction rules and congruences.

Proof: The proof is by induction on n. For the basis of the induction, n = 1,
let us consider all the different cases, according to the possible couples of concrete
statements t1 and t2 taken from the concrete reduction rules, and from the concrete
congruence definition:

• t1 = p.ℓj; t2 = tj{{xj ← p}}:

This case comes from the concrete (Red invoke) rule. Here, we have

α(t1) = [[p.ℓj]]
∅,∅

Here we can use the (Red invoke♯1) rule to obtain

t♯ = [[αt(tj){{xj ← p}}]]∅,{p.ℓj}

From this, by applying the concretization function we have

γ(t♯) = {t | t ∈ γ(αt(tj){{xj ← p}})}

Then we have clearly t2 ∈ γ(t
♯), directly from the fact that α and γ form a

Galois connection.

• t1 = p.ℓj ⇐ ς(x)u; t2 = p:

This case comes from the concrete (Red update) rule. Here

α(t1) = [[p.ℓj ⇐ ς(x)αr(u)]]
∅,∅

and using the (Red update♯) rule we obtain

t♯ = p

Using the concretization function we have

γ(t♯) = {p}

and clearly t2 ∈ {p}.
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• t1 = lock p in t; t2 = locked p in t:

This case comes from the concrete (Red lock) rule. Now

α(t1) = [[lock p in αt(t)]]
∅,∅

and using the (Red lock♯) rule we have

t♯ = [[locked p in αt(t)]]
{p},∅

Again, using the concretization function

γ(t♯) = {locked p in t | t ∈ γ(αt(t))}

and thanks to the Galois connection, t2 ∈ γ(t
♯).

• t1 = locked p in u; t2 = u:

This case comes from the concrete (Red unlock) rule. In this case, we have

α(c1) = [[locked p in αr(u)]]
∅,∅

Note that the lock environment is incorrect, in this case, but this never happens
in real terms, since a real term should not start with some already locked
names. However, this fact does not influence this proof. Here we can use a
structural congruence step, the (Red res♯) rule and the (Red unlock♯) rule to
obtain

t♯ = αr(u)

From this, by applying the concretization function we have

γ(t♯) = γr(αr(u))

and again the fact that t2 ∈ γ(t
♯) comes directly from the Galois connection.

• t1 = let x = u in t; t2 = t{{x← u}}:

This case comes from the concrete (Red let) rule. Here

α(t1) = [[let x = αr(u) in αt(t)]]
∅,∅

and using an abstract structural congruence step, the (Red res♯) rule and the
(Red let♯) rule we obtain

t♯ = [[αt(t){{x← αr(u)}}]]
∅,∅

Using the concretization function we have

γ(t♯) = {t | t ∈ γt(αt(t){{x← αr(u)}})}

Again, the conclusion t2 ∈ γ(t
♯) follows from the Galois connection.
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• t1 = if 0 then s else t; t2 = t:

This case comes from the concrete (Red if0) rule. Now

α(t1) = [[if ⊙ then αt(s) else αt(t)]]
∅,∅

and, after an abstract congruence step and the (Red res♯) rule, we have two
possible rules to apply: (Red if♯1) and (Red if♯2). By choosing rule (Red if♯1)
we obtain

t♯ = [[αt(t)]]
∅,∅

and using the concretization function

γ(t♯) = γ(αt(t))

Again, since γ and α form a Galois connection, we obtain the conclusion
t2 ∈ γ(α(t)). This case is exactly the same as the one for the other branch of
the if construct, so we will not show that case.

• t1 = s � E [t]; t2 = E [s � t] where fn(s) ∩ bn(E) = ∅:

This case comes from the first concrete congruence rule. Here

α(t1) = [[αt(s) �αt(E [t])]]
∅,∅ ≡ [[αt(s)]]

∅,∅
� [[αt(E [t])]]

∅,∅

Now we have that E is a term with an hole, so that its abstraction produces
an abstract term with the same hole (the abstraction function should be op-
portunely extended, but it is straightforward). This because the αt function
simply replaces each integer value with ⊙. So we can write

αt(E [t]) = αt(E)[αt(t)]

where αt(E) = C is an abstract context identical to E , with the only exception
of integer values collapsed to ⊙. Now we can use one of the abstract congru-
ence rules of Table 4.11 to distribute the [[ ]]∅,∅ structure inside the C context,
obtaining

α(t1) ≡ [[αt(s)]]
∅,∅
� C′[[[αt(t)]]

∅,∅]

where C′ is identical to C, apart from the fact that its subterms are surrounded
by [[ ]]∅,∅. Then C′ has the same names of E , and αt(s) has the same names of
s, thus we can use the first abstract congruence rule from Table 4.11 to obtain

α(t1) ≡ C
′[[[αt(s)]]

∅,∅
� [[αt(t)]]

∅,∅] = t♯

Now, since the concretization function discards the lock environments and the
multisets of method calls, we obtain

γ(t♯) = {F [x � y] | F ∈ γ(C′) = γ(C) = γ(αt(E)), x ∈ γ(αt(s)), y ∈ γ(αt(t))}

and t2 ∈ γ(t
♯) comes again from the Galois connection between α and γ. The

other side of this congruence rule is very similar to this one, so we do not show
it.
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• t1 = (νp)E [s]; t2 = E [(νp)s] where p /∈ fn(E) ∪ bn(E):

This case comes from the second concrete congruence rule. In this case we can
use the same reasoning as before, obtaining

α(t1) = [[(νp)αt(E [s])]]
∅,∅ = [[(νp)αt(E)[αt(s)]]]

∅,∅ ≡ (νp)[[αt(E)[αt(s)]]]
∅,∅

where this last equivalence was obtained by applying the abstract congruence
rule for restriction. Note that, according to the rule, we should change the
name p with a fresh name, but since there is no possibility of capture (both L
and S are empty), we did not rename it. Now, using again the same reasoning
as before, we can obtain

α(t1) ≡ (νp)C′[[[αt(s)]]
∅,∅] ≡ C′[(νp)[[αt(s)]]

∅,∅] = t♯

where αt(E) = C and C′ is obtained from C by distributing the lock environment
and the multiset of method calls on the subterms. The last equivalence was
obtained by applying the abstract congruence rule for restriction. Now using
the concretization function on t♯ we obtain:

γ(t♯) = {F [(νp)x] | F ∈ γ(C′) = γ(C) = γ(αt(E)), x ∈ γ(αt(s))}

and again t2 ∈ γ(t
♯) comes from the Galois connection result.

We should continue with the inductive cases by supposing the proposition true
for −→n−1. All the cases are identical to the ones shown before, with the only
difference that we have a possible non-empty lock environment L and a possible
non-empty multiset S of method calls. Since both the lock environment and the
multiset of method calls are discarded by the concretization function, we have that
also the proofs of the inductive cases for the above rules are exactly the same as
before, and thus will be omitted.

The only cases which remain, for the inductive step, are the ones concerning
the (Red context) concrete rule, as well as the (Red invoke) concrete rule, when we
have a non-empty multiset of method calls (and then the (Red invoke♯2) rule may
be triggered).

• t1 = E [r]; t2 = E [s] where r −→ s:

This case comes from the (Red context) rule. Here, we have that the (Red
context) rule allows to conclude E [r] −→ E [s] for any concrete context, starting
from the r −→ s hypothesis. We can use the inductive hypothesis on r −→ s,
to conclude that

α(r) −→♯m s♯ , s ∈ γ(s♯)

Now let us apply the abstraction function on E [r] obtaining (using the same
reasoning as before)

α(E [r]) = [[αt(E [r])]]
∅,∅ = [[αt(E)[αt(r)]]]

∅,∅ = [[C[αt(r)]]]
∅,∅ ≡ C′[[[αt(r)]]

∅,∅]
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Now, since α(r) = [[αt(r)]]
∅,∅, we can apply the (Red context♯) rule on our

inductive hypothesis, obtaining

α(E [r]) −→♯ C′[s♯] = t♯ , s ∈ γ(s♯)

Finally, we can apply the γ function on t♯ obtaining

γ(t♯) = {F [x] | F ∈ γ(C′) = γ(C) = γ(αt(E)), x ∈ γ(s
♯)}

and t2 = E [s] ∈ γ(t♯) comes from the inductive hypothesis (s ∈ γ(s♯)) and
from the Galois connection between α and γ (E ∈ γ(αt(E))).

• t1 = p.ℓj; t2 = tj{{xj ← p}}:

This case comes from the (Red invoke) rule. In particular we are interested
in the case concerning the abstract rule (Red invoke♯2). Let us suppose, that
from an initial statement r we reached after n− 1 steps a statement s, having
r −→n−1 s. Then by inductive hypothesis, we have that there exists an ab-
stract statement s♯ such that α(r) −→♯m s♯ and s ∈ γ(s♯). Now we consider
s = t1 = p.ℓj and reduce it to t2 = tj{{xj ← p}}. On the abstract side, we
consider only the (Red invoke♯2) rule since, as already said, the case corre-
sponding to the (Red invoke♯1) rule is identical as before. We have, from the
inductive hypothesis, that s ∈ γs(s

♯). We can have two cases for s♯:

– s♯ = ⊤♯: in this case the abstract computation remains blocked since,
according to the (Red context♯) rule, we have ⊤♯ −→♯ ⊤♯. Then this case
is trivial, since we have α(r) −→♯m s♯ −→ ⊤♯ and since t ∈ γ(⊤♯) = C
for each concrete term t (then also for t2 = tj{{xj ← p}}).

– s♯ 6= ⊤♯: in this case, the fact that s ∈ γ(s♯) implies that {s} ⊆ γ(s♯).
Thus, using the fact that α never returns ⊥♯, the monotonicity of α, the
Galois connection between α and γ and the hypothesis s♯ 6= ⊤♯ we obtain:

⊥♯ ⊏ αSet({s}) ⊑ αSet(γ(s♯)) ⊑ s♯ ⊏ ⊤♯

This implies that αSet({s}) and s♯ are in relation according to Table
4.13, and then they differ only in their lock environments and multisets
of method calls. So s♯ = [[p.ℓj ]]

L,S and by applying rule (Red invoke♯2) we
obtain that

[[p.ℓj]]
L,S −→♯ ⊤♯

so that we can conclude that t2 ∈ γ(⊤
♯) since γ(⊤♯) = C.

�

This proposition states that the abstract reduction correctly approximates the
concrete one. That is every concrete computation has a corresponding abstract one.
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Thus, if a property is verified for all the reductions of an abstract term α(t) then it
is verified also for t.

In the following proposition we address the problem of termination for the ab-
stract reduction process. Termination must be intended in the sense that the ab-
stract reduction graph, whose nodes are represented by intermediate terms encoun-
tered during abstract reduction (which includes the abstract congruence), is finite.
In fact, since the abstract calculus is non-deterministic, we can have different paths
of reduction, given a single abstract term as our starting point. The following prop-
erty tells that each path of reduction has a finite number of intermediate terms.
Using this property it is possible to examine the abstract reduction graph in a finite
number of steps, in order to establish properties of the concrete reductions, thanks
to the correctness of the abstract interpretation shown above.

Proposition 4.5.4. Given a concrete term t, the abstract interpretation process of
α(t) always terminates.

Proof: Trivial, since the only possibility of non-termination is given by recur-
sive methods and they reduce to ⊤♯ after the second recursive call. We treat all
cases of recursion, both direct (a method which call itself) and indirect (methods
which call each other in a circular way), since we look only at name of methods con-
tained in the current stack of method calls, represented by the multiset S attached
to terms.

�

Finally, we give a brief proposition explaining the meaning and the correctness
of lock environments attached to the abstract calculus terms. The proposition takes
into consideration a concrete term t where we assume to have no already locked
names. This can be done without loosing in generality, since if we want to consider
a term s which already holds a lock on p, we can always replace it by a lockpins
term, and start the examination without any already held lock.

Proposition 4.5.5. Given a concrete term t, without any already locked name,
consider its abstraction α(t) = [[αt(t)]]

∅,∅. The first set attached to each subterm
during the reduction of α(t) (the lock environment) registers all locks on objects held
while executing that subterm.

Proof: The proof may be easily done using induction on the number of steps
which compose the various reduction paths of the abstract term α(t). Let us consider
a generic reduction path and denote the number of abstract steps in this path by n.

• The base case of the induction is represented by n = 0 and is trivial, since at
the beginning we have α(t) = [[αt(t)]]

∅,∅, and since we suppose that we have no
already locked names, the proposition is true.
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• For the inductive case, let us consider a path composed by n steps of reduction
and abstract structural congruence, and let us apply one more step of reduction
or abstract structural congruence. So we have

α(t) −→♯n t♯

and we can suppose, by inductive hypothesis, that for all subterms of t♯ the
lock environment registers all locks held (acquired and not yet released) during
their reduction. By applying one more step of computation, we can have the
following cases affecting the lock environments:

– The lock environment of a subterm s is distributed on the subterms of s
using the abstract structural congruence. In this case the proposition is
trivially true, since no new locks are acquired and no locks are released, so
each subterm of s must be executed under the same locks as s itself. The
only exception of this reasoning is represented by the following abstract
structural congruence rule:

[[s♯ � t♯]]L,S ≡ [[s♯]]∅,S � [[t♯]]L,S

In this case, however, it is correct to have two different lock environments,
since we cannot have two parallel terms holding the same locks (this would
be incorrect, since there would be concurrent access to shared resources).

– A reduction rule modifies the lock environment of a term. In this case we
have that all modifications to the lock environments happen when a result
or a denotation are obtained from a reduction (rules (Red invoke♯2), (Red
update♯), (Red unlock♯), (Red res♯) and (Red den♯)) and when some new
locks are acquired (rule (Red lock♯)). All these cases are trivially correct,
since when we have a result or a denotation all the locks are released in the
concrete semantics, and when we acquire a new lock using the (Red lock♯)
rule, we opportunely extend the lock environment of the term which is
acquiring the lock.

�

4.6 Race checking analysis

In this section we formally define our notion of race-freeness.
As a consequence of the correctness of our abstract interpretation, we can check

that every access to an object is done while holding the lock to that object. This
analysis corresponds to the one in [27]. In this case it would be sufficient to check
that when an object is used in a term t for a method call or a field modification,
the name for that object is included in the lock environment attached to t.
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However, we can apply a less rigid analysis to detect races. In particular we
can check that, during the reduction of a term t, no parallel accesses to an object,
referred by p, can be performed. That is a (sub)statement of the form r � s, where
r, s ∈ {p.ℓi} ∪ {p.ℓj ⇐ ς(x)u}, is never reached.

This can be done by analyzing the abstraction of t: if in every possible reduction
path of α(t), the abstraction of such a kind of statement is never introduced, we can
conclude that it cannot be introduced in the concrete computation of t as well. Of
course, given the approximation introduced by abstract interpretation, the viceversa
does not hold in general.

Let us state the result formally with the following two definitions.

Definition 4.6.1 (Concrete race free term). A concrete term t is race free iff, for all
terms s reached during its reduction, t −→∗ s, s does not contain a (sub)term of the

form p 7→ d � E ′[r′] � E ′′[r′′], where d = [ℓi = ς(xi)t
i∈(1...n)

i ]l and r′, r′′ ∈ {p.ℓi | i ∈
(1 . . . n)} ∪ {p.ℓj ⇐ ς(x)u | j ∈ (1 . . . n)}.

Definition 4.6.2 (Abstract race free term). An abstract term t♯ is race free iff,
for all terms s♯ reachable in its reduction graph excluding ⊤♯, t♯ −→♯∗ s♯ 6= ⊤♯, s♯

does not contain a (sub)term of the form p 7→ d � E ′[r♯
′

] � E ′′[r♯
′′

], where d = [ℓi =

ς(xi)t
♯ i∈(1...n)
i ]l and r♯

′

, r♯
′′

∈ {[[p.ℓi]]
L1,S1 | i ∈ (1 . . . n)} ∪ {[[p.ℓj ⇐ ς(x)u]]L2,S2 | j ∈

(1 . . . n)}.

Note that the lock environments are not directly used in the definition of a
race-free term, but they can be very useful in detecting which locks are held in each
point of the program, and so may help to fix programs that present possible races, by
showing which locks are already held by a term, and which ones should be acquired
to make the term race free.

Note also that the abstract definition of race free term rules out the ⊤♯ case.
This because the abstract ⊤♯ term is obtained after expanding method calls up to
the first recursion (included), and so if we have a potential race during a reduction
path leading to ⊤♯, it certainly appears in the reduction graph before the ⊤♯ term,
since recursive calls are expanded once and since all possible paths are followed
during the reduction. The ⊤♯ term is used only to assure termination, but does not
preclude the precision of the analysis. This consideration will be made more clear
in the proof for the following proposition.

Proposition 4.6.1. Given a term t, if α(t) = t♯ is race free, then t is race free.

Proof: Since the abstract interpretation is correct, we have that all possible
concrete executions are synthesized in the abstract reduction graph [21, 19].

If the abstract term t can not perform any recursive call then the property is
trivially true. In fact, since we never apply the rule (Red invoke♯2), the abstract
term can not reduce to ⊤♯. Then we can apply the result of proposition 4.5.3 to say
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that for each reachable concrete term s we have that s ∈ γ(s♯) for some s♯ in the
abstract reduction graph. Then we can apply again the reasoning that:

⊥♯ ⊏ α(s) ⊑ α(γ(s♯)) ⊑ s♯ ⊏ ⊤♯

to say that α(s) and s♯ differ only in their lock environments and multisets of method
calls (since the ones of α(s) are all empty). Then, since those sets and multisets
are not used in detecting the race-free property, we conclude that in all concrete
computations, the initial term is race-free.

If, on the contrary, the abstract term can perform recursive calls, we surely
have some abstract paths which reduce to ⊤♯. In fact, since we explore all possible
paths (see the rules for the if and parallel terms), and since, according to rule (Red
invoke♯1), each method call is replaced by the corresponding body, we have that we
surely will reach again the recursive call, and this process will repeat until we will
be forced to use rule (Red invoke♯2) and reduce to ⊤♯. Now, let us consider each
recursive method. A recursive method may have multiple method calls in its body,
and some of them (maybe all) will lead to a recursive behavior (note that recursion
may also be indirect, so that method a calls method b which calls method a again).
The recursive method may then have three main behaviors:

• There are no exit points (paths which do not end in a recursive call) during
all the body of the method

• There are some exit points, and some of the method calls which originate the
recursion are placed as first term of an if or let construct, so that we have some
(sub)terms of the two following forms:

p.ℓ −→♯∗ s♯ = E [if [[p.ℓ]]L,S then s♯
′

else s♯
′′

]

p.ℓ −→♯∗ s♯ = E [let x = [[p.ℓ]]L,S in s♯
′

]

while all the other calls are not placed as first term of an if or let construct.

• The method may fork, and each of the resulting terms falls in one of these
three cases.

In the first case we have that the method can not terminate in the concrete
case, since it has no exit points. This is represented in the abstract by the fact
that all abstract reduction paths end in ⊤♯. However, the recursive calls have been
substituted by the corresponding method body twice, since in the first two calls we
apply the rule (Red invoke♯1). Then, if a race happens in the concrete reduction after
the second recursive call, we have that the same race must also happen before that
call, since we always replace the call with the same method body (if the recursion
is indirect the reasoning is the same since method bodies can be easily composed).
This because in order to have a race we must have two parallel terms which access a
shared resource simultaneously. Since the method body which replaces the method
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call is always the same, we have that if it introduces a term causing a race, it does
that in each call, since all possible interleavings with all other parallel terms are
examined. Then there is a concrete case of race before the second recursive call
and then this case of race is present in the abstract reduction graph, since before
the second recursive call we never apply rule (Red invoke♯2) and since the abstract
interpretation is correct.

In the second case, the exit point corresponding to the base cases of the recursion
are reached during the first abstract call of the method (note that we are talking of
the first call, not the first recursive call), since we follow all possible paths in the
reduction of the body. For those recursive calls which are not placed as first term of
an if or let construct, these results represent a possible termination of the recursive
method, since the method body eventually falls in one of the following cases:

p.ℓ −→♯∗ s♯ = E [νp.[[p.ℓ]]L,S]

p.ℓ −→♯∗ s♯ = E [locked p in [[p.ℓ]]L,S]

p.ℓ −→♯∗ s♯ = E [let x = u♯ in [[p.ℓ]]L,S]

p.ℓ −→♯∗ s♯ = E [if u♯ then [[p.ℓ]]L,S else s♯
′

]

p.ℓ −→♯∗ s♯ = E [if u♯ then s♯
′

else [[p.ℓ]]L,S]

Now, if there is a race condition during a path leading to an exit point after
the second recursive call, then the same race condition happens also during the first
non-recursive call, since the body of the method which replaces the call is always
the same, and then, as an example, we would have

s♯ = E [let x = u♯ in [[p.ℓ]]L,S] −→♯∗ E ′[let x = u♯ in [[p.ℓ]]L
′,S′

]

For the recursive calls placed as first terms of if or let terms, we have that those
calls, if they end, give a result useful for the following computation of the if or the
let term. We are in the following cases:

p.ℓ −→∗ s♯ = E [let x = [[p.ℓ]]L,S in s♯
′

]

p.ℓ −→∗ s♯ = E [if [[p.ℓ]]L,S then s♯
′

else s♯
′′

]

Then, since the exit points are reached during the first non-recursive call, and since
we explore all possible execution paths, we have that those terms will appear in the
abstract graph once for each possible result of the recursive method. Then those
terms will be executed, checking the absence of races also in s♯

′

and s♯
′′

in the above
examples. Since we execute s♯

′

and s♯
′′

, if there are race conditions after the second
recursive call, this means again that the same race conditions appear also after the
first recursive call for s♯

′

and s♯
′′

, and after the first (non-recursive) call for all the
terms between the first call to p.ℓ and s♯.
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Finally, in the last case, the recursive method will fork twice, since two calls
are performed for each method and all paths are explored. Then we can apply an
inductive reasoning for the two new terms to detect race conditions. Moreover, note
that since we fork twice, we cover also the case where the new created threads may
have race conditions with each other.

�

4.7 Examples

In this section we will give two examples of analysis. The first example shows
the behavior of a non-recursive term, while the second one shows how recursion is
treated, and then how the multisets of method calls attached to environments work.

As a first simple example, consider the following term t1:

t1 = νp.p 7→ [l = ς(x)5]◦ �
let x = p.l in if n then p.l else (lock p in p.l � lock p in p.l ⇐ ς(x)6)

The abstraction α(t1) is analogous to t1 apart from the substitution of ⊙ for
every integer value and from the attaching of an empty lock environment and an
empty multiset of method calls to the whole term. The graph of all possible abstract
reductions for α(t1) is shown in Figure 4.1. For the sake of readability we removed
the restriction νp and the reference term p 7→ [l = ς(x)⊙]◦ from the figure. Moreover,
because it is clear from the context, we removed the word “locked” from the terms
when a lock is acquired. The structural congruence rules are applied implicitly.

[[let x = p.l in if ⊙ then p.l else (lock p in p.l � lock p in p.l ⇐ ς(x)⊙)]]∅,∅

let x = [[p.l]]∅,∅ in [[ if ⊙ then p.l else (lock p in p.l � lock p in p.l ⇐ ς(x)⊙)]]∅,∅

[[ if ⊙ then p.l else (lock p in p.l � lock p in p.l ⇐ ς(x)⊙)]]∅,∅

[[p.l]]∅,∅ [[lock p in p.l]]∅,∅ � [[ lock p in p.l ⇐ ς(x)⊙ ]]∅,∅

⊙ [[p.l]]{p},∅ � [[ lock p in p.l ⇐ ς(x)⊙ ]]∅,∅ [[lock p in p.l]]∅,∅ � [[p.l ⇐ ς(x)⊙ ]]{p},∅

⊙ � [[p.l ⇐ ς(x)⊙ ]]{p},∅ [[p.l]]{p},∅ � p

⊙ � p ⊙ � p

?

?

??

? ??

??

??

Figure 4.1: Abstract reduction graph for α(t1)
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It is easy to check that, in the abstract computation graph, all the terms are
race free. Thus we can conclude that the concrete computation is race free as well.

Let us remark that the term t1 is not certified by current type-based analyses,
because the object referred by p is accessed, in two cases, without locking it. However
such accesses are safe because they are performed without any other access composed
in parallel.

Our second example is much more complex than the first one, so we will give just
a sketch of its evolving to demonstrate how our analysis always terminates, since
all recursions are blocked in correspondence of the second recursive call. The term
that we consider is the following:

t2 = νp.p 7→ [ res = ς(x)0
mul = ς(x)λy. let z = y ∗ x.res in x.res⇐ z
fatt = ς(x)λy, z.

if z then
if y then 0
else((lock x in x.fatt(y − 1, 0)) �

(lock x in x.mul(y)) �
0)

else let w = x.res⇐ 1 in x.fatt(y, 0)
]◦ � p.fatt(3, 1)

The object denoted by p has three methods: the first one, res, is simply an
instance variable that will contains results of computations. The second method,
mul, reads the value from res and multiplies it for its argument. The third method,
fatt, allows to compute the factorial of its first argument, y, by creating y threads in
parallel. Each of these threads receives as argument an integer between 1 and y and
calls mul on the instance variable with this argument. In the syntax of the object
we used the λ-notation, since we know how to codify λ-terms into object calculi.
The whole term computes the factorial of 3, and stores it in the instance variable
p.res.

The abstraction of the term t2 is obtained by simply replacing all numbers by
⊙ and by attaching an empty lock environment and an empty multiset of method
calls to the resulting term. In the following we describe (part of) the evolution of
the abstract term. As before, we removed unnecessary terms from the reductions.

The analysis starts with first step

[[p.fatt(⊙,⊙)]]∅,∅ (4.1)

and continues by substituting the body of the method p.fatt as follows:

[[if ⊙ then if ⊙ then ⊙ else((lock p in p.fatt(⊙,⊙)) �(lock p in p.mul(⊙)) �⊙)

else let w = p.res⇐ ⊙ in p.fatt(⊙,⊙)]]∅,{p.fatt}

(4.2)
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Now, in the abstract reduction graph we have two different ways to continue, ac-
cording to the two branches of the if term. Taking the then branch leads to:

[[if ⊙ then ⊙ else((lock p in p.fatt(⊙,⊙)) �(lock x in p.mul(⊙)) �⊙)]]∅,{p.fatt}

(4.3)
which can continue directly in ⊙ (then branch) or evolve in:

[[lock p in p.fatt(⊙,⊙)]]∅,{p.fatt} � [[lock p in p.mul(⊙)]]∅,{p.fatt} �⊙

Now, according to which lock is acquired before on the object denoted by p, we can
proceed with the evolution of the first or the second parallel term. By choosing the
former, we acquire the lock and then return in the same situation as step 4.1, but
with method call multiset equal to {p.fatt}. Then we follow the same steps from the
beginning, ending eventually in ⊙ or ⊤♯ (when we arrive to the third recursive call,
the term reduces to ⊤♯). Locks are released thanks to the third parallel term above
(simply a result), using the evaluation context E [·] = locked p in [·], the congruence
E [s � t] ≡ s � E [t], and the rule (Red unlock♯).

By choosing the latter term, instead, we follow the execution of method p.mul
which eventually terminates returning p (since the object denoted by p is modified
at the end of p.mul). Then we have to release the lock and continue with the former
parallel term, which as already said, eventually ends in ⊤♯.

Taking the else branch of the if term in 4.2 leads to the execution of the term:

[[let w = p.res⇐ ⊙ in p.fatt(⊙,⊙)]]∅,{p.fatt} (4.4)

which executes the first part of the let construct (an initialization in the concrete
term) and then reduces to 4.1 with method call multiset equal to {p.fatt}. From
there we can follow all the paths examined till here, and eventually end in ⊙ or ⊤♯,
since the number of equal calls in the method call multisets is increasing.

We have parallel terms in this term only during the path following the else branch
of 4.3. In this case we never find two parallel terms which match the definition 4.6.2,
so we can say that the term is race-free. Let us note again that this term is not
certified as race-free looking only at the locks before the accesses to objects, since
we have an unlocked access in 4.4, since those path is a single-thread part of the
term.



Chapter 5

Abstract Interpretation against

Unnecessary Locks

Abstract

This chapter is a revision of an article [6] where we present a use of ab-
stract interpretation techniques for reducing synchronization overhead in a
concurrent object calculus. The approach followed here is the same used in
the rest of the thesis, but the goal can be seen as complementary to the one
pursued in chapter 4. In fact those chapter was devoted to safety require-
ments, while this one is devoted to efficiency. We will first define a new
calculus, raconcς, which extends the aconcς calculus presented in chapter
4, for supporting reentrant locks. Then we will use an abstract form of this
extension to check when synchronization operations may be safely eliminated
from statements. Thus our approach may be used to improve performance in
object oriented languages by eliminating locks, without the risks caused by
“manual” optimizations performed by programmers.

5.1 The Problem of Lock Overhead

We have seen in chapter 4 as many concurrent object oriented languages provide
synchronization operations to avoid interferences among concurrent threads. The
aim of such synchronization operations is to avoid erroneous computations caused
by concurrent accesses and modifications to the same (shared) objects performed
simultaneously by concurrent threads. Essentially, a synchronization operation puts
a “lock” on an object, and no other concurrent process can access the object until
the lock is released. In chapter 4 we saw a technique which can be exploited to
analyze programs in order to check that no concurrent accesses to the same objects
can be done.
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There is obviously a price to pay for adding safety requirements to programs,
usually translated into a computational overhead. Locks attached to objects present
two main forms of computational overhead:

• The lock acquisition and release operations usually perform some checks on
shared variables (to see if objects can freely be accessed) and set other variables
to lock or unlock the access to objects. These operations are usually executed
instantaneously, but if requested very often can nevertheless constitute a cause
of poor performance of programs.

• The lock acquisition operation may force a thread to wait for other threads
to release certain locks. Obviously, this is the major source of computational
overhead and comes when a thread requires a lock that is already held by
another thread. In fact, in this case, the thread which is requesting the lock
cannot proceed in its execution until the lock is released.

Many works have been devoted to find useful static analyses which allow the
elimination of unnecessary synchronization from concurrent programs [2, 11, 12, 17,
46, 51, 57]. The majority of these works concentrate on the Java programming lan-
guage [34]. In this chapter, the generality of our approach based on object calculi
will then become more evident, since, as already said, object calculi do not concen-
trate on peculiarities of languages, but on the main ideas behind the object-oriented
paradigm, which are common among the totality of object oriented languages.

The above works investigate on the possible elimination of three categories of
locks, described hereafter:

• Reentrant Locks: This is the most simple type of unnecessary synchro-
nization operation, and happens when a process acquires the same lock (on
the same object) more than once in a nested way. Nowadays reentrant locks
are provided by many object-oriented programming languages (i.e. Java), in
order to avoid possible cases of deadlock, and may be a significant source of
overhead. In fact, many times programmers reuse code without knowing its
details, and then it is not unusual to require a lock on an object before the call
of a (reused) subroutine which locks that object again. The problem of this
kind of lock has been analyzed in [2] for the case of the Java language, with a
set of static analyses performed on the code of the program to examine.

• Single Threaded Locks: These locks are requested by only one thread
at a time, and so are not necessary, since, assuming the program safe, there
are no other parallel threads accessing the shared object at the same time
as the thread requiring the lock. This kind of lock is definitely the most
common among unnecessary locks, so that all the works above address this
kind of problem. Again this kind of lock may come from the use of thread-safe
libraries without any thread in concurrency with the ones generated by the
libraries themselves.
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• Enclosed locks: In this case we have a lock i which is requested always
after another lock j has been acquired. It is clear that the lock i is not
necessary, since lock j already forbids concurrency. This is a more subtle
kind of unnecessary synchronization operation, and is analyzed only in [2] (we
borrowed the name for this kind of lock from that paper).

The approach used in our analysis is based, as in chapter 4, on abstract inter-
pretation techniques, as we saw that they are, in general, more precise than other
approaches because they are based on the execution, on an approximated domain,
of programs. For this kind of problem, we are more precise of the other kinds of
analyses above since, for example, we are able to identify real single threaded locks.
In fact all the works above consider a lock as single threaded when objects are locked
by only one thread. This is obviously true, but a lock is single threaded when an
object is accessed by only one thread at a time. Then if we have two threads which
are not concurrent and access the same object, the above analyses do not classify
the locks on this object as single threaded, because those analyses do not execute
the program and then cannot say if the two threads are concurrent or not.

In order to apply abstract interpretation techniques to analyze the kind of locks
above defined, we further extend the object calculus aconcς presented in chapter
4 to support reentrant locks. In order to do this, we include the lock environments
used in the abstraction of the aconcς calculus presented in chapter 4 in the concrete
semantics of the language. This because to formalize reentrant locks we must know,
for each term, which locks are held in any moment during execution. We redefine
the concrete semantics of the language and, using the same technique of abstract
interpretation of chapter 4 we will analyze the concrete statements of the language.
In particular, since the concrete syntax already includes the lock environments, the
abstract interpretation approach will be used in this chapter only for its ability to
run the program in an approximated way, but there will not be a real abstraction
of concrete terms, apart for the modification of lock environments (from sets to
multisets) and the truncation of recursive terms already seen in chapter 4. Finally,
we will define formally the three kind of locks described above and check, for each
lock of the concrete statements analyzed, if it fits in one of the above categories.

5.2 The object calculus raconcς

In this section we define the syntax and semantics of the object calculus raconcς,
derived from the aconcς calculus presented and analyzed in chapter 4. The raconcς
calculus has been obtained as an extension to allow the use of reentrant locks. As
said before, a lock is reentrant when a process may acquire it more than once in
sequence. The extension, in practice, consists in adding to the syntax of the language
the lock environments used in the abstraction of the aconcς calculus presented in
chapter 4. In this way we can know, for each term and for each program point,
which locks are held and so we can formalize correctly the concept of reentrant lock.
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5.2.1 Syntax

Table 5.1 defines the syntactic categories of results, denotations, terms and state-
ments. Results, denotations and terms are the same as the ones defined for the
aconcς calculus, with the addition of lock environments [[t]]L already seen in chapter
4 for the abstraction of the aconcς calculus. As already said, using lock environ-
ments we can be aware of all the locks held by each (sub)term at any program point,
so we can model correctly the concept of reentrant lock, which are acquired multiple
times by the same thread (here is why we need lock environments) in a nested way.

u ::= results
x variable
p location
n integer number

d ::= denotations
[ℓi = ς(xi)t

i∈1...n
i ]l object

l ::= lock states
◦ unlocked
• locked

r, s, t ::= terms
u result
νp.t restriction
p 7→ d reference
u.ℓ method invocation
u.ℓ⇐ ς(x)u field update
lock u in t lock acquisition
locked p in t lock acquired
let x = s in t let
s � t parallel composition
if r then s else t if

[[t]]L lock environment

a ::= statements

[[t]]∅ initial program

L = {p1, . . . , pn} set of locations

Table 5.1: Syntax of raconcς

As already done in chapter 4, we assume that terms are used consistently. In
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particular. in addition to what already said in chapter 4, we forced the initial
program to have an empty lock environment in the syntax of statements (this, as
already said, can be done without loosing generality), and suppose that in the initial

statement [[t]]∅ the subterm t does not contain any lock environment.

5.2.2 Semantics of raconcς

The semantics of raconcς is given as usual in terms of a structural congruence and
a set of reduction rules. Structural congruence allows to syntactically transform
statements in order to apply the reduction rules. The application of a reduction
rule corresponds to a computational step.

As in the aconcς calculus, both the structural congruence and reduction rules
are given in terms of evaluations contexts. The syntax of evaluation contexts is given
in Table 5.2, while the structural congruence rules are given in Table 5.3. They are
identical to the ones defined for the aconcς♯ calculus, apart for the absence of the
multisets of method calls, so we refer to chapter 4 for a complete explanation.

E ::=
[.]
E � t
s � E
locked p in E
let x = E in t
if E then s else t
νp.E

Table 5.2: Reduction contexts

s � E [t] ≡ E [s � t] if fn(s) ∩ bn(E) = ∅
(νp)E [s] ≡ E [(νp)s] if p /∈ fn(E) ∪ bn(E)

[[locked p in t]]L ≡ locked p in [[t]]L

[[s � t]]L ≡ [[s]]∅ � [[t]]L

[[let x = s in t]]L ≡ let x = [[s]]L in [[t]]L

[[if r then s else t]]L ≡ if [[r]]L then [[s]]L else [[t]]L

[[νp.t]]L ≡ νp′.[[t{{p← p′}}]]L p′ fresh

Table 5.3: Structural congruence rules

The reduction rules for the raconcς calculus are given in Table 5.4. They are
analogous to the ones presented in chapter 4 for the aconcς♯ calculus, so we report
the rules and explain only the modifications.
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d = [ℓi = ς(xi)t
i∈(1...n)

i ]l j ∈ (1, . . . , n)

p 7→ d � [[p.ℓj ]]
L −→ p 7→ d � [[tj{{xj ← p}}]]L (Red invoke)

d = [ℓj = ς(x)uj , ℓi = ς(xi)t
i∈(1...n)−{j}

i ]l

d′ = [ℓj = ς(x)u, ℓi = ς(xi)t
i∈(1...n)−{j}

i ]l

p 7→ d � [[p.ℓj ⇐ ς(x)u]]L −→ p 7→ d′ � p

(Red update)

d = [ℓi = ς(xi)t
i∈(1...n)

i ]◦ d′ = [ℓi = ς(xi)t
i∈(1...n)

i ]•

p 7→ d � [[lock p in t]]L −→ p 7→ d′ � [[locked p in t]]L∪{p}
(Red lock 1)

d = [ℓi = ς(xi)t
i∈(1...n)

i ]• p ∈ L

p 7→ d � [[lock p in t]]L −→ p 7→ d � [[locked p in t]]L
(Red lock 2)

d = [ℓi = ς(xi)t
i∈(1...n)

i ]• d′ = [ℓi = ς(xi)t
i∈(1...n)

i ]◦

p 7→ d � locked p in u −→ p 7→ d′ �u (Red unlock)

[[let x = u in t]]L −→ [[t{{x← u}}]]L (Red let)

if 0 then s else t −→ t (Red if0)

n 6= 0
if n then s else t −→ t (Red ifn)

s −→ t
E [s] −→ E [t] (Red context)

[[u]]L −→ u (Red res)

[[p 7→ d]]L −→ p 7→ d (Red den)

Table 5.4: Concrete Reduction rules
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Differently from the case of aconcς calculus, here we have two rules used to
acquire a lock. (Red lock 1) acquires a lock on an unlocked object as before, while
(Red lock 2) allows to reacquire a lock on an already locked object when the same
lock is already owned (reentrant lock). In this rule it is possible to see why lock
environments are needed in the concrete syntax. In fact, before acquiring a reentrant
lock, we check if the name to be locked already appears inside the current lock
environment.

5.3 Abstract interpretation of raconcς

In this section we present the definition of the abstract interpretation for the raconcς
calculus. The abstract interpretation is very similar to the one already presented in
chapter 4 for the aconcς calculus, and is given with respect to an abstract calculus
which approximates the concrete one. In particular, this abstract interpretation
modifies the lock environments in order to have multisets instead of simple sets of
names. This because we want to identify multiple occurrences of the same name in
lock environments in order to detect reentrant locks. Moreover, to force termination
of the abstract reduction process, we attach to terms a multiset of method calls, as
already done in chapter 4.

As it can be easily seen, this is not a real abstraction of the language, since
the concrete semantics already has all we need to perform our analysis correctly.
The abstract interpretation approach is used here essentially for its peculiarity of
running the analyzed programs, even if in an approximated way. As already seen,
this interpretation is such that given a statement in the abstract calculus, the set
of possible statements which can be generated from it by abstract reduction and
abstract structural congruence is finite. This allows to build a finite transition
system, whose states are statements, which can be finitely analyzed to establish
properties of it. We will use such analysis for lock optimizations.

As before, the concrete and abstract domains are represented, respectively be
the two lattices 〈℘(C),⊆, C, ∅,∪,∩〉 and 〈A,⊑,⊤♯,⊥♯,⊔,⊓〉. We recall that C is
the domain containing all concrete statements of the raconcς calculus, and that
the concrete domain is represented by its powerset, with the usual ordering relation
of containment between sets and with top and bottom elements, respectively, the
whole set C and the empty set, ∅. The least upper bound operator is given by the
union between sets, ∪, while the greatest lower bound is given by the intersection,
∩. The abstract domain, instead, is represented by the set A containing all abstract
statements as they will be redefined in what follows. We will recall also the definition
of the abstract ordering relation, ⊑. As usual, the top and bottom abstract elements
will be represented respectively by ⊤♯ and ⊥♯.

The syntax of the abstract object calculus raconcς♯ is defined in Table 5.5. We
recall the differences between the syntax of the concrete and the abstract calculus.
All integer values are collapsed in the abstract calculus to the unique abstract value
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u♯ ::= x | p | ⊙ | ⊤♯

d♯ ::= [ℓi = ς(xi)t
♯
i

i∈1...n
]l

l ::= ◦ | •

r♯, s♯, t♯ ::= u♯ | p 7→ d♯ | νp.t♯ | u♯.ℓ
u♯.ℓ⇐ ς(x)u♯ | lock u♯ in t♯ | locked p in t♯

let x = s♯ in t♯ | s♯ � t♯ | if r♯ then s♯ else t♯ | [[t♯]]L,S

L = {p1, . . . , pn} multiset

S = {p1.ℓ1, . . . , pm.ℓm} multiset

Table 5.5: Syntax of raconcς♯

⊙. This is because the abstraction must be finitely analyzable. For the same rea-
son, we have to truncate infinite computations and then a new abstract value ⊤♯ is
introduced in the abstract syntax, to represent unknown or non-terminating compu-
tations represented by recursions. Finally, in order to be able to find recursive calls,
the syntax is extended with multisets containing method calls. These multisets are
attached to terms, together with lock environments, now transformed from sets to
multisets, in order to find cases of reentrant locks.

The abstraction functions α and concretization functions γ, between the concrete
and abstract calculus are almost the same as the ones defined in chapter 4 for the
aconcς♯-calculus. They are reported in Tables 5.6 and 5.7 for further clarity.

We recall that γ functions produce sets of concrete syntactic objects, since the
concrete domain is a powerset.

The abstract semantics is given, analogously to the concrete one, by means of
structural congruence and reduction rules. Because of their similarity to the concrete
case, we redefine only what differs. The rest is almost identical, apart from the fact
that the concrete syntactic categories should be substituted by the abstract ones,
that lock environments should be considered as multisets, instead of sets as in the
concrete case, and that there are also the multisets of method calls attached to
terms. These last multisets are handled exactly in the same way as shown in Table
4.12 for the aconcς♯ calculus. Then, as done for the aconcς♯-calculus in chapter 4,
we have evaluation contexts in Table 5.2, structural congruences in Table 5.8, and
new abstract reduction rules in Table 5.9.

Let us note again how method calls and if statements are dealt with. For method
calls we recall that, thanks to the function occ(p.ℓj, S), we truncate recursive func-
tions after two recursive calls. A detailed explanation of the reasoning behind such
truncation may be found in chapter 4. Here we only say that such a truncation
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αr(x) = x
αr(p) = p
αr(n) = ⊙

αd([ℓi = ς(xi)t
i∈1...n

i ]l) = [ℓi = ς(xi)α(ti)
i∈1...n]l

αt(u) = αr(u)
αt(νp.t) = νp.αt(t)
αt(p 7→ d) = p 7→ αd(d)
αt(u.ℓ) = αr(u).ℓ
αt(u1.ℓ⇐ ς(x)u2) = αr(u1).ℓ⇐ ς(x)αr(u2)
αt(lock u in t) = lock αr(u) in αt(t)
αt(locked p in t) = locked p in αt(t)
αt(let x = s in t) = let x = αt(s) in αt(t)
αt(s � t) = αt(s) �αt(t)
αt(if r then s else t) = if αt(r) then αt(s) else αt(t)

α(t) = [[αt(t)]]
∅,∅

Table 5.6: Abstraction functions

γr(x) = {x}
γr(p) = {p}
γr(⊙) = {n | n is an integer number}
γr(⊤

♯) = C the set of all concrete terms

γd([ℓi = ς(xi)t
♯
i

i∈1...n
]l) = {[ℓi = ς(xi)t

i∈1...n
i ]l | ti ∈ γ(t

♯
i)}

γt(u
♯) = γr(u

♯)
γt(νp.t

♯) = {νp.t | t ∈ γ(t♯)}
γt(p 7→ d♯) = {p 7→ d | d ∈ γd(d

♯)}
γt(u

♯.ℓ) = {u.ℓ | u ∈ γ(u♯)}

γt(u
♯
1.ℓ⇐ ς(x)u♯2) = {u1.ℓ⇐ ς(x)u2 | u1 ∈ γ(u

♯
1), u2 ∈ γ(u

♯
2)}

γt(lock u♯ in t♯) = {lock u in t | u ∈ γ(u♯), t ∈ γ(t♯)}
γt(locked p in t♯) = {locked p in t | t ∈ γ(t♯)}
γt(let x = s♯ in t♯) = {let x = s in t | s ∈ γ(s♯), t ∈ γ(t♯)}
γt(s

♯ � t♯) = {s � t | s ∈ γ(s♯), t ∈ γ(t♯)}
γt(if r

♯ then s♯ else t♯) = {if r then s else t | r ∈ γ(r♯), s ∈ γ(s♯), t ∈ γ(t♯)}

γt([[t
♯]]L,S) = [[γ(t♯)]]L

γ(t♯) = γt(t
♯)

Table 5.7: Concretization functions
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s♯ � E [t♯] ≡ E [s♯ � t♯] if fn(s♯) ∩ bn(E) = ∅
(νp)E [s♯] ≡ E [(νp)s♯] if p /∈ fn(E) ∪ bn(E)

[[locked p in t♯]]L,S ≡ locked p in [[t♯]]L,S

[[s♯ � t♯]]L,S ≡ [[s♯]]∅,S � [[t♯]]L,S

[[let x = s♯ in t♯]]L,S ≡ let x = [[s♯]]L,S in [[t♯]]L,S

[[if r♯ then s♯ else t♯]]L,S ≡ if [[r♯]]L,S then [[s♯]]L,S else [[t♯]]L,S

[[νp.t♯]]L,S ≡ νp′.[[t♯{{p← p′}}]]L,S p′ fresh

Table 5.8: New abstract structural congruence rules

d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]l j ∈ (1, . . . , n) occ(p.ℓj, S) ≤ 1

p 7→ d♯ � [[p.ℓj]]
L,S −→♯ p 7→ d♯ � [[t♯j{{xj ← p}}]]L,S⊎{p.ℓj}

(Red invoke♯1)

d♯ = [ℓi = ς(xi)t
♯ i∈(1...n)
i ]l j ∈ (1, . . . , n) occ(p.ℓj, S) > 1

p 7→ d♯ � [[p.ℓj ]]
L,S −→♯ p 7→ d♯ �⊤♯ (Red invoke♯2)

if ⊙ then s♯ else t♯ −→♯ s♯ (Red if♯1)

if ⊙ then s♯ else t♯ −→♯ t♯ (Red if♯2)

Table 5.9: New abstract reduction rules
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is needed so that the static analysis can always terminate. For the if statement,
we note again that it produces two results, differently from the concrete case. We
recall again that in the abstract reduction we examine all possible path of execution,
due to the above rules for the if statement, and due to the fact that the evaluation
contexts E � b and a � E are used to obtain all possible interleavings between parallel
threads.

Finally, lte us remark that, as already seen and proved in chapter 4, the lock
environments model correctly all the locks held by each (sub)term at each program
point. Using lock environments, then, it is possible to know under which locks each
term or subterm is executed.

5.4 Correctness of the Abstract Interpretation

In this section we resume the correctness results about the abstract interpretation
proved in chapter 4.

First of all we recall the formal definition of the ordering relation of the abstract
domain. Abstract statements are ordered according to the rules presented in Table
5.10. Note that, differently from chapter 4, now the abstract terms are compared
only according to their multisets of method calls. This because, since the lock
environments occur also in the concrete syntax, we require equality on them when
comparing abstract terms.

[[t♯]]L,S1 ⊑ [[t♯]]L,S2 ⇔ S1 ⊆ S2

t♯1 ⊑ t♯2 ⇒ (νp.t♯1) ⊑ (νp.t♯2)

t♯1 ⊑ t♯2 ⇒ (locked p in t♯1) ⊑ (locked p in t♯2)

(s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (let x = s♯1 in t♯1) ⊑ (let x = s♯2 in t♯2)

(s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (s♯1 � t
♯
1) ⊑ (s♯2 � t

♯
2)

(r♯1 ⊑ r♯2) ∧ (s♯1 ⊑ s♯2) ∧ (t♯1 ⊑ t♯2) ⇒ (if r♯1 then s♯1 else t♯1) ⊑ (if r♯2 then s♯2 else t♯2)

Table 5.10: Abstract ordering relation

The first result shows that α and γ form a Galois connection between the con-
crete and abstract domains, that is the concrete and abstract syntax respectively
(since we deal with a calculus). Its proof is largely analogous to the one presented for
proposition 4.5.2, with the only difference that the concretization function discards
only the multisets of method calls, and does not discards lock environments. How-
ever, since we require equality between lock environments when comparing terms,
the proofs remain valid.

Proposition 5.4.1. Let t♯ be an abstract term, and S ∈ ℘(C) be a set of concrete
terms. α and γ form a Galois connection between the two domains ℘(C) and A.
That is:
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• α and γ are monotonic,

• S ⊆ γ(α(S)), where α and γ are applied pointwise,

• α(γ(t♯)) ⊑ t♯.

�

Proposition 5.4.2. Let a and t be respectively a concrete statement and a concrete
term, if a −→n t then there exists an abstract term t♯ such that α(a) −→♯m t♯

and t ∈ γ(t♯). −→ and −→♯ include the congruence rule applications which make
possible the reduction. −→n denotes then a sequence of applications of n consecutive
reduction rules and congruences.

�

This proposition states that the abstract reduction correctly approximates the
concrete one. That is every concrete computation has a corresponding abstract one,
and then if a property is verified for all the reductions of an abstract statement α(a),
it is verified also for a.

Proposition 5.4.3. Given a statement a, the abstract interpretation process of α(a)
always terminates.

�

5.5 Lock elimination analysis

In this section we consider three categories of locks that can be eliminated from
a concrete statement. They were presented informally in section 5.1 as reentrant,
single threaded, and enclosed locks. We will define formally those categories in the
following.

Reentrant, single threaded and enclosed locks may be eliminated from a state-
ment in the raconcς calculus using the information contained inside lock environ-
ments. In fact, given a concrete statement a, first we calculate the reduction graph
of the corresponding abstract term t♯ = α(a). After this we use a labeling function,
as defined below, to give a unique label to each lock of the initial statement and
propagate these labels along all the abstract reduction graph.

Definition 5.5.1 (labeling function). A labeling function Λ is an injective function
from program points to N.
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In the following, given a program point lock p in t such that Λ(lock p in t) = i,
we say for short that the lock has label i, and write locki to identify such lock. Given
a lock with label i, we consider all its acquisitions in the graph and the respective
lock environments before these acquisitions. Note that, since the labeling function
is injective, we have that if a lock labeled by i is requested more than once, than
it is always requested on the same reference (essentially because this case happens
only when a lock appears in the definition of a method which is called more than
once). A lock can be eliminated if it satisfies one of the following definitions:

Definition 5.5.2 (reentrant lock). Let i be the label for a lock requested n times
on the reference p in the abstract reduction graph, and let L1, . . . , Ln be the lock
environments before the n acquisitions of locki. The locki is reentrant if:

∀j ∈ {1, . . . , n}. p ∈ Lj

The above definition simply requires that the name for which the lock i is re-
quested already appears inside the lock environment before the acquisition.

Definition 5.5.3 (single threaded lock). Let i be the label for a lock requested n
times on the reference p in the abstract reduction graph, and let sj = [[locki p in t]]Lj

with j ∈ {1, . . . , n} be the terms in the graph where the locki is requested. Now
consider all m terms th = [[lockk p in t]]Lh for all k (note that {th} ⊇ {sj}). The
locki is single threaded if we do not have any (sub)statement of the form

th � sj

appearing in the abstract reduction graph.

The above definition requires that the lock i on the reference p is never requested
in parallel with other locks on the same name p in all the reduction graph.

Definition 5.5.4 (enclosed lock). Let i be the label for a lock requested on the
reference p, let L be the lock environment before its acquisition, and let L1, . . . , Ln
be the lock environments before the acquisition of all the other locks on p in the
graph. The locki is enclosed if:

∀j ∈ {1, . . . , n}. L ∩ Li 6= ∅

The above definition requires that, considering a lock labeled by i on the reference
p, it may be eliminated if the lock environment that we have before its acquisition
has at least one reference in common with all the other lock environments for locks
on p. This means that we have requested some other locks before requesting the
lock on p, and these locks actually protect from concurrent accesses.

Proposition 5.5.1. Given a concrete statement a, if a lock may be eliminated from
its abstraction α(a), then the same lock may also be eliminated from a.

Proof: The argument is analogous to the one presented in chapter 4 for the
race checking analysis.

�
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5.6 Example

Let us give a simple example. Consider the following statement a, where the numbers
near each lock are the unique labels given for the analysis:

a = [[νp.νq.p 7→ [ℓ = ς(x) lock1 x in 5]◦ � q 7→ [ℓ = ς(x)6]◦ �

if n then lock2 p in p.ℓ else (lock3 p in lock4 q in p.ℓ � lock5 p in lock6 q in q.ℓ)]]∅

αs(a) is analogous to a apart from the substitution of ⊙ for every integer value
and the attachment of empty multisets of method calls to environments. The graph
of all possible abstract reductions for α(a) is shown in Figure 5.1. For the sake of
readability we removed the restrictions and the reference statements from the figure.
Moreover, because it is clear from the context, we removed the word “locked” from
the terms when a lock is acquired. The structural congruence rules are applied
implicitly. Note that we removed also the rightmost part of the graph, representing
it by . . . , since it is equal to the central part, exchanging the order of the execution
of the two terms in parallel.

[[if ⊙ then lock2 p in p.ℓ else (lock3 p in lock4 q in p.ℓ � lock5 p in lock6 q in q.ℓ)]]∅,∅

[[lock2 p in p.ℓ]]∅,∅ [[(lock3 p in lock4 q in p.ℓ � lock5 p in lock6 q in q.ℓ)]]∅,∅

[[p.ℓ]]{p},∅ [[lock3 p in lock4 q in p.ℓ]]∅,∅ � [[ lock5 p in lock6 q in q.ℓ]]∅,∅

[[lock1 p in ⊙ ]]{p},{p.ℓ} [[lock4 q in p.ℓ]]{p},∅ � [[ lock5 p in lock6 q in q.ℓ]]∅,∅ . . .

[[⊙ ]]{p,p},{p.ℓ} [[p.ℓ]]{p,q},∅ � [[ lock5 p in lock6 q in q.ℓ]]∅,∅

[[lock1 p in ⊙ ]]{p,q},{p.ℓ} � [[ lock5 p in lock6 q in q.ℓ]]∅,∅⊙

[[⊙ ]]{p,p,q},{p.ℓ} � [[ lock5 p in lock6 q in q.ℓ]]∅,∅

⊙ � [[lock6 p in q.ℓ]]{p},∅

⊙ � [[q.ℓ]]{p,q},∅

⊙ �⊙

??

? ?

?

?

?

?

?

?

?

?

?

?

?

Figure 5.1: Abstract reduction graph for αs(a)

Following our analysis, we have that the locks 1,2,4 and 6 may be eliminated
from the statement a. In fact the lock number 1 is acquired three times (one is in
the removed rightmost part of the graph), and for each acquisition we have a lock



5.6. EXAMPLE 83

environment which contains p. Since this lock is required on the reference p, we have
a reentrant lock. For lock number 2, it is clearly a single threaded lock, since we
have no threads in parallel with the one requesting it. For the locks 4 and 6 we have
that they are acquired twice (again, the second acquisitions appear in the rightmost
part of the graph), and for each acquisition we have a lock environment equal to
{p}. Note that these locks are requested on the reference q and that we do not have
any other request for locks on q in the graph. Following the definition of enclosed
locks, one of these locks may be eliminated because the intersection between the lock
environments is not empty, being equal to {p}. After this first elimination we would
have only one lock requested on the name q. Again, all the lock environmets before
the acquisition of this lock are equal to {p} and then we have another enclosed lock
that can be eliminated safely. The resulting statement after these eliminations is
then:

a1 = [[νp.νq.p 7→ [ℓ = ς(x)5]◦ � q 7→ [ℓ = ς(x)6]◦ �

if n then p.ℓ else (lock3 p in p.ℓ � lock5 p in q.ℓ)]]∅

Since we have removed four locks, the abstract reduction graph for this state-
ment is shorter than the one seen above. This means that we have reduced the
computation steps and that in a real language we would have a great advantage in
terms of performance.

Note that the abstract reduction graph should be recomputed each time we
eliminate a lock, since the lock environments could be affected by such elimination. A
way to avoid this inconvenient is to annotate each reference inside a lock environment
with the label of the lock that acquired it. In this way, each time we remove a lock
we can simply update the lock environments affected by this deletion, and go on
with further eliminations, if possible.
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Chapter 6

Abstract Interpretation against

Insecure Flows

Abstract

In this chapter we will adapt our approach based on abstract interpreta-
tion to another framework of analysis, the one of security. In particular, we
will investigate in this chapter the use of abstract interpretation techniques
to ensure a property of non-interference in concurrent programs. The ap-
proach followed in this chapter will be unified with the rest of the thesis,
starting from the definition of a concurrent object calculus (we will simplify
the aconcς calculus removing locks, since they are irrelevant for our analysis),
continuing with a definition of abstract interpretation (which will be modi-
fied from the preceding ones to introduce security levels), and ending with a
security analysis.

6.1 The Problem of Insecure Information Flow

Given a program, we may want to assign to variables a security level. This approach
is often used to encode situations where we want that some information stored in a
variable belonging to a certain security level, may not be read or investigated using
variables belonging to lower security levels. In the most general sense, we can say
that a program has a property of secure information flow if the information contained
in each of its variables, when termination is reached, does not depend from the initial
values contained inside variables with higher information level. If we suppose to have
only two security levels, H (for “high”) and L (for “low”), and two instance variables
of an object in aconcς calculus p.x and p.y with levels respectively H and L, then
the following programs do not satisfy the secure information flow property:

νp. p 7→ [x = ς(x)5, y = ς(x)7] � let z = p.x in (p.y ⇐ z)
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νp. p 7→ [x = ς(x)5, y = ς(x)7] � if p.x then p.y ⇐ 1 else p.y ⇐ 0

In the first case we have a direct information flow starting from a variable of
level H (p.x) and ending in a variable of level L (p.y). In fact, after the execution,
the variable with initial level L now contains a value which had H as its initial
level. In the second case, instead, we do not have an explicit violation of the secure
information flow as in the previous case. Nevertheless we have that the final value
of a variable with initial level L is dependent from the value of a variable with initial
level H , since, as an example, if the final value of p.y is 0, we know that the initial
value of p.x was 0 as well.

This problem is also known as non-interference. The non-interference property
has been introduced in the eighties in some works by Goguen and Meseguer [31,
32]. More recently, this problem has been studied both in sequential and parallel
languages using both type checking [56, 54, 35, 43, 55, 45, 49, 53, 13, 14, 58, 41, 37]
and semantics techniques [4, 5, 9, 29, 30, 39, 42, 50, 52].

The fundamental difference between sequential and parallel languages, in this
context, lies in the fact that in sequential programs, we have that indirect informa-
tion flows (like the second one above) cannot extend beyond the scope of commands.
As an example, let us consider a statement similar to one of the two seen before:

νp. p 7→ [x = ς(x)5, y = ς(x)7] �
let z = (if p.x then p.y ⇐ 0 else p.y ⇐ 1) in (p.y ⇐ 10)

(6.1)

If we consider p.x as having information level H , and p.y as having information level
L, we can see that there is no information flow from p.x to p.y. In fact, we have
that at the end of the execution of the program, the value stored in p.y is always
10, independently of the value stored in variable p.x.

When we use multithreaded languages, instead, we have new kind of information
flows due to synchronizations [48]. Consider, as an example, the following statement:

νp. p 7→ [a = ς(x)5, b = ς(x)1, c = ς(x)5,
l = ς(x)let y = (if x.b then x.l else 1) in x.c⇐ 1] �

(if p.a then p.b⇐ 1 else let z = p.b in p.b⇐ z) � p.l

and suppose that an attacker cannot observe the program non-termination or total
execution time. If we suppose to start the execution with a and b of level H , and c
of level L, we have that the first of the two parallel threads:

if p.a then p.b⇐ 0 else let z = p.b in p.b⇐ z

sets the variable p.b to 0 if the value contained in p.a is not 0, otherwise does nothing.
This is an indirect information flow from variable p.a to variable p.b, but it is not
insecure, since we said that the p.b variable starts with information level H . Look
now at the second parallel thread:

p.l −→ (let y = (if p.b then p.l else 1) in p.c⇐ 1)
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This thread looks at the value contained in p.b and loops, calling again p.l, until p.b
is set to 0 by some other thread. Thus the first thread, with the above values for
instance variables, unblocks the second one, passing indirectly to it some information
about the value of the H variable p.a. In fact, we see that the value of p.c changes to
1, and looking at the final value of p.c, we may say that the initial value of p.a was
different from 0. Then, in this case, we have an indirect information flow from the
H variable p.a to the L variable p.c, which is insecure and which extends beyond the
scope of the command which tests the H variable p.b. We would like to remark, in
fact, that the two above commands, taken as single threaded programs, are secure,
(if non-termination or total execution time are not observable) while taken together
they present this problem of insecure information flow.

In other words, whenever in a concurrent program we allow synchronization
between concurrent threads based on shared variables and loops which test them,
we have possible information flows from the variables guarding the loops, to the
variables both inside the loops and after the loops.

In this chapter we will present a static analysis for checking the absence of
insecure information flows based on abstract interpretation, as done in chapters 4
and 5. This is useful also in this case, since we gain in precision with respect to other
kinds of analyses based on other approaches. As an example, many of the analyses
for secure information flows based on type checking techniques suffer of the same
problem: they cannot give a correct type to programs like the (6.1) shown before. In
fact, type checking techniques often try to give correct types to programs by dealing
singularly with each command. In program 6.1 we do have an insecure flow in
the if statement, but this flow is completely deleted from the following instruction,
because we have a constant assignment to the variable p.y. Many type checking
techniques simply discard the program as non-secure when the first statement is
analyzed. Obviously, there are also advantages in using type systems to perform
these kind of analyses, namely their computational efficience, and the fact that
many type systems can provide principal types for expressions, which subsume all
other possible typings.

As done in previous chapters, we will present an object calculus, derived from a
simplification of the aconcς calculus presented in chapter 4, which will be used to
model the basics of object oriented programming languages. We will then present
an abstract interpretation for this calculus, adding security levels to methods, and
we will use it to check the above properties of security.

6.2 The object calculus saconcς

6.2.1 Syntax

Table 6.1 defines the syntactic categories of results, denotations, terms and informa-
tion levels. They are derived from the ones defined for the aconcς calculus, removing
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all the constructs which are not necessary for our analysis of secure information flow.
The main difference, between this calculus and the ones presented in chapters 4 and
5 is that now each method has an initial level of information associated to it. This
level, without loss of generality, will assume one of the two values H or L, with the
assumption that L ≤ H . The language, however, can be easily extended (as well as
the analysis we will show in the following) to support general lattices of security lev-
els. This level codifies what kind of information is stored inside instance variables.
We suppose that all other methods have initial level of information equal to L.

u ::= results
x variable
p location
n integer number

d ::= denotations

[ℓΦi

i = ς(xi)t
i∈1...n

i ] object

r, s, t ::= terms
u result
νp.t restriction
p 7→ d reference
u.ℓ method invocation
u.ℓ⇐ ς(x)u field update
let x = s in t let
s � t parallel composition
if r then s else t if

Φ ::= initial information levels
H high
L low

Table 6.1: Syntax of saconcς

6.2.2 Semantics of saconcς

As done in the previous chapters, we will define the semantics of the saconcς calculus
using a structural congruence to transform terms, and some reduction rules to model
computational steps.

Again, both the structural congruence and reduction rules are given in terms of
evaluations contexts. We show the syntax of evaluation contexts and the structural
congruence rules in Tables 6.2 and 6.3.
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E ::=
[.]
E � t
s � E
let x = E in b
if E then a else b
νp.E

Table 6.2: Reduction contexts

s �E [t] ≡ E [s � t] if fn(s) ∩ bn(E) = ∅
(νp)E [s] ≡ E [(νp)s] if p /∈ fn(E) ∪ bn(E)

Table 6.3: Structural congruence rules

The reduction rules for the saconcς calculus are given in Table 6.4. They are
analogous to the ones presented in chapter 4 for the aconcς calculus.

6.3 Abstract interpretation of saconcς

In this section we present an abstract interpretation for the calculus shown before.
Since the analysis about secure information flow requires a different kind of knowl-
edge with respect to the previous analyses, we will have to redefine the abstraction
and the concretization functions, as well as the abstract reduction rules. Moreover,
we have to address the problem of what is observable, so to understand what can
generate those insecure information flows that our analysis will detect. This chapter
will focus only on the absence of what is know in the literature as strong dependency
[18] between low and high level variables. So we will look only at information flows
caused by direct assignments, by the control structure of programs or by synchro-
nization between parallel threads. We will not consider, as an example, those flows
due to missing termination or longer computation after testing a high variable, also
known, respectively, as termination channels and timing channels, or those flows
due to resource exhaustion or power consumption observability [47]. Possible exten-
sions of the work presented in this chapter could include then the analyses related
to insecure information flows caused by resource contention, since these flows arise
in any practical implementation of concurrent object oriented languages.

First of all, we have to consider that our notion of secure information flow, when
analyzed using abstract interpretation techniques, requires to know which is the
information level of the contents of variables, and to distinguish it from the initial
information levels of the variables themselves. This will help us in the detection of
flows of information caused by assignments of high values to low variables. Another
notion needed for our analysis will be attached to commands, since we want to
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d = [ℓΦi

i = ς(xi)t
i∈(1...n)

i ] j ∈ (1, . . . , n)
p 7→ d � p.ℓj −→ p 7→ d � tj{{xj ← p}} (Red invoke)

d = [ℓ
Φj

j = ς(x)uj , ℓ
Φi

i = ς(xi)t
i∈(1...n)−{j}

i ]

d′ = [ℓ
Φj

j = ς(x)u, ℓΦi

i = ς(xi)t
i∈(1...n)−{j}

i ]

p 7→ d � p.ℓj ⇐ ς(x)u −→ p 7→ d′ � p

(Red update)

let x = u in t −→ t{{x← u}} (Red let)

if 0 then s else t −→ t (Red if0)

n 6= 0
if n then s else t −→ s (Red ifn)

s −→ t
E [s] −→ E [t] (Red context)

Table 6.4: Concrete Reduction rules
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capture also indirect information flows due to the control structure of programs
and to synchronizations. We will attach to each term of the language, a level of
knowledge. This level will represent the amount of knowledge (in term of information
level) from which the current term depends. As an example, by considering an if
term which reads a variable with high information level, we should have a high
level of knowledge in both branches of the if term itself, so that we will be able
to capture indirect information flows. Finally, we will need some more information
about recursive calls. In fact, in order to detect flows due to synchronizations, we
will modify the multisets of method calls used in the previous chapters to force the
termination of the abstract reduction. We will attach to each annotation of method
call the level of knowledge that the abstract term had when the call was performed.
In this way we will be able to detect those cases when recursion happens with a high
level of knowledge. This is completely equivalent to the detection of loops which
test information with level H , since recursion is the only way which allows our terms
to loop.

The syntax of the abstract calculus reflects the new types of information attached
to terms, and is shown in Table 6.5. According to what said above, we have that now
results are variables, ⊤♯ to truncate recursions (as in the previous chapters), and
the two abstract values ⊙ϕ and pϕ, corresponding to numbers and references with
attached their information level, which can be h (for high) and l (for low). In this
way we will be able to investigate, at the end of programs, if we have cases when the
level of values inside instance variables is greater than the one that those variables
had at the beginning of the program. In this case we will have that an insecure
information flow happened. To detect cases of indirect information flows we added
a new abstract term [[t♯]]ϕ,S with attached a level of knowledge ϕ which is the least
upper bound (according to the ordering relation l ≤ h) among all the values from
which the term depends in its execution. Finally in this new kind of term we can
see also the usual multiset of method calls used in the previous chapters to truncate
recursions. As said before, this set will also be used to register the level of knowledge
of each method call, in order to detect recursions (loops) depending on high level
values. If the level of a recursion is h, all subsequent computations (branches of
if terms or bodies of let terms) will have to consider it, because assignments to
low-level variables may result in insecure information flows due to synchronizations.

The abstraction function attaches all these kinds of information about levels
to concrete terms, giving initial information level l to all constants and references
found inside terms, and translating the initial information levels for the values inside
instance variables, so that if the initial information level is H , then the value stored
in the variable will have information level h, while if the initial information level is L,
then the value stored in the variable will have information level l. In the definition
of the abstraction function this transformation will be done using a function T such
that T (H) = h and T (L) = l. We recall again our hypothesis that all methods have
initial information level L. As usual, we have different functions for each syntactic
category of the grammar describing the abstract syntax. The abstraction functions
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u♯ ::= x | pϕ | ⊙ϕ | ⊤♯

d♯ ::= [ℓΦi

i = ς(xi)t
♯
i

i∈1...n
]

r♯, s♯, t♯ ::= u♯ | νp.t♯ | p 7→ d♯ | u♯.ℓ | u♯.ℓ⇐ ς(x)u♯ |

let x = s♯ in t♯ | s♯ � t♯ | if r♯ then s♯ else t♯ | [[t♯]]ϕ,S

Φ ::= H | L

ϕ ::= h | l

S = {(p1.ℓ1, ϕ1), . . . , (pm.ℓm, ϕm)}

Table 6.5: Syntax of saconcς♯

are shown in Table 6.6.

αr(x, ϕ) = x
αr(p, ϕ) = pϕ

αr(n, ϕ) = ⊙ϕ

αd([ℓ
Φi

i = ς(xi)t
i∈1...n

i ], ϕ) = [ℓΦi

i = ς(xi)αt(ti, T (Φi))
i∈1...n]

αt(u, ϕ) = αr(u, ϕ)
αt(νp.t, ϕ) = νp.αt(t, ϕ)
αt(p 7→ d, ϕ) = p 7→ αd(d, ϕ)
αt(u.ℓ, ϕ) = αr(u, ϕ).ℓ
αt(u1.ℓ⇐ ς(x)u2, ϕ) = αr(u1, ϕ).ℓ⇐ ς(x)αr(u2, ϕ)
αt(let x = s in t, ϕ) = let x = αt(s, ϕ) in αt(t, ϕ)
αt(s � t, ϕ) = αt(s, ϕ) �αt(t, ϕ)
αt(if r then s else t, ϕ) = if αt(r, ϕ) then αt(s, ϕ) else αt(t, ϕ)

α(t) = [[αt(t, l)]]
l,∅

Table 6.6: Abstraction functions

Once the abstraction functions are defined, the concretization ones are uniquely
determined. In this case the concretization functions simply discard all information
concerning information levels of values, levels of knowledge of terms, and multisets
of method calls. The concretization functions are shown in Table 6.7.

Again, we recall the usual definition of the concrete domain as the powerset of
the set C containing all concrete terms of the saconcς-calculus, with the ordering
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γr(x) = {x}
γr(p

ϕ) = {p}
γr(⊙

ϕ) = {n | n is an integer number}
γr(⊤

♯) = C the set of all concrete statements

γd([ℓ
Φ
i = ς(xi)t

♯
i

i∈1...n
]) = {[ℓΦi = ς(xi)t

i∈1...n
i ] | ti ∈ γt(t

♯
i)}

γt(u
♯) = γr(u

♯)
γt(νp.t

♯) = {νp.t | t ∈ γt(t
♯)}

γt(p 7→ d♯) = {p 7→ d | d ∈ γd(d
♯)}

γt(u
♯.ℓ) = {u.ℓ | u ∈ γr(u

♯)}

γt(u
♯
1.ℓ⇐ ς(x)u♯2) = {u1.ℓ⇐ ς(x)u2 | u1 ∈ γr(u

♯
1), u2 ∈ γr(u

♯
2)}

γt(let x = s♯ in t♯) = {let x = s in t | s ∈ γt(s
♯), t ∈ γt(t

♯)}
γt(s

♯ � t♯) = {s � t | s ∈ γt(s
♯), t ∈ γt(t

♯)}
γt(if r

♯ then s♯ else t♯) = {if r then s else t | r ∈ γt(r
♯), s ∈ γt(s

♯), t ∈ γt(t
♯)}

γt([[t
♯]]ϕ,S) = γt(t

♯)

γ(t♯) = γt(t
♯)

Table 6.7: Concretization functions

relation of containment between sets, ⊆. The abstract domain is instead defined
as the set A containing all abstract terms. The ordering relation for the abstract
domain will be formally defined in the following, when we will prove the correctness
of the abstract interpretation.

As done in the previous chapters we will define the abstract semantics using
evaluation contexts, structural congruences and reduction rules. The evaluation
contexts are the same as in the concrete case, and can be seen in Table 6.2. We have
to add some congruences to deal with the new term [[t♯]]ϕ,S introduced in the abstract
syntax. The new abstract congruence rules are shown in Table 6.8. According to the
new rules, levels of knowledge and multisets of method calls are simply distributed
among subterms.

s♯ � E [t♯] ≡ E [s♯ � t♯] if fn(s♯) ∩ bn(E) = ∅
(νp)E [s♯] ≡ E [(νp)s♯] if p /∈ fn(E) ∪ bn(E)

[[s♯ � t♯]]ϕ,S ≡ [[s♯]]ϕ,S � [[t♯]]ϕ,S

[[let x = s♯ in t♯]]ϕ,S ≡ let x = [[s♯]]ϕ,S in [[t♯]]ϕ,S

[[if r♯ then s♯ else t♯]]ϕ,S ≡ if [[r♯]]ϕ,S then [[s♯]]ϕ,S else [[t♯]]ϕ,S

[[νp.t♯]]ϕ,S ≡ νp′.[[t♯{{p← p′}}]]ϕ,S p′ fresh

Table 6.8: New abstract structural congruence rules
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d♯ = [ℓΦi

i = ς(xi)t
♯ i∈(1...n)
i ] j ∈ (1, . . . , n) occ(p.ℓj , S) ≤ 1

p 7→ d♯ � [[pϕ.ℓj]]
ψ,S −→♯ p 7→ d♯ � [[t♯j{{xj ← pϕ}}]]ψ,S⊎{(p.ℓj,ψ)} (Red invoke♯1)

d♯ = [ℓΦi

i = ς(xi)t
♯ i∈(1...n)
i ] j ∈ (1, . . . , n) occ(p.ℓj , S) > 1

p 7→ d♯ � [[pϕ.ℓj ]]
ψ,S −→♯ p 7→ d♯ �⊤♯ (Red invoke♯2)

d = [ℓ
Φj

j = ς(x)u♯j , ℓ
Φi

i = ς(xi)t
♯ i∈(1...n)−{j}
i ]

d′ = [ℓ
Φj

j = ς(x)uϕ⊔ψ⊔ϑ, ℓΦi

i = ς(xi)t
♯ i∈(1...n)−{j}
i ]

p 7→ d � [[pϕ.ℓj ⇐ ς(x)uψ]]ϑ,S −→ p 7→ d′ � [[pϕ]]ϑ,S
(Red update♯)

θ = ℜ(S)

let x = [[uϕ]]ψ,S in [[t♯]]ϑ,S
′

−→ [[t♯{{x← uϕ⊔ψ}}]]ϑ⊔θ,S
′ (Red let♯)

θ = ℜ(S) ⊔ ϕ ⊔ ψ ⊔ ϑ

if [[⊙ϕ ]]ψ,S then [[s♯]]ϑ,S
′

else [[t♯]]ϑ,S
′

−→♯ [[s♯]]θ,S
′ (Red if♯1)

θ = ℜ(S) ⊔ ϕ ⊔ ψ ⊔ ϑ

if [[⊙ϕ ]]ψ,S then [[s♯]]ϑ,S
′

else [[t♯]]ϑ,S
′

−→♯ [[t♯]]θ,S
′ (Red if♯2)

s♯ −→ t♯

E [s♯] −→ E [t♯] (Red context♯)

[[p 7→ d♯]]ϕ,S −→ p 7→ d♯ (Red den♯)

E [⊤♯] −→ ⊤♯
(Red ⊤♯)

Table 6.9: New abstract reduction rules

The reduction rules for the abstract calculus are shown in Table 6.9. Since we
have to deal with levels of information and levels of knowledge attached to terms,
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we are forced to redefine all concrete rules. We will give a brief explanation in what
follows. According to rule (Red invoke♯1), we have a method invocation of the form
pϕ.ℓj . The reference p has an information level associated to it, since, as an example,
it can come as a result of the reduction of a term with an high level of knowledge
(i.e. an if term or a recursion testing an high variable), and this would mean that
simply using the value p inside a term we could have some leak of high information.
The whole term [[pϕ.ℓj]]

ψ,S means also that the current level of knowledge is ψ (if this
value is high, maybe we are in the scope of an if term which tests an high variable),
and that the current multiset of method calls (this is quite similar to the ones seen
in the previous chapters) is S. The method invocation is, as usual, replaced by the
method body with the instantiation of the self variable by pϕ, and the new level of
knowledge remains the same as the level we had when the call was performed, ψ.
The set S is updated with the new call, as well as with the level ψ, to indicate that
this call was executed when having a level of knowledge of ψ. This set, as in previous
chapters will be used to truncate recursions, but here we have another important
function. The knowledge levels attached to each calls will help to determine when
a recursion is performed having an high level of knowledge. When this happens we
may have an attempt of synchronization between parallel threads which can leak
some high information. As in previous chapters, we used in this rule the function
occ(p.ℓj , S) which determines if we have recursion (it is slightly different from the
ones used previously, since S is now a multiset of couples), regardless of the levels of
knowledge of the calls in S. The rule (Red invoke♯2) allows to truncate recursions,
as in previous chapters. Note that the information level of the reference pϕ is simply
discarded in this rule. This is correct since recursive calls are expanded twice and
then we already used ϕ in the previous recursions. The rule (Red update♯) allows
to update instance variables. According to the rule, we have that the new level of
information of the updated variable is obtained as the least upper bound between the
level of information of the result which is used to update the variable itself, the level
of knowledge of the update term and the level of information of the reference to the
updated object. The level of the result u must be included since that result directly
updates the variable. The level of knowledge of the update term must be included
since the term may be executed, as an example, inside an if term which tests an high
variable. Finally, the information level of the reference has to be included in the
new information level of the variable since that reference may be the result of the
evaluation of a term with high level of knowledge. The returned reference [[pϕ]]ϑ,S

keeps its level of information, as well as the level of knowledge of the update term.
Then, according to the (Red res♯) rule, the reference may change level of information
to pϕ⊔ϑ, since it is the result of an update term, and this latter term may have a
high level of knowledge. The rule (Red let♯) allows to reduce let terms. We already
said that let terms allow to simulate sequences of commands, and then in this rule
we have to consider the level of knowledge of high recursivions. In fact, if we have
a recursion in the first subterm of a let term, and if this recursion has high level
of knowledge, we may have an insecure synchronization between parallel threads.
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Thus we have to pass this high level of knowledge to the second term of the let, in
order to check all assignments performed after this synchronization. The rule binds
the variable x to the result of the first part of the construct u, with information level
equal to the least upper bound between the level of the returned value, ϕ, and the
level of knowledge of the term which returns it, ψ. Note that we do not consider the
level of recursive calls in the binding, since this level updates the level of knowledge
of the whole term where the binding is performed. The new level of knowledge is
obtained as the least upper bound between the previous level of knowledge and the
level of recursion of recursive calls. This level can be obtained by a special function
ℜ, used in the premise of the rule. This function extracts the least upper bound
between all levels of recursive calls in S (a call is recursive if it appears more than
once), and for our case where we have only two levels of information, it can be
defined as follows:

ℜ(∅) = l

ℜ(S) =

{

h if ∃(p.ℓ, h), (p.ℓ, ϕ) ∈ S
l otherwise

The same function is used also in the two rules for the if term. They are analogous
to each other, so we will describe only the first one. According to it, we have
a result [[ ⊙ϕ ]]ψ,S returned by the guard of the if term and we have to consider
the level ϕ, since the result may be taken directly from a high variable, and the
level ψ, since the result can come from the reduction of a term with high level of
knowledge. Moreover, we have to consider the recursion level ℜ(S) of the guard of
the if term, since this term evaluates two subterms in sequence, and the first one
may be recursive (maybe leading to insecure synchronizations). Finally, we have to
compute the least upper bound between all these levels and the previous level of
knowledge for the subterm of the if term that is going to be reduced, ϑ, in order to
obtain the new level of knowledge. As done in the previous chapters, all possible
paths of abstract reduction will be examined. This can be seen from the existence
of two (non-deterministic) rules for the if term, and from the evaluation contexts of
the parallel term, E � t and s � E , which allow to reduce all possible interleavings of
parallel threads. This is useful because when we have parallel threads, we could have
insecure flows according to which thread is executed before. The last two abstract
rules are analogous to the ones seen in previous chapters.

6.4 Correctness of the Abstract Interpretation

We will prove in this section some results about correctness of the abstract inter-
pretation just presented. The propositions are analogous to the ones shown in the
previous chapters, however the proofs are different, since the abstract interpretation
includes new concepts about terms.

First of all, we recall the structures of the concrete and abstract domains. The
concrete domain, as usual, is represented by the powerset 〈℘(C),⊆, C, ∅,∪,∩〉, where
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C is the set containing all concrete terms of the saconcς-calculus. The abstract
domain is defined using the set A containing all abstract terms, with the ordering
relation shown in Table 6.10. We use the usual relation between information levels,
which states that l ≤ h and L ≤ H .

uϕ ⊑ uψ ⇔ ϕ ≤ ψ

u♯ ⊑ u♯1 ⇒ u♯.ℓ ⊑ u♯1.ℓ

(u♯ ⊑ u♯1) ∧ (u♯2 ⊑ u♯3) ⇒ (u♯.ℓ⇐ ς(x)u♯2) ⊑ (u♯1.ℓ⇐ ς(x)u♯3)

∀i. (s♯i ⊑ t♯i)∨ ⇒ [ℓΦi

i = ς(xi)s
♯ i∈(1...n)
i ] ⊑ [ℓΦi

i = ς(xi)t
♯ i∈(1...n)
i ]

(Φi = H ∧ s♯i = uϕ ∧ t♯i = uψ)

d♯ ⊑ d♯1 ⇒ (p 7→ d♯) ⊑ (p 7→ d♯1)

t♯ ⊑ t♯1 ⇒ (νp.t♯) ⊑ (νp.t♯1)

(s♯ ⊑ s♯1) ∧ (t♯ ⊑ t♯1) ⇒ (let x = s♯ in t♯) ⊑ (let x = s♯1 in t♯1)

(r♯ ⊑ r♯1) ∧ (s♯ ⊑ s♯1) ∧ (t♯ ⊑ t♯1) ⇒ (if r♯ then s♯ else t♯) ⊑ (if r♯1 then s♯1 else t♯1)

(s♯ ⊑ s♯1) ∧ (t♯ ⊑ t♯1) ⇒ (s♯ � t♯) ⊑ (s♯1 � t
♯
1)

(t♯ ⊑ t♯1) ∧ (ϕ ≤ ψ) ∧ (S ⊆ S1) ⇒ [[t♯]]ϕ,S ⊑ [[t♯1]]
ψ,S1

Table 6.10: Abstract ordering relation

According to this ordering relation, abstract terms are compared according both
to multisets of method calls (which are compared using containment between mul-
tisets, as in the previous chapters) and to information levels (which are compared
using l ≤ h and L ≤ H). Given two abstract terms s♯ and t♯ they are compared
with each other by comparing their corresponding subterms. The base elements
in the comparison are results, which are compared according to their information
levels. After results we have that method calls are compared by comparing what
calls the method (a variable or a reference). Instance variable updates are compared
recursively on both the reference of the updated object and the result which update
the instance variable itself. Given two denotations, each method of the first one is
compared with the correspondent one of the second. Note that, in order to form a
Galois connection between the abstraction and concretization functions, we cannot
compare instance variables which have H as their initial information level. In fact,
since the concretization function simply discards multisets and levels, and since the
abstraction function sets to h the information level of the values contained in the
instance variables ℓi having Φi = H , we could have the following problem. Consider
the term:

t = νp 7→ [aH = ς(x)5, bL = ς(x)2] �( let y = (p.a⇐ 2) in let z = p.a in p.b⇐ z)

The corresponding abstract one is:

α(t) = [[νp. p 7→ [aH = ς(x)⊙h, bL = ς(x)⊙l] �

(let y = (pl.a⇐ ⊙l) in let z = pl.a in pl.b⇐ z)]]l,∅
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which reduces to:

α(t) −→♯∗ νp. p 7→ [aH = ς(x)⊙h, bL = ς(x)⊙l] �

(let y = [[pl.a⇐ ⊙l]]l,∅ in [[ let z = pl.a in pl.b⇐ z]]l,∅)

−→♯

s♯ = νp. p 7→ [aH = ς(x)⊙l, bL = ς(x)⊙l] �

([[ let z = pl.a in pl.b⇐ z]]l,∅)

Note that, at this point, the value stored in the variable p.a has a low level of
information, since the variable p.a has just been assigned using a constant which
starts with a low level of information. Since the abstraction and the concretization
functions must form a Galois connection, we must have α(γ(a♯)) ⊑ a♯ for each
abstract term a♯. Using the concretization function on this last term we obtain the
following (set of) concrete term(s):

γ(s♯) = νp.p 7→ [aH = ς(x)n, bL = ς(x)m] �(let z = p.a in p.b⇐ z)

where n and m represent generic integers. By abstracting again we obtain:

α(γ(s♯)) = [[νp.p 7→ [aH = ς(x)⊙h, bL = ς(x)⊙l] �(let z = pl.a in pl.b⇐ z)]]l,∅

≡ νp.p 7→ [aH = ς(x)⊙h, bL = ς(x)⊙l] �([[ let z = pl.a in pl.b⇐ z]]l,∅)

and in order to obtain α(γ(s♯)) ⊑ s♯ we have that the value inside the instance
variable p.a, which has initial information level H , must not be compared between
the two abstract terms. This explains the somehow strange premise of the fourth
rule in Table 6.10. The other rules in the table are straightforward extensions of the
base cases here explained.

Given this ordering relation, the least upper bound operator ⊔ of the abstract
domain computes the union between multisets and the maximum between corre-
sponding information levels (note that this is not required for instance variables
such that Φi = H inside denotations, as said above, but it is not incorrect). The
greatest lower bound operator, ⊓, on the other hand, computes the intersection
between multisets and the minimum between corresponding information levels. As
usual, the abstract domain A is extended with a bottom and a top element ⊥♯ and
⊤♯ (the top element is also used in the abstract syntax).

In the following we present some results about correctness of this abstract inter-
pretation. They are analogous to the ones presented in the previous chapters, but
the proofs are slightly different, since the abstract interpretation changed.

Proposition 6.4.1. Let us consider two abstract terms t♯1 and t♯2 such that t♯1 ⊑ t♯2.
If both t♯1 and t♯2 are different from ⊥♯ and ⊤♯, we can conclude that γ(t♯1) = γ(t♯2).

Proof: The proof is done by induction on the rules of Table 6.10. For the base
case we must consider the rule:

uϕ ⊑ uψ ⇔ ϕ ≤ ψ
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We can have two forms of the abstract result uϕ: ⊙ϕ and pϕ. In both cases, using
the definition of the concretization function, we have:

γ(⊙ϕ) = {n | n is an integer number} = γ(⊙ψ)

γ(pϕ) = {p} = γ(pψ)

Many of the other rules allow to immediately apply the inductive hypothesis and
then the correspondent proofs are straightforward. We report here only the more
complex ones. Consider the rule for denotations:

∀i. (s♯i ⊑ t♯i) ∨ (Φi = H ∧ s♯i = uϕ ∧ t♯i = uψ)⇒
[

ℓΦi

i = ς(xi)s
♯ i∈(1...n)
i

]

⊑
[

ℓΦi

i = ς(xi)t
♯ i∈(1...n)
i

]

By applying the concretization function we obtain:

γ
([

ℓΦi

i = ς(xi)s
♯ i∈(1...n)
i

])

=
{[

ℓΦi

i = ς(xi)s
i∈(1...n)

i

]

| si ∈ γt(s
♯
i)

}

γ
([

ℓΦi

i = ς(xi)t
♯ i∈(1...n)
i

])

=
{[

ℓΦi

i = ς(xi)t
i∈(1...n)

i

]

| ti ∈ γt(t
♯
i)

}

Now, using the premise of the rule we have that, for some values of i, s♯i ⊑ t♯i. For
these values of i we can use immediately the inductive hypothesis to conclude that
γt(s

♯
i) = γt(t

♯
i). For the other values of i, we have that s♯i = uϕ and t♯i = uψ, then using

the concretization function we have γt(s
♯
i) = γt(u

ϕ) and γt(t
♯
i) = γt(u

ψ). Finally, if
u = p we have γt(u

ϕ) = {p} = γt(u
ψ), while if u = ⊙ we have γt(u

ϕ) = Z = γt(u
ψ),

where Z is the set containing all integer numbers.
Finally, consider the last rule:

(t♯ ⊑ t♯1) ∧ (ϕ ≤ ψ) ∧ (S ⊆ S1)⇒ [[t♯]]ϕ,S ⊑ [[t♯1]]
ψ,S1

Here we have that γt([[t
♯]]ϕ,S) = γt(t

♯), and γt([[s
♯]]ϕ,S) = γt(s

♯). Then we can imme-
diately apply the inductive hypothesis to conclude the proof.

�

Proposition 6.4.2. Let s♯ be an abstract term, and S ∈ ℘(C) be a set of concrete
terms. α and γ form a Galois connection between the two domains ℘(C) and A.
That is:

• α and γ are monotonic,

• S ⊆ γ(α(S)), where α and γ are applied pointwise,

• α(γ(t♯)) ⊑ t♯.
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Proof: As done in chapter 4, we have to consider the abuse of notation used
on the abstraction function αp. In fact, since the abstraction function must take
as arguments sets of concrete values, we have to consider in our proof the following
abstraction function:

αSet(S) =
⊔

ci∈S

α(ci)

Now, all the proofs have to be done for the couple of functions αSet and γ.

• Monotonicity: For the concretization function γ, we have that the premise
of the monotonicity condition:

t♯1 ⊑ t♯2 ⇒ γ(t♯1) ⊆ γ(t♯2)

is verified only for t♯1 = ⊥♯ or t♯2 = ⊤♯, and for the cases treated in Table
6.10. We have already that γ(⊤♯) = C, so that if t♯2 = ⊤♯ we have obviously
γ(t♯1) ⊆ γ(t♯2) = C for all abstract terms t♯1. When t♯1 = ⊥♯, it is sufficient
to extend γ so that γ(⊥♯) = ∅ in order to have γ(t♯1) = γ(⊥♯) ⊆ γ(t♯2) for all
abstract terms t♯2. Finally, the result of proposition 6.4.1 covers the cases of
Table 6.10.

For the abstraction function, αSet, since we have that αSet(S) =
⊔

ci∈S
α(ci),

we can conclude that:

S1 ⊆ S2

⇒ S2 = S1 ∪ S3

⇒ αSetp (S1) ⊑ αSet(S1) ⊔ α
Set(S3) = αSet(S1 ∪ S3) = αSet(S2)

• S ⊆ γ(αSet(S)): let us split this proof in three cases:

– αSet(S) = ⊥♯: this case is trivial, since αSet(S) computes the least upper
bound of the abstractions of all statements in S. This upper bound results
to be ⊥♯, then S must be empty. Then: γ(αSet(S)) = γ(⊥♯) = ∅ and
S = ∅ ⊆ ∅.

– αSet(S) = ⊤♯: this case is trivial, since γ(αSet(S)) = γ(⊤♯) = C and for
all S in ℘(C) we have that S ⊆ C.

– ⊥♯ ⊏ αSet(S) = t♯ ⊏ ⊤♯: in this case, consider again that the αSet func-
tion computes the least upper bound of the abstractions of the elements
of S. Now, the only cases where t♯1 ⊔ t

♯
2 = t♯ 6= ⊤♯ are the ones following

the definitions of Table 6.10. Now, we have that the abstraction function
sets the information level of all constants inside the term to l. This can
be easily seen from the definition of α:

α(t) = [[αt(t, l)]]
l,∅
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and from the structure of the function αt, which passes the level l in the
successive calls to the subterms of t. The only information levels which
can be set to h are those of the instance variables with initial information
level H . Again, this can be easily seen from the definition of the function
αd where instance variables are abstracted using the information level
T (H) = h:

αd([ℓ
Φi

i = ς(xi)t
i∈1...n

i ], ϕ) = [ℓΦi

i = ς(xi)αt(ti, T (Φi))
i∈1...n]

Moreover, from the rule α(t) = [[αt(t, l)]]
l,∅ we can also say that the initial

level of knowledge of the abstract term is always set to l, and the initial
multiset of method calls is always set to ∅. From these conclusions,
and from the fact that for all ti ∈ S we have that all the α(ti) = t♯i
are in relation according to Table 6.10, we have that all t♯i share the
same structure of subterms and the same initial information levels of
correspondent objects. This implies that:

∀ti, tj ∈ S. α(ti) = α(tj) = t♯

Now, we have that the definition of γ is such that, for each concrete term
t, t ∈ γ(α(t)). Then we have that:

∀ti ∈ S. ti ∈ γ(α(ti)) = γ(t♯)

and thus we can conclude S ⊆ γ(t♯) = γ(αSet(S)).

• αSet(γ(t♯)) ⊑ t♯: let us split this proof in three cases:

– t♯ = ⊥♯: this case is trivial, since we have that:

αSet(γ(t♯)) = αSet(γ(⊥♯)) = αSet(∅) = ⊥♯ ⊑ t♯

– t♯ = ⊤♯: this case is trivial, since we have that:

αSet(γ(t♯)) = αSet(γ(⊤♯)) = αSet(C) = ⊤♯ ⊑ t♯

– (t♯ 6= ⊤♯) ∧ (t♯ 6= ⊥♯): in this case, the cases of the definitions of α and γ
are such that, given the abstract statement t♯, for all concrete statements
t ∈ γ(t♯), we have α(t) ⊑ t♯. This because the γ function discards all
the multisets of method calls and all information levels of values, while
the α function rebuilds empty multisets and sets information levels of
constants to l (we recall that the values inside instance variables with
initial information level H are compared only according to their type,
and not according to their level). Then the two abstract terms α(t) and
t♯ are in relation according to Table 6.10. Thus we can conclude that
αSet(γ(t♯)) ⊑ t♯.
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�

Proposition 6.4.3. Let t1 and t2 be concrete terms, if t1 −→
n t2 then there exists

an abstract term t♯ such that α(t1) −→
♯m t♯ and t2 ∈ γ(t

♯). −→ and −→♯ include
the congruence rule applications which make possible the reduction. −→n denotes
then a sequence of applications of n consecutive reduction rules and congruences.

Proof: The proof is by induction on n. For the basis of the induction, n = 1,
let us consider all the different cases, according to the possible couples of concrete
statements t1 and t2 taken from the concrete reduction rules, and from the concrete
congruence definition:

• t1 = p.ℓj; t2 = tj{{xj ← p}}:

This case comes from the concrete (Red invoke) rule. Here, we have

α(t1) = [[pl.ℓj ]]
l,∅

Here we can use the rule (Red invoke♯1) to obtain

t♯ = [[αt(tj){{xj ← pl}}]]l,{(p.ℓj,l)}

From this, by applying the concretization function we have

γ(t♯) = {t| t ∈ γ(αt(tj){{xj ← p}})}

Then we have clearly t2 ∈ γ(t
♯), directly from the fact that α and γ form a

Galois connection.

• t1 = p.ℓj ⇐ ς(x)u; t2 = p:

This case comes from the concrete (Red update) rule. Here

α(t1) = [[pl.ℓj ⇐ ς(x)αr(u, l)]]
l,∅

and using the (Red update♯) rule we obtain

t♯ = [[pl]]l,∅

Using the concretization function we have

γ(t♯) = {p}

and clearly t2 ∈ {p}.
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• t1 = let x = u in t; t2 = t{{x← u}}:

This case comes from the concrete (Red let) rule. Here

α(t1) = [[let x = αr(u, l) in αt(t, l)]]
l,∅

and using an abstract structural congruence step we obtain

let x = [[ul]]l,∅ in [[αt(t, l)]]
l,∅

Using the rule (Red let♯) we can reduce this term to

t♯ = [[αt(t, l){{x← ul}}]]l,∅

Finally, using the concretization function we have

γ(t♯) = {t| t ∈ γt(αt(t, l){{x← u}})}

Again, the conclusion t2 ∈ γ(t
♯) follows from the Galois connection.

• t1 = if 0 then s else t; t2 = t

This case comes from the concrete (Red if0) rule. Now

α(t1) = [[if ⊙l then αt(s, l) else αt(t, l)]]
l,∅

and, after an abstract congruence step we obtain the following abstract term

if [[⊙l ]]l,∅ then [[αt(s, l)]]
l,∅ else [[αt(t, l)]]

l,∅

At this point we have two possible rules to apply: (Red if♯1) and (Red if♯2).
By choosing the rule (Red if♯1) we obtain

t♯ = [[αt(t, l)]]
l,∅

and using the concretization function we obtain

γ(t♯) = γt(αt(t, l))

Again, since α and γ form a Galois connection, we obtain the conclusion
t2 ∈ γ(α(t, l)). This case is exactly the same as the one for the other branch
of the if construct, so we will not show that case.

• t1 = s � E [t]; t2 = E [s � t] where fn(s) ∩ bn(E) = ∅:

This case comes from the first concrete congruence rule. Here

α(t1) = [[αt(s, l) �αt(E [t], l)]]
l,∅ ≡ [[αt(s, l)]]

l,∅
� [[αt(E [t], l)]]

l,∅
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Now we have that E is a term with an hole, so that its abstraction produces
an abstract term with the same hole (the abstraction function should be op-
portunely extended, but it is straightforward). This because the αt function
simply replaces each integer value with ⊙ and adds the l security level to each
result. So we can write

αt(E [t], l) = αt(E , l)[αt(t, l)]

where αt(E , l) = C is an abstract context identical to E , with the only exception
of integer values collapsed to ⊙ and the l level attached to each result inside C.
Now we can use one of the abstract congruence rules of Table 6.8 to distribute
the [[ ]]l,∅ structure inside the C context, obtaining

α(t1) ≡ [[αt(s, l)]]
l,∅
� C′[[[αt(t, l)]]

l,∅]

where C′ is identical to C, apart from the fact that its subterms are surrounded
by [[ ]]l,∅. Then C′ has the same names of E , and αt(s, l) has the same names of
s, thus we can use the first abstract congruence rule from Table 6.8 to obtain

α(t1) ≡ C
′[[[αt(s, l)]]

l,∅
� [[αt(t, l)]]

l,∅] = t♯

Now, since the concretization function discards the levels of knowledge and
the multisets of method calls, we obtain

γ(t♯) = {F [x � y] | F ∈ γ(C′) = γ(αt(E , l)), x ∈ γ(αt(s, l)), y ∈ γ(αt(t, l))}

and t2 ∈ γ(t
♯) comes again from the Galois connection between α and γ. The

other side of this congruence rule is very similar to this one, so we do not show
it.

• t1 = (νp)E [s]; t2 = E [(νp)s] where p /∈ fn(E) ∪ bn(E):

This case comes from the second concrete congruence rule. In this case we can
use the same reasoning as before, obtaining

α(t1) = [[(νp)αt(E [s], l)]]
l,∅ = [[(νp)αt(E , l)[αt(s, l)]]]

l,∅ ≡ (νp)[[αt(E , l)[αt(s, l)]]]
l,∅

where this last equivalence was obtained by applying the abstract congruence
rule for restriction. Note that, according to the rule, we should change the
name p with a fresh name, but since there is no possibility of capture (S is
empty), we did not rename it. Now, using again the same reasoning as before,
we can obtain

α(t1) ≡ (νp)C′[[[αt(s, l)]]
l,∅] ≡ C′[(νp)[[αt(s, l)]]

l,∅] = t♯

where αt(E , l) = C and C′ is obtained from C by distributing the level of knowl-
edge l and the multiset of method calls on the subterms. The last equivalence
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was obtained by applying the abstract congruence rule for restriction. Now
using the concretization function on t♯ we obtain:

γ(t♯) = {F [(νp)x] | F ∈ γ(C′) = γ(C) = γ(αt(E , l)), x ∈ γ(αt(s, l))}

and again t2 ∈ γ(t
♯) comes from the Galois connection result.

We should continue with the inductive cases by supposing the proposition true
for −→n−1. All the cases are identical to the ones shown before, with the only
difference that we have a multiset S of method calls, instead of an empty multiset,
and that the information levels may increase or decrease during the evaluation. Since
the concretization function simply discards both the multisets and the information
levels, we have that the inductive cases for the above rules are almost the same as
above, and may be omitted.

The only cases which remain, for the inductive step, are the ones concerning
the (Red context) concrete rule, as well as the (Red invoke) concrete rule, when we
have a non-empty multiset of method calls (and then the (Red invoke♯2) rule may
be triggered).

• t1 = E [r]; t2 = E [s] where r −→ s:

This case comes from the (Red context) rule. Here, we have that the (Red
context) rule allows to conclude E [r] −→ E [s] for any concrete context, starting
from the r −→ s hypothesis. We can use the inductive hypothesis on r −→ s,
to conclude that

α(r) −→♯m s♯ , s ∈ γ(s♯)

Now let us apply the abstraction function on E [r] obtaining (using the same
reasoning as before)

α(E [r]) = [[αt(E [r], l)]]
l,∅ = [[αt(E , l)[αt(r, l)]]]

l,∅ = [[C[αt(r, l)]]]
l,∅ ≡ C′[[[αt(r, l)]]

l,∅]

Now, since α(r) = [[αt(r, l)]]
l,∅, we can apply the (Red context♯) rule on our

inductive hypothesis, obtaining

α(E [r]) −→♯ C′[s♯] = t♯ , s ∈ γ(s♯)

Finally, we can apply the γ function on t♯ obtaining

γ(t♯) = {F [x] | F ∈ γ(C′) = γ(C) = γ(αt(E , l)), x ∈ γ(s
♯)}

and t2 = E [s] ∈ γ(t♯) comes from the inductive hypothesis (s ∈ γ(s♯)) and
from the Galois connection between α and γ (E ∈ γ(αt(E , l))).

• t1 = p.ℓj ; t2 = tj{{xj ← p}}:

This case comes from the (Red invoke) rule. In particular we are interested
in the case concerning the abstract rule (Red invoke♯2). Let us suppose, that
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from an initial statement r we reached after n− 1 steps a statement s, having
r −→n−1 s. Then by inductive hypothesis, we have that there exists an ab-
stract statement s♯ such that α(r) −→♯m s♯ and s ∈ γ(s♯). Now we consider
s = t1 = p.ℓj and reduce it to t2 = tj{{xj ← p}}. On the abstract side, we
consider only the (Red invoke♯2) rule since, as already said, the case corre-
sponding to the (Red invoke♯1) rule is identical as before. We have, from the
inductive hypothesis, that s ∈ γs(s

♯). We can have two cases for s♯:

– s♯ = ⊤♯: in this case the abstract computation remains blocked since,
according to the (Red context♯) rule, we have ⊤♯ −→♯ ⊤♯. Then this case
is trivial, since we have α(r) −→♯m s♯ −→ ⊤♯ and since t ∈ γ(⊤♯) = C
for each concrete term t (then also for t2 = tj{{xj ← p}}).

– s♯ 6= ⊤♯: in this case, the fact that s ∈ γ(s♯) implies that {s} ⊆ γ(s♯).
Thus, using the fact that α never returns ⊥♯, the monotonicity of α, the
Galois connection between α and γ and the hypothesis s♯ 6= ⊤♯ we obtain:

⊥♯ ⊏ αSet({s}) ⊑ αSet(γ(s♯)) ⊑ s♯ ⊏ ⊤♯

This implies that αSet({s}) and s♯ are in relation according to Table
6.10, and then they differ only in the method call multisets attached
to environments and in their information levels. So we can write s♯ =
[[pϕ.ℓj ]]

ψ,S and by applying rule (Red invoke♯2) we obtain that

[[pϕ.ℓj ]]
ψ,S −→♯ ⊤♯

so that we can conclude that t2 ∈ γ(⊤
♯) since γ(⊤♯) = C.

�

This proposition, as in previous chapters states that the abstract reduction cor-
rectly approximates the concrete one, so that every concrete computation has a
corresponding abstract one, and if a property is verified for all the reductions of an
abstract term α(t) then it is verified also for t.

Proposition 6.4.4. Given a term t, the abstract interpretation process of α(t) al-
ways terminates.

Proof: The proof is the same as the one seen in chapter 4.

�
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6.5 Secure information flow analysis

In this section we define our notion of non-interference. We said before that in the
most general case a program is non-interferent when at the end of its execution the
variables with initial level of information L do not depend from the variables with
initial level of information H . Actually, the notion of non-interference depends from
what can be observed during or after the execution of a program. As an example, if
we agreed that non-termination could be observable, we would have that also those
programs which do not terminate because of loops controlled by high variables should
be considered as non-secure.

Our notion of non-interference is limited to the contents of instance variables
inside objects. Moreover we suppose that we can not observe values during the
execution of a program, and thus we are only interested in what the initially low
variables contain at the end of a program. Using these hypothesis we can define in
the following our concrete and abstract notions for non-interference.

First of all, we need to define two notions of equivalence for concrete terms.
The first, stronger, notion, considers two concrete terms as equivalent only if they
are completely coincident, except for the values of high level variables. So, in this
first notion we consider also the structure of the term in the equivalence. The
second notion of equivalence is a less demanding notion which considers two terms
as equivalent when the values contained in their initially low-level variables coincide,
without considering, now, the structure of terms.

Definition 6.5.1 (strong low-equivalence for concrete terms). Let s and t be two
concrete terms. We have a strong low-equivalence between s and t, written s =l t,
when s and t differ only in the values of the instance variables of initial level H
contained inside their objects.

Definition 6.5.2 (light low-equivalence for concrete terms). Let s and t be two
concrete terms. We have a light low-equivalence between s and t, written s ≈l t
when the denotations appearing in s and t differ only in the values of the instance
variables of initial level H.

In the following definition, we use the symbol 6−→ to represent the absence of a
possible reduction for a term. So, if we have a term t such that t 6−→ we consider
to have a terminal configuration, since t cannot be further reduced.

Definition 6.5.3 (Concrete non-interference). Let t be a concrete term. t is said to
be non-interferent iff for each concrete term s such that s =l t, we have that if both
s and t reach termination, that is s −→∗ s′ 6−→ and t −→∗ t′ 6−→, then s′ ≈l t

′.

Definition 6.5.4 (Abstract non-interference). Let t♯ be an abstract term, and let
us consider all the denotations occurring in it: p1 7→ d♯1, . . . , pn 7→ d♯n. The term t♯

is non-interferent if for all terminating reductions in the abstract reduction graph,
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the final configuration is such that for all denotations d♯i = [ℓ
Φj

j = ς(xj)t
♯ j∈(1...m)
j ]

we have that:
∄j. ℓLj = ς(xj)u

h

From the point of view of the concrete calculus, we have that the above abstract
notion of non-interference, together with the abstract semantics rules shown in Table
6.9, allow to check the concrete security of terms with respect to direct and indirect
flows of information, as well as flows caused by synchronizations among parallel
threads. This result comes directly from the structure of the abstract reduction
rules and from the definition of the abstraction function. In fact, as already said
in section 6.3, we have that the abstraction function sets to h the information level
for all constants inside instance variables with initial level H , while it sets to l the
information level of all other constants. Moreover, the initial term is extended with
an empty multiset of method calls and with l as its initial level of knowledge.

From the rules of Table 6.9 we can see that the level of knowledge of terms
increases only in three cases:

• When the second subterm of a let term has to be reduced after a recursion
with high level of knowledge

• When one of the branches of an if term has to be reduced:

– after a recursion with high level of knowledge

– after the evaluation of the first subterm of the if, which returns an high
level value (this can derive both from the level of the value itself, or
from another high level of knowledge reached during the evaluation of
the guard subterm)

Since recursion is the only way to have a loop in this calculus, we have that
the first two cases capture the notion of insecure information flow due to synchro-
nizations performed having knowledge of some value with level of information h.
The third case, instead, captures the cases of indirect information flows, since all
assignments performed inside the branch will be evaluated with an high level of
knowledge.

Direct flows of information, instead, are captured by the rules (Red update♯) and
(Red let♯). The former rule updates an instance variable obtaining the new infor-
mation level by the level of the new value, the level of knowledge of the term which
performs the update (this captures also indirect flows) and the level of information
of the reference to the updated object. This level has to be considered since this
reference may be returned as a result from a previous term, and then can represent
a possible source of information flows. The latter rule, finally, captures direct flows
since it replaces variables inside the second subterm using the information levels of
the result of the first subterm (both the level of the result itself and the level of
knowledge of the term which produces the result).
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Using the same reasoning done in previous chapters, we have also that truncated
method calls do not add any information to the abstract reduction graph, and then
the analyzed information flows may be detected using only the first two calls of
recursive methods.

The above informal reasoning may be formalized in the following proposition:

Proposition 6.5.1. Given a term t, if α(t) = t♯ is an abstract non-interferent term,
then t is a concrete non-interferent term.

Proof: We can suppose that all variables having initial level H contain an
integer value. This is useful for two different reasons:

• Usually private values are not references (which are subject to dynamic re-
location in real programming languages), but sensible constants which are
independent from the program itself

• From the abstraction point of view, we have that the abstraction function
leaves the references as they are, so if we had two programs which differ in a
reference assigned to an instance variable, those two programs should not be
strongly low-equivalent as they, instead, are. This because the two programs
may have completely different reduction graphs, since references are used to
call methods, and then can influence the behavior of programs.

Given the concrete term t, we have that for all other terms s such that s =l t,
α(s) = α(t). This is true because of the previous hypothesis, and because the
abstraction function collapses all integer values to the uniqe abstract value ⊙. So,
since the abstract interpretation is correct, we have that all reduction paths of s and
t are represented by some abstract reduction paths in the reduction graph of α(t).

Let us prove a statement which is slightly different from the one above, but im-
plies our correctness result. We want to prove that:

Given s and t such that s =l t and an abstract reduction path

α(s) = α(t) = t♯ −→ t♯1 −→ . . . −→ t♯n

of length n, if a result u♯ has information level equal to l in the term t♯n, then for all
concrete reduction paths

t −→ t1 −→ . . . −→ tn

s −→ s1 −→ . . . −→ sn

such that ∀i. si, ti ∈ γ(t
♯
i), the corresponding concrete result u has the same value

both in sn and in tn.

If this statement is valid, we can prove our proposition by applying the same
reasoning to all abstract reduction paths and to all the results contained in the low



110 CHAPTER 6. ABSTRACT INTERPRETATION AGAINST INSECURE FLOWS

instance variables occurring in t (and in s, since s =l t). The information level of an
abstract result [[uϕ]]ψ,S can be obtained as ϕ⊔ψ (as in the abstract rule (Red res♯)).

In order to prove our statemente we will use an induction on the number of steps
of the abstract reduction path t♯ −→ t♯1 −→ . . . −→ t♯n. Consider that the −→ and
−→♯ relations include the congruences, so the concrete paths may also have equal
terms one after another.

The base cases of our induction concern those abstract reductions of length
one. All cases are quite straightforward to prove. In fact, for all the abstract
congruence rules, they only distribute the (initially low) level of knowledge to the
subterms. Since the level of knowledge is initially low and since it is only distributed,
it does not contribute to increase any information level. Moreover the abstract
congruences do not change any result, so the results after the congruence are equal
to the results before the congruence. Finally, since the initial concrete terms are
such that s =l t, all concrete results are coincident between s and t, apart the ones
assigned to initially high instance variables (not consideret by the statement, since
their abstract information level is h). We can apply the same reasoning also to all
the reduction rules. In fact, the initial level of all constants occurring in the initial
abstract term t♯ is always l (because α distributes the initial l level to all subterms).
None of the abstract rules, using only one reduction step, is able to modify any
result and assign to it a high value. This because in order to access a high value
we need a method call (so at least two steps, the first one for the call, the second
one to modify a result). In fact high values are only contained in instance variables.
Another way to have a high value is to have a term with high level of knowledge,
but this is impossible at the beginning of the program, since the initial level of
knowledge is set to l by the abstraction function. Then, all abstract results which
have a low information level after one abstract reduction step are identical to the
results occurring in the initial program. Finally, since initially we have s =l t, we
can easily conclude the equality between the corresponding concrete results.

For the inductive cases, we can use the inductive hypothesis on the reductions
of length n, and prove our result for the (n + 1)-th step of reduction or abstract
structural congruence. For the congruences, the reasoning is exactly the same as
above. In fact, since the congruences do not modify any results, we have that all
results are identical to the previous reduction step, and thus the inductive hypothesis
guarantees the equality between the concrete results. For the reduction rules, we
have the following cases:

• (Red invoke♯1): In this case the only part of the abstract term which changes
is the method call, which is replaced by the body of the method, with the
usual binding. In fact, according to the rule, we have

p 7→ d♯ � [[pϕ.ℓj ]]
ψ,S −→♯ p 7→ d♯ � [[t♯j{{xj ← pϕ}}]]ψ,S⊎{(p.ℓj ,ψ)}

Since the term t♯j is taken from a denotation existing in the last reduction
step, we have that the results appearing in the current abstract term are
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exactly the same as the ones appearing in the last reduction step (the level
of information ψ does not influence the proof, since if it is high and if t♯j is a
result, we will ignore this new term in our statement). Thus we can use the
inductive hypothesis on the denotation containing the method body and on
the pϕ reference, to prove our statement in this case.

• (Red invoke♯2): This case is trivial, since the method call pϕ.ℓj is replaced
by ⊤♯. Thus no new results are introduced, and we can apply directly the
inductive hypothesis on the results existing in the last reduction step. Note
again that, as said in previous chapters, the truncation of recursions does not
alter the precision of the analysis. In fact each time a recursive method is
called, the same method body is replaced, so that we have the same assign-
ments performed in the first calls, which are regularly expanded in the abstract
reduction graph.

• (Red update♯): In this case, according to the abstract rule, we have:

d = [ℓ
Φj

j = ς(x)u♯j , ℓ
Φi

i = ς(xi)t
♯ i∈(1...n)−{j}
i ]

d′ = [ℓ
Φj

j = ς(x)uϕ⊔ψ⊔ϑ, ℓΦi

i = ς(xi)t
♯ i∈(1...n)−{j}
i ]

p 7→ d � [[pϕ.ℓj ⇐ ς(x)uψ]]ϑ,S −→ p 7→ d′ � [[pϕ]]ϑ,S
(Red update♯)

Then we can use the inductive hypothesis on each subterm apart the uϕ⊔ψ⊔ϑ

result which updates the instance variable. If this result has a level of informa-
tion of l, this implies that ϕ = ψ = ϑ = l. But since the level of information
for u before the update was ψ, and since the result is copied and not modified
by the rule, we can use the inductive hypothesis to conclude that the new
result is the same as the result which existed before the reduction, and so our
statement is proved also in this case.

• (Red let♯): In this case, according to the abstract rule, we have:

θ = ℜ(S)

let x = [[uϕ]]ψ,S in [[t♯]]ϑ,S
′

−→ [[t♯{{x← uϕ⊔ψ}}]]ϑ⊔θ,S
′ (Red let♯)

So the only result which changes, with respect to the previous reduction step,
is uϕ⊔ψ. If this result has a level of information of l, this implies that ϕ = ψ = l
and then it had a low information level also before the reduction. Thus we
can again use directly our inductive hyphotesis to prove our statement in this
case. Note that the level of the recursion does not influence this case of the
proof, since it takes part only in the following reductions, after the binding of
the let term has already happened.
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• (Red if♯1) and (Red if♯2): These cases are very similar, so we will show only
one of them. According to the (Red if♯1) rule we have:

θ = ℜ(S) ⊔ ϕ ⊔ ψ ⊔ ϑ

if [[⊙ϕ ]]ψ,S then [[s♯]]ϑ,S
′

else [[t♯]]ϑ,S
′

−→♯ [[s♯]]θ,S
′ (Red if♯1)

So we have simply a replacement of the current if term with one of its branches.
Then the results appearing after the reduction are the same results appearing
before the reduction itself. The new level of knowledge of the resulting term
can only be equal or higher than the previous level of knowledge, so that, if it is
l, we can again apply directly the inductive hypothesis to prove our statement
in this case.

• The last cases for the (Red context♯), (Red den♯) and (Red ⊤♯) rules are trivial,
since no results are modified in those rules.

�

6.6 Examples

In this section we will show some examples of programs presenting various insecure
information flows between variables, and show how this flows are detected by our
abstract interpretation. Let us begin with a simple example of single threaded
program that is not certified as secure by many type checking techniques:

νp. p 7→ [xH = ς(x)5, yL = ς(x)7] �
let z = (if p.x then p.y ⇐ 0 else p.y ⇐ 1) in (p.y ⇐ 10)

This program was presented at the beginning of this chapter as a secure program.
In fact, we have that although a test is performed on the high variable p.x and an
indirect information flow occurs from p.x to p.y, we have that in the following this
flow disappears, since the variable p.y is assigned using a constant, and then at the
end of the execution of the program p.y is completely independent from p.x. The
abstraction of the term above is given by:

[[νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙l] �

let z = (if pl.x then pl.y ⇐ ⊙l else pl.y ⇐ ⊙l) in (pl.y ⇐ ⊙l)]]l,∅

As we can easily see, all constants have been tagged with a low level of infor-
mation, unless the constant stored in the variable p.x, since it starts with initial
information level H . The abstract term above is congruent to:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙l] �

let z = (if [[pl.x]]l,∅ then [[pl.y ⇐ ⊙l]]l,∅ else [[pl.y ⇐ ⊙l]]l,∅) in [[pl.y ⇐ ⊙l]]l,∅
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which, using the reduction rule (Red invoke♯1) leads to the following term:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙l] �

let z = (if [[⊙h ]]l,{(p.x,l)} then [[pl.y ⇐ ⊙l]]l,∅ else [[pl.y ⇐ ⊙l]]l,∅) in [[pl.y ⇐ ⊙l]]l,∅

Here we can see that the guard of the if term has been reduced to a result having an
high information level. This is correct, since we are testing the variable p.x which
started with H as its initial level. At this point we have to apply both rules (Red
if♯1) and (Red if♯2) to execute both possible execution paths. However, since the
the two branches of the if term are equal one to another, we can reduce to:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙l] �

let z = [[pl.y ⇐ ⊙l]]h,∅ in [[pl.y ⇐ ⊙l]]l,∅

The level of knowledge of the branch of the previous if term has been increased to
h, following the abstract reduction rule, since we tested an high value. Using the
rule (Red update♯) we have that now we are performing an incorrect assignment,
since this assignment depends from the previous test on the variable p.x. This can
be seen from the fact that the level of knowledge of the assignment term is h. Our
term, then, reduces to:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙h] �

let z = [[pl]]h,∅ in [[pl.y ⇐ ⊙l]]l,∅

and we can see our incorrect assignment from the fact that the variable p.y has an
initial information level of L, while its value as information level h. At this point,
many type checking techniques would have rejected this term as insecure, but if we
continue in our reduction we obtain:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙h] � [[pl.y ⇐ ⊙l]]l,∅

which performs an assignment on p.y using a low value, which deletes the high value
copied before. In fact, using the rule (Red update♯) and a congruence we obtain our
last reduced term:

νp. p 7→ [xH = ς(x)⊙h, yL = ς(x)⊙l] � pl

which does not show any insecure flow.
Let us now consider an insecure term also shown at the beginning of this chapter,

when talking about insecure synchronizations between parallel threads:

νp. p 7→ [aH = ς(x)5, bH = ς(x)1, cL = ς(x)5,
l = ς(x)let y = (if x.b then x.l else 1) in x.c⇐ 1] �
(if p.a then p.b⇐ 1 else let z = p.b in p.b⇐ z) � p.l

As said at the beginning of the chapter, in this case we have two parallel threads
which are secure if considered singularly. In fact the first thread updates an high
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variable after a test on another high variable, while the second one updates a low
variable after a loop which tests an high variable (but not inside the loop). When
those threads are taken together, however, an insecure flow happens. Let us check
how this is captured by our abstract interpretation. The above term is abstracted
in:

[[νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

(if pl.a then pl.b⇐ ⊙l else let z = pl.b in pl.b⇐ z) � pl.l]]l,∅

which is congruent to:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

(if [[pl.a]]l,∅ then [[pl.b⇐ ⊙l]]l,∅ else [[let z = pl.b in pl.b⇐ z]]l,∅) � [[pl.l]]l,∅

By reducing the first term (remember that the abstract interpretation performs all
possible reductions, so we may chose one of them) we perform a test on an high
variable, which causes an increasing in the level of knowledge of the branches of the
if term:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

(if [[⊙h ]]l,∅ then [[pl.b⇐ ⊙l]]l,∅ else [[let z = pl.b in pl.b⇐ z]]l,∅) � [[pl.l]]l,∅

Both branches of the if term perform assignments on the variable b which starts
with level of information H . So these assignments can not be insecure and the
correspondent reductions will not be shown. Both branches of the if term reduce by
returning the reference to the modified object, p, as follows:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

[[pl]]h,∅ � [[pl.l]]l,∅

Now, let us reduce the second parallel term, by applying the rule (Red invoke♯1) and
some congruences:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � let y = (if [[pl.b]]l,{(p.l,l)} then [[pl.l]]l,{(p.l,l)} else [[⊙l ]]l,{(p.l,l)})

in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

The subterm guarding the if term reduces to [[⊙h ]]l,{(p.l,l)}, since at this time in the
execution the value stored inside the variable p.h has an high level of information.



6.6. EXAMPLES 115

From now on, then, both branches of the if term will have an high level of knowledge,
and we will have to reduce the following two terms:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � let y = [[pl.l]]h,{(p.l,l)} in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � let y = [[⊙l ]]h,{(p.l,l)} in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

The second term reduces to an assignment to the low variable p.c with a low value,
since y does not occur in the second part of the let term, and since all levels in this
second part are low. This path emulates the concrete case when the second thread
does not synchronize with the first one, being the guard of the if term immediately
false. We continue the reduction of the first term applying the first recursive call,
thanks to the rule (Red invoke♯1):

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �
ph � let y =

let y = (if [[pl.b]]h,{(p.l,l),(p.l,h)} then [[pl.l]]h,{(p.l,l),(p.l,h)}

else [[⊙l ]]h,{(p.l,l),(p.l,h)})

in [[pl.c⇐ ⊙l]]h,{(p.l,l),(p.l,h)}

in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

Again, the guard of the internal if construct reduces to [[⊙h ]]h,{(p.l,l),(p.l,h)}, since the
variable p.b has an high level of information. At this point, the then branch reduces
to another recursive call, which leads the reduction to ⊤♯. Then let us reduce the
else branch:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �
ph � let y =

let y = [[⊙l ]]h,{(p.l,l),(p.l,h)}

in [[pl.c⇐ ⊙l]]h,{(p.l,l),(p.l,h)}

in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

At this point we can apply the rule (Red let♯) to the internal let term. We have
that ℜ({(p.l, l), (p.l, h)}) = h, so we should increase the level of knowledge of the
second part of the internal let term, since it follows a recursion with high level of
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knowledge. Since the level of this term is already high, we have what follows:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙l,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � let y = [[pl.c⇐ ⊙l]]h,{(p.l,l),(p.l,h)}

in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

Now we have a sequence of two insecure assignments to the variable p.c. The first
one is performed by the first part of the let term, since we have a level of knowledge
equal to h. We apply the rule (Red update♯) to obtain:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙h,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � let y = [[pl]]h,{(p.l,l),(p.l,h)}

in [[pl.c⇐ ⊙l]]l,{(p.l,l)}

Using again the rule (Red let♯) and the fact that ℜ({(p.l, l), (p.l, h)}) = h, we can
reduce the last part of the term to obtain:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙h,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �

ph � [[pl.c⇐ ⊙l]]h,{(p.l,l)}

which is another insecure assignment to the variable p.c, leading to:

νp. p 7→ [aH = ς(x)⊙h, bH = ς(x)⊙h, cL = ς(x)⊙h,
l = ς(x)let y = (if x.b then x.l else ⊙l) in x.c⇐ ⊙l] �
ph � ph

The fact that there are insecure information flows can be easily seen from the fact
that the initial level of information of the variable p.c was L, while there is a path
of execution (the one just shown), where the level of its final value is h.



Conclusions and Future Works

This thesis presented some innovative results in two very interesting fields of re-
search, abstract interpretation and Object Calculi, which rarely were put together.
The first three chapters are an important contribution of this thesis, since we pre-
sented all the technical background necessary to follow the remaining part.

We chose the model of object calculi since it permits, with great simplicity, to
deal with the world of object oriented languages, without focusing the attention
of peculiarities of particular programming languages. Moreover, object calculi may
be easily extended, in such a way that we may study particular aspects which are
considered interesting from time to time. The work presented in this thesis can then
be applied to a broad variety of object oriented languages, and possible future works
could include the adaptation of (some of) the analyses presented to a (subset of a)
real object oriented language. The major challenge in this sense will be the modeling
of the semantics of the considered programming language, using the simple basic
constructs provided by object calculi.

The approach of abstract interpretation was chosen in this thesis for the sake
of precision, since we noted the limits of other techniques of static analysis. Obvi-
ously, abstract interpretation as it was used in this thesis may be very inefficient if
implemented, so possible future works could include, as an example, the definition
of other abstract interpretations to analyze properties without exploring all possible
paths of execution. Another source of complexity which may be further explored is
given by the use of structural congruences in the semantics of objet calculi. Future
works in this sense could include the definition of a directed semantics for our cal-
culi, in order to avoid the use of congruences, which were included in this thesis for
the sake of simplicity.

To give some examples of how the object calculi and abstract interpretation areas
of research combine well together, we presented three analyses in three cornerstone
fields of computer science: safety (chapter 4), efficiency (chapter 5) and security
(chapter 6). All these examples show the simplicity of adaptation of object calculi
to very different areas of research, as well as the power of abstract interpretation
techniques.
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