
Università di Pisa
FACOLTÀ DI INGEGNERIA

Corso di Laurea Specialistica in Ingegneria Informatica

A reputation-based mechanism to mitigate
host misbehaviors in DTNs

Relatori: Candidato:
Prof. Gianluca Dini Gabriele Zannerini
Prof. Giuseppe Anastasi

ANNO ACCADEMICO 2009/2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14699615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Delay Tolerant Networking (DTN) is a network paradigm designed for dis-

connected networks. Message delivery in DTNs relies on the mobility of

carriers, hosts that carry messages from a network partition to another.

Context-Aware Adaptive Routing (CAR) is a routing protocol for DTNs

with the aim to select the carrier with the highest chance of successful mes-

sage delivery. CAR relies on the assumption that all hosts in the network

are collaborative, i.e. that cooperate in the message forwarding process. In

real-life environments hosts can not cooperate in such process and endanger

communication among partitions. We propose RCAR, a decentralized ap-

proach based on reputation aimed to detect and exclude misbehaving hosts

from the network. Simulation tests made on a human mobility model show

that RCAR increases the message delivery probability of CAR in presence of

misbehaving carriers.

Riassunto Analitico

Delay Tolerant Networking (DTN) è un paradigma di rete progettato per reti

caratterizzate da elevati ritardi e frequenti disconnessioni, che si prefigge di

permettere la comunicazione fra dispositivi posizionati in partizioni di rete

differenti. A tal fine viene sfruttata la mobilità dei cosiddetti carriers, dis-

positivi che trasportano fisicamente un messaggio da una partizione di rete

all’altra per conto di un altro dispositivo. Context-Aware Adaptive Rout-

ing (CAR) è un protocollo di rete per DTN che seleziona il carrier avente

la più alta probabilità di successo nella spedizione di un messaggio verso

la destinazione. Il corretto funzionamento di CAR fa affidamento sulla col-

laborazione di tutti i carriers nel processo di consegna di un messaggio. In

sistemi reali i carriers possono però non partecipare a tale processo, mettendo

a rischio il processo di consegna dei messaggi. Questo documento presenta

RCAR, un meccanismo di sicurezza basato sul concetto di reputazione volto

ad individuare ed escludere i carriers non collaborativi dal processo di conseg-

na dei messaggi. I risultati di simulazioni effettuate utilizzando un modello

di mobilità realistico dei dispositivi mostrano come RCAR aumenti la per-

centuale di messaggi consegnati correttamente rispetto a CAR in presenza

di carriers non collaborativi.

Acknowledgements

Non vi è spazio per ringraziare tutte le persone che hanno contribuito al rag-

giungimento di questo inaspettato obiettivo, dovrei riempire almeno tante

pagine quante sono quelle di questa tesi e forse mi scorderei qualcuno. . . quindi,

prima di tutto, volevo ringraziare tutti coloro che mi hanno dato la forza di

non mollare ed arrivare fino in fondo.

Vorrei partire con il ringraziare il prof. Gianluca Dini per avermi dato la

possibilità di svolgere questo lavoro di tesi.

Non vi sono invece parole per ringraziare in modo appropriato il mio

tutor, Angelica Lo Duca, per l’aiuto, l’infinita pazienza e la disponibilità

durante lo svolgimento di questa tesi: grazie di cuore!

Grazie anche a tutti i miei familiari per aver sempre creduto in me. In

particolare devo ringraziare mia madre, che durante questi anni ha sempre

sopportato i miei sfoghi ed ha fatto per me tanti sacrifici, senza che io le

abbia mai fatto capire quanto è stata e quanto sarà importante per me.

Un ringraziamento a tutti i miei colleghi per la compagnia e l’aiuto rice-

vuto nel superamento di tanti esami: fra tutti vorrei ringraziare sentitamente

Marco Tiloca, Valentino Stopponi ed Alessio Rossi. Se sono arrivato fino in

fondo è anche grazie a voi.

Infine vorrei ringraziare Sabrina, per essermi stata vicino ed avermi aiu-

tato negli ultimi 6 mesi, ma soprattutto per avermi fatto capire che nella vita

ci sono cose più importanti del lavoro. Ora che mi hai trovato, vorrei non mi

lasciassi mai più.

1

Contents

List of Figures 6

List of Tables 7

1 Delay Tolerant Networks 8

1.1 Introduction . 8

1.2 Classification of DTN routing protocols 10

1.2.1 Routing with infrastructure 12

1.2.2 Routing without infrastructure 13

1.3 Security issues in DTNs . 16

2 Mobility models 22

2.1 Random waypoint model . 23

2.2 Community-based mobility model 25

2.2.1 The Caveman model 26

3 CAR 30

3.1 Introduction . 30

3.2 Message delivery . 31

3.3 Delivery probability . 33

3.4 Performance . 36

4 RCAR 38

4.1 Reputation: concept and definition 38

2

CONTENTS 3

4.2 Design . 40

4.3 Reputation update . 42

4.3.1 Extensions to the update process 46

5 Simulation and results 49

5.1 Scenario and parameters . 50

5.2 Choice of R0 . 54

5.3 Choice of the buffer size . 56

5.4 Blackhole carriers . 60

5.5 Selfish carriers . 67

6 Implementation 77

6.1 CAR . 77

6.1.1 Modules . 77

6.1.2 Messages . 81

6.2 RCAR . 85

7 Conclusions 87

A OmNet++ simulation environment 89

A.1 Model structure . 89

A.2 Messages . 90

A.3 Topology description: the NED language 91

A.4 Module implementation . 92

A.5 Simulation execution . 93

List of Figures

1.1 Example of Delay Tolerant Network, reproduced from [15]. . . 10

1.2 Taxonomy of routing/forwarding techniques for Delay Toler-

ant Networks, reproduced from [31]. 12

2.1 Example social network, reproduced from [29]. 26

2.2 Interaction matrix representing the social network in Figure 2.1. 27

2.3 Example of Caveman model with three disconnected caves,

reproduced from [29]. 28

2.4 Example of initial simulation configuration, reproduced from

[29]. 29

3.1 Example of asynchronous communication. 37

4.1 Example of clist update. 43

5.1 Scenario A - Blackhole carriers: Delivery ratio vs. percentage

of MCs vs. initial reputation value. 55

5.2 Scenario A - Blackhole carriers: Average Delivery Delay vs.

percentage of MCs vs. initial reputation value. 56

5.3 Scenario A - Blackhole carriers: Total number of sent messages

vs. percentage of MCs vs. initial reputation value. 57

5.4 Scenario A - Blackhole carriers - ER: Delivery Ratio vs. per-

centage of misbehaving carriers vs. Buffer Size. 58

4

LIST OF FIGURES 5

5.5 Scenario A - Blackhole carriers - RCAR-Ack-2: Delivery Ratio

vs. percentage of misbehaving carriers vs. Buffer Size. 59

5.6 Scenario A - Blackhole carriers - ER: Average Delivery Delay

vs. percentage of misbehaving carriers vs. Buffer Size. 60

5.7 Scenario A - Blackhole carriers - RCAR-Ack-2: Average De-

livery Delay vs. percentage of misbehaving carriers vs. Buffer

Size. 61

5.8 Scenario A - Blackhole carriers - ER: Total number of sent

messages vs. percentage of misbehaving carriers vs. Buffer Size. 62

5.9 Scenario A - Blackhole carriers - RCAR-Ack-2: Total number

of sent messages vs. percentage of misbehaving carriers vs.

Buffer Size. 63

5.10 Scenario A - Blackhole carriers: Delivery ratio vs. percentage

of MC. 64

5.11 Scenario B - Blackhole carriers: Delivery ratio vs. percentage

of MC. 65

5.12 Scenario A - Blackhole carriers: Average delivery delay vs.

percentage of MC. 66

5.13 Scenario B - Blackhole carriers: Average delivery delay vs.

percentage of MC. 67

5.14 Scenario A - Blackhole carriers: Total number of sent messages

vs. percentage of MC. ER included. 68

5.15 Scenario A - Blackhole carriers: Total number of sent messages

vs. percentage of MC. ER included. 69

5.16 Scenario A - Blackhole carriers: Total number of sent messages

vs. percentage of MC. CAR and RCAR only. 70

5.17 Scenario B - Blackhole carriers: Total number of sent messages

vs. percentage of MC. CAR and RCAR only. 71

5.18 Scenario A - Selfish carriers: Delivery ratio vs. percentage of

MC. 72

5.19 Scenario B - Selfish carriers: Delivery ratio vs. percentage of

MC. 73

LIST OF FIGURES 6

5.20 Scenario A - Selfish carriers: Average delivery delay vs. per-

centage of MC. 74

5.21 Scenario B - Selfish carriers: Average delivery delay vs. per-

centage of MC. 75

5.22 Scenario A - Selfish carriers: Total number of sent messages

vs. percentage of MC. 76

5.23 Scenario B - Selfish carriers: Total number of sent messages

vs. percentage of MC. 76

A.1 Omnet++: single and compound modules 90

A.2 Omnet++: example network for NED representation 91

A.3 Omnet++: screenshots of the Tkenv GUI environment 95

List of Tables

4.1 Reputation increments in different implementations of RCAR. 48

5.1 General simulation parameters. 52

5.2 Mobility model parameters. 52

5.3 CAR parameters. 53

5.4 ER parameters. 53

5.5 Reputation values for the different RCAR implementations. . . 53

5.6 Optimal and suboptimal values of Message Quota in Scenario

A. 69

5.7 Optimal and suboptimal values of Message Quota in Scenario

B. 70

6.1 infoAndRoutingTable format. 78

6.2 infoAndRoutingTable: synchronous part. 78

6.3 infoAndRoutingTable: asynchronous part. 78

7

Chapter 1
Delay Tolerant Networks

1.1 Introduction

Ubiquitous computing is a human-machine interaction model, first envisioned

by Mark Weiser in several papers [44] [43] in early 1990’s, in which one of

the objectives is communication everytime and everywhere. The last decade

saw impressive enhancements in microelectronics industry, making devices

cheaper, portable and lightweight, so that they became accessible to a wide

range of people and not only military companies or computer researchers.

With little steps, we are going towards Weiser’s dream.

Unfortunately, the Internet infrastructure did not grow up so quickly

as the devices industry, especially in environments away from big cities or

developed areas, in which the lack of coverage makes possible communication

only to devices in the near proximity, typically using wireless channels.

Mobile ad-hoc networks [20] (MANETs), first developed for military ap-

plications in 1970’s, allow communication on a hop-by-hop basis. Every host

acts as a router for the other hosts, in a totally decentralized way. Ad-hoc

networks allow to construct disconnected networks, each of them having local

connectivity but no access to the ”global” Internet. Starting from the work in

Interplanetary Internet [9], which envisioned a network of Internets (the basic

idea was to enable communication between planets having Internet-like con-

nectivity in within), a new networking paradigm has been designed, named

8

CHAPTER 1. DELAY TOLERANT NETWORKS 9

Delay-Tolerant Networking (DTN) [7] [14]. DTN is an approach to a com-

puter network architecture capable to allow communication among heteroge-

neous networks that may lack of continuous connectivity and suffer possibly

long delays and high bit error rates. This is the case of many environments

such as war battlefield, wildlife monitoring in unmanned areas, communica-

tion between isolated villages in remote areas, intelligent highways, etc. To

enable communication among possibly heterogeneous networks, the DTN ar-

chitecture defines an overlay to allow transparent communication in presence

of different transport (or other) layers of the networks it interconnects.

DTN relaxes the traditional end-to-end constraints, the need of a per-

manent link between sender and receiver of a message, and the need of a

common protocol stack among devices in order to be able to communicate.

Consider Figure 1.1, representing an example of Delay Tolerant Network

with the aim to provide communication between isolated villages and a big

city. Assume that communication is possible using a telephone line, a satel-

lite connection and an autobus equipped with a wireless device, periodically

travelling across the villages. The telephone line could be active only for

a limited number of hours per day, the satellite could appear at pre-defined

intervals (it rotates around the world globe) and the autobus crosses a village

a few times per day.

It is obvious that in this scenario the same connection between two entities

can experiment different performance, depending on the available channel:

satellite connection permits to reach the highest speed and the lowest delay,

but it is available only in limited periods of time, same as the telephone line,

with a lower connection speed; the autobus represents instead the slowest

channel, and delivers messages in a store-and-forward fashion: it collects

messages from the villages, store them in a local buffer until it reaches the

final destinations and deliver such messages to them.

The satellite, the telephone line and the autobus are also called contact

opportunities because of their capability to provide sporadic communication

opportunities among networks that would have been otherwise disconnected.

A message can be delivered from sender to receiver synchronously or

asynchronously. We say that a message is delivered synchronously when a

CHAPTER 1. DELAY TOLERANT NETWORKS 10

Village

Internet

City

autobus

Figure 1.1: Example of Delay Tolerant Network, reproduced from [15].

connected path exists between sender and receiver, because they are placed in

the same network partition or because the current connectivity graph permits

to immediately reach the receiver on a hop-by-hop basis. When a connected

path between sender and receiver does not exists, a message is forwarded

asynchronously.

Device mobility is exploited to allow communication between partitions

that otherwise would have been disconnected.

A wide range of traditional Internet applications can be used in DTNs

also, for example e-mailing, virtual bulletin boards or newsgroups. It is

obvious that some of the most common Internet applications, such as audio

and video streaming, are not conceivable because of the intrinsic bandwidth

and delay constraints typical of DTNs.

1.2 Classification of DTN routing protocols

Synchronous communication, i.e. communication between hosts belonging

to the same partition, occurs using a standard routing protocol typical of

MANETs. Synchronous routing protocols can be divided in reactive and

proactive routing protocols.

CHAPTER 1. DELAY TOLERANT NETWORKS 11

Reactive routing protocols, such as AODV [33] and DSR [21], search for

a path between sender and receiver of a message on a per-need basis, i.e. only

when there is the need to send a message. Basically, a source host sends a

request message to its neighbors for the receiver, and the receiver itself or

one of the intermediate hosts answer with a response message.

In proactive routing protocols, such as DSDV [32], each host keeps a

routing table for each known destination. Such routing table is updated

periodically depending on the value of one or more given metrics, typically

the number of hops.

It is worth to note that in DTNs the concepts of routing and forwarding

are strictly linked together, since routes are actually built in the same time

messages are forwared. So, in the following we will use the terms routing and

forwarding interchangeably.

With respect to asynchronous routing, Pelusi et al. in [31] defined a tax-

onomy of routing/forwarding techniques for DTNs, graphically represented

in Figure 1.2. They first divided protocols designed for completely flat ad

hoc networks from protocols designed for ad hoc networks with some form

of infrastructure that hosts exploit to opportunistically forward messages.

The infrastructure-based family of protocols is based on hosts with the

only aim to provide some sort of infrastructure for the other hosts in the net-

work. This family of protocols can be further divided in protocols based on a

fixed infrastructure and protocols based on a mobile infrastructure depending

on the mobility of the hosts forming the infrastructure.

The family of delay tolerant routing protocols without infrastructure can

be further divided in dissemination-based protocols and context-based pro-

tocols. Context-based protocols exploit some information about the network

in terms of host meetings’ history, user’s characteristics, network topology,

etc. Dissemination-based approaches do not rely on any kind of information

and they only spread a certain number of copies of the same message in the

network in the hope to find a host that will eventually carry it until the final

destination.

Following subsections analyze such protocol categories, providing some

approaches for each of them.

CHAPTER 1. DELAY TOLERANT NETWORKS 12

Delay tolerant
routing/forwarding

without
infrastructure

with
infrastructure

dissemination
based

context
based

fixed
infrastructure

mobile
infrastructure

Epidemic,
Network Coding,
Spray and Wait

Epidemic,
Network Coding,
Spray and Wait

CAR, PROPHET,
MobySpace

CAR, PROPHET,
MobySpace InfoStation, SWIMInfoStation, SWIM DataMULEs,

Ferries

DataMULEs,
Ferries

Figure 1.2: Taxonomy of routing/forwarding techniques for Delay Tolerant
Networks, reproduced from [31].

1.2.1 Routing with infrastructure

In routing protocols based on a fixed infrastructure the territory is supposed

to be scattered of base stations providing access to the Internet or to a high-

speed LAN. Hosts whishing to deliver a message on the Internet or to another

host that is not reachable directly or quickly move toward the nearest of those

base stations and deliver the message to them. Examples of such family of

routing protocols are the Infostation model [16] and the Shared Wireless

Infostation Model (SWIM) [38].

• In the Infostation model, infostations are base stations with limited

wireless coverage, and users in proximity can exploit their resources

(typically Internet access). The communication paradigm allow only

host-Infostations data exchange. This model may cause temporary

disconnections in case of network outages, and users have to reach

another Infostations to continue communication.

• SWIM represents and extension of the Infostation model, since the

communication paradigm allows also data exchanges between hosts,

not only between hosts and infostations.

CHAPTER 1. DELAY TOLERANT NETWORKS 13

A mobile infrastructure is composed by some hosts, typically high-performance

devices, moving around the territory following pre-defined or arbitrary routes.

They act as data-gatherers, collecting messages from the hosts they pass by.

Examples of such family of routing protocols are the DATA-MULE system

[37] and the Message Ferrying approach [49].

• The DATA-Mule system defines a hierarchy of hosts, according to the

role they have in the routing/forwarding process: at the lower level

there are sensors which periodically perform data sampling, whose data

are collected by MULEs, mobile data-gatherers moving around the ter-

ritory and considered at the intermediate level of the hierarchy; at the

upper level there are the wired access points (APs), retrieving data

from MULEs and storing/processing them.

• In Message Ferrying some hosts, called ferries, move around the ter-

ritory collecting messages from source hosts. Source hosts can ei-

ther schedule ferries’ periodical movement patterns and send messages

whenever they come within their transmission range, or explicitly re-

questing the ferries to change their trajectory and move toward the

requester source host itself.

1.2.2 Routing without infrastructure

This family of protocols does not rely on any existing infrastructure, basing

message delivery on hosts’ cooperation. In dissemination-based approaches,

selection of the best path towards the message receiver is made spreading

multiple copies of the same message among the network, while in context-

based routing it is made using some piece of information about the network

or hosts’ environment.

Dissemination approaches are based on the simple idea to broadcast a

message to a high number of hosts in the network, in a way to increase the

chance of successful delivery. The choice of such hosts is purely random. This

approach well performs in terms of both delivery rate and delay, especially in

highly mobile environments. This form of uncontrolled flooding has obvious

CHAPTER 1. DELAY TOLERANT NETWORKS 14

drawbacks, e.g. medium contention and network congestion. Limits to mes-

sages, in terms of maximum number of hops it can traverse or total number

of copies present at the same time in the network are typically imposed. Ex-

amples of dissemination approaches are the epidemic routing protocol, the

network-coding-based routing and spray-and-wait.

• The epidemic routing [40] follows the principle of the spreading of a dis-

ease, by means of pair-wise contats (infections) between hosts. Each

host keeps a list (in form of hash table) of the messages stored in its

local buffer. Every time a host gets in touch with another host, an anti-

entropy session is initiated: the two hosts exchange first their respective

message lists (by means of a summary vector), then the messages that

are each other’s missing in order to have equal local buffers. For ex-

ample, if hosts A and B start an anti-entropy session, A sends the

messages present in its local buffer that B has not (A can check it via

the summary vector received from B), and B does the same, sending

messages present in its local buffer that A has not.

• Network-coding based routing [45] is an epidemic-like approach, in which

packets generated from the source hosts are combined together (coded)

at the intermediate hosts; receiver hosts decode the packet and extract

the original message. To give an example, let A, B, C be the only three

hosts of a small network. Let host A generate the information ”a”

and the host C generate the information ”c”. Suppose the information

produced needs to be known by all the hosts of the network. Hence,

host A and host C send their information to host B, then host B rather

than sending two different packets ”a” and ”c” respectively, broadcasts

a single packet containing ”a” xor ”c”. Once received ”a” xor ”c”, both

hosts A and C can finally infer the missing information, i.e. host A can

infer ”c” and host C can infer ”a”.

• Spray and Wait [39] exploits no information about past host meetings

or network topology, it only spreads a certain number of copies of a

message. The protocol works as follows. Two phases characterize mes-

sages delivery: spray phase and wait phase. During the spray phase L

CHAPTER 1. DELAY TOLERANT NETWORKS 15

copies of the same messages are spread over the network both by the

source host and the hosts that first received a message copy from the

source itself. Then, in the wait phase, each host holding a copy of the

message does nothing but simply storing its copy in the local buffer

until it eventually comes within reach of the receiver and delivers the

message to it. Spray can be performed in several ways, and the value of

L can be tuned in order to achieve the desired performance in a specific

scenario.

Context-based routing protocols exploit information about the context

in which hosts are operating (e.g. workplace, institution, habits) the net-

work topology or the history of past encounters. The common idea behind

such family of protocols is to limit message spreading by carefully select-

ing the next hop(s) with the highest chance of successful delivery. Hence,

what basically changes among these approaches is the method used to cal-

culate delivery probabilities. Examples of context-based protocols are CAR,

PRoPHET and MobySpace routing.

• In Context-Aware Routing (CAR) [30] each host computes its delivery

probability (i.e. the probability to reach a given host) for each known

destination and exchange such values with the other hosts belonging to

the same network partition. Delivery probabilities are calculated using

multi-attribute utility theory over a set of context information (change

rate of connectivity, colocation with other hosts, residual battery level,

etc.). Forecasting techniques based on Kalman filter theory [?] are used

to predict future values. The predicted values are actually distributed

to the other hosts than the current ones, for a better estimation of such

probabilities.

• In the Probabilistic Routing Protocol using History of Encounters and

Transitivity (PRoPHET) [25] hosts keep a table of delivery probabilities

for each known destination. Delivery probability is increased every time

a host encounters a given destination and it is decreased according to

an aging function. Transitivity is defined as the capability of a host to

CHAPTER 1. DELAY TOLERANT NETWORKS 16

act as carrier for a message on behalf of another host, and it is also used

to update (increase) the delivery predictability. Message delivery works

as follows. Every time two hosts meet, they exchange their summary

vectors, together with their delivery probability for the destinations

hosts of that messages. If a host finds that it has a higher delivery

probability with respect to the other host, requests the message to it.

For example, assume two hosts A, B get in touch, and assume host

B has to send a message to a third host, say C. Upon exchanging

their summary vectors, if host A founds that it has a higher delivery

probability to reach host C tha host B, then host A requests the message

to host B.

• In MobySpace routing [24], each host builds a high dimensional Eu-

clidean space in which each axis represents a contact opportunity be-

tween two hosts and the distance measuring the probability that the

two hosts meet. So, two hosts are close in the virtual space when the

contact probability is high. This approach requires full knowledge of

all the hosts traversing the network and tracking of their movements,

unless restrictions on mobility can be applied (e.g. hosts have to follow

pre-defined routes instead of arbitrary ones).

Hereafter we focus on CAR, because of its compromise between achieved

throughput and resource consumption. Furthermore, it is based on a human

mobility model and it represents a framework approach for the evaluation of

delivery probabilities, with the possibility to be implemented in real systems.

1.3 Security issues in DTNs

We can envision ubiquitous computing as the realization of a worldwide

MANET. In this sense, DTN inherits the architectural model from MANETs

but, unfortunately, it also inherits all the security issues related to MANETs.

This Section will refer to DTNs whilst analyzing MANET’s security issues.

Before discussing such security issues, we first give a review of the re-

quirements that a network, be it wired or wireless, should accomplish to be

CHAPTER 1. DELAY TOLERANT NETWORKS 17

defined secure. These requirements are general for network communication,

and can be summarized in five categories:

availability A given service, in this context the successful routing/forward-

ing of messages, should be always operative despite the presence of

attackers.

authentication Users should be sure of each other’s identity, avoiding an

attacker to impersonate a legitimate user.

data confidentiality Only sender and receiver of a communication have

to know the content of messages exchanged, while intermediate hosts

should not.

integrity Message content should not be altered during its path from sender

to receiver.

non-repudiation Users can not deny to be the originator of a message

previously issued.

Attacks on DTNs aim to break one or more of the security requirements

listed above. Such attacks can be further cathegorized according to their

origin or to their nature [13]; according to the origin of the attack, threats

can be classified in:

• external attacks, in which the attacker is an entity that does not belong

to the logical network, or is not allowed to access to it.

• internal attacks, in which the attacker is assumed to be a compromised

or malicious host, acting as a host belonging to the network under

attack. They constitute the most common and dangerous category of

attacks.

According to the nature of the attack, threats can be classified in:

• active attacks, in which an attacker actively participates in disrupt-

ing the normal operation of the network services. A malicious host

can modify packets or introduce false information in the network. It

confuses routing procedures and degrades network performance.

CHAPTER 1. DELAY TOLERANT NETWORKS 18

• passive attacks, in which an attacker snoops the data exchanged with-

out altering it. The attacker mainly eavesdrops the data packets in the

network without doing any active operations, or just refuses to execute

the requested function. The goal of the attacker is to obtain informa-

tion that is being transmitted, thus violating the data confidentiality.

Since the activity of the network is not disrupted, these attackers are

difficult to detect. Passive attacks are usually preliminar of an active

attack.

Hereafter we consider internal attacks, unless it is explicitly said.

Attacks can be performed at different layers of the protocol stack: phys-

ical, MAC, routing. Attacks on the physical layer are targeted to make the

hardware devices or the wireless channel useless. They can be summarized

as follows:

attacks on the physical device They may lead to simply destroy the de-

vice itself or damage it in order to make it useless, e.g. using signal

jamming to cause interference. They aim to disrupt service availability.

More subtle attacks are stealing and/or cloning the devices in order to

retrieve condifential data or impersonate the user that possesses such

device. In this case the security requirements to guarantee are authen-

tication and data confidentiality.

eavesdropping Is a passive attack, in which the attacker switches its ra-

dio interface in promiscuous mode with the aim to eavesdrop packets in

transit. Such packets can be used for immediate attacks, such as packet

dropping, or more sophisticated attacks based on retriveing confidential

data. It is still practically impossible to detect this attack. User-level

authentication and data confidentiality have to be taken into consider-

ation to constrast such attack.

Attacks at the MAC layer can be summarized as follows:

address spoofing It is a passive attack usually mounted in preparation of

other more dangerous attacks. It aims to retrieve MAC addresses of

CHAPTER 1. DELAY TOLERANT NETWORKS 19

honest hosts from data packets and clone them to mount for example an

impersonation attack. Such attacks puts on risk host authentication.

unfairness Kyasanur and Vaidya in [23] described a possible attack at the

MAC layer leading to an unfair use of the medium contention alghoritm.

The attack is based on a malicious modification of the backoff distribu-

tion of the CSMA/CA protocol [11] aimed to increase the probability

to obtain the channel access with respect to the other hosts. An unfair

use of the wireless channel may lead to disrupt service availability.

Attacks at the routing layer is the category most widely analyzed in the

litetature. The routing process and packet forwarding are functionalities very

connected in DTNs, especially when talking about security. In fact, before

mounting an attack on the message forwarding process, an attacker has to

become member of the network, i.e. it has to somehow disrupt the routing

process.

Threats deriving from the routing/forwarding process can be summarized

as follows:

impersonation An attacker may assume the identity of another user of

the network. This attack hides the attacker from the other hosts of

the network, allowing him to mount one of the attack listed above.

Impersonation attacks pose on risk non-repudiation, and user-level au-

thentication techniques should be adopted to contrast it.

route fabrication An attacker may inject false route information, e.g. rout-

ing messages with zero hop distance to a given host, in order to alter

routing tables of the hosts in the network. The other hosts think that

the attacker itself is the next hop of the shortest path toward the re-

ceiver of a message: the attacker will start receiving a high number of

messages. This attack can be thought to provide only misfunctioning of

the routing process (i.e. service unavailability) or it may be considered

preparatory for a packet modification/dropping attack.

sleep deprivation torture The attacker floods the network with false in-

formation, that can be routing messages or data packets, with the only

CHAPTER 1. DELAY TOLERANT NETWORKS 20

aim to cause continuous information processing on the devices and con-

suming their resources. This attack puts on risk service availability.

packet modification/dropping The attacker may modify message con-

tents or simply destroy them. Availability, integrity and data confiden-

tiality have to be taken into consideration to contrast such attack.

selfishness it is a passive attack, in which a host refuses to participate in the

routing process or the packet forwarding. A host could not have interest

to forward a packet on behalf another host because for example it may

want to preserve its resources (especially battery power). This is not an

intentional attack but a selfish misbehavior. However, selfishness poses

on serious risk service availability, that is one of the most important

security requirements.

We focus our attention on the detection and exclusion from the network

of malicious carriers with particular reference to the CAR protocol, described

in Chapter 3. We will consider two different types of misbehaviors. We will

call them blackhole carriers or selfish carriers depending on the misbehavior

acted:

• Blackhole carriers distribute to their neighbors a large utility function

value (close or equal to 1), so that the malicious carrier increases the

probability to be chosen for message forwarding. A blackhole carrier

can put on risk the security of not only the partition in which it is

currently located, but also of the entire network.

• Selfish carriers instead distribute to their neighbors a low utility func-

tion value (close or equal to 0), so that they are never chosen (or chosen

with a very low probability) as carriers for messages. They exploit in-

stead network capabilities, using well-behaving carriers for the delivery

of their own messages while saving their own resources.

A message that reaches a malicious host can be at least read, but also

compromised via modification or dropping. Threats presented above are

CHAPTER 1. DELAY TOLERANT NETWORKS 21

very dangerous for both synchronous and asynchronous communication, es-

pecially in CAR, a single-copy DTN routing protocol. In fact, if a message

is dropped, it is irremediably lost; this is instead not true for multi-copy

routing protocols, e.g. Epidemic Routing. Chapter 5 discuss advantages and

disadvantages of the different approaches.

We modeled blackhole carriers dropping all the packets for which they

are not final receivers. Selfish carriers do not drop packets, they only make

very unlikely the probability to be selected as message carriers.

Chapter 2
Mobility models

When analyzing the performance of a protocol for mobile networks the proto-

col should be tested under realistic conditions. Such conditions include, but

are not limited to, devices’ transmission range, limited buffer space for the

storage of messages, representative data traffic models, and realistic move-

ments of the mobile hosts, i.e. a mobility model.

A mobility model aims to produce movements for the mobile hosts that

somehow reflect the reality. Changes in speed and direction must occur and

they must occur in reasonable time slots. For example, we would not want

a mobile host to travel in straight lines at constant speeds throughout the

course of the entire simulation because they actually would not frequently

travel in such a restricted manner in a real-life scenario.

There are two types of mobility models used in the simulation of networks:

trace-based and synthetic models.

Trace-based models are those mobility patterns that are observed in real

life systems. Traces provide accurate information, especially when they in-

volve a large number of participants and an appropriately long observation

period. An example of trace-based model can be found in [10], describing the

results of the measurement performed by the Intel Research Laboratory in

Cambridge and results coming from other publicly available data sets ([19]

and [28]). The basic idea is to log movements of a group of volunteers for

a certain period of time. Such logs are possible by assigning to each vol-

22

CHAPTER 2. MOBILITY MODELS 23

unteer a sensor equipped with a radio interface (Bluetooth) [10], asking to

always keep it whenever they are. The devices log inter-contacts among the

volunteers and their approximate duration. Another technique is to collect

data coming from laptops or PDAs connected to access points in the area

of interest [19], [28]. In this case is made the assumption that a device can

communicate with all the other devices connected to the same access point.

In [10] the authors compare the results of such experiments, showing evident

similarities between the pattern movements collected by the different groups.

However, network environments such as DTNs and ad hoc networks are

not easily modeled if traces have not yet been created. In this type of situ-

ation it is necessary to use synthetic models. Synthetic models attempt to

realistically represent the behaviors of the mobile hosts without the use of

traces. Here we present two synthetic models: the Random Waypoint model

and the Community-based mobility model.

2.1 Random waypoint model

Random Waypoint model (RWP) [21] is a commonly used synthetic model

for host mobility. It is an elementary model which describes the movement

pattern of independent hosts by using a few input parameters:

1. pause time (tpause)

2. minimum speed (minspeed)

3. maximum speed (maxspeed)

In RWP a host is allowed to move inside a convex area of given size,

in which it moves independently on the others. The area can be thought

as divided in regions of a given size. The algorithm for the generation of

movement patterns for each host can be summarized as follows:

0. initially, each host is somehow placed inside a region of the area.

1. the host remains in its location for a time tpause.

CHAPTER 2. MOBILITY MODELS 24

2. after the pause time, the host is assigned to move to a new location

randomly selected. The host starts moving along a straight line to-

ward the given target with a speed randomly chosen in the interval

[minspeed,maxspeed].

3. upon reaching the target location, the algorithm is repeated.

This model has the advantage to be very easy to implement, and it has

been widely used in the scientific community in the past to test communica-

tion protocol for MANETs.

The drawback of such simplicity is the failure in providing movements

that reflect reality. We can resume the reasons of such failure in the following

points:

unnatural movements It is easy to argue about the paths being unnatural,

because hosts tend to make zig-zag movements in the given area. In

[29] it has been shown that RWP presents properties very distant from

those extracted from real scenarios, such as duration of the contacts

between hosts and the inter-contact times.

speed distribution The most common problem with simulation studies us-

ing RWP is a poor choice of speed distribution [35], e.g. a uniform

distribution U(0, Vmax). Such distribution leads to a steady-state level

in which the average speed is lower than the initial average speed [47].

To give an example, using an area of 1500m × 500m and speed range

of (0, 20]m/s, if a destination is chosen 1000m away and the speed is

chosen to be 0.1 m/s, then the travel time would be 10000 seconds. If

hosts do reach the destination they will be assigned another possibly

higher random speed, but hosts like this can be ”trapped” to these

slow journeys for significant amount of time and therefore dominate

the average speed.

In the last years the research community made efforts in providing mo-

bility models that overcome the limititations of RWP. One of such mobility

models is the Community-based mobility model, presented in Section 2.2.

CHAPTER 2. MOBILITY MODELS 25

2.2 Community-based mobility model

The Community-based mobility model [29] relies on the assumption that,

since devices are usually carried by humans, mobile networks are social net-

works after all.

A social network [36] can be defined as a network in which entities (e.g.

individuals) are tied (connected) by one or more types of interdependency,

such as friendship, kinship, beliefs, knowledge, etc. Social networks view

social relationships in terms of network theory. In particular, a social network

can be represented using weighted graphs, in which nodes represent people

and weighted edges model the strenght of the social interaction, the value of

which is defined in the range [0,1]; 0 means no interaction, 1 means strong

social interaction.

Social networks can also be represented by interaction matrices, in which

an element mi,j, called interaction indicator, represents the social attractivity

between individuals i and j. The matrix is considered symmetric, i.e. both

individuals give the same weight to the relationship. This clearly constitutes

a semplification, since in many real-life situations there is a strong asymmetry

in the weight each part assigns to the relationship, e.g. professor-student,

boss-exmployee, actor-fan, etc.

Figure 2.1 shows an example of social network, while Figure 2.2 the in-

teraction matrix representing that social network.

Social networks have been investigated in detail, both in sociology and in

other areas, most notably mathematics and physics. They can be described

by a set of metrics, measuring the relationships between entities forming

the network. Metrics of our interest are average path length and clustering

coefficient. Average path length is defined as the average distance (in terms

of hops) between two nodes in the network. Clustering is a measure of the

number of interconnections locally to each host; in other words, it measures

the ”cliqueness” of a node’s neighborhood.

Theoretical models have been developed to reproduce the properties of

these networks, such as the so called small worlds model, proposed by Watts

and Strogatz in [42]. A social network that presents small worlds character-

CHAPTER 2. MOBILITY MODELS 26

0.320.64

0.76 0.45

0.67

0.54

0.83 0.410.57

0.69

0.650.61

0.84
AA BB

CC

HH II

DD EE

LL

GGFF

Figure 2.1: Example social network, reproduced from [29].

istics presents a low average path length and a high clustering coefficient.

2.2.1 The Caveman model

The Community-based mobility model is constructed using the so-called

Caveman model [42]. The model is started from building K graphs, locally

fully connected but disconnected each other (representing communities of

men living in isolation). Individuals of one community are closely connected,

whereas populations belonging to different caves are initially not connected.

Connections between communities are defined by a dynamic rewiring process,

that will be described in the following.

The network is constructed within an area of a given size, divided into

squares to form a grid. We indicate with Sp,q the square in position (p, q).

The number of rows and columns are inputs of the mobility model. Each

community is placed in a different square of the grid and composed by K/N

individual, where N is the total number of individuals composing the network.

Figure 2.3 represents an example of Caveman model with three disconnected

caves, while Figure 2.4 show how the communities defined in the example

above can be placed on a 3x4 grid. The dimension of the grid is configurable

by the user and influences the density of the nodes in each square.

CHAPTER 2. MOBILITY MODELS 27

M =

1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.45 0 0.05
0.64 0.32 1 0.13 0.25 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
0.05 0.67 0.25 0.54 1 0.2 0.41 0.2 0.23 0

0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12

0.12 0.45 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65

0 0.05 0 0 0 0 0.12 0.61 0.65 1

Figure 2.2: Interaction matrix representing the social network in Figure 2.1.

To define the rewiring process, we associate to each host a couple (id, Ti),

where id is the unique host identifier and Ti the target the host is assigned

to move. id is fixed, while Ti changes over time. The model aims to build a

sequence of targets T0, T1, T2, etc. for each host in the network. T0 is chosen

randomly inside the square associated to the community.

Successive targets are defined as follows. Each square of the grid exerts a

certain social attractivity for a host i. Let CSp,q be the set of hosts associated

to the square (p,q), then the social attractivity of a square towards host i

(SAp,qi) is defined as:

SAp,qi =

n∑
j=1

j∈CSp,q

mi,j

w
(2.1)

where w is the cardinality of CSp,q , i.e. the number of hosts associated to

square Sp,q. In other words, the social attractivity of a square in position

(p,q) towards a host i is defined as the sum of all interaction indicators

mi,j representing the relationships between i and the hosts belonging to that

square, normalized by the number of them. If w = 0, then SAp,qi is set to 0.

Selection of the target Ti, i > 0, is based on the social attractivity of each

square toward the host. Here we define two possible ways of selecting such

target:

CHAPTER 2. MOBILITY MODELS 28

Figure 2.3: Example of Caveman model with three disconnected caves, re-
produced from [29].

• deterministic selection, in which the host is assigned to move towards

a random point inside the square with the highest social attractivity:

it could be always the same or change from time to time, e.g. because

of insertion or deletion of one or more hosts.

• probabilistic selection, proportional to social attractivity: we assign a

probability P(s = Sp,qi) of selecting the square Sp,q as follows:

P (s = Sp,qi) =
SAp,qi + d∑p×q
j=1 SAp,qj + d

(2.2)

where d is a random value higher than 1 in order to ensure a probability

always different from 0. The social attractivity of each community

weights the selection probability, i.e. a community that exerts a high

social attractivity to a host has a higher probability to be chosen as

successive target than a community exerting a lower social attractivity

to the same host.

Let us suppose that host A has reached its first goal inside the square

Sa,2.

CHAPTER 2. MOBILITY MODELS 29

cc

bb

aa

11 22 33 44

BBAA

CC

II

LL

HH

EE

GGFF

DD

Figure 2.4: Example of initial simulation configuration, reproduced from [29].

Assuming deterministic selection of the next goal, it is chosen by calcu-

lating the social attractivities of all the squares that compose the simulation

area and choosing the highest. If, say, square Sc,2 exterts the highest social

attractivity (for example, because a host with strong relationship with node

A has joined that community), the new goal will then be selected inside that

square.

Considering probabilistic selection of the next goal, assume that square

Sa,2 exerts a social attractivity SAa,2A
of 0.30, square Sc,2 a social attractivity

SAc,2A
of 0.50 and square Sb,4 a social attractivity SAb,4A

of 0.20. The new

goal will then be square Sa,2 with a probability of 20%, square Sc,2 with a

probability of 50% or square Sb,4 with a probability of 30%.

Chapter 3
CAR

3.1 Introduction

Context-aware adaptive routing (CAR) [30], briefly introduced in Section

1.2.2, is a routing protocol designed for enabling both synchronous and asyn-

chronous routing of messages in DTNs.

When sender and receiver of a message are in the same partition, the mes-

sage is delivered using a synchronous routing protocol. In CAR a proactive

routing protocol, DSDV [32] (Dynamic Source Distance Routing), is used.

DSDV will be introduced in Section 3.2.

When direct communication with the receiver is not possible, asynchronous

routing is performed. CAR selects the host with the highest chance of suc-

cessful message delivery, called delivery probability. The selected host is called

carrier.

To understand how a carrier behaves, consider the example represented

in Figure 3.1. At time t = t1, host S wants to send a message m to host

D. S cannot reach D using the synchronous routing because no persistent

path exists between the two hosts. So, S checks in its routing table whether

exists a carrier to reach D or not. Assume S finds that host D can be reached

from host B with a delivery probability equal to 0.3, while host A with a

delivery probability equal to 0.8. Host A therefore represents the carrier for

message m to reach D. S forwards the message m to A, that saves it in its

30

CHAPTER 3. CAR 31

local buffer. Later, at time t = t2, A leaves the partition to join the other

partition, in which it will deliver the message to the receiver D using the

underlying synchronous routing protocol.

Delivery probabilities are evaluated locally on each host based on a set

of context attributes and exchanged together with the synchronous routing

protocol updates. The values exchanged are used as input for Kalman filter

predictors that will provide an estimation of the future value of delivery

probability. Hence, each host exchanges predicted values with the other

hosts rather than current ones. Details on computation and evaluation of

delivery probabilities are provided in Section 3.3.

Design of CAR is based on two assumptions:

1. a host is not aware of its absolute geographical position, i.e. no GPS

coordinates are available. A host has information about its local neigh-

borhood only.

2. all hosts in the network cooperate in the message forwarding process.

More formally, we consider the network as a non-connected graph G =

(V, E), with vertexes V representing hosts and edges E their connections.

We also consider hosts of G placed in an area of well-defined size, partitioned

in k disconnected subgraphs G1, G2, .., Gk ⊆ G where each subgraph Gi

represents a partition. Partitions are locally connected, i.e. hosts within

Gi are connected each other, but no persistent connection exists with hosts

belonging to different partitions.

CAR has been tested using the Community-based mobility model [29]

to define host movements. Such model has been discussed in Section 2.2.

Results of such tests are resumed in Section 3.4.

3.2 Message delivery

In CAR each host mantains a routing table for both synchronous and asyn-

chronous routing.

Synchronous message routing exploits the DSDV protocol. DSDV is an

extension of the Distributed Bellman-Ford algorithm (DBF) [6] for mobile

CHAPTER 3. CAR 32

ad hoc networks. In DSDV, each entry of a host’s routing table contains the

destination host identificator, the host’s shortest known distance (expressed

in number of hops), and the identificator of the host that is the first hop

in that shortest route. To mantain the routing table, each host periodically

transmits a routing update to each of its neighbors, containing the informa-

tion from its routing table. Each host uses the information advertised by its

neighbors to update its table, so that each route for each destination uses as

a next hop the neighbor that advertised the smallest distance for that des-

tination; the host sets the distance in its table to one (hop) more than the

distance received in order to count the neighbor as a hop too. Routing loops

(i.e. paths that start and finish on the same host) are prevented by imposing

a maximum distance, called infinite distance, to each route. Infinite distance

is also assigned to a neighbor that is not in transmission range anymore.

The main contribution of DSDV with respect to DBF is the use of sequence

numbers attached on each update message in order to apply routing changes

in temporal order.

CAR extends the synchronous routing protocol by adding a couple of en-

tries for each destination in the routing table: the carrier with the highest

delivery probability, called best carrier, and the associated delivery probabil-

ity value. A Kalman filter predictor has been also associated to each entry

of the routing table. Asynchronous routing information are distributed to-

gether with synchronous routing updates. The received delivery probability

is always used to update the Kalman filter predictor, regardless the value

advertised. The filter is used to achieve a more realistic prediction of the

evaluation of the context of a host and to optimize the bandwidth usage.

The output of the filter is actually used to drive the asynchronous routing

process and distributed to the other hosts in the update process. When a

neighbor advertises a carrier having a value of delivery probability higher

than the current one, the entry is replaced with the advertised carrier and its

delivery probability. The corresponding Kalman filter is reset. A host can

also consider itself the best carrier for a given destination. In this case the

filter is still used to predict the delivery probability.

When a host, say S, wants to send a message to another host, say D, first

CHAPTER 3. CAR 33

S checks if D can be reached synchronously, i.e. S checks if there is an entry

in the routing table containing D as destination with finite distance. S then

transmits the message to the indicated neighbor host; each host, in turn, will

use its routing table to forward the message along its next hop toward D.

If synchronous communication is not possible, then CAR tries to deliver

the message asynchronously. Host S checks in the routing table if it does

exists a carrier to reach D: if it’s the case, S sends the message to that carrier

using the underlying synchronous protocol. Upon receiving the message, the

carrier stores the message in its local buffer, waiting to move to another

partition and enter in contact either with the receiver D or with a carrier

claiming a higher delivery probability for D.

If none of the mechanism can be exploited, the message is stored in the

host’s local buffer. The host periodically attempts to forward the message

toward the receiver following the order described above: first trying syn-

chronous routing and then trying with asynchronous routing; if the routing

is still not possible, the host stores the message in the local buffer again. Re-

transmission interval is a parameter to select accordingly, usually somehow

proportional to the rate in which the environment changes, e.g. according

to hosts’ speed. The number of the retransmissions is another configuration

value, tested during the performance evaluation of the protocol (see [30]).

With respect to the process of message forwarding, it is worth to note

that:

• a host can decide to keep a message in its local buffer because it con-

siders itself the best carrier to reach a given destination.

• asynchronous message forwarding can occur also between hosts placed

in the same network partition, e.g. because an incoming host has not

enough routing information to reach a given destination yet.

3.3 Delivery probability

Delivery probability is a value representing the utility of each host to act as

potential carrier for a message, its value resulting from the computation of

CHAPTER 3. CAR 34

a utility function over context information. Context is defined as the set of

attributes describing the aspects of the system that can be used to drive the

process of message delivery. Examples of such attributes can be the change

rate of connectivity, the colocation with other hosts, the residual battery

power, etc. Currently the protocol is based on the evalutation of two context

attributes:

• change rate of connectivity (CRC): how often a host appears and dis-

appears from the partition, calculated in Formula 3.1.

Ucdch(t) =
|n(t− T) ∪ n(t)| − |n(t− T) ∩ n(t)|

|n(t− T) ∪ n(t)|
(3.1)

where h is the current host, n(t) is h’s neighbor set at time t. The

formula yields the number of hosts that become neighbors (appeared)

or disappeared in the time interval [t-T, t] (T is a tunable parameter),

normalized by the total number of hosts met in the same time interval.

In other words, CRC is an indicator of a host’s mobility.

• future host colocation: likelihood of a host to get in contact (i.e. within

transmission range) in the future. The colocation of h with a host i is

calculated in Formula 3.2.

Ucoli,j (t) =

{
1 if the host h is colocated with host i

0 otherwise
(3.2)

The objective of the utility function is to maximize the delivery probabil-

ity using multi-attribute utility theory [22], exploiting the so-called preemp-

tive methodology. Each attribute is considered separately, trying to maximize

its value over all the others. It may happen that conflicting attributes deter-

mine the overall delivery probability, e.g. the host with the highest mobility

has the lowest battery level; in such cases there is the need to obtain a trade-

off between these values. The problem is solved using significance weights

assigned to each attribute. Formula 3.3 shows the calculation of the utility

function in case of mutually preferentially context attributes, i.e. attributes

CHAPTER 3. CAR 35

that are not in conflict with each other.

Maximize

{
f(U(xi)) =

n∑
i=1

ai(xi)wiUi(xi)

}
(3.3)

U(xi) is the utility function over the context attribute xi, and wi are signifi-

cance weights representing the relative importance of each context attribute,

the value of which is fixed in advance.

In order to make the function reactive to dynamic changes in the envi-

ronment, adaptive weights ai have been introduced. They can be further

decomposed in three different components:

ai = arangei
(xi) ∗ apredictabilityi

(xi) ∗ aavailabilityi
(xi)

• arangei
(xi) adapts the attribute to the range of values assumed, e.g.

when battery level decreases, we may want the relative attribute de-

creasing (linearly or non-linearly).

• apredictabilityi
(xi) is used to check whether an attribute can still be pre-

dicted from the Kalman filter or not, e.g. because there are not enough

fresh updates available in order to give an accurate prediction of the

attribute; its value is currently 0 (non-predictable) or 1 (predictable).

• aavailabilityi
(xi) tells whether the attribute value is currently available or

not, and its value is currently 0 (not available) or 1 (available). This

weight can be used to add new context attributes ”on the fly”, simply

assuming that all the previous values were 0.

The result of the utility function is used as input for Kalman filter pre-

dictors. To understand the reason of the use of predicted future values with

respect to current ones, consider the following example. Assume two hosts

have been in contact for a long time e.g. for the last two hours: if one of the

two hosts moves away, it is reasonable that in the near future they will enter

in contact again. So, it would have been a mistake to consider the current

colocation value, equal to zero; a host should instead consider the predicted

value, that is surely higher than zero.

CHAPTER 3. CAR 36

The model is extendible, providing a framework in which different context

attributes can be defined: for example, SCAR [27], an adaptation of CAR for

sensor networks, uses also battery level as context attribute, since in a sensor

environment the knowledge and prediction of its future value represents an

important element for making routing decisions.

3.4 Performance

CAR has been compared with other protocols designed to allow communica-

tion in disconnected networks [30]: flooding, epidemic routing, PRoPHET,

Spray and Wait, Random Choice.

Flooding represents the simplest approach in message delivery for ad hoc

networks, in which each host periodically broadcasts a copy of a message to

each of its neighbors. The interval between updates is chosen randomly.

Random Choice is a modified version of CAR, missing of the algorithm

for the selection of the best carrier. In other words, in Random Choice a

message follows a random path to reach the destination.

It has been shown that:

• messages in CAR are delivered with a lower delay when direct com-

munication can be performed. The reason is the use of a synchronous

protocol between hosts placed in the same partition.

• CAR well performs with buffers of limited sizes with respect to the

other protocols. Multi-copy protocols suffer limitations on buffer sizes,

and performance degrade because of overflows with consequent drop

of some messages. CAR instead is a single-copy protocol, in which at

every time exists only a copy of a message around the network. It

implicitly also helps saving resources because of the reduced number of

message transmissions compared to the other protocols.

• CAR is suitable for sparse scenarios, in which an accurate selection of

the carriers has to be performed. In dense scenarios with no limitation

on buffer sizes instead, multi-copy protocols perform better than CAR.

CHAPTER 3. CAR 37

A

B

S

C
D

F

E

0.8
0.3

(a) Time t1: sender S passes the message to carrier A

A

2

S

6
D

5A

B

S

C
D

F

E

(b) Time t2 > t1: carrier A moves to the other partition
and delivers the message to the receiver D

Figure 3.1: Example of asynchronous communication.

Chapter 4
RCAR

4.1 Reputation: concept and definition

In mobile environments such as DTNs host encouters could be very frequent.

Such encounters may happen among hosts that already met each other as

well as among perfect strangers. As discussed in Section 1.3, several possi-

ble misbehaviors can endanger the successful accomplishment of the routing

process: we think that a security approach based on reputation management

can be used to contrast such misbehaviors.

Reputation approaches are used in many systems, from electronic market

places [34] [48] to online communities [17] to measure the trustworthiness of

a given person or service. We first give a general definition of reputation. In

[26] reputation is defined as:

”Reputation of an agent 1 is a perception regarding its behavior norms,

which is held by other agents, based on experiences and observation of its

past actions.”

There are many challenges that a reputation system for DTNs has to cope

with, starting from the initial reputation value to assign when two hosts meet

for the first time. It could be adopted an optimistic policy, assigning to the

new host a high reputation value or it could be adopted a conservative policy,

1We will refer to ”host” rather than to ”agent”. However, ”agent” represents a more
general concept, and the definition is still valid.

38

CHAPTER 4. RCAR 39

assigning to the new host a low reputation value. The latter option is pre-

ferred since each newcomer has to ”build” its reputation. It also discourages

sporadic attacks and attacks based on frequent changes of identity.

A host can assign the initial reputation to a newcomer also evaluating

recommendations from other trusted hosts. Nevertheless a host may not

want to share a truthful recommendation or do not share a recommendation

at all.

Misbehaviors in sharing recommendations can be summarized in the fol-

lowing attacks:

Inactivity Also called free-rider problem, in which a host may not want to

share reputation information with peers, for example to take advantage

of a contended service with the other hosts.

Defame A host reports bogus low reputation values with the purpose to

discredit a given service or host.

Collusion Some hosts report reciprocal high reputation values in order to

promote each other. This could be preparatory for other type of attacks

willing to disrupt network services, e.g. Denial of Service (DoS).

Moreover, in DTNs is not advisable to share recommendations among

hosts, in order to not overload the network with extra messages and save

resouces.

We will denote with Rij the reputation a host j assigns to another host

i. We define the reputation value in the range [0,1], with a value equal to

0 meaning ”totally untrustworthy” and a value equal to 1 meaning ”totally

trustworhty”. Reputation updates (increment or decrement) can be period-

ical or triggered by a certain event or behavior, e.g. a carrier that correctly

forwarded a message can trigger a reputation increment on the receiver.

The properties that a reputation system for DTNs has to accomplish are

[26]:

Valid The system should be able to distinguish honest from dishonest hosts

through the reputation system.

CHAPTER 4. RCAR 40

Distributed The system should not assume access to any trustworthy au-

thority or centralized reputation values storage.

Robust The system should be always able to assign truthful reputation

values, despite the presence of one of the attacks listed above (inactivity,

defame, collusion).

Timely The system should be dynamic and reputation values managed in

an up-to-date manner.

Resource-saving The system should take into consideration the limited

computational and storage resources of each device.

We propose RCAR [12], a reputation-based mechanism extending CAR.

The aim is to mitigate carrier misbehaviors in message forwarding using

reputation for the selection of the best carrier for a given destination. At the

same time RCAR aims to constrast selfish misbehaviors by assigning network

resources proportional to host’s reputation. RCAR has been designed with

the aim to meet the requirements listed above.

4.2 Design

RCAR constrats both blackhole and selfish carriers. Blackhole carriers dis-

tribute a bogus high utility function value Uc → 1 during routing updates

with their neighbors. On the other hand, selfish carriers distribute a bogus

low utility function value Uc → 0.

A blackhole carrier, distributing a bogus value Uc → 1 for some des-

tinations (if not all), would quickly attract a relevant number of messages

coming from hosts wishing to communicate with destinations placed in dif-

ferent partitions. They will put such messages on the hands of the malicious

carrier, that will then use them according to its evil purposes: data retrieval,

modification or dropping.

In order to contrast blackhole carriers, RCAR introduces the Local Utility

Function (LUF), an extension of the utility function of CAR. RCAR makes

routing decisions on the basis on the LUF value, rather than on the sole

CHAPTER 4. RCAR 41

utility function value, as performed in CAR. Let Uc be the utility function

distributed by a carrier C. LUFcj will be the LUF host j calculates for a

carrier C, defined in Formula 4.1.

LUFcj = Rcj × Uc (4.1)

RCAR contrasts blackhole carriers as follows. Assume that a carrier C

is misbehaving for a reasonable amount of time, it will consequently have a

low reputation Rcj � 1 over all the hosts. Its LUF will also be low Lcj � 1.

A host j will not choose C as carrier or, at least, the probability that C will

be chosen is significantly lowered.

The LUF value is also used in the carrier replacement process. In CAR

it is performed as follows. Consider the case of a host receiving a routing

update (Section 3.2) from a neighbor distributing the content of its routing

table. The host, for each destination in its routing table, checks if the neigh-

bor advertised a carrier with a higher delivery probability than the current

one. If it’s the case, the advertised carrier replaces the current one. To give

an example, assume a host S cannot reach a given host D using the syn-

chronous routing. S knows that the best carrier to reach D is C1, with a

delivery probability of 0.3. Upon receiving a routing update from a neigh-

bor, say host A, S finds that another carrier, say C2, can reach D with a

delivery probability of 0.7. So, S replaces C1 with C2 as best carrier to reach

D, and the corresponding delivery probability is also replaced. This process

advantages a blackhole carrier distributing a high value of delivery probabil-

ity. In fact, all the hosts will replace their current carriers with the attacker,

that will start receiving a high percentage of messages toward receivers not

directly reachable using the synchronous routing. The result is that such

messages will get compromised, probably they will never reach the receiver.

RCAR modifies the carrier replacement of CAR. In fact, a carrier in the

routing table is replaced only if its LUF value is higher than the current

one. With reference to the example given above, C1 is replaced with C2

only if LUFC2 > LUFC1 . In other words, we check whether C2 has a higher

combination of delivery probability and reputation than C1.

CHAPTER 4. RCAR 42

Let now consider a selfish carrier. Since it does not want to be chosen

as message carrier, it distributes a low value Uc → 0 for each destination.

In the absence of any security mechanism, the selfish carrier can send mes-

sages around the network, exploiting the work of well-behaving carriers while

saving its resources.

RCAR contrasts selfish carriers by imposing each host to forward a num-

ber of messages proportional to carriers’ reputation. Let Mc be the number

of messages a host j receives from a carrier C; j will actually forward Mcj

messages on behalf of C. Mcj is defined in Formula 4.2.

Mcj = dMc ×Rcje (4.2)

Hence, host j will forward a number of messages proportional to carrier’s

reputation. The principle is to follow a ”do ut des” 2 policy, providing an

incentive to hosts for well behaving in the routing/forwarding process: the

more the host partectipates in the process, the more network resources the

host is able to use.

The mechanism well fits in distinguishing selfish carriers from carriers

with critical resource levels (e.g. residual battery power). Such carriers are

compelled to behave selfishly because of the few resources left, that they want

to save. A carrier with low resources will not be able to partecipate in the

routing process, but neither to create and send a high number of messages

around the network. In this sense, the mechanism can be considered valid.

4.3 Reputation update

Reputation update is based on the following principle: when a host receives

a message, it means that all the carriers the messages passes through are

not misbehaving or, otherwise, the host would have not been received the

message. So, the receiver can increase the reputation of the carriers the

message passes through. We only need a mechanism to keep track of such

carriers.

2Latin for ”I give, so that you may give” (source: Wikipedia).

CHAPTER 4. RCAR 43

C1

S

C2

D

F

B

A

E

G

clist = Ø

clist = { C1 }

clist = { C1, C2 }

Figure 4.1: Example of clist update.

Suppose a host S ∈ Gs wants to send a message to host D ∈ Gd: S builds

a message m = (mid, p, clist) where mid is the unique identifier associated

to each message, p is the message payload and clist is the list of carriers the

message passes through.

Initially, clist is empty. Then, assuming S and D not placed in the same

partition, S chooses the best carrier C1 ∈ Gs in order to reach D, and forwards

m to C1 using the underlying synchronous routing. C1, after adding itself to

clist, leaves Gs and joins Gp that we assume does not contain D. In such a

case, if in Gp exists a carrier, say C2, with a higher probability of reaching

D, C1 chooses C2 as carrier and sends the message to it. C2 adds itself to

clist, leaves Gp and the process is repeated, with the message passing from

carrier to carrier until it finally reaches D. Figure 4.1 provides an example of

clist update.

Upon receiving the message, the receiver D extracts clist and increases the

reputations of the carriers in it contained, according to one of the techniques

we will define in the following.

Note that the integrity of clist must be protected. This can be achieved

through the use of digital signatures.

Each node of the network is identified by a unique ID. Furthermore it

CHAPTER 4. RCAR 44

has a couple (public key, private key) and a certificate binding its ID to

its public key and signed by a Certification Authority (CA) known by all

the nodes. The presence of a Public Key Infrastructure (PKI) is not the

best solution in a DTN due to the problem of certificate revocation and the

communication from a node to the CA. However, certificate revocation can

be applied using techniques proposed in [8, 46]. Furthermore, PKI could rely

on a low bandwidth cellular infrastructure (e.g. a node could be equipped

with a smartphone, to download other nodes certificates), as suggested in [5].

In order to support the clist protection, the message format must be

extended. The new format is the following:

m = (mid, p, ts, S,D, clist, slist)

where ts indicates the timestamp put by the sender and slist indicates the

chain of digital signatures. With reference again to Figure 4.1, suppose that

the sender (S) wants to send a message to the receiver (D). Furthermore, sup-

pose that the message follows the path S-C1-C2-R. The generated messages

are:

S → C1 : (mid, p, ts, S,D, [∅], [sS]), where sS = < mid, p, ts, S,D >S

C1 → C2 : (mid, p, ts, S,D, [C1], [sS, sC1]), where sC1 = < sS, C1 >C1

C2 → D : (mid, p, ts, S,D, [C1, C2], [sS, sC1 , sC2]), where sC2 = < sC1 , C2 >C2

Each node adds itself to clist and to slist (both represented among square

brackets [. . .]), then signs the chain of digital signatures with its own private

key.

Replacement of the carriers in the routing table occurs also in case of

reputation increments. The principle is that, since a carrier has an increased

reputation, probably it can replace one or more entries currently present in

the routing table. Reputation increments happen depending on the RCAR

implementation considered, when one of the events in Table 4.1 occurs. The

value of the increment and the increased reputation depend on the update

policy considered.

CHAPTER 4. RCAR 45

In order to perform the replacement of a carrier upon a reputation in-

crement, RCAR introduces an auxiliary data structure, called reachability

table (reachTable). For each known carrier, reachTable stores the most re-

cent routing updates received. It is basically a list storing the carriers that

can reach a given destination together with the advertised delivery probabil-

ities. To give an example of such replacement, assume that a host D receives

a message m. D extracts clist and increases the reputation of all the car-

riers contained in within. Consider the first carrier, say C1. D checks in

its routing table all the destinations with a non null carrier. Assume that

a given host X can be reached using a carrier Cx, with a delivery proba-

bility of 0.3. Assume also that the reputation of carrier Cx on D is 0.2.

So, LUFCx = UCx × RCxD = 0.06. Now, D checks in reachTable if C1 can

reach X. Assume that C1 can effectively reach X with delivery probability

0.4 and that the reputation of C1 after the increase is 0.7. So, we have

LUFC1 = UC1 × RC1D = 0.28. The result is that LUFC1 > LUFCx . D re-

places in its routing table Cx with C1 as carrier to reach X. The process is

then repeated for each carrier in clist. Section 6.2 provides further details on

reachTable.

If a carrier misbehaves during the path from sender to receiver, there is no

way to detect which is the malicious one. There is neither no way to know if

the message arrives at destination or not. In order to cope with misbehaving

carriers, each host performs a periodical decrease of all the reputations of

the carriers the host interacted with in the past. It is worth to note that

a periodical reputation decrease is also useful to detect carriers that change

behavior along time.

Reputation can be increased and decreased using different functions. Here

we propose three different approaches. Other approaches can be defined.

• linear: if a host j considers a carrier C well behaving, then j increases

Rcj by a constant positive value X. Periodically host j decreases Rcj by

a constant positive value Y. The mathematical formula is shown in 4.3:

Rcj =

{
min{1, Rcj +X} if does not misbehave

max{0, Rcj − Y } periodical decrement
(4.3)

CHAPTER 4. RCAR 46

• exponential: it relies on the idea that if a host is well behaving, then

Rcj quickly assumes the highest value, while if C does not collaborate

or do it infrequently, its reputation is drastically reduced. The formula

is shown in 4.4:

Rcj =

{
1− e αRcj if does not misbehave

e β Rcj periodical decrement
(4.4)

Note that exponents are multiplied by different factors α and β, in

order to set the slope.

• sinus-based: it is similar to the linear case, but now the reputation

converges from 0 to 1 more smoothly. The mathematical formula is

shown in 4.5:

Rcj =

{
sin(π

2
×Rcj) if does not misbehave

sin(Rcj) periodical decrement
(4.5)

A host j may adopt different policies in order to assign the initial reputation

value to a given carrier C: a conservative policy, assigning Rcj = 0 or an

optimistic policy, assigning Rcj = 1. Intermediate policies can be defined.

4.3.1 Extensions to the update process

The update process described in Section 4.3 limits the knowledge of the

good behavior of the carriers that carried a message m to the receiver only.

Exploiting the information contained in clist, we propose three extensions to

the basic technique: acknowledgement, step by step and gossip.

In the acknowledgement technique the receiver builds a message ack =

(mid, clist), where mid is the unique identifier associated with the message

and clist is the list of the carriers the message passes through. Note that

clist is the same received in the source message m. The acknowledgement

message ack is then sent towards the host originating m: it can follow the

same path (i.e. the same sequence of carriers) or a different one. However,

clist is not altered during such path. The host originating m, upon receiving

CHAPTER 4. RCAR 47

ack, extracts clist and updates reputation values of the carriers contained in

within.

Step by step extends the acknowledgment technique with the aim to let as

many host as possible to have knowledge of the good behavior of the carriers

that carried the message from sender to receiver. A host, upon receiving

either a message m or an acknowledgement ack, can increase the reputation

of the carriers contained in clist. In fact, such carriers surely cooperated

in message delivery, otherwise the message would have not arrived until the

host. A host receiving a message m extracts clist, increases the reputations of

the carriers contained in within, then add itself to such list and forwards the

message towards the receiver. A host receiving an acknowledgement message

ack does not alter clist, it only increases the reputation of the carriers con-

tained in within and then forwards the message towards the receiver (in this

case the host originating m). Note that ack has the same message identifier

of m, in a way that a host that forwards both m and ack cannot update twice

a carrier’s reputation.

The principle behind the gossip technique is different instead. In fact,

it aims to let know to hosts in receiver’s proximity of the good behavior

of the carriers contained in clist. The neighbors can therefore exploit the

presence of the ”last hop” carrier to forward messages toward destinations

placed in different partitions to it. Upon receiving a message m, the receiver

builds a gossip message gos = (mid, clist), the structure of which is equal

to an acknowledgement message. The gossip message is then broadcasted to

receiver’s neighbors (i.e. to hosts at one hop distance). Each host receiving

a gossip message only extracts clist and increases reputations of the carriers

contained in within. The gossip message is no further propagated in order

to not overload the network with extra messages.

Table 4.1 summarizes the events that can trigger a reputation increase

and makes a connection with the different implementations of RCAR.

CHAPTER 4. RCAR 48

RCAR implementation
Event Basic Ack Step-by-step Gossip
message (m) received

√ √ √ √

acknowledgement (ack) received
(source host)

√ √

m or ack received (intermediate
host)

√

gossip (gos) received (receiver’s
neighbor)

√

Table 4.1: Reputation increments in different implementations of RCAR.

Chapter 5
Simulation and results

We have evaluated the performance of RCAR comparing it with CAR and

Epidemic Routing (ER).

We implemented the protocols using the OMNeT++ simulation environ-

ment. RCAR extends an existing implementation of CAR, provided by the

authors of [30]. Some details about such implementation and our extension

are provided in Chapter 5. ER has been implemented following the specifi-

cations in [40].

We have evaluated the following metrics:

• delivery ratio, defined as the ratio between the number of messages

received and the total number of messages sent.

• average delivery delay, calculated as average interval between the gen-

eration of a message and its delivery to the final recipient.

• total number of sent messages around the network, including interme-

diate transmissions and acknowledgements.

Simulations have been executed using a HP Pavillon dv6-1058el, with a

2.53 Ghz Intel Core2 Duo Processor and 4GB of RAM.

We abstract the scenario at the network level: in fact, the aspects that

are of our interest do not depend on the particular MAC protocol consid-

ered or the physical device used. However, they may impact on the overall

performance of the protocols: we left this problem to future studies.

49

CHAPTER 5. SIMULATION AND RESULTS 50

5.1 Scenario and parameters

We considered two simulation scenarios with common parameters, differing

in host sparseness. Scenario A consists of 50 hosts with 30 carriers. Scenario

B consists of 100 hosts with 60 carriers. We defined carriers as hosts with

non null speed, moving among partitions.

Hosts have been divided in 4 groups distributed in a square area of

1km× 1km. The area has been divided in a grid of 4 columns and 4 rows,

the groups placed at the 4 edges of the area. Carriers have been distributed

among the 4 groups. Each carrier moved according the Community-based

mobility model (see Section 2.2), with speed uniformly distributed in the

range [0-20] m/s and probabilistic selection of the successive target. This

distribution of speeds aims at emulating different types of traffic, that can

range from pedestrian to vehicular. The rewiring probability was set to 0.1.

We have assumed the use of bidirectional antennas with a transmission

range of 200 mt. We assume that the transmission of messages may happen

and be completed when two hosts are in radio range. We did not model

retransmission of packets.

We have evaluated the performance by sending 5000 messages while ana-

lyzing BCs and 10000 messages while analyzing SCs. In the analysis of BCs,

sender and receiver of each message were chosen randomly among the ”non-

carriers” (i.e. the hosts with null speed, that stay during all the simulation

in their initial community), in a way to maximize the work of carriers. Note

that it may happen that a sender and a receiver can be placed in the same

partition: in such a case, the synchronous routing is exploited only. In the

analysis of SCs instead, sender and receiver were chosen randomly among all

the hosts. We have created a higher number of messages because we wanted

to let both carriers and standard hosts to build their own reputation.

The simulation time was set to 5000 seconds. The messages were sent

after 300 seconds, in order to allow the convergence of the routing tables after

the initial exchanges. The interval between the generation of two subsequent

messages was set to 0.8 seconds for BCs and 0.4 seconds for SCs: the last

message is therefore created after 4300 seconds, the last 700 seconds are

CHAPTER 5. SIMULATION AND RESULTS 51

left for the message forwarding process only. We executed 3 runs per each

configuration. We decided to analyze coarse-grained results because this work

represents a preliminar study on the possibility of using a reputation-based

mechanism for DTN security. More accurate results are not worth the effort

and the time of a higher number of runs. Table 5.1 resumes the general

simulation parameters and the two scenarios analyzed. Table 5.2 resumes

instead the parameters of the mobility model.

With reference to the parameters of CAR, we assigned the same number of

maximum retransmissions for each message than those used in [30], i.e. equal

to 20 and 40 for Scenarios A and B, respectively. The buffer size was set to

1000 slots, except for the studies made on its influence on the performance

of the protocol (Section 5.3). The routing table size was set to infinite,

i.e. 50 and 100 for Scenario A and B, respectively. We made this choice

in order to alleviate the influence of reachTable in the route replacement

process of RCAR. As discussed in Section 4.3, reachTable stores the last

received routing update by each host and in this sense it can be considered as

a ”second-level” routing table. Since it is used during the carrier replacement

process to decide the best carrier for a message, using a routing table size

lower than the total number of hosts would have been an advantage for RCAR

with respect to CAR, since RCAR may have a higher amount of information

to drive the routing process.

The retransmission interval of the messages stored in the local buffer was

set to 30 seconds. The same value has been selected for both the update of

the Kalman filters associated to each entry of the routing table and for the

interval between routing updates. Table 5.3 resumes CAR parameters.

We have to point out that we experimented memory allocation problems

while simulating ER on the computer we used to execute simulations. Rea-

sons of such memory errors have to be found in the huge number of messages

sent around the network by ER (see Section 5.4, Total number of sent mes-

sages). So, we had to execute ER with a lower number of messages and a

lower message buffer size while simulating Scenario B. However, results of

that ”scaled” simulations do not impact on the considerations we will make

in the following. Table 5.4 resumes the parameters used for simulating ER

CHAPTER 5. SIMULATION AND RESULTS 52

Parameter Value
Total sim. time 5000 sec.

Number of messages 5000 for BCs, 10000 for SCs
Message creation interval 0.8 sec. for BCs, 0.4 sec. for SCs

Initial wait time 300 sec.
Number of runs per each config. 3

Scenario A Scenario B
Number of hosts 50 100

Number of carriers 30 60

Table 5.1: General simulation parameters.

Parameter Value
Area 1km × 1km
Grid 4 rows × 4 columns

Groups 4, one at each edge
Carrier speed uniform. distrib. in [0-20] m/s

Selection of the next goal Probabilistic
Rewiring prob. 0.1

Transmission range 200 mt.

Table 5.2: Mobility model parameters.

performance.

With reference to the choice of parameters of RCAR, we had to determine

the values for:

• the initial reputation to assign locally on each host.

• the increment and the periodical decrement of reputation.

• the interval of the periodical reputation decrease process.

For simplicity, we considered linear updates only. Exponential and sinus-

based updates are left for future work.

We have performed the periodical decrease of the reputation values on

each host every 500 seconds. We considered this interval a trade-off be-

tween responsivity of the system to the detection of misbehaviors and a too

stringent punishment policy. In fact, lower values of such interval lead to a

CHAPTER 5. SIMULATION AND RESULTS 53

Parameter Value
Message buffer size 1000
Routing update int. 30 sec.

Message retransmission int. 30 sec.
Kalman filter update int. 30 sec.

Scenario A Scenario B
Routing table size 50 100

TTL 20 40

Table 5.3: CAR parameters.

Parameter Value
Message retransmission int. 30 sec.

Scenario A Scenario B
Number of messages 5000 2500

Buffer size 1000 500

Table 5.4: ER parameters.

situation in which a well-behaving carrier cannot build its own reputation be-

cause it is decreased straight after. On the other hand, higher values of such

interval lead on a too slow system in detecting and punishing misbehaving

carriers. We left for future work a more specific analysis of such parameter.

We have evaluated the three extensions of RCAR: acknowledgement (RCAR-

Ack), step-by-step (RCAR-Step-by-step) and gossip (RCAR-Gossip). RCAR-

Ack has been evaluated with three different set of initial reputation (R0),

increment (R+) and decrement (R−), as explained in Section 5.2.

Blackhole carriers (BC) and selfish carriers (SC) have been considered

Reputation
RCAR implementation R0 R+ R−

RCAR-Ack-1 1 0.1 0.05
RCAR-Ack-2 0 0.5 0.5
RCAR-Ack-3 0 0.1 0.05
RCAR-Step-by-step 0 0.1 0.05
RCAR-Gossip 0 0.1 0.05

Table 5.5: Reputation values for the different RCAR implementations.

CHAPTER 5. SIMULATION AND RESULTS 54

separately.

5.2 Choice of R0

We have investigated the influence of the initial reputation value R0 on the

performance of the system. We have noted that all the implementations of

RCAR have the same behavior, so hereafter we consider only RCAR-Ack.

We have evaluated the delivery ratio and the average delay of RCAR-Ack

in scenario A by varying R0 from 0 to 1, using a step of 0.2, in presence of

an increasing percentage of BCs. An analysis could be done on SCs, giving

similar results.

The reputation increment R+ was set to 0.1, while the reputation decrease

R− was set to 0.05. Remaining configuration parameters were the same

reported in Table 5.1, 5.2 and 5.3.

Delivery ratio. Figure 5.1 shows the delivery ratio measured in presence

of an increasing percentage of BCs, varying the initial reputation value. With

respect to the number of BCs, the delivery ratio degrades with the number

of BCs. This will be discussed in the next sections.

With respect to R0, we note a general behavior, independently on the

number of BCs present in the network: the delivery ratio decays as soon as

R0 > 0, then it tends to remain at the same value.

The reason of such decay is that RCAR has a warm-up phase, in which

Rij = R0∀i, j. The warm-up phase ends after 800 seconds, i.e. the initial wait

time (300 seconds) plus the reputation table update interval (500 seconds).

During the warm-up phase, if R0 > 0, a BC is not recognized so it is able to

attract a relevant number of messages and discard them. If R0 = 0, instead,

a host trusts only carriers that correctly forward a message and a BC is not

able to attract messages. In other words, before the protocol converges, the

12,5% of total messages are sent considering trusted all the carriers. This

means that RCAR works better if R0 = 0.

CHAPTER 5. SIMULATION AND RESULTS 55

RCAR-Ack

 0
 0.2

 0.4
 0.6

 0.8
 1

% MCs

 0
 0.2

 0.4
 0.6

 0.8
 1

R0

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

DR

Figure 5.1: Scenario A - Blackhole carriers: Delivery ratio vs. percentage of
MCs vs. initial reputation value.

Average Delivery Delay. Figure 5.2 shows the average message delivery

delay measured in presence of an increasing percentage of BCs, varying the

initial reputation value. With respect to the number of BCs, the average

delivery delay degrades with the number of BCs. This will be discussed in

the next sections.

With respect to R0, we note that the average delivery delay decreases

when R0 increases. This means that with a lower value of R0 the average

delivery delay is higher. The value of average delivery delay, indeed, is strictly

connected to delivery ratio as discussed in the next sections.

Since delivery ratio suggests to choose a low value of R0, but average

delivery delay a high value, we have performed our simulations considering

different implementations of RCAR-Ack. Table 5.5 shows the configurations

of RCAR we have chosen to perform our simulations.

Total number of sent messages. Figure 5.3 shows the total number

of sent messages measured in presence of an increasing percentage of MCs,

varying the initial reputation value.

With respect to the number of MCs, the total number of sent messages

degrades with the number of MCs. This will be discussed in the next sections.

CHAPTER 5. SIMULATION AND RESULTS 56

RCAR-Ack

 0
 0.2

 0.4
 0.6

 0.8
 1

% MCs

 0
 0.2

 0.4
 0.6

 0.8
 1

R0

 0

 100

 200

 300

 400

 500

 600

 700

 800

AD

Figure 5.2: Scenario A - Blackhole carriers: Average Delivery Delay vs.
percentage of MCs vs. initial reputation value.

With respect to R0, we note that the total number of sent messages

does not depend on the value of R0. This is due to the fact that the value

of R0 influences only the reputation update mechanism, not the number of

generated messages.

Table 5.5 shows the configurations of RCAR we have chosen to perform

our simulations. We reserve for future work the analysis of RCAR-Gossip

and RCAR-Step-by-step with R0 = 1.

5.3 Choice of the buffer size

We have investigated the influence of the buffer size on the delivery ratio

of the protocols. We have noted that the behaviors of CAR and RCAR

implementations are similar, with respect to the buffer size. Thus, hereafter

we consider RCAR-Ack-2 only.

We have evaluated the delivery ratio of ER and RCAR in Scenario A with

different buffer sizes, ranging from 20 to 5000, in presence of an increasing

percentage of blackhole carriers. A similar analysis could be done for selfish

carriers. However we leave it for future work and we use the values of buffer

size found for blackhole carriers also to analyze selfish carriers.

CHAPTER 5. SIMULATION AND RESULTS 57

RCAR-Ack

 0
 20

 40
 60

 80
 100

% MCs

 0
 0.2

 0.4
 0.6

 0.8
 1

R0

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

NM

Figure 5.3: Scenario A - Blackhole carriers: Total number of sent messages
vs. percentage of MCs vs. initial reputation value.

Delivery ratio. Figure 5.4 and 5.5 show the delivery ratio of ER and

RCAR with respect to buffer size, measured in presence of an increasing

percentage of misbehaving carriers. With respect to the number of BCs,

the delivery ratio degrades when their percentage increases. This will be

discussed in the next sections.

The delivery ratio of the protocols increases with the buffer size. In fact,

with small buffer sizes carriers may not store all the messages they receive

and buffer overflows may occur. However, for buffer sizes greater than 500,

the delivery ratio remains constant and tends to be independent on the buffer

size.

Referring to ER, we note that its delivery ratio strongly depends on the

buffer size. When the buffer size is small (i.e. 20), the delivery ratio of ER

reduces of about 54% with respect to the case of a large buffer size (e.g. 500).

This means that ER is not indicated when the network is composed of devices

having different resource availabilities (etherogeneous networks). However,

also with a small buffer size, the delivery ratio of ER remains higher than

that of RCAR.

Referring to RCAR, we note that its delivery ratio depends on the number

of BCs. When the buffer size is small (i.e. 20), the delivery ratio of RCAR

CHAPTER 5. SIMULATION AND RESULTS 58

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
el

iv
er

y
R

at
io

Buffer size

ER: Delivery ratio VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.4: Scenario A - Blackhole carriers - ER: Delivery Ratio vs. percent-
age of misbehaving carriers vs. Buffer Size.

reduces of about 28% with respect to the case of a large buffer size (e.g. 500).

This means that RCAR has a lower dependence of the delivery ratio on the

buffer size with respect to ER. Thus, RCAR is indicated for etherogeneous

networks. However, the delivery ratio of RCAR depends on the presence of

misbehaving carriers.

Average Delivery Delay. Figure 5.6 and 5.7 show the average delivery

delay of ER and RCAR with respect to buffer size, measured in presence of

an increasing percentage of MCs.

With respect to ER, for small values of buffer size (up to 100), the average

delivery delay increases since also the delivery ratio increases (this will be

explained later). With a buffer size larger than 100 but lower than 500, the

average delivery delay decreases. In fact, having a larger buffer, each carrier

is able to store more messages. This means that the probability that a faster

carrier stores a message in its local buffer is higher. Thus the average delay

decreases because fastest carriers forward messages more quickly. With buffer

sizes larger than 500, the average delay remains constant, and dependent on

the speed of the fastest carriers.

With buffer size larger than 500, the average delivery delay remains al-

CHAPTER 5. SIMULATION AND RESULTS 59

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
el

iv
er

y
R

at
io

Buffer size

RCAR-Ack-2: Delivery ratio VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.5: Scenario A - Blackhole carriers - RCAR-Ack-2: Delivery Ratio
vs. percentage of misbehaving carriers vs. Buffer Size.

most at the same value because the delivery ratio is also costant.

With respect to RCAR, the average delivery delay increases with the

buffer size because of the higher number of messages routed asynchronously.

The average delay increases until it reaches the maximum value correspond-

ing to the maximum value in the delivery ratio.

It could be interesting analyze the delivery ratio of RCAR with respect

to the speed of the carriers. However, we reserve it to future work.

Note that in presence of 100% of BCs the average delivery delay is con-

stant for both ER and RCAR and independent on the buffer size.

Total number of sent messages. Figure 5.8 and 5.9 show the total num-

ber of sent messages of ER and RCAR with respect to buffer size, measured

in presence of an increasing percentage of BCs.

In both cases, the total number of sent messages increases when the buffer

size increases. This is due to the fact that having a larger buffer, more

messages can be forwarded. For values of buffer size larger than 500, the

total number of sent messages remains constant, because also the delivery

ratio remains constant.

As already said for delivery ratio and average delivery delay, with a buffer

CHAPTER 5. SIMULATION AND RESULTS 60

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Buffer size

ER: Average Delivery Delay VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.6: Scenario A - Blackhole carriers - ER: Average Delivery Delay vs.
percentage of misbehaving carriers vs. Buffer Size.

size larger than 500 also the total number of sent messages tend to remain

constant in both ER and RCAR. Thus in the next sections we have consid-

ered a buffer size of 1000 because using this value since the behavior of the

protocols does not depend on the buffer size.

5.4 Blackhole carriers

In our implementation, BCs ditribute a bogus utility function Uc = 1 for

each destination for which they are carriers. They also drop all the packets

they receive from the other hosts for which they are not receivers.

In ER we have modeled packet dropping only, since there is no distribu-

tion of delivery probability.

We have evaluated the performance of the protocols in presence of an

increasing percentage of BCs, ranging from 0% to 100%.

Delivery ratio. Figure 5.10 and 5.11 show the delivery ratio of the proto-

cols for Scenario A and B, respectively.

We can see that ER outperforms both CAR and RCAR in both scenarios,

presenting a delivery ratio higher than 90% with up to 83% BCs. The price

CHAPTER 5. SIMULATION AND RESULTS 61

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Buffer size

RCAR-Ack-2: Average Delivery Delay VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.7: Scenario A - Blackhole carriers - RCAR-Ack-2: Average Delivery
Delay vs. percentage of misbehaving carriers vs. Buffer Size.

to pay for such high performance is the number of sent messages, typical of

dissemination-based approaches. We will discuss such problem later. With

more than 83% of BCs, the delivery ratio of ER start to decrease. With

100% of BCs, ER has the same delivery ratio than CAR and RCAR.

Referring to CAR and RCAR, their delivery ratio is always less than one.

This is due to the nature of the protocol. See [30] for details.

Referring to CAR and RCAR, with no BCs, delivery ratio in Scenario A

are higher than in Scenario B. This is due to the TTL value. Each message

passes from a carrier to another before arriving to the receiver. In a dense

scenario (B), the number of crossed carriers is higher than a sparse scenario

(A). However, due to the high number of crossed carriers, many messages in

Scenario B are dropped because their TTL elapses.

When there is no BCs, RCAR-Ack-1 outperforms the other RCAR im-

plementations because at the beginning it trusts all the carriers (R0 = 1).

However, in presence of BCs, it is not able to recognize them, due to its low

value of R−. Thus its behavior is similar to CAR.

As soon as BCs appear, CAR delivery ratio severely degrade. We can see

that all RCAR implementations outperform CAR and RCAR-Ack-1, because

the choice R0 = 0 prevents the selection of BCs in the routing process (they

CHAPTER 5. SIMULATION AND RESULTS 62

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 s
en

t m
es

sa
ge

s

Buffer size

ER: Total number of sent messages VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.8: Scenario A - Blackhole carriers - ER: Total number of sent mes-
sages vs. percentage of misbehaving carriers vs. Buffer Size.

have LUF → 0). In this case, hosts increase the reputation of the well-

behaving carriers only, while BCs are discarded. We note that RCAR-Ack-3

performs better than RCAR-Ack-2. The reason has to be found in the higher

value of R− that RCAR-Ack-2 has with respect to RCAR-Ack-3. A higher

value of R− leads to a more rapid reputation decrease, so that if a well-

behaving carrier does not carry messages for a certain period of time time

its reputation is quickly decreased until zero among all the hosts.

RCAR-Gossip and RCAR-Step-by-step have the highest delivery ratio.

In RCAR-Step-by-step, each host that receives a message (be it a ”normal”

message or an acknowledgement) increases the reputation of the carriers the

message passes through. Hence, a higher number of hosts can increase the

reputation of the well-behaving carriers. It is therefore created a more general

consensus on the carriers that well-behaved and on those that misbehaved.

In RCAR-Gossip the reputation increment is limited to the receiver’s neigh-

borhood. Considering the area of a community (250 mt × 250mt) and the

transmission range of a host (200 mt), we can assume that the gossip message

reaches almost all the hosts in receiver’s community. A host can therefore

increase the reputation of the carriers and replace them for one or more

destinations in the routing table.

CHAPTER 5. SIMULATION AND RESULTS 63

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ot

al
 n

um
be

r
of

 s
en

t m
es

sa
ge

s

Buffer size

RCAR-Ack-2: Total number of sent messages VS. Buffer size (Scenario A - Blackhole)

0% MC
33% MC
50% MC
83% MC
100% MC

Figure 5.9: Scenario A - Blackhole carriers - RCAR-Ack-2: Total number of
sent messages vs. percentage of misbehaving carriers vs. Buffer Size.

In presence of a high percentage of BCs the protocols tend to have the

same delivery ratio. This means that RCAR tolerates misbehaviors until a

certain percentage of well-behaving carriers is maintained. In presence of

100% BCs, CAR, RCAR and ER present the same delivery ratio because

only synchronous messages are sent.

When there are 100% of BCs, performance in Scenario B are higher than

in Scenario A. This is because in Scenario B a higher number of messages

is sent synchronously than in Scenario A, thus there is no contribution of

carriers. These considerations show that CAR, RCAR and its various imple-

mentations work better in a sparse scenario.

Average delivery delay. Average delivery delay is calculated on messages

routed both synchronously and asynchronously. A low value of average de-

livery delay indicates that only synchronous messages are sent, whereas a

high value of average delivery delay indicates that both asynchronous and

synchronous messages are sent.

Figure 5.12 and 5.13 show the average delivery delay for Scenario A and

B, respectively.

With no BCs, ER has the lowest average delay in both scenarios. The

CHAPTER 5. SIMULATION AND RESULTS 64

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
R

at
io

Misbehaving Carriers (%)

Delivery Ratio VS. Misbehaving Carriers (Scenario A - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.10: Scenario A - Blackhole carriers: Delivery ratio vs. percentage
of MC.

reason is the epidemic mechanism, that allows a message to be spreaded over

a high number of hosts. However, the delay increases with the number of

BCs. This is due to the fact that well-behaving carriers are overloaded of

messages and cannot deliver them efficiently. In presence of 83% of BCs there

is a peak in the delay, due to the flop of delivery ratio (see Figure 5.10).

CAR has a lower average delay with respect to RCAR in both scenarios.

Note that this is not because CAR performs better than RCAR, but because

the delivery ratio is lower, so the number of messages routed asynchronously

is lower with respect to those sycnhronously routed.

With no BCs, the average delivery delay of the RCAR implementations

is higher because the best carrier is chosen not only according to its delivery

probability, but also according to its reputation. In fact, the most trusted

carrier may not have the highest delivery probability. Messages may therefore

not take the fastest route to reach the destination, causing an increment on

the delivery delay. It is worth to note that in Scenario A RCAR-Gossip and

RCAR-Step-by-step have a lower average delay than RCAR-Ack. This is due

to the reputation management technique used, that allows a higher number

of hosts to have knowledge of the well-behaving carriers, so that the best

carriers can be more efficiently selected during the routing decision process.

CHAPTER 5. SIMULATION AND RESULTS 65

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
R

at
io

Misbehaving Carriers (%)

Delivery Ratio VS. Misbehaving Carriers (Scenario B - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.11: Scenario B - Blackhole carriers: Delivery ratio vs. percentage
of MC.

In Scenario B instead the average delay of RCAR-Gossip and RCAR-Step-

by-step is higher since the number of messages successfully routed is higher.

Such messages are routed asynchronously, so their delays are higher and

contribute to raise up the average value.

In presence of BCs, the average delay decreases with the number of BCs.

RCAR-Gossip and RCAR-Step-by-step have higher values for the same rea-

sons above.

In presence of more than 83% of BCs, the average delay of RCAR is

much higher than CAR (almost 200 seconds of difference for RCAR-Gossip

and RCAR-Step-by-step), in spite of the low increment in the delivery ratio.

This is because messages are sent to the most trusted carriers, that may not

be the fastest ones.

Total number of sent messages. Figure 5.14 and 5.15 show the total

number of sent messages for Scenario A and B, respectively. ER sends a very

high number of sent messages, around 6 × 106 and 1.6 × 107 for Scenario

B. Even with 83% of BCs, ER sends 3.17 × 106 messages in Scenario A and

6.37 × 106 messages in Scenario B. This explains why ER outperforms CAR

and RCAR in both scenarios in terms of delivery ratio. However, the very

high number of sent messages constitutes the greatest limit of ER, because

CHAPTER 5. SIMULATION AND RESULTS 66

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Misbehaving Carriers (%)

Average Delivery Delay VS. Misbehaving Carriers (Scenario A - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.12: Scenario A - Blackhole carriers: Average delivery delay vs.
percentage of MC.

it causes the exahustion of network resources and suggests to not use it in

DTNs.

Figure 5.16 and 5.17 show instead the total number of sent messages

for CAR and RCAR only in Scenario A and B, respectively. With not BCs,

CAR sends the least number of messages. Note that the number of generated

messages (from sender to receiver) is 5000, while the total number of sent

messages in the network is 100000 for Scenario A and about 400000 for

Scenario B. This is due to message retransmissions and also to messages

forwarded from carrier to carrier until the TTL elapses.

In presence of BCs, the number of messages sent by CAR degreades. This

follows what previously discussed for delivery ratio.

RCAR-Gossip generates less messages than RCAR-Step-by-step and RCAR-

Ack. This is due to the fact that, once a neighbor receives a gossip message,

it does not further forward such message. As disccused in the case of deliv-

ery ratio, the network scenario we choose allows a gossip message to reach a

relevant number of hosts. On the other hand, RCAR-Step-by-step, RCAR-

Ack-2 and RCAR-Ack-3 generate the same number of messages, because they

all rely on the acknowledgements mechanism. RCAR-Ack-1, instead, gener-

ates a lower number of messages, although it relies on the acknowledgements

CHAPTER 5. SIMULATION AND RESULTS 67

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Misbehaving Carriers (%)

Average Delivery Delay VS. Misbehaving Carriers (Scenario B - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.13: Scenario B - Blackhole carriers: Average delivery delay vs.
percentage of MC.

mechanism. This is due to the fact that it is not able to update reputations

quickly, thus the reputation mechanism is not used and it behaves like CAR.

5.5 Selfish carriers

In our implementation SCs do not distribute routing updates, neither syn-

chronous nor asynchronous. The aim is to hide theirself from the other hosts

of the network. However, SCs forward the messages they receive.

With respect to ER, since there is no distribution of routing information,

the behavior of a SC should be similar to those considered in Section 5.4 while

discussing BCs, as well as the considerations we could make. In other words,

in ER a carrier that drops the messages it receives has a selfish behavior.

Hence, we will not consider ER, only CAR and RCAR.

The amount of network resources a carrier is allowed to use is limited by

the reputation value assigned to that carrier. Moreover, network resources

are limited for carriers only, i.e. for messages created by carriers.

Since we are not limiting the number of messages of standard hosts, we

implicitly consider such hosts as fully trustworthy.

We have evaluated the performance of the protocols in presence of an

CHAPTER 5. SIMULATION AND RESULTS 68

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (ScenarioA - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.14: Scenario A - Blackhole carriers: Total number of sent messages
vs. percentage of MC. ER included.

increasing percentage of SCs, ranging from 0% to 100%. The value of Mcj

strongly depends on the value of Mc (Message Quota). Thus in our simula-

tions we have supposed it constant. We have performed a series of preliminar

simulations to establish the best value of Mc for each RCAR implementation

and then we have employed such value for our tests.

Message Quota. We have evaluated the following values of Message Quota:

5, 20, 50, 80, 100, 200, 300, 500.

In order to establish the best value of Mc, we have considered both the

delivery ratio and the average delivery delay. We defined the ideal delivery

ratio of RCAR in presence of X% of SC, expressed in Formula 5.1.

DR(X)ideal = DR(0)CAR −
X

100
×DR(0)CAR × [1−DR(100)CAR] (5.1)

Where DR(X) is the delivery ratio in presence of X% of SCs. In other words,

the ideal delivery ratio is given when the fraction of messages the X% of SCs

is not forwarded. The best value of Message Quota MQ, considering only the

delivery ratio is that for which the difference between DRideal and DRMQ is

minimum. However the obtained value must be combined with the average

delivery delay.

CHAPTER 5. SIMULATION AND RESULTS 69

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (Scenario B - Blackhole)

ER
CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.15: Scenario A - Blackhole carriers: Total number of sent messages
vs. percentage of MC. ER included.

Protocol Optimal value Suboptimal value
RCAR-Ack-1 80 100
RCAR-Ack-2 ≥ 200 -
RCAR-Ack-3 500 -
RCAR-Gossip 500 200

RCAR-Step-by-step ≥ 300 -

Table 5.6: Optimal and suboptimal values of Message Quota in Scenario A.

The value of Message Quota which gives the best average delivery delay

must be calculated as follows. Considering the only synchronous routing

(100% of SCs) the delay must be less or equal to that of CAR in the same

conditions. Furthermore, considering the best conditions (0% of SCs), the

delay must be also less or equal to that of CAR in the same conditions.

Combining both results of delivery ratio and average delivery delay, we

have obtained the optimal values of Message Quota. Table 5.6 and 5.7 show

the optimal and suboptimal values of Message Quota for each protocol in

the case of Scenario A and Scenario B respectively. Hereafter, we discuss the

measured metrics using the optimal values of Message Quota.

Delivery ratio. Figure 5.18 and 5.19 show the delivery ratio of the proto-

cols for Scenario A and B, respectively.

CHAPTER 5. SIMULATION AND RESULTS 70

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 120000

 125000

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (ScenarioA - Blackhole)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.16: Scenario A - Blackhole carriers: Total number of sent messages
vs. percentage of MC. CAR and RCAR only.

Protocol Optimal value Suboptimal value
RCAR-Ack-1 5 20
RCAR-Ack-2 500 300
RCAR-Ack-3 500 300
RCAR-Gossip 100 -

RCAR-Step-by-step 500 ≥ 200

Table 5.7: Optimal and suboptimal values of Message Quota in Scenario B.

CAR-ideal is the ideal behavior that CAR should have to limit the amount

of network resources to selfish carriers only. A protocol having a delivery ratio

higher than CAR-ideal does not contrast SCs, because it allows them to send

their messages without resource limitations. On the other hand, a protocol

with lower delivery ratio than CAR-ideal penalizes both well-behaving and

SCs, because it overly limits the amount of network resources.

As the number of SCs increases, we note a general decrease of the delivery

ratio, because of an increasing number of carriers hiding themselves from the

routing process makes it difficult to find routes for messages. Well-behaving

carriers get overloaded, and messages are dropped because of buffer overflows.

CAR delivery ratio is always higher than those of CAR-ideal, because it

has no mechanism to contrast MCs. The RCAR protocols have a delivery

ratio lower than CAR-Ideal. However, RCAR-Ack-1 has the most interesting

CHAPTER 5. SIMULATION AND RESULTS 71

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 440000

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (Scenario B - Blackhole)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.17: Scenario B - Blackhole carriers: Total number of sent messages
vs. percentage of MC. CAR and RCAR only.

behavior. With a low number of MCs, its delivery ratio is lower than CAR-

ideal. As the number of SCs increases (more than 60%), its delivery ratio

becomes higher than CAR-Ideal. This is due to the initial reputation value

assigned to each host, as discussed before.

With no MCs, RCAR-Gossip and RCAR-Step-by-step have higher de-

livery ratio than RCAR-Ack-1, because of the different reputation manage-

ment technique adopted. Both RCAR-Gossip and RCAR-Step-by-step allow

a higher number of hosts in the network to recognize a well-behaving carrier,

thus to create a more general consensus on its reputation, finding the best

carriers.

When the number of MCs increases, all the implementations of RCAR,

except for RCAR-Ack-1, tend to CAR-ideal. This means that they work

better with a high number of MCs.

With reference to Scenario B, we first note that the delivery ratio of all the

protocols is lower than in Scenario A. This is due to the limitation imposed

by the TTL value, as discussed in Section 5.4.

CAR has a delivery ratio higher than RCAR because there is no limitation

on the network resources. With a low number of SCs (less than 50%), all the

RCAR protocols have delivery ratio lower than CAR-ideal. This is because

CHAPTER 5. SIMULATION AND RESULTS 72

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

D
el

iv
er

y
R

at
io

Misbehaving Carriers (%)

Delivery Ratio VS. Misbehaving Carriers (Scenario A - Selfish)

CAR
CAR-Ideal
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.18: Scenario A - Selfish carriers: Delivery ratio vs. percentage of
MC.

of the reduced reputation update opportunities, that penalize both well-

behaving and misbehaving carriers. In fact, in a dense scenario (B) the

probability to commit a message twice to the same carrier is lower than in a

sparse scenario (A) and consequently there are less opportunities to increase

the reputation of a carrier. RCAR-Ack-1 has a higher initial reputation value

R0 and it has therefore the highest delivery ratio.

In presence of more than 50% and up to 83% of SCs , the delivery ratio of

all the protocols (CAR and RCAR) remains almost at the same value. This

is because of two reasons. Firstly, in a dense scenario the routing mechanism

is tolerant to misbehaviors since there are enough carriers to take alternative

routes to reach a given destination. However, this implies a delay increase,

as discussed after. Secondly, the delivery ratio depends also on the nature

of selfish carriers. As already said, a selfish carrier is a carrier which does

not send routing updates, but it receives them from the well-behaving hosts

(or carriers). Therefore, a selfish carrier is able to send its own messages

to well-behaving hosts (or carriers). In CAR, where there is no limitation

of resources, a selfish carrier is able to exploit network resources (i.e. both

synchronous and asynchronous routing). In RCAR, instead, a selfish carrier

is able to send only messages that have itself as sender and a host (or carrier)

CHAPTER 5. SIMULATION AND RESULTS 73

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 20 40 60 80 100

D
el

iv
er

y
R

at
io

Misbehaving Carriers (%)

Delivery Ratio VS. Misbehaving Carriers (Scenario B - Selfish)

CAR
CAR-Ideal
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.19: Scenario B - Selfish carriers: Delivery ratio vs. percentage of
MC.

directly in reach as receiver. In other words, in RCAR a selfish carrier cannot

exploit synchronous and asynchronous routing. These considerations explain

why the delivery ratio is constant (from 50% to 83% of SCs): the fraction

of messages generated by SCs and sent directly to the other hosts always

gives its contribute to delivery ratio, independently on the number of SCs.

However this happens only for high percentages of MCs, because for low

values its contribute is low.

With 100% of MCs all the RCAR protocols tend to CAR-Ideal.

Average delivery delay. Figure 5.20 and 5.21 show the average delivery

delay of the protocols for Scenario A and B, respectively.

Note that the delay in both scenarios has the same order of magnitude.

This does not happen for blackhole carriers, where the order of magnitude is

different in scenario A and B.

With no selfish carriers, RCAR-Ack-2 and RCAR-Ack-3 have the lowest

average delivery delay because of the lower values of delivery ratio. With

less than 83% of SCs, the average delivery delay of all the protocols increases

because hosts have to select alternative routes to forward their messages. In

presence of a high number of selfish carriers, the average delivery delay of

the protocols is higher than those resulting from the analysis of blackhole

CHAPTER 5. SIMULATION AND RESULTS 74

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 0 20 40 60 80 100

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Misbehaving Carriers (%)

Average Delivery Delay VS. Misbehaving Carriers (Scenario A - Selfish)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.20: Scenario A - Selfish carriers: Average delivery delay vs. per-
centage of MC.

carriers. This is due to the fraction of messages with a selfish carrier as

sender that are directly carried by it until the final recipient. With 100% of

SCs delay is drastically reduced, because of the low value of delivery ratio.

In Scenario B, the average delivery delay of RCAR around 83% of SCs

has a peak. This corresponds to a delivery ratio quite constant (see Figure

5.21). This is due to the fact that each SC must send its own messages

directly to the receiver. Thus, before meeting it, it must store the message

in its local buffer. This contributes to increase the average delay. In CAR,

instead, there is not the peak because selfish carriers are able to exploit both

synchronous and asynchronus routing to forward their own messages thus

messages are not stored in the buffer.

RCAR-Gossip represents the best trade-off among the RCAR implemen-

tations in terms of both delivery ratio and average delay.

Total number of sent messages. Figure 5.22 and 5.23 show the total

number of sent messages in Scenario A and B, respectively.

With reference to Scenario A, with no SCs, RCAR-Ack-1, RCAR-Gossip

and RCAR-Step-by-step send a number of messages higher than CAR be-

cause of the reputation management messages (acknowledgements and gos-

CHAPTER 5. SIMULATION AND RESULTS 75

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

Misbehaving Carriers (%)

Average Delivery Delay VS. Misbehaving Carriers (Scenario B - Selfish)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.21: Scenario B - Selfish carriers: Average delivery delay vs. per-
centage of MC.

sip). RCAR-Ack-2 and RCAR-Ack-3 send instead a lower number of mes-

sages since their delivery ratio is also lower.

With more than 15% of SCs, RCAR-Gossip sends more messages than the

other RCAR implementations since the gossip message is forwarded through

the synchronous routing, while acknowledgements are immediately discarded

because of the resource limitations on the well-behaving carriers.

With reference to Scenario B, all RCAR implementations send a lower

number of messages than CAR because they overly limit network resources.

The reason of such limitation has to be found in the lower number of rep-

utation increment opportunities per host in this scenario, as previously dis-

cussed.

CHAPTER 5. SIMULATION AND RESULTS 76

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (ScenarioA - Selfish)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.22: Scenario A - Selfish carriers: Total number of sent messages vs.
percentage of MC.

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 20 40 60 80 100

N
um

be
r

O
f M

es
sa

ge
s

Misbehaving Carriers (%)

Number Of Messages VS. Misbehaving Carriers (Scenario B - Selfish)

CAR
RCAR-Ack-1
RCAR-Ack-2
RCAR-Ack-3
RCAR-Gossip
RCAR-Step-by-step

Figure 5.23: Scenario B - Selfish carriers: Total number of sent messages vs.
percentage of MC.

Chapter 6
Implementation

RCAR is a reputation-based extension of CAR to mitigate host misbehaviors.

In order to test the protocol, we started from an existing implementation of

CAR, provided by the authors of [30]. CAR has been implemented under the

OMNeT++ simulation environment (see Appendix A). Section 6.1 introduces

the CAR implementation. Section 6.2 describes the extensions we provided

to CAR in order to embed the reputation technique.

6.1 CAR

This section introduces the main data structures and messages of such im-

plementation.

6.1.1 Modules

CAR simulation model in based on four modules: Host, simController, En-

gine and DataCollector.

Host. Main module, implementing the protocol functionalities. The main

data structures defined into this module are:

• info and context routing table (infoAndRoutingTable): routing table

maintaned on each host. It stores information about both synchronous

77

CHAPTER 6. IMPLEMENTATION 78

targetHostId nextHopHostId distance carrierHostId deliveryProb

Table 6.1: infoAndRoutingTable format.

targetHostId nextHopHostId distance

Table 6.2: infoAndRoutingTable: synchronous part.

and asynchronous routing. Table 6.1 represents an entry of infoAn-

dRoutingTable. The table can be thought as composed by two logically

separated tables: a table for synchronous routing, represented in Table

6.2 and a table for asynchronous routing, represented in Table 6.3.

With respect to the synchronous routing table, targetHostId is the re-

ceiver, nextHopHostId and distance respectively the next hop host in

the path to reach the receiver and the distance (in term of number of

hops) to reach it. The table is maintained following the specifications

of the DSDV routing protocol [32] (see also Section 3.2). The infinte

distance was set to 16, as is used in RIP [18].

With respect to the asynchronous routing table, carrierHostId is the

identifier of the carrier with the highest delivery probability, the value of

which is stored in deliveryProb. A Kalman filter predictor is associated

to each entry of the table. The filter is updated every time a new

deliveryProb value is received from carrierHostId. The filter is also

periodically updated between routing table exchanges: the value of

such interval is a configurable parameter. The output of the filter is

used as input (i.e. is short-circuited) when one or more updates are

not received, e.g. because of interference in the wireless channel or

because of host disconnection. When receiving a routing table update,

delivery probability is always updated to guarantee that forwarding

decisions are supported by fresh information. An entry is replaced

with a different carrier in case a routing update distributes a higher

targetHostId carrierHostId deliveryProb

Table 6.3: infoAndRoutingTable: asynchronous part.

CHAPTER 6. IMPLEMENTATION 79

delivery probability for a given destination. After a certain number of

missing updates, the predicted value is not considered accurate enough,

the relative entry is considered stale and removed from the table (see

[30]).

Update intervals of both infoAndRoutingTable and Kalman filters have

to be chosen carefully. Typically they are somehow proportional to the

rate at which changes happen: changes in the neighborhood in case of

routing table, changes in the observed value in case of Kalman filter.

They are currently set at the same value.

• local predictor: structure encapsulating Kalman filters, one per each

context attribute evaluated. CRC and colocation with other hosts (a

predictor per each host) are the context attributed currently evaluated.

Local predictors are used for the prediction of the values assumed by

each context attribute. They are used during the periodical update of

the Kalman filters associated to each entry of the infoAndRoutingTable

for the computation of the predicted values of delivery probabilities for

each known destination.

• local message buffer: it stores messages in case the receiver is currently

unreachable, i.e. there is no information about to reach that receiver

in infoAndRoutingTable. Delivery of the messages stored in the local

buffer is performed with periodical attempts. The interval between

attempts is a configuration parameter. It has to be chosen carefully,

trying to balance responsivity with resource consumption. In case of

full buffer, messages are replaced following a circular replacement strat-

egy.

simController. It is responsible of two functions: select the misbehaving

carriers at random, and create the messages. The policy to follow in select-

ing sender and receiver while creating messages depends on the misbehavior

currently analyzed: in case of analysis of BCs we selected sender and receiver

at random among the ”non-carriers”, while analyzing SCs we selected sender

CHAPTER 6. IMPLEMENTATION 80

<parameter>
<area shape>rectangle</area shape>
<xsize>1000.000000</xsize>
<ysize>1000.000000</ysize>
<extension factor>1</extension factor>
<numberOfNodes>50</numberOfNodes>
<range>200.000000</range>
<mobility model>socialFoundedMM</mobility model>

</parameter>

Listing 6.1: Mobility traces file: parameter section.

and receiver at random among all the hosts in the network. The total number

of messages to create is a INI paramater.

Engine. Module responsible for hosts’ mobility. The authors selected the

Community-based mobility model (Section 2.2) to evaluate the performance

of the CAR protocol. The module periodically parses an XML file containing

the mobility traces for each host in the network. Such XML file containing

the mobility traces has been generated using an external tool, available for

free at [3]. It generates traces for the ns-2 simulator. However, the traces can

be used for OMNeT++ too, with the only difference that some parameters

will not be used. The trace file consists basically of three sections:

• parameter section, defining general parameters for the simulation area.

Size and transmission range of each host are the parameters of our

interest. An example is reported in Listing 6.1.

• node settings section, defining for each host the initial position, ex-

pressed in (x, y) coordinates. An example is reported in Listing 6.2.

Note that carriers will then move around the area, while the hosts with

null speed will stay in their initial position during all the simulation.

• mobility section, defining for each carrier the (x, y) coordinates to which

to move, and the related speed. An example is reported in Listing 6.3.

CHAPTER 6. IMPLEMENTATION 81

<node>
<node id>1</node id>
<position>

<xpos>298.857049</xpos>
<ypos>484.139795</ypos>

</position>
</node>

Listing 6.2: Mobility traces file: node settings section.

<position change>
<node id>8</node id>
<start time>3070.000000</start time>
<destination>

<xpos>498.315967</xpos>
<ypos>427.158313</ypos>

</destination>
<velocity>13.982477</velocity>

</position change>
<position change>

Listing 6.3: Mobility traces file: mobility section.

DataCollector. Its purpose it to collect statistical information for post-

processing analysis. Every time a host receives a message, it delivers a no-

tification to this module. The notification contains the message identifier

and the time at which the message was created by the module simController.

At the end of the simulation, it will elaborate the information contained in

the notifications to evaluate the performance metrics. The metrics currently

evaluated are the average message delay, delay distribution, total number of

sent messages around the network and delivery ratio (see Chapter 5). Such

metrics are written in separated log files.

6.1.2 Messages

CAR implementation defines different messages, implementing ”data” mes-

sages, protocol updates and timers. Data messages have no payload, they

are only formed by a header. A message implementing a timer is called

CHAPTER 6. IMPLEMENTATION 82

self-message. Here follows a list of the message types defined in current

implementation of CAR and how they are handled:

• CONTROL MSG: created by the module simController, this mes-

sage is directly delivered to the Host module representing the sender

and contains the identificator of the receiver. The sender, upon receiv-

ing this message, creates a INFO MSG (representing a data message)

and delivers it toward the indicated receiver.

• INFO MSG: represents data messages. Such messages are forwarded

toward the indicated receiver following the algorithm described in Sec-

tion 3.2. The host tries first to send the message synchronously; if

not possible, it tries to send the message asynchronously. If a carrier

is found, the message is forwarded to the carrier using the underlying

synchronous protocol. If the message instead can not be delivered nor

sycnhronously neither asynchronously, it is stored in the local buffer.

To each INFO MSG is assigned a TTL field, defining a maximum num-

ber of retransmissions.

• AUTO MSG: self-message, used to update the synchronous part of

the infoAndRoutingTable. The purposed is to periodically control the

neighborhood, detecting the hosts that are not in transmission range

anymore, assigning them an infinite distance in infoAndRoutingTable.

The operation is currently performed every second.

• INFO AND ROUTING TABLE UPDATE MSG: self-message,

part of the DSDV routing protocol update. The host creates a PRO-

TOCOL MSG, containing the content of its own infoAndRoutingTable,

both the synchronous and asynchronous part. The message is then

broadcasted to the neighbors.

• PROTOCOL MSG: represents a routing update. The host analyzes

the message in search of ”better” routes and to update the delivery

probabilities of the carriers they both know. With respect to the syn-

chronous part, a next hop is replaced if a new path with a lower number

CHAPTER 6. IMPLEMENTATION 83

of hops is announced, or if the same next hop can reach the target with

a lower number of hops. With respect to the asynchronous part, a car-

rier’s delivery probability is always updated, the value is also used as

input of the Kalman filter. It may happen that for some destinations

the routing update advertises a carrier with a higher delivery probabil-

ity: in such cases the current carrier is replaced and the Kalman filter

reset. If a new destination is announced, it is insered in the infoAn-

dRoutingTable. If the table is full, a circular replacement strategy is

performed.

• LOCAL BUFFER FLUSH MSG: self-message, representing the pe-

riodical attempt to transmit the messages stored in the local buffer. A

INFO MSG is created, and the forwarding policy is the same. If a

message can not be delivered, it stays in the local buffer until the next

attempt. Note that a message can also be deleted from the buffer be-

cause of the circular replacement strategy, i.e. a new and more recent

message can replace an existing one.

• CRC UPDATE MSG: self-message, emulating the process of CRC

prediction. The current CRC value is 1 if no hosts are in reach (it

probably means that the host is a carrier moving between partitions),

otherwise the value is calculated according to Formula 3.1. The current

CRC value is then passed to the local predictor.

• KALMAN FILTER AND COLOCATION UPDATE MSG: self-

message, representing the periodical update of the Kalman filters of the

infoAndRoutingTable. The output of the Kalman filter is used to re-

place the delivery probabilities of the carriers not updated during the

last interval.

Colocation with other hosts is also updated. Its current value is 1 if

the target host is within the transmission range, 0 otherwise, passed as

input of the local predictor. Formula 6.1 describes the formula used to

CHAPTER 6. IMPLEMENTATION 84

message mobMessage
{

int type;
int protocolMessageType;
int messageId;
int recipient;
int intermediateRecipient;
int sender;
int receiver;
int numHops;
int totalNumHops;
double timestamp;
int hostIdList[500];
int distanceList[500];
int carrierHostId[500];
double deliveryProb[500];

}

Listing 6.4: Declaration of mobMessage.

calculate the new delivery probabilities for each know host:

deliveryProb = colocW ∗colocationPred+CRCW ∗CRCPred (6.1)

colocW is the weigth assigned to the colocation value (currently 0.75),

colocationPred the predicted value; CRCW is the weight assigned to

CRC (currently 0.25) and CRCPred the predicted value. If the current

delivery probability, locally evaluated for each known destination, is

higher than the probability of some infoAndRoutingTable entries, then

the host sets itself as carrier.

Listing 6.4 show the general format of the OMNeT++ message used to

implement the different types listed above. Note that recipient is used for

INFO MSG and CONTROL MSG, whereas receiver is used for routing up-

date messages.

CHAPTER 6. IMPLEMENTATION 85

6.2 RCAR

RCAR extends CAR introducing data structures, messages and integrating

the existing operations.

The data structures introduced by RCAR are the crossed hosts list, the

reputation table and the reachability table.

The crossed hosts list corresponds to the clist, defined in Section 4.3. It

contains a list of the carriers the message passes through. clist is added to the

message mobMessage, defined in Listing 6.4. In our implementation we did

not implement any security mechanism to protect clist. We left this problem

for future work.

The reputation table (repTable) stores the reputation values for each car-

rier. Reputation evaluation is performed according to one of the techniques

described in Section 4.3. Current implementation considers linear updates

only. repTable also stores the value Mcj, the number of messages a host j is

allowed to forward on behalf of a given carrier C. Every time a host forwards

a message on behalf of a carrier, it decrements Mcj by one. In case such value

reaches zero, then the host/carrier will not forward any other messages on

behalf of that carrier until the next periodical decrement. If the reputation

of a given carrier reaches zero, the host will not forward messages for it any-

more. Mcj is updated during the periodical reputation decrease, according

to formula 4.2.

The reachability table (reachTable) is a multidimensional structure of size

C × N , where C is the total number of carriers and N the total number of

hosts in the network. We currently assume such values known in advance.

The table stores the delivery probability that a carrier has to reach a given

destination. Such values are obtained by storing the last routing updates

received. For example, the entry reachTable[c][j] stores the delivery prob-

ability of carrier C to reach host j. In this sense, reachTable represents a

”second-level” routing table, i.e. a cache of routing information that other-

wise would have been not considered. reachTable is used during the route

replacement process in case of increase of a carrier’s reputation (see Section

4.3). The table is updated every time a new routing update is received.

CHAPTER 6. IMPLEMENTATION 86

The table is also periodically reset, in order to avoid using obsolete routing

information. Currently the interval is the same of the routing update.

RCAR introduces the following messages:

• REPUTATION TABLE UPDATE: represents a timer, associated

to the periodical decrease of reputation values in repTable. The value

of Mcj is also updated.

• ACK MSG: can be either an acknowledgement message or a gossip

message, depending on the reputation update technique considered (see

Section 4.3). The gossip message is no further forwarded. The acknowl-

edgement message is instead forwarded following the same rules of a

INFO MSG (see Section 3.2).

Chapter 7
Conclusions

Delay Tolerant Networking (DTN) is an emergent network paradigm, de-

signed to allow communication in disconnected networks. Such networks are

characterised by frequent disconnections, long and variable delays, high error

rates. They are typical of extreme environments such as disaster relief, mil-

itary battlefield, developing regions where no fixed infrastructure is present.

Communication in such networks relies on the mobility of the so-called car-

riers, hosts physically carrying messages among network partitions.

Context-aware Adaptive Routing (CAR) is a routing protocol designed for

DTNs, with the aim to select the best carrier, i.e. the carrier having the high-

est probability of successful message delivery. Computation of such delivery

probability is based on a weighted sum of a set of context attributes. They

can be the change rate of connectivity, colocation with other hosts, residual

battery power, etc. CAR uses forecasting techniques based on Kalman filter

theory to predict the future values assumed by the context attributes, for a

better prediction of future host’s movements.

CAR relies on the assumptions that carriers are collaborative, i.e. that

are partecipating in message forwarding, carrying messages on behalf of other

hosts. In real-life systems a carrier, because of selfishness or malicious pur-

poses, may not wish to collaborate in message forwarding. This work pre-

sented RCAR, a reputation-based approach to mitigate host misbehaviors

in DTNs. RCAR extends CAR, exploiting the concept of reputation to de-

87

CHAPTER 7. CONCLUSIONS 88

tect and exclude malicious carriers from the network. Low reputation values

indicate misbehaving carriers, whereas high reputation values indicate well-

behaving carriers. The reputation system is completely decentralized, each

host keeping a local table with the reputations it assigned to each known

host of the network. Reputation increments basically happen whenever a

host receives a message, while reputation decrease happen according to pe-

riodical updates. Misbehaving carriers are also excluded from the network,

by imposing each host of the network to forward a number of messages pro-

portional to host’s reputation. We proposed and evaluated three different

reputation management techniques.

CAR and RCAR, together with Epidemic Routing (ER), have been com-

pared via simulation, using the OMNeT++ simulation environment. Host

movements have been defined using a human mobility model, called Community-

based mobility model. This model defines host mobility based on the strength

of social relationships among them. Results of simulations show that ER

outperforms both CAR and RCAR at the cost of a very high number of mes-

sages sent around the network, with consequent waste of network resources.

In presence of misbehaving carriers, RCAR shows up 14% increment in de-

livery ratio with respect to CAR. It has also been shown that both CAR and

RCAR work better in sparse scenarios.

This work represents an initial study on the use of reputation techniques

on DTNs, and future work have to be done. First, we propose to perform

simulations implementing both physical and MAC layer, in order to test the

influence of interferences, memory and battery consumption on the routing

process. We then propose to investigate different reputation update functions

and the resilience of the reputation system to different types of attacks.

Appendix A
OmNet++ simulation environment

Omnet++ [41] is a C++-based discrete event simulator for modelling com-

munication networks, multiprocessor and other distributed or parallel sys-

tems. It is developed since 1997 by Andras Varga and is available for free for

non-profit use. Omnet++ is available under the most common platforms:

Windows, Linux and MAC OS/X. A C++ compiler (the GCC toolchain or

Microsoft Visual C++ compiler) is needed. Its main design choices are:

• an object-oriented structure, facilitating the creation of frameworks like

the Mobility Model [4] and the INET framework [1], and model reusage.

• provision of graphical tools for editing, simulation animation, debug-

ging, results visualization and analysis.

An Eclipse-based IDE (Integrated Desktop Environment) is also provided,

allowing the user to edit files, run simulations and analyze results without

leaving the GUI.

Following sections provide an introduction of the simulation environment.

For detailed documentation, please refer to the online user manual [2].

A.1 Model structure

An Omnet++ model is a collection of modules communicating each other via

message passing. Events are also represented as messages. For example, a

89

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 90

Figure A.1: Omnet++: single and compound modules

timer is implemented as a message that a module sends to itself with a certain

delay (timeout expiring). Omnet++ is object-oriented, so all modules are

instances of certain classes, representing module types. All classes have to be

derived from the abstract class cSimpleModule, providing the definition for

the basic module functionalities: initialization, message handling and module

finalization. Active modules are called simple modules, written in C++ using

the simulation library. Simple modules can be aggregate together to form

compound modules (see Figure A.1). There is no behavioral distinction from

the ”outside world” between simple and compound modules. Compound

modules enable infinite nesting, making easy a hierachical structuring of

simulation programs.

A.2 Messages

Messages may contain arbitrary data, defined in .msg files. The syntax used

to defined such files is very close to C++. While compiling a simulation pro-

gram, a precompiler parses the .msg files: using reflection code it generates

a m.h and a m.cc files. Listing A.1 shows an example of custom mes-

sage declaration, while Listing A.2 shows how to use such declared message

in simulation code. Note that getter and setter methods are automatically

generated.

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 91

// file myMessage.msg

message myMessage
{

int payload;
}

Listing A.1: Example of .msg file

#include ”myMessage m.h”

myMessage msg = new myMessage(”messageName”);
msg−>setPayload(55);
// ...
int pl = msg−>getPayload();

Listing A.2: Example of message usage

A.3 Topology description: the NED language

Modules typically send messages via gates, representing the communication

interfaces. Input and output gates can be linked with a connection, created

within a single module hierarchy. Connections are allowed only between mod-

ules at the same level. The user can assign specific parameters to connections

(random distributions are also provided), creating the so-called channels.

Modules can have parameters as well, mainly used to pass data from the

configuration file to simple modules. Gates and the entire network topology

(i.e. how modules are grouped and connected each other) can be defined using

NED (NEtwork Description), the Omnet++’s topology description language.

NED allows the user to declare simple and compound modules and their

interconnections.

Figure A.2: Omnet++: example network for NED representation

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 92

// file myNetwork.ned

// host declaration
simple host

gates:
in: inPort;
out: outPort;

endsimple

// channel definition
channel AChannel

delay normal(0.0015, 0.005)
error 0.0001
datarate 2000

endsimple

// network definition
// module connection are defined here
module Network

submodules:
hostA: host;
hostB: host;

connections:
hostA.outPort− −>AChannel− −>hostB.inPort;
hostA.inPort<− −AChannel<− −hostB.outPort;

endmodule

Listing A.3: .ned file describing the example network in the picture

NED syntax is C++-like and straightforward. Listing A.3 shows the

constructs for the declaration of the simple network represented in Figure

A.2.

A.4 Module implementation

As said, modules are instances of certain classes derived from the abstract

class cSimpleModule, declared in the simulation header library omnetpp.h.

A typical Omnet++ model implementation is a collection of .h and .cc files,

with class names that for convention should be the same of their respective

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 93

modules: for example, simple module X is implemented in the C++ class X,

declared in X.h and defined in X.cc.

cSimpleModule mainly provides three functionalities:

• module initialization (function initialize(): during the setup of a sim-

ulation, usually the user has to define or initialize variables and data

structures, or start sending messages (e.g. starting timers).

• message handling (function handleMessage()): every time a new mes-

sage is sent to the module, the simulator allows the user to handle such

message. The user can perform several actions, typically one of the

following:

– send a message to other module/s, using the variety of send()-like

functions offered for this purpose. Such functions allow to send

a message after a given delay or processing time, via a certain

channel, or send it directly to another module.

– schedule an event to be delivered to the module itself (i.e. issuing

a timer) using the method scheduleAt().

– cancel an event that has been previously scheduled (with sched-

uleAt()), using the function cancelEvent().

• module finalization (function finalize(): allow the user to collect statis-

tical data, perform clean up, etc. at the end of the simulation.

It is worth to note how model behavior is captured by C++ files as code,

while model topology (and the parameters defining the topology) is defined

in the NED files. This approach is useful to keep different aspects of a

simulation separated as much as possible.

A.5 Simulation execution

An Omnet++ simulation is a collection of .h and .cc files for each module de-

fined. A .ned file is also necessary to specify the network topology, i.e. single

and compound modules and their interconnections. A separate file, named

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 94

omnetpp.ini, is defined for general simluation settings (simulation time limit,

memory size, file names, etc.) and the definition of module paramters. Om-

net++ can use different random streams per each run, their number (up to

32) defined also in omnetpp.ini.

Simulation executions are conceptually structured in a hierarchy, starting

from a model and arriving to a single run of the program:

• model: executable (C++ files and libraries) and NED files.

• study: a series of experiments to study some phenomenon on one or

more models. Note that a study may contain experiments on differ-

ent modules, but an experiment is always performed over one specific

model.

• experiment: exploration of a single paramater on a model, e.g. network

behavior with different number of hosts (5, 10, 20, 50, 100). It consists

of several measurements.

• measurement: a set of simulation runs on the same model with the same

parameters. The difference is typically in the parameter and simulation

settings in the omnetpp.ini file.

• replication: one repetition of a measurements, using different seeds.

• run: one actual run of the program.

A single simulation run can be executed in different environments: En-

vir, when simulation is run within the simulation IDE; Cmdenv when user

executes the simulation in a terminal, useful for batch execution; Tkenv, a

Tcl/Tk GUI, provides automatic animation of the simulation execution and

displaying messages exchanged and module movements. It also allows to

inspect the values assumed by specific modules.

Cmdenv is the fastest in terms of execution time, Envir is slower due to

the interaction with the IDE, and Tkenv is the slowest because of the many

components to display and update on the screen, recommended for teaching

and debugging purposes only. Figure A.3 shows screenshots of the Tkenv

GUI.

APPENDIX A. OMNET++ SIMULATION ENVIRONMENT 95

Figure A.3: Omnet++: screenshots of the Tkenv GUI environment

Bibliography

[1] INET Framework for OMNeT++ Web Page. site:

http://inet.omnetpp.org.

[2] OMNeT++ online manual. site: http://www.omnetpp.org/doc/manual/

usman.html.

[3] Social Network Founded Mobility Models for Ad Hoc Network Re-

search Web Page. site: http://www.cl.cam.ac.uk/research/srg/netos/

mobilitymodels.

[4] The Mobility Framework for OMNeT++ Web Page. site:

http://mobility-fw.sourceforge.net.

[5] N. Asokan, K. Kostianinen, P. Ginzboorg, J. Ott, and C. Luo. Towards

securing disruption-tolerant networking. Nokia Research Center, Tech.

Rep. NRC-TR-2007-007.

[6] D.P. Bertsekas and R.G. Gallager. Distributed asynchronous bellman-

ford algorithm. Data Networks, pages 325–333, 1987.

[7] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,

and H. Weiss. Delay-tolerant networking: an approach to interplanetary

internet. IEEE Communications Magazine, 41(6):128–136, 2003.

96

BIBLIOGRAPHY 97

[8] S. Capkun, L. Buttyan, and J.P. Hubaux. Self-organized public-key

management for mobile ad hoc networks. IEEE Transactions on mobile

computing, 2(1):52–64, 2003.

[9] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,

E. Travis, and H. Weiss. Interplanetary internet (ipn): Architectural

definition. Relatório técnico, IPN Research Group, 2001.

[10] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.

Pocket switched networks: Real-world mobility and its consequences

for opportunistic forwarding. University of Cambridge, Computer Lab,

Tech. Rep. UCAM-CL-TR-617, Feb, 2005.

[11] BP Crow, I. Widjaja, LG Kim, and PT Sakai. IEEE 802.11 wireless

local area networks. IEEE Communications magazine, 35(9):116–126,

1997.

[12] Gianluca Dini and Angelica Lo Duca. A reputation-based approach to

tolerate misbehaving carriers in delay tolerant networks. In 15th IEEE

Symposium on Computers and Communications, Riccione, Italy Note:

accepted, 6 2010.

[13] D. Djenouri, L. Khelladi, and AN Badache. A survey of security issues

in mobile ad hoc and sensor networks. IEEE Communications surveys

& tutorials, 7(4):2–28, 2005.

[14] K. Fall. A delay-tolerant network architecture for challenged internets.

In Proceedings of the 2003 conference on Applications, technologies, ar-

chitectures, and protocols for computer communications, page 34. ACM,

2003.

[15] K. Fall and M. Demmer. Disruption/Delay-Tolerant Networking Tu-

torial. site: http://www.cs.berkeley.edu/̃ demmer/talks/dtn-tutorial-

mobihoc-may06.ppt.

BIBLIOGRAPHY 98

[16] DJ Goodman, J. Borras, NB Mandayam, and RD Yates. Infostations:

A new system model for data and messaging services. In 1997 IEEE

47th Vehicular Technology Conference, volume 2, 1997.

[17] T. Grandison and M. Sloman. A survey of trust in internet applications.

IEEE Communications Surveys and Tutorials, 3(4):2–16, 2000.

[18] C. Hedrick et al. Routing information protocol. Technical report, Cite-

seer, 1988.

[19] T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a mature

campus-wide wireless network. Computer Networks, 52(14):2690–2712,

2008.

[20] M. Ilyas. The handbook of ad hoc wireless networks. CRC, 2002.

[21] D.B. Johnson, D.A. Maltz, J. Broch, et al. DSR: The dynamic source

routing protocol for multi-hop wireless ad hoc networks. Ad hoc net-

working, 5:139–172, 2001.

[22] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Prefer-

ences and value tradeoffs. Cambridge Univ Pr, 1993.

[23] P. Kyasanur and N. Vaidya. Detection and handling of MAC layer mis-

behavior in wireless networks. In Proceedings of the International Con-

ference on Dependable Systems and Networks, pages 173–182. Citeseer,

2003.

[24] J. Leguay, T. Friedman, and V. Conan. DTN routing in a mobility

pattern space. In Proceedings of the 2005 ACM SIGCOMM workshop

on Delay-tolerant networking, page 283. ACM, 2005.

[25] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in in-

termittently connected networks. Service Assurance with Partial and

Intermittent Resources, pages 239–254, 2004.

[26] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad

hoc networks. Trust Management, pages 48–62, 2004.

BIBLIOGRAPHY 99

[27] C. Mascolo and M. Musolesi. SCAR: context-aware adaptive routing in

delay tolerant mobile sensor networks. In Proceedings of the 2006 inter-

national conference on Wireless communications and mobile computing,

page 538. ACM, 2006.

[28] M. McNett and G.M. Voelker. Access and mobility of wireless PDA

users. ACM SIGMOBILE Mobile Computing and Communications Re-

view, 9(2):55, 2005.

[29] M. Musolesi and C. Mascolo. Designing mobility models based on social

network theory. ACM SIGMOBILE Mobile Computing and Communi-

cations Review, 11(3):70, 2007.

[30] M. Musolesi and C. Mascolo. Car: Context-aware adaptive routing for

delay-tolerant mobile networks. IEEE Transactions on Mobile Comput-

ing, 8(2):246–260, 2009.

[31] L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data

forwarding in disconnected mobile ad hoc networks. IEEE Communica-

tions Magazine, 44(11):134–141, 2006.

[32] C.E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. In Proceedings

of the conference on Communications architectures, protocols and appli-

cations, page 244. ACM, 1994.

[33] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector rout-

ing. In wmcsa, page 90. Published by the IEEE Computer Society, 1999.

[34] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation

systems. Communications of the ACM, 43(12):45–48, 2000.

[35] G. Resta and P. Santi. An analysis of the node spatial distribution of

the random waypoint mobility model for ad hoc networks. In Proceed-

ings of the second ACM international workshop on Principles of mobile

computing, page 50. ACM, 2002.

BIBLIOGRAPHY 100

[36] J. Scott. Social network analysis. Sociology, 22(1):109, 1988.

[37] RC Shah, S. Roy, S. Jain, W. Brunette, I. Res, and WA Seattle. Data

mules: Modeling a three-tier architecture for sparse sensor networks. In

2003 IEEE International Workshop on Sensor Network Protocols and

Applications, 2003. Proceedings of the First IEEE, pages 30–41, 2003.

[38] T. Small and Z.J. Haas. The shared wireless infostation model: a new

ad hoc networking paradigm (or where there is a whale, there is a way).

In Proceedings of the 4th ACM international symposium on Mobile ad

hoc networking & computing, page 244. ACM, 2003.

[39] T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and wait: an

efficient routing scheme for intermittently connected mobile networks.

In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant

networking, page 259. ACM, 2005.

[40] A. Vahdat and D. Becker. Epidemic routing for partially connected

ad hoc networks. Technical report, Technical Report CS-200006, Duke

University, 2000.

[41] A. Varga and R. Hornig. An overview of the OMNeT++ simulation

environment. In Proceedings of the 1st international conference on Sim-

ulation tools and techniques for communications, networks and systems

& workshops, page 60. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2008.

[42] D.J. Watts. Small worlds: the dynamics of networks between order and

randomness. Princeton Univ Pr, 2003.

[43] M. Weiser. Ubiquitous Computing. Computer, 26:71–72, 1993.

[44] M. Weiser. The computer for the 21st century. Scientific American,

272(3):78–89, 1995.

[45] J. Widmer and J.Y. Le Boudec. Network coding for efficient communica-

tion in extreme networks. In Proceedings of the 2005 ACM SIGCOMM

workshop on Delay-tolerant networking, page 291. ACM, 2005.

BIBLIOGRAPHY 101

[46] R.N. Wright, P.D. Lincoln, and J.K. Millen. Efficient fault-tolerant

certificate revocation. In Proceedings of the 7th ACM Conference on

Computer and Communications Security, page 24. ACM, 2000.

[47] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful.

In IEEE INFOCOM, volume 2, pages 1312–1321. Citeseer, 2003.

[48] G. Zacharia and P. Maes. Trust management through reputation mech-

anisms. Applied Artificial Intelligence, 14(9):881–907, 2000.

[49] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for

data delivery in sparse mobile ad hoc networks. In Proceedings of the

5th ACM international symposium on Mobile ad hoc networking and

computing, pages 187–198. ACM, 2004.

	List of Figures
	List of Tables
	Delay Tolerant Networks
	Introduction
	Classification of DTN routing protocols
	Routing with infrastructure
	Routing without infrastructure

	Security issues in DTNs

	Mobility models
	Random waypoint model
	Community-based mobility model
	The Caveman model

	CAR
	Introduction
	Message delivery
	Delivery probability
	Performance

	RCAR
	Reputation: concept and definition
	Design
	Reputation update
	Extensions to the update process

	Simulation and results
	Scenario and parameters
	Choice of R0
	Choice of the buffer size
	Blackhole carriers
	Selfish carriers

	Implementation
	CAR
	Modules
	Messages

	RCAR

	Conclusions
	OmNet++ simulation environment
	Model structure
	Messages
	Topology description: the NED language
	Module implementation
	Simulation execution

