-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Electronic Thesis and Dissertation Archive - Universita di Pisa

UNIVERSITA DI PISA

UNIVERSITA DEGLI STUDI DI PISA
FACOLTA DI INGEGNERIA
CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA INFORMATICA

Incremental Product Release of
Java Applications using Dynamic

Updates

Relatori:
Prof. Bo N@rregaard Jgrgensen
Prof. Marco Avvenuti
Prof. Alessio Vecchio
Candidato:

Luigi Fortunati

https://core.ac.uk/display/14699611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“If you're not failing every now and
again, it's a sign you're not doing

anything very innovative.”

Woody Allen

Acknowledgments

This dissertation, while an achievement that bears my name, would not have been possible without the

help of others, who | would now like to thank.

First of all | want to thank the research team of the Marsk Mc-Kinney Mgller Institute that worked at my
side during our collaboration. | would like to express my sincere gratitude to Professor Bo Ngrregaard
Jgrgensen for his supervision and guidance, the Javeleon engineers Allan Raundahl Gregersen and Michael
Rasmussen, with which | shared the working space. With their availability on answering my many questions

they helped me to understand how Javeleon works and also taught me a lot about programming.

| also have to acknowledge my friend and colleague Andrea Mannocci because he managed to tolerate me
during our stay in Denmark; we worked side by side everyday on our project sharing good and bad

moments. His moral support and aid both at work and out of the office proved to be essential to me.

I'm indebted with Professor Marco Avvenuti, my home university advisor, for enabling me to go to
Denmark to develop my thesis. | must also thank the teaching staff of University of Pisa for all the

knowledge that | gained during the years of my university studies.

| also want to thank my relatives and people that are close to my family for the economical and moral
support they gave me on undertaking my studies abroad. Moreover | also want to thanks my close friends
in Italy and the Erasmus students that | met during my stay in Odense. Being an Erasmus student has been a

wonderful experience, both personally and professionally.

Abstract (English)

With the evolution of the software development process, claimed by the new demands of the market,
software development has changed considerably since its early days. In order to support the increase in
complexity and dimensions of new software product, software engineers have developed new tools and
methodologies in order to cope with the market requests. Despite all these advances, a software product
can still be in need of changes after the delivery. These modifications are traditionally divided as changes to
the functionality of the software that address new unanticipated requirements, changes that allow the
software to run on a different environment, changes that fix errors and improvements that can avoid
future problems. The maintenance and update process of an application have traditionally involved the
classic halt, redeploy and restart scheme. However, this approach cannot be used in every scenario;
consider as an example a high availability e-commerce system. For some companies the cost of a system

shutdown can be prohibitive in terms of economic outlay, safety and the availability of service.

A Dynamic Software Updating system (DSU) allows overcoming the update problem enabling applications
to be updated without recurring to the halt-update-redeploy scheme.. Many DSU systems have been
developed since the ‘70s, each of them comes with some peculiar properties defining on-the-run
application updateability with a certain level of granularity by allowing only certain subset of modifications

to the code.

In this work we examine a software-based DSU system called Javeleon, developed at the University of
Southern Denmark — Maersk Mc-Kinney Mgller Institute in collaboration with Sun Microsystems. A novel
feature of Javeleon is the support of full redefinition of classes and changes to the type hierarchy. Following
the evolution of a case study application we will show how the capability of dynamically updating software
with Javeleon impacts on software development process. By working with Javeleon we will also test the

transparency of this system towards the programmer.

Abstract (Italian)

La domanda del mercato nell’ambito della produzione di software ha spinto il processo di sviluppo di
applicazioni ad evolvere considerevolmente partendo dalle sue origini. Al fine di poter permettere la
gestione di prodotti software sempre pil complessi e di dimensioni sempre maggiori gli ingegneri software
hanno inventato nuove metodologie per venire incontro alle richieste del mercato. Nonostante i progressi
raggiunti, un prodotto software richiede comunque di poter essere modificato in seguito al rilascio. Le
modifiche che possono essere apportate durante la fase di manutenzione sono tradizionalmente suddivise
in cambiamenti alle funzionalitd dell’applicazione, modifiche che permettono al software di adattarsi a
nuovo hardware/software, correzioni di bug o errori dell’applicazione, modifiche all’applicazione che
permettono di evitare problemi futuri. Il processo di update inoltre si traduce spesso nel classico schema di
spegnimento dell’applicazione, aggiornamento offline e ripristino della operativitda. Questo genere di
approccio non pud essere applicato in ogni caso, basti pensare a un sistema con garanzie di alta
disponibilitA come un sistema di e-commerce. Per alcune compagnie infatti il costo derivante dallo
spegnimento del sistema pud essere proibitivo per motivi economici, di sicurezza o di disponibilita di un

servizio.

Un sistema di Dynamic Software Updating (DSU) permette di aggiornare una applicazione mentre questa é
in esecuzione limitando i problemi derivanti dallo shutdown del sistema. Fin dagli anni '70 molti sistemi
DSU sono stati sviluppati, ognuno con le proprie caratteristiche e limitazioni in quanto riguarda le

modifiche possibili al codice.

In questo lavoro esaminiamo un sistema DSU software-based chiamato Javeleon e sviluppato alla
University of Southern Denmark - Marsk Mc-Kinney Mgller Institute in collaborazione con Sun
MicroSystems. Javeleon introduce una nuova caratteristica nel campo dei sistemi DSU, la possibilita di
poter ridefinire completamente le classi o modificare intere gerarchie di classi. Mostreremo, attraverso lo
sviluppo di una applicazione, in che modo l'integrazione degli aggiornamenti dinamici con Javeleon
influenza la fase di sviluppo del software specialmente nel momento in cui viene definita o modificata
I'architettura dell’applicazione, testando effettivamente la trasparenza di tale sistema verso |l

programmatore.

Table of Contents

Yol g Yo RNV 1= Fq s g T<T o SRR iii
A o3y 1 = or ol =3 V=d 11 o) SRRt iv
VAN o1 - T o 1 £=1 [F=1) eSO PP v
TADIE OF CONTENTS ..ttt ettt et st e et e ettt e s at e e s e be e e beeesabee s beeeaseeeneeesareesabeeenneennsbeeanne Vi
Iy o T (U T TSP ix
LIST OF TaBIS ..ttt st et b e s bt e she e sab e st e bt et ettt e e bt e bt e b e e e ae e e ne e e e e e nare e Xii
[o B o Yo (oI YT o] o 1< &SSP Xiii
(00 =Y o =T gl R [a1 oo [¥ ot f o o USSR 1
1.1 Problem dOmMain ..o ettt e e s b e e e be e e s et e e nre e s be e e neeenans 1
1.2 Problem STATEMIEBNT.......iiiiiieeieeeee ettt ettt she e s ae e st san e s bt et ee s 2
IR =T =Y: [l ol g Y=Y g oo fo] Fo =4 PSR 4
I =T oo o fSY o B o U1 = TSP PPPPPPPTRPRPORt 5
ST\ o) = o o T o F PRSP PR 6
Chapter 2 - STate Of the @rt.....cei i e e e e et e e e st e e e e e ate e e e sabte e e esabaeeeenbaeesenseeeeas 8
2.1 Characteristics Of @ DSU SYSTEIMuiiiiiiiiie ettt tree e s et e e e e e e bte e e s eabaeeeseataeeesantaeeesseneesnnes 8
2.2 JAVEIEON .ttt e be et e ea e e e s bt e e he e e s R re e e be e e beeesneeennreesaree e sares 10
Chapter 3 - Development MethodOIOZYuviiiiiiii e e e e e e e e e e e e e e nrrae e e e e e eeannes 12
3.1 Incremental ProAUCE FEIEASEueiiiiiiie ettt e e et e e e et e e e e esabbeeesaasaeeeesseeesantbeeesnnsaeaaas 12
I 0 B - 1= =T I 1 o o 11 RSP 12
3.1.2 Staged model with dynamic UPAatesuuueiiiiiiecciiiieee e e e e e e e e e arrae s 14
Yy o =T a T I T o) o] o - T o TSRS 16
3.2, 1 IDE QN JAVEIEONeiiiiiieite et eae e saneeaneeas 16
3.2.2 Application development and VErSiONINGcccvueeiiiiiie i i e e vee e e aree e e 17

Chapter 4 - The case study @appliCatioNccuiii i i e bre e et re e s et e e e e saraee e enreas 20

4.1 Overview of the Space INVaders CloNE GaME........cuui i ieciiiiiee e e e e e e e s e araae s 20
4.2 Description of @aCh iteratioNc.eeeiiee e e e aa e 21
A.2. 1 FIFST FEIEASE weeuteetieiieeieeeite ettt ettt sttt sttt ettt e bt e bt e s bt e b e e s be e s bt e saeesae e s bt sare e bt e b e reeneen 21
4.2.2 SECONA MBIEASE.c..veeeieiuiieiteete ettt ettt et ettt et et e bt e s bt e s bt e e abeesbeesbeesaeesane s bt sabe e bt e b e ereenneen 22
A.2. 3 ThIrd FEIEASEee ittt ettt ettt e st e s bt e e bt e e e sabe e e bt e e sabeesbeeesneeesnreesareeesneeesanes 23
A.2.4 FOUITN FRIEASE. ... ettt ettt ettt e s e e s bt e e eat e e s sabeeebeeesabeesabe e e neeesnreesareeesnneesanes 24
B.2.5 FIfth FEIEASE .o euteeiieieeeee ettt sttt s st s r e s bbb ne s 25
4.2.6 SIXEN FEIEASE.eeteeiieee ettt st st st s be s bttt nean 25
4.2.7 SEVENTN MEIEASEeeeeie ettt sttt e e s e et ne e e ar e e s re e e saneesans 26
N (o Y=Toru=To J 011 o F=1VZ o T ol USRS 27
4.3.1 Updating from release 1 t0 rel@ase 2........occcieieieciiie ittt et ite e e e eta e e e entaaeeeaes 29
4.3.2 Updating from release 2 t0 rel@ase 3.......ocoieiiieiiiie ettt et e e et e e eetre e e e raee e eans 29
4.3.3 Updating from release 310 relEaS@ d.........euuviiiiee ettt e e ree e e e e e e e e nraae e e e e e eennnnes 29
4.3.4 Updating from release 4 0 relEaS@ 5 ... ittt e e e e e e e e e nraar e e e e e eenannes 30
4.3.5 Updating from release 5 t0 rel@ase 6.......cccccuviiieciiiii ittt e e e are e e seta e e e sentaeeeeaes 30
4.3.6 Updating from release 6 t0 rElEASE 7eiiciiei ittt ertee e e sare e e s etae e s eenraaeeeaes 30
oYL =Y e [T = o USRS 31
0 N G- T d Y= Lo = [S RUUPOt 32
oy U Y=Y T oY o 1V A ole) o | PSSR RUSPNt 37
BN R U=T o =T =] 1 =1 0 o N 38
Chapter 5 - The update @XPEIIMENTcoiiiiiii et e e et e e e e bre e e e bae e s eataeeesbteeeesnraeeeennses 40
oI VT YT o T O TP SPOTP PP 42
5.1.1 Significant COAE ChANEESeviiiieiee e e e e e et re e e e e e e atrae e e e e e e e e nanreaaeeas 42
5.1.2 Update test issues and SOIULIONScuviii ittt e re e e e etee e e aae e e e ebe e e e eaeeas 48
5.2 VEISION 2.1ttt e e e s a e s s a e 61
5.2.1 Significant COAE ChANEESeeeiiiieee e e e e et e e e e e e e e ntrte e e e e e e e e eanreaaeeas 61

vii

5.2.2 Update test issues and SOIULIONScuiiii ittt e et e e e eabae e e e tae e e snr e e e eares 64

SR VT Y10 o T X O TSP P PP 68
5.3.1 Significant COAE ChANEESeeiiiiieeee et e e e e et re e e e e e e aarte e e e e e e e eeanreaaeeas 68
5.3.2 Update test issues and SOIULIONScuiiii ittt et bre e e e srae e e e aaee e e sbe e e e eares 70

S5LAVEISION 3.1ttt e a e s sra e 74
5.4.1 Significant COAE ChANEESeeeiiiieee e e e e e e bt ee e e e e s e s atrte e e e e e e e e nanreaaeeas 74
5.4.2 Update test issues and SOIULIONSccie i e e e e e e e e e e e nrraaee s 75

5.5 VEISION 4.0 ittt s a e 77
5.5.1 Significant COde ChaNGESoooiuiiiiicee et ee e et e e e etee e e raa e e e sre e e e eares 78
5.5.2 Update test issues and SOIULIONScccoeeiiiiiiee st e e e e et e e e e e e e enrraae s 95

S YT Y10 o T T O TSP 97
5.6.1 Significant COdE ChaNGESooo i et eetee e e baa e e e sre e e e eareas 97
5.6.2 Update test issues and SOIULIONScccviiiii ettt e e e e e svte e e e e bre e e sentaeeesenraeeeenes 101

Chapter 6 - Good practices for developing dynamically updateable applications with Javeleon................. 103

6.1 Software evolution CONSIAEIrAtIONS.c.ueiiiiiiiiie ettt e et sre e sree e snneeas 103
6.1.1 ManagemMeENT Of COURuiiiiiiiiiiiiiie et e e et ae e e s eta e e e e sbteeeeeabaeeesantaeeesassaeaeanes 103
6.1.2 Dynamic update @pPPrOaChcocuiiii e e e et e e et e e e e eta e e e saareeeeenes 105

6.2 Application design CONSIAEIAtIONS.cciiii i it e e e e rrr e e e e e e e e rarrre e e e e e e e esnnsraneeas 107
5.2.1 GENEIIC ISSUBS ..neteieeieteeee it ee e sttt e e st e e sttt e e same e e e sb e e e e sambeeeesamreeeeessneneesanreeeesanseeessaneneesaneeeesanee 107
O] oY= ol ol Y TSR 120

(0 T o1 T oy A o o Tl [V o o 1SSt 125
23] o Lo =d =T o] o1 USSR 127

viii

List of Figures

Figure 1.1- Comparison between the Incremental Product Release approach and the Stepwise Refinement

F] o] o] o Y- ol o VST 3
Figure 1.2 - Research MethOTOIOZYccccuiii it etee e e e et e e e e s tte e s esntaeeesnteeeessaeeesnnes 5
Figure 3.1 — Staged Model for the Software Life CyCleouiiiie it 14
Figure 3.2 - Move Method refactoringuei it e e et e e et e e e saae e e e s abeeesnaaeeaan 16
Figure 3.3 — Example of a software evolution SChemMa..........cccuiiiiiiiii i 18
Figure 3.4 — Comparison between SVN branched and “flat” approach........cccccceveciveiiicieieccciieee e, 19
Figure 4.1 — First release’s SCrE@NSNOLS.........uuiiiii i e e e e e e e e e e e et rre e e e e e e e snnrraaeeas 22
Figure 4.2 — Second release’s SCrE@NSNOL........cuiii i e e e e e e e e e e e e e anrraeees 23
Figure 4.3 — Third release’s SCrEENSNOL.........uiiii i e e e e e e e et re e e e e e e e ennrraeeeas 23
Figure 4.4 — FOUrth release’s SCrEENSNOLciiiii oo e e e e e e e e e e e e e raaee s 24
Figure 4.5 — Fifth release’s SCrEENSNOL.........uiiiii i e e e e e re e e e e e e e e nnrraeeeas 25
Figure 4.6 — Sixth release’s SCrEENSNOLuuiiii i e e e e e e e reree e e e e e e e e anrraaeeas 25
Figure 4.7 — Seventh release’s SCre@NShOtccoii i e e et e e e e e e e anrraeee s 26
Figure 4.8 — UML class diagram of game entities (First rel@ase)........ccceecvuveeeeciieeiiiiie e 34
Figure 4.9 —UML class diagram of collections (First rel@ase)cccccuueeeeiiieeiiiiiee st 35
Figure 4.10 - Sequence diagram on the start of the game [00P......ccuvviieciiii i 35
Figure 4.11 - Sequence diagram related to the collision between shots and aliens (v1.0)........ccccecvvveeennenn. 37
Figure 5.1 — Iterations developmeENnt SCREMA........cociiiii i e e e e ba e e e aaeee s 41
Figure 5.2 - Extract superclass EntityColleCtionoeieiiii it s aaee e 42
Figure 5.3 - Collections of entities (V. 2.0 reV. 135)cccciiiiiieiiiee ettt ettt e ettt e e tee e e e eare e e eeare e e s naeeaan 43
Figure 5.4 — Aliens movement’s changes on AlEN Classcccuviiieie i 44
Figure 5.5 - Aliens movement’s changes on AlIENS Class.......cccuuviiieeee i 45
Figure 5.6 — INtroduction Of Darrierseiiiiiiiee e e e e e e e e re e e e e e e snnrraeeeas 47
Figure 5.7 - SINgleton desSiN Patterneiiiiiiee et e e e e e e e e e rre e e e e s s e saaeae e e e e e e eennraaeees 51

Figure 5.8 — Changes on the structure of the EntityCollection hierarchy tree passing from version 1.0 to

VEISION 2.0 1V, 135 Lottt e e ettt e e e e e s bbb et b et e e e e e e e anbeteeeeeesannsbeeeeeeeesannbeaeeeeaeeas 53
Figure 5.9 - Alien hierarchy tree (V 1.0)eee ittt e e e e e str e e e saaa e e e saaaeeesensaeeesnnneeeas 54
Figure 5.10 - Alien hierarchy tre@ (V 2.0)eee e eeciiee ettt e st e st e e e str e e e e sataeeesasseeesnasaaeesnsaneaan 54

Figure 5.11 - Good design implementation on Alien class (Version 2.0 rev. 166)ccccccveeevcieeeeeicveeeeinnnen. 55

Figure 5.12 — New design implementation on the Entity hierarchy tree.......cccceveeiiieeicciei e, 56
Figure 5.13 — New design implementation on collections hierarchy treecccooecovvieeeiiieccccieeee e, 57
Figure 5.14 - Example of "Push Down Field" refactoringcccuveeeee i 57
Figure 5.15 - New “Template method” design applied to version 1.0 (rev. 166)ccccccvueeeecveeeeeccveeeecnnnnn. 58
Figure 5.16 — Changes on Barrier and Barriers regarding the vulnerability of barriers (v2.0->v2.1).............. 61
Figure 5.17 - Move method in Version 2.0 reV. 167ceuiiiieeciiiieeee e ecciiteeee e e e e eectresrre e e e e s esennteeeee s e e esnsraaees 63
Figure 5.18 - Move methods in Version 2.1 reV. 171 ...ttt eectree e e e e e nnre e e e e s e e e naraaee s 64
Figure 5.19 - Incrementing the max health of Barriers ... 65
Figure 5.20 - State mapping of barrier’s health following bad designcccccovviiiiiiiiiiie e, 66
Figure 5.21 - Decrementing the max health of barriers.........cvev i 66
Figure 5.22 - Score system classes (Version 3.0 REV. 179)ccciiiiiiiiee et eeriree e et e e stre e e arae e e saanee s 68
Figure 5.23- Change on Game class passing (V2.1->V3.0) ...ccciiiuiiiiiiiiieicieee et scieee s e e ssare e e e aae e e s snanee s 69
Figure 5.24 - Cascade modifications effect on version 3.0 (rev. 179)cccueeeeciiieeeiieee e e 71
Figure 5.25 - Methods changed in class Game (V3.0r179->V3.1r182)....ccccceeeiiiiieeciiieeeiiieeeescireeeesveeeeesivnee s 75
Figure 5.26 - Code changes in version 4.0 related to the way entities are drawn on screenccccccceeuuune 78
Figure 5.27 — Changes to the code related to the introduction of explosions and animations (v4.0)............ 80
Figure 5.28 — Modifications to the code regarding the visualization and limiter of FPS (v4.0) 81
Figure 5.29 - Use of new interfaces in VErsion 4.0coui i iecciiiiiee ettt eecrrree e e e e s e stnae e e e e e e e enrraaees 84
Figure 5.30 - Implementation of move method in VErsion 4. ... 85
Figure 5.31 - Collision evaluation/handling system implemented in version 4.0cccceeeeeeeereeeeeeeeeveeennen. 87
Figure 5.32 - Redesign on score framework (first SOIULION)oooeiiiiiiiiiic e e 90
Figure 5.33 - Redesing of score framework (second SOIULION)ccuuiieeiiieeiiiiiee e 91
Figure 5.34 - Differences between v3.1 and v4.0 0N SHOSc.uviiiiiiiiiciiec e e 92

Figure 5.35 - Changes to the design concerning the introduction of FixedEntityCollection and
MovableEntityCollection in VEISION 4.0........coccuiiieiiiiieeecieee et err e e et e e e etre e e e e staeeessataeeessseeeesasseeesansaneann 94
Figure 5.36- Implementation of the Observer pattern (V.4.0) ... oeiiiie it 94
Figure 5.37 — Modifications on entities hierarchy regarding the introduction of new classes of enemies
(VA.075V5.0) ettt ettt e e ettt e e ettt e e e ettt e e e e tte e e e e beeeeeataeaeeaatabeeeeabaaeeeataaeeaaaraeeeaataeeeeataeeeaanreeeaeearrens 97

Figure 5.38 - Modifications on collections hierarchy regarding the introduction of new classes of enemies

(VA.075V5.0) ettt ettt ettt e e e ettt e e e e et e e e e eettee e e e beeeeeataeeeeaatabaeeeabaaaeaabaeaeaaabaaeeabaeeeeataeeeaatraeeaeearrens 98
Figure 5.39 - Move implementation of interface Collidable down in the hierarchy (v5.0).....cccccceecuvieeennnenn. 99
Figure 6.1 - Revisions JoUrNal @XamPle ...ttt e e e e e e sbrre e e e e e e e erbre e e e e e e e e anraaaeeas 105

Figure 6.2 - Adding reference to Game in Aliens class - change to the constructor (v2.0).......ccccceeevveenneee. 109

Figure 6.3 — Singleton desSign PatterN. et e e s bae e e e b e e s e eabaee e enneeas 110
TV gl S A - T V=T @oT] g] I ol F= 1SR 111
Figure 6.5 - Changing constants value - the barrier example.......ccccooveoiieeie e 113
Figure 6.6 - Barrier's health solution with strong coupling of information............ccccceeeiiiiiiiiiee e, 114
Figure 6.7 — Implementation of good design in our case Studyccccciiieeiiiicciiiiiee e, 117
Figure 6.8 — Changing the implementation of methodsccooviiii e, 119
Figure 6.9 - Program execution example for the "Extract and Inline method" refactoring.......ccccccc...... 120

Xi

List of Tables

Table 4.1 - Definitions of valid and invalid dynamic Updates........ccceeeeecciiiiiee e 28
Table 5.1 - Fine grain modifications concerning extract superclass refactoring (v1.0->v2.0)........ccccveeeunneenn. 43
Table 5.2 - Fine grain modifications concerning aliens' movement (v1.0->V2.0).....ccccceecvvveeeivireeeiciieee e, 45
Table 5.3 - Fine grain modifications concerning aliens' ability to make fire (v1.0->v2.0).....cccccceveviieeennnnenn. 46
Table 5.4 - Fine grain changes concerning the introduction of barrierscccceevcviiiicee e, 47

Table 5.5 - Fine grain changes on Aliens and Shots classes concerning collision detection and handling

(VL.0-3V2.0) ettt ettt ettt e e e ee et e e e e e e et b e e e e e e e e e b b—— e e e taeeeeaa bbb araaaeeeaaarbbaaraeeeeaaataraaaaaeeeeaneeanarrans 48
Table 5.6 - Fine grain changes concerning "push down field" refactoring (v1.0->vV2.0)cccoovvreeecrereennnenn. 57
Table 5.7 - Evaluation of aliens SPEEd..........ueeiiiii i e e e e e e e e e e e s nrraee s 59
Table 5.8 - Fine grain changes related to the vulnerability of barriers (v2.0->V2.1) c....ccccvvveeecirirecciieeecneee. 63
Table 5.9 - Fine grain changes (V3.0->V3.1) ...ttt ettt e ettt e e et e e e e earaeeeeeabaeeeennreeeeennaeeean 74
Table 5.10 - Fine grain changes related to the introduction of raster images (v3.1->v4.0).....cccccceecvveeennnenn. 79
Table 5.11 - Fine grain modifications regarding "Extract method" refactoring in class Game (v4.0)............. 82
Table 5.12 - Differences between Hashtable and Lookup approach with the collision engine....................... 89

Xii

List of Code Snippets

(000 LI g1 T o] o1l 351 MR CF- o T=1H (o Yo o USRS 32
Code Snippet 4.2 - GAME Class FIElAS......ccouriiieiciie et e e e e e e e e earae e e enreas 36
Code Snippet 4.3 - User inPUL NaNAIiNG.........oeii it e e rree e s e rae e e e sara e e e enreas 38
Code Snippet 5.1 - TimerTasks and the infinite [00P ISSUEccccviiiiiiiiie e 49
Code Snippet 5.2 - Algorithm that evaluates alien SPeedcccveiieciii i 59
Code Snippet 5.3 - New methods of class Barrier (V.2.1)c.eeecciee ettt eeree e evee e e e e 62
Code Snippet 5.4 - Fine grain changes regarding movement of entities (v2.0->V.2.1) c.ccccccoveevcieeieencineeennee, 64
Code Snippet 5.5 - 2amMeLoop MEthod (V2.1)...cc..eiiii ettt e e et e et e e e eare e e e e aa e e e eenreas 69
Code Snippet 5.6 - gamMeLoop Method (V3.0).....c.ueiiiiiie ettt e e tre e e ree e e e eare e e e ere e e e eareas 70
Code Snippet 5.7 - Fine grain changes (V2.1->3.0) ...ccociii ittt e e e e tte e e tee e e e eare e e e eaae e e eenreas 70
Code Snippet 5.8 - Extract method refactoring on notifyDeath and notifyWin methods (v.4.0).................... 82
Code Snippet 5.9 - GAMECONTIOl Class (VA.0).......uviieeeiiee ettt ettt et e et e e e ette e e e ebeee s eareeeeenaaeeeennreas 88
Code Snippet 5.10 - Collision handler registration with inline initialization (v.4.0)......ccccceoeiiieiiiiiiecieeeeee 88
Code Snippet 5.11 - Version 3.1 EntityCollection class declaration........ccccccvviieeiiiiccciieciieee e 93
Code Snippet 5.12 - Version 4.0 EntityCollection class declaration........cccccceeeeiieeiecciee e 93
Code Snippet 5.13 - Game border classes (V5.0).....uiiiciiieiriieeeiiiieeeeiieeeeeitreeeestree e s s sseteeeesstreeesssaeeessnsaeeesnns 100
Code Snippet 5.14 - Initialization of borders in GamMe Class........covviiriiii i 101
Code Snippet 6.1 - A method that contains an infinite 100Pccveiiiiciiii i 121
Code Snippet 6.2 - Solution provided for the infinite loop problem........ccccueeiriiiiiiiiiece e, 121
Code Snippet 6.3 - Twingleton issue's solution on TopComponent Classccoccveeeiiiieeieiiieee e, 123
Code Snippet 6.4- Adding abstract modifier to Classccuveeeiiiieeccee e 123

Xiii

Chapter 1 - Introduction

In this chapter we start by examining what is the nature of the update problem and how Dynamic Software
Updating systems address this problem. In the second part we describe what we want to demonstrate with
our work considering a particular scenario and methodology. Finally, we present an outline of how the

document is organized and a list of definitions concerning the terminology used in this work.

1.1 Problem domain

Considering the history of software, software engineering has evolved considerably starting from 1940’s to
our days. Software engineering can be seen as the intelligent application of proven principles, techniques
and tools in order to effectively and efficiently create and maintain software that satisfies the user.
Software engineers have constantly improved the techniques and the tools they use in order to create
software. Just to make some examples, a lot of drivers contributed to the evolution of software engineering
techniques or tools: programming languages born in the 50’s gave later rise to elements that improved the
development of software, like abstractions, modularity or information hiding (Liskov, Data Abstraction and
Hierarchy, 1987). The advent of personal computer in the 70’s made it possible for hobbyist to get a
computer and write software with it; in the 90’s the advent of Internet and open-source allowed a wider
collaboration between developers. In the last ten years the increasing demand of software in smaller
organizations led to the creation of new faster methodologies for developing software from the

requirements to the deployment of the software product.

These lightweight methodologies advocate the importance of requirements volatility even late in the
development and that is because software development processes that harness change towards customer
satisfaction are more competitive on the market (Martin, et al., 2001). The support for rapid change in the
requirements of a software and rapid development of new versions raises problems when dealing with
programs or systems that have to run continuously without interruption. That is true for mission critical
application which is a system critical to the proper running of a business. If this application fails for any
length of time you may be out of business. In virtue of their nature these kinds of systems cannot be
updated by using the traditional update approach that includes shutdown, update and restart. That

approach is not acceptable because it can result in a loss of service for the users, an economic loss or

company image’s loss in reliability, or in the worst case it can compromise safety. Solutions to these kinds

of issues are widely deployed today by using a hardware or software solution.

Hardware-based solutions for dynamic updating are based on redundancy of identical systems. In these
systems an entire running program can be modified with minimum downtime and maximum flexibility by
updating the software on the second system, while the first is still running, and then activate the second
one after the update in order to provide the service while the first system is updated. Hardware based
solutions are usually costly and difficult to implement. This feature makes the latter solution not suited for
smaller organizations but for scenarios where a high level of fault tolerance is needed, like in

telecommunication or critical transactional systems.

In order to give a dimension of hardware-based solutions we can consider the VisaNet transactional
system. Whenever a purchase is made and paid with a Visa card in one of the available locations, the
transaction is transmitted to a VisaNet datacenter. There are four installations of them in the world with a
total of 21 IBM supercomputers. When the request is received the datacenter sends the card details to the
visa card owner’s bank and receives an approval. Afterwards, an acknowledgment is sent back to the
merchant. All of these operations are completed in less than five seconds. The VisaNet transaction engine
can hold more than 3000 transaction per second and it’s based on 50 million lines of code which have been

modified more than 20,000 times per year allowing though 99,5 percent of availability (Pescovitz, 2000).

Software-based updating systems enable software updates at runtime with less cost and complexity
compared to the hardware-based solutions. A software-based approach allows the application to modify its
behavior while it is running, dealing with transitioning state. However, these systems today still not permit
the programmer to make every possible change to the code, but allow only a subset of update-compliant
code-changes and well-accepted program structures. These systems also come with certain characteristics

and are distinguished based on the granularity of the modifications that are allowed.

1.2 Problem statement

In this work we test how dynamic updates can be integrated in software evolution by developing several
stable releases of a case study application that can be dynamically updated with Javeleon, a novel dynamic
update framework developed at the University of Southern Denmark - Maersk Mc-Kinney Mgller Institute in
collaboration with Sun Microsystems. Javeleon permits transparent dynamic updates of running Java
applications while guaranteeing both type and thread safety with low overhead, high level of flexibility and

programming transparency (Gregersen & Jgrgensen, 2009) (Gregersen, 2010).

By software evolution we mean the process of developing software initially and then repeatedly update it
to cope with requirements volatility. Allowing requirements volatility means that we will need to follow a
software life cycle model that permits new requirements to be discovered after the software product is
already been deployed. Following the categorization of Lientz and Swanson in (Bennet & Swanson, 1980)

there are 4 kinds of maintenance operations that can be done:

e Corrective maintenance: reactive modification of a software product performed after delivery to
correct discovered problems;

e Adaptive maintenance: Modification of a software product performed after delivery to keep a
software product usable in a changed or changing environment;

e Perfective maintenance: Modification of a software product after delivery to improve performance
or maintainability;

* Preventive maintenance: Modification of a software product after delivery to detect and correct

latent faults in the software product before they become effective faults.

The model that is taken into consideration is the Staged Model explained in (Rajlich & Bennet, 2000). This
model admits new requirements of the application to be discovered after the deployment of a release,
letting the application grow in functionality version after version. Several releases of the case study
application will be developed using an incremental product release approach in order to test the dynamic
updateability from every release to the subsequent. This approach requires the dynamic update test to be
done only from release to release evaluating the impact of dynamic updates considering all of the
modifications made during the version development. A release will be ready only when all of the
requirements of a version are satisfied by the changes made to the code. That approach is different from
the stepwise evolution approach followed in (Mannocci, 2010) where dynamic test updates are made

during the development of a single release as it is possible to see from the example below.

Dynamic Update test:

Version 1
Release

Version 1
Release

& & &

Version 2 Development Version 2 Development
Incremental Product Stepwise refinement
Release approach approach

Figure 1.1- Comparison between the Incremental Product Release approach and the Stepwise Refinement approach

Every release will embody at least a new major feature (adaptive modification) and several other changes
(corrective, perfective or preventive) to the code. We will explain what consequences come from following

the Incremental Product Release model instead of the Stepwise Refinement approach.

Another aim of our work is to test the transparency of Javeleon towards the developer in order to check
how it modifies the habits of the software engineer on making design choices for his application. We want
to know what modifications to the code are valid while using Javeleon and meanwhile maintaining a
correct application behavior with dynamic updates. By examining how Javeleon guide the programmer on
taking certain design decisions we will write down a set of good practices to follow in order to develop
applications that are dynamically update compliant with this DSU system and see what are the

consequences of following these rules.

1.3 Research methodology

In order to test the Javeleon framework we developed 5 stable releases of a game. The application
developed is a Java Space Invaders game clone. We chose to base our studies on a game development
mainly because a game is usually a stateful application. That way we can easily see directly from the user
perspective how data structures, which reside in memory, and the use of dynamic updates with Javeleon

affect user experience and the application behavior.

Before starting the development of the game an update plan will count for every release a set of
requirements to be implemented. These requirements often refer to the need of new functionalities that
will involve adaptive modifications to the software. Moreover, during the development of a release the
developer is allowed to make corrective, perfective, preventive modifications to the code. In order to
simulate a genuine software evolution experience we also state that when the software engineer has to
choose the design for a certain version he can take into consideration no more than the requirements for
that version, ignoring the requirements that only future releases should provide. Allowing the developer to
make unanticipated preventive, perfective or corrective modifications can also mean permitting him to

refactor the code to any degree, potentially twisting the design of the application.

Every time a new software version is released the dynamic update with the previous version is tested. In
this phase issues and undesired application behaviors of the application are detected and their causes
identified. A solution for the identified issues is then formulated, applied, tested and then generalized. The
result of this process should be a collection of good practices to follow when developing dynamically

updateable application with Javeleon.

Write down the update plan

v

Develop the first release of the game
following the requirements

A

Develop another release following the update plan requirements and %

making perfective/corrective/preventive modifications to the code.

v

Test dynamic updates between the
previous and the latter version

Found issues or strange
behavior after the update?

Yes

v

Identify the cause of the issue or the strange
application behavior

A

Formulate a solution as a design rule
and implement it

A

Generalize the solution

Figure 1.2 - Research methodology

1.4 Report structure

The organization of the rest of the thesis is as follows:

e Chapter 2 describes software DSU systems in general by describing the main characteristics that are
used to categorize these systems and briefly explain Javeleon and its qualities.

e Chapter 3 gives in the first subchapter a description of the development paradigm followed as a
software lifecycle model (staged model) and how dynamic updates impacts this model. In the
second subchapter we describe from a more pragmatic point of view what are the methodologies,

principles and tools used during the development of the application.

e Chapter 4 shows a first overview of the case study application, the functionalities required on each
version and the desired behavior of the application when updating from version to version. The
design of the first release of the program is also introduced.

e Chapter 5 deals with the workflow steps that are involved within the dynamic update experiment.
For every version after the first a summary of the significant code changes is given. In this chapter
we also describe what problems or undesired behavior were encountered during the dynamic
update tests, which solutions where found and how these solutions were implemented in our
application design.

e Chapter 6 summarize all the practices that were generalized during the dynamic update test phases
and shows what are the implications of dynamic updates in a software products.

e Chapter 7 gives a general brief summary of what we set out to investigate, the main problems
encountered and how these were solved them telling what the developer community can learn

from our findings.

1.5 Notation

Definitions:

e Software engineering: application of engineering to the software development process. Is the
disciplined application of methodologies that encompasses software design, implementation and
testing.

e Software development: process of building a program according to given specifications.

* Software evolution: process of developing software initially, then repeatedly updating it in order to
fulfill some new requirements.

e Refactoring: “Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code yet improves its internal structure. It is a disciplined way
to clean up code that minimizes the chances of introducing bugs. In essence when you refactor you
are improving the design of the code after it has been written” (Fowler, 2000).

¢ Dynamic updating: in general it referes to the ability to change a computer program while in
execution.

* Signature of a method: Set of properties of a method that identifies it. It comprehends the
method’s name and the parameter list (number, types and order).

* In this work we use the term target class to refer to the most recent version of the class. We use

the term former class to refer any class version implementation but the target. At the moment of

the update the terms current target and new target class refer respectively to the target class
before and after the update.

Instance Object State: represent the value of the instance variables stored in memory.

Application state: represent the union of all the application objects states.

In-line initialization: initialization of a class field contextual to its declaration.

Iteration: span of time during the development of the software when the application stakeholders
can decide which new requirements the application needs.

On-line program change and dynamic update of a program are terms used interchangeably
Module or component: an entity that contains resources and classes, usually organized in
packages. It provides and API that dependent modules can use, explicitly establishing dependencies
between modules.

The terms object or class instance are used interchangeably

UML class diagrams are used in order to describe the modifications made to the application design.
For the sake of simplicity in these diagrams some classes can partially or entirely hide information
about their attributes, methods or relationships with other classes.

A few code snippets are provided in order to show in a simplified fashion the program main

algorithms.

Chapter 2 - State of the art

In this chapter we examine the characteristics of software DSU systems by first giving a theoretical
description of what a DSU system is and then we introduce Javeleon as a general purpose dynamic update

approach in this field.

2.1 Characteristics of a DSU system

In order to describe the characteristics of a framework that performs on-line changes to a program we can
start by defining from a theoretical point of view the problem of dynamic updating following the definition
in (Gupta, Jalote, & Barua, 1996). Before defining what is an online change to a program we should describe
what a process is: a program in execution made up by code and state. The code is the application algorithm
that in a dynamic-update free scenario should remain the same throughout the whole life cycle of the
process. State is the complete characterization of the process and it starts from an initial state and evolves
through program execution also thanks to the interaction between the program and the environment.
Given a certain instant of time, state can be seen like a picture of the process that includes program
counter, data structures in memory and also threads state. A state is said to be reachable for an application
if the process, executing the program code, can let the state evolve to that condition at a certain time and

considering particular environment interaction.

Systems for dynamic update of software allow swapping program code while the process is in execution,
changing the behavior of the application at runtime and reducing the period of service unavailability typical
of the shutdown-update-redeploy scheme. Changing the program of a process in execution introduces a
problem of state compatibility. In fact, in order to obtain a valid update, the process state that is present
after the on-line program change should be a reachable and correct state for the new program code,
otherwise a reachable state should be reached by the process in a reasonable finite amount of time. In the
ideal scenario we want the process to behave after the update like if it was executing the new program

code from start (and like executing the old program before the update).

In order to produce state, which is compliant with the new program that the process is going to execute
after the update, we should provide a state mapping function. This function should map the state of the

process, right before the code is swapped, into a new state. This mapping function is usually provided by

the programmer because he is the only one that can define a relation between states of the application

having knowledge of the two versions of the program.
We now give a list of the main goals of a DSU system:

* Transparency and Flexibility
Transparency and Flexibility of a system for dynamic updates are two sides of the same coin.
The transparency of a DSU system towards the programmer can be measured with the level of
awareness that the programmer has of the underlying dynamic update mechanism. We say that
the programmer, in order to perform dynamic updates of a program, has to produce a state
mapping function so we can state that, considering the integration of dynamic updates in software
development, he will be always conditioned by the underlay on-line program change framework.
The way the programmer is conditioned by the DSU system impacts on flexibility. In an ideal DSU
system the programmer can do any modifications to the code but normally real systems, in order
to obtain expected behavior and absence of faulty conditions after the update, support a certain
set of modifications. The programmer could be constrained to write dynamic patches like in (Hicks
& Nettles, 2005) or comply with certain design rules or methodologies during development.
Flexibility and transparency collaborate on making the success of a DSU system as stated by the
rule stated by Segal in (Segal, 2002): the more a DSU system is transparent and flexible for the
developer, the more likely it will be used.

e Efficiency
Considering an ideal scenario, a DSU system should perform dynamic updates with no downtime.
That is clearly not feasible in a realistic scenario because in order perform the program change and
state mapping some overhead will be introduced. By measuring the delay introduced with a
dynamic update solution in several working conditions we can evaluate the qualities of that
solution. As the performance of the DSU system affects the availability of the service, which is
provided by the application that is updated, it also affects the willingness of the people to use that
solution.

* Robustness
The on-line program change framework should strive for correct updates. Incorrect updates should
not cause the application to crash or to behave inconsistently for an indefinite amount of time.
In order to preserve correctness of program execution the DSU system can, for example, provide

tools for detecting program state that are suitable for dynamic update or code verifiers that check

if the developer has made changes compliant to the design rules advocated by the on-line program

change framework.
In addition to these main goals for a DSU system there are also other characteristics:

e Concurrency
Multithreaded programs should be supported without introducing deadlocks or faulty conditions
after the on-line program change is performed.

* Configurability
DSU systems should support different update policies in order to allow greater flexibility on how
the updateability is provided and on the set of coding conventions required. For example a solution
can provide a way to select a correct state mapping function depending on the application
execution state.

* Roll-back
A DSU system could detect faulty conditions after the update and provide some means to
command a roll-back to the previous version of the program. This characteristic fall in the

robustness main goal.

2.2 Javeleon

Javeleon is a DSU system that aims to improve the limitations of already present works for statically-typed,
class-based object-oriented languages. It is a dynamic software update approach that strives for flexibility,
transparency and robustness allowing full redefinition of classes in Java by working on the application level.
In order to provide dynamic updates Javeleon does not introduce any new construct in the Java Language

nor make modifications to the JVM.

As stated in (Gregersen & Jgrgensen, 2009), rich client platforms like NetBeans or Eclipse, even allowing
reload of new components, lack general support for dynamic update of already running components
because Java 6 does not support full dynamic reload of already loaded classes. Java does offer support for
redefinition of classes thanks to the implementation proposed by Dmitriev’s class reloading (Dmitriev,
2001). However the modifications allowed to the code in order to not break the binary compatibility of
classes are limited. As a matter of fact a class redefinition cannot change the class interface or the

inheritance hierarchy, it can change the body of methods.

In order to overcome the version barrier problem (Sato & Chiba, 2005) between different versions of a

module Javeleon makes use of in-place generated code at the application level providing a layer of

10

indirection and enabling a proxy behavior for classes. Whenever a new version of a module is loaded direct
forwarding to the new version cannot happen. The In-place proxification mechanism provided by
Gregersen makes use of Java Reflection APl in order to communicate from the former component to the

target.

With Javeleon the updates occur at the granularity of modules allowing entire modules to be updated at
runtime. Regarding class modifications, changes that violate binary compatibility are allowed: classes can
add fields or methods, methods signatures can be changed as also the hierarchy structure of classes.
Changes to the modules that do not break the modules APl compatibility have no impact beyond the
module itself. Hence, the assumption that Javeleon makes is that in order for the dynamic update to
succeed, whenever a module is modified, it doesn’t have to break the binary compatibility with client
modules. That aspect, seen from a software evolution perspective, seems to follow the common practice
for standard development. If we consider a case were an application is made up by several modules,
whenever a module is modified breaking binary compatibility with client modules also the depending
modules have to be changed conforming them to the modified module’s API, ensuring correctness of the

application.

By allowing a greater set of changes for redefinition of classes and by hiding the underlying update
mechanisms to the developer Javeleon provides programmer transparency and flexibility. Support for
concurrent applications is also provided within a deadlock free environment thanks to a lazy update

scheme. Regarding configurability Javeleon does not offer the possibility to define update policies explicitly.

Javeleon’s actual implementation focus on development and it comes as a plug-in for Netbeans. Engineers
can develop applications on top of Netbeans platform and easily test dynamic updateability on them. The
programmer can modify and test dynamic updates while the application is running enabling fast verification
process for on-line program change validity and facilitating implementation of update compliant code
changes. In the future Javeleon can be extended in order to support dynamic updates of application

developed outside of the Netbeans platform.

For a detailed description of Javeleon characteristics and an insight on mechanisms and implementation

refer to (Gregersen & Jgrgensen, 2009).

11

Chapter 3 - Development methodology

This chapter deals with the software development process.

In the first subchapter we examine the problem of developing applications when we have volatile
requirements. We introduce the staged model as a software lifecycle for addressing the constant change of
software requirements and start to give an insight of what could be the consequences of introducing

dynamic updates in a software project.

In the second subchapter we go deeper on describing the methodologies and tools used during the

development.
3.1 Incremental product release

3.1.1 Staged model
We consider a software lifecycle model that takes into concern the fact that it is impossible to anticipate

every future change to the software. Unveiling all the requirements of a software product in the initial
phase of the project requires a divinatory ability that is not available to the developer nor to the customer;
thus software evolution is forced to cope with requirements volatility (Rajlich V., 2006). In fact, one of the
major critics to the waterfall model for software development is that clients may not be aware of exactly
what requirements they need before reviewing a working prototype and commenting on it; they may
change their requirements constantly. Designers and programmers may have little control over this. If
clients change their requirements after the design is finalized, the design must be modified to
accommodate the new requirements. This effectively means invalidating a good deal of working hours,
which means increased cost, especially if a large amount of the projects resources has already been

invested in design choices.

Considering, for example, what Cusumano and Selby discovered in a study about Microsoft software
development (Cusumano & Selby, 1997), 30% of new requirements on Microsoft project emerged during
the development phase, probably because of an increased developer’s learning. That means that design

choices based on volatile requirements have to be considered as temporary.

The iterative software development paradigm takes into account these remarks by defining the concept of

iteration. We define “lteration” as a span of time during the development of the software when the

application stakeholders can decide which new requirements the application needs. These requirements
are then implemented during that iteration and, when the latter ends, the development process must have
produced a working program (iterative release) so that stakeholders can again make an evaluation of the
product and consider new requirements or features for the next iterative release, proceeding in a cyclical

way.

We decided to follow a software lifecycle paradigm based on iterative releases. According to that pattern
the developer has to implement a working program for each iteration, considering only the requirements
for the currently developed iterative release. These requirements are the result of observations on the
precedent iterative release and can concern the implementation of new features in the application, fixes

for bugs or refactoring on the code.

Our software lifecycle paradigm follows the staged model that comprehends 5 phases as stated in (Rajlich

& Bennet, 2000):

1. Initial development (“Alpha stage”): Engineers develop the software first functioning version
release.

2. Evolution (“Growth stage”): Engineers bring iterative changes to the software while discovering
new requirements, adding new features to the software product.

3. Servicing (“Saturation stage”): When the code begins to decay with design aging or the
management decides that it’s time to stop adding new features the software evolution enters in
this stage where changes to the software are limited to patches for minor software deficiencies.

4. Phase-out (“Decline stage”): No more servicing is provided but users continue to work with it
working around its deficiencies.

5. Closedown: The software is shut down and users are directed to a replacement product, if one

exists.

13

Initial development

lterative release
First working i

version

p Evolution

evolvability

Loss of f thh

Servicing

Servicing
discontinued

p Phaseout

Switchoff

p Closedown

Figure 3.1 — Staged Model for the Software Life Cycle

3.1.2 Staged model with dynamic updates
In our case study we consider the first two phases of this paradigm: Initial development and Evolution.

Working with dynamic updates the /teration phase gets more complicated. During the development of a
new iterative release the developer have to test dynamic updates between former releases and the
currently developed one identifying the issues that come up from the presence of the dynamic updates and

trying to formulate a solution for these issues.

In fact after the development of an iteration release the dynamic update is tested from the previous
iterative release to the latter in order to see if the behavior is as expected. In this test phase strange
application behavior or runtime errors can be discovered; in both cases the cause is identified and a
solution for the issue is formulated. That is traduced in a new requirement for the current iteration and
implemented in the currently developed iterative release. After the effectiveness of the solution has been
proved the dynamic update is tested again for new requirements. The development can then proceed to

the next iterative release when dynamic update tests don’t produce any other requirement.

It is clear that enforcing the application to follow a particular behavior can’t always be possible by
modifying only the code of the latter iterative release. In these cases an update barrier is declared, which is
a point in the software evolution where it is impossible to update from a former version to the latter

without modifying the design of the former application.

14

In case of an update barrier there are two options:

1. Declare that the dynamic update is not attainable starting from the previous iteration release to
the currently developed one.
2. Do a cascade modification, which is a modification that affects all previous iterations code in order

to let the update works from former releases to the latter one preserving latter design choices.

We can clearly state that the second option, while being a reasonable choice in our case for research
purposes, is hardly available in a real software project because the former iterative releases can be already

on the market. In that case the software engineer is compelled to the first option.

Normally a good design should be worked out before the coding phase begins; however during the
development of iterative releases the code will be modified several times, adding new discovered
functionalities by modifying methods, working with class hierarchies and implementing new design
patterns possibly replacing old ones. As defined in (Fowler, 2000): “Refactoring is the process of changing a
software system in such a way that it does not alter the external behavior of the code yet improves its
internal structure”. Without refactoring the changes made in order to apply new features on each iteration
will let the code naturally degrade to a level of complexity such as it becomes impossible to debug or make
further changes easily. This issue can also let the entire project fail or force the development process step
into the servicing phase where no new features can be added. Thus refactorings are needed in order to let

the software project stay in the /teration phase of the staged development model.

With refactorings a bad application design can be reworked into a well-designed code applying several
small modifications that in a cumulative effect radically improve the design making a stand to the code
natural decay tendency. These changes can be classified in a catalog, as Fowler partially did in (Fowler,
2000), that tells when and how to apply in a safe manner a certain refactoring. Moreover a refactoring can
also be seen as a set of fine grain changes to the code. Following the classification of fine-grain code
changes provided by (Gustavsson, 2003) we try to create 1-to-N relationships between refactorings and
fine grain code changes when a generalization is possible. These code changes could affect the validity of a
dynamic update therefore the developer has to pay attention to which refactorings are made during the
iteration. When a certain change to the code introduce issues using the Javeleon framework in a dynamic
update test the refactorings related to that code change could be listed as refactorings that are not update-

friendly with Javeleon.

For instance consider the refactoring “Move method”. That refactoring state that in a condition where a

method is, or will be, using or used by more features of another class than the class on which it is defined

15

then that method should be moved to the class it uses most. The old method can become a delegate or

removed entirely. This refactoring implies these changes:

¢ Instance method removed from class (optional)

¢ Instance method added to class

Class 1 Class 1

Method()

Class 2 Class 2

Method()

Figure 3.2 - Move method refactoring

In order to follow the Incremental Product release Approach we decided to test the update only after a set
of new features and refactorings were applied in the new iterative release, testing dynamic updates only as
the last phase of an iteration. The update test then can shows several issues, the application can cast an
exception and crash or behave unexpectedly for a limited or undefined time span. All of the issues and their
causes are then identified and resolved one by one producing a working and dynamically updateable

release at last.

3.2 Set-up and approach

The application was developed using the Netbeans IDE (ver. 6.7 and 6.8) and SVN (Subversion) as the
revision control system. In order to achieve module updateability the application was developed as a
module built on top of Netbeans platform 6.7.1. The Java language was the compulsory choice for the

programming language as Javeleon works with java bytecode transformations.

3.2.1 IDE and Javeleon
Javeleon exploit the Netbeans reload feature of the Netbeans rich client platform (RCP). A rich client

platform is a software platform that can be used by programmers to build applications using a modular
approach. Instead of writing an application from scratch the developer exploits code reuse benefitting from
proven and tested features of the framework provided by the platform. This approach, which brings faster
application development and system integration, has some examples in RCPs for Java: Eclipse, NetBeans
and Spring Framework. As Gregersen and Jgrgensen state in (Gregersen & Jgrgensen, Module Reload
through Dynamic Update - The Case of NetBeans, 2008) today the increasing number of developers relying

on the benefits provided by RCPs justifies the research on dynamic software update of components. That is

16

the reason why the community of programmers developed class-reloading facilities within Eclipse and
NetBeans in order to support dynamic module behavior for the applications built on those platforms,

overcoming the lack of support for class-reloading in the JVM at the application level.

The NetBeans reload functionality allows on-the-fly component hot-swap providing support for dynamic
module reloads of an arbitrary application written on top of Netbeans RCP. However the approach used by
NetBeans on reloading classes is limited by the version barrier problem. This functionality allows types
shared between reloaded modules to be type compatible but it does not support state migration, leaving
all the work to the developer. The In-Place Proxification technique provided by the Javeleon framework
overcomes this deficiency of the reloading feature in Netbeans by making dynamic update of running

modules possible removing the burden of handling directly state transfer from the application developer.

The application was therefore built as a single module on top of the Netbeans Platform following some of
the guidelines present in (Boudreau, Tulach, & Wielenga, 2007) for developing RCP applications on

NetBeans platform.

3.2.2 Application development and Versioning
During the development of the application several modifications to the code were made as a consequence

of requirements present in the initial update plan or found during the coding phase. Moreover, as we had
to deal with software evolution project, several versions of the applications were developed and the code

of each version was organized using the branching functionality of the revision control system.

In order to see how fine grain code changes impacts on dynamic update validity we had to document
thoroughly all the code changes and differences between code revisions in the subversion repository. We
kept a journal, generated thanks to the information present in the code repository, that shows for each
revision which modification were made and how the development proceeded when working on several

versions of the same program.

In order to have a clearer high-level view of code repository changes from version to version we designed a

simplified schema of the entire application development process.

17

Branches

Branch 1 Branch 2 Branch 3

Iterations

Iteration O Code
(First release) changes

Code
changes

Iteration 1
List of changes to the
application design
Cgde ., | Code
changes o changes
- Cascade modification
Iteration 2

(Code changes on all branches traversed by the arrow)
DU Issues

Application
design DU Issues Co:;a;::rge
changes

Figure 3.3 — Example of a software evolution schema

In the example schema in Figure 3.3 — Example of a software evolution schema code branches and
iterations are distinguished because a branch identifies a place where the code resides, an iteration
represents a span of time. Every iteration brings requirements that should be implemented on the iterative
release, which is the final revision produced within the iteration. We used a blue marker to state that in a
particular iteration we made modifications to the code of a certain branch. Revision numbers or a brief
description of the changes can be included inside these blue markers. The development of the application
moves through these markers passing from iteration to iteration and creating new branches when they are

needed.

During the iteration development refactorings or changes to the code that does change the program design
without adding features to the program can be implemented. Those kinds of changes are grouped into

green rectangles linked to the branch and iteration in which they are applied.

As the last phase of each iteration we test dynamic update with the previous iterative release. When the
dynamic update test reveals an issue that implies an update barrier that subject is named as “Core Issue”
and reported on the diagram list in red rectangles. The presence of a core issue in program design can be
ignored, and its drawbacks accepted, or imply cascade modification of application code of former iterative

releases. Moreover the developer can decide to implement an intermediate version of the application,

18

which can be seen as an intermediate update. Intermediate updates can allow to overcome core issues
with the use of update specific code. As this approach is not considered to be transparent to the developer
we decided to avoid it, focusing our attention on design choices that enable the application behavior to be
flexible. In the example is shown a case where a cascade modification is applied and affects all the previous

branches.

As it should be clear at this point the use of branching in the versioning control system helps the developer
to separate code of different versions of the application. As branches can be modified during different
iterations, using a single branch to develop all the application releases is considered a bad choice in our
case. Consider a scenario where the developer has to do a cascade modification. Following a flat approach
when performing cascade modifications, the developer should revert the code to a certain revision
number, which indicate the final version code of a previous release, modify that code with the changes
needed, commit the changes and iterate the process for all of the previous versions. Using the branching
system the developer can easily jump from a version code to another just by switching the branch.
Moreover he doesn’t need to keep track of the relationship between revision numbers and versions of the

application because that information is embedded in the branches.

Branch 1 Q O O O O
Branch 2 Q O Q
Branch 3 o0 | OO0 0000000

Time Time

Figure 3.4 — Comparison between SVN branched and “flat” approach

19

Chapter 4 - The case study application

In this chapter we first describe the application developed listing the functionalities that it has to
implement on each iterative release. In the second part we state how we do expect the application to
behave standing to our paradigm of valid dynamic update. In the last subchapter we give an insight on the

initial design of the program.

4.1 Overview of the Space Invaders clone game

In order to evaluate the flexibility and transparency of Javeleon we decided to create a simple Space

Invaders game clone.

In this subchapter we describe the test application seen by the application designer’s point of view before
he started to develop the application. At this moment of the development we know that the application

will comprehend several releases where each one will add a, at least, a new functionality.

At this level our description defines the features that will be added on each iterative release without
considering changes to the software code that will be introduced because of dynamic updates or particular
developer choices about the application design. We should consider that normally new features are
discovered after an iterative release is deployed. In our case we planned first all the release features, trying
to balance the programming effort between versions. Moreover, we should also consider that some
requirements are dependent on the coding phase. For instance, during the development of an iterative

release, the developer can realize that the application design is decaying therefore refactorings are needed.

Screenshots of the developed implementation will be shown for each version in order to give a clearer

description of the functionalities.

4.2 Description of each iteration

The first step of the application development consisted of a brainstorming phase aimed at finding features
that could be included in a hypothetical Space Invaders game project. We considered different features,
chosen some of them and then arranged the result in groups. After this step we created a schedule that

described for each iteration the linked group of features to be implemented.

4.2.1 First release
The first release of the game has to be simple and a good starting point for future releases. This release has

to include only few functionalities of the original game. The basic idea behind this choice is to implement all
the functionalities of the original game and new features in future releases in order to find the issues

related to the iterative software evolution during dynamic test updates.

According to the iteration plan the first release of the game should present a welcome screen after loading.
When the user presses a button during the welcome screen the game should start and the user should be
able to control the spaceship with the keyboard. The only actions permitted to the user during this game
phase are about the control of the spaceship (horizontal movement and shoot). The user should also be
able to put the game on pause by pressing a key on the keyboard. Aliens are non-moving entities arranged
as a matrix on the top of the game screen. The aliens pose no threat to the player’s spaceship as they will
not make fire or move. Every alien should disappear from game after being hit one time. The objective of
the game in this first version is to kill all the aliens by shooting at them. When the user completes a game a

proper screen is shown and then the game can restart.

Graphics elements in this first release should be really simple and no raster images should be used to
represent game entities like shots, aliens and the spaceship. No sound effects or music has to be present in

this release.

21

Figure 4.1 - First release’s screenshots

4.2.2 Second release
The second release has to introduce few modifications to the gameplay. The new features are described in

the list below:

* The aliens should be able to move.
The alien group can move horizontally with a limited speed. The horizontal speed should be
determined by the number of aliens that are still alive: the more aliens are present in game the
slower they move on the screen. When the group of aliens reach the side borders of the screen the
aliens should perform a step down. When the alien group touches the bottom border of the screen
or an alien hit the spaceship the user has lost the game and a proper screen is shown to the player.
* The aliens should be able to make fire.
Aliens should be able to make fire at a random but limited pace. Only the aliens in the first line
should be able to make fire. If the player spaceship is hit once during the game the user has lost the

game and a proper screen should be shown to the player.

22

* Invulnerable barriers should appear at the bottom of the screen.
These barriers should be invulnerable to aliens’ shots and spaceship’s shots. Every shot that hits a

barrier should disappear from the game.

Figure 4.2 — Second release’s screenshot

4.2.3 Third release
In the third release the barriers have to lose the invulnerable property and become vulnerable to shots

either fired from the spaceship or the aliens. A max number of sustainable hits should be defined for every
barrier. When that number of hits is reached for a barrier that barrier should disappear from game. A

transparency effect can be used to represent the state of a barrier that was hit.

Figure 4.3 — Third release’s screenshot

23

4.2.4 Fourth release
In this release a score system has to be added to the game. The score should be evaluated following these

rules:

e During the game the score is proportional to the number of aliens killed, bonus time points are not
considered in this phase.

e At the end of the game if the user completed the game successfully the bonus time is evaluated by
subtracting the elapsed time from the fixed stage time and the result of the subtraction is
multiplied by a bonus time multiplier. If the user didn’t complete the level the bonus time is not
taken into consideration and the total points are equal to the number of points taken for killing the

aliens.

In this release points should be shown only after the game ends. After a game the user should also be
prompted for entering the name initials in order to put the score in the high score table. The high score
table must be saved on permanent storage and persist through different executions of the application.
After the user has entered the name initials the high score table is shown, the application wait for the user

to press a key in order to start a new game.

Insertyour

Figure 4.4 — Fourth release’s screenshot

24

4.2.5 Fifth release
A minor requirement should be introduced in this release: the points scored during the game must be

shown while the user is playing. The amount of points evaluated while game is in progress must not take

into consideration the time bonus, which is to be evaluated at the end of the game.

Points:

Figure 4.5 - Fifth release’s screenshot

4.2.6 Sixth release
In this release the user experience should be improved with the use of raster images instead of simple

colored shapes to represent entities of the game like shots, aliens, barriers and the ship. Moreover the

spaceship and the aliens should generate an explosion animation when hit.

Points:

Figure 4.6 — Sixth release’s screenshot

25

4.2.7 Seventh release
In this release new gameplay elements should be introduced. New classes of enemies should appear in

game:

e Tough aliens: an alien that has to be hit two times before disappear. These aliens should be
arranged on the back lines of the matrix with the standard aliens on the front lines. These aliens
should be distinguishable from the others simple aliens by the color. A transparency effect can be
used to represent the status (number of time the alien has been hit).

e Mothership: a special unique alien that has to be hit multiple times before die. The mothership
should be unique and placed behind the matrix of the aliens. The mothership should also be able to
shot lasers instead of simple shots. The laser fired by the mothership should be able to destroy

barriers outright. A transparency effect can be used to represent the status of the mothership.

As the new game elements are introduced the enemies should be arranged in a different way. Aliens that

are contained in the matrix should free some space in order to let the Mothership make fire.
The player has still to destroy all the aliens on the screen to complete the game.
A background image should be added in this release.

The standard aliens and the tough aliens have to show a simple animation.

Points:

Figure 4.7 — Seventh release’s screenshot

26

4.3 Expected behavior

In this section, we define what is the desirable behavior of the application when dynamically update from
an iterative release to another. The statements made in this chapter refers only to the functionalities added
on each release and do not take into consideration the implementation of the game (design choices, data
structures, algorithms, etc.). We follow the formal framework developed by Gupta et al. in order to make

our considerations (Gupta, Jalote, & Barua, 1996).

The basic goal of dynamic updating is to change the behavior of an application to some other acceptable
behavior during its execution. Normally a program in execution, that is a process, is composed of a program
1t and state, which start from an initial condition s;;0 end evolve with every statement of the procedural
language. State can be seen as the complete characterization of the process at a certain point in process
lifetime. State evolves also thanks to the interaction between the process and the environment, which can

include the user.

The behavior that we can obtain when dynamically updating a process’ program m to " will not be, in
general, the same behavior we can obtain from executing the updated program n’ from the beginning. The
best that we can expect is that the application behaves like a process executing the new program after the
update. If we want the application to behave consistently after the update, regardless of the past evolution
of the process state, we should guarantee a reachable state for the updated program mn’ after the dynamic
update. A state is said to be reachable for an application if the process executing the program code can let
the state evolve from the initial state to that condition at a certain time and considering particular

environment/user interaction.

However, expecting the application to switch its behavior instantly may be unrealistic in some situations
because of the state present at the moment of the dynamic update. If the state is not correctly mapped
into new state for the new program code the application can show an undesired behavior for a certain
period of time. In (Gupta, Jalote, & Barua, 1996) a dynamic update is still considered to be a valid “if after a
certain transition period after the change, the process starts behaving as if it had been executing the newer

version of the program since the beginning of its initial state”.

Therefore, at best we want the process state present after the update to be reachable state for the new
updated program. If we strive for state consistency with new program code after any update, we should be

able to avoid undesired application behavior or process crash.

27

Expecting the application to behave like it was started with the new program from the beginning of the
process execution seems impossible because it would require a transformation of the past evolution of the
application state (also considering environment and user interaction) into state that is valid for the new
program at the instant where the on-line program change take place. Therefore we should consider that

option only valid on a theoretical basis.

Expecting the application to behave like the process was started with the initial state of the updated
program and try to obtain any reachable state for the updated program after the update are two very

different things.

The table below summarizes the definitions that can be used when considering the validity of a dynamic

update.
After the dynamic update the state of the process is a reachable state
for the updated program 1’. The application starts to behave 1
accordingly to the new program right after the online program
Valid
change.
Dynamic
After the dynamic update the process reaches a reachable state for
Update
the update program 1’ after a reasonable amount of time. The 2
application starts to behave accordingly to the new program after a
transition period.
Invalid
After the dynamic update the process doesn’t reach a reachable state
Dynamic 3
for the update program rt’ or crash.
update

Table 4.1 - Definitions of valid and invalid dynamic updates

Following this table we can choose for each version step what the desired behavior is, accordingly to one
definition of valid on-line program change. Pretending the process to behave like it was started from the
beginning with the new program implies having knowledge of the entire past evolution of process state at
the moment of the update. Moreover, it is not possible to decide how the user could have interacted with
the process if it was executing new updated program since the beginning. In our work, instead of defining a
correct behavior accordingly to one definition we will just define a desired behavior that is at least valid for

the third definition.

It is possible that a certain desirable behavior cannot be obtained using a particular design choice. We will

see in chapter 5 how an implementation choice brings the program to show undesired behavior.

28

4.3.1 Updating from release 1 to release 2
In release 2 the aliens gain the ability to move and shot. Invulnerable barriers also appear in game. We now

consider the desired behavior when updating the application starting from each one of the screens present

in the former version.
If the update occurs while the user is playing:

e The aliens that are still alive should begin to move from their current position toward the standard
initial horizontal direction. The speed of the aliens should be evaluated on the number of aliens
killed from the start of the game (the number or aliens doesn’t change from the previous version).

e The aliens group should start to make fire instantly.

e The barriers should appear instantly.

If the update occurs during the execution of the pause screen the modification to the gameplay has to be
noticed by the user instantly. The user should see during the pause screen the barriers appear. It is

impossible to let the user notice the other two new features.

If the update occurs during a waiting screen that is the screen between the end of a game and the
beginning of a new one we expect the modifications to be noticed instantly. The user should only see the

barriers appear. The other features cannot be noticed during the waiting screen.

4.3.2 Updating from release 2 to release 3
In the latter release the barriers lose the invulnerable property.

If the update occurs during any screen the barriers should start with the maximum health.

As the appearance of barriers change only when those are hit it is impossible for the user to notice the
difference if a game is not running. So the user will not be aware of the update during the pause or waiting

screen.

4.3.3 Updating from release 3 to release 4
In the fourth release the scoring system is introduced. The game evaluates points scored at the end of the

game and shows new screens that weren’t present in previous releases.
When updating during a game and after the game ended:

e If the player has won the game the bonus points that come as a time bonus should be evaluated
correctly and added to the points taken from killing aliens from the start of the game. The score of

the actual game must be saved on the high score table after the user is prompted for initials.

29

e If the player loses the game only the points taken for destroying aliens from the start of the game
should be taken in consideration. The prompt for name initials and the high score table screen

should be shown for the current game.

If updating during a waiting screen or a pause screen the user can’t notice the new version changes unless

he finishes the current game after a pause period or starts a new game after a waiting screen.

4.3.4 Updating from release 4 to release 5
In the fifth release a minor modification is introduced: the user should be able to see the points scored

during the game.

If the update occurs during the game the user should be able to see the point box with the correct amount

of points appear on the screen starting from the current game.
If updating during the pause screen the user should notice the appearance of the game points on screen.

If the update occurs during a wait screen the user should not notice the points’ box appear on screen as in

the latter version the application start to draw the points’ box once a game is started.

4.3.5 Updating from release 5 to release 6
In the sixth release better graphics and explosion animations are added to the game.

If the update occurs during the game:

e The representation of the game elements should change instantly. The user should see the new
representation of the aliens, shots, ship and barriers in game change according to the new version.
e After the update if an alien or the player spaceship dies it should generate an animation explosion

starting from the current game.

If the update occurs during pause screen, the wait screen or the score screen the user should notice the

change of the representation of the game elements during the pause screen.

4.3.6 Updating from release 6 to release 7
In the latter release new enemy classes, a new kind of shot, a background image, a change on the

disposition of the aliens and aliens’ animations are introduced.
If updating during a game:

e Afew back lines of the alien matrix should become tough aliens effectively changing their class.

30

e The mothership should appear on top of the matrix and the column of aliens directly beneath it
should disappear to left space for the mothership laser. Mothership should be able to make fire
starting from the current game following the normal pace of fire.

e The background should change from black to the background image instantly

e The aliens animations should start from the current game

If the update occurs during wait screen, pause screen the user should notice the appearance of the

mothership and the changes relative to the aliens’ matrix and the background image.

If the update occurs during score screen the user should not see the aliens change their class or disposition

or see the mothership appear. The user should only see the background image appear.

4.4 Initial design
In this subchapter we expose briefly the initial design of the game by describing classes, data structures and

algorithms used in order to implement the Space Invaders game clone.

In order to describe each iteration changes to the code and the issues encountered during the dynamic
update test phase we start by briefly describing the structure of the game starting from the first release. No
particular design or pattern was followed during the creation of this first version of the game. The only

requirements taken into consideration in this phase were the features of the first of the game.

In the first working version of the game the user should be able to control the spaceship movement using
the keyboard in order to shoot to the aliens that are fixed on the screen. The user cannot lose the game as
the aliens aren’t able to make fire or move. After the player has killed all of the aliens the game can start
again after a brief victory screen. Game graphics is realized using simple shapes and no sound effects are

present.

The first version comprehends several java class files collected in a few packages.

Packages and the most important files contained in them are shown in the following list:

e org.lufor.Invaders

0 InvadersTopComponent class
Class that extends the TopComponent class that is the embeddable visual component to
be displayed in NetBeans. TopComponent is the basic unit of display and windows should
not be created directly when developing applications on top of the Netbeans platform, but

rather extend this class. At program launch an instance of InvadersTopComponent s

31

created and, within its constructor, a Gameclass instance (extends JComponent class) is
attached to it.

0 Gameclass
The central hook of the game, responsible for the game logic, the control of the user input
and the representation (graphics and sounds).

e org.lufor.Invaders.Entities

Include several classes that represents entities of the game like the ship, shots and alien.

e org.lufor.Invaders.Collections

Include some classes that manage collections of entities, like the matrix of aliens and the shots
fired by the ship. These classes include methods with logic that involve all the objects in the

collection.

As the application in the first version is really simple no Model-View-Controller pattern was used in order to
separate domain logic from representation. We now explain how the Gameclass handles those three main

domains of a game application.

4.4.1 Game logic
The game logic consists of several classes related to game entities and the gameloop method of the Game

class.

Every game during the execution should repeat some simple actions in an infinite loop. In the code below is

shown a typical game loop (the actions can also be arranged in a different order).

While(gameRunning){
moveEntities();
evaluateCollisions();
updateLogic();
draw();
handleUserlnput();
sleep(TIME_INTERVAL)

Code Snippet 4.1 - Game loop

The ganmeLoop method of class Gameimplements this general behavior. Every cycle it does these steps:

e Move the entities in game according to their speed
e Evaluate the collision between pair of entities. If a collision is detected and an action is needed,
that action is performed by calling some methods.

e Update the logic of the game (like removing from data structures the dead entities)

32

e Draw the game elements on screen

e Check if the user has pressed a key during this cycle and set data structures accordingly (like setting
the speed of the spaceship or add a new Shot object to the list of shots in game when the user
pressed a key)

e Wait for a certain fixed interval

All of these actions are done every cycle if the user is actually playing the game. If the game is on a waiting

screen the loop should only draw elements on the screen waiting for the user to press a key.

When the user presses the pause key the game loop is terminated by changing the value of the Boolean
that controls the while cycle and a new thread, responsible of handling the pause screen, is launched.
When the user presses again the pause key the pause thread is terminated and a new thread that executes

the game loop is launched, effectively restarting the game logic execution.

The game loop also evaluates every cycle the time that has passed from the execution of the last loop in

order to move the objects accordingly to their speed.

Game entities and collections

The Game class works with entities. Entities are game elements that are drawable and can participate in
collisions. Entities also have a position and a dimension on the screen. The Entity abstract class
represents the general entity of the game; it has numeric fields for the position and the dimension, getter
methods for position and size, one method used for collision detection between entities and an abstract
method that concrete subclasses have to provide in order to draw the entity on a graphic context given as a

parameter.

Entity concrete classes are defined for the objects in game, like Ship , Alien and Shot . All these classes

are collected under the same package (org.lufor.Invaders.Entities).

Shot and Ship entities must also be able to move in the game. For that purpose a MovingEntity
abstract class (extends Entity class) has been created. This class represents an entity that can move on
screen and thus have a vertical and horizontal speed, represented by Double fields dx and dy. Ship and

Shot classes extend this class and implement a nrove method.

The relationship between entities is represented in the Figure 4.8 — UML class diagram of game entities
(First release) where some details of methods and attributes of Shot , Ship and Alien classes are hidden

for simplicity.

33

Entity
- - ® double
MovingEntity v double
dx ; double itk - int
dy : double height : int
MovingEntity(in = - int, iny o int, inowidth © int, in height © int) Entityiin = : int, iny ; int, in swicth : int, in height ; int)
zetHorizontalMovement(in dx ; double]) ; void drawiinout g ; Graphics) : void
zetverticaldovement(in dy ; double) : waid get¥(): int
getHorizontalMovement() : doukle ety int
getverticalMovement() : double getidth() ; int
getHeight() : int
callidesyvith(inout other | Entity) : hoalean
Shot Ship
Alien
Shat(inout game | Game) Shiplinout game : Game)
mowe(in defta : long) : int mowe(in defta : long) : woid Alien(in x :int, iny 2 int)
drawe(inout g : Graphics) . void drawe(inout g : Graphics) . void drawe(inout g : Graphics) . void

Figure 4.8 — UML class diagram of game entities (First release)

The draw method of Entity class is abstract, the implementation of that method is provided in Shot,

Ship and Alien classes.

A collection of entities is a class that gathers entity instances of the same type (like a group of shots) and
provides methods that works on all of the entities controlled. Collections maintain alive or dead entities
separated using parameterized java.util.ArrayList instances. Some of the methods, like the dr aw or nove
methods have the same name of methods of the entities that the collections contain. The logic of these
methods is just to call the function with the same name and parameters list on all of the instances

controlled.

Collisions in this version are handled inside of collections method col | i deWt h. In this version the
possible collisions are between shots fired by the ship and aliens therefore only Ships class implements

that method.

34

Aliens Shots
Aliens() S;j;fit
clra) a]
getCourter) zmve()
wetCollection) VﬂWEJ

collicdelMithi)
remaver)
removeDead() removel]
remavebead()
eritiss entities

removelist [ArprayList || removelist

Figure 4.9 —UML class diagram of collections (First release)

With the use of collections and entities the behavior of the game elements is hidden from the game class.
The logic of the group of elements is encapsulated in collection classes’ methods and entity instances are

manipulated only thanks to their classes’ methods.

Brief explanation of how the gameloop works

When the application is started the InvadersTopComponent object creates a new Gameinstance (whose
constructor initializes all the entities needed) and after the InvadersTopComponent is shown a new
thread that runs the game loop is started. The application at this point is executing repeatedly the game

loop.

. InvadersTopComponent game : Game
| <<create>> |
i game Ii
~ gameloop() |

Figure 4.10 - Sequence diagram on the start of the game loop

35

During the game loop a Boolean variable waitingForKeypress, which tells if the application is on a wait
screen, is checked and the right set of instructions is executed accordingly. On the first execution this
variable is set to true so the game loop only draws a welcome screen waiting for the user to press a key and

start the game.

The Gameinstance holds references to single entities (like a Ship object) or collections of entities (like

Aliens and Shots) as class attributes and works by calling methods on these instances in the game loop.

Public class Game extends JComponent {
Private Aliens aliens;
Private Shots shots;
Private Ship ship;
[class attributes, methods and inner classes]

Code Snippet 4.2 - Game class fields

For instance when the game loop move entities it calls the nove method on the Ship instance and on
Shots instance. The nove method of the collections is also responsible for scheduling the removal of

entities that were moved out of the game screen, like shots.

After moving the elements on screen it checks for collisions; the col | i deWt h method of the Shots

instance is called passing the collection of aliens as a parameter. That method checks for collision between
every shot and every alien in the collections. If a collision is detected between an alien and a shot both of
them are scheduled for removal by calling the renove method on Aliens and Shots instances;
additionally the game instance is notified of the death of an alien with the purpose of checking if the game
is ended. Class Shots has to hold a reference to the Game instance in order to call its methods like

noti fyAl i enKi | | ed that checks if all the aliens are all gone and the game is ended.

36

game : Game shots : Shots aliens : Aliens

collideWith(aliens)

remove(alien)

> remove(shot)
notifyAlienKilled

A

O

Figure 4.11 - Sequence diagram related to the collision between shots and aliens (v1.0)

After the collision evaluation phase the game logic is updated. In this stage the gameloop remove from
memory dead entities inside of collections’ arraylists by calling the r enbveDead method of each collection

instance referenced by the Gameinstance.

After removing dead entities the gameloop method calls the dr aw method on Ship , Aliens and Shots

instances. The drawing technique implemented is shown in the representation subsection.

The game loop then check the user input watching at some boolean variables that indicate if the user has
pressed particular keys. The speed of the spaceship is set accordingly to the user input so that in the next
cycle it will be able to move. If the user has pressed the fire key a shot is generated from the Ship instance
by calling its f i r e method, which returns a Shot object that is added to the collection of shots referenced

by the Gameclass.
After handling the user input the cycle is paused for a fixed amount of milliseconds.

4.4.2 User input control
The user input control is handled by the Gameclass that registers on the application TopComponent a

KeyAdapter subclass implemented as an inner class of Game named KeylnputHandler . That class
provides an implementation for the methods of KeyAdapter (KeyPressed , KeyReleased , KeyTyped).
For example when the user press the left, right or space key on the keyboard these methods are called and

variables of the Gameinstance are set to a certain value as a result to the key pressed.

37

The game loop will consequently watch at these variables every cycle and call methods on the entities

accordingly.

public class Game extends JComponent {

[...]

public Game(JComponent container) {

(-]

/IThe keylistener is added to the top component

container.addKeyListener(new KeylnputHandle rQ);
}
/[This class methods modifies boolean variables of Game class
/lthat tells to the game loop which keys the us er pressed
protected class KeylnputHandler extends KeyAdap ter {
public void keyPressed(KeyEvent e) {
[code that handle keyPressed event type]
}
public void keyReleased(KeyEvent e) {
[code that handle keyReleased event typ €]
}

public void keyTyped(KeyEvent e) {
[code that handle keyTyped event type]

}

Code Snippet 4.3 - User input handling

4.4.3 Representation
When the application is started an InvadersTopComponent instance is created an, within its constructor,

a Gameinstance is produced and attached to the container as a Component . In this initialization phase the
KeyAdapter is also registered within the InvadersTopComponent instance. When the
InvadersTopComponent instance is shown, a new thread that executes the game loop method is

launched effectively starting to draw the game elements with the game cycle.

Every entity is responsible to draw itself on a graphic context by providing a method dr aw. The logic that
handles the drawing of the elements in the gameloop uses the double buffering technique in order to
eliminate flickering effects. That practice considers the use of a buffer that is simply an off-screen image in
memory. When double buffering is implemented, instead of drawing directly on the screen, the drawing
process is first done into a back buffer and then, when all the elements are drawn, the buffer content is

copied to the screen.

Following this guideline the gameloop, when it comes to draw elements, first creates a graphic context
from the buffer with the same dimension of the screen context, then ask all of the entities in game to draw

themselves on that context and, as a last step, it copies the buffer image on the screen.

38

This algorithm is used every cycle in the game loop, which, in the first version, affects the wait screen and
the game screen. Thus every time the application is showing the wait screen the game loop is executed by

the application thread and every entity is drawing itself on the buffer image.

This algorithm is not used when it comes to draw the pause screen. Instead of ask every entity to draw
itself on screen, as all the entities are known to be still in game, we decided an implementation where less
drawing is made. Every cycle of the pause loop the algorithm takes the last drawn buffer image, where all
the entities are drawn in their last position, and draw the pause message on top of it, finally flipping the

resulting image on the screen. By working that way we save a lot of useless processing.
Though we will see how this approach influences the user’s dynamic update awareness.

The representation used for the game elements are simple color-filled shapes implemented using the java

AWT library.

39

Chapter 5 - The update experiment

In this chapter we look at the iterations development. Each section will describe an iteration explaining:

e The changes made in order to implement new requirements listed in the update plan
e Refactorings and changes to the code driven by decisions made during coding phase
¢ The dynamic update test with the previous iteration release

0 The issues encountered

0 Unexpected behavior of the application

0 Solutions given

In Figure 5.1 is represented the iteration development schema for the case study application. The first
release and all the implemented releases are shown in that schema. The diagram offers a simplified view of
how the incremental changes where implemented and how the dynamic updates influenced the developing

process enforcing, only in few cases, cascade modifications with the introduction of update barriers.

In order to describe the evolution steps of the application, several time pointers have been chosen. The
revision numbers are used as time indicators that describe the state of all the branches present in that

moment in the repository.

For example, starting from the first release, we state that the first working program code is the one that
refers to revision number 131. The successive picture of the application development is taken at revision
135, where a new iterative release (and branch) is created (v2.0). The update was tested between branches
v1.0 and v2.0 at revision 135 and that brought to a cascade modification which involved several changes to

the branches v1.0 and v2.0 and ended at revision 166.

Some of the most important changes to the design of the application and the issues that came out from the

dynamic update tests are listed. These elements will be described in detail in next subchapters.

40

Branches

v1.0 v20 v2A1 v3.0 v 3.1 v4.0 v5.0
Iteration
0 ﬁmms 131: w
First working version of the game
(First release) Legend:
Y Application Dynamic Update Code change
Rev. 135-166: design changes issues marker
- —————— - - Aliens move and shoot

- TimerTask instead of loops (136/
139)

- Game is a Singleton (136/139)

- Refactored Entity hierarchy using
abstract skeleton with Template
methods (157/163)

- Invulnerable barriers

- Game state with enum

Rev. 167-171:

Barriers are

vulnerable

- Gamestate using custom class
and every loop has its method
(175/176/196*/197*)

Y
Rev. 172-179:
HighScore system |

- Game state

with enum

during game

Rev. 180-182: /
Score is shown

- Collision Evaluation Engine

- Score framework L

- Domain Logic separated from Representation
- Refactoring to entities and collections
- Extract GameState from Game

Rev. 183-217
- Sprites

- Explosions
- Antialiasing

- Domain Logic separated
from Representation

Rev. 218-260:
- Added new enemy classes

- Aliens animation
- Background image
- Modified aliens layout

Figure 5.1 — Iterations development schema

41

5.1 Version 2.0

The requirements of this version are:

e Aliens move on the screen when a new game is started
e Using random intervals an alien from the first line of the enemies group is selected to make fire

¢ Invulnerable barriers appear on screen
We also implemented some refactorings.

5.1.1 Significant code changes

Refactoring - Extract Superclass
Aliens and Shots classes are similar and share similar features. A super class EntityCollection with

common features of the two classes was created in this version.

First release Version 2.0
Aliens EntityCollection
Shots Shots Aliens

Figure 5.2 - Extract superclass EntityCollection
As it’s shown in the UML class diagram of Figure 5.2 the references to array lists that in the former version
were present as fields in the Aliens and Shots classes are moved in the EntityCollection class.

Common methods were also moved to the super class.

While in the first version collections worked with object of the concrete type in this new version the

collections work with objects of type Entity.

42

EntityCollection

remoyvelist

getCollection) : ArrayList

removelead) ;| woid

drawe(inout g : Graphics20) © vaid

addiinout ent : Entity) © void
remowvelinout ent : Ertity) vaid

ArrayList

ertities

Shots

Aliens

Shots(inout game : Game)
mowelin detta : long) : woid
collidewithiinout aliens : Aliens) : woid

courter ©int
lastCheck : lang
interval : lang

collidewithiinout batriers . Barriers) : void
collidewithiinout =hip : Ship) : woid
addiinout shot @ Shat) © void

Alienz(in rowes ¢ int, in calumns © int, inout game © Game)
movelin defta ; long) : waoid

getCourter() © int

remaovelinout alien : Alien) : vaid

callidetith(inout barr : Barriers) : waoid

callidetithiinout shig @ Ship) © vaid

speedUpnl) © void

fire() : Shot

getFirstlinesliend) . Alien

Figure 5.3 - Collections of entities (v. 2.0 rev. 135)

The fine grain changes made to the code for this refactoring are listed below:

Finer grain changes to the code

Where

Class added

Added class EntityCollection with common
methods and implementation of data structures

(arraylists)

Super class of class changed Aliens and Shots extends EntityCollection

Instance method removed from class Removed common methods from Aliens and
Shots classes

Instance field removed from class Removed common fields from Aliens and Shots

classes

Table 5.1 - Fine grain modifications concerning extract superclass refactoring (v1.0->v2.0)

43

Aliens movement
In order to let the aliens move a change to the type hierarchy was needed. As in the former release the

Alien class was extending the Entity class in the new version it extends the MovingEntity class.

Entity
MovingErtity
dx : double
dy couble

howrsErARyn 1 i, a0y it Bnowidth ; int, in beight et inoce double in dy © doubls)
setHorizontalhovement(in dx © double) : void
setverticalblovementin dy - double) | void
Entity getHorizontaldovement() © double
getVerticaltdovement() - double

movelin defta © long) © int

|

Alien

Aliend) o it

draw) column ; int

Alendin x - int, iny - int, inorosy - int, in column ;int)
drarer(inout g - Graphics) © void

Version 1.0 rev. 131 movelin detta : long) ; int

fire() : Shot

shepbovwn() @ int

speedlind) | void

firstinA Columndinout ist © ArrayList) : boolesn
getRow() - int

getColumni) ;| it

setRowe(in rowy | int) © void

setColumndin column © int) ; void

Version 2.0 rev. 135

Figure 5.4 — Aliens movement’s changes on Alien class

A nove abstract method is also added to the MovingEntity ~ class forcing all non abstract subclasses to

provide an implementation for that method.

Several methods were added to Alien class in order to perform a movement:

e nove method: move the entity horizontally, performing a step down when the block of aliens
touched the side borders of the screen. It also checks if the block of aliens moved to the bottom of

the screen triggering the end of the game.

44

e speedUp method: increase the horizontal speed of the alien. Is called whenever an alien dies on

every instance of Alien gradually increasing the difficulty of the game.

* st epDown method: move the entity down toward the spaceship performing a step.

The Gameclass handles the movement of the aliens by calling the move method on the collection instance

in the game loop.

Aliens

courter
drawl)
gelCounten()
getColaction()
remoye()
removalead)

Version 1.0 rev. 131

EntityCollection

drae)
getCollection)
add()
removel)
removeDesd()

|

Aliens

counter : int

lastCheck © long

interval © long

movelin defta : long) void
collideyith{inout barr : Batriers) | void
collideywithiinout ship : Ship) : void
speedlpC) ;. void

fire() : Shol

getFirstLinedlien() © Alen

Version 2.0 rev. 135

Figure 5.5 - Aliens movement’s changes on Aliens class

The changes listed up to now can be seen at a fine grain level as:

Finer grain changes to the code

Where

Super class of class changed

Alien class extends MovingEntity instead of Entity

Instance method added to class

Several methods added to class Alien and Aliens. Also

added nove abstract method in MovingEntity

Instance method implementation changed

in class

Modified the method class Gamethat handles the movement
of the entities so that now it also moves the aliens calling

method nove on the Aliens instance field.

Table 5.2 - Fine grain modifications concerning aliens' movement (v1.0->v2.0)

45

Aliens ability to fire

In order to let the aliens make fire a method f i r e is added to the Alien and to the Aliens collection
classes. This method produces a Shot entity with the correct starting position evaluated watching at the
position of the Alien instance on which this method was called. The f i r e method of the Aliens class is a
bit more complicated because it has to check first if a correct amount of time has passed since the last shot
and then select an alien from the front line of the aliens group in order to return a Shot entity fired from
that alien. If not enough time has passed it returns a null value. In order to implement the logic that keep
initialized to

tracks of time some variables were introduced in Aliens and interval

0).

class (lastCheck

The get Fi r st Li neAl i en private method returns an Alien instance chosen randomly from the front line.
This method calls the function i sFi r st Li neAl i en of every alien object in the collection passing the alien
collection as a parameter. In order to see if an alien is on the first line of the group the information of the
row and the column of the alien was added to the Alien class as two integer fields. These fields are set

when the Alien constructor is called and where not present in the previous version.

The game loop calls the method fire on the aliens’ collection every cycle and adds the shot produced,
only if returned, to a new collection of shots, introduced in this version as a Shots field of class game, that

collects shots fired by the aliens.

Finer grain changes to the code

Where

Instance method added to class

Added methods fire, firstlnAColum and getter/setter

methods for row and column fields to class Alien

Instance method added to class

Added methods fi re and get Fi r st Li neAl i en to class Aliens

Instance field added to class

Added a new Shots collection field in class Gameto contain shots

fired by the aliens.

Instance field added to class

Added integer fields that hold information about the position of

the aliens on the matrix in Alien class.

Instance field added to class

Added fields lastCheck and interval in class Aliens

Instance method implementation

changed in class

Modified the constructor of Gameso now it initializes the new

introduced field for aliens’ shots.

Instance method implementation

changed in class

Modified the game loop method of class Gameso that now it let

the aliens make fire.

Table 5.3 - Fine grain modifications concerning aliens' ability to make fire (v1.0->v2.0)

46

Barriers
In order to introduce the barriers a new entity class Barrier ~ was created. This class extends the Entity

class as the relative game element is not moving.

EntityCollection

Ertity Collection()

Barrier dra()

Fntity - getCollection)
| Barrier() add() Barriers()

draw() removel)

removelead()

toStringl)

Barriers

Figure 5.6 — Introduction of barriers
A class representing a collection of barriers was also added in order to handle the operations related to that

group of entities. A new field of type Barriers was added to class Game The game loop method was

modified in order to draw barriers.

Finer grain changes to the code Where

Class added Added class Barrier and Barriers

Instance field added to class Added a new Barriers collection field in class
Game

Instance method implementation changed in class Changed the method implementation of class Game
that initialize entities adding the instantiation of a
new Barriers object.

Table 5.4 - Fine grain changes concerning the introduction of barriers

Collision detection and handling

As the gameplay changed and new elements were added kind the collision detection phase of the
gameloop was also subject to modifications. Starting from this version, the aliens can collide with the
spaceship or the barriers and the same thing happen to the shots; that happens because now an instance
of the Shot class can represent both a shot fired by the spaceship or an alien. The logic that detects the
collision and takes action after a collision is discovered is placed in collection classes methods named
col I i deWt h. Aliens and Shots classes define a new method for each elements with which they can
collide (see Figure 5.3). Moreover this method needs a reference to the Gameinstance in order to call
methods like not i f yDeat h that tells the game that it has to end consequently to a collision between the

spaceship and an alien. As the Aliens class instances didn’t have a reference to the Gameobject in the

47

former version an attribute that refer to that instance was added. When Gameclass creates a new instance

of Aliens the reference to the Gameobject is passed in the constructor parameters list.

Finer grain changes to the code Where
Instance field added to class Added Gamereference field to Aliens
Instance method added to class Added col | i deW t h methods to Aliens class for

collisions with Ship and Barriers

Instance method added to class Added col | i deWth method to Shots class for

collisions with Ship and Barriers

Table 5.5 - Fine grain changes on Aliens and Shots classes concerning collision detection and handling (v1.0->v2.0)

5.1.2 Update test issues and solutions
The dynamic update test made at rev. 135 between version 1.0 and version 2.0 revealed several issues

because of major modifications to the application design. The issues encountered where:

¢ Infinite loop problem

* Uninitialized fields

e Extract class refactoring

e Super class of class changed and Push Down Field refactoring

e Miscalculation of aliens speed

Infinite loop issue

The first issue found during the dynamic update test is well known and also cited in (Gregersen &
Jgrgensen, Dynamic update of Java applications - balancing change flexibility vs programming transparency,
2009). This problem concerns the update of a component that has a running thread executing a method of
an updateable class. In case the update occurs while a thread is executing a method, we consider that
method to be active. The thread that is executing an active method will continue to execute the
instructions of the old method till that method becomes inactive. This can result in an inconsistency in case
of an infinite loop or a long lived loop because the application will run old code for a long interval. The old
code can also call other methods. When calling functions Javeleon looks for a new version of that function
and, if one is found, that one is called instead of the old one. Considering these hypotheses the executing
thread will continue to execute both old code and new code for a long time. A design solution that deals

with this problem tailored on our application is given.

We know that the ganeLoop method of Gameclass contains a long lived while loop. If the application

thread is executing this loop (that happens while the user is playing or a “wait screen” is visualized) the

48

thread will continue to execute the old code until the thread quit from the while loop and ends the
execution of that method. This condition occurs only when the user press the pause key. After the user
returns from pause the active thread ends and a new thread executing the game loop method is launched.
At this point the code of the ganel oop function is updated and there’s no inconsistency as all the threads

of the application are running new code.

In order to solve this issue we considered the structure of the while loop. That loop executes some logic
and then holds the running thread for a fixed amount of time every cycle. To avoid the infinite loop issue

our solution makes use of java Timer and TimerTask classes.

public class Game extends JComponent {
[-.]
private enum GameState {onGame, onPause};
private GameState state = GameState.onGame;
private synchronized void gameLoop() {
[body of the former while cycle]
}
public void startGameLoop() {
loopTimer = new Timer("Game Loop Timer");
loopTimer.scheduleAtFixedRate(new GameLoopRunner() , 0, LOOP_INTERVAL);
state = GameState.onGame;
}
public void endLoop() {
loopTimer.cancel();

}
private class GameLoopRunner extends TimerTask {
@Override
public void run() {
gameLoop();
}

Code Snippet 5.1 - TimerTasks and the infinite loop issue

As it is possible to see from Code Snippet 5.1 the Gameclass uses a Timer object to schedule a task for
repeated fixed-rate execution. For each long lived loop a class that extends the TimerTask class is created
as an inner class of Game These classes implement a r un method that calls a synchronized function of the
Gameclass, which contains the body of the loop. When the application needs to launch a loop a “loop start”
method, like st art GaneLoop, is called. That method initializes a new Timer and schedule the execution
of a TimerTask for fixed-rate execution. If an execution is delayed for any reason two or more executions
will occur in rapid succession to "catch up." In the long run, the frequency of execution will be exactly the
reciprocal of the specified period. Using this solution permits the running main thread of the application to

be able to update the game loop body every cycle. When the endLoop method is called all the scheduled

49

timer tasks on the timer are cancelled and removed from the queue, allowing the last currently running

timer task to end gracefully.

The methods of class Gamethat are called by the timer tasks have to declare the synchronized keyword

otherwise it could be possible for two timer tasks to work at the same time on the same Gameinstance.

The Gameclass also keeps track of the currently executing loop using an enumerated variable. This
information about the state of the application was represented in the former version by few boolean
variables which values determined the screen that the game is actually showing. This information is
important when the user press a key on the keyboard because whenever that happens a new thread that
executes KeyAdapter's method is started. These threads don’t know which screen the application is
currently showing unless the Gameclass keeps track of it. In this implementation we still chose to merge
two semantically separated loops together, the game loop and the loop that shows the wait screen (win or
lose screen and the initial title screen). We will see in the next iteration how the separation of the logic
inside of the ganel oop into two different timer tasks bodies will condition the application behavior with

dynamic update.

The infinite loop issue posed an update barrier. We decided to solve this update barrier by making cascade

modifications on the previous release (the first release) and on branch v2.0.

Uninitialized fields (Introduction of state)
Another well known problem is related to the introduction of new fields in an updateable class. When a
new instance field is added into a class definition and no initialization is provided within the declaration of

the new field we know that:

e If the field type is primitive the value is initialized to the default value (e.g.: for integer variable
value 0 is used);

e If the field is a reference to a class instance the value assigned is null.
New fields in classes were introduced in these cases:

e Areference to an instance of Barriers and Shots (for aliens’ shots) in Gameclass;
¢ Areference to the Gameinstance in Aliens class, initialized in the constructor;

¢ Two integer fields regarding the position of aliens in the matrix in Alien class (row and column).

Whenever the introduced field is a reference to an object and that reference is used after the update the

program generates a NullPointerException and, if not handled, the program crashes. This behavior applies

50

to the first two cases. However the developer can assign a new initialized object to the new reference field

using inline initialization and a constructor of the object.

First case
Javeleon allows the programmer to introduce new class instances with the dynamic update by checking in-

line initialization of class fields, which is the initialization provided with the declaration of the field, and
code changes on constructors of classes. If a new field is found and an in-line initialization with a
constructor call or a method that returns an object is provided, that is called and the instance is assigned

correctly to the reference avoiding the null pointer exception.

In the Barriers reference’s case the developer knows that, even if the game is being started as
standalone with version 2.0 or is being updated from the first version, the reference to the Barriers
instance should be initialized using the constructor of Barriers . Therefore, we solved the problem by

using inline initialization of Barriers field in Gameclass.

Second case
The same solution doesn’t work with the second case where the reference to the Game object was assigned

to the Aliens instance using a parameterized constructor. In order to instantiate an Aliens object the
constructor of Aliens needed a Game reference, like Shots class in first version code. In fact in this case
the Aliens instance could be already instantiated when the dynamic update occurs. That means that
calling again the constructor of Aliens we would lose all the state regarding Aliens instances running at

the moment of the update. This issue was resolved using the Singleton pattern.

A Singleton is a class that has only one instance and provides a global point of access.

Singleton

— singleton : Singleton

- Singletan()
+ getlnstance{) : Singleton

Figure 5.7 - Singleton design pattern

The singleton is a class that provides a static getter method that returns the unique instance of that class.

The getter methods checks if the static singleton field already holds a reference to a Singleton object and in

51

positive case returns that object. Otherwise, the object is created using the private constructor and

returned.

Implementing the singleton pattern within the Gameclass lets the application design get rid of all the
references to the Gameinstance. All the objects can get a reference to the singleton instance using the

global method get | nst ance.

This modification introduced an update barrier because if the Gameclass is transformed into a singleton

there is no way to assign to the static reference of the singleton the running Gameinstance.

The solution shows that using parameterized initialization of objects is not a good pattern to follow.
Otherwise having a global interface for accessing objects seems to resolve the problems related to the
introduction of relationships between objects. Whenever a new relation between, let’s say, class A and
class B is introduced, and an instance of class A needs a reference of an object of class B, it uses a global

interface to obtain that reference.

Third case
When primitive fields are introduced in a class and inline initialization is not used, the default value for that

particular type is assigned to the field. An object takes in memory a certain amount of space where it
maintains its state (the value of its instance variables), which can change during the execution of the
program. The program state can be seen as the union of all the objects state and some other information

regarding process execution and threads.

The initial state for class instances is provided by the constructor of the class and inline explicit
initialization. The developer knows what the initial state of the application should be, in fact he provides
constructor for classes and default values for primitive type fields, but he doesn’t know how the state will

evolve during any execution of the program.

When dealing with new introduced state in dynamically updateable application the developer has to
consider if initializing new variables using the initial state will give the desired behavior or not after the
update has taken place. We consider that the update can happen at any time during the execution of the

program.

When dealing with the reference to the Barriers object in the Gameinstance we used the default initial
state to initialize the reference, creating a new Barriers object that was not present in previous version.

That object is created using a constructor that accepts no parameters.

52

In this third case the in-line initialization cannot be used to set the value for row and column variables of
the already created Alien instances. That information is set using the parameterized constructor of Alien

during the execution of the Aliens constructor. Differently from the case of the introduction of
uninitialized references to class instances when dealing with primitive types no NullPointerException are
casted. The application in these cases will present an undesired behavior and eventually cast exceptions

(like arithmetic exceptions) that force the application to crash.

After the update the value found in each Alien instance row and column field is zero. Consequently the
i sFi rstLineAlien method of Alien class, because of the algorithm implemented, will return always

true, causing all the aliens in game to be eligible for shooting.

This problem was solved avoiding the introduction of new state into the application. The algorithm
implemented in i sFi rstLi neAl i en, which is the only method of Alien class that make use of the
information about the cell coordinates of the alien in the matrix, was changed. In the new implementation
that method uses the already present information about the position (x and y coordinates) in order to

know whose alien are on the front line. .

Extract class refactoring
Moving from the first release code to version 2.0 a class was extracted from collection classes Aliens and

Shots . This class is also extended in the new version by the Barriers class.

Aliens removelist

Shots
EntityCollection | ArrayList
entities erfities pem—— j

removelist | ArrayList | removelist

Barriers | ‘ Shots l |nlie-ns I

Figure 5.8 — Changes on the structure of the EntityCollection hierarchy tree passing from version 1.0 to version 2.0 rev. 135

In EntityCollection the array list fields are inline initialized with empty array lists.

This refactoring was tested and the result showed that the lists of entities after the update were
reinitialized to empty arraylists. That happens because the array list fields in EntityCollection class are
considered new fields by Javeleon and consequently the constructor for these fields is called. As the name
of the fields didn’t change from the last version, the application after the update lose all the entities that

were present in the old array list instances.

53

In order to solve this problem we decided to include the change on Aliens and Shots classes on first

release code by making a cascade modification.

Javeleon allows state to be moved upwards in the hierarchy. That means that it is possible to move a field
from a subclass to a superclass preserving the state of that field. In order to obtain the preservation of state
however the field has to maintain the same name and type. Though in our case, as we provided in-line

initialization in superclass, the instances are initialized.

Superclass of class changed and push down field refactoring

In version 2.0 the class Alien that inherited Entity class on the former version becomes a subclass of
MovingEntity . Being a subclass of MovingEntity implies having two new double fields that holds
information about the speed of the entity (variables dx and dy). Those fields after the update are initialized

to the default value (that is 0) because no in-line initialization was provided.

Entity
x 0 double
v double
Ertity wickth © int
%2° Gl height : int
y o double
weidth ;int - -
hsicht - ind MovinqEntity
CIGHTTEY o double
T oy double
Alien
Alien
o it

column : int

Figure 5.9 - Alien hierarchy tree (v 1.0)
Figure 5.10 - Alien hierarchy tree (v 2.0)

Using in-line initialization in this case makes no sense because the MovingEntity class is a super class of

several other classes (Shot and Ship).

In order to solve this and the previous issues a new design was developed following the recommendations
of (Johnson & Foote, 1991),(Liskov, 1987) and (Snyder, 1986). These works advocates the importance of
data abstraction as a method for developing applications that are easier to modify and maintain. Moreover
they investigate the relationship between data abstraction and inheritance and how these two techniques

should be used properly in object-oriented programming by exploiting polymorphism.

With the new design all the implementation was moved to the leaves of the tree hierarchy using a skeleton

of abstract super classes.

54

Alien
%
¥
dir
Entity IovingEntity :EZ%
getal) oetHorizontaMovement() fire()
o) setHorizomtaiMavement?) stepDawn(y
get¥() getirerticaiMavementy) getHorizontalMovement!)
seﬁ“(). setlerticalMove ment() [irstinLeelinpg]
getliith) maver) getColor)
getHerght() moveHorizortally() getvidth()
drani(y mavei'ertically() getHeight()
getPoly() moveHorizortally() geti()
get(;olor() move'ertically() SEtHl)
collideshith() et ()
setv()
getverticalMovement()
setvericalMovement()
setHorizontalMovemert()

Figure 5.11 - Good design implementation on Alien class (Version 2.0 rev. 166)

As it is possible to see from Figure 5.11 all the fields were moved from super classes to the child class.
Abstract super classes define a protocol, a set of messages that can be sent to objects and define a default
implementation for some methods like dr aw or nove. The default implementation of these methods
recovers data about the instance using properties (getter and setter methods) exploiting polymorphism and
inheritance. Concrete subclasses provide an implementation for getter and setter methods declared as

abstract methods in super classes.

This model follows the “Template Method” pattern. With that model the behavior of objects is defined by
the means of algorithms implemented in abstract super classes, which defer some steps to subclasses. This
design pattern lets subclasses redefine certain steps of an algorithm without rewriting the whole method in
the subclass. The use of abstract getter/setter methods introduce data abstractio