

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

Enterprise knowledge management:
introducing new technologies

in traditional Information Systems

Autore:

Jacopo Viotto _______________

Relatori:

Prof. Francesco Marcelloni ___________________

Prof. Andrea Tomasi ___________________

Ing. Salvatore Parisi ___________________

Anno 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14699412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

SOMMARIO

I sistemi per la gestione della conoscenza che vengono presentati negli articoli di
ricerca vengono raramente implementati nelle realtà aziendali, almeno su larga
scala. Le aziende spesso sono legate ai sistemi che già possiedono, e non
possono o vogliono rivoluzionare la situazione per far posto a soluzioni
completamente nuove. Date queste premesse, questo lavoro approfondisce varie
piccole modifiche che possono essere applicate ai Sistemi Informativi già presenti
in modo da migliorarli con nuove tecnologie senza grandi trasformazioni né
discontinuità di servizio. L’argomento è l’interoperabilità, con un particolare accento
sulla promozione dello standard ebXML sui registri. E’ stata definita un’interfaccia
universale per la gestione documentale, ed i sistemi ad essa conformi sono stati
organizzati in un’architettura appositamente ideata per il supporto ad ebXML.
Questo ha permesso la manipolazione standardizzata di sistemi documentali
legacy.E’ stato inoltre affrontato l’argomento strettamente correlato della gestione
semantica della conoscenza. Abbiamo sviluppato un sistema di integrazione di tool
semantici all’interno di repository tradizionali con basso impatto architetturale.
Infine, abbiamo discusso un nuovo problema interno alla categorizzazione di
documenti, ed un nuovo tipo di ontologia che può essere utilizzata in tal contesto.

III

ABSTRACT

Knowledge management systems described in research papers are rarely seen
implemented in business realities, at least on a large scale. Companies are often
tied to existing systems and cannot or would not revolutionize the situation to
accommodate completely new solutions. Given this assumption, this work
investigates several small-scale modifications that could be applied to in-place
Information Systems so as to improve them with new technologies without major
transformations and service discontinuities. The focus is interoperability, with a
particular stress on the promotion of the ebXML registry standard. A universal
interface for document management was defined, and the conforming
“interoperable” DMSs were arranged within an architecture explicitly designed for
ebXML-compliant access. This allowed standards-based manipulation of legacy
DM systems. The closely related topic of Semantic knowledge management was
also tackled. We developed Semantic tools integration for traditional repositories
with low architectural impact. Finally, we discussed a novel issue in document
categorization, and a new kind of ontology that could be used in that context

IV

TABLE OF CONTENTS

Sommario ... 2
Abstract ... 3
Table of contents .. 4
1. Introduction .. 5

1.1. Enterprise Information Systems.. 5
1.1.1. A pyramid of systems ... 6
1.1.2. Managing documents ... 7

1.2. Evolution of the IT department ... 9
1.2.1. The beginnings ... 9
1.2.2. Brief history of computers and enterprise software 10
1.2.3. Present and future .. 11

2. Interoperability ... 13
2.1. Dealing with heterogeneous systems ... 13

2.1.1. An industry standard: ebXML ... 14
2.2. Interoperable DMSs .. 14

2.2.1. An interface for interoperability ... 14
2.2.2. Interface implementation .. 17
2.2.3. Metadata management ... 17
2.2.4. A common architecture ... 18
2.2.5. Related work ... 19

2.3. Other applications ... 19
2.3.1. Managing access control .. 20
2.3.2. Metacrawling ... 22

3. Semantic knowledge management ... 24
3.1. Syntax and Semantics .. 24
3.2. Improving information repositories ... 25
3.3. Bridging the gap .. 27
3.4. From keywords to tags ... 27
3.5. Introducing semantic tagging in enterprise systems 29
3.6. Working with unconstrained tags .. 29

3.6.1. A case study ... 32
3.7. Adapting ontologies to trees ... 32

3.7.1. Mapping OWL to RIM constructs .. 33
3.7.2. Browsing the ontology .. 35

3.8. Metadata organization using ontologies ... 36
3.8.1. Document-type ontologies .. 36
3.8.2. Implementation details .. 39
3.8.3. Sample publication ... 40

4. Conclusions ... 43
References ... 45
Appendix A – Industry standards and organizations .. 48

1. Document management ... 48
2. ebXML ... 49
3. Semantic resources .. 49

5

1. INTRODUCTION

This dissertation focuses on the complex relationship between the academic and
the business world, and outlines several viable solutions for their integration. The
starting point of this investigation is the consideration that most systems proposed
in literature do not actually get implemented in the real world. Many technical and
non-technical impediments exist: the biggest one, encompassing all the others, is
the requirement of a complete substitution of the Enterprise Information System, or
some part of it. We thus propose a different perspective, based on small
modifications of existing systems. We show how this approach is able to boost their
performance while having a marginal impact on overall architecture, and, most
importantly, without disrupting in-place services.

The central issue tackled in this document is interoperability. In this context, we
foster the transition towards open formats and methods through the adoption of
ebXML specifications for e-business. They form a largely agreed-upon family of
standards, though not as widely supported in practice, and we made an effort to
seamlessly integrate their registry/repository section in common environments
including legacy systems. Interoperability also refers to data integration, thus
semantics. We managed to introduce Semantic awareness in traditional document
management systems, including an ebXML registry, with little influence on the
existing scenario. Dealing with semantic tagging, we finally tackled the issue of a
structured framework for document characterization.

This first chapter provides a gentle presentation of key concepts related to the
enterprise world and its relationship with Information and Communication
Technologies (ICT).

In the second chapter we begin the discussion on interoperability issues in modern
companies, both from a syntactic and semantic point of view. The ebXML family of
industry standards is introduced here.

The third chapter focuses on Semantic Knowledge Management, its benefits on the
overall performance of an Enterprise Information System, and the available
solutions for unobtrusive implementation of semantic tools.

1.1. Enterprise Information Systems

An Information System (IS) may be defined as the set of people, processes and
technologies revolving around the manipulation of information. All activities
concerned with the lifecycle of knowledge, including acquisition, creation, storage,
transformation, distribution and display, are performed throughout an IS. The high-
level goal of such a system is to deliver the right piece of information to the right
person at the right time: a valuable service in the general case, a strict requirement
in the world of business. The efficiency of this procedure, in fact, determines how
fast and how well managers, and the company as a whole, can react to changes in
the market and in the surrounding environment. A well-organized database
benefits operational activities, too: it allows extensive sharing and reuse of data,
documents, experiences and ideas, eventually cutting down costs and response

6

times in day-to-day processing. As a result, a high-quality IS represents a
significant competitive advantage over other players, especially for companies
having to do with rapidly evolving domains.

The term “technology” in the previous definition is used in a very broad sense, not
necessarily related to informatics; though not as crucial as in recent years, the
need for up-to-date knowledge has always existed within corporations, long before
the advent of computers and software; for instance, telephones empower news
delivery since the nineteenth century. However, in the present scenario,
Information and Communication Technology (ICT) is an indispensable tool. The
amount of today’s information sources is so huge it has become unmanageable for
human beings. The high dynamicity of the global market requires constant
monitoring, in a way that is not achievable without the support of automation. The
same goes for the cataloguing and transformation tasks, not to mention the
intricacies (and costs) of storing, retrieving and delivering paper documents or
magnetic tapes. Furthermore, the leading productive sector worldwide is now the
tertiary segment. For organizations focused on offering services, effectively
managing data is a necessity rather than an advantage, as their very business
revolves around that. In conclusion, information has become the most important
asset for a company, and old analog methods are simply not good enough to
handle all the current complexities.

1.1.1. A pyramid of systems

Within a modern enterprise, there are a large number of heterogeneous, often
interdependent, Information Systems: from organization-wide systems for strategic
decision support or customer management, down to very specific operational tools.
Their stratification reflects the arrangement of business activities known as
Anthony’s pyramid [1], a scheme which depicts the typical situation of a generic
corporation. Anthony grouped these activities into three layers, each characterized
by a different level of abstraction, different goals and different variables.

The company’s foundations are made up by operational activities, embracing both
physical processes directly related to the creation of revenue, such as the
production of goods, and other kinds of processes related to the fulfillment of basic
needs, such as billing and HR management. Operational activities are aimed at the
solution of straightforward problems: well-defined variables, quantitative data, and
clear, short-term goals. They are structured, meaning that they involve decisions
which can be easily reduced to a deterministic set of rules (an algorithm), and they
get executed very frequently, so as to process large volumes of data [3]. As such,
they are particularly well suited to automation, for both the relative ease of
implementation and the far greater speed and precision automation allows as
opposed to manual approaches.

At the top of the pyramid, the management is concerned with the company’s
strategy, the most abstract and complex process of all. The development of this
long-term plan requires sound analytic skills, in order to understand the existing
situation, and the capacity of making accurate predictions about the future.
Nonetheless, good predictions do not grant success, since there is no assurance
that they will actually come true. Managers have to cope with high degrees of

7

uncertainty: fuzzy variables, qualitative data, unclear goals. A fundamental
characteristic of high-level strategies is therefore flexibility, that is, the capacity to
quickly adapt to changes, as a defense against the possible occurrence of
unforeseen events. Strategic activities are highly unstructured: the complex nature
of input data and the variability of problems and objectives make it impossible to
define an algorithm to perform the decisional process. In fact, managers mainly
handle exceptions, which are obviously out of any predictable process.

Tactical activities sit halfway between long-term, enterprise-wide strategies and
simple day-to-day processes. They are intended for the realization of the mid-term
scheduling that is required to put top management plans in practice, and usually
involve semi-structured decisions, i.e. decisions with both programmable and non-
programmable elements.

The pyramid metaphor, besides depicting the stratification of business tasks, also
shows the gradual decrease in the number of functions from the bottom layer to the
top. At the bottom of the pyramid, we can find a wide set of operational applications,
while at the top only few enterprise-wide activities exist. This happens because, as
we go up the different layers, processes get more and more abstract, thus
integrating more and more concrete operations.

Sometimes this strict hierarchal arrangement is excessively rigid, and is not able to
adequately support information flow in exceptional situations. When similar events
occur, horizontal information systems may be created, through the creation of task
forces and workgroups. Such organizations may also have a permanent nature.

1.1.2. Managing documents

Documents have always been the basic unit of information interchange within
companies. Traditional management of paper documents worked well for years,
but for the time being it is not sufficient anymore. There are two main reasons:

 Ever-increasing amount of information available
o The volume of produced/acquired documents constantly grows
o Management of physical documents has enormous costs for

classification, storage, retrieval, duplication, transmission, disposal…
o Paper archives grow quickly in size, it is not trivial to find enough

space to accommodate them

 Ever-increasing need to access information
o Documents are getting more varied, more and more professional roles

need enterprise knowledge to perform their job
o Need for more structured data, users often look for a piece of

information rather than an entire document
o Centralization of all knowledge in a single repository would facilitate

both the management and the access to information

Despite the advent of ICT, documents are still at the heart of any IS. Of course,
they are now in an electronic format, but this is often the only difference with their
analog ancestors. Usually, electronic documents are a direct translation of their
paper counterpart, with no additional metadata or elaboration whatsoever.

8

Information is scattered throughout their content and is not optimized for automated
processing by software agents; in a word, they are an unstructured data source, as
opposed to the structured information contained in conventional databases. The
overwhelming amount of such documents frequently becomes a problem for
companies, rather than an opportunity: a well-organized repository is thus a
common need in the industry.

Document Management Systems (DMSs) are the standard solution to knowledge
management requirements within enterprises. A typical DMS consists of a
repository containing the actual documents and an engine working on top of it
(Figure 1). The repository may be a simple as a disk partition, or as complex as a
dedicated cluster of high-availability file servers equipped with load balancing and
fail-over. It is never directly manipulated, the engine takes care of all interactions
with external agents in order to maintain its internal coherence and integrity. The
engine’s core is a database, containing information about every document in the
knowledge base: metadata, such as author, keywords and creation date, but also
data for the management part, including access rights and physical location of the
file.

Users normally invoke engine functionalities through a Web interface, or, less
frequently, a stand-alone client; the engine may also offer public APIs to interact
with custom software. At a bare minimum, a DMS offers functions for storing,
searching and retrieving documents. Searching is the primary operation, and may
involve metadata, content, or both; however, metadata are normally included in the
search, as they are less tied to syntax and closer to semantics, and are thus more
likely to capture the intent of the user. Advanced features include access control,
versioning and tracking of document history.

9

1.2. Evolution of the IT department

1.2.1. The beginnings

The first general-purpose computer, ENIAC (Electronic Numerical Integrator And
Computer), was developed during WWII as a top-secret project funded by the U.S.
Army. Once completed, in 1946, it was mainly used to calculate artillery firing
tables, and was also used in calculations for the H bomb. Military research has
always benefited from the highest funds, so it is not surprising that a similar
achievement was accomplished during a global conflict; new technologies may
directly translate to an advantage over the enemy, and that is the reason why in
war periods this kind of research is even more supported.

Figure 1: typical DMS architecture

10

However, computers, like several other military technologies, quickly drew the
attention of the industry: in 1947, only few months after ENIAC’s completion, a
leading food manufacturing company of the UK started to investigate the possible
applications of computers to their every-day activity. In order to acquire expertise in
this field, they sponsored the development of one of ENIAC’s successors, ESDAC
(Electronic Delay Storage Automatic Calculator), and they eventually managed to
create the first commercially applied computer in 1951. Initially meant for internal
use only, LEO (Lyons Electronic Office) models I, II and III met such a great
success, that a separate firm was started to market the machine and manage the
rising demand for computations by external companies; an early instance of what
will later on be called outsourcing. From that moment, ICT began spreading in the
industry and affecting every business operation, starting from the lowest layer of
the activities’ pyramid and slowly climbing up towards the strategic level.

1.2.2. Brief history of computers and enterprise software

Electronic Data Processing (EDP) systems initially dealt with the automation of
back office applications, mainly financial ones; in fact, in most corporations the
Data Processing department reported to the financial department. This operational
layer includes systems like payroll calculation, general ledger, inventory
management, and so forth. As we already observed, software systems at this level
are useful to speed up manual processes and increase their accuracy. They boost
productivity relieving humans from repetitive and error-prone tasks, and leaving
them free to dedicate to more satisfactory activities. These operations were
performed in batch mode, i.e. with no interaction, by mainframes, big and
expensive computers particularly used by large institutions between the 1950s and
the 1970s. By the early 1970s, many mainframes acquired interactive user
interfaces and operated as timesharing computers, supporting hundreds of users
simultaneously through “dumb” terminals.

Terminals were slowly replaced by personal computers: this migration caused a
shakeout in the mainframe market around the1980s, due to the possibility to
perform dedicated and decentralized computations. In this period “Office” systems
and personal productivity software saw the light. Several forms of decision support
systems appeared, including reporting tools, expert systems and business
intelligence in general, although research in those fields dates back to the 1960s.

In the 1990s, the fall in the price of networking devices encouraged a re-
centralization of computing resources and a renaissance of mainframes. Driving
factors of this new market trend include the advent of e-business and the rapid
expansion of emerging markets. As of today, the demand for services in the areas
of banking, insurance or government are higher than ever. In this centralized
environment, ERP (Enterprise Resource Planning) systems were born. An ERP is
an integrated system that is meant to manage all corporate activities: accounting,
logistics, inventory, production, human resources, customer relationships. Data is
stored in a single repository and is independently accessed by the different
modules.

It can be noted how enterprise software moved from operational to decisional
concerns. Of course, this does not mean that operational ISs are not needed

11

anymore, but simply that “smarter” tools have slowly become available in addition
to them. Moreover, the specialized, single-function (vertical) approach has been
superseded by horizontal application mash-ups focused on the achievement of a
goal rather than the execution of a procedure.

1.2.3. Present and future

“Enterprise 2.0” and “Enterprise 3.0” are among the most common buzzwords
nowadays in the IT field, and represent the present and the future of Enterprise
systems. They take inspiration from their Web counterparts: the Social Web, a.k.a.
Web 2.0, and the Semantic Web, sometimes referred to as Web 3.0.

Enterprise 2.0 refers to the exploitation of typical Web 2.0 social computing tools
(instant messaging, blogs, wikis, forums, folksonomies, social networks, mashups)
within the business context, in order to improve productivity and efficiency. The
term was introduced in 2006 by A.P. McAfee, a professor at Harvard Business
School [44]. The key idea behind this new vision is the “prosumer” role (producer +
consumer), borrowed from the Social Web. In contrast with the old approach of
static contents decided by an author or an editorial committee, regular users of the
knowledge base now have the possibility to produce information in a collaborative
fashion. This is a small step for technologic infrastructure, but a giant leap for
corporate attitude towards democracy: if this change of perspective was a
revolution in the World Wide Web, it is even more significant in rigidly structured
environments such as a corporations.

Actually, the implied transformation is so considerable that many companies
hesitate to undergo the change. This is mostly for psychological reasons, even
though some of the feared threats are real. After all, there are many open
questions regarding these new systems:

 With such a large number of new applications at their disposal, employees
may easily get distracted

 The impact on IT resources may be relevant (transfer of multimedia files)

 Confidential information may be exposed to the public

 Embarrassments may arise in managing interpersonal relationships

On the other hand, companies have many good reasons to move in the direction of
social computing:

 If sharing documents and ideas is made easier and more pleasant, employees
are more likely to actually do that. A highly accessible Information System filled
with great volumes of shared data, is in turn an invaluable tool for knowledge
reuse, reducing dead times and eventually improving efficiency

 Errors and gaps in the knowledge base get quickly fixed (self-healing content).
Since this operation can be performed by anyone, the workload of
administrators is much lower

 From a psychological point of view, “prosumers” feel more involved in
enterprise activities, and achieve high levels of trust and sense of belonging.

12

Moreover, creating communities where colleagues become friends facilitates
the flow of ideas and know-how.

Whether or not to invest in 2.0 solutions is a matter of trade-offs. However, it
should be mentioned that several industry giants, including Shell Oil, Procter &
Gamble and General Electric, are already hitting this road.

In the future, Enterprise systems are expected to absorb Semantic Web
technologies within their knowledge management systems. Those new tools would
serve a dual scope:

 Ease integration of heterogeneous data sources, so as to facilitate
interoperation between systems and organizations, and increase the size of
the searchable knowledge base

 Enhancement of information retrieval algorithms, in an effort to improve the
quality of the results

This process has already started in some realities, and will probably continue in
parallel to the adoption of Enterprise 2.0 solutions.

13

2. INTEROPERABILITY

The IT infrastructure in modern companies is a highly complex system with several
heterogeneous components, including Document management systems, Workflow
systems, Web portals and more. Coexistence of diverse sub-systems is a common
scenario: integrated suites are too expensive for SMEs, and are frequently an
overkill; even in bigger enterprises, the IT system is not always carefully planned
from the beginning. Often, it undergoes a chaotic evolution, due to unforeseen
changes in technology, in the market or in management directives.

2.1. Dealing with heterogeneous systems

Interoperability issues can be classified in two different categories: syntactic and
semantic ones. By syntax, we mean data formats, interfaces and protocols, which
may be (and usually are) incompatible with each other. At the lowest level,
problems in the interpretation of exchanged messages may come from byte order
or character set; however, potential troubles also lie in other aspects of
communication, such as the representation of basic data types, the structure of the
different messages or the expected message sequence within a protocol.
Fortunately, there is a widespread solution: Web Services. Web Services are the
de-facto standard for interoperability across heterogeneous software: entirely
based on XML dialects, they expose system functionalities in a platform-
independent manner. An XML descriptor, the WSDL file, accurately illustrates
service location and available methods, including expected input and output
parameters. Data types refer to the XML Schema specifications; they can also be
composed to create custom complex types. Actual invocation is performed through
standard SOAP messages (Simple Object Access Protocol), typically conveyed
through HTTP.

Once a basic communication infrastructure is deployed, the next issue to be
tackled naturally is how to perform a sensible information exchange, i.e. semantic
interoperability. At a higher level of abstraction with respect to the previous task,
we now focus on the ability to interpret data in a way that is meaningful for both
parties: what is sent is the same as what is understood. This task is much more
demanding than the other, and only partial solutions exist. One notable aspect of
semantic interoperability is metadata integration of document management
systems.

Metadata play a crucial role in the exploitation of functionalities exposed by a
typical DMS. In order to be properly managed and to efficiently contribute to
information delivery goals, each document must be properly characterized by
specifying its coordinates within an adequately rich metadata space. In the archive
management and digital libraries community, a standardization effort has led to the
definition of a basic set of metadata to be dealt with for each stored/referenced
document (Dublin Core); moreover, communication protocols for metadata
harvesting have been built up within the Open Archive Initiative (OAI), taking into
account Dublin Core metadata set. Despite this standardization attempt, Dublin
Core has not been adopted by the large majority of DMSs, mainly due to its focus
on informative documents, instead of business-related ones. It is worth noticing

14

that problems about semantic mapping among different metadata items (or towards
a commonly established ontology) arise also in related application fields, e.g.
cultural heritage digital libraries [19] and niches search engines [22]: in these
contexts, it is often reasonable to employ a mediator scheme approach, possibly
referring to Dublin Core as a common metadata set.

2.1.1. An industry standard: ebXML

ebXML (Electronic Business using eXtensible Markup Language) is a well-known
family of XML-based industry standards for electronic business, including
specifications for business processes, interoperable repositories and messaging. It
is sponsored by OASIS (Organization for the Advancement of Structured
Information Standards) and UN/CEFACT (United Nations Centre for Trade
Facilitation and Electronic Business), and has been ratified as the ISO-15000
standard in 2004. The development and the adoption of ebXML-based software is
promoted by an open source initiative called freebXML. Within this initiative, the
OMAR project is the reference implementation of the registry/repository
specifications.

ebXML is emerging as the de-facto standard for e-business: for example, it has
been proficiently used as the principal building block within information systems to
support supply chain traceability [17, 18]. The specifications define, among other
things, “an information system that securely manages any content type and the
standardized metadata that describes it”: the ebXML Registry. Such registry thus
enables the sharing of content and related metadata across organizational entities.
Being the core structure for document exchange, the Registry is the key for
interoperable business transactions. Unfortunately, only few companies adopted
this relatively new standard, while the vast majority persists using traditional DMSs.

2.2. Interoperable DMSs

The race for e-business capability has hampered the adoption of one
acknowledged standard solution for document management, thus yielding
significant interoperability problems. Much (if not all) of the generated information is
present inside one or more traditional DMSs. Each of them is implemented upon a
different technology and follows a proprietary metadata model, leading to serious
interoperability issues. Ideally, interoperability could be achieved moving all
enterprise knowledge into an ebXML Registry. In practice, this is hardly ever
feasible, due to the strong bindings between the DMS and the rest of the company
information system.

2.2.1. An interface for interoperability

A common requirement for a DMS is the ability to easily integrate with external
systems, in order to provide access to enterprise knowledge from a wide variety of
platforms. In spite of this, DMSs typically support a small number of applications,
and little or no effort is made towards generalized interoperability. As a partial
solution, some systems provide APIs to enable administrators to code adapter
applications.

15

Recently, the adoption of Service Oriented Architecture (SOA) contributed to
modify this scenario: the latest versions of the most popular DMSs provide support
for Web services to ease system integration and extension (FileNet, Documentum,
Vignette). Web services run on the server side and wrap API calls to offer system
access by means of standard Web technologies. Unfortunately, the claimed
support often simply relates to a framework to help develop custom services:
administrators still need to study the system’s details and write the service code
accordingly. This is a tedious and error-prone process, and it should be avoided as
much as possible. Moreover, no standard way is defined for the implementation of
such Web services, hence third-party software need to comply with different
interfaces, depending on the actual DMS in use.

In order to achieve true independence from the actual DMS in use, we need to set
up a general-purpose interface, able to accommodate typical needs for document
management systems. Therefore, our prime concern is to outline a set of core
operations that every DMS is required to support, leveraging the fact that typical
operations performed over this kind of systems are fairly general. We restricted our
choice to fundamental services, leaving out any platform-specific feature. This is an
explicit design choice: most applications interface to a DMS in terms of simple
queries (mainly document upload/download and metadata or content-based
searches), whereas advanced features are rarely used and are not guaranteed to
be available in all environments. We didn’t take into account administration
functions, such as user creation, role definition and so on, however this might be a
significant functionality to add in future versions. We finally came out with the
following list; since these operations are at the heart of document management
itself, they are the most commonly used by end-users and the most widely
supported by existing systems.

 Authentication - Obviously, some sort of authentication is needed to access the
system. The simplest and most common way to identify a user is asking for a
username/password pair. If successful, the login function returns a unique
session identifier, which will be needed for every subsequent operation; this
identifier encodes user rights and roles, thus allowing access control.

 Document/version creation - Creating a brand new document implies uploading
the file and creating (and filling) a new entry inside the database to store its
metadata. The creation of a new version for an existing document is almost the
same process, but slightly more information is needed to identify parent
document and version number.

 Document/version editing - Since file editing can’t be performed in-place, it
requires document download (check-out), local editing, and upload of the
modified copy (check-in); this typically leads to the creation of a new version,
but version replacement is possible as well. Metadata may be directly edited
with ad-hoc functions, but it most often changes as part of a file updating
process.

 Document/version deletion - Deleting one version determines the erasure of all
its subversions; deleting an entire document results in the erasure of all its
versions. In either case, the deletion includes both physical files and database
entries.

16

 Metadata/fulltext search - Users rarely need a specific document, and hardly
ever know the exact id; instead, they often look for documents talking about
some topic, or containing a few given words. Hence, DMSs support searches
over both metadata and file content.

Function Description
public string doLogin(string library,

string user, string password)

Login with the given
user/password pair.

public Profile[] search(string dst,

string lib, string docnum, string author,

string name, string type, string[] words)

Perform full-text and metadata
search. The advanced version

allows a variable number of
name/value pairs in input (the
ProfileField structure array).
Search criteria can be freely

mixed.

public Profile[] advancedSearch(string

dst, string lib, string form,

ProfileField[] sc, string[] words,

string[] rp, ProfileField[] ord)

public byte[] getDocument(string dst,

string lib, string docnum, string ver,

string subver)

Document check-out.

public string putDocument(string dst,

string lib, string docname, string

author, string typist, string type,

string app, byte[] data)

Document check-in. The first
two functions create a new
document. This implies the
creation and filling of a new

metadata entry, together with
actual file transfer.

The third function creates a
new version, filling the

comment and author fields in
version metadata (almost a

standard). The last one
replaces an existing version.

public string advancedPutDocument(string

dst, string lib, string form,

ProfileField[] fields, byte[] data)

public void putVersion(string dst, string

lib, string docnum, string ver, string

author, string typist, string comment,

byte[] data)

public void replaceVersion(string dst,

string lib, string docnum, string ver,

string subver, byte[] data)

public void deleteDocument(string dst,

string lib, string docnum, bool delProf)

Document deletion (including
all versions) and version

deletion (including all
subversions).

public void deleteVersion(string dst,

string lib, string docnum, string ver,

string subver)

public void updateProfile(string dst,

string lib, string docnum, string

docname, string author, string typist,

string type, string app)

Metadata editing, and
advanced version.

public void advancedUpdateProfile(string

dst, string lib, string form, string

docnum, ProfileField[] fields)

Figure 2: Functions overview. The Profile structure represents a minimal subset of
supported metadata (system specific). The ProfileField structure represents a

name/value pair for arbitrary metadata fields.

17

2.2.2. Interface implementation

In order to make the DMS even more interoperable, the abstract interface can be
implemented as a Web Service. The Web service extension integrates DMS
interfaces and renders it platform- and technology independent. Figure 2 shows
actual function signatures corresponding to interface methods. The overall system
basically takes advantage of DMS-specific APIs, combines them into logically
distinct functions, and exposes them as Web services. In this perspective, each
specific DMS requires its own specific wrapper software. Figure 3 shows the
architecture of a traditional DMS, composed with our extension to obtain an
interoperable DMS. As it can be seen, our system acts as an additional access
point to the DMS, leaving the original system intact. This kind of enrichment in the
access point number let clients free to keep on working through the native interface,
whenever it is either mandatory or convenient. Clients using the new interface,
instead, will be able to communicate with the DMS via SOAP messages,
regardless of technology issues and implementation details.

2.2.3. Metadata management

With no common set of metadata to be taken as reference, we can think of
explicitly working with different metadata sets in a coordinated way. The
coordination mechanism, according to the SOA approach, has to be implemented
in the software layer that accesses the single services at the different DMS
interfaces. This approach to metadata management deeply affects the interface
structure of any service involved with metadata. In fact, the service signature must
be general enough to allow passing a list of name/value pairs to describe multiple
metadata items. The service has to be implemented so as to parse the list and to
behave accordingly to what pairs are actually meaningful on the specific DMS

Figure 3: interoperable DMS

18

platform. In our implementation (Figure 2) we applied a slightly different variant of
this approach, choosing to develop each service function in two different flavors:
with a static signature, and with a variable set of parameters. The first one is useful
to access system-specific metadata, whereas the other can manage any kind of
metadata, passed in as name/value pairs.

2.2.4. A common architecture

Once all involved DM systems are empowered with an interoperable interface, they
can be proficiently connected to a standard ebXML registry, so that ebXML-
compliant clients could access the information within them. The main objective of
this system is to promote a gradual adoption of the ebXML Registry specification;
in fact, the proposed architecture takes advantage of the power and flexibility of
ebXML while leaving in-place systems unchanged. The original DMSs are coupled
with an ebXML Registry, used to mirror their metadata and manage all metadata-
related operations, thus overcoming the typical restrictions of the back-end legacy
module. An additional distinct component can coordinate the access to the
underlying systems, and enforce metadata consistency. A direct access to the
original DMS is performed only in case an actual document would be involved in
the query.

According to our architecture, newly installed and in-place components are
arranged in three sub-systems (Figure 4):

 A legacy DMS, containing both documents and related metadata, with the
added value of our interoperability component. In the general case, there could
be many different systems.

 An ebXML Registry, used to store a copy of DMS metadata and provide
advanced management features over legacy metadata.

 A controller application, intended to coordinate access to the above-mentioned
systems.

Figure 4: overall architecture

19

In order to maintain the independence of each individual component, every
interaction is mediated by the controller: as far as the single sub-system is
concerned, no knowledge about the external world is required. It is up to the
controller to compose the simple interaction functions provided by each interface
into a globally meaningful and consistent operation. In particular, such software
level should provide also a semantic mapping among different metadata items on
distinct DMS, or maybe a mapping towards some kind of commonly established
ontology.

2.2.5. Related work

SoDOCM [23] is an example of federated information system for document
management. The declared goal of the project is to provide an application that can
transparently manage multiple heterogeneous DMSs, while retaining their
autonomy. It is based on the mediator architecture, a well-known concept
developed for database interoperability, and follows the service-oriented computing
paradigm.

With the AquaLogic Data Services Platform [24] the authors propose a declarative
approach for accessing data, as opposed to the standard procedural way. The
system is intended to integrate heterogeneous data sources in order to support
composite applications. This is achieved using XML and XQuery technologies, and
introducing the concept of data service. A core functionality is the automatic
translation between XQuery and various SQL dialects.

LEBONED [25] is a metadata architecture that allows the integration of external
knowledge sources into a Learning Management System. The example presented
in the paper operates with the eVerlage digital library, which provides a Web
service interface to import documents and related metadata.

OAI compliance and metadata re-modeling are a central issue of the eBizSearch
engine [22]. In this paper, the authors describe how they managed to enable OAI
access to the CiteSeer digital library; the proposed solution consists in mirroring
the original library and extending this external database to meet OAI specifications.
Synchronization between the two systems is performed periodically.

2.3. Other applications

As an evidence of the interest companies actually have in integration and
interoperability, we now present two real-world examples of such systems. The first
one is an integrated control panel for the management of access rights to diverse
applications within the Enterprise Portal [20]. The second one is a metacrawler, i.e.
a search engine that queries multiple search engines at a time [21]. Both were
developed during the Ph.D. course and are currently in use, or will be in the near
future, in a well-known multinational for their daily operations.

20

2.3.1. Managing access control

Being strictly hierarchical entities, corporations greatly stress the importance of
security. It is critical to clearly state Who knows what and Who does what:
administrators need to outline detailed access rights for each user and for each
sub-system. Each employee has well-defined tasks, and his access rights vary
from application to application. Of course, one must be able to get his job done;
however, having too much power, i.e. benefiting from unnecessary permissions,
may lead to serious security threats. Users must be able to reach the information
they need, and be prevented from accessing restricted material This need for
accurate tuning of access rights clashes with the presence of many diverse
systems to be managed: many permission schemes, many possible configurations,
many access points. There is no simple way to have a comprehensive view of a
user’s current permission set, and no standard approach to modify it.

Figure 5: managing permissions

21

Our solution to the problem is a Web-based control panel for permission
management. Its main feature is user search: the administrator can filter
employees down through several search parameters, including id, name and
department. He can also search by access rights, i.e. search for employees having
or not having a given permission. The resulting grid lists all personal details of
retrieved users, which may turn useful to accurately spot the interesting ones.
When one is selected, a panel containing current permissions is dynamically
loaded (Figure 5). A row is shown for every available access right, and a checkbox
quickly indicate whether the user has it or not. The administrator can now grant or
revoke rights clicking on checkboxes: every change is automatically logged so as
to trace modifications and roll them back when necessary. This tool also includes
two additional utilities: reporting and graphs, and alerting. The former gives an
immediate insight of accesses made by users during a given time span.
Administrators can take advantage of such statistics to decide whether or not a
user needs given permission for his work. The latter refers to the need to quickly
act in response of a new hiring or firing. In the first case, an entirely new set of
rights has to be inserted in the IS; in the other case, old permissions have to be
cleared in order to prevent security leaks. In both situations, administrators get
informed by alerts, which in turn redirect to the management of the concerned user;
alerts are created by a dedicated job, running once a day, that queries the HR
database and registers all changes in its records.

The core of this system is a pluggable architecture that supports generic
authorization systems conforming to a given interface. We identified four basic
operations supported by any system that offers access control: granting a right,
revoking it, checking if a given user has the right and listing all users with the given
right (Figure 6). The latter is not strictly necessary for permission management, but
it is commonly available and turns out useful for filtering user searches. This
interface may be variously implemented to wrap calls to APIs of legacy systems. In
practice, we derived two different implementations. One is tied to groups in the
DMS: each group of users has statically defined permissions with respect to each
document type; controlling who belongs to which group thus translates to
controlling who has access to which documents. Each group is treated as a single
right and is managed through Web Service methods, which were developed as an
add-on to the “interoperable DMS” interface described in previous paragraphs. The

Figure 6: generic interface for authorization management

22

other implementation is much more generic, and involves direct database queries.
It requires the details of a database connection and the names of four stored
procedures, one for each method. It is currently exploited for enterprise portal
access, but it is clearly simple to reuse the same mechanism in other scenarios. It’s
worth noting that this architecture is extendable in a very straight-forward manner,
only using the web application’s configuration file: at start-up, the application
automatically reads the list of authorization providers, their types and parameters,
and makes use of them throughout its lifecycle without the need of writing a single
line of code. Of course programming would be necessary when considering new
kinds of providers, apart from the two we implemented, but even this task is made
easy by the hierarchical structure of existing objects and the overall architecture of
the system.

2.3.2. Metacrawling

This project is part of the Enterprise 2.0 framework which is under development for
the evolution of the corporate IS. The framework as a whole is designed to support
multiple forms of integration and collaboration: wikis, forums, VOIP, instant
messaging and sharing of documents, calendar events and knowledge in general.
In particular, it should work as a link among DMSs, the ERP system and final users.
To better take advantage of the numerous benefits of this new approach, an
adequate UI is required. All complexity should be hidden away from users, and the
learning curve of the new tool should be as flat as possible. Moreover, it should
gracefully handle the conflicting requirements of being both ubiquitous and
unobtrusive: ubiquity, together with ease of use, enables users to get quickly
accustomed to the new system, and lets them become active part of the
“prosumer” community; on the other hand, users should be granted the freedom to
ignore the component and perform their work as they used to. This last constraint
is particularly important during the first period after system introduction, when
employees have no knowledge of the added value it provides, and see the novelty
with suspicion, or worse, antagonism. The more it gets in their way when they try to
carry out an operation without its support, the less likely they are to use it when
they would actually need it. Negative feelings such as mistrust and hostility are
obviously the worst possible result when talking about a social framework intended
to ease interpersonal communication and sharing of ideas.

Our solution consists of an unobtrusive widget that gets loaded at system start-up
and runs in the background only showing a minimized taskbar icon (we are talking
of Windows platforms). When invoked by the user, a small input mask is shown,
with two simple fields: the query and the context. For context, we mean the set of
systems which will be queried with the given search string: possible choices
naturally include DMSs, but also other kinds of systems. For each of them, a plug-
in is needed as a middle layer between our component and the specific knowledge
repository. Plug-ins handle all intricacies of legacy systems, and communicate with
the widget through a clean and standardized interface. The first plug-in to be
developed obviously was the one for querying the DMS through its Web Services.
However, the second one has an interface towards SAP, a widespread commercial
ERP system, and more are expected in the future; for instance, one explicit
demand was to upgrade the human resources database to store the know-how of
employees and thus be able to ask questions such as “who should I contact to

23

solve this problem?”. Plug-ins may also support advanced search features, such as
filetype filtering. Special tokens included in the query text may handle those special
requests; less capable engines should be able to ignore advanced tokens and
perform a classic search.

24

3. SEMANTIC KNOWLEDGE MANAGEMENT

The current research trend, when it comes to data quality, information retrieval and
database integration, is the semantic one. Driven by the Semantic Web hype,
investigation over this topic set off in 2001 [4] and is now being carried out in
universities and research labs all over the world [6,7, 26,28,30].

3.1. Syntax and Semantics

At present, the approach to information processing is mostly based on syntactical
rules. A search engine of this kind can determine, for instance, that a document
containing the word “trees” is relevant to the user even if the original query
mentioned the singular form “tree”, or vice-versa. It may also handle more complex
forms of word declinations, such as verb tenses, provided that a suitable
vocabulary is made available. While this may suffice for some applications, namely
those specialized on a very limited domain, the same does not hold for more
generic systems. Natural language is inherently various and ambiguous: straight-
forward syntactical procedures are not flexible enough to cope with homonymy,
synonymy, typos and all the sorts of “semantic noise” one may find in a real
knowledge base. Take the example of homonymy: out of context, it is impossible to
know whether the word “keyboard” refers to the musical instrument or to the input
device for computers. From the perspective of information retrieval, this results in
poor precision, since a search engine would return documents having to do with
both senses of the word, regardless of what the user actually meant. Problems
arise also in the field of automatic organization of data. When trying to infer the
structure of the knowledge base, spurious connections would be found between
unrelated documents; fully automatic organization is thus unfeasible. For the same
reasons, integration of heterogeneous knowledge bases is hard, at best, and has
to be performed with largely manual methodologies. Again, the merging agent has
to compare objects only through syntax, and determine whether they are
equivalent, or refer to the same topic, or not. “Semantic noise” can be found even
in small, closed databases; not surprisingly, the situation gets worse when we
extend our view to external sources.

All the above problems can be overcome exploiting semantics. The key idea is to
associate information units to concepts, which uniquely identify a semantic area
within the application domain. For instance, there is not a single “keyboard”
concept, because the meaning of the word is ambiguous. There are, instead, two
distinct concepts: “keyboard (music)” and “keyboard (informatics)”. However,
ambiguity may exist in the general case but not necessarily in the specific
application: if the knowledge base is known to contain information about computers,
the right sense for “keyboard” is immediately clear. Synonyms, syntax errors,
alternative spellings and even translations in different languages are handled
gracefully by this approach: all the words sharing a common underlying idea will
simply be associated to the same concept. A remarkable feature of concepts is that
they are interlinked by a dense network of relations, such as “A is a subclass of B”,
“A is an antonym of B” or “A lives in B”. Obviously, the complete graph is hard
(when not impossible) to obtain, unless the focus is restricted to a narrow range of

25

interesting relation types; the most common one is subsumption, i.e. hyponym-
hypernym or “is-a”, which allows the definition of hierarchies.

This web of relations can be exploited so as to reveal implicit connections between
information units related to different concepts, and thus influence the outcome of
search engines and data integration tools. Obviously, the structure of the
knowledge base is directly inferred from the structure of related concepts in the
ontology. Thanks to the semantic approach, information retrieval algorithms can
experience a boost in both precision and recall. The search engine spider can
easily determine whether a document is connected to the user query or not. Finally,
database integration is made much easier, as it now implies the matching of
ontology concepts instead of the matching of every possible couple of documents.
Not to mention, the chance given by OWL (see next paragraph) to share a
common ontology in an interoperable format; when both knowledge bases refer to
the same classification model, integration is automatically achieved without further
processing. The same holds when one ontology is asserted to be a specialization,
or an addition, to the other: all is needed is the exact merging point, then reasoning
over the compound model can happen just like it used to be with a single ontology.
Performing this kind of reasoning is not trivial, though, and requires a different
strategy for each supported relation.

3.2. Improving information repositories

In order to support semantic-aware tools, the knowledge base needs to be
upgraded in two successive steps: first, create or obtain a formal model of the
target domain; second, proceed with semantic tagging, i.e. associate concepts
(entities belonging to the model) to objects in the knowledge base. Usually, the
model is described in an ontology. Ontologies are a generalization of hierarchy
trees: nodes can have multiple parents, and they can also be connected by
relations other than subsumption. Nodes may have properties (name-value pairs),
possibly with restrictions on the set of acceptable values, and they can in turn be
arranged in hierarchies, too. Individuals, instances of a concept/node, can be
included in the graph, and are identified by a specific combination of values for
their properties.

Ontologies are expensive to create and maintain, and can quickly grow to an
unmanageable size. For example, the bioinformatics community is particularly
active in this aspect, as the extremely large knowledge bases in this research field
impose strong requirements on information interchange capabilities [32]. Hence,
semi-automatic and fully automatic approaches have been proposed for their
creation out of a corpus of related resources; nevertheless, human intervention is
usually required when graph quality is a primary concern. There are relevant efforts
towards the (manual) definition of extensive dictionaries, thesauri and ontologies
for general and domain-specific knowledge [36,31,35].

OWL (Web Ontology Language) currently is, by far, the most frequently used
language for defining and instantiating ontologies [5]. As the name suggests, it was
originally developed as a basic building block for the Semantic Web [4], but quickly
became a de-facto standard in several other application areas. OWL is a markup

26

language based on XML: ontologies expressed in OWL are thus easily
interchangeable text documents, intended to be both machine processable and
(almost) human readable. As such, a small-sized ontology can be written by hand,
although tools exist to facilitate the definition of more complex domains.

An ontology is just a static structure used to store information; software systems
called reasoners are employed to fully exploit this knowledge [38]. A reasoner can
infer facts not explicitly stated in the ontology, but entailed by its semantics. For
example, if A is a subclass of B, and B is a subclass of C (and knowing that
subclass of is a transitive relation), a reasoner can deduce that A is also a subclass
of C, although it was not explicitly declared. Moreover, reasoners are commonly
used to uncover potential contradictions among assertions and for property-based
object classification.

Once the model is complete, enclosed concepts can be pointed to by elements in
the knowledge base: these associations are created in the tagging process. Tags
may be attached to a resource as a whole, or only to a part of it. For instance, it
can be stated that a given textual document concerns a particular topic, but, at a
finer granularity, only a couple of paragraphs actually do. The usefulness of such
distinction totally depends on the application. Tags can be embedded directly in the
knowledge base (RDFa and MicroFormats are examples regarding XHTML
documents), or be stored in a separate database, normally as triples in the form
subject-predicate-object.

Given the relatively recent appearance of semantic technologies, the vast majority
of resources on the Internet and in closed information systems is not semantically
tagged; even considering only newly created information, difficulties arise because
of the huge numbers involved in the process. For these reasons automatic tagging
has gained great popularity in the scientific community, and several algorithms
have been developed to perform the task with little to none human support. They
usually leverage natural language processing (NLP) and other techniques from the
artificial intelligence research field, in order to understand the context in which
words are used and consequently disambiguate unclear situations. However,
complete automation is not available yet, as it requires absolute accuracy in
identifying entities inside source documents. All existing annotation systems are
semi-automatic, and rely on human intervention at some point. Input data is
normally text: when dealing with non-textual resources (audio, video, images), the
most frequent approach is to exploit attached metadata rather than the actual
content.

For instance, Amilcare [34] is an adaptive information extraction tool. It uses
supervised machine learning techniques and requires a corpus of manually
annotated documents for training. It treats the semantic annotations as a flat set of
labels, thus ignoring knowledge from the ontology. Amilcare is the basic
component of several annotation platforms, including OntoMat [34], Armadillo [29]
and MnM [39]. The KIM system [46] produces annotations linked both to the
ontological class and to the exact individual in the instance base. This dual
mapping allows the information IE process to be improved by proposing
disambiguation clues based on attributes and relations. Ontology structure is

27

exploited during both pattern matching and instance disambiguation. SemTag [27]
is the semantic annotation component of the Seeker platform, for performing large-
scale annotation of web pages. It uses TAP, a shallow taxonomy covering popular
items such as music, movies, sports and so forth. SemTag also has a
disambiguation phase, where a vector-space model is used to assign the correct
ontological class.

3.3. Bridging the gap

As the analyst Andrew White pointed out in his corporate blog (posted on April 30
th

2009), the “semantic revolution” is yet to come in the industry: “For too long
semantic web has focused on how data moves across the Internet. […] The level of
investment and thinking applied to inside enterprises or B2B compared to B2C or
the social side of the web is much, much lower”. In the business context, semantic
technologies are widely considered “still on the rise”, highly immature and
overestimated. Early adopters may well take advantage of some of their features,
but full exploitation of their potential and mainstream adoption are still a few years
away. Nonetheless, there is little doubt that Semantics will eventually be included
in ordinary information systems and transform the way information is created,
searched and consumed throughout companies. The trigger for large-scale
adoption of these technologies may lie in the ability to seamlessly integrate them
with existing applications, as opposed to forcing the migration to a brand new
knowledge repository.

Attempts to introduce semantic-aware tools in an enterprise information system are
subject to several technical and non-technical impediments. First of all, while the
expense to purchase/develop such systems is definite and immediate, the return of
this investment is not as evident to the average manager. The advantages of a
semantic model are still misunderstood and underestimated. This is changing,
however: at the New York Times, articles are regularly tagged with entities taken
from complex thesauri; this knowledge base is now available to the public, too.
Another example is the recent agreement between Oracle and Thomson Reuters,
which states the introduction of OpenCalais support (an automatic, NLP-based,
metadata generation service) into Oracle’s 11g database. But even though the
mentality is changing, another big issue with the adoption of most systems
presented in academic papers remains: they assume full freedom in design and
implementation, while in a real enterprise strong constraints are dictated by the
presence of older systems. The top management is usually inertial to change, for
both monetary and psychological reasons, and obviously prefers small adjustments
over extensive transformations. Migration of all knowledge from one repository to
another is rarely an option. Therefore, we studied two low-impact approaches to
the introduction of semantic-aware computing into traditional Document/Content
Management systems, the kind of systems that may be currently found in real-
world companies.

3.4. From keywords to tags

With the advent of Web 2.0 technologies, tagging systems have become one of the
most common forms of collaboration over the Internet: popular websites, mostly
belonging to the “social” part of the Web, let users associate single words or short

28

sentences, i.e. tags, to pieces of information (photos, videos, URLs…), in order to
describe them and consequently ease future searches. Depending on the specific
system, users may be allowed to only tag their own resources, or their friends’
resources, or anyone’s. When users are allowed to tag other people’s resources,
spontaneous “bottom-up” classifications emerge, known as folksonomies (folk +
taxonomy); this kind of classification supersedes the traditional “top-down”
approach, where a designer defines a rigid hierarchy of categories once and for all.
Tags are similar to keywords, but while keywords are static entities defined by the
author(s) when creating the resource, tags change dynamically and may be
attached to a resource anytime by anyone. Also, tags typically have a weight with
respect to a given resource, expressing how many times that tag was selected to
describe that resource; these weights can be graphically represented by means of
“tag clouds”, and are subject to change in time, too. Generally the system keeps
track of who added a tag, which tag was that, and which resource was involved; as
a consequence, a rich network of tags, users and resources exists, which
highlights interesting relations such as people using similar tags, or words chosen
to describe a particular resource.

In the original scheme, tags are unconstrained; the freedom accorded to users in
choosing these words may or may not be a problem depending on the context of
the specific application: on the one hand, it helps the emergence of a
categorization which closely reflects the conceptual model of the users; on the
other hand, it allows the introduction of the previously mentioned “semantic noise”.
Attempts to cope with this shortcoming usually move in the direction of mixing the
top-down and the bottom-up methods, trying to make the most out of each
paradigm. The general idea is to give structure to the tag model, while preserving
some of its original flexibility. One possible solution is to restrict the set of available
tags to those contained in a controlled vocabulary of some sort; when it stems from
a collaboration of domain experts and end-users, it is referred to as a “collabulary”.
An enhancement to this approach is to substitute the vocabulary with a full-blown
ontology, so that the additional information contained in the tag domain model
could be exploited in the search phase. Sometimes called “folktologies” (folk +
ontology), these classifications represent the highest peak in the integration of
apparently conflicting philosophies.

In the industry, precision is obviously preferred over democracy. Companies are
highly hierarchical entities with little interest in the distribution of decisional power
and great interest in proper categorizations. Hence, in our study we disregarded
unsupervised folksonomies and focused on the folktology approach. Although
ontologies referred by folktologies are usually supposed to be editable by users
(with some constraints; for instance, concepts can be added but never deleted, and
statements cannot be included when they contradict existing axioms), we did not
investigate a collaboration environment for doing so. Given its complexity, such a
system can hardly be considered a low-impact modification. Therefore, new
versions of the ontology cannot be created incrementally and require the upload of
the entire model; nevertheless, a standard versioning mechanism can be exploited
to trace the relations between the different files.

29

3.5. Introducing semantic tagging in enterprise systems

The adaptations we are about to introduce affect the heart of any company’s
information system, i.e. Content/Document Management Systems. Due to the
amount and worth of informative assets in the current scenario, no modern
enterprise can do without the features they offer: metadata support, versioning,
access control, metadata- and full-text-based search, at the bare minimum. Some
provide knowledge categorization through the use of tags, other less recent
solutions work with folders. Semantic tagging can be unobtrusively introduced in
both sorts of systems: the upgrade essentially revolves around constraining the
classifications available to users to the set of entities enclosed in one or more
ontologies. The main difference, when dealing with folders, is that multiple
categorizations for a single object are not natively supported; still, they can be
expressed by replicating the object (or references to the object) under each
concerned folder. We can thus refer to tags only without loss of generality. Either
way, the fundamental concern is the introduction of structure in the classification
model so as to mirror that of a selected ontology. Tags in the original system may
be totally free, or they may be bound to a tree hierarchy. In the following, we show
how both situations can be managed: we considered Alfresco ECM as a
representative of the first class, and the reference implementation of ebXML
registries for the second one.

3.6. Working with unconstrained tags

Alfresco is a widespread open source solution for both Document Management
and Web Content Management. It is based on Java technologies, and supports
tagging, although only in its simplest form; ontology-related concepts, instead, are
completely ignored. In Alfresco, documents are organized in “spaces”. A space is
similar to a folder, but with some “smart” facets: most notably, we can add rules to
manage content being added to, edited in, or removed from the folder. One of the
actions a rule may trigger is the activation of a functionality, or “aspect”, for the
selected documents, such as “versionable”, “taggable” or “classifiable”. These
features can be exploited to set up a simple semantic-aware environment.

As a preliminary step, we prepared two spaces to contain the documents involved
in the classification task. First of all, necessary ontologies, either in OWL or RDF
format (Resource Description Format, the ancestor of OWL), must be uploaded to
the repository. During this process, ontologies are treated just like any other file,
and no particular action needs to be performed. This upload is not strictly
necessary: in principle ontologies might be downloaded on-the-fly from a user-
provided URL, or may even be remotely navigated. A second space is reserved for
contents subject to classification. A rule is associated to it: every document
uploaded into that space will be “taggable” (i.e., will be extended with the
“taggable” aspect). Again, this space is not essential, and it is there only for a
practical reason: it ensures us that tagging is active for those documents.

Being a web-based tool, the user interface heavily relies on Javascript; we adapted
the behavior of the tagging module so as to accommodate ontology-aware tagging.
In order to keep this a low-impact modification, we chose a Javascript-only

30

approach to both ontology processing and visualization. The starting point to add a
semantic tag is the same as for traditional tagging: in the property view for a
“taggable” document, an “Add a tag” link can be seen (Figure 7).

When clicked, the link reveals a new navigation interface, which allows the
selection of the reference ontology by means of a combo-box, filled with the
contents of the ontology folder (Figure 8). This interface may be changed so as to
allow retrieval of remote files too.

Once loaded, a graphical representation of the ontology is shown, which can be
interactively explored for an easy identification of interesting concepts. We made
use of a force-directed graph layout for animated visualization, where nodes are
ontology concepts and links between nodes represent a parent-child relation
(Figure 9). Navigation is performed by clicking on nodes, which reveals direct
children and at the same time selects the node as a candidate tag, changing the
text on the “Add tag” button. This kind of representation lacks some expressivity
when applied to ontologies; other graphic layouts may be tested for a better user
experience: trees, hyperbolic trees, radial graphs and more [40,41]. Finally, when
the user has found the entity/concept of interest, he can add the entity name to the
document’s tag set. In order to avoid ambiguities, the resulting tag will include both
the name of the entity and the name of the ontology.

Figure 7: setting up document metadata

31

Figure 8: selection of the reference ontology

Figure 9: navigating the ontology and selecting the tag

32

3.6.1. A case study

The application of the main ideas underpinning our approach to semantic tagging
in the ECM field has been exploited also in a specific case study. Diagnostic
procedures in molecular biology tests are carried out by a number of different steps,
using specific analysis tools in the subsequent phases. The final outcome of the
test is usually sketched out in a standard, rigidly structured format. Conversely, the
whole path to the test outcome throughout the different steps encompasses
intermediate documents that describe results from the employed machinery. Such
intermediate information, given as files in both textual and proprietary formats, is
related to the test outcome plainly by file naming conventions stated by the
laboratory staff. In order fully exploit the knowledge base in this large amount of
data, it is crucial to properly apply a standard classification of all the related
documents, as well as addressing lineage issues in a more systematic way.

We have thus proposed [43] to proceed with a semantic tagging of most of the
intermediate files (to be kept in a document repository) making use of well-known
ontologies in the life sciences field, such as GO (gene ontology), OBO or Biopax
(see Appendix A for references). The semantic tagging procedures have been
introduced according to the aforementioned minimum-impedance approach, hiding
the burden of ontology navigation by means of simple, user-friendly interfaces
(developed in Javascript) which do not severely interfere with the underlying ECM
environment.

The results are encouraging, both in the common diagnostic procedures and in the
research field. In particular, in this last case the semantic approach let us
overcome the inherent unpredictable usage of each intermediate result within the
whole framework of the experiment development.

3.7. Adapting ontologies to trees

Sometimes the CMS/DMS already supports structured categories, but their
structure is limited to traditional trees. This can be a problem, because trees are
not sufficiently expressive to represent ontologies in the general case: even
focusing on parent-child relations only, entities can have multiple parents, while
tree nodes do not. However, one can get around this limitation, while still
leveraging the native support to tag structure, with the usual “cheat” of repeating
concepts under each of their parents. Alternatively, trees can be ignored and a
parallel tag model may be created to reflect ontologies more closely.

We developed this solution on OMAR, the open source reference implementation
of the ebXML registry specifications. Sponsored by OASIS and UN/CEFACT,
ebXML is a well-known family of industry standards for electronic business,
including specifications for business processes, interoperable repositories and
messaging. The most recent edition of the registry/repository standard is version
3.0. Since then, a new working group (the Semantic Content Management Sub-
Committee - SCMSC) has been established under the Registry Technical
Committee to investigate use cases and requirements for semantic content
management, and produce specifications to be introduced in the next major

33

revision of the ebXML Registry. At the time of this writing, version 4.0 is still under
development.

The current version allows hierarchical category trees and multiple classifications
for a single object. It does not explicitly mention ontologies nor tagging, except for a
deliverable from the SCMSC suggesting patterns and workarounds for the
translation of OWL constructs into Registry objects. However, its features can be
easily extended through slots and content management services. Slots are generic
name-type-value triples which can be attached to objects in order to enhance their
metadata. Content management services are custom services that can be used to
perform content-based transformations on new documents before submission to
the repository. They are associated to one (or more) object type(s), and are
invoked upon a publishing operation that involves one of those associated objects.
Users can provide their own services (either as an XSLT stylesheet or as a stand-
alone process, accessible through the Web Service technology) and accommodate
them in the Registry through its pluggable architecture. To set up this functionality,
a reference to the service must be first created into the registry, and then
associated to the classification node representing the target object type. Standard
service types include content validators and content catalogers: validators check
the conformance of documents with respect to a given rule-set, and prevent the
publication of invalid ones; catalogers extract metadata from document content and
create the related objects inside the registry. This latter mechanism can be
proficiently used to automatically perform the translation from OWL to the Registry
Information Model (RIM) recommended in the above-mentioned paper from the
SCMSC.

3.7.1. Mapping OWL to RIM constructs

The first step for the semantic enhancement of OMAR was the creation of a few
Registry objects to mirror the functionality of some OWL constructs that do not
have an equivalent in the RIM. They include, among others, structures for the
definition of properties, hierarchy of properties and hierarchy of classes. Although
we will only be using class hierarchy information, we took into consideration the
whole set of constructs for the sake of completeness; this way, we cleared the
ground for any future work regarding ontology management on ebXML. We also
created a new object type specifically for OWL ontologies, in order to distinguish
them from other kinds of content; this will turn out useful when figuring out whether
a document needs to be processed by the cataloger or not. Finally, we
implemented the discovery facility, i.e. a set of queries for the navigation of the
model: find all parents of a class, find all children, find all transitive properties,
etcetera This involved some SQL to query the database underlying the Registry,
and, since recursion was required, is implementation-dependent.

In the ebXML framework, documents are stored inside the repository, and
represented in the registry by their associated metadata. A registry object holding
metadata for a repository item is called extrinsic object. Moreover, other types of
objects can be stored in the registry. The ebXML Registry Information Model (RIM)
lists quite a few subclasses of the registry object class, such as classification
scheme, person, and notification.

34

The specifications regarding OWL support [15] clearly define one possible mapping
scheme to represent OWL concepts in terms of ebXML RIM constructs. An
essential requirement for such an approach is the preliminary creation of basic
structures, including association types (for hierarchy and property definition),
external links (referencing XML Schema datatypes) and ad-hoc queries (for
elementary ontology browsing). For instance, before we can say that P is a
property of class C, we have to state the existence of the hasProperty association
type.

Once the basic structures have been set, any OWL document can be represented
inside the registry according to the following rules:

 An ontology is translated to a classification scheme. It represents a taxonomy
tree, whose nodes are called classification nodes.

 Each entity corresponds to a classification node within the scheme. Since OWL
allows multiple inheritance while ebXML does not, the subclassOf association
type is introduced to override the built-in parent property, normally used to
define hierarchies. Given that th ebXML registry does not natively support the
“subclassOf” association, nodes are organized in a flat arrangement and are all
direct children of the classification scheme.

 An individual is represented by an extrinsic object. Its type is specified by
means of a classification, i.e. an association with a classification node. An
extrinsic object can be classified according to several different schemes, and
consequently may present many classifications.

 Properties become associations. In particular, property characteristics (such as
transitivity, symmetry, etc.) are accounted for as association types.

Class properties are further examples of associations, linking classification nodes
to whatever is in the property range: other classification nodes or any XML Schema
datatype. Properties may be organized in hierarchies, too, connecting them with a
“subpropertyOf” association. Moreover, OWL allows to state that a property is
transitive, or symmetric, or that it is the inverse of another property: these aspects
are accounted for by using different association types for each of them. Ontologies
often comprise individuals, i.e. class instances: a class is an abstraction of a set of
individuals sharing some common properties, thus an individual is characterized by
the specific values assumed by those properties. An individual is represented in
ebXML by an “extrinsic object”, that is, a registry object containing metadata for a
repository document. Both properties and individuals were included in the
cataloging process in order to obtain a comprehensive representation of the
ontology, although they are not of immediate use for the semantic tagging task.
Once provided with the required classification nodes, semantic tagging is just a
matter of associating documents to the correct categories. This can be done using
either the standard UI or in an automated cataloger service.

35

For the actual elaboration of OWL files we developed a dedicated software module:
the Ontology Cataloger service. Its purpose is the creation of the registry objects
required to mimic a given ontology, according to the directives in it. It consists of a
Java program which leverages the Jena framework for ontology processing, in
particular for the identification of classes and their relationships. Jena is a popular
open source framework for semantic data management in Java, offering an
environment for OWL, RDF, RDFS and SPARQL; it was born within the HP Labs
Semantic Web programme, and is now an independent project. The objects
resulting from the cataloging phase are stored in the registry, while the originating
XML file is stored inside the repository like any other document. Figure 4 the
outcome of the described loading activity in the case of a biological ontology. For
the cataloger to be reachable by the Registry, we had to provide a Web Service
interface, which we did using the Apache Axis engine, a well-known SOAP
processor for the Apache Tomcat server. A reference to the actual service URL
was then entered in the registry and associated to the OWL object type, thus
activating the automatic invocation upon submission of OWL files.

3.7.2. Browsing the ontology

We already observed that entities apparently lose their hierarchical structure, since
the “subclassOf” property is not natively supported. For this reason, we need an
ad-hoc solution to query an ontology. One possibility is to use an external program,
a management service, which would be able to access the registry/repository while
leveraging dedicated libraries, such as Jena. However, such a loosely coupled
architecture hampers the efficient implementation of ontology navigation. The
service, while referenced inside the registry, is still an external entity that has no
direct access to the registry. In order to perform any kind of query, it needs to

Figure 10: an ontology related to the biological field loaded in
OMAR

36

create a local copy of the ontology, downloading it from the ebXML repository. This
approach could be feasible just with small-sized ontologies, and it requires a
considerable communication overhead.

Due to these difficulties, we followed a different technique, which is offered by
ebXML’s standard AdhocQuery objects, explicitly meant to to wrap complex
queries while offering a simple interface, similarly to what happens in databases
when using stored procedures. Input parameters are usually entered through a
graphical interface which completely hides the query logic. Behind the curtain, an
AdhocQuery object ultimately contains a SQL query to be performed over the
database underlying the Registry, and is thus implementation-dependent. The
ebXML profile for OWL explicitly mentions several canonical queries, such as “find
all superclasses of X” or “find all inherited properties of Y”, that should be
supported by a registry in order to explore OWL documents. Unfortunately, several
of the most useful browsing queries imply recursion, which is only supported from
the SQL-99 standard onwards. This means that the vast majority of DBMSs, that
do not fully comply with SQL-99, will not be able to perform them. That was also
the case for our environment (we used PostgreSQL 8.1); to overcome this
limitation, in our implementation we replaced the flawed canonical queries with
stored procedures written in PL/pgSQL, the PostgreSQL’s procedural language.

3.8. Metadata organization using ontologies

Metadata are heavily used in document searches (much more frequently than
content, because metadata are less tied to syntax and closer to semantics), and
since searching is the most important function in DM systems, it becomes clear
that efficient knowledge management can be enabled by a well-structured
metadata model.

Unfortunately, no standard schema currently exists for satisfactory document
characterization. The most notable effort, the well-known Dublin Core metadata set
was explicitly designed to be minimal, in order to suit a wide range of applications.
The Dublin Core schema does not accommodate the creation of complex user-
defined structures, thus it lacks the flexibility often required in a number of
application fields. This need for complexity arises when observing that different
document types need different metadata sets to be fully qualified. This problem has
grown even worse in recent years, due to the current trend of using DMSs like
generic Content Management Systems (CMSs), containing not only textual
documents but multimedia files as well.

3.8.1. Document-type ontologies

Since we cannot define a straight-forward “one-size-fits-all” metadata set, we need
a more complex model to enable DMSs to manage metadata in a structured way,
such as classifying similar documents using the same properties and taking
advantage of hierarchies to express different levels of detail and abstraction. The
description of entities, properties and their relations is exactly the focus of research
about ontologies and related technologies: hence, we can leverage the
infrastructure we discussed in the previous paragraphs to introduce metadata-
related ontologies in existing DMSs.

37

In literature, ontology entities always describe documents’ content, and are used as
an enhancement of keywords. However, we spotted another possible utilization,
limited to a specific class of ontologies, that can solve our document
characterization problem. If the ontology describes document types, such as
newspaper article, internal report and so on, it can be exploited when publishing
new documents to the repository. In fact, each entity attribute is translated to a
metadata field for that particular document category. Therefore, if we know that
document D belongs to class C, then D must be qualified with all the attributes
asserted (or inferred) for class C. Of course, only attribute names and domains are
definitely set, while actual values differ among documents. These values are
usually provided by the publisher, but might be extracted automatically, as seen in
several recent papers, through machine learning techniques [33] or static rules [12].

Document-types ontologies can thus be a solution for the problem we initially
stated (Figure 11). In order to support both traditional tagging and document-type
tagging, we define two different annotation types, to specify whether either a
content-related or a document-type-related ontology is referenced.

Assuming that at least one document-type ontology is present in the registry, our
goal is to automatically annotate all the documents according to the type
descriptions supported by the ontology. The annotation process consists of two
steps: i) metadata discovery, i.e. detection of all metadata fields that make sense
for that particular document type; ii) metadata population, i.e. fill in their values
according to the actual document. In most of currently available, ordinary DMSs,
the former phase is usually ignored, and metadata fields are either statically
defined or freely customizable. Both approaches have limitations, one being

Figure 11: example of document-type ontology

38

excessively generic (the same metadata set for all documents) and the other being
excessively specific (potentially, a different set for each document). The set of
interesting attributes to be extracted from documents is usually fixed, as Digital
Libraries typically conform to the Dublin Core standard, or some variant of it. The
Dublin Core metadata set consists of 15 elements, embracing data about the
document itself (title, language, format) as well as people who worked on it (creator,
publisher, editor). It frequently turns out to be excessively generic, thus different
systems need to integrate the metadata set with different information. Obviously
this limits the extent to which such systems can be labeled as “interoperable”,
although an extension mechanism is provided by the Dublin Core itself (Qualified
Dublin Core) using element refinements. Basic compatibility should be insured by
the “dumb down” principle, stating that a system that does not understand a refined
attribute should be able to use the broader term.

Whatever the metadata set, once it has been chosen it is used uniformly over the
entire corpus. This may be reasonable when documents share a common format
and/or scope, such as research papers or case histories, and we have a priori
knowledge of which metadata fields make sense in our context. However, when we
face the need to manage an heterogeneous collection of resources, this approach
is just not flexible enough. We can easily observe that different document types
need different metadata sets to be properly characterized: a piece of information
may be vital for one document and completely worthless (or not applicable) for
another. For instance, a reference to the originating department may help the
classification of internal reports produced within an enterprise, while it would be
non-sense to attach that information to newspaper articles in a press review. At the
other end of the spectrum, excessive flexibility, meaning completely unstructured
metadata, is undesirable as well. Even though knowing that a document is related
to the term “PDF” in some way could still be a valuable information, the nature of
this relation makes a big difference, since “PDF” may be interpreted as the subject,
the format, or even the author’s initials. Of course, if documents are completely
unrelated to each other and we have no prior knowledge about the metadata we
can extract from their content, we cannot do much to obtain a structured
characterization: therefore, we will make the assumption that our repository
contains documents belonging to a definite, possibly hierarchical (or otherwise
interrelated) set of document types, each qualified by a different metadata set.

In this setting, we proposed the introduction of document type ontologies as a
reasonable trade-off, providing a flexible yet rigorous metadata model. A
document-type ontology describes all the associations among document types and
metadata fields, making use of hierarchies in a clean and extensible scheme. The
document-type classification for one specific document implies the identification of
all the related nodes in the document-type ontology. As a consequence, metadata
discovery involves reasoning over the ontology, because fields for a given
document type may not be explicitly asserted as properties of the related entity;
instead, they may be inherited from super-types, or inferred in more complex ways.
If a document references multiple metadata-related ontologies, it will be
categorized by the union set of all the inferred fields.

39

Once metadata attributes have been discovered, their values for a given document
can be figured out in several ways. Depending on the actual document format, it
might be possible to automatically compute them, which is obviously the best
solution. However, this is not always feasible, and human involvement is generally
needed. In our implementation, we took the naive approach of leaving those fields
empty: the publisher is supposed to take care of them right after submitting the
document. Other more advanced solutions could assist the user by giving
suggestions on most likely values for each metadata field.

3.8.2. Implementation details

We implemented this solution in an ebXML registry. Obviously, implementation of
the OWL profile documented in previous paragraphs is a prerequisite. As for the
OWL translation procedure, the whole annotation process is carried out by another
software component, which we named Document Cataloger. Figure 12 shows the
arrangement of the two Catalogers within the overall architecture. It is worth
pinpointing the loose coupling of both the additional modules and the ebXML
registry, leaving untouched the DMS core engine.

Two practical issues arise from this arrangement: one is the need to accommodate
semantic tags when a document is submitted to the registry; the other is the
definition of the trigger which is supposed to wake the Document Cataloger. The
first problem can easily be tackled using slots. A slot is a completely generic
extension mechanism with no predefined meaning. It is composed by three fields
(name, type and value) which can be freely filled: the only constraint about slots is
the uniqueness of their name within the local registry object. Therefore, we chose
to define a slot type for supporting semantic annotations (actually, two different
types in order to discriminate between content-related and metadata-related
ontologies), using the slot value to hold the unique identifier of the ontology’s
classification node.

The second problem is a bit more tricky. According to the standard specifications,
catalogers have to be bound to a specific object type. However, in this case there

Figure 12: architecture of Semantic upgrades to an ebXML registry

40

is no specific kind of objects that should be tied to the execution of the cataloger:
the cataloger should simply be invoked anytime a semantically tagged document,
whatever the type, is submitted for publication on the repository. There is no easy
solution to the question, since semantic tags actually are generic slots which are
not taken into consideration by the ebXML engine. Only two solutions apply:

 We could create a new document type (named annotated document), to bind
the cataloger to. This solution, even if definitely feasible, is not satisfactory
from the theoretical point of view because it defines a fictitious category
embracing documents that may be completely unrelated to each other. Instead,
the document type should be a more meaningful piece of information,
regarding either content or format.

 We could associate the cataloger to all documents (i.e. the extrinsic object root
node) so as to trigger its invocation from every publishing request. Thus the
cataloger is in charge of detecting whether a document requires special
processing, by looking for its possible semantic annotations.

For the sake of integrity and meaningfulness of the registry, we selected the
second alternative and demanded all tests to the cataloger itself.

3.8.3. Sample publication

The usage of the ebXML registry as modified to support OWL ontology-based
classification is briefly illustrated in this section, by describing the publishing
mechanism first for a document type ontology, and then for an annotated
document. In the following, we refer to the simple tree-shaped ontology shown in
Figure 11.

Figure 13: cataloging services in action for ontology and document
publishing

41

The sequence diagram in Figure 13 shows how cataloging services are involved
when publishing an ontology (top box) and an annotated document (bottom box);
the latter use case assumes user interaction for metadata input. The first step is
ontology publication. If the OWL cataloger is correctly set up, from the end-user
standpoint this publication is identical to any other. No particular care needs to be
taken, except for the object type which should be set to “OWL”. The cataloger will
be automatically invoked, and the resulting objects will be inserted into the registry,
according to the mapping defined in previous paragraphs.

Figure 14: using slots via the repository GUI in publishing annotated documents

42

In order to illustrate the document categorization process (shown via the system
GUI in Figure 14) , we consider the upload of a research article. The publishing
request expected by the ebXML engine is an XML document formatted according
to the ebXML Registry Services specification. This particular request will also
include one or more slots representing our semantic annotations (Figure 15).

As the document cataloger has been bound to the extrinsic object type, this
submission will automatically invoke the cataloger that, scanning the metadata of
the received object, will find a slot whose type is
“urn:ontology:annotation:documenttype”. This is the type we defined for semantic
annotations towards document type ontologies. The slot value is thus interpreted
as the name of the entity (i.e. classification node) to be analyzed for metadata
discovery: in our example, the “researcharticle” entity within the “sample” ontology.

The described analysis is actually performed by the registry, which can freely
access the ontology without any communication overhead. The cataloger simply
calls a couple of canonical queries provided by the registry, namely
FindAllInherited-ObjectProperties and FindAllInheritedDatatypeProperties. Those
queries exploit the ontology structure and eventually return a list of properties.
Such values in this context define the metadata fields associated to that particular
document type. In the case of a research article, those fields include DOI,
Conference, Publisher (explicitly stated for the entity), Source name, Contacts,
Language (inherited from External), Title, Author and Date (inherited from
Document).

After the discovery phase, metadata fields can be filled in with values extracted
from the document. As previously mentioned, and as shown in Figure 13, we chose
to rely on a subsequent human intervention. Metadata are ultimately attached to
the document as extrinsic object slots and returned to the registry for publication.

<?xml version=”1.0” encoding=”UTF-8” ?>

<lcm:SubmitObjectsRequest xmlns=… >

 <rim:RegistryObjectList>

 <rim:ExtrinsicObject id=… >

 <rim:Slot name=”myannotation”

 type=”urn:ontology:annotation:documenttype”>

 <rim:ValueList>

 <rim:Value>

 urn:ontology:sample:researcharticle

 </rim:Value>

 </rim:ValueList>

 </rim:Slot>

 …

 </rim:ExtrinsicObject>

 </rim:RegistryObjectList>

</lcm:SubmitObjectsRequest>

Figure 15: XML content of a publishing request message

43

4. CONCLUSIONS

This work was intended to target a vacant niche in traditional academic studies: the
relationship with the business world. Since the main problem with the realization of
most systems in research papers sits in their requirement of a completely virgin
and unconstrained environment, we decided to try the new direction of small-scale
modifications to existing systems. In this perspective, we tackled several real
problems related to the greatly felt topic of interoperability. Conforming with our
minimum-impact philosophy, we came up with several small solutions, rather than
a single comprehensive system. Notable results of our effort can be summarized
as follows:

 We defined a generic interface to access the most commonly used DMS
functions, independently from the actual system. We also provided an
implementation based on the Web Service technology, so that an
interoperable DMS might be queried in a technology-agnostic manner. The
high relevancy of this achievement is due to the key role DMSs play in modern
companies.

 We contributed to the cause of e-business standardization, designing an
architecture to support the seamless introduction of ebXML registries in
existing ISs. This architecture allows the exploitation of all ebXML
functionalities over any kind of connected DMS, and thus eases the shift of
applications’ interactions from system-specific to standard-based.

 All the proposed solutions satisfy the common requirement of adding new
possibilities without revolutionizing in-place systems, so as to avoid service
discontinuities in pre-existing applications.

Following the thread of interoperability, we shifted our focus to the latest
achievements in the field of data integration: semantic enhancements.

 We developed an accurate implementation of the semantic enhancements
described in the OWL profile specifications for ebXML registries. To our
knowledge, this is the first implementation of the standard.

 We showed the feasibility of a general ontology-based approach to semantic
classification in state-of-the-art document management tools. Again, the
objective was accomplished under the imperative of keeping the number of
modifications as low as possible, leveraging existing features whenever
appropriate, and ensuring consistency with external software.

 We delimited an often neglected sub-topic of semantic tagging, i.e. metadata
discovery, and discussed its traits.

 We introduced the novel concept of document-type ontology and illustrated its
usefulness with respect to the metadata discovery problem. Taking advantage
of an OWL-aware ebXML registry, a sample architecture was devised and
implemented to tackle the problem through this kind of ontologies.

44

It is worth noticing that the validity of our findings is endorsed by real world use
cases and implementations. Some of the systems presented here are daily
exploited in a multinational manufacturing industry. In the context of this work, this
is a significant achievement, since it testifies that our hypothesis were correct and
enhancement of knowledge management systems can actually be obtained
through low-impact approaches.

45

REFERENCES

1. Anthony R.N., Planning and Control Systems: A Framework for Analysis,

Harvard Business School Press, 1965.
2. Land, F.F., “The First Business Computer: A Case Study in User-Driven

Automation”, IEEE Annals of the History of Computing, Vol. 22, No. 3, 2000.
3. Simon H.A., Administrative Behaviour 2nd ed, The Free Press, 1976.
4. T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific

American, May 2001.
5. S. Bechhofer, F. van Harmelen, J. Hendler et al., OWL Web Ontology

Language Reference, 2002. http://www.w3.org/TR/owl-ref
6. Ankolekar, M. Krötzsch, T. Tran, D. Vrandečić, “The two cultures: mashing up

web 2.0 and the semantic web”, 16
th
 Int’l Conf. on World Wide Web, 2007, pp.

825-834.
7. T. Tran, P. Cimiano, S. Rudolph, R. Studer, “Ontology-Based Interpretation of

Keywords for Semantic Search”, ISWC/ASWC, 2007.
8. L. Specia, E. Motta, “Integrating Folksonomies with the Semantic Web” , The

Semantic Web: Research and Applications, LNCS 4519, 2007, pp. 624–
639.

9. Li Ding; Finin, T.; Joshi, A.; Yun Peng; Rong Pan; Reddivari, P., "Search on
the Semantic Web", IEEE Computer, vol.38, no.10, Oct. 2005, pp. 62-69

10. Bojars, U.; Breslin, J.G.; Peristeras, V.; Tummarello, G.; Decker, S.,
"Interlinking the Social Web with Semantics," Intelligent Systems, IEEE , vol.23,
no.3, May-June 2008, pp.29-40.

11. J. Mayfield, T. Finin. “Information retrieval on the Semantic Web: Integrating
inference and retrieval”, 26th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2003.

12. M.Y. Day, R. Tzong-Han Tsai, C.L. Sung et al., “Reference metadata
extraction using a hierarchical knowledge representation framework”, Decision
Support Systems, Vol. 43, n. 1, 2007.

13. Bechini, A. Tomasi, and J. Viotto, “Collaborative e-Business and Document
Management: Integration of Legacy DMSs with the ebXML Environment”,
Interdisciplinary Aspects of Information Systems Studies, Physica Verlag,
2008

14. Bechini, A. Tomasi, and J. Viotto, “Enabling Ontology-Based Document
Classification and Management in ebXML Registries”, ACM SAC, 2008, pp.
1145-1150

15. Dogac, Y. Kabak, G. Laleci et al., “Enhancing ebXML Registries to Make them
OWL Aware”, Distributed and Parallel Databases, Vol. 18, n. 1, 2005, pp. 9-36.

16. T. Celik, K. Marks, “Real world semantics”, O'Reilly Emerging Technology
Conference (ETech), 2004.

17. Bechini, A., Cimino, M.G.C.A., Tomasi A., “Using ebXML for Supply Chain
Traceability - Pitfalls, Solutions and Experiences”, 5th IFIP I3E Conf., 2005,
Springer, pp. 497-511

18. Bechini, A., Cimino, M.G.C.A., Marcelloni, F., Tomasi A., “Patterns and
technologies for enabling supply chain traceability through collaborative e-
business”, Information & Software Technology, 2007

46

19. Bechini, A., Tomasi, A., and Ceccarelli, G., “The Ecumene Experience to Data
Integration in Cultural Heritage Web Information Systems”, CAiSE Workshops,
2004, Vol. 1, pp. 49-59

20. J. Viotto, “Progetto UtenzePAT”, Technical report, 2009
21. J. Viotto, “Progetto Agorà”, Technical report, 2008
22. Petinot, Y., et al, “eBizSearch: an OAI-Compliant Digital Library for eBusiness”,

JCDL, 2003, IEEE CS Press, pp. 199-209
23. Russo, L., and Chung, S., “A Service Mediator Based Information System:

Service-Oriented Federated Multiple Document Management”, 10th IEEE
International Enterprise Distributed Object Computing Conference Workshops
(EDOCW'06), 2006

24. Carey, M., “ Data delivery in a service-oriented world: the BEA aquaLogic data
services platform”, ACM SIGMOD international conference on Management of
data, 2006

25. Oldenettel, F., Malachinski, M., and Reil, D., “Integrating Digital Libraries into
Learning Environments: The LEBONED Approach”, IEEE Joint Conference on
Digital Libraries, 2003

26. P. Castells, M. Fernandez, D. Vallet, “An Adaptation of the Vector-Space
Model for Ontology-Based Information Retrieval”, IEEE Trans. on Knowledge
and Data Engineering, Vol 19, No. 2, 2007.

27. S. Dill, J. A. Tomlin, J. Y. Zien et al., “SemTag and Seeker: Bootstrapping the
semantic web via automated semantic annotation”, 12th In’l Con. on World
Wide Web (WWW’03), 2003.

28. L. Ding, T. Finin, A. Joshi et al., “Swoogle: A Search and Metadata Engine for
the Semantic Web”, 13th ACM Conf. on Information and Knowledge
Management (CIKM’04), 2004.

29. A. Dingli, F. Ciravegna, Y. Wilks, “Automatic Semantic Annotation using
Unsupervised Information Extraction and Integration”, K-CAP Workshop on
Knowledge Markup and Semantic Annotation, 2003.

30. W. Fang, L. Zhang, Y. Wang et al., “Toward a semantic search engine based
on ontologies”, 4th Int’l Conf. on Machine Learning and Cybernetics, 2005.

31. C. Fellbaum (editor), WordNet: an electronic lexical database, MIT Press,
1998.

32. M. Ashburner , C.A. Ball , J.A. Blake et al., “Gene Ontology: tool for the
unification of biology”, Nature Genetics, Vol. 25, 2000, pp. 25–29.

33. H. Han, C.L. Giles, E. Manavoglu et al., “Automatic Document Metadata
Extraction using Support Vector Machines”, Joint Conf. on Digital Libraries
(JCDL’03), 2003.

34. S. Handschuh, S. Staab, F. Ciravegna, “S-CREAM - Semi-automatic
CREAtion of Metadata”, Semantic Authoring, Annotation & Knowledge Markup
(SAAKM 2002), 2002.

35. D. Lenat, R.V. Guha, Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project, Addison-Wesley, 1990.

36. I. Niles, A. Pease, “Towards a standard upper ontology”, International
conference on Formal Ontology in Information Systems, 2001.

37. B. Popov, A. Kiryakov, A. Kirilov et al., “KIM - Semantic Annotation Platform”,
2nd International Semantic Web Conference (ISWC2003), 2003.

38. E. Sirin, B. Parsia, B. C. Grau et al., “Pellet: A practical OWL DL reasoned”,
Journal of Web Semantics, Vol. 5, n. 2, 2007.

47

39. M. Vargas-Vera, E. Motta, J. Domingue et al., “MnM: Ontology Driven Semi-
Automatic and Automatic Support for Semantic Markup”, 13th In’l Conf. on
Knowledge Engineering and Management (EKAW2002), 2002.

40. J. Lamping, R. Rao, P. Pirolli, “A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies”, SIGCHI conference on Human
factors in computing systems, 1995.

41. K. Yee, D. Fisher, R. Dhamija, M. Hearst, “Animated Exploration of Dynamic
Graphs with Radial Layout”, IEEE Symposium on Information Visualization,
2001.

42. A. Bechini, J. Viotto, “Enterprise Information Management towards the
Semantic Era”, submitted for publication

43. A. Bechini, R. Giannini, J. Viotto, “Semantic support to document managent in
bio-medical environment: a case study on molecular diagnostic procedures”,
submitted for publication

44. A.P. McAfee, “Enterprise 2.0: The Dawn of Emergent Collaboration”, MIT
Sloan Management Review, Vol.47, n. 3, 2006, pp. 21-28

48

APPENDIX A – INDUSTRY STANDARDS AND ORGANIZATIONS

Many of the topics covered in the presented work are concerned with applicative
aspects of knowledge management and industrial solutions to known issues. In fact,
the focal point of the whole thesis is to provide a bridge between the theoretical
problems in academic work and actual systems currently employed in the business
world. Due to their nature, these subjects are rarely treated in formal papers, or
standardized in an official way. It is far more common to find online specifications
or best practices, often recognized with a wide, but not necessarily global,
consensus. This format allows a faster response to changes in market, technology
and fashion; moreover, its informality eases comprehension and diffusion, and
encourages implementation of the standard, even though this comes at a price: the
risk of having a plethora of slightly different varieties of the specification. In this
appendix, we list industry specifications, standards organizations and web
references that play a major role in this field.

1. Document management

Documents are often cited in academic papers investigating metadata extraction,
automatic classification, ontology inference or natural language processing in
general. However, document management itself is more an applied science, and is
highly relevant to companies. Latest developments in the field can be frequently
found in fact sheets of real products rather than published in the scientific
community.

Organizations and communities

 Dublin Core Metadata Initiative. http://dublincore.org

 Open Archive Initiative, http://www.openarchives.org/

Specifications:

 S. Weibel, J. Kunze, C. Lagoze et al., “RFC 2413 - Dublin Core Metadata for
Resource Discovery, Technical report”, Internet Engineering Task Force
(IETF), 1998.

Commercial products:

 FileNet Corporation. IBM Filenet P8 Platform,
http://www.filenet.com/English/Products/Datasheets/p8brochure.pdf

 EMC Corporation. Developing Web Services with Documentum,
http://www.software.emc.com/collateral/content_management/documentum_fa
mily/wp_tech_web_svcs.pdf

 Vignette Corporation. Vignette Portal and Vignette Builder,
http://www.vignette.com/dafiles/docs/Downloads/
WP0409_VRDCompliance.pdf

49

2. ebXML

The ebXML suite of e-business standards is sponsored by the OASIS consortium
for open standards and the CEFACT center of United Nations. The freebXML
intiative is in charge of promoting its adoption.

Organizations and communities:

 OASIS: Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org

 United Nations Centre for Trade Facilitation and Electronic Business.
http://www.unece.org/cefact

 Electronic Business using eXtensible Markup Language. http://www.ebxml.org/

 FreebXML. http://www.freebxml.org/

 OASIS ebXML Registry Reference Implementation,.
http://ebxmlrr.sourceforge.net

Specifications:

 S. Fuger, F. Najmi, N. Stojanovic et al., ebXML Registry Information Model
specification version 3.0. http://docs.oasis-open.org/regrep/regrep-
rim/v3.0/regrep-rim-3.0-os.pdf

 S. Fuger, F. Najmi, N. Stojanovic et al., ebXML Registry Services specification
version 3.0. http://docs.oasis-open.org/regrep/regrep-rs/v3.0/regrep-rs-3.0-
os.pdf

 Dogac, Y. Kabak, G. B. Laleci et al. ebXML Registry Profile for Web Ontology
Language (OWL) Version 1.5. http://docs.oasis-
open.org/regrep/v3.0/profiles/owl/regrep-owl-profile-v1.5.pdf

3. Semantic resources

Most standards and recommendations related to the Semantic Web are governed
by the World Wide Web Consortium (W3C), and are available online throughout
their standardization process. The biomedical field is particularly active in putting
those specifications in practice, defining several huge domain ontologies and using
them for data integration.

Specifications:

 D. Beckett (editor). RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/REC-rdf-syntax/

 D. Brickley, R.V. Guha (editors). RDF Vocabulary Description Language 1.0:
RDF Schema. http://www.w3.org/TR/rdf-schema/

 S. Bechhofer, F. van Harmelen, J. Hendler et al. OWL Web Ontology
Language Reference. http://www.w3.org/TR/owl-ref

 Adida, M. Birbeck, S. McCarron et al., RDFa in XHTML: Syntax and
Processing. http://www.w3.org/TR/rdfa-syntax/

 Microformats. http://microformats.org/wiki/Main_Page

50

Tools:

 Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net

 Protégé ontology editor. http://protege.stanford.edu

 RacerPro OWL reasoner. http://www.racer-systems.com

Ontologies:

 The Gene Ontology. http://www.geneontology.org

 OBO Foundry. http://obofoundry.org

 BioPAX: Biological Pathway Exchange. http://www.biopax.org

 Cyc and OpenCyc. http://cyc.com/cyc, http://www.opencyc.org/

