
Università di Pisa

Dipartimento di Informatica

Scuola di Dottorato “GALILEO GALILEI”

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Temporal Video Transcoding in Mobile
Systems

Francesca Lonetti

Supervisor

Prof. M. A. Bonuccelli

October 15, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14699356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my mother

Acknowledgments

At the end of this work I want to thank all people sharing with me this experience.
A great thank to Maurizio Bonucelli for his professional and friendly helpfulness.

I wish to thank Francesca Martelli, my special colleague and irreplaceable friend.
Thank to Antonia Bertolino who welcomes me in Pisatel Lab and to Ericsson

Lab Italy for introducing me in this research area.
Thank to Eda, Andrea, Guglielmo, Sara, Jingua, Daniela, Antonino, Alberto,

Cesare for their smile and suggestions.
Many thanks to my family for its love, in particular to my sister Pina.
Finally, a special thank to Enrico, my happiness and my support, I would never

have arrived at this result without him.

iv

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Abstract

This thesis approaches the problem of temporal video transcoding in wireless net-
works. The general aim is to investigate temporal transcoding for improving real-
time video communication of multimedia services by considering peculiar features of
infrastructured and ad hoc wireless networks. We address the main issues of tempo-
ral transcoding, pointing out their characteristic problems and presenting our orig-
inal proposals (motion vector composition algorithm and frame skipping policies).
We focus on IEEE 802.11 vehicular networks for presenting a temporal transcod-
ing system able to improve real-time video communication overcoming the typical
network congestion and reducing late frames.

vi

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Contents

1 Introduction 1
1.1 Thesis objectives . 2
1.2 Organization of the thesis . 5

I Background 7

2 Video Coding 9
2.1 Introduction . 9
2.2 Video Compression . 10
2.3 Video Codec . 11

2.3.1 Motion Estimation . 13
2.3.2 Motion Compensation . 15
2.3.3 DCT . 16
2.3.4 Quantization . 17
2.3.5 Entropy Coding . 18

2.4 Video coding features . 18
2.4.1 Types of frames . 18
2.4.2 Rate Control . 19

2.5 Video quality measure: PSNR . 20

3 Video Transcoding 23
3.1 Introduction . 23
3.2 Why video transcoding . 24
3.3 Video transcoding architectures . 25

3.3.1 Bit-rate reduction . 26
3.3.2 Spatial Resolution Reduction 30

3.4 Video Transcoding for Error-Resilience 32

4 Temporal Transcoding 35
4.1 Introduction . 35
4.2 Temporal Transcoding Architectures 36

4.2.1 Pixel-domain temporal transcoder 37

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

viii Contents

4.2.2 DCT-domain temporal transcoder 39
4.3 Motion Vector Composition . 41

4.3.1 Bilinear Interpolation . 42
4.3.2 Forward Dominant Vector Selection 43
4.3.3 Telescopic Vector Composition 44
4.3.4 Activity Dominant Vector Selection 45

4.4 Motion Vector Refinement . 45
4.5 Frame skipping policies . 47

4.5.1 Motion-based frame skipping policies 47
4.5.2 Other frame skipping policies 49

II Proposed Approaches 53

5 Temporal Transcoding: architecture and Motion Vector Computa-
tion 55
5.1 Introduction . 55
5.2 Transcoder Architecture . 56

5.2.1 Transcoder architecture: reference frame not skipped 57
5.2.2 Transcoder architecture: reference frame skipped 57

5.3 MVC in our transcoder . 59
5.4 MVC algorithms comparison . 62
5.5 MVC in H.264 transcoding . 63

5.5.1 Motivations . 63
5.5.2 Multi-level MVC algorithm 70
5.5.3 Multi-Level Bilinear Scheme performance 74

6 Temporal Transcoding: skipping policies 79
6.1 Introduction . 79
6.2 Communication model assumptions 81

6.2.1 Buffer-occupancy skipping policy 83
6.2.2 A New motion based skipping policy 84
6.2.3 Consecutive skipping policy 86
6.2.4 Random skipping policy . 88
6.2.5 Size-prediction skipping policy 89

6.3 Performance analysis of skipping policies 92
6.3.1 Simulation Setting . 92
6.3.2 Buffer-occupancy vs other skipping policies 94
6.3.3 New motion based vs Standard motion based skipping policy . 98

7 Temporal Transcoding in IEEE 802.11 Vehicular Networks 101
7.1 Introduction . 101
7.2 IEEE 802.11 Distributed Coordination Function 103

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Contents ix

7.3 Real-time video on IEEE 802.11 vehicular networks 105
7.4 Temporal transcoding on IEEE 802.11 vehicular networks 106

7.4.1 System assumptions . 107
7.4.2 Our approach . 108
7.4.3 System performance . 110

7.4.3.1 Simulation settings 111
7.4.3.2 Simulation results 112

8 Conclusions 117

Bibliography 121

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

x Contents

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

List of Figures

2.1 Video encoder block diagram . 12

2.2 DPCM/DCT video encoder . 13

2.3 DPCM/DCT video decoder . 14

2.4 Typical MPEG4 video frame pattern 19

3.1 Universal Multimedia Access . 25

3.2 Cascaded fully decoding/re-encoding scheme 26

3.3 Cascaded Pixel-Domain Transcoder (CPDT) 27

3.4 Open-loop transcoding architecture for bit rate reduction 27

3.5 Closed-loop transcoding architecture for bit rate reduction 28

3.6 Simplified DCT-domain transcoder (SDDT) 30

3.7 DCT-domain Motion Compensation 30

3.8 Spatial Resolution Reduction: Down-sampling of four motion vectors 31

3.9 Spatial Resolution Reduction: Down-sampling of four macroblock types 31

4.1 Cascaded Temporal Transcoder in the pixel-domain 37

4.2 DCT-domain temporal transcoder: residual signal re-computation for
no-MC macroblocks . 40

4.3 DCT-domain temporal transcoder: residual signal re-computation for
MC macroblocks . 40

4.4 Motion Vector Composition . 41

4.5 Bilinear Interpolation algorithm . 42

4.6 Forward Dominant Vector Selection algorithm 44

4.7 Telescopic Vector Composition algorithm 44

4.8 Activity Dominant Vector Selection algorithm 45

4.9 Fast Motion Vector Refinement algorithm 46

4.10 Variable step-size Motion Vector Refinement algorithm 47

4.11 Motion based frame skipping: motion change analysis (a) n+1 frame
is not skipped (b) n + 1 frame is skipped 49

5.1 Our temporal transcoder architecture 56

5.2 Our temporal transcoder architecture: not skipped reference frame . . 58

5.3 Our temporal transcoder architecture: skipped reference frame 58

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

xii List of Figures

5.4 MVC algorithms comparison: PSNR1 of “foreman” video sequence
(from 30 to 15 fps) . 68

5.5 MVC algorithms comparison: PSNR1 of “foreman” video sequence
(from 30 to 7.5 fps) . 68

5.6 MVC algorithms comparison: complexity ratio of “foreman” video
sequence . 69

5.7 Partition modes of a macroblock in H.264/AVC 70
5.8 H.264 temporal transcoding: motion vectors of partitions overlapping

the reference area in the skipped frame 71
5.9 Multi-Level Bilinear Scheme (MLBS) 72
5.10 MLBS performance: PSNR1 of “foreman” video sequence (from 30

to 15 fps) . 76
5.11 MLBS performance: PSNR1 of “foreman” video sequence (from 30

to 7.5 fps) . 77
5.12 MLBS performance: complexity ratio of “foreman” video sequence . . 77

6.1 Skipping policies: communication model 83
6.2 Temporal transcoding: size of video frame after skipping a number of

previous consecutive frames . 90
6.3 Buffer-occupancy vs New motion based skipping policies: PSNR1 of

“coastguard” video sequence, IR=64 Kbps, R=32 Kbps 97
6.4 Buffer-occupancy vs Consecutive skipping policies: PSNR1 of “fore-

man” video sequence, IR=128 Kbps, R=32 Kbps 97
6.5 Buffer-occupancy vs Size-prediction skipping policies: Complexity ra-

tio of “foreman” video sequence . 98
6.6 New motion based vs Standard motion based skipping policies: PSNR1

of “mobile” video sequence, IR=256 Kbps, R=128 Kbps 99
6.7 New motion based vs Standard motion based skipping policies: transcoded

frames (210-213) of “table tennis” video sequence, QCIF format,
IR=128 Kbps, R=32 Kbps . 99

7.1 IEEE 802.11 Distributed Coordination Function: RTS/CTS Access
Mechanism . 104

7.2 IEEE 802.11 wireless network: communication model 107
7.3 IEEE 802.11 wireless network: decoding process at the receiver side . 108
7.4 Vehicular network: simulated road scenario 111
7.5 Proposed temporal transcoding system on IEEE 802.11 protocol vs

Conventional IEEE 802.11 protocol: PSNR values of “foreman” video
sequence N0→N2, I experiment. 114

7.6 Proposed temporal transcoding system on IEEE 802.11 protocol vs
Conventional IEEE 802.11 protocol: PSNR values of “foreman” video
sequence N2→N0, I experiment. 115

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

List of Tables

2.1 Video frame formats . 11

5.1 Pseudo-code of MVC module . 61
5.2 MVC algorithms performance comparison: PSNR1 of different video

sequences at different input bit rate IR(Kbps) from 30 to 15 fps . . . 64
5.3 MVC algorithms performance comparison: PSNR1 of different video

sequences at different input bit rate IR(Kbps) from 30 to 7.5 fps . . . 65
5.4 MVC algorithms performance comparison: Complexity ratio of dif-

ferent video sequences at different input bit rate IR(Kbps) from 30
to 15 fps . 66

5.5 MVC algorithms performance comparison: Complexity ratio of dif-
ferent video sequences at different input bit rate IR(Kbps) from 30
to 7.5 fps . 67

5.6 MLBS algorithm performance: PSNR1 of different video sequences
at different input bit rate IR(Kbps) from 30 to 15 fps 75

5.7 MLBS algorithm performance: Complexity ratio of different video
sequences at different input bit rate IR(Kbps) from 30 to 15 fps . . . 76

6.1 Pseudo-code of Buffer-occupancy skipping policy 84
6.2 Pseudo-code of New motion based skipping policy 87
6.3 Pseudo-code of Consecutive skipping policy 88
6.4 Pseudo-code of Random skipping policy 89
6.5 Pseudo-code of Size-prediction skipping policy 91
6.6 Buffer-occupancy skipping policy: TF and PSNR1(dB) of “foreman”

video sequence for different IR(Kbps), R(Kbps) and τ values 94
6.7 Proposed skipping policies: TF, PSNR1(dB) and PSNR2(dB) for dif-

ferent video sequences, IR(Kbps) and R(Kbps) values 95
6.8 Proposed skipping policies: TF, PSNR1(dB) and PSNR2(dB) for

other video sequences, IR(Kbps) and R(Kbps) values 96
6.9 New motion based vs Standard motion based skipping policies: TF,

PSNR1(dB) and PSNR2(dB) for different video sequences, IR(Kbps)
and R(Kbps) values . 100

7.1 Pseudo-code of temporal transcoding system on IEEE 802.11 110

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

xiv List of Tables

7.2 QP and PSNR of different video sequences after coding and decoding 112
7.3 Conventional IEEE 802.11 protocol: PSNR vs required bandwidth of

video flows with network congestion (I experiment) 113
7.4 Conventional IEEE 802.11 protocol: PSNR vs required bandwidth of

video flows with network congestion (II experiment) 114
7.5 Proposed temporal transcoding system on IEEE 802.11 protocol: PSNR

vs required bandwidth of video flows (I experiment) 114
7.6 Proposed temporal transcoding system on IEEE 802.11 protocol: PSNR

vs required bandwidth of video flows (II experiment) 115

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 1

Introduction

Abstract

In this chapter we introduce the topic of our research, the problem we
faced, and the original proposed solutions.

Advanced types of interactive and multimedia services, such as Digital TV broad-
casting, Distance Learning, Video on Demand, Video Telephony and multipoint
Video Conferencing are used in everyday life, for working or practical purposes.
The great development of these services in the last years is due to the following two
important factors:

• improved digital video technologies in compression (encoding) and decompres-
sion (decoding), that allow high reduction of bandwidth intensive digital video
to a manageable size for transmission or storage. Highly efficient and scalable
video coding standards have been proposed for various applications, such as
H.263 for low-bit rate video communications, MPEG2 for broadcasting and
general high quality video application, MPEG4 for streaming video and inter-
active multimedia applications, H.264 for high compression requests;

• advances in network topology deployment, allowing a rapid and easy access to
media content. Large diffusion of infrastructured (cellular networks, UMTS)
and ad hoc networks (Wi-Fi, vehicular networks) offers to users mobility, flex-
ibility and mobile access to internet.

The quality of multimedia services is influenced by devices capabilities on commu-
nication, processing, storage and display. Adapting on-the-fly the media content
to different device and network characteristics (channel bandwidth and terminal
complexity, for instance), is one of the most important problems in this setting. A
typical strategy to approach this problem is the content adaptation, better known
as transcoding, usually performed by servers of a communication system, or by
gateways interconnecting heterogeneous networks.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

2 Introduction

Multimedia comprises images, video, audio, graphics, text, and the so called
presentation of media content. In this thesis, we focus on delivering of video content.
Video transcoding is defined, in general, as the conversion of one compressed video
stream to another one with different features, without performing the total decoding
and re-encoding process. To enable interoperability among devices with different
bandwith constraints and computational capacities, different kinds of transcoding
are dinamically required, depending on network resources and device features.

Video transcoding can provide format conversion, resolution scaling (spatial
transcoding), bit rate conversion (quality transcoding), frame rate conversion (tem-
poral transcoding). Format conversion operates a syntax change from a video coding
standard into another one. Spatial transcoding, reduces the spatial resolution of a
compressed video. It is required for facing the problem of limited size in many ac-
cess terminals. Quality transcoding operates on the bit allocation for each frame,
by tuning the quantization parameters, according to the target bit rate. Temporal
transcoding is a process that skips some frames in order to change the frame rate
of the video sequence, without decreasing the video quality of not skipped frames.
A critical issue in the design of multimedia applications is to guarantee real-time
constraints for enabling a good service quality.

In this thesis we are interested in temporal transcoding. Our goal is to investigate
temporal transcoding issues for improving real-time video communication of multi-
media services (such as video telephony, video conference, etc), in mobile networks,
more specifically infrastructured and ad hoc networks.

We outline the objectives and contributions of the thesis in Section 1.1, present-
ing its organization in Section 1.2.

1.1 Thesis objectives

We investigate the main issues of temporal transcoding for improving real-time
video communication. For this purpose, the proposed solutions try to reduce the
time needed to perform the transcoding process and to achieve a good video quality
by considering peculiar features of different network topologies. More specifically,
we focus on temporal transcoding for infrastructured and vehicular ad hoc networks.

First of all, after describing the features of existing transcoding architectures in
Chapters 3 and 4, we design a pixel-domain temporal transcoding architecture, and
we address the main problem of motion vector computation when a frame is skipped.
Motion Vector Composition (MVC) is a well know technique adopted to greatly
reduce computation time of heavy motion estimation processes. We evaluate the
performance of the most popular motion vectors composition algorithms (Bilinear
Interpolation [HWL98], Forward Dominant Vector Selection [YSL99], Telescopic
Vector Composition [SG00] and Activity Dominant Vector Selection [CCP02]), in
our architecture design.

Then, we address the problem of motion vector computation in H.264 temporal

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Thesis objectives 3

transcoding, and propose a MVC algorithm for H.264 based transcoding. An im-
portant feature of the H.264 codec, which is of interest in this thesis, is the variable
block-size partitioning of frames, as described in Section 5.5.1. Due to this vari-
able block-size partitioning, the existing MVC algorithms ([HWL98][YSL99][SG00]
[CCP02]) cannot be applied without changes, since a separate motion vector has
to be considered for each partition or sub-partition, overlapping the reference area
pointed by the motion vector of the current macroblock in the skipped frame. To
overcome this problem, we propose a multi-level motion vector composition scheme,
together with the Bilinear Interpolation function, that takes into account the vari-
able block size partitioning of H.264 coded frames.

Since many multimedia services are not specifically tailored to mobile systems,
often the channel bandwidth required for transmission does not match application
needs. In mobile systems, with an infra-structured network, transcoding is needed
at interworking nodes to perform bit rate reduction, or more generally to deal with
the current heterogeneous communication infrastructure and the diversity of services
and user terminals.

Many proposed solutions perform variable and constant bit rate reductions by
applying frame rate control schemes aiming to tune the quality of transcoded frames
minimizing distortion in the reconstructed signals.

Temporal transcoding performs this bit rate reduction by skipping frames only,
so it allows a good quality of transcoded frames when a high bit rate reduction is
needed also, with a consequent jerky effect due to skipping of frames.

In this thesis, we investigate several strategies for choosing frames to be skipped
(called frame skipping policies) in order to minimize this jerky effect, when a constant
bit rate reduction is in order. In addition, to guarantee real-time constraint of many
multimedia services, we outline frame skipping issues having a minimum processing
delay and a communication delay compliant with the time requirements of these
real-time services.

Most popular frames skipping policies ([HWL98][FCS02] [SC04]) base the choice
of frames to be skipped on motion information. The aim is to reduce the jerky effect
of the displayed sequence. The basic idea of this approach is that a frame with a lot
of motion has not to be skipped, since it is not possible to replace it with the previous
frame at displaying time, without introducing considerable quality degradation.

However, because of new challenges introduced in video communications (i.e.,
real-time constraints, high bit rate reduction in mobile systems), buffer control is,
in our opinion, the most important factor to have a good quality of transcoded video
sequences in real-time services. So, we investigate buffer constraints in frame skip-
ping problem. We describe our communication model assumptions, and we propose
a basic buffer based skipping policy able to deal with real-time requirements of this
communication model. In addition, we propose the following other skipping policies
that improve the quality of transcoded video sequence when buffer constraints are
met:

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

4 Introduction

• a new motion based skipping policy considering the different types of motion
in a frame;

• a policy that minimizes the number of consecutive skipped frames;

• a policy using a randomized approach related to buffer constraints.

Finally, we propose a frame skipping policy also able to reduce the processing
delay of the transcoding system, by predicting the size of the next frames when the
current one is skipped, according to a logarithm function.

After designing the above frame skipping policies dealing with real time con-
straints in constant bit rate infrastructured networks, we investigate the temporal
transcoding issues in other network system, such as ad hoc networks.

Another original contribution of this thesis in the field is approaching temporal
transcoding for improving real-time video communication in IEEE 802.11 vehicu-
lar ad hoc networks. Inter-vehicular wireless networks are recently gaining much
attention in the research community, due to the number of applications that could
improve the quality of everyday life. Real time video communication is required
for enhancement of road safety, by propagating emergency alerts or personal and
entertainment applications.

The transmission of real time video sequences in vehicular ad hoc networks incurs
in some problems, in particular due to transmission errors, variable bandwidth and
channel access delay, that bring to packet loss and variable delay of video delivering.

The known solutions mainly aim to develop new access protocols dealing with
channel errors and packet delay. Our approach adopts currently available wireless
networking protocols, such as the widely used IEEE 802.11 Wireless Local Area
Network standard, without any changes. This makes a large and not expensive
application of our system suitable.

We investigate the behaviour of basic Distributed Coordination Function (DCF)
of IEEE 802.11 protocol, focusing on the access channel delay when network load is
moderate or heavy, so congestion can occur. For real-time multimedia applications,
this access channel delay causes performance degradation, since a frame received
after the deadline is not displayed. This has two effects: the former is wasting
bandwidth; the latter is delaying the successive frames, which further degrades the
performance of real-time applications.

We develop a temporal transcoding system that discards frames when they are
late. We assume a cross-layer technique allowing interaction between Medium Access
Control (MAC) and application layers. Note that, cross layer technique is not the
focus of our work. Using temporal transcoding, our solution aims to overcome
congestion reducing bandwidth needs, and decreases delayed packets delivery.

The technique proposed in this thesis is about real-time video transmission in
vehicular networks. However, our approach can be extended to consider other types
of ad hoc networks.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Organization of the thesis 5

1.2 Organization of the thesis

The thesis is organized substantially in two parts: the former (Chapters 2, 3, 4)
reviews the existing solutions for video transcoding focusing on temporal ones; the
latter (Chapters 5, 6, 7) reports the original results of our work.

In particular, Chapter 2 describes the video coding features concerning the
transcoding process.

In Chapter 3, after outlining goal and issues of transcoding, we briefly survey
existing architectural solutions to perform bit rate and spatial resolution reductions.

Chapter 4 is devoted to overview the most important issues in temporal transcod-
ing: architecture design, motion vector computation, and frame skipping policies.
We outline the advantages of DCT and pixel domain transcoding architectures for
the frame skipping problem. We address motion vector composition technique and
we describe the existing motion vector composition algorithms. Finally, the known
frame skipping strategies are presented. This temporal transcoding overview has
been presented in [LM07b].

In Chapter 5, we describe our temporal transcoding architecture. We evalu-
ate performance of the motion vector composition algorithms presented in Chapter
4, and we address the problem of Motion Vector Composition in an H.264 based
transcoder. We propose a multi level motion vector composition algorithm dealing
with variable partitioning of H.264 coded frames. This algorithm has been published
in [LM07a].

In Chapter 6, we face the frame skipping issues, to deal with real-time require-
ments of multimedia applications in infrastructured networks with constant bit rate
reduction. We propose several frame skipping strategies. They are all based on out-
put buffer constraints and provide other metrics to reduce the computational delay
of transcoding process and improve the quality of the transcoded video sequence.
These results have been published in [BLM05a] [BLM05b] [LM06].

Chapter 7 addresses the temporal transcoding for real time video communication
in a recently developed type of network: Vehicular Ad Hoc Networks (VANET).
We use IEEE 802.11 available technology to design a system that, by skipping
late frames, is able to improve the quality of a real time video, while reducing the
bandwidth consumption. This approach has been presented in [BGLM07].

Finally, in Chapter 8, conclusions and topics for future studies are highlighted.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

6 Introduction

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Part I

Background

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 2

Video Coding

Abstract

In this chapter, we describe the main concepts of the video coding process.
We present a high level overview of the basic structure of a video codec,
focusing on the coding features concerning the transcoding process.

2.1 Introduction

Pervasive and high-quality digital video has been the goal of companies, researches
and standard bodies over the last two decades. Recent development of multime-
dia services and applications is due to improved digital video technologies. Highly
efficient and scalable video compression formats enable many advanced types of
interactive and distribution services, such as Digital TV broadcasting, Distance
Learning, Video on Demand, Video Telephony and multipoint Video Conferencing.
Digital video is an increasing technology which will continue to pervade business,
networks and homes.

Getting digital video from its source (a camera or a stored clip) to its destination
(a display) involves a chain of processes and components. The key processes in this
chain are compression (encoding) and decompression (decoding), in which band-
width intensive digital video is first reduced to a manageable size for transmission
or storage, and then reconstructed for display.

Even with constant advances in storage and transmission capacity, compression
is an essential component of multimedia services. Video compression makes possi-
ble to use digital video in transmission and storage environments that would not
support uncompressed video. For example, current Internet throughput rates are
not sufficient to handle uncompressed video in real-time (even at low frame rates
and/or small frame size). Digital Versatile Disk (DVD) video storage would not
be practical without video and audio compression. In addition, video compression
enables a more efficient use of transmission and storage resources. If a high bit rate

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

10 Video Coding

transmission channel is available, video compression allows to send high-resolution
compressed video or multiple compressed video streams instead of sending a single,
low-resolution, uncompressed stream. This brings a keen interest in the continuing
development and improvement of video compression and decompression methods
and systems. The objective is to provide a better image quality, more reliable and
flexible solutions.

In the last years, many video coding standards have been proposed for various
applications, such as H.263 for low-bit rate video communications, MPEG1 for stor-
age media applications, MPEG2 for broadcasting and general high quality video
application, MPEG4 for streaming video and interactive multimedia applications,
H.264 for high compression requests. Each standard primarily defines a coded repre-
sentation (or syntax) that describes visual data in a compressed form and a method
of decoding the syntax to reconstruct visual information. The standards specifically
do not define an encoder; rather, they define the output that an encoder should
produce. The standard aims to ensure that compliant encoders and decoders can
successfully inter-work, while allowing to developers the freedom to produce com-
petitive and innovative products.

In this chapter, we describe the basic concepts of the video coding process that
are common to main video coding standards, and which are useful for understanding
video transcoding issues.

The experimental results presented in this work are mainly obtained by using
MPEG4 and H.263 video coding standards and MPEG4 and H.263 based transcoder
implementations. Particular features of H.264 (the last video coding standard) are
taken into account to propose our solutions for improving the transcoding process.

2.2 Video Compression

Video coding is the process of compressing and decompressing a digital video signal.
Compression involves a complementary pair of systems, the encoder and the decoder.
The encoder converts the source data into a compressed form (using a reduced
number of bits) for practical transmission or storage, and the decoder converts the
compressed form back into a pixel-based representation of the digital video data.
The encoder/decoder pair is often indicated as a CODEC.

Digital video is a representation of a real-world visual scene sampled spatially
and temporally. Sampling is repeated at regular intervals in time (e.g. 1/25 or
1/30 second intervals) to produce a moving video signal. The sampling unit is
called frame, or picture, or image. Each spatio-temporal sample (picture element
or pixel) is represented by a number or set of numbers describing the brightness
(luminance) and colour of the sample. In RGB (Red, Green and Blue) colour space,
a colour image sample is represented with three 8 bits numbers, indicating the
relative proportions of Red, Green and Blue. A more effective and popular way
of efficiently representing colour images is YCbCr (sometimes referred to as YUV).

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video Codec 11

Table 2.1: Video frame formats
Format Luminance resolution (horiz. x vert.)

Sub-QCIF 128 × 96
Quarter CIF (QCIF) 176 × 144
CIF 352 × 288
4CIF 704 × 576
16CIF 1408 × 1152

It separates the luminance signal (Y) from the colour information given by three
colour components (chrominance) Cb, Cr, Cg, representing the difference between
the blue, red and green colour intensity and the luminance of the image sample. In
the YCbCr colour space, only the luma (Y) and blue and red chrominance (Cb, Cr)
need to be stored or transmitted, since the third colour component can always be
computed from the other two. One of the advantages of this format is that Cb and
Cr components may be represented with a lower resolution than luminance, without
affecting the perceived video quality, since the human eye is less sensitive to colour
variations than to luminance variations.

There are different frame resolutions. The Common Intermediate Format (CIF)
is the basic one for a popular set of formats listed in Table 2.1. The choice of frame
resolution depends on the application and on the available storage or transmission
capacity. For example, 4CIF is appropriate for standard-definition television and
DVD-video; CIF and QCIF are popular for videoconferencing applications; QCIF
and SQCIF are appropriate for mobile multimedia applications where the display
resolution and the bit rate are limited [I.E03].

There is high correlation between temporally adjacent frames and between pixels
that are close to each other in the same frame. Video compression is achieved by
removing this temporal and spatial redundancy respectively. The major video coding
standards, as H.261, H.263, MPEG1, MPEG2, MPEG4 and H.264, are based on the
same “codec model” that we shall explain in the following.

2.3 Video Codec

The main purpose of a video codec is to achieve compression efficiency with high
video quality. These two goals are usually conflicting, because a lower compressed
bit rate typically produces worse image quality at the decoder.

A video encoder, as shown in Figure 2.1, consists of three main functional units:
a temporal compression model, a spatial compression model, and an entropy com-
pression unit.

The temporal compression model reduces the similarities between neighbouring
video frames by performing a prediction process of the current frame with respect

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

12 Video Coding

���������
	�

�����

�������������
	�

�����

� ��������

�

�������� �!��"
���#��	$	%�&���'���#����(���)����

��"

��������"
�
�!�����'��"
�)�*����"

���#��
����#+
������������

�%����
����
	�

���)���

Figure 2.1: Video encoder block diagram

to one or more previous or future frames (reference frame). The result is a set of
motion vectors, and a residual frame (created by subtracting the reference from
the current frame). The spatial compression model reduces spatial redundancy
between neighbouring samples in residual frame by applying a transformation into
another domain (DCT is the most popular transformation), and quantizing the
results (quantization) to remove insignificant values. The output is a set of quantized
transform coefficients. These coefficients, together with the motion vectors, are
compressed by the entropy encoder to remove statistical redundancy (commonly-
occurring vectors and coefficients are represented by short binary codes). Note that,
in some standard codecs, the spatial compression model can be applied directly to
the current frame without performing the temporal compression process. The video
decoder reconstructs a video frame from the compressed bit stream. It applies the
entropy decoder to coefficients and motion vectors, and uses these motion vectors
together with one or more previously decoded frames, to create a prediction of the
current frame (Motion Compensation process). By adding the residual frame to this
prediction, it obtains the current frame.

The aforesaid model is often described as hybrid DPCM/DCT (Differential Pulse
Code Modulation/Discrete Cosine Transform) model also. Figure 2.2 and Figure 2.3
show a generic DPCM/DCT hybrid encoder and decoder respectively [I.E03].

In Figure 2.2, On is the current frame, and it is compared with the reference frame
Fn−1. After the motion estimation process, a set of motion vectors are chosen. Based
on these motion vectors, a motion compensated prediction P is generated, and sub-
tracted from the current frame, to produce a residual frame D that is transformed
using DCT and quantization (Q). Finally, quantized DCT coefficients and motion
vectors are entropy encoded to produce the compressed bitstream. Inverse quanti-
zation (IQ) and inverse DCT (IDCT) are applied to quantized DCT coefficients, to
produce a decoded residual D

′
that is not identical to D, because of the quantiza-

tion process. The residual D
′

is added to the motion compensated prediction P ,
to produce the reconstructed frame Fn that may be used as a reference frame for
the next encoded frame Fn+1. In Figure 2.3, the compressed bitstream is entropy
decoded to extract coefficients and motion vectors. Inverse quantization and inverse

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video Codec 13

DCT are applied to quantized DCT coefficients to produce a decoded residual D
′
.

Decoded motion vectors are used to perform motion compensation in the reference
frame Fn−1. The result is the motion compensated prediction P that is added to
D
′
to produce the decoded frame Fn that can be displayed and may be stored as a

reference frame for the next decoded frame Fn+1. We will explain in more detail in
the next sections operations performed in this codec model.

2.3.1 Motion Estimation

The goal of the temporal model is to reduce redundancy between transmitted frames,
by forming a predicted frame, and subtracting this from the current frame, to obtain
a residual frame. The predicted frame is created from one or more past or future
frames (reference frames). The simplest method of temporal prediction is to use
the previous frame as the predictor of the current frame. The more accurate is the
prediction process, the less information is contained in the residual frame. Much
of this residual information is due to object movements between two consecutive
frames. The most practical and widely used method for temporal prediction is
motion estimation, together with motion compensation (that we will explain below)
on rectangular sections or blocks of M × N samples of the current frame. The
motion estimation, performed in the video encoder, is the procedure able to find a
M × N samples region, in the reference frame (previously coded and transmitted),
matching the M × N block in the current frame. This is carried out by comparing
the M × N block in the current frame with some or all the possible M × N regions
in the search area (a region centered on the current block position), and finding the
region that gives the “best match”. A way to determine the “best match” is to
consider the information in the residual formed by subtracting the candidate region
from the current M × N block. The candidate region that minimizes the residual
information is chosen as the best match. The chosen candidate region is subtracted
from the current block, to form a residual M × N block, which is coded. The offset

�

� � �

���
���
	��
���������

� �����
�������
����������� �

!#" ��$ " �
%'& ��$ (*)
��$ " �

!#" ��$ " �
+ " (-,.�
� &)���$ " �

� �
������� " � & � ��	.����� /0�

�21*3

4 �5163

7

4 7 % ���8� " ,09
���.� " /0�

:<;>=�?�@BA�C

D

�

1 " /���/
EF$ � & � ���
)�(

�

G

Figure 2.2: DPCM/DCT video encoder

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

14 Video Coding

(called motion vector) between the current block and the position of the candidate
region is given back and coded. A good choice of the candidate region minimizes
the information in the residual frame, improving compression performance.

Accuracy and computational complexity of the motion estimation process de-
pend on the measure adopted for computing the residual information, and the total
number of computing times (the last one is related to the range of the search area).
The most important measures adopted to compute the residual information are
Mean Squared Error (MSE), Mean Absolute Error (MAE), Sum of Absolute Errors
(SAE), that we list in the following:

MSE =
1

NxM

M−1∑

i=0

N−1∑

j=0

(Cij −Rij)
2 (2.1)

MAE =
1

NxM

M−1∑

i=0

N−1∑

j=0

|Cij −Rij| (2.2)

SAE =
M−1∑

i=0

N−1∑

j=0

|Cij −Rij| (2.3)

where M × N is the block size and Cij and Rij are the current and reference area
samples respectively. SAE is the most widely-used measure of residual information
for its computational simplicity. An exhaustive search in the motion estimation
(called Full Search motion estimation) evaluates the information residual measure
at each point in the search area. Full Search estimation is guaranteed to find the
minimum value of residual information measure in the search area, but it is com-
putationally intensive, since the information measure must be computed at every
one of (2S + 1)2 locations, where S is the range of the search area. In a typi-
cal video sequence, most motion vectors are equal to zero, so it is likely that the
minimum information measure will be found around the (0,0) point. The compu-
tation of Full Search motion estimation can be simplified by starting the search
at (0,0) point, and proceeding to test points in a spiral pattern around this loca-
tion, by terminating early the search when the previous minimum information value
has been exceeded. In many applications the so-called “fast search” algorithms
are used. Many fast search algorithms have been proposed, such as Logarithmic

���������
	��

�������
����������������� � !

���
�"����� #$�&%(' ��)&��'"� *�!

+ #$'-, #$�
. #0/21&���3%�4�'-, #$� 5

6 7 8 6:9<; 8>= ? �@'A�(#1B*@� � #@*��
9 #@*@��*C�, '�%(' ����4�/

Figure 2.3: DPCM/DCT video decoder

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video Codec 15

Search, Hierarchical Search, Cross Search, Three Step Search, Nearest Neighbours
Search [Gha90][GCK99]. These algorithms compute the information measure for a
subset of locations within the search area. Their performance can be evaluated by
comparison with the Full Search, in terms of computational complexity and video
quality. A better performance of the motion estimation process can be achieved by
using fractional values (sub pixels) rather than integer values of motion vectors only.
Half-pixel and quarter-pixel values of motion vectors are used in MPEG4 and H.264,
respectively. Sub-pixel search requires interpolation between integer samples posi-
tions in the reference frame, that is computationally intensive. It is not common to
compute sub-pixel samples for the entire search area. To find the best integer-pixel
match with Full Search or one of the fast search algorithms is sufficient, and then
to search interpolated positions, adjacent to this position.

2.3.2 Motion Compensation

The chosen predicted region by the motion estimation process in the reference frame
is subtracted from the M × N current block to produce a residual frame (luminance
and chrominance). This operation, performed in the video encoder, is called motion
compensation. The residual frame is coded and transmitted together with the mo-
tion vector. The decoder uses the received motion vector to recreate the predicted
region, decodes the residual block, and adds this one to the predicted region, recon-
structing a version of the original block. In addition, in the encoder, the residual
frame is decoded, and added to the predicted region, to form a reconstructed block
which is stored as a reference for further motion-compensated prediction. The en-
coder uses the reconstructed block to perform the prediction of next block so that
it can have the same reference for motion compensation that the decoder uses to
reconstruct the original block.

In many coding standards, including MPEG2, MPEG4, H.263, and H.264, the
basic unit for motion compensated prediction is the macroblock, corresponding to
a 16 × 16 pixel region. Smaller motion compensated block sizes (8 × 8 or 4 × 4
pixel regions) can produce better motion compensation results, reducing the residual
information. However, such smaller block sizes increase the complexity of the motion
compensation process, in terms of search operations and bits to encode an increased
number of motion vectors. H.264 codec adapts the motion compensation block
size according to the frame characteristics, so that large block sizes are adopted in
homogeneous regions of a frame, while small block sizes are chosen around areas
with large motion and great details. This method of partitioning a macroblock into
motion-compensated sub-blocks of varying size (two 16 × 8 partitions or two 8 × 16
partitions or four 8 × 8 partitions, each one of these 8 × 8 partitions may be split in
a further four ways, or as one 8 × 8 sub-macroblock, two 8 × 4 partitions, two 4 x 8
partitions or four 4 × 4 partitions) is known as Tree Structured motion compensation
[I.E03]. The motion compensation, as well as the motion estimation process, can

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

16 Video Coding

be performed with a sub-pixel resolution,1 by searching sub-sample interpolated
positions, as well as integer-sample positions, selecting the position that gives the
minimum residual information, and using the integer or sub-sample values at this
position for motion compensated prediction.

2.3.3 DCT

The most popular transformation adopted in the spatial compression model is Dis-
crete Cosine Transform (DCT)[ANR74]. The Discrete Cosine Transform operates
on N × N blocks (usually, N=8 or N=4) of the image or residual samples and
creates an N × N block of coefficients. In particular, the DCT of an N × N sample
block is given by:

Y = AXY T (2.4)

and the inverse DCT (IDCT) is given by

X = AT Y A (2.5)

where X is a matrix of samples, Y is a matrix of coefficients and A is an N × N
transform matrix. The elements of A are:

Aij = Ci cos
(2j + 1)iπ

2N
(2.6)

where:

Ci =





√
1
N

if i=0

√
2
N

if i>0

For example the transform matrix A for a 4 × 4 DCT is:

A =




a a a a
b c -c -b
a -a -a a
c -b b c




where

a =
1

2

1The term sub-pixel is used in this setting even if the motion estimation and compensation
process is applied to luminance and chrominance samples, not pixels.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video Codec 17

b =

√
1

2
cos(

π

8
)

b =

√
1

2
cos(

3π

8
)

The basic concept of this reversible transformation is that, by having the coefficients
in the discrete cosine transform domain, it allows marking the visual information
in an image, that the human eye is unable to perceive. Such information is deemed
redundant and can be discarded without introducing noticeable visual effects. The
more significant DCT coefficients are the “low frequency” positions, clustered around
the top left coefficient. “Higher frequency” DCT coefficients are very often quantized
to zero. After DCT transformation and quantization, the coefficients are reordered
to group together the nonzero ones. The optimum scan order, depending on the
distribution of nonzero DCT coefficients, can be for example, a zigzag scan starting
from the top left coefficient to create one dimensional array with nonzero coefficients
within its first positions, followed by long sequences of zero values. To compact the
large number of zero values, it is possible to apply a “run-level encoding”, that
allows to represent this array as a series of (run, level) pairs where run indicates
the number of zeros preceding a nonzero coefficient and level indicates the number
of nonzero coefficients. These data are the input for entropy encoding.

Like other block based transformations, the Discrete Cosine Transform has low
memory requirements, but tends to suffer from artefacts at block edges. The Discrete
Wavelet Transform (DWT or “wavelet”) [CL99] operates on the entire image, and
outperforms the block-based transformation, but it has higher memory requirements,
since the entire image is processed as a unit, and it can not be used with a block based
motion compensation process. JPEG 2000 was developed to provide a more efficient
successor to the original JPEG. It uses the ”Discrete Wavelet Transform” technology
as its basic coding method and provides superior compression performance to JPEG
avoiding the characteristic blocking artefacts of a DCT-based compression method.

2.3.4 Quantization

Quantization is a process that maps a signal with a range of values to a quantized
signal with a reduced range. This allows to represent the quantized signal with fewer
bits than the original one, since the range of possible values is smaller. Most video
coding standards assume a scalar quantization as in the following:

Zij = round(Yij/Qstep)

where Yij is a coefficient, Qstep is a quantization step size and Zij is a quantized
coefficient. Round is the rounding operation. The values of Qstep are indexed
by a Quantization Parameter (QP) and are correlated to the position (i, j) of the

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

18 Video Coding

coefficient in the image. In video compression codecs, the quantization operation (Q)
is made in the encoder. A higher range of quantization steps makes it possible for an
encoder to have a more accurate control of the tradeoff between bit rate and quality.
If the step size is large, the range of quantized values is small, the image is greatly
compressed, but the re-quantizated values are very different from the original ones.
On the contrary, if the step size is small, the re-quantized values match more closely
the original ones, but the larger range of quantized values reduces the compression
efficiency.

2.3.5 Entropy Coding

The entropy coding converts a set of symbols (representing quantized transform co-
efficients after run-level encoding and motion vectors) in a compressed bitstream.
Two of the most common entropy encoding techniques are modified “Huffman”
variable length coding, and arithmetic coding. In the first one, a variable length
coding maps input symbols to a series of codewords (variable length codes or VLCs)
so that frequently-occurring symbols are represented with short codes, while less
common symbols are represented with long codes. After that, Huffman coding
assigns a variable length code to each symbol based on the probability of occur-
rence of different symbols [Huf52]. Arithmetic coding is a practical alternative to
Huffman coding [WNC87]. It is a form of variable length entropy encoding, where
the entire message is coded into a single fractional number between zero and one.
An efficient arithmetic coding system is Context-based Adaptive Binary Arithmetic
Coding (CABAC), used in H.264 codec. It achieves good compression performance
by selecting probability models for each syntax element from a selection of avail-
able models depending on the statistics of recently-coded data symbols. It uses the
arithmetic coding, updating the selected context-based probability model according
to the actual coded value. [MWS03].

2.4 Video coding features

In this section we address some video coding concepts that will be referred in the
next chapters.

2.4.1 Types of frames

Different coding standards provide a different format of coded video sequence. In
all coding standards, a coded frame consists of a number of macroblocks (basic
unit of motion information), each one containing 16 x 16 luminance samples, and
associated chrominance samples (8 x 8 Cb and 8 x 8 Cr). There are three main
types of macroblocks:

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video coding features 19

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�
�

�

(a) Decoding order

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

���

�

�

(b) Display order

Figure 2.4: Typical MPEG4 video frame pattern

• INTRA macroblock, which is coded without motion reference to previous or
successive frames. In MPEG4, it is coded by DCT, quantization and entropy
coding, while in H.264 it can be as well predicted from previously coded data
within the same slice (a set of macroblocks). A frame with all macroblocks
coded as intra macroblocks is an INTRA frame (I frame);

• INTER macroblock, which is predicted by one or more previous reference
frames. A frame with macroblocks of type intra and inter is called INTER
frame (P frame);

• BIDIRECTIONAL macroblock, which is predicted by previous and future
frames. A frame containing bidirectional macroblocks is called bidirectional
frame (B frame). A B frame can contain intra and inter macroblocks, also.

When there is a great change between the reference and the current macroblock
(scene change), it can be useful to encode the macroblock in intra mode (without
motion compensation). A typical coded video sequence includes all three types of
frames and a fixed frame type mixing pattern is repeated throughout the entire
video sequence. An example of MPEG4 video frame type mixing pattern, named
Group of Pictures (GOP) is shown in Figure 2.4, where the arrows indicate the
prediction directions. Note that, due to the presence of B frames, the decoding
order is different from the display order of the video sequence.

2.4.2 Rate Control

If the control parameters (motion estimation search area and quantization step size)
of a video encoder are kept constant, the number of bits produced for each frame will
change depending on the content of the frame (more bits when there is more motion

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

20 Video Coding

and more details, fewer bits when there is low motion and not much details). This
causes a variable bit-rate (measured in bits per second) of the encoder output. This
variable bit rate cannot be supported, for example, by a constant bit-rate channel.
Moreover, it is needed to adapt the bit-rate produced by a video encoder to match
the available bit rate of the transmission mechanism.

A typical technique used by the encoder to smooth variable bit-rates is buffer-
ing the encoded data prior to transmission. This buffer is emptied at a constant
rate according to the channel capacity. A similar buffer is placed at the input of
the decoder, and it is filled at the channel bit rate and emptied at variable bit
rate. High bit rate variations can determine over-or-under flowing of the buffer,
and great decoding delay. Rate control is a mechanism able to control the encoder
output bit rate, preventing buffer overflow and underflow. Rate control modifies the
quantization parameters (QP), since increasing QP reduces bit rate with a lower
quality of the decoded frames. The focus of rate control is to optimize the trade-
off between the encoder output bit rate and the quality of the decoded video se-
quence. Many rate control algorithms for video coding have been proposed, accord-
ing to different video applications and coding standards [CL99][OK95][KH04][DL96]
[LCZ97][SALZ06][SA04][MGL05].

2.5 Video quality measure: PSNR

The so-called quality measures are used to evaluate the quality of a video sequence.
Video quality measurement is an important requirement for designers and develop-
ers of video communication systems. Quality measurement is especially important
for compressed video, since most video compression algorithms are lossy, i.e. com-
pression is achieved at the expense of video quality.

Video quality measurement methods can be categorized as objective (based on
automatic measurement of parameters of the video sequence) or subjective (based on
evaluation by one or more human observers)[RK04]. Subjective measurements can
provide a realistic guide to the video quality perceived by a user. However, obtaining
an accurate outcome from subjective tests typically involves many repetitions of
a time-consuming test with a large number of test subjects. For this, they are
expensive and difficult to carry out. Objective measurements are automatic and
readily repeatable. Sophisticated objective quality models have been proposed in
[TG00][DKD06]. However, the complex nature of human visual perception makes
difficult accurately modeling the response of a human observer. There are not yet
objective measurement systems that completely reproduce the subjective experience
of a human observer watching a video display.

The most widely used measure in literature, is Peak Signal to Noise Ratio
(PSNR). It is an objective measure, computed on a logarithmic scale as described
in the following

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video quality measure: PSNR 21

PSNRdB = 10log10
(2n − 1)2

MSE
(2.7)

where (2n − 1)2 is the square of the highest possible signal value in the frame,
(where n is the number of bits per image sample). The mean squared error (MSE)
is computed between the original and the reconstructed (coded and decoded) frame.
We used PSNR to evaluate the proposed approaches in this thesis.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

22 Video Coding

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 3

Video Transcoding

Abstract

In this chapter, we provide an overview of transcoding goals and issues. In
addition, we address transcoding solutions for bit rate reduction, resolution
reduction and error resilience purposes. Temporal transcoding, which is the
focus of this thesis, will be presented in detail in the next chapters.

3.1 Introduction

Today, in everyday life, for working or practical purposes, there are many different
devices able in different ways to access Internet or other kinds of network. The
term “pervasive” is typically used for indicating the capability of computing de-
vices to implement and access a variety of services and applications, often involving
multimedia information. Such devices comprise personal digital assistants (PDAs),
hand-held computers (HHC), smart phones, and also automotive computing devices
and wearable computers, allowing ubiquitous access to multimedia information in
different ways, by using different wired and wireless networks. Such a setting is usu-
ally referred as Universal Multimedia Access (UMA). Multimedia comprises images,
video, audio, graphics, text, and the so called presentation of media content.

In this thesis, we focus on delivering of video content. The quality of video se-
quences is influenced by devices capabilities on communication, processing, storage
and display. Adapting the media content to different network characteristics (chan-
nel bandwidth and terminal complexity, for instance) is one of the most important
problems in this setting. To flexibly deliver multimedia data to users with different
available resources, access networks and interests, the multimedia content must be
adapted dynamically according to the usage environment.

Transcoding enables personalized media delivery and facilitates efficient use of
network resources. Transcoding can be performed both on-line (real-time) and off-
line. Video transcoding is defined as a process that dynamically adjusts the fea-

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

24 Video Transcoding

tures or coding-parameters of pre-encoded video, to match the underlying network-
bandwidth and/or end-system constraints. The proposed dynamic adjustments in-
clude video format portability, bit rate, frame rate and resolution reductions. Fur-
thermore, with the introduction of packet radio services over mobile access networks,
error resilience video transcoding has gained a significant attention. Its aim is to
increase the resilience of the original bit-stream to transmission errors.

The present chapter is organized in this way: in Section 3.2, we outline main
issues and goals of video transcoding process; in Section 3.3, we provide a high
level overview of the techniques and architectures used to improve the performance
of transcoding, in particular those ones for bit-rate reduction (Section 3.3.1), and
spatial resolution reduction (Section 3.3.2). In Section 3.4 we briefly present some
concepts related to transcoding for the error resilience purposes.

3.2 Why video transcoding

The goal of Universal Multimedia Access (UMA) is to enable users, having devices
with limited capabilities in communication, processing, storage and displaying, to
access a multimedia content according to their requirements or preference, as de-
picted in Figure 3.1. This goal can be achieved in different ways. The first one is
by managing different copies of the same multimedia content, one for each device
type: in this manner, there is a waste of storage resources, as well as bandwidth
over-usage due to duplicated transmissions. Another way is by having a scalable
media model that provides a base layer for minimum requirements, and one o more
enhancement layers to offer improved quality at increasing device capabilities. In
this model, the overall video quality degrades significantly with the increased level
of scalability, particularly when the base layer is encoded at a low bit rate. Further-
more, this strategy needs layered encoding and decoding capabilities at the server
and receiver sides, respectively. Low-power mobile terminals do not have such func-
tionalities requiring increased device complexity. The last way, is to adapt the media
content on-the-fly : by “transcoding”. Transcoding is usually performed by servers
of a communication system, or by gateways interconnecting different networks.

Transcoding is defined, in general, as the conversion of one compressed signal into
another one. Video transcoding is the process of converting a coded video sequence
into another one with different features, without totally decoding and re-encoding, so
reducing the complexity and the running time, and enabling the interoperability of
heterogeneous multimedia networks. Video transcoding can provide format conver-
sion, resolution scaling (spatial transcoding), bit rate conversion (quality transcod-
ing), frame rate conversion (temporal transcoding). Format conversion operates a
syntax change from a video coding standard into another one. Spatial transcoding
reduces the spatial resolution of a compressed video. It is required for facing the
problem of limited size in many access terminals. Quality transcoding operates on
the bit allocation for each frame, by tuning the quantization parameters, according

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video transcoding architectures 25

���������
	�
���
�����

��� ������
���������������������
��
��"!
	�#��$����	%
������ �
&��	 �

	�
$�('(���%
����
�)�������

* ��+ �

�
 � ��	%�

,�-�."/0-$.

1 �����2�
	�
$�('(��� � �2
��

3�4�5�6�7
8�4�9;:�4�<>=

?A@$B&C)DFE�G

Figure 3.1: Universal Multimedia Access

to the target bit rate. Temporal transcoding is a process that skips some frames in
order to change the frame rate of the video sequence, without decreasing the video
quality for not skipped frames.

Transcoding strategy helps the content provider to keep only one high quality
copy of video stream, reducing the storage costs significantly. Likewise, the oper-
ational complexity associated with layered encoding and decoding is not required.
This makes transcoding a viable option for content adaptation in heterogeneous net-
working, particularly for a wide range of mobile terminals with limited processing
and battery power. One transcoding application scenario is delivering a high-quality
multimedia source to several receivers (such as PDAs, Pocket PCs and desktop PCs)
on wireless and wireline networks, where a transcoder can generate an appropri-
ate bitstream directly from the original bitstream, without having to decode and
re-encode. To suit available network bandwidth, a video transcoder can perform
dynamic adjustment in the bit-rate of the video bitstream, without additional func-
tional requirements in the decoder. Another scenario is a video conferencing system
on Internet, in which the participants may use different terminals. In such case,
a video transcoder can offer dual functionality: provide video format conversion
to enable content exchange, and perform dynamic bit-rate adjustment to facilitate
scheduling according to network resources [AWSZ05].

3.3 Video transcoding architectures

The simplest configuration of a system including a transcoder is described in Figure
3.2, where encoder and decoder modules in the transcoder can be replaced by those
ones presented in Figure 2.2 and Figure 2.3, respectively. For the sake of clearness,
in this thesis, we call “Front Encoder” and “Front Decoder” the encoder and decoder

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

26 Video Transcoding

put in input and output to transcoder respectively.
The straightforward approach for implementing transcoding is to cascade a stan-

dard decoder and a standard encoder. In this approach, commonly known as cas-
caded pixel-domain transcoding, the incoming video bitstream is decoded in the
pixel domain, and then the decoded video is re-encoded into the target video stream,
with the desired format, output bit rate, spatial resolution and frame rate. This ap-
proach provides for the best possible quality, but requires a lot of processing and
memory resources. Many architectures have been proposed to make more efficient
the transcoding process having a minimum impact on the quality of the transcoded
video. In the following, we outline such architectures for bit-rate reduction and
spatial resolution reduction.

���������
	��
�
� 	 �������������

��� ������	 �
�
� 	 �������������

!��������
"#������$%���

!&�'�����
()�*����$%���

(+������$%��� "#������$%���

,-�'���&�.���
$%���

Figure 3.2: Cascaded fully decoding/re-encoding scheme

3.3.1 Bit-rate reduction

The goal of bit rate reduction is to reduce the bit rate while maintaining low com-
plexity and achieving the highest possible quality. A simple technique to transcode
a video to lower bit rate is to increase the quantization step at the encoder in the
transcoder [NHK95]. This decreases the number of nonzero quantized coefficients,
and then the amount of bits in the outgoing bitstream. Such transcoding approach
produces a variable frame quality and it is usually know as “quality transcoding”.

Many architectures for bit rate reduction suffer from quality degradation caused
by the so called “drift error”. The drift error occurs when the reference pictures
reconstructed and stored in the decoder are not the same that those ones used to
perform prediction in the encoder. Since the current reconstructed picture is also
used to perform prediction for the next frame, the drift error propagates to future
frames, and the degradation of video quality increases until an INTRA frame is
reached.

The most straightforward way to have a drift-free transcoding is to use a cas-
caded pixel-domain transcoder (CPDT) architecture, where an encoded bitstream
is decoded, and then fully re-encoded at the new bit rate. As explained in [YSX99],
since CPDT converts the bit rate of the incoming bitstream by manipulating the
content of the bitstream, the reconstructed pictures at the front-encoder and at the
front-decoder will not be the same. However, this mismatch does not produce the
drift because the decoder-loop and the encoder-loop in the CPDT architecture are
completely separated, as illustrated in Figure 3.3. In this architecture, the recon-

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video transcoding architectures 27

�����������
�
	���
 �

	�� �����
��	���
 �

��

��
������������ �!#"%$�&('()

*,+.- & *,+

/0�

�
�

���1� �32 �!,"%$�&('()
+ ! - & *(+

/4�

�������

���32

�657��89�657: 5<;=�183�65>:

Figure 3.3: Cascaded Pixel-Domain Transcoder (CPDT)

structed pictures in the transcoder’s decoder will track the reconstructed pictures
in the front encoder, and the reconstructed pictures in the transcoder’s encoder will
track the reconstructed pictures in the front decoder.

The authors of [YSX99], define the following drift-free condition:

P 0
n = P 1

n and P 2
n = P 3

n (3.1)

where P 0
n , P 1

n , P 2
n and P 3

n are the pixel values of the nth reconstructed pictures in the
front encoder, transcoder’s decoder, transcoder’s encoder and in the front decoder,
respectively.

CPDT architectures satisfy the above drift-free condition. However, the direct
implementation of the CPDT is not desirable, since it has a high complexity.

The most simplified architecture for bit rate reduction is the open-loop archi-
tecture [VCS03]. In the open-loop system, depicted in Figure 3.4, the bit stream
is entropy decoded, to extract the code words corresponding to the quantized DCT
coefficients, those ones are inverse quantized (IQ1) and simply re-quantized with a
new quantization parameter (Q2) to satisfy the new output bit rate. Finally, the re-
quantized coefficients are entropy coded. An alternative open-loop scheme directly
discards high frequency DCT coefficients of a block.

���������
	
�
��
�� � ��
 ���

���������
	
�

 � � � ��
� ���

Figure 3.4: Open-loop transcoding architecture for bit rate reduction

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

28 Video Transcoding

In comparison to cascaded pixel transcoders open-loop systems are relatively
simpler, since a frame memory is not required, and the operations are performed
directly on the DCT coefficients. However, open-loop architectures are subject to
drift problem [XLS05]. In general, the reason for drift is due to the loss of high-
frequency information. Beginning with the INTRA frame, which is a reference for
the next INTER frame, high frequency information is discarded by the transcoder,
in order to meet the new target bit-rate. This happens for the residual of an INTER
frame also. The front decoder receives such transcoded bitstream, decodes it and
stores each frame with reduced quality. This frame is used as predictive compo-
nent, and it is added to a degraded residual content, leading to drift errors. To
avoid the above drift-error, the reference pictures reconstructed and stored in the
front decoder must be the same than those ones used to perform prediction in the
transcoder’s encoder. The open-loop transcoder changes the residual and, therefore,
makes the reference picture used in the front decoder different from that one used
in the encoder [VCS03]. Closed-loop transcoders contain a feedback loop in the
transcoding architecture in order to compensate the drift in transcoder. In [VCS03]
the closed-loop architecture depicted in Figure 3.5 is presented.

��

�������	���

���
	� �

��� �������������
� � �!�#" �

$�%

& ���

�(' �)���

*��
�� �

& �,+���#���������
" � �!��" �

&.-0/21

�

�34/

-0/51

Figure 3.5: Closed-loop transcoding architecture for bit rate reduction

With respect to CPDT architecture (see Figure 3.3), in this simplified scheme
only one reconstruction loop is required, with one DCT and one IDCT. In such
scheme, some arithmetic inaccuracy is introduced, due to the non linear nature in
which the reconstruction loops are combined.

Other schemes reducing the computational complexity of the drift-free CPDT
architecture have been proposed [BC98][AG98]. In a fast pixel domain transcoder
(FPDT) [BC98], the encoder, rather than performing the full-scale motion esti-
mation, as in the front encoder, reuses the motion vectors extracted from the input

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video transcoding architectures 29

video bitstream. Thus, the motion estimation, which usually takes 60-70% of the en-
coder computation [SG00], is omitted. Since the motion vectors extracted from the
input video bitstream were computed at the front encoder for the original quantiza-
tion parameter (Q1), they might not be suitable for the new quantization parameter
(Q2). A refinement process in a search window of few pixels (±3) around the motion
vectors extracted from the input video bitstream is needed. Fast search methods
can be applied to further reduce the computational complexity of this operation.

Together with motion vectors, macroblock type decision information extracted
from the input video bitstream can be reused. This can cause a wrong coding of
macroblocks in the transcoder. For instance, if a macroblock has all coefficients
equal to zero for a larger quantization parameter, should be coded as SKIPPED
macroblock in the transcoder’s encoder. If this macroblock was coded as INTER
macroblock in the front encoder, sample reusing of block type mode decision infor-
mation imposes to code this macroblock as INTER macroblock in the transcoder’s
encoder also. A solution to such problem, proposed in [BC98], is to re-estimate the
macroblock type in the transcoder’s encoder, as follows:

• If a macroblock was coded as INTRA at the front encoder, it must be coded
as INTRA macroblock again;

• If a macroblock was coded as SKIPPED macroblock, it must be coded as
SKIPPED macroblock again;

• If a macroblock was coded as INTER macroblock, and all coefficients are equal
to zero, it must be coded as SKIPPED macroblock, else it can be coded as
INTER or INTRA macroblock.

Note that, SKIPPED macroblocks have no information about motion and resid-
ual. They are approximated with the corresponding macroblock of the previous
frame at the decoder.

Another source of computational complexity in transcoding is DCT. A simpli-
fied DCT-domain transcoder (SDDT) shown in Figure 3.6 was presented in [AG98].
SDDT eliminates the DCT/IDCT, and reduces the memory need. In this architec-
ture, motion compensation (MC) is performed in the frequency domain, and it is
the most computation intensive operation. As shown in Figure 3.7, the goal is to
derive the DCT coefficients of the target DCT block B, from the coefficients of its
four overlapping DCT blocks B1, B2, B3, B4. The solution proposed in [LL01] to
derive the DCT coefficients uses multiplications and additions of constant geometric
transform matrices. The fact that the information of a DCT block is concentrated
in its low frequency coefficients is exploited to perform an efficient approximation
of the MC operation.

The fast architectures (FPDT and SDDT) may require less computation than
CPDT but suffer from the quality degradation, caused by the drift problem. This is
due to rounding operations performed in the interpolation of fractional-pixel in MC,

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

30 Video Transcoding

� �

�������	���

���
	� �

�

�
��� �������������� �! "�$# �

%�&

' ���

�)(�*���

+��
�� � ' �-,���$���������

� "��# �

.0/2143�. ��5-6 �7(
89/

:<;

Figure 3.6: Simplified DCT-domain transcoder (SDDT)

���

���

���
	���
���������������	

��� �!

�!"

�$�%�
	�&('��������)	

*

Figure 3.7: DCT-domain Motion Compensation

and to the use of clipping functions to limit the pixel values and DCT coefficients.
Detailed analysis of drift causes in fast architectures can be found in [YSX99]. To
reduce the drift problem, the front encoder can send frequently INTRA frames.
The transmission of INTRA frames requires much more bandwidth than that one
of INTER frames. So, it can be not possible when the bandwidth of the outgoing
channel is limited.

3.3.2 Spatial Resolution Reduction

The heterogeneity of network access terminals often demands the reduction of com-
pressed video spatial resolution. Besides, reduction in spatial resolution can lower
the bit rate. The spatial transcoding reduces the spatial resolution (for example
from CIF to QCIF). In a cascaded pixel domain transcoding architecture, similar
to that for bit rate reduction, after decoding, the spatial domain down-sampling
is applied, followed by a full re-encoding. The most common techniques to reduce
spatial resolution are pixel sub-sampling and pixel averaging [SG00].

A simple pixel sub-sampling method down-samples the image by dropping alter-
nate pixel in both horizontal and vertical directions of luminance and chrominance.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video transcoding architectures 31

���������
	���
�������������	
� 	������! "� � �#���

$&%�' $(%*)

$(%,+

$(%*- $(%*.

Figure 3.8: Spatial Resolution Reduction: Down-sampling of four motion vectors

���������
	���
�������������	
� 	������! "� � �#���

$&%�'"(*) +�, $.-

/

+�, $.- $&%0'")21

Figure 3.9: Spatial Resolution Reduction: Down-sampling of four macroblock types

Pixel averaging is a technique that represents m×m pixels by a single pixel which
has a value equal to the average of the original m ×m pixel values. Both in pixel
sub-sampling and pixel averaging, the critical issue is to map motion vectors of de-
coded sequence in the new motion vectors for down-sampled sequence. Figure 3.8
shows the problem of merging four motion vectors in one single motion vector, when
resolution is reduced by a factor of two in each dimension. The solutions proposed
in [BC98] to handle the situation presented in Figure 3.8 are:

• Computing the average of four motion vectors and scaling it;

• Computing the median of three motion vectors and scaling it; The median
gives a more accurate result when the motion vector values are very different
among them.

• Selecting randomly one of the four motion vectors and scaling it.

In this case scaling motion vector means dividing it by two.
Since these solutions are sub-optimal, a motion vector refinement will be needed

at the encoder. In [SZZL01], these strategies are extended to consider transcoding
with arbitrary down-sampling ratio by taking into account the unequal contributions
of related input motion vectors.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

32 Video Transcoding

Another problem to be addressed in spatial transcoding is mapping the incoming
macroblocks types to the type of transcoded macroblock, as can be seen in Figure
3.9. The authors of [BC98] adopt the following method:

• If there exists at least one INTRA macroblock among the four original mac-
roblocks, the new macroblock is also intra-coded;

• If there exists at least one INTER macroblock and no INTRA macroblocks,
the new macroblock is coded as an inter macroblock;

• If all macroblocks have the SKIPPED type, the new macroblock is coded as
SKIPPRD macroblock.

In [YVLS02], an analysis of the drift problem and various types of macroblock-
level conversions for reduced-resolution transcoding are considered. Based on the
results of the presented analysis, four transcoding architectures that attempt to
overcome the types of drift errors that have been identified are proposed.

In [AWSZ05] a deeper survey of various methods used to perform spatial resolu-
tion reduction is given.

3.4 Video Transcoding for Error-Resilience

The encoding process is typically performed without a prior knowledge about the
channel characteristics of network hops between the encoder and the decoder. One
problem that any communication system shows is that information may be altered or
lost during transmission due to channel noise or transmission collisions. Any damage
to the compressed bit stream may lead to visual distortion at the decoder. The
authors of [WZ98] review the techniques of error control and concealment developed
for video communication over unreliable channels, such as wireless ones. These
techniques are classified in three categories, according to the roles that encoder
and decoder play in the underlying approaches: forward error concealment, which
includes methods that add redundancy at the source to enhance error resilience of
the coded bit streams; error concealment by postprocessing refers to operations at
the decoder, to recover the damaged areas based on characteristics of image and
video signals. The last, that is interactive error concealment, covers techniques that
are dependent on a dialogue between source and destination.

In heterogeneous multimedia systems, video transmission may involve wired and
wireless channels. Wired channels typically have relatively high bandwidth and
consistently low bit error rates. This is in contrast to a typical wireless channel, in
which the bandwidth is generally lower and the error rate much greater and time
varying. The resilience is the ability of a bitstream to accommodate to the channel
conditions and produce acceptable quality. However, this may not be possible for
different reasons. First, an encoder designed for use on a wired channel is usually

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Video Transcoding for Error-Resilience 33

not “wireless aware”, in the sense that it operates without knowledge of any wire-
less channels between encoder and decoder. Second, in multicast transmissions, an
encoder can only produce a single bitstream that is transmitted to different users
over different channels.

The transcoding process for error resilience purposes can be performed in a net-
work node (e.g. mobile switch/base station, video gateway). The goal is to modify
the already encoded video bit-stream to improve its resilience prior to transmission
over a high error rate channel.

Error resilience transcoding has been studied in [RRCC00] and [DCU+02]. In
[RRCC00], the authors derive analytical models characterizing how corruption prop-
agates in a video compressed using motion-compensated encoding and subject to
bit errors. These models are used to generate the resilience rate-distortion func-
tions used to compute the optimal temporal and spatial resilience to inject into
the bitstream. In [DCU+02], an error resilience video transcoding system for trans-
mission of coded video streams over general packet radio service (GPRS) mobile
access networks is proposed. It uses two resilience schemes, namely adaptive intra
refresh (AIR) and feedback control signal (FCS). The AIR method prevents the er-
ror propagation within a video stream, by using a prederminated number of intra
macroblocks. The FSC method uses a feedback signal from the receiver, to adapt
the encoding schemes. Since both AIR and FSC methods increase the overall trans-
mission rate, the transcoder, tuning the quantization parameters, transforms the
output bit rate to adapt it to network conditions.

The error resilience is out of the scope in this thesis. We make the assumption
that in our transcoding system the channel is error-free since the error control is
faced at lower network levels.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

34 Video Transcoding

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 4

Temporal Transcoding

Abstract

In this chapter, we introduce the temporal transcoding issues. In partic-
ular, we present two temporal transcoding architectures and we outline two
problems that, at our best knowledge, are the most important ones in tem-
poral transcoding: motion vector computation and the choice of frames to
be skipped. We briefly survey the most common proposed solutions to these
problems.

4.1 Introduction

In order to distribute the same encoded video sequence to users through channels
with different bandwidths (as for instance in a multicast session), the coded video
sequence must be converted into specific bit rates for each outgoing channel. Quality
transcoding does this bit-rate conversion by operating on the bit allocation for each
frame and by tuning the quantization parameters of every macroblock of the frame
according to the target bit rate. The consequence of this is a variable frame quality.

When the bandwidth in a mobile network is very limited, the quality transcoding
process can cause high degradation of the transcoded video quality, if the frame rate
is constant. Temporal transcoding can be a good alternative to quality transcoding
since, by eliminating some frames in the sequence, it reduces the frame rate and the
bit rate of the video sequence, without decreasing the video quality of not skipped
frames. Different temporal transcoding architectures have been proposed [FCS04]
[LH03] [PK05b] [ZZYW05] [ZZYW05]. We will briefly survey some of them in
Section 4.2. To reduce the processing complexity and delay, the proposed approaches
try reusing the information of the incoming video bitstream, in particular motion
vectors and residual information. The main problem in temporal transcoding is
that, when some incoming frames are dropped, the incoming motion vectors (MVs)
and residual information are not valid, since they refer to skipped frames which do

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

36 Temporal Transcoding

not exist in the transcoded bitstream. Motion vectors and then residual information
for the outgoing video stream can be obtained by applying a Full Search Motion
Estimation (Section 2.3.1).

In transcoding, Full Search motion estimation is usually not performed, because
of its computational complexity. Instead, motion vectors extracted from the incom-
ing bitstream are reused. Reusing incoming motion vectors by composing them to
find the motion vector for the outgoing video stream is known as Motion Vector
Composition (MVC). We will describe the most important motion vector composi-
tion algorithms for temporal transcoding in Section 4.3. However, a simple reuse
scheme of incoming motion vectors may introduce considerable quality degradation,
as pointed out in [BC98][YSL99][YSL98]. The reconstruction error causes incoming
motion vectors to deviate from optimal values. Furthermore, the composition of in-
coming motion vectors increases such deviation. In most macroblocks, the deviation
is within a small range, and the position of the optimal motion vector can be easily
obtained by applying a refined motion estimation procedure with a search range of
few pixels (±2 or ±3 pixels, in most cases ±1 gives satisfying results) around the
base motion vector. Full Motion Estimation or fast search methods can be applied
to perform this procedure. In [YSL99] and [CCP02], two motion vectors refinement
schemes are proposed, and will be described in Section 4.4.

An important issue in temporal transcoding is how to choose the frames to be
skipped, in order to have a good quality of the transcoded video sequence. At
our best knowledge, the most important factor addressed in literature in the choice
of frames to be skipped has been the motion information contained in a frame.
According to the target applications, other frame skipping metrics have been devel-
oped. They are based on transcoder buffer constraints or frame content. We give a
description of the most important frame skipping policies in Section 4.5.

4.2 Temporal Transcoding Architectures

A temporal transcoder receives as input a coded video sequence, and by dropping
some frames, produces as output a video sequence with a reduced frame rate and/or
bit rate. After skipping a frame in temporal transcoder, it is needed to recon-
struct the next frame according to the last not skipped frame. The most popular
approaches to perform this are known as pixel-domain and DCT domain reconstruc-
tion.

A pixel-domain temporal transcoder architecture is described in Section 4.2.1.
It is a drift-free cascaded pixel-domain transcoder architecture, that is the most
favorable in terms of picture quality.

The authors of [FCS04] explain how the re-encoding operation in the pixel do-
main transcoder architecture introduces error when a frame is skipped. They show
that this re-encoding error affects the video quality of non skipped frames, with a
high PSNR degradation, compared to that of the same pictures directly decoded

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal Transcoding Architectures 37

�

�
�

�

�
��

�����	��
�
��������������
����� � ���

�!

�	�"
 � �������������
� � � � ���

#$�

#$� �!

���	��

%'&�(*)+&

�
�

,.-�/10'2'/43

, - / 5 0 2 / 5 3

6 /4798
6 5 /:7 ;

< �>=?�	�"
 , @ / 5 34A

6 5 /

Figure 4.1: Cascaded Temporal Transcoder in the pixel-domain

without the transcoding process. The same authors in the same work, propose
a new frame skipping architecture that performs operations on the discrete cosine
transform (DCT) domain. Such transcoding architecture, described in Section 4.2.2,
achieves low complexity, and avoids re-encoding errors when the strategy of direct
sum of DCT coefficients is employed. We present both architectures in the following.

4.2.1 Pixel-domain temporal transcoder

Figure 4.1 shows the structure of a drift free conventional cascaded pixel temporal
transcoder [FCS04]. It reduces the output bit rate by skipping frames. The switch
S is used to control the desired frame rate of the transcoder, its position coinciding
with A if the frame is skipped, and with B if the frame is not skipped, respectively.
Note that, skipped frames must also be decompressed completely and they act as
reference frame for the reconstruction of not skipped frames in the following way:

Assume that frame Fn−1 is skipped. However, frame Fn−1 is required to act as
reference frame for the pixel reconstruction of frame Fn, such that

Fn(i, j) = Fn−1(i + un, j + vn) + en(i, j) + δn(i, j) (4.1)

where (un, vn) are the horizontal and vertical components of motion vector MVn,
computed at the front encoder for a macroblock with N ×N pixels in the origi-
nal uncompressed frame On, by applying motion estimation in the previously re-
constructed frame Fn−1. On(i, j) and Fn−1(i, j) represent a pixel in On and Fn−1

respectively, δn(i, j) represents the reconstruction error of the current frame in the
front encoder due to the quantization, en(i, j) is the residual between the current
frame and the motion-compensated frame. We have that

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

38 Temporal Transcoding

en(i, j) = On(i, j)− Fn−1(i + un, j + vn). (4.2)

Substituting (4.2) in (4.1) we obtain that

Fn(i, j) = On(i, j) + δn(i, j) (4.3)

where On and Fn are the original and reconstructed frame in the pixel domain. In
the transcoder, after skipping frame Fn−1, it is needed to re-encode the frame Fn

with respect to Fn−2, which is the last not skipped frame, since Fn−1 does not exist
anymore. The frame Fn−2 acts as reference, (instead of Fn−1), for frame Fn. By
applying a new motion estimation or, as stated above, a MVC algorithm (Section
4.3), it is possible to find the new motion vector (us

n, v
s
n) pointing to frame Fn−2.

The superscript “s” is used here to denote the symbol after performing the frame
skipping transcoding. The reconstructed pixel in the current frame Fn after the
front-decoder is

F s
n(i, j) = F s

n−2(i + us
n, j + vs

n) + es
n(i, j) + δs

n(i, j) (4.4)

where es
n(i, j), representing the re-quantization error due to re-encoding in the

transcoder, is

es
n(i, j) = Fn(i, j)− F s

n−2(i + us
n, j + vs

n). (4.5)

Substituting (4.5) in (4.4), we have that

F s
n(i, j) = Fn(i, j) + δs

n(i, j). (4.6)

This equation implies that the reconstructed quality of the not skipped frame de-
viates from Fn, which is the input sequence to the transcoder. Re-encoding of the
current frame involves recomputation of the residual frame between the current
frame and the not skipped reference frame, followed by DCT transformation and
quantization process. This re-encoding procedure leads to error δs

n. The authors of
[FCS02][FCS04] propose a DCT domain transcoding architecture where this error is
avoided, when the direct sum of DCT coefficients for no motion compensated mac-
roblocks is applied. We describe such approach in the next section. Note that, no
motion compensated macroblocks are macroblocks with motion vector equal to zero.
Motion compensated macroblocks have motion vector with not zero value. For the
sake of brevity, in the following in this thesis, we indicate no motion compensated
macroblocks as no-MC macroblocks and motion compensated macroblocks as MC
macroblocks.

In [VYLS02], a spatio-temporal transcoding architecture is proposed, where an
intra-refresh technique is used to correct the error introduced in transcoding by
incorrect motion vector mapping, residual mapping and down-sampling. This tech-
nique provides an inter-intra conversion of a block according to properly tuned

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal Transcoding Architectures 39

thresholds. A similar technique is used in the temporal transcoding architecture
that we will present in Chapter 5.

4.2.2 DCT-domain temporal transcoder

The DCT-domain transcoding is performed in the coded domain, where complete
decoding and re-encoding are not required, with a significantly reduced processing
complexity. In temporal transcoding, when one or more reference frames are skipped
from the incoming bit stream, re-computing quantized DCT coefficients for the
residual of not-dropped frames with respect to the past reference frames is needed.
This operation can be performed in the DCT domain. A partial DCT-domain frame
skipping transcoder has been proposed in [LH03], where quantized DCT coefficients
of residual for no-MC and MC macroblocks are selectively computed in DCT and
pixel domain respectively.

A fully DCT-domain frame skipping transcoder has been proposed in [PK05b],
where the quantized DCT coefficients for residual of MC macroblocks are also com-
puted in DCT domain, using block translation technique.

A more complex approach is presented in [FCS04]. It is based on the direct sum
of DCT coefficients for no-MC macroblocks. In this approach, when a macroblock
is no motion compensated, the DCT coefficients of the residual are given by

Q[DCT (es
n)] = Q[DCT (en)] + Q[DCT (en−1)] (4.7)

where Q[DCT (es
n)] are the quantized coefficients of the residual for the current

macroblock In with respect to the last not skipped frame Fn−2. They are computed
directly in the DCT domain by summing Q[DCT (en)] and Q[DCT (en−1)] that are
the quantized DCT coefficients of the residual for the macroblock In in the current
frame Fn, and the macroblock In−1 in the reference skipped frame Fn−1, respectively,
as we show in Figure 4.2 where In and In−1 are In

2 and In−1
2 respectively. Since

the macroblock In is no motion compensated, its motion vector is equal to zero ,
so it points to a macroblock in the previous skipped frame, this implies that the
quantized DCT coefficients Q[DCT (en)] and Q[DCT (en−1)] are available in the
input bitstream to the transcoder. The transcoding complexity is reduced since it
is not necessary to perform motion compensation, DCT, quantization, inverse DCT
and inverse quantization. Furthermore, since re-quantization is not necessary for no
motion compensated macroblocks, re-encoding errors δs

n (mentioned in Section 4.2.1)
are also avoided. Many real-world image sequences have a smooth motion that varies
slowly, so most of the macroblocks are no-MC [FCS04]. By using a direct addition of
the DCT coefficients in temporal transcoder, the computational complexity and the
re-encoding errors are significantly reduced for sequences containing a lot of no-MC
macroblocks.

For motion compensated macroblocks (MC macroblocks), direct addition of the
quantized DCT coefficients can not be used. As we can see in Figure 4.3, the

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

40 Temporal Transcoding

���������
	���
 � ���

���������
	���
��������
	���
����
!�!"#	%$��&$'�
���������
	���
%��� (�

(�)

(%*

(%+

,%-/.�0 ��1

(�

 � +

(%)

 � + (�*

 � +

(%+

 � +

,%-2.�0 ��14365

(�

 � �

(�)

 � �

(%*

 � �

(�+

 � �

,%-2.�0 ��14387
	!92:<;>=�=��@?��

	���
!�����'�
!���&�

Figure 4.2: DCT-domain temporal transcoder: residual signal re-computation for
no-MC macroblocks

���������	��

��
������ ������
��

��� �

��� �

��� �

�� �

!�"$#�%&��'

��� � (�

��� � (� ��� � (�

�� � (�

!�")#�%���'+*-,
��.)/1032�2��546

��
7�8��� ���9��(�
��

��
������ ����� :
��
� � (�

��� � (

��� � (��� � (

�� � (

!�")#�%���'+*<;

� � (
������(� �6�	��(�

Figure 4.3: DCT-domain temporal transcoder: residual signal re-computation for
MC macroblocks

reference area In−1 in the skipped frame is not on a macroblock boundary, and so
Q[DCT (en−1)] is not available from the incoming bitstream.

It is possible to use the incoming quantized DCT coefficients of the macroblocks
In−1
1 , In−1

2 , In−1
3 , In−1

4 that overlap In−1, for computing the residual for In−1, named
en−1. First, inverse quantization and inverse DCT of coefficients of the macroblocks
that overlap In−1 are performed, to obtain their corresponding residual in the pixel-
domain. These residual are added to the motion compensated segments of the
previous not skipped frame to obtain In−1 in pixel-domain. The residual en−1 is
obtained by subtracting In−1 from the corresponding motion compensated refer-
ence area In−2 in the previous not skipped frame. DCT and quantization are ap-
plied to en−1 to obtain Q[DCT (en−1)]. Then, the new quantized DCT coefficients
Q[DCT (es

n)] of a motion compensated macroblock can be computed according to
(4.7). The re-quantization introduced for computing Q[DCT (en−1)] brings to addi-
tional re-encoding errors δs

n−1. Note that, as compared with δs
n in (4.6), δs

n−1 is the
re-encoding due to frame n− 1 instead of frame n. These errors degrade the quality
of the reconstructed frame. Since each not skipped inter-frame is used as a reference
frame for the next not skipped inter-frame, quality degradation propagates to later
frames in a cumulative manner. In the solution proposed in [FCS04] [FCS02], these
re-encoding errors are stored and added to the residual of motion compensated mac-
roblocks in the successive INTER frames. This technique cannot entirely avoid the
propagation of re-encoding errors, but it reduces their effect on the visual quality of

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Motion Vector Composition 41

�����
�����

������
	 � �

�
 � �
 ��� � �

��� � �
 �
	 � � �

�
 � �
� ��� � � �

��� � � � ��	 � � 	

�
 � �
	 ��� � � 	

��� � � 	 �
	 �

�
 � ��� �

��� �

������������������������ �������������� ������������ � �
!#"�$�%'&(&)�+*-, !�"�$�%'&(&)�+*-,

Figure 4.4: Motion Vector Composition

the transcoded frames.

In [ZZYW05], a skipping scheme for frame rate reduction is proposed. It performs
operations in the DCT domain and adopts a macroblock coding mode re-judgment
algorithm in order to reduce the re-encoding error due to skipping of frames. This
algorithm takes into account the macroblock coding mode in the input bitstream
and the coding mode of macroblocks overlapping the reference area in the skipped
frame.

A macroblock coding mode re-judgment algorithm is adopted also in the transcoder
architecture proposed in this thesis, as we will show in Section 5.3.

In [KPKK06], a hybrid quality/temporal transcoder in DCT domain is proposed.
It uses a complexity measure of a frame to determine whether a frame has to be
skipped or not. This complexity measure takes into account the number of generated
bits and the average quantization parameter of a frame. It is compared with a
threshold, dynamically tuned according to activities of frames in a window and to
the target frame rate. In addition, a frame layer rate control method is adopted
to perform optimal bit allocation at frame level in order to minimize the average
distortion over an entire sequence. In this bit allocation, buffer fullness is considered
to meet the target bit rate.

In this thesis, we focus on purely temporal transcoding, where bit rate reduction
is obtained only by skipping frames.

4.3 Motion Vector Composition

When some incoming frames are dropped in transcoding, new motion vectors for the
outgoing bitstream need to be computed. One possible way to generate the motion
vectors of the outgoing sequence, without performing motion estimation, is to use
the vector sum. Figure 4.4 illustrates a situation where two frames are dropped.
The estimated MV for the macroblock In

2 in the current frame Fn is the sum of
motion vectors MV1, MV2, MV3.

If the incoming motion vector is equal to zero, it points to a macroblock (In−1
2), so

the motion vector of this macroblock (MV2) is available in the incoming bitstream.
In general, motion vectors are not equal to zero, and they point not to a macroblock,

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

42 Temporal Transcoding

but to a reference area of 16×16 pixels which is not on a macroblock boundary. So,
the motion vector of this area (MV3 in Figure 4.4) is not available in the incoming
bitstream.

There are several algorithms (Bilinear Interpolation, Forward Dominant Vector
Selection, Telescopic Vector Composition, Activity Dominant Vector Selection are
the most popular) able to select a motion vector for this reference area, when it
overlaps four macroblocks in the skipped frame. Such algorithms, that we describe
in the following, are of interest in this thesis. In Section 5.4, we will compare their
performance relative to our transcoder architecture implementation.

In H.264 codec, these algorithms cannot be directly applied, due to the variable
partitioning of a macroblock into motion-compensated sub-blocks of varying sizes
(see Section 2.3.2), since a separate motion vector is required for each partition or
sub-block. In this thesis, we approach the above problem, and give an H.264 motion
vector composition scheme, described in Section 5.5.2.

4.3.1 Bilinear Interpolation

In [HWL98], bilinear interpolation is defined as:

MVint = (1−α)(1−β)MV n−1
1 +(α)(1−β)MV n−1

2 +(1−α)(β)MV n−1
3 +(α)(β)MV n−1

4

(4.8)

where MV n−1
1 , MV n−1

2 , MV n−1
3 and MV n−1

4 , are the motion vectors of the four

��� � ���

��� � � 	

���
 � 	

��� � � 	

��
������������
�������! " #�%$'&

(�) * + , (�- * + ,

(, * + , (�. * + ,

αααα

ββββ
α

��� / � 	

��
��0�����

(1) * (1- *

(1. *(, *

Figure 4.5: Bilinear Interpolation algorithm

macroblocks overlapping the reference area in the skipped frame pointed by the
incoming motion vector, α is the ratio between horizontal pixel distance of this
reference area from the MV n−1

1 and the macroblock size, and β is the ratio between

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Motion Vector Composition 43

vertical pixel distance of this reference area from the MV n−1
1 and the macroblock

size (Figure 4.5). The selected motion vector is MVint.

4.3.2 Forward Dominant Vector Selection

In [YSL99] [YS99], the Forward Dominant Vector Selection algorithm is proposed.
This algorithm selects one dominant motion vector among the vectors of the four
macroblocks overlapping the reference area in the skipped frame. This dominant
vector, MVfdvs, is defined as the motion vector of the dominant macroblock. The
dominant macroblock is a macroblock having the largest overlapping area with the
reference area pointed by the incoming motion vector. In particular, this dominant
vector, MVfdvs, is selected as follows:

MVfdvs = MV n−1
1 if α < 0.5 and β < 0.5

MVfdvs = MV n−1
2 if α ≥ 0.5 and β < 0.5

MVfdvs = MV n−1
3 if α < 0.5 and β ≥ 0.5

MVfdvs = MV n−1
4 if α ≥ 0.5 and β ≥ 0.5

where, as in the Bilinear Interpolation algorithm, α is the ratio between horizontal
pixel distance of this reference area from the MV n−1

1 and macroblock size, while β
is the ratio between vertical pixel distance of this reference area from the MV n−1

1

and macroblock size. For example, MVfdvs=MV n−1
2 in Figure 4.6.

The same criterion used by FDVS algorithm for choosing the motion vector is
presented in [VYLS02]. In this work the choice of the motion vector is formulated
in a different way and defined as majority voting approach.

This algorithm has a computational complexity lower than that of the bilinear
interpolation. The approximation of MVfdvs is more accurate when the overlapping
area of the dominant macroblock with the reference area is larger. However, when
the overlapping areas among the four near macroblocks are very close, the motion
vector chosen by FDVS may not be meaningful.

In [SKHK03], the conventional FDVS method is improved to reflect the effect of
the macroblock types in the skipped frames.

In [LH03], the Bi-direction Dominant Vector Selection (BDVS) algorithm is pre-
sented. It is based on FDVS, but it is designed to re-estimate the dominant motion
vectors in video sequences with B frames (decribed in Section 2.4.1) that are not
considered in FDVS.

Another algorithm called Generic Bi-directional Dominant Vector Selection (GB-
DVS) is proposed in [PK05a]. It is based on FDVS method, and is applicable both
to P and B frames.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

44 Temporal Transcoding

αααα

��� � � �
��� �
	��

��� � � � �

��� � � � �

��� � � � �

������������� �
!#"�$�%'&(&)�+*-,

��. � � � �0/ � � �

��1 � � �

�2� 3 � � �

�����4�����

�0. � �0/ �

�01 ��5� �
ββββ
α

Figure 4.6: Forward Dominant Vector Selection algorithm

4.3.3 Telescopic Vector Composition

A simple algorithm is Telescopic Vector Composition [SG00], that selects, in the
skipped frame, the motion vector MVtvc of the macroblock corresponding to the
macroblock in the current frame. For example, MVtvc=MV n−1

1 in Figure 4.7.

��� � � �

��� � 	�

��� �
 � �

��� �
 � �

��� �
 � �

���������������
 "!�#�$&%'%(�*),+

��- � � � ��. � � �

��/ � � �

�0� 1
 � �

�����2�����

��- � ��. �

��/ ��3� �

Figure 4.7: Telescopic Vector Composition algorithm

The basic idea is that in videos with small motion, the motion vectors are very
small, so the reference area pointed by the incoming motion vector will always
overlap for the most part the corresponding macrobloclock in the skipped frame.
For this reason, the results obtained by TVC and FDVS can be very close. We will
show their performance in the next chapter.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Motion Vector Refinement 45

4.3.4 Activity Dominant Vector Selection

The choice of the motion vector is based on the activity of the macroblocks in the
Activity Dominant Vector Selection algorithm, presented in [CCP02]. The activity
of a macroblock is represented by the number of nonzero quantized DCT coeffi-
cients (NZ) of the residual of the blocks belonging to that macroblock. The ADVS
algorithm selects the motion vector (MVadvs) of the macroblock with the largest ac-
tivity, among those overlapping the reference area pointed by the incoming motion
vector. Other statistics can also be used, such as the sum of the absolute values
of DCT coefficients. For the case shown in Figure 4.8, ADVS chooses the motion
vector of In−1

4 as dominant vector (MVadvs=MV n−1
4), since NZ(In−1

4) is larger than
NZ(In−1

2), although NZ(In−1
4) only covers two blocks, which are smaller than the

four blocks covered by NZ(In−1
2).

��� � � � �

��� � � � �
��� � � � �

�
	���
��������
�������������! #"

�$	���
%���

&
' (&$) (

&$* (&,+ (

��� - � � �

� �/.�0
132
465 798;:;<>= ? "465 798 ? < = ? @

465 7989A < = ? @ 4B5 7C8>D < = ? @

Figure 4.8: Activity Dominant Vector Selection algorithm

The idea of this algorithm is to select the motion vector of the macroblock with
maximum activity (NZ) corresponding to larger prediction errors. The larger is the
activity of the macroblock, the more significant is the motion of the macroblock.
Since the quantized DCT coefficients of prediction errors are available in the incom-
ing bitstream of transcoder, the computation for counting the nonzero coefficients
is very low.

4.4 Motion Vector Refinement

Usually, a composed motion vector is not the optimal one, and it should be refined
to obtain a better video quality [YSL99][YSL98]. A Full Search motion estimation
process can be applied in a new restricted area pointed by the composed motion
vector, to find the best possible matching area. A search window of a few pixels is
usually adopted: typically, the search range is set to ±2 pixels around the composed

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

46 Temporal Transcoding

���

�

�
���	��

��������������
��������

�

! "���#
	$%�&���'�(���)��
��������

*
��+�,��-/.)���#$��0.

Figure 4.9: Fast Motion Vector Refinement algorithm

motion vector. It has been shown in [SG00] that such a small range can achieve a
similar performance to that of the total full-search motion re-estimation.

In [YSL99], a horizontal and vertical fast motion refinement scheme is proposed:
instead of analyzing all checking points within the search window, this scheme
searches for a minimum point over the horizontal line first, and then over the vertical
one, as shown in Figure 4.9, where the best case and a search range of ±2 pixels are
considered.

The SAE (see Equation 2.3) is computed for the starting position in the horizon-
tal search, and only when the computed SAE on the left side is larger than that one
of the starting point, the points on the right side are searched. The vertical search is
performed in a similar way. In Figure 4.9, the SAE of the starting point at position
1 is compared with that of the adjacent left point at position 2. If the computed
SAE at position 2 is smaller, then the point located at position 3 is checked. If the
SAE at position 2 is still smaller than that a position 3, a minimum point in the
horizontal direction has been found. The search continues in the vertical direction.
The SAE of position 2 is compared with that of position 4. If the last one is smaller,
it is compared with the SAE of position 5. If the SAE of position 4 is still smaller, a
minimum SAE value is found, in both the horizontal and vertical dimensions. Five
and seven checking points are required in the best and worst cases, respectively.
In Figure 4.9, we report the best case only. In [HWL98], the refinement range is
dynamically decided based on the motion vector size and the number of consecutive
skipped frames. In [CCP02], an approach similar to that of [YSL99] is pursued, and
a variable step-size search algorithm is proposed: the step-size, say S, is computed
as function of the composed motion vector components. Then, exactly nine points
are checked. Starting from the position pointed by the composed motion vector, the
positions S pixels far from it in the horizontal line are checked. Among these three
points, the minimum one becomes the starting point for being checked, together

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Frame skipping policies 47

�

�

�������	��

�����������������	���������

�	��� �!� "$#����	���%#

� �

�

&

&

&

&

'

Figure 4.10: Variable step-size Motion Vector Refinement algorithm

with the position S pixels far from it in the vertical line, and the minimum one is
chosen. Finally, the four cross positions around it are checked. This scheme with
7x7 search window and S=2 is represented in Figure 4.10.

4.5 Frame skipping policies

The choice of frames to be skipped is an important issue in temporal transcoding.
It greatly influences the quality of transcoded video sequences.

Most frame skipping policies are based on motion information to skip not nec-
essary frames. This is why the drawback of temporal transcoding is the jerky effect
caused by skipping frames, and it is more evident when frames with large motion are
skipped. The basic idea of motion based strategies is that, if the motion information
of the frame is larger than a threshold, the frame cannot be skipped since it has
considerable motion, and it is not possible to have a good approximation of it by
using the previous transcoded frame. It is assumed a communication model where
the remote decoder replaces each missing frame with the previous transcoded frame.
In Section 4.5.1 we survey the most popular motion based frame skipping policies.
We briefly present other frame skipping policies in Section 4.5.2.

4.5.1 Motion-based frame skipping policies

The motion information criterion in frame skipping is studied in depth in this thesis.
There are different formulations of the motion information measure. The most
popular definition considers how much motion is in a frame. This motion information
measure is also called “motion activity”. In [HWL98] and [FCS02] it is defined as:

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

48 Temporal Transcoding

MAn =
N∑

i=1

|(un)i|+ |(vn)i| (4.9)

where N is the total number of macroblocks in frame n, (un)i and (vn)i are the
motion vector components of macroblock i in frame n.

This motion activity is compared with a dynamic threshold value, computed ac-
cording to the motion activity of the previous frames, and the number of transcoded
frames. According to the motion activity, a frame rate control scheme dynamically
adjusts the number of skipped frames.

In this thesis, we improve this motion activity based skipping policy as we will
show in Section 6.2.

When frames are dropped, re-encoding errors in motion compensated macroblocks
cannot be avoided entirely, even if error compensation schemes are applied (as we
presented in Section 4.2). In [FCS02], a frame skipping strategy taking into account
the effect of the re-encoding errors is proposed. The goal of this strategy is to min-
imize the re-encoding errors, as well as to preserve motion smoothness. A frame
skipping metric named FSC (Cumulative Frame Skipping) which takes into account
the accumulated magnitude of the motion vectors and the re-encoding errors, is
defined as:

FSCn(MAn, REn−1) =

∑N
i=1(MAn)i∑N

i=1(REn−1)i

(4.10)

where N is the total number of macroblocks in the current frame n, MAn is the
motion activity of the frame n defined as in (4.9), and REn−1 are the accumulated
re-encoding errors due to transcoding, for the motion compensated macroblocks of
the current frame as we described in Section 4.2.1 and Section 4.2.2. This metric
is compared with a dynamically tuned threshold according to target and outgoing
frame rate. A large value of the accumulated re-encoding errors reduces the value
of FSCn(MAn, REn−1), causing the skipping of the frame.

A different approach that considers the motion activity is presented in [SC04],
where a metric representing the motion change is defined. The motion change
occurred at the current frame is defined as the difference between the motion of that
frame in the transcoded and in the original video sequence. Such motion change is
different for skipping and not skipping cases of the previous frame.

As show in Figure 4.11(a), in the original video sequence the motion change that
occurred at frame k + 1 is defined as:

δmvorg =
mv2 −mv1

t
(4.11)

where t is the interval time. If frame k + 1 is trancoded, the motion change that
occurred in this frame is the same in the original sequence and in the transcoded
sequence. So, no jerky effect is introduced by transcoding. However, when frame

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Frame skipping policies 49

mv2

Frame n+1 Frame n Frame n+2

mv1

(a)

mv1 + mv2

Frame n+1 (skipped) Frame n Frame n+2

0

(b)

Figure 4.11: Motion based frame skipping: motion change analysis (a) n + 1 frame
is not skipped (b) n + 1 frame is skipped

k + 1 is skipped, a direct copy of the previous coded frame k is used for displaying.
In this case, the motion change occurred at frame k + 1 as shown in Figure 4.11(b)
can be expressed as:

δmvtrans =
mv1 + mv2 − 0

t
(4.12)

If frame k+1 is skipped, δmvorg and δmvtrans are different, and this difference causes
an undesired jerky effect. In order to compute this difference, the Square Difference
of Motion Change (SDMC) is defined as:

SDMC = (δmvtrans − δmvorg)
2 (4.13)

The goal of this policy is to mitigate the difference of motion change between the
transcoded and the original video sequence, reducing the jerky effect caused by frame
skipping. If SDMC metric is higher than a threshold, it means that a large motion
jerky will occur by skipping this frame, so the frame is transcoded. If it is smaller
than the threshold, the frame is skipped, since skipping this frame will not introduce
visual quality degradation. The threshold is adaptively updated to well reflect the
actual motion change of the target video sequence. The proposed frame-skipping
control scheme can only be applied for transcoding and not for encoding, since it is
needed to know the motion vector of the next frame when transcoding the current
frame, and this motion vector is only available in the pre-encoded video.

4.5.2 Other frame skipping policies

A dynamic approach minimizing long runs of consecutive skipped frames is proposed
in [CSA03], where a frame skipping control scheme based on a buffer level prediction

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

50 Temporal Transcoding

algorithm is presented. This buffer prediction algorithm defines a prediction tem-
poral window n as the number of future frames over which the transcoding buffer
level is estimated. The buffer fullness after transcoding frame i + n is given by:

Bi+n = Bi +
i+n∑

j=i+1

(Rj)− n
RB

F
(4.14)

where Bi+n and Bi are the buffer occupancy after transcoding frames i + n and i
respectively, Rj is the expected number of bits for frame j, F is frame rate, and RB

is the network transmission rate.
One buffer threshold empirically set to 80% of the buffer size is used to determine

whether a future frame will be transcoded, or skipped. After having estimated the
buffer level for all frames within the prediction window by using (4.14), the number
of consecutive frames to be skipped, immediately after i + n, Nskip, is determined
by:

Nskip =
Bi+n − Threshold×Bmax

RB/F

if (Bi+n − Threshold×Bmax) > 0 (4.15)

where Bmax is the transcoder buffer size. If Nskip > 1, then several consecutive
frames are expected to be skipped. The frame rate control algorithm forces the
transcoder to immediately skip the next frame: in this way, the buffer occupancy
decreases to the point that one or more future frames will not be skipped as previ-
ously estimated. By using this strategy, the number of consecutive skipped frames
is reduced. This method does not prevent buffer overflow, so a second threshold,
set to 95% of the buffer size, is used for forcing skipping of the next frame if the
current buffer level is above it. The critical aspect of this approach is computing the
expected number Rj of bits for frame j. To perform this, a log-linear approximation
model, described in [CSA02], is used. A drawback of this model is that it is very
complex and heavy in the transcoding process.

The buffer fullness and the number of consecutive skipped frames are two impor-
tant aspects in temporal transcoding, outlined in [BLM05a] and that we will explain
in more detail in Section 6.3.2.

In [DKD06], a new approach that takes into account the content information of
the video sequence is presented. In this approach, content information is used to
skip a frame, according to bandwidth variations and constraints. In particular, if a
video frame should be transmitted at time t = n, the available network B(n) is esti-
mated at this time t. Let B0 be the minimum bandwidth required for transmitting
a frame in one frame period. If B(n) is smaller than B0, the ratio L(n) = B0/B(n),
indicating how many times the information should be reduced in order to be trans-
mitted through the network, is computed. The number of frames K that should be
skipped is:

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Frame skipping policies 51

K = dL(n)e
Consequently, the following K frames, namely frames (n + 1, n + 2,, n + K − 1),
should be skipped to satisfy the current bandwidth requirements. The proposed
algorithm, among the current and the candidate frames for skipping (n, n + 1, n +
2,, n + K − 1), selects the most representative frame to be delivered, whereas
the remaining frames are skipped. A measure, called “feature vector”, taking into
account the colour information and the motion information in a frame, is used to
select the most representative frame. Let fi be the feature vector of a frame i.
Among the K candidate frames, the average feature vector f over all K frames is
computed in this way:

f̄ =
1

K

K∑

i=1

(fi) (4.16)

The most representative frame is frame J , whose feature vector agrees with:

J = arg min
i
‖fi − f̄‖ (4.17)

The network bandwidth is re-estimated after the completion time of each repre-
sentative frame transmission. The authors of [DKD06] propose also an objective
evaluation scheme different from conventional PSNR. It is based on the “feature
vector” measure and it is used to evaluate the proposed approach.

The idea of selecting the most representative frame to be transmitted, when a
number of frames has to be skipped, in order to meet the bandwidth constraints
was proposed also in [BLM05a], for the case of constant bit rate reduction. We will
address this problem in depth in Chapter 6.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

52 Temporal Transcoding

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Part II

Proposed Approaches

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 5

Temporal Transcoding:
architecture and Motion Vector
Computation

Abstract

In this chapter, we address temporal video transcoding for real-time com-
munication. We describe the adopted pixel domain transcoding architecture
and the followed approaches to perform motion vector computation. An H.264
compliant motion vector composition scheme is proposed.

5.1 Introduction

Temporal transcoding is the focus of this thesis. Our goal is to address the issues
of temporal transcoding for improving real-time video communication of many mul-
timedia services (video telephony, video conference, etc), on mobile networks. For
this purpose, the proposed solutions try to optimize the transcoding performance,
keeping a good quality of transcoded video sequences. In this chapter, we approach
two main problems of temporal transcoding: transcoder architecture design and mo-
tion vector computation. The adopted frame skipping strategies will be presented
in the next chapter.

Our transcoding architecture is described in Section 5.2. To reduce transcoding
complexity, we adopt motion vector composition for re-computing motion vectors,
when a frame is skipped. In Section 5.4 we present a performance comparison
of different motion vector composition algorithms implemented in our transcoding
architecture.

Finally, the problem of motion vector composition in H.264 based transcoder
is addressed. In Section 5.5, we propose a new motion vector composition scheme

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

56
Temporal Transcoding: architecture and Motion Vector

Computation

���

���
���

�

������
� �� �

	�

	
���

	
��

� ����������������� � �"!#�

�����"�$�&%'� ��(� � ��!#�

) *,+-���.�/�/�,!0�

���� �

� �
1

� �

23
54 6 ���
786

7923
:4
���

� � ;=<">-?'@BABC
D <FEG@"H D I

J,�K

� �

1

;=<">-?L@BABCH D EG@"H D

	�

7M6

7923
:4

N�O=P$Q R S

TVU R S

Figure 5.1: Our temporal transcoder architecture

to deal with variable partitioning of H.264 coded frames. This result is one of the
original contributions of this thesis, published in [LM07a].

5.2 Transcoder Architecture

We developed a pixel-domain temporal transcoder architecture. In our transcoder
architecture, the words “input” and “output” are always related to the transcoder,
and we call IR the input bit rate, and R the output bit rate. Such architecture is
able to reduce the input bit rate IR of the incoming video sequence, by eliminating
some frames, so that the output bit rate R turns out to be constant as we will
explain in Chapter 6. In this case, the frame rate of the output video sequence is
not constant, and we assumed that the skipped frames are replaced by the previous
ones (freezing) at displaying time in the final decoder. In our transcoder, the mo-
tion vectors are computed by choosing one of the four motion vector composition
algorithms, (Bilinear Interpolation [HWL98], Forward Dominant Vector Selection
[YSL99], Telescopic Vector Composition [SG00] and Activity Dominant Vector Se-
lection [CCP02]), described in Section 4.3, and a motion vector refinement procedure
(see Section 4.4). The residual is computed in the pixel domain. A re-estimation
procedure of the type of macroblocks of a frame when its reference frame is skipped
is developed. In addition, an intra-refresh procedure, to correct re-encoding errors
introduced by skipping of frames, is introduced. Both procedures are explained in
more detail in Section 5.3. In this transcoder architecture, the main parts the we
investigated are Motion vector composition (MVC) and Frame Rate Control (FRC).
About MVC a performance comparison of motion vector compositions algorithms

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Transcoder Architecture 57

is performed and a new motion vector composition scheme for H.264 transcoder is
proposed. About FRC different frame skipping strategies are proposed.

The architecture of our transcoder is shown in Figure 5.1. The behavior of the
transcoder is different according to the decision taken for the reference frame. In
other words, at each frame, the transcoder performs some operations if the previous
frame has been skipped, and some other operations if the previous frame has been
transcoded and transmitted. The switching between the two behaviors is represented
in Figure 5.1 by the switch PS/PT . In addition, also transcoding or skipping of
the current frame determines a different behavior of the transcoder. The switching
between the two behaviors is represented in Figure 5.1 by the switch CS/CT . Every
incoming frame in frame is decoded in the transcoder’s decoder, by means of motion
compensation with the previous decoded frame prev dec frame.

In Section 5.2.1 and Section 5.2.2, we present the configuration of the transcoder
architecture, when the transcoded reference frame has been transmitted and skipped,
respectively. Note that, in this architecture we use the term transcoded to indicate
that a frame is coded with respect to the last transcoded and transmitted frame.
So, each frame is transcoded before deciding if it is better to skip or transmit it.
This is because it is needed to know some features of the transcoded frame (for
instance, its size in bits or motion information), before applying some frame skipping
policies. Transcoding each frame is needed also for avoiding to store all skipped
frames between the current frame and the last transmitted one, which implies large
memory resources. Transcoded frames are then skipped or placed in the buffer for
being transmitted.

5.2.1 Transcoder architecture: reference frame not skipped

When the reference frame has been transcoded and transmitted (Figure 5.2), the cur-
rent frame is decoded by inverse quantization (IQ), inverse DCT (IDCT), and motion
compensated (MC) with respect to the last decoded frame, to update prev dec frame.
The motion compensation is performed with respect to the last transcoded and
transmitted frame to update prev tran frame, in case that the Frame Rate Con-
trol (FRC) module decides to transcode and transmit the current frame. In this
case, the motion vectors (MVIN) and DCT coefficients (qdctIN) are re-encoded and
put in the output buffer. Otherwise, if the FRC module decides to skip the current
frame, only the motion vectors of the current frame are stored in skipped mv, for
being used to perform Motion Vector Composition (MVC) for the next incoming
frame.

5.2.2 Transcoder architecture: reference frame skipped

In case of skipped reference frame (Figure 5.3), it is needed to recompute the motion
vectors and the residual of the current frame with respect to the last transcoded
and transmitted frame. The motion vectors are computed by means of Motion

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

58
Temporal Transcoding: architecture and Motion Vector

Computation

��� � �

���
�	�

���
������������� � ���

�������! #"$�&%' �)(�*+�

,)-/.��$�0�1"2 /*3�

465 �����7�8 09:�)(�;' �)(�*<�

�=�

$��
��>������ � � � ��� ?

@/AB5

�	�

�=� �C�
D

EGF

EGHI5KJ

D4L5

M�N�O!P � �

Figure 5.2: Our temporal transcoder architecture: not skipped reference frame

Vector Composition (MVC module in Figures 5.1, 5.3) and Motion Vector Refine-
ment (MVR module in Figures 5.1, 5.3). The MVC module adds to the vectors
of the incoming frame MVIN the motion vectors chosen among skipped mv, by
one of the implemented motion vector composition algorithms. As in the case of
not skipped reference frame, the current frame is decoded by inverse quantization,

���
�����	��

�
�
� ����
�� �

�
���

��� �����

�����	��

�
�
� � ��
�� �

���

!#"

!%$'&

!%$'"

(�)+*-,/.102*43
5)76�89*

(�)+*�,:.<;�)76-=
5)76-89*

>7?A@	(2(B*�0�.A8C,

������

���

D

EF"HG I

JKI

JLEF"MG

NA&O"
D

P�Q�R:S �����P�Q�R:S T U

��� T U

!#"

JVI

JLEF"MG

Figure 5.3: Our temporal transcoder architecture: skipped reference frame

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in our transcoder 59

inverse DCT, and motion compensated with respect to the last decoded frame, to
update prev dec frame. The motion compensation is performed also with respect to
the last transcoded and transmitted frame prev tran frame to produce the motion-
compensated frame. This one, together with the current decoded frame and the mo-
tion vectors obtained by MVC module, are the inputs for MVR module. The MVR
module performs a refined motion estimation around the vectors given by MVC, in
order to produce the best possible motion vectors. It can be performed with Full
Search Motion Estimation (FSME) or Fast Motion Refinement Algorithm (MEFast).
These motion vectors (MVOUT) are used to perform motion compensation with
respect to the last not skipped frame prev tran frame. The obtained motion-
compensated frame is then subtracted from the current decoded frame to produce
the residual for the current frame. The residual is coded by DCT and quantization
to obtain the quantized DCT coefficients qdctOUT . Transcoded frames are then
skipped or placed in the buffer for being transmitted. If the FRC module decides
to transmit the transcoded current frame, the quantized DCT coefficients qdctOUT

and the motion vectors MVOUT are entropy coded. In addition, the quantized DCT
coefficients, after inverse DCT and quantization, will be added to the motion com-
pensated frame, in order to store the current frame in prev tran frame. Otherwise,
if the transcoded frame will be skipped, MVOUT will be stored in skipped mv, for
being used to perform Motion Vector Composition (MVC) for the next incoming
frame.

5.3 MVC in our transcoder

In our temporal transcoder, when the reference frame has been skipped, we use
Motion Vector Composition (MVC), (surveyed in Section 4.3), to obtain the motion
vectors for the current frame. The main issue in temporal transcoding is that, the
motion vectors and the type of macroblocks of the current frame are no more valid,
when the reference frame is skipped, since they refer to a frame that is not in the
output video sequence at transcoder. The implemented motion vector composition
module re-estimates the type and motion vectors of macroblocks of the current frame
when its reference frame is skipped, as follows:

• If a macroblock was coded as SKIPPED, it must be coded in the transcoder
with the same type of the corresponding macroblock in the skipped frame. If
the corresponding macroblock in the skipped frame is an INTER macroblock,
its motion vectors become the motion vectors of the macroblock in the current
frame. Later, in the transcoding process, also the residual of this macroblock
in the skipped frame will be the residual of macroblock in the current frame.
This is why, in the front decoder, a SKIPPED macroblock is usually replaced
with the corresponding macroblock in the previous frame. In this case, the
previous frame is the skipped frame;

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

60
Temporal Transcoding: architecture and Motion Vector

Computation

• If a macroblock was coded as INTRA, it must be coded as INTRA macroblock
again, with motion vector equal to zero;

• If a macroblock was coded as INTER, and it is a non MC (motion compen-
sated) macroblock, it must be coded with the type and motion vector of the
corresponding macroblock in the skipped frame, as follows:

– If the corresponding macroblock was coded as INTRA in the skipped
frame, the type of the macroblock in the current frame will be INTRA,
and its motion vector will be equal to zero;

– If the corresponding macroblock was coded as INTER in the skipped
frame, the type of the macroblock in the current frame will be INTER
as well, and its motion vector will be equal to that of the macroblock in
the skipped frame;

– If the corresponding macroblock was coded as SKIPPED in the skipped
frame, the type of the macroblock in the current frame will be SKIPPED,
and its motion vector will be equal to that one of the macroblock in the
skipped frame.

• If a macroblock was coded as INTER, and it is an MC (motion compen-
sated) macroblock, a motion vector composition algorithm can be applied to
find the motion vector of the reference area in the skipped frame pointed
by the the motion vector of the current macroblock. In our transcoder we
implemented four motion vector composition algorithms, namely Bilinear In-
terpolation [HWL98], Forward Dominant Vector Selection [YSL99], Telescopic
Vector Composition [SG00] and Activity Dominant Vector Selection [CCP02]
(described in Section 4.3). The motion vector can be computed by choosing one
of these motion vector composition algorithms (specified in the configuration
file of transcoder) and it is added to the motion vector of the current mac-
roblock, obtaining the re-estimated motion vector of the current macroblock
with respect to the last not skipped frame as explained in Section 4.3.

We present the pseudo-code of our MVC module in Table 5.1, where MVIN

are the motion vectors of the current frame, MVSKIP are the motion vectors of
macroblocks in the skipped frame, MVOUT are the re-estimated motion vectors of the
current frame after MVC, TypeIN is the type of the current macroblock, TypeSKIP

is the type of the corresponding macroblock in the skipped frame, TypeOUT is the
re-estimated type of the current macroblock after MVC, MV CALG is the chosen
motion vector composition algorithm.

Note that, this MVC module description is referred to our MVC implementation
considering an MPEG4 based transcoder, where each INTER macroblock (16 ×
16 pixels) can be partitioned in four blocks (8 × 8 pixels). So, we can have four
motion vectors for each INTER macroblock. We call this macroblock INTER4v.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in our transcoder 61

Table 5.1: Pseudo-code of MVC module

————————————————————————–
Input = MVIN , MVSKIP , TypeIN , TypeSKIP , MV CALG

Output = MVOUT , TypeOUT

1. for all (MB in CurrentFrame) do
2. if TypeIN [MB] is SKIPPED then
3. MVOUT [MB]=MVSKIP [MB]
4. TypeOUT [MB]=TypeSKIP [MB]
5. else if TypeIN [MB] is INTRA then
6. MVOUT [MB]=(0, 0)
7. TypeOUT [MB]=INTRA
8. else (TypeIN [MB] is INTER or INTER4v)
9. ifMVIN [MB]=(0,0)
10. ifTypeSKIP [MB] is INTRA then
11. TypeOUT [MB]=INTRA
12. ifTypeSKIP [MB] is SKIPPED then
13. TypeOUT [MB]=SKIPPED
14. ifTypeSKIP [MB] is INTER then
15. TypeOUT [MB]=INTER
16. MVOUT [MB]=MVSKIP [MB]
17. else
18. TypeOUT [MB]= INTER
19. ifMV CALG is BI then
20. MVOUT [MB]=MVIN [MB] + BI(MVSKIP [MB])
21. ifMV CALG is TVC then
22. MVOUT [MB]=MVIN [MB] + TVC(MVSKIP [MB])
23. ifMV CALG is FDVS then
24. MVOUT [MB]=MVIN [MB] + FDVS(MVSKIP [MB])
25. ifMV CALG is ADVS then
26. MVOUT [MB]=MVIN [MB] + ADVS(MVSKIP [MB])
27. end if
28. end if
29. end if
30. end for

————————————————————————–

We apply MVC for each block of an INTER4v macroblock, as described before, for
the case of non motion compensated and motion compensated INTER macroblocks.
Having the real-time communication as target application, we assume that there

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

62
Temporal Transcoding: architecture and Motion Vector

Computation

are not bidirectional frames in the transcoder input video sequence, to reduce the
complexity of coding process.

The problem of motion vector composition in H.264 based transcoder is addressed
in Section 5.5, where a MVC scheme is proposed, taking into account the variable
macroblock partitioning of coded frames.

As in [VYLS02], we adopt an intra refresh technique able to correct errors in-
troduced in transcoding architecture, due to skipping of frames (see section 4.2.1).
In the proposed intra refresh technique, a macroblock is coded as INTRA when its
residual is greater than a properly tuned threshold. Such threshold is dynamically
computed according to the average residual of the previous frames in a sliding win-
dow. However, a macroblock is coded as INTRA, when the amount of bits needed to
code its residual is equal to the amount needed to code it as an INTRA macroblock.

5.4 MVC algorithms comparison

In this section we want to present a performance comparison of motion vector com-
position algorithms implemented in our transcoding architecture (see Section 5.3),
in terms of PSNR of transcoded video sequence and computation time of the entire
transcoding process.

We evaluate the PSNR (see Section 2.5), indicating the quality of a video se-
quence, by taking into account the differences of luminance values of corresponding
pixels in the original and reconstructed frames of the video sequence. We compute
the PSNR in this way: we consider as original video sequence the one decoded after
the front encoder. As reconstructed sequence, we use the one decoded after our
transcoder, where skipped frames are replaced with their previous ones (freezing).
This way of computing the PSNR allows us to measure the actual visual quality per-
ceived by the final user, considering the degradation introduced by the transcoding
process only, without considering those introduced by the previous coding process.
For the sake of clearness, in the following of this thesis, we will call this measure
PSNR1. A more detailed analysis of used PSNR measures will be presented in
Section 6.3.1.

We show the average PSNR1 achieved with the four implemented motion vec-
tor composition algorithms: Bilinear Interpolation (BI), Forward Dominant Vector
Selection (FDVS), Telescopic Vector Composition (TVC) and Activity Dominant
Vector Selection (ADVS). Their performance is evaluated with respect to that of
Full Search Motion Estimation (FSME).

In this thesis we use for simulations, well known benchmark video sequences
with 300 frames, QCIF format, and 30 fps [vid]. They have different motion fea-
tures: “akiyo” and “mobile” have little motion, “foreman”, “carphone”, ‘table” and
“coastguard” have motion and scene change.

After Motion Vector Composition, a motion vector refinement of ±2 pixels
around the composed motion vector is applied. The search method that has been

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 63

used in these experiments is the Full Search method with Sum of Absolute Errors
(SAE) matching criterion (see Section 2.3.1).

We evaluate the average PSNR1 for different input bit rates of the transcoder,
and two frame rate reductions (30 to 15 fps and 30 to 7.5 fps). In this way, we can
estimate the performance of all MVC algorithms when the same frames are skipped.
Note that, to obtain a constant frame rate reduction, the transcoder reduces the
frame rate without using any buffer control and without operating on quantization
parameters, so the transcoder output bit rate is not constant. The presented results
are related to a temporal transcoder that we implemented by using the MPEG4
reference software Visual Simple profile [ISO04].

In Table 5.2 and Table 5.3 we show PSNR1 of “foreman”, “akiyo”, “coastguard”
and “carphone” for 30 to 15 fps and 30 to 7.5 fps respectively. We can observe that
in both frame rate reduction cases, all motion vector composition algorithms show a
PSNR1 close to that one of FSME. BI, FDVS and ADVS have a better performance
than TVC. This is showed also in Figures 5.4 and 5.5.

In Table 5.4 and Table 5.5 we show the computational complexity of the en-
tire transcoding process with FSME and MVC algorithms. We used an Athlon 64
3200+, with 512MB memory and Linux Mandrake 10.2 as operating system, to run
our experiments. The presented values relate to the ratio of computation time of
the implemented motion vector composition algorithms with respect to FSME. The
reported values are the average values obtained by running the same experiment
20 times. In Figure 5.6 we show this computation time ratio for “foreman” video
sequence by averaging the computation times of all considered input bit-rates. All
motion vector composition algorithms reduce the computation time of the transcod-
ing process and this reduction is higher for video sequences with much motion and
for high frame rate reductions (30 to 7.5 fps) because in these cases the FSME
process is more complex. In most cases, all motion vector composition algorithms
achieve a reduction of the computation time of the transcoding process of more than
50%.

5.5 MVC in H.264 transcoding

In this section we propose a MVC algorithm for H.264 based transcoding. After
describing the particular features of this new video coding standard we address the
problem of motion vector computation in H.264 temporal transcoding. Then, we
present our contribution to this research area and the performance results of the
proposed algorithm.

5.5.1 Motivations

MPEG-4/AVC/H.264 (H.264 for short) is a video coding standard, born by the
joint efforts of ITU-T Video Coding Experts Group (H.263) and ISO/IEC Motion

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

64
Temporal Transcoding: architecture and Motion Vector

Computation

Table 5.2: MVC algorithms performance comparison: PSNR1 of different video
sequences at different input bit rate IR(Kbps) from 30 to 15 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 30.3 30.55 30.89 32.68 34.30
BI 29.54 30.10 30.75 32.2 34.11

TVC 29.33 29.92 30.61 32.00 34.11
FDVS 29.81 30.20 30.62 32.49 34.11
ADVS 29.99 30.34 30.66 32.35 34.11

akiyo
FSME 35.49 38.66 42.70 42.81 45.90

BI 35.45 38.63 42.70 42.80 45.90
TVC 35.46 38.64 42.70 42.80 45.90
FDVS 35.46 38.65 42.70 42.80 45.90
ADVS 35.41 38.61 42.69 42.80 45.89

coastguard
FSME 30.06 29.62 31.12 32.28 33.49

BI 29.78 29.50 31.09 32.26 33.47
TVC 29.37 29.54 31.11 32.27 33.47
FDVS 29.67 29.52 31.12 32.26 33.47
ADVS 29.52 29.46 31.07 32.25 33.46

carphone
FSME 31.34 29.90 35.64 37.19 37.59

BI 30.91 29.82 35.64 37.18 37.59
TVC 30.81 29.82 35.62 37.18 37.59
FDVS 30.94 29.83 35.64 37.18 37.59
ADVS 30.37 29.78 35.54 37.11 37.58

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 65

Table 5.3: MVC algorithms performance comparison: PSNR1 of different video
sequences at different input bit rate IR(Kbps) from 30 to 7.5 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 27.25 28.19 28.5 29.56 30.69
BI 26.7 27.47 27.69 28.4 29.66

TVC 26.6 27.29 27.55 28.51 29.42
FDVS 26.67 27.62 27.86 28.66 29.96
ADVS 27.00 27.79 27.98 28.78 30.09

akiyo
FSME 34.63 37.36 40.99 41.03 43.38

BI 34.62 37.33 41.00 41.02 43.37
TVC 34.61 37.32 40.99 41.02 43.37
FDVS 34.60 37.34 40.99 41.02 43.37
ADVS 34.60 37.31 41.01 39.13 43.36

coastguard
FSME 28.51 28.06 28.76 29.44 30.19

BI 28.29 27.69 28.51 29.41 30.17
TVC 28.21 27.67 28.50 29.40 30.16
FDVS 28.20 27.88 28.63 29.42 30.16
ADVS 27.86 27.68 28.51 29.41 30.15

carphone
FSME 30.09 30.06 32.75 33.88 34.09

BI 28.93 29.36 32.28 33.79 33.86
TVC 27.80 29.79 32.00 32.25 33.16
FDVS 28.16 29.71 31.82 32.45 33.99
ADVS 29.25 29.65 32.55 32.97 34.00

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

66
Temporal Transcoding: architecture and Motion Vector

Computation

Table 5.4: MVC algorithms performance comparison: Complexity ratio of different
video sequences at different input bit rate IR(Kbps) from 30 to 15 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 1 1 1 1 1
BI 0.41 0.38 0.36 0.38 0.39

TVC 0.41 0.38 0.37 0.37 0.39
FDVS 0.42 0.38 0.37 0.38 0.40
ADVS 0.41 0.39 0.36 0.38 0.39

akiyo
FSME 1 1 1 1 1

BI 0.78 0.82 0.85 0.88 0.91
TVC 0.79 0.82 0.84 0.87 0.91
FDVS 0.78 0.83 0.84 0.88 0.90
ADVS 0.79 0.82 0.85 0.88 0.91

coastguard
FSME 1 1 1 1 1

BI 0.37 0.34 0.33 0.32 0.31
TVC 0.38 0.35 0.33 0.33 0.30
FDVS 0.38 0.34 0.33 0.33 0.30
ADVS 0.38 0.35 0.34 0.33 0.32

carphone
FSME 1 1 1 1 1

BI 0.44 0.43 0.43 0.45 0.46
TVC 0.43 0.42 0.43 0.44 0.45
FDVS 0.44 0.42 0.44 0.45 0.46
ADVS 0.44 0.42 0.43 0.46 0.45

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 67

Table 5.5: MVC algorithms performance comparison: Complexity ratio of different
video sequences at different input bit rate IR(Kbps) from 30 to 7.5 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 1 1 1 1 1
BI 0.33 0.34 0.33 0.33 0.35

TVC 0.32 0.32 0.32 0.33 0.34
FDVS 0.34 0.34 0.33 0.34 0.35
ADVS 0.33 0.33 0.34 0.33 0.35

akiyo
FSME 1 1 1 1 1

BI 0.75 0.80 0.83 0.85 0.87
TVC 0.76 0.79 0.82 0.84 0.87
FDVS 0.75 0.80 0.83 0.85 0.88
ADVS 0.76 0.80 0.83 0.85 0.87

coastguard
FSME 1 1 1 1 1

BI 0.35 0.31 0.30 0.30 0.20
TVC 0.34 0.31 0.31 0.29 0.20
FDVS 0.35 0.32 0.31 0.30 0.28
ADVS 0.34 0.32 0.32 0.30 0.29

carphone
FSME 1 1 1 1 1

BI 0.41 0.39 0.40 0.41 0.42
TVC 0.41 0.39 0.39 0.40 0.41
FDVS 0.42 0.40 0.40 0.41 0.42
ADVS 0.42 0.40 0.40 0.41 0.41

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

68
Temporal Transcoding: architecture and Motion Vector

Computation

Figure 5.4: MVC algorithms comparison: PSNR1 of “foreman” video sequence (from
30 to 15 fps)

Figure 5.5: MVC algorithms comparison: PSNR1 of “foreman” video sequence (from
30 to 7.5 fps)

Picture Expert Group (MPEG), partnership known as the Joint Video Team (JVT).
H.264 codec has been developed to enhance compression performance and to ease

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 69

Figure 5.6: MVC algorithms comparison: complexity ratio of “foreman” video se-
quence

network interaction. The former objective has been reached by defining a Video
Coding Layer (VCL), designed to efficiently represent the video content, while the
latter, by inserting a Network Abstraction Layer (NAL), which is responsible for
packetization and adaptation of the video content to the underlying network or
storage media. Relative to prior video coding methods, there are some features of the
design that enable enhanced coding efficiency [WSBL03]: quarter-sample accurate
motion compensation, motion vectors over picture boundaries, multiple reference
picture motion compensation, deblocking filtering, arithmetic entropy coding, and
context-adaptive entropy coding.

An important feature of the H.264 codec, which is of interest in this thesis, is the
variable block-size partitioning of frames. In particular, the luminance component
of each macroblock (16 × 16 samples) can be split in four ways (Figure 5.7), and
motion compensated either as one 16 × 16 macroblock partition or two 16 × 8 or 8
× 16 partitions, or four 8 × 8 partitions. If the 8 × 8 mode is chosen, each of the four
8 × 8 sub-macroblocks within the macroblock, may be further split in four ways,
either as one 8 × 8 sub-macroblock partition or two 8 × 4 or 4 × 8 sub-macroblock
partitions, or four 4 × 4 sub-macroblock partitions [I.E03].

We took into account this variable block-size partitioning of frames in our H.264
temporal transcoder development. Considering an architecture very similar to that
one shown in Section 5.2, when a frame is skipped, it is not easy to estimate optimum
motion vectors and block types for the current macroblock by using those ones
of the skipped frame, since for each macroblock overlapping the reference area in

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

70
Temporal Transcoding: architecture and Motion Vector

Computation

� �

� �

� �
�

�

�

�����	� � ������

��	���
��

��

� �

� �

� �
�

�
�

���

���� ����
 �����

� � �

Figure 5.7: Partition modes of a macroblock in H.264/AVC

the skipped frame, there are many motion vectors corresponding to its different
partitions.

The optimized motion vector can be obtained by re-estimating a new motion
vector and a block type in the transcoder. However, motion estimation requires
high computational complexity. Fast motion estimation schemes and mode decision
for H.264 bit-rate reduction are proposed in [LTYB05].

In [SLP04], a block adaptive motion vector re-sampling method for H.264 transcod-
ing is proposed. It estimates the motion vectors of all 4 × 4 sub-blocks of the current
M × N macroblock by taking into account the areas of the overlapped blocks in
the skipped reference frame, and the motion vectors of these blocks. The obtained
motion vectors for the sub-blocks are used to compute the motion vector of the
current M × N macroblock. The transcoded block types are those ones of incoming
blocks when quantization parameters are not updated in transcoding. In addition,
a RDO (Rate Distortion Optimization) method is combined with the above motion
vector re-sampling method in order to select the most optimized block type in terms
of rate distortion performance, when quantization parameters in the transcoder are
different from those of the original compressed bitstream.

Due to the variable block-size partitioning described above, the existing MVC al-
gorithms [HWL98][YSL99][SG00][CCP02] cannot be applied without changes, since
a separate motion vector is required for each partition or sub-macroblock. We ap-
proach this problem and we present our solution in the next section.

5.5.2 Multi-level MVC algorithm

For taking into account the variable partitioning of H.264 frames, we propose a new
motion vector composition algorithm adopting a multi-level motion vector com-
position scheme, together with the Bilinear Interpolation function, that we call
Multi-Level Bilinear Scheme (MLBS) [LM07a]. We choose Bilinear Interpolation
algorithm because with respect to the other motion vector composition algorithms
(FDVS, ADVS, TVC), it takes into account all motion vectors of the macroblocks

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 71

����� �����

�	��
��
�
�	������
��������
����������� �	� �

���"! �#��$

Figure 5.8: H.264 temporal transcoding: motion vectors of partitions overlapping
the reference area in the skipped frame

overlapping the reference area in the skipped frame by composing them by Bilinear
Interpolation function. In addition, it has a PSNR1 higher than TVC and a time
complexity lower than FDVS and ADVS algorithms as we showed in Section 5.4.

The goal of motion vector composition procedure is to find a motion vector
for the reference area pointed by the current motion vector, in the last skipped
frame. The obtained motion vector is composed with the motion vector of the
current macroblock, in order to obtain a motion vector for the current macroblock
pointing to the last not skipped frame. Bilinear Interpolation algorithm composes
the motion vectors of four macroblocks overlapping the reference area in the skipped
frame, according to Equation 4.8 (see Section 4.3.1).

In H.264 codec, for each macroblock overlapping the reference area in the skipped
frame, there are many motion vectors (at most 16 motion vectors) corresponding to
different partitions of such macroblock, (see Figure 5.8). So, composing all motion
vectors of all macroblocks partitions overlapping the reference area in the skipped
frame is needed.

We adopted a multi-level scheme to compose these vectors according to Bilinear
Interpolation function (Equation 4.8). In Figure 5.9 the behaviour of the proposed
scheme is shown for the partitioning of the reference frame presented in Figure 5.8.
At the first level, we consider the skipped reference frame, and its macroblocks
overlapping the reference area pointed by the current motion vector. The number
of macroblocks overlapping the reference area can vary from zero to four. For each
of these macroblocks, its partitions are considered at second level, in the following
way:

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

72
Temporal Transcoding: architecture and Motion Vector

Computation

�����

�����

�����

���	�

�	� ���

�
� ���

���

���

��� ���

��� ���

�	� ���

�� �
�� �

�� �
�� �

�� �

�� �

�� �
�� �

��� ����� ����� ���
��� ����� ����������� ��� !" ��� ��# !%$ ��� ����# �����&����� ��� !� ��� ��# !%$

��� ��� �'���&� ���)(* � ���+(* #
��� (* �, ��� (* �,$

��� ��� �'��� (* � ��� ��� �-��� (* �

��� ����� �����&� ��� ��� ��� ��# � � ��� ��� ��� $

.0/ 132 4 �����&� ��� �5�6� ��� ����# ��� ����� ��� ����� $

���

��� ��#

Figure 5.9: Multi-Level Bilinear Scheme (MLBS)

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 73

• The considered macroblock has one partition overlapping the reference area.
The motion vector of this macroblock (16 × 16 pixels) is given back;

• The considered macroblock has two partitions overlapping the reference area
(each one of 16 × 8 or 8 × 16 pixels). The motion vectors of these two
partitions are composed according to Equation 4.8. The obtained motion
vector is given back;

• The considered macroblock has four partitions or blocks overlapping the ref-
erence area (each one of 8 × 8 pixels). For each of these blocks, its partitions
overlapping the reference area are considered at the third level, in the following
way:

– The considered block has one partition overlapping the reference area.
The motion vector of this block (8 × 8 pixels) is given back;

– The considered block has two partitions overlapping the reference area
(each one of 4 × 8 or 8 × 4 pixels). The motion vectors of these two
partitions are composed according to Equation 4.8. The obtained motion
vector is given back;

– The considered block has four partitions or sub-blocks overlapping the
reference area (each one of 4 × 4 pixels). The motion vectors of these
four partitions are composed according to Equation 4.8. The obtained
motion vector is given back.

For each macroblock overlapping the reference area in the skipped frame, our
scheme goes down to lower levels, until all partitions and sub-partitions overlapping
the reference area are considered. At each level, and for each partition overlapping
the reference area, it chooses a motion vector. This is the motion vector of the
partition overlapping the reference area, or a composition of the motion vectors of
sub-partitions overlapping the reference area. The composition is about at most
four motion vectors and is performed according to Bilinear Interpolation Function
(4.8). At each level, the composed motion vectors are given back. At the end, four
motion vectors related to the four macroblocks overlapping the reference area, are
composed according to Equation 4.8. The result of this composition (MVOUT in
Figure 5.9) is added to the current motion vector, to obtain the new motion vector
pointing to the last not skipped frame. Note that, by using this scheme, it is possible
to apply other functions instead of the Bilinear Interpolation. We show in the next
section the performance of the proposed scheme. At the best of our knowledge, not
exists a motion vector composition algorithm for H.264 temporal transcoding, so
the proposed algorithm is a simple technique that can be used to perform motion
vector computation by considering variable partition of H.264 frames with a low
time complexity. The time complexity is very important in a real-time setting.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

74
Temporal Transcoding: architecture and Motion Vector

Computation

5.5.3 Multi-Level Bilinear Scheme performance

We evaluate the PSNR1 and the time complexity of the proposed approach. PSNR1
measure is computed as explained in Section 5.4.

The results presented in this section are related to a temporal transcoder that we
implemented by using the H.264/MPEG-4 AVC Baseline Profile [ISO05] [ITU05],
with the following setting of parameters: UVLC, variable block-based ME/MC,
quarter-pixel MC, one reference frame, motion vector search range of Motion Esti-
mation equal to 16 pixels. The temporal transcoder architecture that we used for
implementing this temporal transcoder is described in Section 5.2. The first frame
is compressed as an INTRA frame, and all the other ones as INTER frames. The
target application is a real-time communication, and so to keeping the minimum
latency, bidirectional frames and RDO mode decision are not considered. We as-
sume that, in our transcoding, the variable partitition of frames is the one imposed
by front encoder and the motion vectors are re-computed with the MLBS scheme
proposed in Section 5.5.2, when the reference frame is skipped. After Motion Vector
Composition, a motion vector refinement process of ±2 pixels around the composed
motion vector is applied. To run our experiments, we used an Athlon 64 3200+,
with 512MB memory and Linux Mandrake 10.2 as operating system.

We show here the experimental results about “foreman”, “akiyo”, “coastguard”
and “carphone” video sequences with 300 frames, QCIF format, 30 fps. In Table
5.6 we show PSNR1 for different transcoder input bit rates when the same frames
are skipped, then the transcoder output bit rate is not constant. PSNR1 of our
algorithm is compared with that of Full Search Motion Estimation (FSME), and
the Fast Motion Estimation algorithm (MEFast) implemented in the H.264 reference
software. We can observe that for all video sequences the proposed method achieves
a good performance with respect to the other metrics. In Table 5.7 the complexity
of the proposed method, compared with that of FSME and MEFast is shown. The
values indicate, for the different input bit rates, the ratio of computation time of the
entire transcoding process with our algorithm and MEFast relative to FSME. They
are the average values obtained by running the same experiment 20 times. We can
observe that our method outperforms in all cases MEFast and it has a great gain
with respect to FSME. For “foreman” video sequence we show the performance of
the proposed algorithm for low and high frame rate reductions: from 30 to 15 fps
(Figure 5.10) and from 30 to 7.5 fps (Figure 5.11), respectively. In both frame rate
reductions, the proposed method achieves a good performance with respect to the
other metrics. Mainly for high frame rate reductions (30 to 7.5 fps in Figure 5.11),
the PSNR1 of our algorithm is close to that of FSME and MEFast.

In Figure 5.12, the complexity of the proposed method for “foreman” video
sequence and both frame rate reductions is showed. The reported values are obtained
by averaging the computation times of all bit rate reductions cases. We can observe
that our method outperforms MEFast and it has a gain of about 40% with respect
to FSME. Compared with performance results of Bilinear Interpolation algorithm

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 75

presented in Section 5.4, the proposed scheme achieves a better PSNR1 with a
greater time complexity. This is also due to different used codecs.

Table 5.6: MLBS algorithm performance: PSNR1 of different video sequences at
different input bit rate IR(Kbps) from 30 to 15 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 33.02 34.39 35.91 37.73 40.28
MEFast 32.96 34.15 35.71 37.61 40.14
MLBS 31.69 33.26 34.97 37.05 39.69

akiyo
FSME 44.96 46.90 49.97 51.77 51.51
MEFast 44.54 46.80 49.85 51.70 51.46
MLBS 44.41 46.33 49.18 51.61 51.16

coastguard
FSME 34.31 34.74 35.47 36.54 38.50
MEFast 34.22 34.71 35.40 36.55 38.43
MLBS 33.72 34.20 35.22 36.52 38.44

carphone
FSME 35.47 36.20 37.46 39.26 40.03
MEFast 35.41 36.17 37.45 39.16 39.99
MLBS 34.83 35.85 36.98 38.88 39.78

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

76
Temporal Transcoding: architecture and Motion Vector

Computation

Table 5.7: MLBS algorithm performance: Complexity ratio of different video se-
quences at different input bit rate IR(Kbps) from 30 to 15 fps

Algorithm IR=32 IR=64 IR=128 IR=256 IR=512
foreman

FSME 1 1 1 1 1
MEFast 0.81 0.80 0.79 0.85 0.87
MLBS 0.47 0.67 0.65 0.56 0.61

akiyo
FSME 1 1 1 1 1
MEFast 0.76 0.73 0.76 0.80 0.77
MLBS 0.42 0.63 0.45 0.48 0.48

coastguard
FSME 1 1 1 1 1
MEFast 0.81 0.82 0.84 0.78 0.85
MLBS 0.42 0.44 0.48 0.52 0.56

carphone
FSME 1 1 1 1 1
MEFast 0.80 0.83 0.82 0.83 0.81
MLBS 0.43 0.64 0.48 0.52 0.59

Figure 5.10: MLBS performance: PSNR1 of “foreman” video sequence (from 30 to
15 fps)

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

MVC in H.264 transcoding 77

Figure 5.11: MLBS performance: PSNR1 of “foreman” video sequence (from 30 to
7.5 fps)

Figure 5.12: MLBS performance: complexity ratio of “foreman” video sequence

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

78
Temporal Transcoding: architecture and Motion Vector

Computation

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 6

Temporal Transcoding: skipping
policies

Abstract

In this chapter, we address temporal transcoding to improve real time
video communication in infrastructured networks. We present our results
about frame skipping policies. We define the assumed communication model
and we formulate the buffer based frame skipping problem. We propose other
skipping policies to improve video quality of transcoded sequence when buffer
constraints are met. Finally, we propose a skipping policy able to reduce the
processing delay of skipping process.

6.1 Introduction

In mobile infra-structured systems, transcoding is needed at interworking nodes to
deal with the heterogeneity of the communication infrastructure itself, and with
the diversity of services and user terminals. The goal of transcoding is to operate
on coded streams whenever there is a set of new constraints different from those
assumed when the signals were originally coded. Since many multimedia services
are not specifically tailored to mobile systems, often the channel bandwidth required
for transmission does not match mobile applications. Besides, the link bandwidth of
wireless communications networks is narrow and varies significantly over time. For
instance, different bandwidth can be dynamically assigned to a user when its mobile
terminal moves to different parts of the cell, or changes its base station during the
handoff process. Then, in heterogeneous network systems, the bandwidth of a coded
video stream must be drastically reduced in order to cope with a highly constrained
transmission channel. Since a great deal of bit rate reduction can be required,
traditional methods based on re-quantization are not able to allow a constant frame

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

80 Temporal Transcoding: skipping policies

rate without producing unacceptable distortion in the reconstructed signals. This
distortion causes very low quality of service (QoS) delivered to the end user.

Temporal transcoding, by skipping frames, allows having an acceptable quality
of transcoded frames, when a high bit rate reduction is needed also. The most
important challenge in temporal transcoding is to have a good video quality in real-
time communications, such as video telephony or video conferencing. To guarantee
real-time constraint of many multimedia services, the transcoding process must pro-
vide a minimum processing delay and a communication delay compliant with the
time requirements of such services.

In this chapter, we propose some solutions for temporal transcoding dealing
with the needs of real time video communication in infra-structured networks, when
a constant bit rate reduction is in order.

The buffer control is a well know approach, often used in bit rate reduction algo-
rithms, to face the constant bit rate bandwidth requirements of network applications
[AG98]. However, encoding and quality transcoding rate controls use buffer fullness
for finding bit allocation and quantization step sizes of frames of video sequences
and for applying frame skipping control [SWA03] [SA04]. Notice that, at best of
our knowledge, with the only exception of [CSA03], where a frame skipping con-
trol scheme based on a buffer level prediction algorithm is presented, other works
[HWL98] [FCS02] [SC04] [DKD06] approach the frame skipping problem in tempo-
ral transcoding by considering others metrics, mainly motion activity, to improve
the quality of transcoded video sequence. However, because of new challenges intro-
duced in video communications (i.e., real-time constraints, high bit rate reduction in
mobile systems), buffer control is the most important factor when we want to have
a good quality of transcoded video sequences in real-time services. All these reasons
motivate us to investigate buffer constraints in frame skipping. The main goal of the
proposed skipping policies is to improve the quality of transcoded video sequences
in real-time applications. This is mainly obtained by guaranteeing a transmission
delay of transcoded frames compliant with the time requirements of real-time sys-
tems. In addition, a frame skipping policy, also able to reduce the processing delay
of transcoding system, is proposed.

After defining the communication model assumptions common to all the pro-
posed policies, we present a basic skipping policy, based on transcoder output buffer
occupancy, that we call“Buffer-occupancy” skipping policy. We describe this policy
in detail in Section 6.3.2. In addition, we propose other policies able to improve the
video quality of the transmitted video sequence, when transcoder buffer constraints
are met. They consider other metrics, such as a new motion activity measure, the
number of consecutive skipped frames, and a random choice. Those skipping poli-
cies are presented in Section 6.2.2, 6.2.3, and 6.2.4, respectively. Finally, in Section
6.2.5, a faster skipping policy is proposed to greatly reduce the computation time of
transcoding process. This skipping policy is also based on transcoder output buffer
occupancy.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 81

6.2 Communication model assumptions

The most important part in our temporal transcoding architecture is the Frame Rate
Control (FRC) module, depicted in Figure 5.2. In FRC module, frame skipping
policies are applied to decide on skipping or transmitting the current frame.

Before describing the proposed skipping policies, we define the assumed commu-
nication model.

We assume a communication model where the video is captured and coded with
a constant frame rate at the front encoder, the end decoder decodes and displays
video frames continuously at the same rate that have been captured at the sender.
A system end-to-end delay, that we call D, is assumed. It is the interval between the
time a video image is captured by the video camera and encoded at the sender side,
and the time it is decoded and displayed on the monitor at the receiver. A frame
received after such maximum admitted delay D is not displayed, and it is replaced at
the decoder by the previous one, for having a continuous playing. This end-to-end
delay D encompasses a processing delay and a network communication delay. The
former includes the computation time spent for capturing and compressing at the
encoder, for decompressing and displaying at the decoder, and finally for performing
transcoding, if needed. The latter is the time needed to move data in the network,
including specific protocol delays.

This delay is strongly dependent on the adopted network system, and required
service quality. In 3GPP, the definition of a real-time conversational service using
speech states that the end-to-end delay should be less than 400 ms [3GP06]. Real-
time video is rather different in terms of characteristics compared to real-time voice.
The variation in delivery timing of video does not produce the same dramatic effect
as for voice, where high delay can trigger concealment actions. The variation in
video frame rate produces minor degradation in the video conversational quality
because a delayed frame can be replaced with the previous one with an satisfactory
quality. Then, the end-to-end delay for video delivery can be higher than 400 ms,
maintaining however the synchronization with speech [CFPS07].

Seen in that respect, it is clear that the transcoding delay cannot be too large,
considering also that a minimum part of the total end-to end delay is always con-
sumed by the transport mechanism.

In this chapter we investigate the transcoding delay. Then, we distinguish in
transcoding delay, between a computation delay, needed to re-compute motion vec-
tors and residual of a frame when its reference frame is skipped, and a transmission
delay of transcoded frames, that is the time that a frame remains in the transcoder
output buffer waiting for transmission.

In Section 6.2.5, we describe a frame slipping policy able to reduce the compu-
tation delay in transcoding, needed to re-construct a frame when the previous one
is skipped.

In this chapter, our main goal is to investigate frame skipping policies able to
guarantee a maximum admitted transmission delay, in networks systems with a

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

82 Temporal Transcoding: skipping policies

constant output bit rate (CBR), when a reduction of input bit rate is needed.
We will show in the next chapter, a temporal transcoding application for variable

bit rates (VBR) networks.
As we specified in Section 5.2, in our transcoder architecture, the words “input”

and “output” are always related to the transcoder. IR and R are the input and
output bit rate respectively; ρ indicates the frame rate of the input video sequence.
The word “transcoded” is related to a frame that is re-constructed, according to
the previous not skipped frame, and put in the transcoder output buffer to be
transmitted.

We investigate buffer constraints involved in frame skipping process for guaran-
teeing a maximum transmission delay of transcoded frames.

We define S and L as the size and the occupancy of the transcoder output buffer,
respectively. With l(f), we denote the size of the transcoded frame f .

We assume that the buffer occupancy decreases at a constant rate of R/ρ bits ev-
ery 1/ρ seconds. Note that, as we explained in Section 5.2, our temporal transcoder
reduces the constant input bit rate IR only by skipping frames, so that the output
bit rate R turns out to be constant. Due to skipping of frames, the transcoder out-
put frame rate is not constant, and we assume that the skipped frames are replaced
by the previous ones (freezing) at the displaying time in the end decoder.

Disregarding variable transmission delay due to wireless channel errors, the trans-
mission delay of the transcoded frames, introduced in the communication between
transcoder and end decoder, is determined by L/R. In this way, the maximum
transmission delay, that we call τ , incurred by a data bit of the transcoded video
sequence, is S/R. We can have different values of τ by setting different values of
S. This value of S can be set according to the system end-to-end delay needed for
guaranteeing real-time communication. In Section 6.3.1, we show the performance
obtained by setting different values of τ . Note that τ is the maximum transmission
delay introduced for a transcoded frame, when the transcoder buffer is full. In the
average case, this transmission delay is lower than τ .

Two buffer thresholds, Blower and Bupper, are established for avoiding buffer
underflow and overflow. Underflow occurs when the transcoder output buffer occu-
pancy is zero, and so the end decoder receives data of a frame after it is scheduled
to be displayed, causing the stop of the video sequence (besides the waste of the
communication bandwidth). Buffer overflow occurs when the buffer occupancy ex-
ceeds the buffer size, and it increases the delay τ . This is equivalent to a frame loss
at the decoder, since at displaying time some bits of the corresponding frame are
still in the transcoder output buffer waiting to be transmitted. Blower and Bupper are
dynamically set according to the ratio IR/R. We observed experimentally that the
best values for Blower and Bupper are respectively 20% and 80% of the buffer size.

In Section 6.3, we show the performance of frame skipping policies for different
values of the parameters of this communication model, in particular for several
values of IR and R.

To have an idea of this communication model, look at Figure 6.1.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 83

���

�����	��
���
 ��� �
�������
���
��
��������	��
���

… …

���� !"�# %$'&)('*,+.-0/21

3 46575)869;:=< 3 > ?A@B8690:=<

C�DFEHG2IKJFGML=DNE�EOL.P2Q�RTS

U ('*

Figure 6.1: Skipping policies: communication model

6.2.1 Buffer-occupancy skipping policy

We present here a buffer-based frame skipping policy that skips frames in order to
meet the buffer constraints defined in the above communication model [BLM05a].
In the remainder of this thesis, we call this policy buffer-occupancy. In this policy,
a frame is skipped if the buffer occupancy is greater than BupperS, and it is always
transcoded if the buffer occupancy is lower than BlowerS. Independently of the
value of the threshold BupperS, in our buffer-occupancy policy, we avoid the buffer
overflow by testing that the size of the transcoded frame does not exceed the free
buffer space. The first frame, that is an INTRA frame, is always transcoded. If
the size of the first frame exceeds the buffer size, we have an additional delay called
τ0 for those bits which do not fit in the buffer, and after an initial delay of τ + τ0,
this frame skipping policy guarantees a constant frame transmission delay τ for the
whole transmission.

The whole procedure of buffer-occupancy skipping policy is described by a pseudo-
code in Table 6.1.

In Section 6.3, we show the performance of this skipping policy in terms of
number of transcoded frames and PSNR of a transcoded video sequence.

When buffer constraints are met, other skipping metrics can be addressed. We
propose other skipping policies that take into account buffer constraints similarly to
buffer occupancy policy and, in addition, they consider other metrics for improving
the quality of the transcoded video sequence. We present such policies in the next
sections.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

84 Temporal Transcoding: skipping policies

Table 6.1: Pseudo-code of Buffer-occupancy skipping policy

————————————————————————–
Buffer-occupancy Policy(frame f):

1. if (f = first frame) transcode f
2. else
3. if ((L ≤ Blower(S))&(L + l(f) ≤ S)) transcode f
4. else
5. if (L ≥ Bupper(S)) skip f
6. else
7. if(L + l(f) ≥ S) skip f
8. else transcode f

————————————————————————–

6.2.2 A New motion based skipping policy

The drawback of temporal transcoding is the jerky effect caused by skipping of
frames, which is more evident when frames with a lot of motion are skipped. The
motion activity of a frame is an important issue addressed in literature in the choice
of frames to be skipped [HWL98][FCS02][SC04]. In Section 4.5.1, we overview some
well known motion activity measures. At the best of our knowledge, no work on
skipping policies focus on the type of motion in a frame. That means, no work
considers the video quality degradation introduced in the transcoded video sequence
by skipping a frame with a great number of small motion vectors, or by skipping a
frame with a small number of large motion vectors.

We observe that in known policies [HWL98][FCS02], where the motion activity
is computed as the sum of the motion vectors of a frame, the frames with many
small motion vectors have a greater motion activity value than those ones with
one large motion vector. For example, if in a frame, the motion vectors of all
macroblocks (99 macroblocks in QCIF format) are small (their value is equal to 0.5
with half pixel resolution), the sum of these motion vectors is greater than the value
of the maximum possible motion vector (its value being 16 in MPEG4 codec, and
it corresponds to the search range of Motion Estimation procedure). This implies
that, in the existing motion activity based policies, a frame with only one object
in movement is probably skipped, even if this movement is fast. For example, in
the well known “table tennis” benchmark video sequence, the frames where only
the tennis ball moves, are skipped in the motion based skipping policies mentioned
so far. But if many consecutive frames with few objects in movement are skipped,
and the movement is fast, the jerky effect is more evident. For example, in “table
tennis” video sequence, if all frames in which only the tennis ball moves are skipped,

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 85

the ball disappears in the transcoded video sequence, so producing at the displaying
time a visual quality degradation to final user, even if the PSNR measure is not
that much decreased. We propose a skipping policy, which avoids such video quality
degradation, by introducing a new motion activity measure able to consider the fast
movement of few small objects in a frame also. This result has been published in
[LM06].

The basic idea of this new measure is that we want to assign the same importance
in the video sequence to frames with few great motion vectors and to frames with
many small motion vectors. The proposed motion activity measure is the following
one:

MAf =
1

NMB

∑
m

k|xm| + k|ym| (6.1)

where m is a macroblock, k is a properly tuned constant, xm and ym are the motion
vector components of macroblock m, and NMB is the number of macroblocks in
frame f . In order to find the proper value of the constant k, we impose the following:

numMB(kmin MV + kmin MV) ≈ (kmax MV + kmax MV) (6.2)

where numMB is the number of macroblocks in a frame, minMV and maxMV are
the minimum and maximum size of motion vectors components in the macroblock,
respectively. We search the value of k for which the motion activity of a frame
with only one motion vector having components with the maximum possible value
is nearly equal to that of a frame where all components of motion vectors have
the minimum possible value. In this way, we obtain a motion activity measure
that assigns to frames with few but large motion vectors the same weight of those
ones with many small motion vectors. In Section 6.3, we present the performance
achieved by tuning the constant k according to Equation 6.2.

We also take into account INTRA macroblocks in the motion activity compu-
tation, by assigning to INTRA macroblocks the maximum motion activity value,
equal to the maximum size of the motion vectors, which corresponds to the search
range used by the Motion Estimation procedure. The reason for this is that an
INTRA macroblock is produced when there are many residuals, and the macroblock
is largely different from the reference area in the previous frame.

The proposed motion activity measure is compared with a dynamic threshold
Thr in our frame skipping policy. Such threshold, differently to that proposed in
[HWL98] and [FCS02], is set as follows:

Thr(f) =
αMA(f − 1) + (1− α)

∑F
i=2 MA(f − i)

NumFrames
(6.3)

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

86 Temporal Transcoding: skipping policies

NumFrames =
NumCodedBits

AverageFrameSize
(6.4)

AverageFrameSize =
IR

ρ
(6.5)

where α is a properly tuned constant, F is the number of frames transcoded in the
current second, MA(f − 1) is the motion activity of the previous transcoded frame,
NumFrames is the number of frames that would be transcoded in the temporal
interval (1 second) if all frames had the same size. NumFrames is defined by Equa-
tion 6.4, where NumCodedBits is the total number of coded bits in the temporal
interval, and AverageFrameSize is defined by Equation 6.5, where IR is the input
bit rate and ρ is the frame rate. Note that, in our motion activity measure, only the
motion activity of transcoded frames is considered because the transcoded frames
are the only displayed frames at receiver side. Experimentally, we observed that a
good value for the constant α, that implies a better visual quality of the transcoded
frames, is 0.6. In this way, we want to assign in Equation 6.3, a weight greater than
the one of motion activities of all single earlier frames, to the motion activity of the
previous frame. This helps in reducing the jerky effect. In our skipping policy, a
frame f is transcoded if its motion activity (defined by Equation 6.1) is greater than
the threshold Thr(f).

We show in Table 6.2 the pseudo-code of this policy. We can observe that, before
a frame is transcoded, buffer thresholds Blower and Bupper are tested as in Table 6.1.
Only when buffer thresholds Blower and Bupper are met, the motion activity measure
defined in 6.1 is considered. In this way, this frame skipping policy is able to deal
with real-time constraints, while decreasing the jerky effect caused by skipping of
frames. In Section 6.3, we will show that this skipping policy outperforms the motion
activity policy proposed in [HWL98].

6.2.3 Consecutive skipping policy

We developed this policy for attempting to overcome a harmful problem arising in
hard transcoding conditions, that is when a high variation between the input and
the output bit rate occurs (from 128 kbps to 32 kbps, for instance)[BLM05a]. Given
that the input bit rate is much greater than the output one, it is unavoidable to
consecutively skip many frames, since their size is large with respect to the output
channel bandwidth. By skipping many consecutive frames, the size of the transcoded
one increases, since its motion vectors are obtained by adding those ones of the
skipped frames, and its residual is high, since it is computed with respect to the last
reference frame, that is likely more different from the current one, if many previous
consecutive frames are skipped. So, it can happen that the size of a transcoded frame
exceeds the free buffer space. Thus, if that frame is transcoded, buffer overflow
occurs, but if it is skipped, the size of the next transcoded frame will be larger.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 87

Table 6.2: Pseudo-code of New motion based skipping policy

————————————————————————–
New Motion Activity Policy(frame f):

1. if (f = first frame)
2. transcode f
3. update Thr(f)
4. else
5. if ((L ≤ Blower(S))&(L + l(f) ≤ S))
6. transcode f
7. update Thr(f)
4. else
5. if (L ≥ Bupper(S)) skip f
6. else
7. if(L + l(f) ≥ S) skip f
8. else
9. if (MA(f) < Thr(f)) skip f
10. else
11. transcode f
12. update Thr(f)

————————————————————————–

Even if, in the meanwhile, the free buffer space increases, it could not be sufficient
to accommodate the transcoded frame. So, it is possible to reach an irreversible
situation, in which if the frame is transcoded, buffer overflow occurs, but if it is
skipped, buffer underflow occurs. We propose a solution to this problem, by trying
to minimize the number of consecutive skipped frames. This is done by forcing the
transcoder to drop a frame (even if its transcoding does not cause buffer overflow),
in order to prevent that many frames are dropped later.

We define Γ = IR/R representing the ratio between the input and the output
bit rate. Ideally, if all the transcoded frames keep their original size, and have the
same size, the number of transcoded frames should be equal to 1/Γ. Let N be the
total number of frames in the sequence. The temporal transcoder should transcode
N(1/Γ) frames and skip N(1 − 1/Γ) frames. Every Γ successive frames, one of
them should be transcoded, and Γ− 1 can be skipped for uniformly distributing the
skipped frames.

This strategy forces the transcoder to skip Γ− 1 consecutive frames, in order to
prevent the number of consecutive skipped frames to become larger than Γ− 1.

We show in Table 6.3 the pseudo-code of the whole strategy. As in Table 6.1,
buffer thresholds Blower and Bupper are considered before skipping or transcoding a

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

88 Temporal Transcoding: skipping policies

Table 6.3: Pseudo-code of Consecutive skipping policy

————————————————————————–
Consecutive Policy(frame f):

1. if (f = first frame)
2 transcode f
3. numConsecutiveSkippedFrames=0
4. else
5. if ((L ≤ Blower(S))&(L + l(f) ≤ S))
6. transcode f
7. numConsecutiveSkippedFrames=0
8. else
9. if (L ≥ Bupper(S))
10. skip f
11. numConsecutiveSkippedFrames ++
12. else
13. if(L + l(f) ≥ S)
14. skip f
15. numConsecutiveSkippedFrames ++
16. else
17. if (numConsecutiveSkippedFrames < Γ)
18. skip f
19. numConsecutiveSkippedFrames++;
20. else
21. transcode f
22. numConsecutiveSkippedFrames=0

————————————————————————–

frame.
This policy does not guarantee that the above critical situation never happens,

however it is very unlikely. It depends on the video sequence and on input and
output bit rates. It is more likely for video sequences with many scene changes and
when the input and output bit rates are very high and very low respectively.

6.2.4 Random skipping policy

Randomization is used for studying the behavior of a system when input data do not
follow any known law. In our setting, the sizes of incoming frames are variable and it
is not possible to assume a certain distribution. This motivated us to try managing
the frame skipping in a randomized way. As we saw above, the temporal transcoder

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 89

Table 6.4: Pseudo-code of Random skipping policy

————————————————————————–
Random Policy(frame f):

1. if (f = first frame) transcode f
2. else
3. if ((L ≤ Blower(S))&(L + l(f) ≤ S)) transcode f
4. else
5. if (L ≥ Bupper(S)) skip f
6. else
7. if(L + l(f) ≥ S) skip f
8. else randomNumber = random() % S;
9. if (randomNumber ≥ L) transcode f
10. else skip f

————————————————————————–

choices firstly depend on the buffer occupancy. We design a simple random strategy
based on the buffer occupancy, in order to decide what frames are to be skipped
[BLM05a]. We uniformly generate a random number in the range [0..S]. If this
number is larger than the buffer occupancy L, the current frame is transcoded,
otherwise it is skipped. We observe that the greater is the buffer occupancy, the
smaller is the probability that the random number is larger than occupancy, so the
smaller is the probability of transcoding the frame. In this way, we try to transcode
more frames when the free buffer level is high, and to skip more frames when the
buffer occupancy is high.

We show the pseudo-code of this strategy in Table 6.4. As in the previous
skipping policies presented in this chapter, buffer thresholds Blower and Bupper are
considered before skipping or transcoding a frame.

6.2.5 Size-prediction skipping policy

In temporal transcoding, the size of a transcoded frame increases when many previ-
ous frames are skipped. This is so since its motion vectors are obtained by adding
those ones of the skipped frames. Besides, its residual is high because it is computed
with respect to the last reference frame, that is temporally far from the current one,
so is likely more different from it.

We investigated the features of this growth, and we observed experimentally that
the size of a frame grows according to a logarithm function given by :

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

90 Temporal Transcoding: skipping policies

Figure 6.2: Temporal transcoding: size of video frame after skipping a number of
previous consecutive frames

l(f) = αln(f + 1) (6.6)

where l(f) is the size of the frame transcoded after skipping f consecutive frames,
and α is a constant proportional to the size of the first of those skipped frames.
The value of α is dynamically computed each time that the first one of a run of
consecutive skipped frames is skipped. For computing α, we use Equation 6.6,
where f = 1, and l(f) is the computed size of the first skipped frame. This value of
α is used in Equation 6.6, to predict the size of a set of consecutive frames, until the
last one of those frames is transcoded. Then, when a new frame f will be skipped
because its size is larger than the free buffer size, a new value of α will be computed,
and will be used in Equation 6.6 for predicting the size of all consecutive frames,
until the last of those frames will be transcoded.

In Figure 6.2 we give an idea of this logarithmic growth. The values on the x
axis indicate the number n of consecutive skipped frames, and those ones on the y
axis, the size of the frame transcoded after n previous consecutive skipped frames.

The reported values in Figure 6.2, refer to “foreman”, “akiyo” and “coastguard”
QCIF video sequences coded with MPEG4 with the same quantization parameters
(31 and 20 for intra and INTER frames respectively). These results are obtained by
starting to skip frames from the 30th frame in the video sequences. FDVS algorithm
and motion vector refinement of ±2 pixels used to compute motion vectors.

We propose a Size-prediction policy, applied in the transcoder when a frame of a
video sequence is skipped. The basic idea is to avoid the computation needed to re-
construct a frame that will be skipped because its size is higher than the free buffer
space. Our approach is to predict the size of the next frames when the current one
is skipped. In particular, when the current frame f is skipped, this policy predicts,
according to Equation 6.6, the size of the next frame f + 1, without computing it.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Communication model assumptions 91

Table 6.5: Pseudo-code of Size-prediction skipping policy

————————————————————————–
Size-prediction Policy(frame f):

1. if (f = first frame) transcode f
2. else
3. if ((L ≤ Blower(S))&(L + l(f) ≤ S)) transcode f
4. else
5. if (L ≥ Bupper(S)) skip f
6. else
6. if(L + l(f) ≥ S)
7. do
8. skip f
9. predict the size of f + 1 according to Equation 6.6
10. f = f + 1
11. L = L− (R/ρ)
12. while((L > Blower(S))&(L + l(f) ≥ S))
13. transcode f

————————————————————————–

If this size is higher than the free buffer space, frame f + 1 is skipped, and the
size of the next frame f + 2 is predicted according to Equation 6.6. In this way,
when a frame is skipped according to its predicted size, the computation needed for
re-constructing motion vectors and residual of such frame is avoided. This result
has been published in [BLM05b].

Note that, in our model communication assumptions, buffer occupancy decreases
at a constant rate of R/ρ bits every 1/ρ seconds.

When the free buffer space is larger than the predicted size of the current frame,
this frame is transcoded, and then its motion vectors and residual are computed.

However, as in the skipping policies previously described in this chapter, a frame
is transcoded, if the buffer occupancy is lower than a properly tuned threshold, and
the predicted size of the frame is lower than the free buffer space, in order to avoid
buffer underflow. Note that, each frame is decoded with respect to the last decoded
frame. When the policy decides to transcode the frame, if the computed size of this
frame is higher than the free buffer size, the frame is skipped.

Compared with the buffer occupancy skipping policy, this one has the advantage
of predicting the size of a frame that will be skipped since its size is higher than the
free buffer space. Avoiding the computation needed to re-compute frames that will
be skipped, this policy greatly reduces the time of the total transcoding process,
when many consecutive frames are skipped.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

92 Temporal Transcoding: skipping policies

As we will show in Section 6.3, the performance of this policy, in terms of PSNR
of the transcoded sequence, is comparable to that of the Buffer-occupancy one,
reducing the computation time.

The pseudo-code of our Size-prediction policy is shown in Table 6.5. The equa-
tion 6.6 gives a good prediction of the size of a frame, after its previous frames have
been skipped. This prediction cannot be appropriate if there is a scene change. In
any case, when the predicted size of a frame meets the buffer threshold, the frame is
recomputed, and its actual size is checked. If this size is lower than the free buffer
space, the frame is transcoded, else it is skipped.

6.3 Performance analysis of skipping policies

In this section, we present a performance comparison of the proposed frame skipping
policies. After defining the simulation setting in Section 6.3.1, we evaluate the video
quality performance of the proposed skipping policies in Section 6.3.2 and Section
6.3.3.

We present the transcoding processing delay improvement of Size-prediction pol-
icy, with respect to Buffer-occupancy skipping policy. Note that, with the exception
of Size-prediction policy, the other proposed skipping policies have a computational
time comparable to that of Buffer-occupancy one, since the additional operations
required by these policies take a minimum time. These operations are needed to
compute motion activity in New motion based skipping policy, to generate a random
number in Random skipping policy and to compute Γ value in Consecutive skipping
policy. The time complexity improvement with respect to Buffer-occupancy policy
is significant only for Size-prediction policy because this one avoids transcoding of
some frames.

6.3.1 Simulation Setting

The experiments have been performed by considering the transcoding architecture
designed in Section 5.2. Forward Dominant Vector Selection (FDVS) algorithm
has been used to perform motion vector composition after skipping of a frame.
We observed in Section 5.4, that the performance results obtained with the four
motion vectors composition algorithms presented in Section 4.3 and implemented in
our architecture are very similar in terms of PSNR and time complexity. Compared
with the other implemented motion vector composition algorithms, FDVS achieves a
good performance in terms of PSNR with a lower computational complexity. After
Motion Vector Composition, a motion vector refinement of ±2 pixels around the
composed motion vector, is applied. The experimental results are about several
different benchmark video sequences of 300 frames, input frame rate of 30 fps, QCIF
and CIF format. For QCIF format, by using Equation 6.2, we obtained k=1.34,
while for CIF format we obtained k=1.47. The experimental results presented in

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Performance analysis of skipping policies 93

this chapter are obtained by using an MPEG4 based transcoder implementation.
To evaluate the performance of the proposed frame skipping policies, we used the
following metrics:

• PSNR of the transcoded video sequence. The PSNR is computed between
the transcoded video sequence and the video sequence decoded after the front
encoder (and not with respect to the original sequence). In this way, given
that our transcoder is a purely temporal one, we want to estimate the qual-
ity degradation due to frame dropping only. In particular, we consider the
following two PSNR measures:

– PSNR1 : this measure is computed taking into account all frames of
the transcoded video sequence, by replacing every frame skipped by the
transcoder, with the previous not skipped frame (freezing). We intro-
duced this metric in Section 5.4. This metric allows measuring the actual
visual quality perceived by the final user, after transcoding;

– PSNR2 : this measure is computed by taking into account transcoded
frames only. It indicates the quality of single transcoded frames, without
capturing the degradation introduced by frame dropping.

• Number of Transcoded Frames in the video sequence, that, for the sake of
brevity, is indicated with TF. This value represents the smoothness of the
transcoded video sequence. Much larger this value is, much smaller the jerky
effect perceived by the final user is.

All the proposed skipping policies take into account buffer fullness to meet real-time
constraints, as described above. In our communication model (see Section 6.2), the
buffer size is related to the maximum admitted transmission delay τ of transcoded
frames by the following:

τ =
S

R
(6.7)

where S and R are the buffer size and the output bit rate, respectively. The buffer
size, and then the setting of τ , can impact the performance of frame skipping policies.
In Table 6.6, we report the number of transcoded frames and the average PSNR1
of Buffer-occupancy skipping policy, for different settings of τ , and different input
and output bit rates (IR→R). We observe that Buffer-occupancy skipping policy
achieves a good performance, for all bit rate reductions, with a value of τ equal at
least to 300 ms. With lower values of τ , its performance decreases at low output bit
rates, when a high reduction of input bit rate occurs (i.e 128→32 in Table 6.6). This
is why, in this case, frames are coded at high bit rates. So, their size is large while
the buffer size is sufficient to accommodate a small number of frames, according
to Equation 6.7, and consequently a large number of frames are skipped. This
motivates us to set τ = 300 in the remainder of the experiments presented in this
thesis.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

94 Temporal Transcoding: skipping policies

Table 6.6: Buffer-occupancy skipping policy: TF and PSNR1(dB) of “foreman”
video sequence for different IR(Kbps), R(Kbps) and τ values

foreman(QCIF) τ=500 τ=400 τ=300 τ=250
IR→R PSNR1 TF PSNR1 TF PSNR1 TF PSNR1 TF

256→128 31.63 164 31.53 163 31.50 164 31.47 165
128→64 28.61 153 29.88 152 29.83 153 29.94 154
64→32 28.63 136 28.57 137 28.45 137 28.46 138
256→64 26.19 66 26.43 67 25.89 63 25.85 61
128→32 25.03 55 24.99 56 24.46 52 20.34 26

6.3.2 Buffer-occupancy vs other skipping policies

For each skipping policy, we report its performance results, for “standard” and
“hard” transcoding conditions. With “standard” transcoding conditions we mean
a typical situation in which the transcoder output channel has a bandwidth equal
to a half of the input bandwidth. With “hard” transcoding conditions we mean a
situation in which a high reduction of the bit rate channel occurs. For both cases,
we consider high and low bit rates. We show here the experimental results about
“akiyo”, “table”, “carphone”, “foreman” and “coastguard” video sequences with
300 frames, QCIF format, 30 fps.

To deal with real-time constraints, buffer occupancy is considered in all proposed
frame skipping strategies. Consequently, as it was to be expected, there are not large
differences on the PSNR1 and PSNR2 achieved by different frame skipping strategies
(see Table 6.7 and Table 6.8).

The number of transcoded frames is equal to the ratio between R and IR, with
respect to the initial number of frames. In case of the same ratio between R and
IR, the number of transcoded frames decreases with low output bit rates.

In Figure 6.3, we compare PSNR1 of New motion based skipping policy with
that of Buffer-occupancy and we observe that the former slightly outperforms the
latter. By looking at the Table 6.7 and Table 6.8, we observe that in most cases,
New motion based skipping policy outperforms Buffer-occupancy policy in terms
of PSNR2 of transcoded video sequence. The reason for this is that the first one
considers motion activity in the choice of frames to be skipped, so the selected frames
have a better visual quality with respect to the frames selected by Buffer-occupancy
policy.

We can also note that, Consecutive skipping policy behaves similarly to Buffer-
occupancy policy, in standard and hard transcoding conditions in terms of PSNR2,
but by looking at Figure 6.4, we observe that Consecutive policy is better than
Buffer-occupancy in term of PSNR1 in hard transcoding conditions. This happens,
in our opinion, because the frames are dropped more uniformly. Random and Size-

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Performance analysis of skipping policies 95

Table 6.7: Proposed skipping policies: TF, PSNR1(dB) and PSNR2(dB) for different
video sequences, IR(Kbps) and R(Kbps) values

τ=300 akiyo(QCIF) table(QCIF) carphone(QCIF)
IR→R PSNR1 PSNR2 TF PSNR1 PSNR2 TF PSNR1 PSNR2 TF

Buffer-occupancy
256→128 38.15 40.55 159 30.98 35.80 140 32.70 35.80 170
128→64 38.41 40.64 129 29.80 32.86 152 31.40 33.78 172
64→32 36.68 38.00 125 27.99 32.11 144 30.12 32.43 140
256→64 37.93 41.98 84 24.02 32.97 33 29.86 35.01 80
128→32 34.11 39.02 47 22.80 31.87 38 29.20 31.85 76

New Motion based
256→128 39.13 40.66 159 31.55 36.79 144 33.46 35.90 176
128→64 38.40 40.62 129 30.12 33.64 155 31.93 34.20 176
64→32 36.48 38.03 126 28.58 32.19 148 30.25 32.50 149
256→64 37.98 42.01 86 24.07 33.20 33 30.04 35.66 86
128→32 34.12 39.12 47 22.92 32.40 40 29.23 33.68 78

Consecutive
256→128 39.16 40.30 156 32.55 36.49 150 32.81 36.92 169
128→64 38.52 41.12 148 31.22 34.23 149 31.13 33.90 170
64→32 35.98 38.00 146 28.23 32.01 150 30.15 31.88 150
256→64 38.26 42.11 60 24.97 33.89 47 30.14 34.45 66
128→32 34.10 39.38 50 22.80 31.80 44 29.43 33.86 60

Random
256→128 38.13 40.52 158 31.11 35.20 140 32.71 35.20 168
128→64 38.39 40.62 130 29.88 32.90 152 31.40 33.78 172
64→32 36.58 38.03 126 27.90 32.01 142 30.03 32.24 138
256→64 37.90 41.87 82 24.12 32.87 34 29.56 34.80 81
128→32 34.05 38.93 45 22.64 31.67 36 29.03 31.62 72

Size-prediction
256→128 38.15 40.62 156 31.34 35.30 132 32.72 35.32 169
128→64 38.49 40.73 131 29.80 32.67 150 31.03 33.16 160
64→32 36.67 38.05 126 28.19 32.11 143 30.13 32.51 142
256→64 37.80 41.60 80 24.10 32.80 33 29.76 34.92 85
128→32 34.11 38.65 46 22.60 31.58 35 29.24 31.92 70

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

96 Temporal Transcoding: skipping policies

Table 6.8: Proposed skipping policies: TF, PSNR1(dB) and PSNR2(dB) for other
video sequences, IR(Kbps) and R(Kbps) values

τ=300 foreman(QCIF) coastguard(QCIF)
IR→R PSNR1 PSNR2 TF PSNR1 PSNR2 TF

Buffer-occupancy
256→128 31.50 34.86 164 30.63 33.18 164
128→64 29.83 33.06 153 29.69 32.14 159
64→32 28.45 32.13 137 28.55 30.83 132
256→64 25.89 34.30 63 25.75 32.91 58
128→32 24.46 31.96 52 25.14 31.29 49

New Motion based
256→128 31.47 35.36 161 30.20 33.59 159
128→64 29.90 33.47 147 29.73 32.14 153
64→32 28.76 32.58 130 28.63 30.99 128
256→64 25.98 34.70 62 25.87 32.99 59
128→32 24.71 32.32 52 25.13 31.52 50

Consecutive
256→128 31.59 34.96 158 30.76 33.04 163
128→64 29.84 33.17 147 29.59 32.00 148
64→32 28.43 32.20 123 28.61 30.90 113
256→64 25.95 34.10 59 26.12 32.91 56
128→32 24.93 31.80 42 25.94 31.16 48

Random
256→128 30.08 34.80 158 29.25 33.15 155
128→64 28.70 32.63 144 29.30 32.04 150
64→32 28.37 32.23 130 28.15 30.23 114
256→64 25.94 34.23 62 25.75 32.78 58
128→32 24.63 32.11 50 25.14 31.18 50

Size-prediction
256→128 31.40 34.52 162 30.20 33.10 162
128→64 29.85 33.01 151 29.40 32.01 158
64→32 28.38 32.10 135 28.21 30.50 131
256→64 25.90 34.80 61 25.60 32.15 55
128→32 24.63 31.20 53 25.20 31.30 50

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Performance analysis of skipping policies 97

Figure 6.3: Buffer-occupancy vs New motion based skipping policies: PSNR1 of
“coastguard” video sequence, IR=64 Kbps, R=32 Kbps

Figure 6.4: Buffer-occupancy vs Consecutive skipping policies: PSNR1 of “foreman”
video sequence, IR=128 Kbps, R=32 Kbps

prediction policies behave similarly to Buffer-occupancy policy in terms of number
of transcoded frames, PSNR1 and PSNR2 values (see Table 6.7 and Table 6.8).
The computation time of Size-prediction policy is much lower (with a decrease of
30-40%), with respect to that of Buffer-occupancy policy, both at low and high bit
rates, as depicted in Figure 6.5. The presented results outline that, there is not
the best skipping policy and that the most important factor to investigate for real

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

98 Temporal Transcoding: skipping policies

Figure 6.5: Buffer-occupancy vs Size-prediction skipping policies: Complexity ratio
of “foreman” video sequence

time communication is buffer occupancy over time. This can be done by analytical
models also.

6.3.3 New motion based vs Standard motion based skipping
policy

We evaluated the performance of our New motion based skipping policy (see Section
6.2.2), compared with that of a policy computing motion activity as in [HWL98]
[FCS02]. For the sake of clearness, we call the last one “Standard motion based”
policy. Note that, we evaluated both skipping policies, with the same threshold
defined by Equation 6.3.

By looking at Figure 6.6, we can observe that New motion based policy slightly
outperforms Standard motion based policy for video as “mobile”, where there are
many slowly moving objects. Table 6.9, shows that New motion based policy is
better than Standard motion based policy, for several QCIF and CIF video. Its
improvement is not so high in terms of PSNR1, PSNR2 and number of transcoded
frames. But, by looking at Figure 6.7, we can observe that our motion based policy
is able to transcode also frames with few moving objects when this movement is fast
(the tennis ball in the second and third pictures of Figure 6.7.(a)); these frames are
skipped by Standard motion based policy (Figure 6.7.(b)).

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Performance analysis of skipping policies 99

Figure 6.6: New motion based vs Standard motion based skipping policies: PSNR1
of “mobile” video sequence, IR=256 Kbps, R=128 Kbps

(a) New motion based policy

(b) Standard motion based policy

Figure 6.7: New motion based vs Standard motion based skipping policies:
transcoded frames (210-213) of “table tennis” video sequence, QCIF format, IR=128
Kbps, R=32 Kbps

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

100 Temporal Transcoding: skipping policies

Table 6.9: New motion based vs Standard motion based skipping policies: TF,
PSNR1(dB) and PSNR2(dB) for different video sequences, IR(Kbps) and R(Kbps)
values

τ=300 New Motion based Standard motion based
IR→R PSNR1 PSNR2 TF PSNR1 PSNR2 TF

QCIF Video

table
256→128 31.55 36.79 144 31.06 36.30 143
128→64 30.12 33.64 155 29.69 33.12 155
128→32 22.92 32.40 40 22.89 32.22 40

mobile
256→128 27.67 29.50 164 27.15 29.10 163
128→64 26.85 28.64 162 26.45 28.24 160
128→32 22.93 26.91 60 22.91 26.82 60

carphone
256→128 33.46 35.90 176 33.02 35.60 174
128→64 31.93 34.20 176 31.60 33.80 175
128→32 29.23 33.68 78 29.19 33.65 78

CIF Video

foreman
1024→512 29.30 32.50 170 28.99 32.25 172
512→256 29.20 32.40 163 28.81 31.95 165
512→128 24.05 30.65 64 23.80 29.78 64

mobile
1024→512 25.86 29.01 180 25.38 28.55 181
512→256 25.56 28.01 176 25.03 27.43 175
512→128 21.63 26.26 81 21.60 26.01 81

coastguard
1024→512 30.20 33.80 172 29.69 33.30 170
512→256 29.20 31.90 163 28.83 31.81 161
512→128 24.19 31.24 58 24.01 31.02 57

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 7

Temporal Transcoding in IEEE
802.11 Vehicular Networks

Abstract

In this chapter, we address the real time video transmission issues in ad hoc
networks, based on IEEE 802.11 protocol. We show that temporal transcoding
is a good solution to deal with bandwidth reductions and channel access delay,
in vehicular networks.

7.1 Introduction

In the last years, the growth of wireless local area networks based on the IEEE
802.11 standard represents a practical network solution offering mobility, flexibility,
low cost and easy deployment, as well as providing a mobile access to Internet.
This encourages the use of this protocol for new nomadic applications. Among such
applications, wireless inter-vehicle networks could improve road security and offer
new driving services [YLZV04]. This large diffusion brings out the need to realize
advanced mobile multimedia services for a variety of professional and personal uses
of such networks.

The IEEE 802.11 MAC protocol defines a set of rules for mobile stations to gain
access to shared wireless medium through two different access mechanisms: DCF
(Distributed Coordination Function) and PCF (Point Coordination Function). PCF
was originally developed for supporting real-time traffic, and QoS enhancements of
this scheme was developed [AKC04], but it is rarely adopted by current commercial
products because of its implementation complexity. The DCF mode is widely used.
IEEE 802.11 DCF is a contention based channel access protocol. A shared wire-
less medium is randomly accessed by contentions among stations in a service area.
Accordingly, the access delay increases significantly with the number of contending
stations.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

102 Temporal Transcoding in IEEE 802.11 Vehicular Networks

On the other hand, real-time video communication has inherent delay-sensitive
characteristics. Each video packet must arrive before its pre-defined deadline. If
it arrives after this deadline, it is seen as a late packet, and it is discarded at the
receiver. However, under DCF, a station might have to wait an arbitrarily long time
to send a frame, if there is network congestion. So, real time applications such as
voice and video may be severely degraded.

Many existing works focus on MAC layer solutions for having high quality video
transmission in IEEE 802.11 DCF networks. In [KT06][ZWC03][LSC05], new chan-
nel access protocols, based on timestamp of video packets and retransmission of
them, are proposed. Moreover, enhancements of DCF are developed in the new
IEEE Draft, the so called IEEE 802.11e [IEE04], defining the MAC protocol to
support LAN applications with QoS requirements, including the transport of voice,
audio and video over WLANs. In this thesis, we are interested in the basic version
of IEEE 802.11 DCF function as presented in Section 7.2, because it has a minor
complexity and it is the most used. Other works address the problem of delay and
video quality degradation due to channel errors over IEEE 802.11 based networks,
proposing solutions to reduce the number of discarded video packets, and their sub-
sequent re-trasmissions [MBM05]. In our system assumptions, the channel errors are
not considered, since we concentrate on the MAC protocol effects on the available
bandwidth.

Cross-layer optimization has been recently proposed for improving the perfor-
mance of real-time video transmission over 802.11 WLANs. In [HTL+05], a cross
layer signaling between the MAC layer and the video encoder is proposed. There,
a MAC adaptation method adjusts the MAC/radio parameters according to packet
loss statistics, so that optimal quality of packet transmission is achieved. Then, a
video encoder, interacting with the MAC layer, changes quantization parameters
in order to adapt the video rate to link quality. A cross-layer solution has been
also proposed to perform video transcoding over IEEE 802.11 with access points
in [CMP+05]. There, an adaptive algorithm, considering both instantaneous net-
work throughput and the video sequence characteristics, is proposed to perform
video streaming. If the bit-rate must be reduced, the algorithm selects whether to
perform frame size reduction and/or frame rate reduction, with a thresholds based
mechanism.

The original contribution of the present thesis to this research area is to propose
a temporal transcoding system improving real-time video communication in IEEE
802.11 ad hoc networks in terms of bandwidth saving when congestion occurs and
video quality displayed at receiver side. To the best of our knowledge, no work
investigates the advantage of using the temporal transcoding approach to reduce
bandwidth needs when congestion occurs, consequently avoiding delayed packet de-
livery and video quality degradation. The proposed method takes into account the
behaviour of the basic DCF function to enhance video quality delivery. We approach
the problem by considering IEEE 802.11 vehicular networks. This type of networks
is characterized by the strong mobility of the vehicles, very dynamic topology and a

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

IEEE 802.11 Distributed Coordination Function 103

short communication time. Our solution is able to guarantee real time constraints
of video delivery in vehicular networks, where real time communication is required
for enhancement of road safety by propagating emergency alerts or entertainment
applications. This contribution has been published in [BGLM07].

However, our approach can be easily extended to consider other IEEE 802.11
based networks, instead of vehicular networks.

After describing the DCF function in Section 7.2, we address real-time video
transmission in IEEE 802.11 based vehicular networks in Section 7.3, and describe
our approach in Section 7.4. Finally, in Section 7.4.3, the performance evaluation of
our system is shown compared with that of the conventional IEEE 802.11 scheme.

7.2 IEEE 802.11 Distributed Coordination Func-

tion

In recent years, much interest has been involved in the design of wireless networks for
local area communication. IEEE has standardized the 802.11 protocol for Wireless
Local Area Networks. In the IEEE 802.11 protocol, the primary medium access
control (MAC) protocol is called Distributed Coordination Function (DCF). This
is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme, and
binary slotted exponential backoff. The standard also defines an optional Point
Coordination Function (PCF), which is a centralized MAC protocol able to support
collision free and time bounded services.

We are interested in DCF scheme. In this section, we briefly summarize the
features of such scheme, as standardized in [IEE97], which are involved in our com-
munication model assumptions.

DCF describes two techniques to be used for packet transmission. The default
scheme is a two-way handshaking technique called basic access [Bia00]. This mecha-
nism is characterized by the immediate transmission of a positive acknowledgement
(ACK) by the destination station, upon successful reception of a packet transmitted
by the sender station. A station with a new packet to transmit monitors the channel
activity. If the channel is idle for a period of time equal to a Distibuted Interframe
Space (DIFS), the station transmits. Otherwise, if the channel is sensed busy (either
immediately or during the DIFS), the station persists to monitor the channel until
it is measured idle for a DIFS. At this point, the station generates a random backoff
interval before transmitting, to minimize the probability of collision with packets
being transmitted by other stations. The time immediately following an idle DIFS
is slotted and a station can transmit only at the beginning of each slot time. The
slot time size depends on the physical layer and it is set equal to the time needed
by any station to detect the transmission of a packet from any other station.

DCF adopts an exponential backoff scheme. At each packet transmission, the
backoff time is uniformly chosen in the range (0, CW). The value CW is called con-

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

104 Temporal Transcoding in IEEE 802.11 Vehicular Networks

receiver

sender

other stations

DIFS

CT

SIFS

SIFS

AC

DIFS

NAV CTS

NAV RTS

DATA

SIFS

RT

Backoff time

Figure 7.1: IEEE 802.11 Distributed Coordination Function: RTS/CTS Access
Mechanism

tention window and depends on the number of transmissions failed for the packet.
At the first transmission attempt, CW is set equal to a value CWmin, called min-
imum contention window. The backoff timer is decreased for each time slot the
medium remains idle. Otherwise, if the medium is sensed busy, the backoff timer is
frozen, and reactivated when the channel is sensed idle again for more than a DIFS.
As the backoff timer expires while the medium is idle, the node waits DIFS amount
of time before getting access to the channel. In case of collision, communicated
through lack of an acknowledgement, the size of the contention window is doubled
following Equation 7.1.

CW = (CWmin × 2i)− 1 (7.1)

where i is the number of transmission attempts. The value of CWmin is physical
layer specific. After each successful transmission, the CW is initialized with the
CWmin value.

Since the CSMA/CA does not rely on the capability of the stations to detect
a collision by hearing their own transmission, an ACK is transmitted by the desti-
nation station, to signal the successful packet reception. The ACK is immediately
transmitted at the end of the packet, after a period of time called Short Interframe
Space (SIFS). Since SIFS is shorter than a DIFS, no other station is able to de-
tect the channel idle for a DIFS until the end of the ACK transmission. If the
transmitting station does not receive the ACK within a specified ACK timeout, or
it detects the transmission of a different packet on the channel, it reschedules the
packet transmission according to the above backoff rules.

In addition, DCF defines an additional four-way handshaking technique to be
optionally used for a packet transmission [Bia00]. This mechanism, known as
RTS/CTS access mechanism, is shown in Figure 7.1.

A station that wants to transmit a packet, waits until the channel is sensed
idle for a DIFS. Then, follows the above backoff rules, and instead of the packet,
at first transmits a special short frame called Request To Send (RTS). When the
receiving station detects an RTS frame, and it is available for receiving a packet, it

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Real-time video on IEEE 802.11 vehicular networks 105

answers, after a SIFS, with a Clear To Send (CTS) frame. The transmitting station
is allowed to transmit its packet only if the CTS frame is correctly received. In
RTS and CTS frames there is the information about the length of the packet to be
transmitted. This information can be read by any listening station, which updates
a Network Allocation Vector (NAV) containing the information of the period of
time in which the channel will be busy. The RTS/CTS mechanism reduces the
length of the frames involved in the contention process. In fact, assuming a perfect
channel sensing by every station, collision may occur only when two or more packets
are transmitted within the same slot time. If both transmitting stations use the
RTS/CTS mechanism, collision occurs only on the RTS frames and they can early
detect such collision by the lack of CTS response.

7.3 Real-time video on IEEE 802.11 vehicular net-

works

Inter-vehicular wireless networks are gaining much attention in the research commu-
nity due to the number of applications that could improve the quality of everyday life.
On one hand, such applications include vehicle-to-vehicle (V2V) communications,
for delivering of safety information (state of the road after an accident, or fog, or
snow, for instance). General Motors recently announced the development of the V2V
technology (called “sixth sense”) able to warn drivers about critical situations. Data,
such as location and speed, are exchanged inter-vehicles, and instantly processed to
promptly inform the driver of possible danger [Mar06]. In Europe, the Car-2-Car
Communication Consortium, jointed both by car and electronics manufacturers and
academic institutions, is working towards standardization of an inter-vehicle com-
munication technology based on IEEE 802.11 wireless LAN. The goal is to create
and establish an open European industry standard for Car2Car communication sys-
tems, and to guarantee European-wide inter-vehicle operability, by promoting the
allocation of a royalty free European wide exclusive frequency band for Car2Car ap-
plications. The aim is to increase road traffic safety and also efficiency. They foresee
the release of a full specification standard for the end of 2008 [car]. On the other
hand, there are communication, information and also entertainment applications,
such television, audio/video telephony, gaming, etc., possibly involving access to In-
ternet, that improve the comfort and productivity of passengers inside the vehicles
by offering an ubiquitous access. Experts in the field, and economists, believe that a
high number of vehicles will be equipped with V2V technology before 2015 [Mar06].

Protocols specifically aimed at inter-vehicular communications have been pro-
posed in [Cse98][OYAC99]. These solutions, however, require the development of
new standards and devices. In our approach, we adopt currently available wireless
networking protocols, such as the widely used IEEE 802.11 Wireless Local Area
Network standard, as presented in the previous section, without any changes. This

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

106 Temporal Transcoding in IEEE 802.11 Vehicular Networks

makes a large and not expensive application of our system suitable. IEEE 802.11
technology for Wireless Local Area Networks (WLAN) seems to offer a suitable way
for deploying inter-vehicular communication networks [Mar06] [car][OK04][BMK+05].
Vehicular networks based on IEEE 802.11 with access points have been proposed
in the past in [OK04], where TCP and UDP traffics in vehicles moving at different
speeds and passing one or more access points at the roadside have been evaluated.

In this thesis, we are interested in ad hoc networks, that allow low-cost commu-
nication for mobile users. The development of an infrastuctured wireless network for
vehicles could be very expensive and requires very long deployment times. Vehicular
ad hoc networks (VANET), instead, require low cost equipment to be mounted on
cars.

The transmission of real time video sequences in vehicular ad hoc networks,
incur in some problems, in particular due to transmission errors, the variable band-
width, and the channel access delay, that bring to packet loss and variable delay of
delivering.

Video transmission in vehicular ad hoc network has been studied in [GAZ05]
[BMK+05]. In [GAZ05], an architecture to support video streaming applications is
proposed. That architecture is composed of two parts: a video source trigger sub-
system, and a video data transfer sub-system. The first is responsible for forwarding
video trigger messages to the destination region, so that vehicles activate the video
camera for capturing video. The second sub-system sends video data back to the
node which requested an image from the destination region: this is done by means
of a store-carry-and-forward scheme.

In [BMK+05], video transmission experiments between two cars equipped with
IEEE 802.11 devices for two typical driving scenarios are presented, by varying bit-
rates and packetization policies. Then, an algorithm which adapts the video packet
size to the current driving scenario (in highway scenario, large packets lead to better
performance, while in the urban scenario, small packet sizes are better) is proposed.

7.4 Temporal transcoding on IEEE 802.11 vehic-

ular networks

The main purpose of vehicular networks research is to enable applications that
guarantee road safety by delivering data and video emergency warnings about traffic
and road scenarios [YLZV04]. There are real-time video services that require a great
bandwidth, having strict delay requirements. The goal is to achieve low latency in
delivering emergency video warnings, and efficient bandwidth usage.

We propose a solution improving real-time video transmission in vehicular net-
works, by reducing bandwidth consumption. In the following, we describe the as-
sumptions and the behavior of our system.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal transcoding on IEEE 802.11 vehicular networks 107

tP1 tN tP2

Network

End to end delay D

DECODER ENCODER/TRANSCODER

Figure 7.2: IEEE 802.11 wireless network: communication model

7.4.1 System assumptions

We guarantee real-time communication by setting a maximum admitted end-to-end
delay D between sender and receiver nodes. We design a communication model
where the video is captured and coded with a constant frame rate at the sender
node, and the receiver displays video frames continuously at the same rate that
have been captured at the sender. The system end-to-end delay is the interval
between the time a video image is captured by the video camera at the sender side,
and when it is displayed on the monitor at the receiver. We depict this model in
Figure 7.2. A frame received after the maximum admitted delay D is not displayed,
and it is replaced by the previous one, for having a continuous playing. Note that,
this happens when one or more packets, containing data of a frame, are late also,
and not only when the whole frame is late.

The delay D encompasses a processing delay (denoted with tP) and a network
delay (called tN). The former includes the time spent for capturing, coding, and
transcoding if it is needed, at the sender (tP1 in Figure 7.2), and for decoding and
displaying at the receiver (tP2 in Figure 7.2). The latter is the time needed to move
data in the network, including protocol delays. Assuming that the processing delays
tP1 and tP2 for a frame are known and they assume values depending on the adopted
coding/transcoding algorithms and the used computation power, fluctuations in the
value of D are due to the network delay tN only. In Section 7.4.3, we show that
this network delay is high, due to network congestion and delay in access channel
with medium network traffic also, and it implies a greatly decreased quality of video
sequence at the receiver.

Note that, the communication model depicted in Figure 7.2 is similar to that
one presented in Section 6.2, the main difference being in this model that no output
buffer is needed in the transcoder to perform frame skipping in order to have a
constant bit rate, since a variable bit rate is supported by the network below.

According to the IEEE 802.11 DCF function presented in Section 7.2, we can
distinguish a transmission delay (that we call tT) and a channel access delay (that we

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

108 Temporal Transcoding in IEEE 802.11 Vehicular Networks

F+1 is coded
with respect to F

receive Display
F-1

F-1

Display
F-1

receive

F+1

receive

F

t Display F+1

tF-1 tF+1 tF

(a) without temporal transcoding

F+1 is coded with
respect to F-1

receive Display
F-1

F-1

Display
F-1

receive

F+1

t Display F+1

tF-1 tF+1 tF

(b) with temporal transcoding

Figure 7.3: IEEE 802.11 wireless network: decoding process at the receiver side

call tC) in the network delay (tN). The former is due to DIFS and SIFS times added
to packet transmission and RTS/CTS ones, if the four-way handshaking mechanism
is used. The latter is the time that a node needs to get the shared channel resource.
While a node can know the transmission delay tT for each packet, the channel access
delay tC greatly depends on the network traffic. When network congestion occurs,
tC can be very high, and greatly increases the end-to-end delay of video packets. In
the next section, we explain the basic idea of our system that allows to overcome
this problem.

7.4.2 Our approach

As explained in Section 7.2, in DCF four-way handshaking mechanism, only when
the medium is sensed idle for a DIFS time, the station can start its transmission.
At this point the station knows that the time needed to transmit the packet is equal
to the transmission delay (that we call tT). All the same, the station may need to
defer its transmission several times because another station begins the transmission
during the DIFS or the backoff period. When network load is high or even moderate,
the defer time may be several seconds or even higher [ZWC03]. In IEEE 802.11,

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal transcoding on IEEE 802.11 vehicular networks 109

there is no timeout for deferring. For real-time multimedia applications, this will
cause performance degradation, since any frame received after the deadline is not
displayed. So, in DCF, it is possible to transmit late frames when network load is
moderate or heavy. A late frame is a frame received after the maximum admitted
end-to-end delay. This delay is due to time needed to gain access to the channel
in order to transmit the frame. Transmission of late frames has two effects: one
is wasting bandwidth, the other is delaying the successive frames, which further
degrades the performance of real-time applications.

The goal of our approach is to guarantee that a late frame, is not transmitted.
The main idea of the proposed system is that each sender node monitors the channel
access delay tC for a video frame transmission. When this delay becomes so high
(this is due to deferred transmission since the medium is busy) that the frame
will exceed the maximum end-to-end admitted delay D, the frame is skipped, and
the next frame will be transcoded with respect to the last transmitted one. If
skipping occurs on two consecutive frames, the sender assumes congested network
and decides to reduce the frame rate. By simulations, we observed that when two
or more consecutive frames are late, there is network congestion and it is needed
to skip many consecutive frames before solving congestion, with a high degradation
of visual quality. By reducing frame rate it is possible to overcome congestion
with a better video quality. Our system is able to detect network congestion at
MAC level, and to apply a sort of congestion control at application level, by using
temporal transcoding. Some kinds of cross layer techniques can be assumed to allow
interaction between different network levels [SYZ+05][BDM+04][CMP+05]. In our
system, applying temporal transcoding avoids transmission of late frames. This
has two advantages: bandwidth saving with consequent congestion reduction, and
enhancement of video quality by avoiding many consecutive late frames. Note that,
in the assumed communication model described above, late frames (received after
the maximum admitted end-to-end delay) cannot be displayed at the receiver node,
and they are used only for decoding next frames.

In Figure 7.3, it is shown what happens at the receiver side, by applying temporal
transcoding or not. If transcoding is not applied (Figure 7.3.(a)), frame F is received
after the time it is scheduled for displaying, and so it is used only for decoding
frame F + 1. With transcoding (Figure 7.3.(b)), frame F is not transmitted while
transcoded frame F + 1 is. Then, the receiver decodes frame F + 1 with respect to
F − 1. Thanks to temporal transcoding, the quality of frame F +1 in this last case,
is nearly as good as that one of frame F + 1 when transcoding is not applied. So,
the advantage of applying transcoding is to save the bandwidth needed to transmit
F .

In Section 7.4.3, we will show that our system achieves a good performance in
terms of video quality of received frames and bandwidth consumption, with respect
to IEEE 802.11 standard protocol based networks. This is because our approach
avoids that many consecutive frames are received after the maximum end-to-end
admitted delay, and they are not displayed.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

110 Temporal Transcoding in IEEE 802.11 Vehicular Networks

Table 7.1: Pseudo-code of temporal transcoding system on IEEE 802.11

————————————————————————–
D = tP + tN
tN = tT + tC
tT = DIFS + tRTS + 2SIFS + tCTS + tpacket

1. if (tC ≥ D − tP − tT) for frame F
1. skip frame F ;
2. transcode frame F+1 ;
3. if (tC ≥ D − tP − tT) for frame F − 1
4. halve frame rate.

————————————————————————–

In Table 7.1, we resume the basic idea of the proposed system. As showed in this
table, we reduce frame rate by halving it because halving frame rate is more simple
than reducing it of an arbitrary measure. For the same reason, halving frame rate
is used in encoding process also. (For example, it is less complex converting 30 fps
into 15 fps than converting 30 fps into 20 fps).

Note that, our system allows overcoming the congestion problem, when it oc-
curs at the sender node. In a multihop system, only the sender node can perform
transcoding, and the forward of packets to destination station is relied on routing
mechanisms. So, the sender node is not able to detect congestion that occurs at
one intermediate node between the sender and the receiver. We plan to improve
our approach in case of real time bidirectional communication, by considering a
well know piggybacking technique [KR05]. In this way, the sender node receiving a
video frame transmitted from the destination node can detect that the one’s own is
received before the maximum admitted delay at the destination node. If, in a bidi-
rectional communication, the sender node, after sending a frame, does not receive
a frame by the destination before a timeout, it assumes that congestion occurs in
an intermediate node in the route. If this happens for two consecutive frames, as
in the proposed solution, the sender node halves the frame rate. For unidirectional
communication, a delay larger than D, can be tailored.

We present experimental results of the proposed approach, without this possible
improvement, in Section 7.4.3.

7.4.3 System performance

Due to the novelty of vehicular network applications, simulation is the most effective
tool available to the research community for evaluating protocols and architectures.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal transcoding on IEEE 802.11 vehicular networks 111

��� ��� ���

��� ���

Figure 7.4: Vehicular network: simulated road scenario

Providing realistic road scenarios is important in order to have results close to real
world deployment. We evaluated different traffic situations, and we present the
results about a typical road scenario, shown in Figure 7.4. Two experiments are
reported with this road scenario: the first one, considers only UDP based traffic,
including video and voice, while the second one considers both UDP and TCP based
traffic.

In the following, we shall describe the setting adopted for our simulations, and
then we shall report the results of the proposed approach.

7.4.3.1 Simulation settings

The proposed approach was implemented using NS2 network simulator [ns2]. The
channel physical characteristics follow the specification of IEEE 802.11b, with chan-
nel bit rate of 11 Mbps. The radio transmission range was set to 250 meters, and all
nodes have a directional antenna. The underlying MAC protocol is based on IEEE
802.11 DCF, with RTS/CTS handshaking mechanism. The values of tRTS and tCTS

are 352 and 304 microseconds respectively. DIFS and SIFS are equal to 200 and
100 microseconds respectively, and Ad hoc On-Demand Distance Vector (AODV)
protocol [PBRD03] is used for packets routing. In our experiments, nodes shown in
Figure 7.4, move with different speeds: N0, N1, N2 have a speed of 120 Km/h; N3,
N4 have a speed of 90 Km/h; nodes start transmission approximately at the same
time, setting a random start time within an interval of 0.3 sec.

The reported values are obtained by setting the maximum admitted delay, D,
equal to 100 ms, according to [Bal00]. Our arguments are still valid with lower
values of D.

We used the well known benchmarks “foreman”, “coastguard” and “akiyo” CIF
video sequences (10 sec), coded with MPEG4 standard codec at 30 frames/sec (fps),
with an intra period of 300 frames.

We evaluated the performance of the proposed system in terms of PSNR of a
video sequence between the original video sequence and the sequence displayed at
the receiver. We computed the average PSNR by considering all frames, where
each missing frame is replaced by the previous one. In addition, we report the best
and worst PSNR values occurred in one second of the video sequence, estimated by
considering a sliding window of 30 frames (1 sec). We set quantization parameters
(QP) for intra and INTER frames, as reported in Table 7.2, in order to have a

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

112 Temporal Transcoding in IEEE 802.11 Vehicular Networks

Table 7.2: QP and PSNR of different video sequences after coding and decoding

video flow Intra/Inter QP Avg(dB) Best(dB) Worst(dB)
foreman 20/6 35.72 37.71 33.88

coastguard 20/7 33.71 34.00 33.29
akiyo 20/4 41.18 41.32 40.93

good compromise between video quality of coded sequences, and their bandwidth
usage. In the same table, for comparison purposes, we report the PSNR values of
the above video sequences after coding and decoding, without considering the effects
of network transmission.

We performed the following two experiments with the road scenario depicted in
Figure 7.4:

• first experiment : we have one flow of voice traffic of 10 Kbps between N0
and N1, and five flows of video traffic, transmitted at initial frame rate of 30
fps, with maximum packet size of 2300 bytes (“foreman” between N0 and N2
and N2 and N0, “coastguard” between N3 and N4 and N4 and N3, “akiyo”
between N1 and N2);

• second experiment : we have the same voice and video traffic described above
for the first experiment, plus a continuous TCP based traffic between N0 and
N1, with packet size equal to 1000 bytes.

7.4.3.2 Simulation results

For both experiments, we report the PSNR results obtained by considering the
conventional IEEE 802.11 standard network (Table 7.3 and Table 7.4). As we can
see, in both cases, there is a high number of frames that exceeds the maximum
admitted delay (Expired in Table 7.3 and Table 7.4), due to network congestion, if
our approach is not applied. We observed that most of these frames are consecutive,
and this is the cause of video quality degradation. A quantization of the number of
consecutive skipped frames is showed in Figures 7.5 and 7.6, where, if conventional
IEEE 802.11 is used, PSNR values of many consecutive video frames, that are late
and so not displayed, are very low.

In our system, we avoid that many consecutive frames exceed the maximum
admitted delay. This is done by halving the frame rate when two consecutive frames
are late. Transcoding of single late frames improves the quality of video sequences, as
we can see in Figures 7.5 and 7.6. More specifically, the use of temporal transcoding
allows PSNR values very close to that ones of coded/decoded video sequence, until
the frame rate reduction is applied. In particular, in the first experiment, it is
needed to halve the frame rate of two video flows and for these video flows, we note

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal transcoding on IEEE 802.11 vehicular networks 113

a bandwidth required reduction (N0→N2 and N2→N0 in Table 7.5). We note that,
for the video flow N0→N2 (Figure 7.5), if transcoding of single late frame is applied,
the frame rate reduction occurs at approximately the 240th frame. This implies a
higher PSNR value of the whole video sequence.

From the second experiment, it is obvious that the TCP traffic implies higher
channel contention. So, in our system, frame rate reduction is more frequent. In
fact, it is needed to halve the frame rate of four video flows and for these video flows
we note a bandwidth required reduction (N0→N2, N2→N0, N3→N4 and N1→N2
in Table 7.6). In particular, starting from initial frame rate of 30 fps, we obtain a
frame rate of 7.5 fps for three video sequences (N0→N2, N2→N0, N1→N2) and 15
fps for the fourth one (N3→N4), if transcoding is applied (Table 7.6).

Nevertheless, even with TCP traffic, our approach outperforms IEEE 802.11
standard protocol based networks, in terms of PSNR values. In addition, our ap-
proach allows also a bandwidth saving of the video flows with reduced frame rate.

These experimental results show that our system achieves a better video qual-
ity, and a bandwidth saving, compared to IEEE 802.11 standard protocol based
networks. We plan to evaluate the performance of the proposed system by consid-
ering a dynamic adjustment of frame rate according to network traffic conditions,
including an increase of frame rate when the network traffic lowers.

Table 7.3: Conventional IEEE 802.11 protocol: PSNR vs required bandwidth of
video flows with network congestion (I experiment)

video flow Avg(dB) Best(dB) Worst(dB) Expired BW(Kbit)
N0 → N2 23.42 36.00 11.34 175 7904
N2 → N0 18.56 33.94 11.42 230 7904
N3 → N4 19.88 34.00 13.84 224 10255
N4 → N3 33.61 34.00 33.11 3 10255
N1 → N2 39.66 41.32 28.78 41 2401

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

114 Temporal Transcoding in IEEE 802.11 Vehicular Networks

Table 7.4: Conventional IEEE 802.11 protocol: PSNR vs required bandwidth of
video flows with network congestion (II experiment)

video flow Avg(dB) Best(dB) Worst(dB) Expired BW(Kbit)
N0 → N2 19.13 33.98 11.48 222 7904
N2 → N0 18.59 33.95 11.44 232 7904
N3 → N4 19.42 34.00 13.84 237 10255
N4 → N3 33.20 34.00 30.86 13 10255
N1 → N2 33.56 41.26 24.40 159 2401

Table 7.5: Proposed temporal transcoding system on IEEE 802.11 protocol: PSNR
vs required bandwidth of video flows (I experiment)

video flow Avg(dB) Best(dB) Worst(dB) BW(Kbit)
N0 → N2 34.82 37.69 29.49 6778
N2 → N0 29.95 32.92 27.27 4721
N3 → N4 33.71 34.00 33.29 10255
N4 → N3 33.56 33.96 32.73 10230
N1 → N2 41.18 41.32 40.93 2401

Figure 7.5: Proposed temporal transcoding system on IEEE 802.11 protocol vs
Conventional IEEE 802.11 protocol: PSNR values of “foreman” video sequence
N0→N2, I experiment.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Temporal transcoding on IEEE 802.11 vehicular networks 115

Table 7.6: Proposed temporal transcoding system on IEEE 802.11 protocol: PSNR
vs required bandwidth of video flows (II experiment)

video flow Avg(dB) Best(dB) Worst(dB) BW(Kbit)
N0 → N2 27.64 32.13 23.96 3691
N2 → N0 27.75 31.74 23.96 3678
N3 → N4 29.88 33.78 27.33 7874
N4 → N3 33.71 34.00 33.29 10225
N1 → N2 37.87 41.20 35.97 1471

Figure 7.6: Proposed temporal transcoding system on IEEE 802.11 protocol vs
Conventional IEEE 802.11 protocol: PSNR values of “foreman” video sequence
N2→N0, I experiment.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

116 Temporal Transcoding in IEEE 802.11 Vehicular Networks

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Chapter 8

Conclusions

Abstract

In this chapter, we briefly resume our experience in studying the temporal
transcoding problem in mobile systems. We summarize our results, highlight-
ing some open problems and possible directions of future research.

In this thesis, we addressed the temporal transcoding problem in mobile systems.
In particular, our goal was to investigate temporal transcoding issues for real-time
video communication. We approached the problem by considering firstly an infras-
tructured network, where transcoding is needed to face bit rate constraints of mobile
systems channels. Then, we addressed temporal transcoding to improve real time
communications in the emergent vehicular networks setting, where congestion and
channel access delay can cause video quality degradation.

In the first part of our work, we concentrated on the design of our temporal
transcoder architecture, and its features aimed to improve transcoding efficiency in
terms of quality of the video sequence and processing delay of transcoding. So, we
addressed Motion Vector Composition, and we proposed a motion vector composi-
tion algorithm for H.264 temporal transcoding.

Then, the focus of our work has been to investigate solutions to improve tem-
poral transcoding for real-time video communication in infrastructured networks
with constant bit rate reductions. After reviewing the existing solutions in the field,
we proposed some frame skipping policies able to meet real-time constraint of our
communication model, and to produce a good quality of the transcoded video se-
quence also when a high bit rate reduction is in order. Temporal transcoding is
not the only solution to perform this bit rate reduction. Quality transcoding, by
tuning quantization parameters, reduces the bit-allocation of frames to deal with
bandwidth reduction. Temporal transcoding provides a video sequence with a lower
smoothness due to frame skipping, and a better quality of transcoded frames, if a
good frame skipping policy is applied. On the contrary, quality transcoding, avoid-
ing jerkiness, produces a bothering blurry effect in the video sequence, mainly when

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

118 Conclusions

a high bit rate reduction occurs. In our opinion, the best solution depends on target
applications and video sequences features. For sequences with much motion, quality
transcoding should be the better solution because without skipping frames it pre-
serves motion of the frames. On the contrary for video sequences with not much
motion, temporal transcoding should be the better solution because by skipping
some frame it is possible to reduce the output bit rate without decreasing the visual
quality if the skipped frames are replaced with the previous ones. Future works
include the design of a quality transcoder and a quality-temporal transcoding com-
parison for facing the problem of real-time video communication in infrastructured
networks.

The last part of our work focused on investigating the problem of real time video
transmission in vehicular networks. We observed that, the video quality of real time
services in these network systems is greatly decreased when there is network con-
gestion, in moderate and heavy traffic situations. We proposed a real-time video
transmission system in IEEE 802.11 based vehicular networks applying temporal
transcoding at application level to overcome network congestion, detected al MAC
level. In particular, the proposed system is able to skip a late frame, that is a frame
that does not meet real time constraints due to high access channel delay in its
transmission. In addition, our system performs frame rate reduction when two con-
secutive frames are late. We shown that our system achieves a better video quality
and a larger bandwidth saving compared to IEEE 802.11 standard protocol based
networks. We plan to evaluate the performance of the proposed system by consid-
ering a dynamic adjustment of frame rate according to network traffic conditions,
including an increase of frame rate when the network traffic lowers.

Future works in this research area include applying our approach to other ad
hoc networks systems such as WLANs, by studying the performance of our system
according to mobility models (random way point model, for example), and number
of nodes in the network.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

119

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

120 Conclusions

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Bibliography

[3GP06] 3GPP. Services and service capabilities. TS 22.105, 3rd Generation Part-
nership Project(3GPP). June 2006.

[AG98] P. A. A. Assuncao and M. Ghanbari. A frequency-domain video
transcoder for dynamic bit-rate reduction of MPEG-2 bit streams. IEEE
Transactions on Circuits and Systems for Video Technology, 8(8):953–
967, December 1998.

[AKC04] J.N. Al-Karaki and J.M. Chang. A simple distributed access control
scheme for supporting QoS in IEEE 802.11 wireless lans. In Pro-
ceedings of IEEE Wireless Communications and Networking Conference
(WCNC), volume 1, pages 213–218, 2004.

[ANR74] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transfom. IEEE
Transactions on Computers, C-23(1):90–93, 1974.

[AWSZ05] I. Ahmad, X. Wei, Y. Sun, and Y.Q. Zhang. Video transcoding: an
overview of various techniques and research issues. IEEE Transactions
on Multimedia, 7(5):793–804, 2005.

[Bal00] M. Baldi. End-to-end delay analysis of videoconferencing over packet
switched networks. IEEE/ACM Transactions on Networking (TON),
8:479–492, August 2000.

[BC98] N. Bjork and C. Christopoulos. Transcoder architecture for video coding.
IEEE Transactions on Consumer Electronics, 44(1):88–98, 1998.

[BDM+04] P. Bucciol, G. Davini, E. Masala, E. Filippi, and J. C. De Martin. Cross-
layer perceptual ARQ for H.264 video streaming over 802.11 wireless net-
works. In Proceedings of IEEE Global Telecommunications Conference,
volume 5, pages 3027–3031, December 2004.

[BGLM07] M. A. Bonuccelli, G. Giunta, F. Lonetti, and F. Martelli. Real-time video
transmission in vehicular networks. In Proceedings of MOVE Infocom
Workshop, May 2007.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

122 Bibliography

[Bia00] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coor-
dination function. IEEE Journal on Selected Areas in Communications,
18(3):535–547, March 2000.

[BLM05a] M. A. Bonuccelli, F. Lonetti, and F. Martelli. Temporal transcoding for
mobile video communication. In Proceedings of The Second Annual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous), pages 502–506, July 2005.

[BLM05b] M.A. Bonuccelli, F. Lonetti, and F. Martelli. A fast skipping policy for
h.263 video transcoder. In Proceedings of 12th International Workshop
on Systems, Signals and Image Processing (IWSSIP), pages 353–358,
September 2005.

[BMK+05] P. Bucciol, E. Masala, N. Kawaguchi, K. Takeda, and J. C. De Martin.
Performance evaluation of H.264 video streaming over inter-vehicular
802.11 ad hoc networks. In Proceedings of 16th IEEE International
Symposium on Personal Indoor and Mobile Radio Communications, vol-
ume 3, pages 1936–1940, September 2005.

[car] Car2car communication consortium. http://www.car-2-car.org.

[CCP02] M.J. Chen, M.C. Chu, and C.W. Pan. Efficient motion-estimation algo-
rithm for reduced frame-rate video transcoder. IEEE Transactions on
Circuits and Systems for Video Technology, 12(4):269–275, 2002.

[CFPS07] S. Chakraborty, T. Frankkila, J. Peisa, and P. Synnergren. IMS Multi-
media Telephony over Cellular Systems. Wiley 2007.

[CL99] P.C. Chang and T.T. Lu. A scalable video compression technique based
on wavelet transform and mpeg coding. IEEE Transactions on Con-
sumer Electronics, 45(3):788–793, August 1999.

[CMP+05] G. Convertino, D. Melpignano, E. Piccinelli, F. Rovati, and F. Sigona.
Wireless adaptive video streaming by real-time channel estimation and
video transcoding. In Proceedings of International Conference on Con-
sumer Electronics (ICCE), pages 179–180, January 2005.

[CSA02] P.F. Correia, V.M. Silva, and P.A. Assunção. Rate prediction model for
video transcoding applications. In Proceedings of IEEE International
Symposium on Telecommunications (1), pages 641–644, 2002.

[CSA03] P.F. Correia, V.M. Silva, and P.A. Assunção. A method for improving
the quality of mobile video under hard transcoding conditions. In Pro-
ceedings of IEEE International Conference on Communications (26(1)),
pages 928–932, 2003.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Bibliography 123

[Cse98] C. Cseh. Architecture of the dedicated short-range communications
(DSRC) protocol. In Proceedings of IEEE Vehicular Technology Con-
ference (VTC)(3), pages 2095–2099, May 1998.

[DCU+02] S. Dogan, A. Cellatoglu, M. Uyguroglu, A.H. Sadka, and A.M. Kon-
doz. Error-resilient video transcoding for robust internetwork commu-
nications using GPRS. IEEE Transactions on Circuits and Systems for
Video Technology, 12(6):453–464, 2002.

[DKD06] A.D. Doulamis, D.I. Kosmopoulos, and N.D. Doulamis. Content-based
time sampling for efficient video delivery over networks of low and vari-
able bandwidth. In Proceedings of International Conference on Digital
Telecommunications, page 27, 2006.

[DL96] W. Ding and B. Liu. Rate control of mpeg video coding and recording by
rate-quantization modeling. IEEE Transactions on Circuits and Systems
for Video Technology, 6(1):12–20, 1996.

[FCS02] K.T. Fung, Y.L. Chan, and W.C. Siu. New architecture for dynamic
frame skipping transcoder. IEEE Transactions on Image Processing,
11(8):886–900, 2002.

[FCS04] K.T. Fung, Y.L. Chan, and W.C. Siu. Low-complexity and high-quality
frame-skipping transcoder for continuous presence multipoint video con-
ferencing. IEEE Transactions on Multimedia, 6(1):31–46, 2004.

[GAZ05] M. Guo, M.H. Ammar, and E.W. Zegura. V3: A vehicle-to-vehicle live
video streaming architecture. In Proceedings of PerCom, pages 171–180,
March 2005.

[GCK99] M. Gallant, G. Côté, and F. Kossentini. An efficient computation-
constrained block-based motion estimation algorithm for low bit rate
video coding. IEEE Transactions on Image Processing, 8(12):1816–1823,
1999.

[Gha90] M. Ghanbari. The cross-search algorithm for motion estimation (image
coding). IEEE Transactions on Communications, 38(7):950–953, 1990.

[HTL+05] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, and H. Sips. Fast
802.11 link adaptation for real-time video streaming by cross-layer sig-
nalling. In Proceedings of the International Symposium on Circuits and
Systems (ISCAS)(4), pages 3523–3526, May 2005.

[Huf52] D.A. Huffman. A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

124 Bibliography

[HWL98] J.N. Hwang, T.D. Wu, and C.W. Lin. Dynamic frame-skipping in video
transcoding. In Proceedings of IEEE Second Workshop on Multimedia
Signal Processing, pages 616–621, 1998.

[I.E03] I.E.G.Richardson. H.264 and MPEG-4 Video Compression, Video Cod-
ing for Next-generation Multimedia. Wiley 2003.

[IEE97] IEEE standard for Wirelss LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, IEEE Standard 802.11. November
1997.

[IEE04] IEEE 802.11e Wirelss LAN Medium Access Control (MAC) Enhance-
ments for Quality of Service (QoS). 802.11e Draft 8.0. 2004.

[ISO04] ISO/IEC. Information Technology-Coding of audio visual objects-Part
2: Visual International Standard ISO/IEC 14496-2. 2004.

[ISO05] ISO/IEC. Information Technology-Coding of audio visual objects-Part
10: Advanced video coding. International Standard ISO/IEC 14496-10.
2005.

[ITU05] ITU-T. Advanced video coding for generic audiovisual services. Recom-
mendation H.264, International Telecommunication Union. 2005.

[KH04] S. Kim and Y.S. Ho. Rate control algorithm for H.264/AVC video coding
standard based on rate-quantization model. In Proceedings of IEEE
International Conference on Multimedia and Expo (ICME)(1), pages
165–168, 2004.

[KPKK06] G.R. Kwon, S.H. Park, J.W. Kim, and S.J. Ko. Real-time r-d opti-
mized frame-skipping transcoder for low bit rate video transmission. In
Proceedings of 6nd IEEE International Conference on Computer and
Information Technology, page 177, 2006.

[KR05] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet. Addison-Wesley, 3rd edition, 2005.

[KT06] J.-O. Kim and H. Tode. MAC-layer support for real-time video over
IEEE 802.11 DCF networks. IEEE Transactions on Communications,
89(4):1382–1391, April 2006.

[LCZ97] H.J. Lee, T. Chiang, and Y.Q. Zhang. Scalable rate control for very
low bit rate (vlbr) video. In Proceedings of International Conference on
Image Processing, volume 2, pages 768–771, 1997.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Bibliography 125

[LH03] W.J. Lee and W.J. Ho. Adaptive frame-skipping for video transcod-
ing. In Proceedings of International Conference on Image Processing
(1), pages 165–168, 2003.

[LL01] C.W. Lin and Y.R. Lee. Fast algorithms for DCT-domain video
transcoding. In Proceedings of International Conference on Image Pro-
cessing (1), pages 421–424, 2001.

[LM06] F. Lonetti and F. Martelli. A new motion activity measure in tempo-
ral video transcoding. In Proceedings of 13th International Conference
on Systems, Signals and Image Processings and Semantic Multimodal
Analysis of Digital Media (IWSSIP06 and COST 292), pages 451–455,
September 2006.

[LM07a] F. Lonetti and F. Martelli. Motion vector composition algorithm in
H.264 transcoding. In Proceedings of 14th International Conference on
Systems, Signals and Image Processing (IWSSIP) and 6th EURASIP
Conference Focused on Speech and Image Processing, Multimedia Com-
munications and Services (EC-SIPMCS), June 27-30, Maribor, Slovenia,
2007. Accepted for publication.

[LM07b] F. Lonetti and F. Martelli. Temporal video transcoding for multimedia
services. Book chapter to appear in Multimedia Services in Intelligent
Environments, G. A. Tsihrintzis and L. Jain Eds, Springer-Verlag, Ger-
many, 2007.

[LSC05] M-H. Lu, P. Steenkiste, and T. Chen. Video streaming over 802.11
WLAN with content-aware adaptive retry. In Proceedings of IEEE In-
ternational Conference on Multimedia and Expo (ICME), pages 723–726,
2005.

[LTYB05] X. Lu, A. Michael Tourapis, Peng Yin, and Jill Boyce. Fast mode de-
cision and motion estimation for H.264 with a focus on MPEG-2/H.264
transcoding. In Proceedings of the International Symposium on Circuits
and Systems (ISCAS)(2), pages 1246–1249, 2005.

[Mar06] A. Marshall. V2V: GM technology can prevent accidents.
http://geneva2007.media.gmeurope.achtg.de/press gm.php, December
2006.

[MBM05] E. Masala, M. Bottero, and J.C. De Martin. MAC-level partial checksum
for H.264 video transmission over 802.11 ad hoc wireless networks. In
Proceedings of Vehicular Technology Conference (VTC Spring)(5), pages
2864–2868, 2005.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

126 Bibliography

[MGL05] S. Ma, W. Gao, and Y. Lu. Rate-distortion analysis for h.264/avc video
coding and its application to rate control. IEEE Transactions on Circuits
and Systems for Video Technology, 15(12):1533–1544, December 2005.

[MWS03] D. Marpe, T. Wiegand, and H. Schwarz. Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard. IEEE
Transactions on Circuits and Systems for Video Technology, 13(7):620–
636, 2003.

[NHK95] Y. Nakajima, H. Hori, and T. Kanoh. Rate conversion of MPEG coded
video by re-quantization process. In Proceedings of International Con-
ference on Image Processing, pages 408–411, 1995.

[ns2] The network simulator (NS2). http://www.isi.edu/nsnam/ns/.

[OK95] A. Ortega and M. Khansari. Rate control for video coding over vari-
able bit rate channels with applications to wireless transmission. In
Proceedings of International Conference on Image Processing (3), pages
388–391, 1995.

[OK04] J. Ott and D. Kutscher. Drive-thru internet: IEEE 802.11b for “auto-
mobile” users. In Proceedings of IEEE INFOCOM (1), pages 362–373,
March 2004.

[OYAC99] H. Oh, C. Yae, D. Ahn, and H. Cho. 5.8 ghz DSRC packet communica-
tion system for ITS services. In Proceedings of IEEE Vehicular Technol-
ogy Conference (VTC)(4), pages 2223–2227, September 1999.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (AODV) routing. Internet Engineering Task Force, RFC 3561,
July 2003.

[PK05a] V. Patil and R. Kumar. An arbitrary frame-skipping video transcoder. In
Proceedings of IEEE International Conference on Multimedia and Expo,
pages 1456–1459, 2005.

[PK05b] V. Patil and R. Kumar. A DCT domain frame-skipping transcoder. In
Proceedings of ICIP (1), pages 817–820, 2005.

[RK04] I.E.G. Richardson and C.S. Kannangara. Fast subjective video quality
measurement with user feedback. Electronics Letters, 40(13):799–801,
2004.

[RRCC00] G.D.L. Reyes, A.R. Reibman, S.-F. Chang, and J.C.I. Chuang. Error-
resilient transcoding for video over wireless channels. IEEE Journal on
Selected Areas in Communications, 18(6):1063–1074, 2000.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Bibliography 127

[SA04] Y. Sun and I. Ahmad. A robust and adaptive rate control algorithm for
object-based video coding. IEEE Transactions on Circuits and Systems
for Video Technology, 14(10):1167–1182, October 2004.

[SALZ06] Y. Sun, I. Ahmad, D. Li, and Y.Q. Zhang. Region-based rate control
and bit allocation for wireless video transmission. IEEE Transactions
on Multimedia, 8(1):1–10, February 2006.

[SC04] H. Shu and L.P. Chau. Frame-skipping transcoding with motion change
consideration. In Proceedings of the International Symposium on Circuits
and Systems (ISCAS), pages 773–776, 2004.

[SG00] T. Shanableh and M. Ghanbari. Heterogeneous video transcoding to
lower spatio-temporal resolutions and different encoding formats. IEEE
Transactions on Multimedia, 2(2):101–110, 2000.

[SKHK03] K.d. Seo, S.k. Kwon, S. K. Hong, and J.k. Kim. Dynamic bit-rate reduc-
tion based on frame-skipping and requantization for MPEG-1 to MPEG-
4 transcoder. In Proceedings of the International Symposium on Circuits
and Systems (ISCAS)(2), pages 372–375, 2003.

[SLP04] I.h. Shin, Y.L. Lee, and H.W Park. Motion estimation for frame-rate re-
duction in H.264 transcoding. In Proceedings of Second IEEE Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems,
pages 63–67, May 2004.

[SWA03] Y. Sun, X. Wei, and I. Ahmad. Low delay rate-control in video transcod-
ing. In Proceedings of the International Symposium on Circuits and Sys-
tems (ISCAS)(2), pages 660–663, 2003.

[SYZ+05] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod. Cross-layer
design of ad hoc networks for real-time video streaming. IEEE Wireless
Communications, 12(4):59–65, August 2005.

[SZZL01] G. Shen, B. Zeng, Y.Q. Zhang, and M.L. Liou. Transcoder with arbitrar-
ily resizing capability. In Proceedings of the International Symposium on
Circuits and Systems (ISCAS) (5), pages 25–28, 2001.

[TG00] K.T. Tan and M. Ghanbari. A multi-metric objective picture-quality
measurement model for MPEG video. IEEE Transactions on Circuits
and Systems for Video Technology, 10(7):1208–1213, 2000.

[VCS03] A. Vetro, C. Christopoulos, and H. Sun. Video transcoding architec-
tures and techniques: an overview. IEEE Signal Processing Magazine,
20(2):18–29, March 2003.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

128 Bibliography

[vid] YUV video sequences. Available at http://trace.eas.asu.edu/yuv.

[VYLS02] A. Vetro, P. Yin, B. Liu, and H. Sun. Reduced spatio-temporal transcod-
ing using an intra refresh technique. In Proceedings of the International
Symposium on Circuits and Systems (ISCAS)(4), pages 723–726, 2002.

[WNC87] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compres-
sion. Communications of the ACM, 30:520–541, 1987.

[WSBL03] T. Wiegand, G.J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of
the H.264/AVC video coding standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):560–576, July 2003.

[WZ98] Y. Wang and Q. Zhu. Error control and concealment for video commu-
nications: A review. Proceedings of IEEE, special issue on Multimedia
Signal Processing, pages 974–997, 1998.

[XLS05] J. Xin, C-W. Lin, and M.T. Sun. Digital video transcoding. In Proceed-
ings of the IEEE (93)(1), pages 84–97, January 2005.

[YLZV04] X. Yang, J. Liu, F. Zhao, and N. H. Vaidya. A vehicle-to-vehicle com-
munication protocol for cooperative collision warning. In Proceedings
of Mobile and Ubiquitous Systems: Networking and Services (MobiQui-
tous)(1), pages 114–123, August 2004.

[YS99] J. Youn and M.T. Sun. A fast motion vector composition method for
temporal transcoding. In Proceedings of the International Symposium
on Circuits and Systems (ISCAS)(4), pages 243–246, May 1999.

[YSL98] J. Youn, M. T. Sun, and C. W. Lin. Motion estimation for high-
performance transcoding. IEEE Transactions on Consumer Electronics,
44(3):649–658, August 1998.

[YSL99] J. Youn, M.T. Sun, and C.W. Lin. Motion vector refinement for high-
performance transcoding. IEEE Transactions on Multimedia, 1(1):30–
40, 1999.

[YSX99] J. Youn, M.T Sun, and J. Xin. Video transcoder architectures for Bit-
Rate scaling of H.263 bit streams. In Proceedings of the 7th ACM Inter-
national Multimedia Conference (MM), pages 243–250, 1999.

[YVLS02] P. Yin, A. Vetro, B. Liu, and H. Sun. Drift compensation for reduced
spatial resolution transcoding. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 12(11):1009–1020, 2002.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

Bibliography 129

[ZWC03] S. Zou, H. Wu, and S. Cheng. A new mechanism of transmitting MPEG-
4 video in IEEE 802.11 wireless LAN with DCF. In Proceedings of In-
ternational Conference on Communication Technology (ICCT)(2), pages
1226–1229, 2003.

[ZZYW05] C. Zhang, S. Zheng, C. Yuan, and F. Wang. A novel low-complexity
and high-performance frame-skipping transcoder in DCT domain. IEEE
Transactions on Consumer Electronics, 51(4):1306–1312, 2005.

Temporal Video Transcoding in Mobile Systems
Francesca Lonetti

