
Università di Pisa
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temessi l’esito della prossima inter-
rogazione, bens̀ı semplicemente per as-
saporare il piacere di conoscere e provare
emozioni, di sfamare la mia curiosità, di
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rian Gray”, le quali recitano: “all art is
quite useless”.
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Chapter 1

Introduction

“The world is a stage, but the play is badly cast”
Oscar Wilde

This thesis concerns language theory and metaprogramming, more specifi-
cally, a kind of metaprogramming performed during program execution.

Metaprogramming is constantly increasing its importance and usefulness
in many areas of modern software design and development. This is due to a
rich variety of reasons which can be easily summarized by the catch phrase
“code specialization”: there can be (and usually there are often) many differ-
ent parts of a program that undergo changes, less or more complex, accord-
ing to different needs or events, such as execution environment constraints or
specific configurations, user-specific customization, system integration, per-
formance tuning, and so on; as we will see later, metaprogramming can be
very useful even to modify a program’s behaviour in response to user actions
or, more generally, to environment modifications. The need for specialization
arises mainly from two important concerns, which we have to compose in
order to get an optimal compromise:

• code reuse because we must be able to take advantage of already written
functions, classes and libraries

• code optimization in terms of both performance and memory require-
ments

Anyway, both reuse and optimization tends to make the software develop-
ment process longer and more complex. Indeed, reuse requires at least an
accurate software design. Besides, optimization is usually a difficult and bug-
prone work. This thesis proposes a technique that help simplify and partially
automate many tasks involved on these two aspects of software design and
development.



1.1. Run-Time metaprogramming Chapter 1. Introduction

1.1 Run-Time metaprogramming

Most of currently available metaprogramming languages and tools carry out
their effects at compilation time, therefore they allow programmers only to
use static metaprogramming techniques, making it impossible to apply many
other interesting paradigms.

It will be shown how it has been made possible to get a powerful and
smart metaprogramming mechanism, which works at runtime on virtual ma-
chine level, and which is applicable to any language supported by the virtual
machine itself. The mechanism uses only simple source code annotations.

1.2 Goal

This thesis’ target is to provide runtime support to the manipulation of
annotated code fragments.

More precisely, this thesis shows a technique to perform an efficient metapro-
gramming activity on a program while the program itself is running, that is
at program’s runtime; from now on we will refer to this feature as “runtime
metaprogramming”.

Applications of this technique varies from code specialization to code
reuse and deployment.

1.3 Outline

This thesis is organized in 3 parts.
The first part is composed by Chapters 2 and 3. Chapter 2 introduces

all relevant matters on which our technique is based as well as technologies
and tools that have been used to develop a working implementation of the
technique. On Chapter 3 the technique is discussed in full details.

The second part, which is composed by chapters 4 and 5 shows the im-
plementation work, discussing our choices; in Chapter 5 are presented some
examples where the developed technique is applied to some realistic scenarios.

The third part contains our conclusions together with some proposals for
improvements and future works.

Finally, the appendix contains all source code that has been written from
scratch or modified to realize this thesis.
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Chapter 2

Background and Tools

“He that is proud eats up himself; pride is his own glass, his own trumpet, his own
chronicle.”

William Shakespeare, Troilus and Cressida

2.1 Reflection

Reflection is the ability of a program to observe and possibly modify its
own structure and behavior. Usually the term refers to runtime reflection,
though some programming languages support compile time (static) reflec-
tion. Reflection is common to almost all modern high-level virtual machine
programming languages. More generally, reflection make it possible for a pro-
gram to reason about itself and its execution. The programming paradigm
exploiting reflection is called reflective programming.

Normally, when a program’s source code is compiled, information about
the structure and semantic of the program, which is called metadata1 is dis-
carded because it is no longer necessary; on the other hand if a system sup-
ports reflection, metadata is preserved and typically is stored in the resulting
executable.

A language supporting reflection provides many features available at run-
time such as:

• Discovery and, possibly, modification of program elements, such as
classes and methods, as first-class objects.

• Istantiation of types known only by their name.

1Metadata (from the ancient Greek µετά which meant “after”, “beside” and later
interpreted as “beyond”) means “data about data” that is a set of information about
another set of information.
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• Indirect invocation of a method or function by its name.

• Generation and execution of new code (code that was not included in
original source code).

There are many ways to implement these features but we have to point
out that these tasks are easier to implement for interpreted programming
languages such as Python [?] and PHP [?] or virtual machine based languages
such as Java [?] or C# [?] since metadata can be retained and exposed in a
natural way by their runtime system.

The following C# piece of code exemplifies some basic reflection’s fea-
tures:

Listing 2.1: Reflection example

1 using System ;

2 using System . Reflection ;

3

4 public class Test {
5

6 private String msg ;

7

8 public Test ( String msg ) {
9 this . msg = msg ;

10 }
11

12 public void SayHello ( ) {
13 Console . WriteLine ("Hello World from " + msg ) ;

14 }
15

16 public stat ic void Main ( string [ ] args ) {
17 Type aclass = typeof ( Test ) ;

18 ConstructorInfo [ ] ctor = aclass . GetConstructors ( ) ;

19 Console . WriteLine ("Instantiating class " + aclass . Name ) ;

20 object test = ctor [ 0 ] . Invoke (new object [ ] { "Reflection !"})

as Test ;

21 MethodInfo m = aclass . GetMethods ( ) [ 0 ] ;

22 Console . WriteLine ("Invoking method " + m . Name ) ;

23 m . Invoke (test , null ) ;

24 }
25

26 }

18
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On line 17 the program obtains an instance of a Type class containing
information about the type “Test”; calling “GetConstructors” on this in-
stance the program obtains the constructor’s list of “Test”, then the first list
element is used to create an instance of the class. On line 20, constructor’s
arguments are passed by an object array.

In a similar way, on line 21, “GetMethods” returns the class’ methods list
and, finally, the program invokes Test’s “SayHello” method on the previously
created instance of “Test”.

2.2 Metaprogramming

Metaprogramming is the writing of programs that write or manipulate other
programs, including themselves, as their data.

It is worth noting that anything related to the word “meta” often lead
to some kind of paradox or, in the best case, to something poorly concrete
when it is not completely virtual.

Nevertheless, metaprogramming is a very powerful and elegant technique
to solve many different problems.

Anyway, it is possible to give some formal definitions:
Meta-programs are programs which represent and manipulate other pro-

grams including, potentially, themselves.
Meta-language is the language used to write meta-programs.
Object-programs are those programs that are manipulated by meta-programs.
Generally speaking, it is possible to denote at least three characteristics

of meta-programming systems regarding:

• compilation and execution:

– static: the meta-program is executed as part of program compi-
lation or, anyway, before object program execution (e.g.; install-
time).

– runtime: the meta-language is executed during program runtime.

• the distinction between meta-program and program:

– manually annotated : the programmer may explicitly specify which
parts of the code are meta-program and which are object-program.

– automatically annotated : an external system, like a preprocessor or
a source-to-source compiler, is able to distinguish object-program
from meta-program.
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• language and meta-language:

– homogeneous : meta-language is the object-program language it-
self.

– heterogeneous : meta-language and object-program language are
distinct.

The most famous (and historically first) example of metaprogramming-
capable language is LISP [?] [?] which permits to process functions exactly
like data. Many Lisp dialects exploit this feature using macro systems, which
enables extension of the language almost without limit.

Nowadays MetaML [?] and Ruby [?] present more powerful metaprogram-
ming support at language level enabling them to be used also as multistage
programming2 languages.

Multistage programming [?], also called staged programming, is a method
of producing specialized code by using a program generator. A stage is an
object-program evaluation step. Multistage refers to the chance left to the
programmer to delay the evaluation of any expression for as many stages as
wanted.

A multistage programming language offers (at least) some special opera-
tors to

• delay computation of an expression producing a value whose type is
code (or an expression), that is a piece of code that has to be evaluated
again later.

• splice a code value inside a delayed expression. An operator permit
to denote sub-expressions inside a delayed expression that are to be
replaced by code value (or an expression) in a successive stage.

• lift that is to transform a constant expression in a piece of code. Dif-
ferently from the first operator, lift evaluates the expression before re-
turning a code value representing the expression value itself.

• run (computing the value of) a delayed expression. Computation is no
longer deferred and the resulting value is a pure value.

A good example of multistage programming is the following specialized
implementation of the power function. The power function can be represented

2A metaprogramming system can be used to support multistage programming. Another
possible tool to realize multistaging is a partial evaluator.
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by the following λ-calculus3 expression

power = (λx n. n = 1 ? x : x · power(n− 1))

Using a standard functional language like ML we can translate the ex-
pression above in the following function:

Listing 2.2: ML example

1 fun power n = fn x = i f n=0 then 1 else x ∗ power (n−1) x ;

As mentioned above, MetaML is a programming language (a conservative
extension of Standard SML) which is oriented to metaprogramming purposes,
specifically to multistage programming.

In MetaML, a staged code is described by annotations that are called
meta-brackets (“〈” and “〉”).

The splice operator is a ∼ preceding an expression.

The lift and run operators are, respectively, the keywords lift and run.

The previous function can be written as follows:

Listing 2.3: MetaML example

1 fun power n =

2 <fn x => ˜( i f n=0 then <1> else <x ∗ (˜( power (n−1) ) x )>) >;

power generates the encoding of an unary function (the outermost angle
brackets).

Applying an integer to power yields a specialized version of the function
which no longer contains conditional nor recursive calls.

Indeed, the body of this function depends upon the value of n. Since n
is static we can escape the conditional and it can be delayed at program
generation time. Both branches of the if construct a piece of code which will
be spliced into the body of the function being generated. In the then branch
this piece of code is the constant < 1 >. In the else branch, a piece of code
is built, containing the multiplication of x by an expression which is spliced
in. This spliced expression is built by a recursive call to power.

We claim that the operations on code annotations described by this thesis
can be used as a part of both a metaprogramming and multistage program-
ming runtime system.

3λ-calculus is a formal system designed to investigate function definition, function ap-
plication, and recursion. It was introduced by Alonzo Church and Stephen Cole Kleene in
the 1930s.
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2.3 Aspect Oriented Programming

An emerging programming paradigm is the so called “Aspect Oriented Pro-
gramming”4 [?], which attempts to focus programmer’s attention towards the
separation of concerns avoiding the presence, as much as possible, of differ-
ent program’s parts overlapping in functionality; this goal is achieved mainly
through encapsulation of “cross-cutting” concerns which are recurrent parts
of the program that are hard to be encapsulated into single separated entities
like methods or classes.

To face this problem AOP introduces a particular construct called an
“aspect” that is a fragment of code altering the behaviour of the base code
according to some “pointcut” which, in turn, is a definition of a set of “joint
points”; whenever program execution reaches each of these join points, a
piece of code called an “advice” is executed too, this way changing the default
program’s behaviour. Summarizing these concepts:

• An aspect is a definition of pointcuts and associated advices.

• An advice is an additional behaviour expressed as a code fragment.

• A join point is any location in the object-program wherever is possible
to insert an advice.

• A pointcut is a definition of a set of join points. A pointcut can be a
query, a pattern or some other linguistic device to identify one or more
join points.

The example listed below should be useful to get an appreciation of AOP:

Listing 2.4: AspectJ example

1 aspect FaultHandler {
2

3 private boolean Server . disabled = fa l se ;

4

5 private void reportFault ( ) {
6 System . out . println ("Failure! Please fix it." ) ;

7 }
8

9 public stat ic void fixServer ( Server s ) {
10 s . disabled = fa l se ;

4AOP has been promoted by Gregor Kiczales and his team at Xerox Parc [?]; they
developed AspectJ [?] [?], the most popular AOP language
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11 }
12

13 pointcut services ( Server s ) : target (s ) && call (public ∗ ∗ ( . . ) )

;

14

15 before ( Server s ) : services (s ) {
16 i f (s . disabled ) throw new DisabledException ( ) ;

17 }
18

19 after ( Server s ) throwing ( FaultException e ) : services (s ) {
20 s . disabled = true ;

21 reportFault ( ) ;

22 }
23

24 }

As we can see, an aspect definition is made of different parts:

• line 13: a pointcut that will cause insertion of advices at each invocation
of any Server class’ public methods

• line 15: an advice that will be executed before any Server class’ public
methods call

• line 19: an advice that will be executed after any Server class’ public
methods call but only if the method itself raised a FaultException

The operation of injecting advices or, using a more technical terminology,
weaving aspects into the object-program’s code, therefore merging advices’
code at the specified join points, can be carried out by a preprocessor, a
compiler or even at runtime. It is worth noting that the last option could be
easily implemented using annotations together with the runtime code manip-
ulation proposed by this thesis; join points would be indicated by annotations
while the “inclusion” (see Section ??) operation would be used as weaving
mechanism. We will discuss again this subject on Section ??.

2.4 Annotations and Attributes

Recently, code annotation is turned out to be an effective programming tech-
nique, applied to almost all non-trivial source code writing activities, because
of its undoubtful usefulness.

Indeed, many modern languages permit to “annotate” a program’s source
code through means of “annotations”.
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Both Java and C#, two among the most famous general-purpose pro-
gramming languages, have a special syntax to annotate source code elements
with attributes.

An annotation is a specification of one or more attributes which is related
to a certain program entities.

Attributes are defined through the declaration of attribute classes; anyway
both .NET and Java platforms provides a full set of predefined attribute
classes for the most common cases of use. Attributes are attached to entities
in a program using attribute specifications and can be retrieved at run-time
as attribute instances.

Generally, an attribute specification consists of an attribute name and an
optional list of named arguments.

Let us show a small example of annotations usage; the same example is
presented in Java and C# to highlight some relevant differences.

Listing 2.5: Attribute usage example (Java)

1 import java . lang . annotation . ∗ ;

2

3 @Target ({ ElementType . METHOD , ElementType . TYPE })

4 public @interface Test {
5

6 String severity default "normal" ;

7

8 }
9

10 public class Foo {
11

12 public stat ic f loat divide ( int a , int b ) {
13 return a / b ;

14 }
15

16 @Test ( severity="critical" ) public stat ic void t1 ( ) {
17 divide (1 , 0) ;

18 }
19

20 @Test public stat ic void t2 ( ) {
21 divide (0 , 1) ;

22 }
23

24 }

In Java, an attribute is a special interface type (the @ symbol preceding
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the interface keyword means that the type is an attribute) which can have
an arbitrary number of fields with an optional default value. Anyway an
attribute’s field type is restricted to be String, Class, enums, attribute or
an array of these types.

The annotation is a special kind of modifier (see lines 16 and 20) and
can be used anywhere other modifiers can be used. Anyhow, it possible for
the programmer to permit use of an attribute to certain program’s elements
only; this is done with an annotation to the attribute class, as we can see on
line 3.

Here is the equivalent C# version:

Listing 2.6: Attribute usage example (C#)

1 [ AttributeUsage ( AttributeTargets . Class |
2 AttributeTargets . Field , AllowMultiple=true ) ]

3 public class TestAttribute : Attribute {
4

5 public string severity ;

6

7 public Test ( ) {
8 this . mode = "normal" ;

9 }
10

11 public Test ( string severity ) {
12 this . severity = severity ;

13 }
14

15 public string Severity {
16 get { return severity ; }
17 set { severity = value ; }
18 }
19

20 }
21

22 public class Foo {
23

24 public stat ic f loat divide ( int a , int b ) {
25 return a / b ;

26 }
27

28 [ Test ("critical" ]

29 public stat ic void t1 ( ) {
30 divide (1 , 0) ;

25
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31 }
32

33 [ Test ( Severity = "normal" ) ]

34 public stat ic void t2 ( ) {
35 divide (0 , 1) ;

36 }
37

38 }

In the C# language, an attribute is a normal class type inheriting from
the Attribute class. As in Java, an annotation is a special modifier (the
expressions enclosed by square brackets) and it is still possible to limit the
usage of the attribute itself using special attributes (see lines 1 and 2). De-
spite being the attribute type a normal class type, there are some limitations
on attribute’s fields type, though they are less restrictive with respect to Java.
The C# language also permit both named and positional arguments; posi-
tional arguments, if any, precede the named arguments. Each public instance
constructor for an attribute class defines a valid sequence of positional pa-
rameters for that attribute class. Each non-static public read-write field and
property for an attribute class defines a named parameter for the attribute
class. The order of named arguments is not significant. Furthermore it is a
mandatory C# convention to discard the “Attribute” part of the custom
attribute’s class name when used in an annotation (lines 27 and 32).

In both examples we have defined a new custom attribute named “Test”
that simply contains a field whose type is string.

Annotations are used on lines 16 and 20 of the Java example and on lines
27 and 32 of the C# example.

Of course, we must point out that in actual compiled code (Java bytecode
or .NET IL) there will not be any calls to annotation’s constructors; instead
their data will be stored in the assembly’s metadata section.

An external tool or the program itself will be able to perform introspection
to retrieve all the attributes that have been defined inside the program; the
C# method below is an example of how to get this kind of information
(anyway what follows is nearly the same in Java too):

Listing 2.7: Attribute retrieval example (C#)

1 public stat ic void Main ( ) {
2 Attribute [ ] attrs = Attribute . GetCustomAttributes ( typeof ( Foo ) )

;

3 foreach ( MethodInfo m in typeof ( Foo ) . GetMethods ( ) )

4 foreach ( Attritute attr in m . GetCustomAttributes ( fa l se ) )

5 i f ( attr is TesyAttribute ) {

26



Chapter 2. Background and Tools 2.5. Annotated C#

6 TestAttribute ta = attr as TestAttribute ;

7 Console . WriteLine (m . Name + " is a test method of " + ta .

Severity + " severity" . ) ;

8 }
9 }

Annotation retrieval is obviously obtained through the usage of reflection
again.

As expected, the output of the program will be:

t1 is a test method of critical severity.

t2 is a test method of normal severity.

The example above could be easily extented to invoke any methods that is
annotated with the “Test” attribute to obtain a simple automatic testing
tool, just like the most famous JUnit [?] or NUnit [?] do.

A very interesting application of annotations to code parallelization has
been discussed on [?].

For a more complete technical reference about this topic see [?].

2.5 Annotated C#

Annotated C# ([a]C# [?]) is an extension to the C# language to enhance
and to promote annotations usage.

[a]C# that has been designed to extend the use of annotations within
method’s body in attempt to give users a further mean to enrich their code
with more information about the code’s semantic.

As said above, there can be many interesting ways to reuse these meta-
data, but we think the most important is those experimented in this thesis
which is a chance for the programmer to specify portions, or fragments, of
code that can be manipulated to perform various metaprogramming activi-
ties; see the examples (Section ??) discussed later.

Despite standard C# allows annotations to be placed on almost any pro-
gram’s element like classes, methods, fields, properties and so on (see [?]),
it doesn’t allow the programmer to insert annotations inside methods’ body.
[a]C# removes this limitation enabling the programmer not only to put cus-
tom attributes within a method but to annotate one or more fragments of
method’s code too. Furthermore, these annotated fragments can be nested.
As a result, annotation’s expressivity is greatly improved.

The next listing contains a custom attribute declaration and a class with
a method exploiting [a]C# annotations:
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2.5. Annotated C# Chapter 2. Background and Tools

Listing 2.8: [a]C# example

1 [ AttributeUsage ( AttributeTargets . All , AllowMultiple=true ) ]

2 public class DebugAttribute : CodeAttribute {
3

4 public string message ;

5

6 public DebugAttribute ( String msg ) {
7 message = msg ;

8 }
9

10 }
11

12 public class TestDebugAttribute {
13

14 public void VeryBuggyMethod ( ) {
15 int z ;

16 x = DoSomeComputation ( ) ;

17 [ Debug ("x can be zero !" ) ] {
18 z = C / x ;

19 Console . WriteLine (z ) ;

20 }
21 x = x ∗ z ;

22 [ Debug ("x can still be zero !" ) ] {
23 z = D / x ;

24 Console . WriteLine (z ) ;

25 }
26 }
27

28 }

It is interesting to note line 1: we have decorated “DebugAttribute”
with a special custom attribute (AttributeUsage) to declare that is pos-
sible for a “DebugAttribute” to be declared on every program’s element
(AttributeTargets.All) and more than once within the same method or
class (AllowMultiple=true).

An [a]C# program can rely on the runtime of the language for retrieving
the annotations stored inside its assembly’s5 metadata.

The most remarkable feature of [a]C# runtime support is its ability to

5A configured set of loadable code modules and other resources that together implement
a unit of functionality therefore an assembly file is a collection of an arbitrary number of
type definitions which binary format is a variant of the standard COFF [?] executable
format.

28



Chapter 2. Background and Tools 2.5. Annotated C#

return the complete method’s annotation tree; furthermore the tree can be
also comprising annotation’s trees of any other methods that are called inside
the main one.

Consider the following [a]C# class:

Listing 2.9: Nested annotations

1 public class HilbertMatrixTest {
2

3 public int HilbertMatrix ( int a , int b ) {
4 int h ;

5 [ Debug ("computation" ) ] {
6 h = i + j − 1 ;

7 }
8 [ Debug ("inverse" ) ] {
9 return 1 / h ;

10 }
11 }
12

13 public void buildHilbertMatrix ( ) {
14 [ Debug ("rows loop" ) ] {
15 for ( int x=0; x<N ; x++)

16 [ Debug ("columns loop" ) ] {
17 for ( int y=0; y<N ; y++)

18 matrix [ x ] [ y ] = HilbertMatrix (x , y ) ;

19 }
20 }
21 }
22

23 }

Let’s see what will be the output of the following code:

Listing 2.10: Retrieving annotations tree

1 public class AnnotationsVisit {
2

3 private stat ic int depth = 0 ;

4

5 public stat ic void Visit ( AnnotationTree [ ] at ) {
6 depth = 0 ;

7 foreach ( AnnotationTree t in at ) {
8 VisitTree (t ) ;

9 }
10 }
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11

12 private stat ic void VisitTree ( AnnotationTree node ) {
13 for ( int i=0; i<depth ; i++)

14 Console . Write ("\t" ) ;

15 Console . WriteLine ("[" + ( ( DebugAttribute ) node . Node [ 0 ] ) .

message + "] {" ) ;

16 foreach ( AnnotationTree tree in node . Children ) {
17 depth++;

18 VisitTree ( tree ) ;

19 depth−−;

20 }
21 for ( int i=0; i<depth ; i++)

22 Console . Write ("\t" ) ;

23 Console . WriteLine ("}" ) ;

24 }
25

26 public stat ic void Main ( ) {
27 MethodInfo m = typeof ( HilbertMatrixTest ) . GetMethod ("

buildHilbertMatrix" ) ;

28 AnnotationTree [ ] tree = Annotation . GetCustomAttributes (m ,

true ) ;

29 AnnotationsVisit . Visit ( tree ) ;

30 }
31

32 }

This listing performs a simple visit of the annotations’ tree retrieved
by analyzing “buildHilbertMatrix”; as we can see the tree itself contains
attribute defined inside “HilbertMatrix” too.

Retrieving annotations’ tree
[rows loop] {

[columns loop] {

[computation] {

}

[inverse] {

}

}

}

Besides that, [a]C# is no further useful, unless it is used in conjunction
with other metaprogramming-oriented tools. Indeed, it doesn’t provide any
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further support to manipulation of annotated code fragments (see Section
??) which is this thesis’ primary goal.

As a result, [a]C# grammar has been further extended and its runtime
support has been modified accordingly, aiming to the integration with our
enhanced version of CodeBricks [?], which will be discussed later in Section
??.

All of this was necessary to reach the final goal of our work, which is
to provide a suitable support to perform, at runtime, a set of operations on
methods whose body have been annotated like described above.

Finally, we will show an [a]C# bug (see Section ??) discovered and fixed
meanwhile writing and debugging the source code developed in this thesis.

2.6 Common Intermediate Language

Both .NET and Mono frameworks are different implementors of the same in-
ternational standard endorsed by ECMA [?] that is known as ECMA-335 [?].
The Common Language Infrastructure (CLI [?]) provides a specification for
executable code and the execution environment in which it runs.

At the center of the CLI is a unified type system, the Common Type
System that is shared by compilers, tools, and the CLI itself. CTS is the model
that defines the rules the CLI follows when declaring, using, and managing
types.

The CTS establishes a framework that enables cross-language integration,
type safety, and high performance code execution.

The CLI form a unifying infrastructure for designing, developing, deploy-
ing, and executing distributed components and applications.

CLI is composed by the following parts:

• The Common Type System (CTS)

The CTS provides a rich type system that supports the types and oper-
ations found in many programming languages. The CTS is intended to
support the complete implementation of a wide range of programming
languages.

• Metadata

The CLI uses metadata to describe and reference the types defined by
the CTS.

Metadata is stored (that is, persisted) in a way that is independent
of any particular programming language. Thus, metadata provides a
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common interchange mechanism for use between tools (such as compil-
ers and debuggers) that manipulate programs, as well as between these
tools and the VES.

• The Common Language Specification (CLS)

The CLS is an agreement between language designers and framework
(that is, class library) designers. It specifies a subset of the CTS and
a set of usage conventions. Languages provide their users the greatest
ability to access frameworks by implementing at least those parts of
the CTS that are part of the CLS. Similarly, frameworks will be most
widely used if their publicly exposed aspects (e.g., classes, interfaces,
methods, and fields) use only types that are part of the CLS and that
adhere to the CLS conventions.

• The Virtual Execution System (VES)

The VES implements and enforces the CTS model.

The VES is responsible for loading and running programs written for
the CLI. It provides the services needed to execute managed code,
using the metadata to connect separately generated modules together
at runtime (late binding).

An appropriate subset of the CTS is available from each programming
language that targets the CLI.

Language-based tools communicate with each other and with the VES
using metadata to define and reference the types used to construct the ap-
plication.

The VES uses the metadata to create instances of the types as needed
and to provide data type information to other parts of the infrastructure
(such as remoting services, assembly downloading, and security).

In summary, the Common Language Infrastructure is a specification de-
scribing how applications written in multiple high-level languages can be
executed in different system environments without the need to rewrite those
applications to take into consideration the unique characteristics of those
environments.

As core of CLI we have to introduce the Common Intermediate Language
(CIL [?]) which is an assembler-like language to be interpreted by a multi-
threaded stack based virtual machine where each operations read values from
a stack and push its result value on the stack.

IL instructions can be subdivided in two parts which we can consider to
be “basic operations” and “object model”.
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The former constitues a Turing complete set of basic operations and they
are independent of the object model that might be employed; these instruc-
tions correspond closely to what would be found on a real CPU.

The latter are a set of instructions that are less built-in than the base
instructions in the sense that they could be built out of the base instructions
and calls to the underlying operating system. These object model instructions
provide a common, efficient implementation of a set of services used by many
(but by no means all) higher-level languages.

While the CTS defines a rich type system and the CLS specifies a subset
that can be used for language interoperability, the CLI itself deals with a
much simpler set of types. These types include user-defined value types and
a subset of the built-in types. The subset, collectively known as the “basic
CLI types”, contains the following types:

• a subset of the full numeric types (32 and 64 bits integers, float, etc.).

• object references without distinction between the type of object refer-
enced.

• pointer types without distinction as to the type pointed to.

Note that object references and pointer types can be assigned the value null.
This is defined throughout the CLI to be zero (a bit pattern of all-bits-zero).

To get the general feel of ILAsm or IL (a nickname for the CIL instruction
set), consider the following simple example, which prints the well known
“Hello world!” salutation.

The salutation is written by calling WriteLine, a static method found in
the class System.Console that is part of the standard assembly mscorlib.

IL code for ‘‘Hello World’’
.assembly extern mscorlib {}

.assembly hello {}

.method static public void main() cil managed

{ .entrypoint

.maxstack 1

ldstr "Hello world!"

call void [mscorlib]System.Console::WriteLine(

class System.String)

ret

}

The .assembly extern declaration references an external assembly, mscor-
lib, which contains the definition of System.Console.
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The .assembly declaration in the second line declares the name of the as-
sembly for this program. (Assemblies are the deployment unit for executable
content for the CLI.)

The .method declaration defines the global method main, the body of
which follows, enclosed in braces.

The first line in the body indicates that this method is the entry point
for the assembly (.entrypoint), and the second line in the body specifies
that it requires at most one stack slot (.maxstack).

Method main contains only three instructions: ldstr, call, and ret.

The ldstr instruction pushes the string constant “Hello world!” onto the
stack and the call instruction invokes System.Console::WriteLine, passing
the string as its only argument.

Note that string literals in CIL are instances of the standard class Sys-
tem.String.

As shown, call instructions shall include the full signature of the called
method.

Finally, the last instruction, ret, returns from main. Every method speci-
fies a maximum number of items that can be pushed onto the CIL evaluation
stack. The value is stored in the structure that precedes the CIL body of each
method. A method that specifies a maximum number of items less than the
amount required by a static analysis of the method, using a traditional con-
trol flow graph without analysis of the data, is invalid hence also unverifiable,
and need not be supported by a conforming implementation of the CLI.

Maxstack is related to analysis of the program, not to the size of the stack
at runtime. It does not specify the maximum size in bytes of a stack frame,
but rather the number of items that shall be tracked by an analysis tool.

By analyzing the CIL stream for any method, it is easy to determine how
many items will be pushed on the CIL evaluation stack.

However, specifying that maximum number ahead of time helps a CIL-
to- native-code compiler (especially a simple one that does only a single pass
through the CIL stream) in allocating internal data structures that model
the stack and/or verification algorithm.

2.7 CodeBricks

CodeBricks [?] is a framework (an API6) designed to allow generating code
at runtime by composing methods.

6Application Programming I nterface, a set of functions or, more recently, classes ded-
icated to one ore more specific tasks which are generally related.
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It has been written in C# on the .NET platform and, as a further re-
sult of this thesis’ work, is now available on the Mono platform too. It uses
code generation facilities provided by the standard System.Reflection and
System.Reflection.Emit packages together with functionalities provided by
CLIFileRW [?] (see Section ??) which is an assembly’s binary format access
library.

CodeBricks has been chosen as the base infrastructure to implement our
idea on, because of its most interesting property of exposing code as a new
data type. Indeed, CodeBricks introduces the notion of code value: a value
which represents a well-defined piece of code.

The library allows a Code object (that is, a code value) to be created
from any method, enabling the programmer to handle it as a normal object
but, more interestingly, to compose it with other Code objects; this is done
mainly through the application of two transformations:

• all free variables present in a code value are lifted into bound variables
of the resulting code value function.

• partial application of the code value function to the supplied arguments,
provided they are compatible with the function’s signature types.

Moreover it provides the key feature of carrying out code transformations
on the runtime (IL) level whereas the programmer defines these trasforma-
tions on the language level in a completely transparent way.

A full description of CodeBricks would out of scope here; see [?], [?] for
full details.

We prefer to go on giving another small example that will be complex
enough to exploit CodeBricks’ power; it is an exponentiation’s optimal im-
plementation which relies on the following equivalences:

x2n = (x2)n

x2n+1 = x2n · x

Listing 2.11: CodeBricks example

1 public class PowerGen {
2

3 stat ic Code one = new Code ( typeof ( PowerGen ) . GetMethod ("One" ) ) ;

4 stat ic Code id = new Code ( typeof ( PowerGen ) . GetMethod ("Id" ) ) ;

5 stat ic Code mul = new Code ( typeof ( PowerGen ) . GetMethod ("Mul" ) ) ;

6 stat ic Code sqr = new Code ( typeof ( PowerGen ) . GetMethod ("Sqr" ) ) ;

7
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8 public stat ic int One ( int i ) {
9 return 1 ;

10 }
11

12 public stat ic int Id ( int i ) {
13 return i ;

14 }
15

16 public stat ic int Sqr ( int x ) {
17 return x ∗ x ;

18 }
19

20 public stat ic int Mul ( int x , int y ) {
21 return x ∗ y ;

22 }
23

24 public stat ic Code Power ( Code x , int n ) {
25 i f (n == 0)

26 return one . Bind (x ) ;

27 else i f (n == 1)

28 return x ;

29 else i f (n % 2 == 0)

30 return sqr . Bind ( Power (x , n/2) ) ;

31 else

32 return mul . Bind (x , Power (x , n−1) ) ;

33 }
34

35 public stat ic Code Power ( int n ) {
36 Free x = new Free ( ) ;

37 return Power (id . Bind (x ) , n ) ;

38 }
39

40 delegate int power ( int x ) ;

41

42 public stat ic void Main ( ) {
43 Code p = Power (7 ) ;

44 power p7 = p . MakeDelegate ( typeof ( power ) ) as power ;

45 Console . WriteLine (p7 (2 ) ) ;

46 }
47

48 }
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Invoking Power(x, n) generates a code object that computes xn as follows:
if n is 0 then the code object for the constant function λx.1 is produced (from
method One). If the exponent is 1, a code object that computes the value
of the second argument is produced, that is the second argument itself. If
the exponent is even, the code object for Power(n/2, x) is generated and
passed to the squaring code object λx.x2 (sqr); otherwise the code object for
Power(n-1, x) is generated and passed to the multiplier code object λxy.x ·y
(mul).

Method Power(n) corresponds to the partial application of Power(x, n)
to x, obtained by binding a Free object (a Free object represent the concept
of free variable) to its first argument.

Looking again at the example we notice that a Code object can be ex-
ecuted through the delegate7 mechanism; on line 40 it’s the definition of a
delegate whose signature will match that of the new “Code” object we are
going to create.

The MakeDelegate() method generates on the fly (that is, at runtime) an
appropriate method whose semantic will be the same of that defined by any
previous call to Bind().

Below it is the actual IL code generated by invoking MakeDelegate() on
the Code instance “p7” (line 44); there are not any branch instructions and
only 4 mul as expected.

IL code generated for ‘‘p7’’
ldarg.0

stloc.0

ldarg.0

stloc.1

ldarg.0

stloc.2

ldloc.2

ldloc.2

mul (x · x = x2)

stloc.3

ldloc.1

ldloc.3

mul (x2 · x = x3)

stloc.s

7A delegate is a reference type such that an instance of it can encapsulate one or
more methods in an invocation list. Given a delegate instance and an appropriate set of
arguments, one can invoke all of the methods in a delegate’s invocation list with that set
of arguments.
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ldloc.s

ldloc.s

mul (x3 · x3 = x6)

stloc.s

ldloc.0

ldloc.s

mul (x6 · x = x7)

ret

In the next Chapter we will show how CodeBricks has been used as a
base support to IL manipulation and runtime code generation as well as how
we extended CodeBricks’ capabilities. Indeed, we want to make CodeBricks
aware of method’s body annotations in order to enable the user to treat
annotated code fragments like normal methods. Besides, we want also to
allow annotations composition (see Section ??).

Anyway, CodeBricks is not indispensable, it is rather an implementation
choice, because we could have directly managed annotations and methods’
IL code.

Therefore, the fundamental concept of this thesis, which is manipulation
of annotated code fragments, is completely indipendent by CodeBricks. In-
deed, we could have also used another IL library such as Cecil8.

However, this choice would have requested a very hard and bug-prone
work without giving any significant advantage on performances. Furthermore,
CodeBricks has the remarkable property of exposing a piece of code as a
normal data type (Code class).

2.8 Lambda Expressions

The 3.0 version of the C# language specification introduced a new feature
known as “Lambda expressions” which allows to exploit functional program-
ming [?] style and techniques.

Lambda expressions can be regarded as a more concise and elegant syntax
for anonymous methods, though they are somewhat more expressive.

We recall that an anonymous method is a delegate declared and defined
“in line”. Let us show a simple example:

Listing 2.12: Anonymous method example

8Cecil (http://www.mono-project.com/Cecil is a library to read and write the
ECMA CIL format
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1 delegate double Compute ( int x ) ;

2

3 Compute successor = delegate ( int x ) { return x + 1 ; } ;

4

5 Console . WriteLine (’’The successor of 1 is {0}’’ , successor (1 ) ) ;

The same result can be obtained using a lambda expression, with a syntax
that looks like the following:

Listing 2.13: Lambda expression example 1

1 delegate double Compute ( int x ) ;

2

3 Compute successor = x => x + 1 ;

4

5 Console . WriteLine (’’The successor of 1 is {0}’’ , successor (1 ) ) ;

Notice that, in this case, the type of x is inferred by the compiler; when-
ever any ambiguity arises, it is always possible to declare the type of the
arguments.

More complicated statements are also allowed:

Listing 2.14: Lambda expression example 2

1 Func<int , int , int> cantorPair = ( int a , int b ) => {
2 int w = a + b ;

3 return (w ∗ (w+1) ) / 2) + b ;

4 }
5

6 // p r i n t 18

7 Console . WriteLine (’’The Cantor’s pair (2,3) is {0}’’,

8 cantorPair(2, 3));

Note that Func is a framework-defined template delegate:

public delegate TR Func<T0, T1, TR> (T0 a0, T1 a1)

While it is quite natural to use lambda expressions to define pure func-
tions, nevertheless they can access variables that have been declared outside
the lambda expression itself, thus it is possible to define functions having an
internal state:

Listing 2.15: Lambda expression example 3

1 public class TestLambdaExpression

2 {
3 public stat ic void Main ( string [ ] args )
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4 {
5 int x = 0 ;

6

7 Func<int , int> accumulator = y => x += y ;

8

9 // p r i n t 1

10 Console . WriteLine ("x is now {0}" , accumulator (1 ) ) ;

11

12 // p r i n t 2

13 Console . WriteLine ("x is now {0}" , accumulator (1 ) ) ;

14 Console . WriteLine (x ) ;

15 }
16 }

Taking a look to the IL code generated from the compilation of the source
code above, we observe that the compiler has silently produced an hidden
class containing, among other things, a method whose body has actually the
semantic of the lambda expression defined in the Main method.

For the sake of readability we have removed all non-essentials parts:

IL code of lambda expression
.method public static hidebysig default void Main (string[] args) cil managed

{

.entrypoint

.maxstack 9

.locals init (

class System.Func‘2<int32, int32> V_0,

class TestLambdaExpressionTree/’<Main>c__AnonStorey0’ V_1

)

newobj instance void class TestLambdaExpressionTree/’<Main>c__AnonStorey0’::’.ctor’()

stloc.1

ldloc.1

ldc.i4.0

stfld int32 TestLambdaExpressionTree/’<Main>c__AnonStorey0’::x

ldloc.1

ldftn instance int32 class TestLambdaExpressionTree/’<Main>c__AnonStorey0’::’<>m__0’(int32)

newobj instance void class System.Func‘2<int32, int32>::’.ctor’(object, native int)

stloc.0

ldstr "x is now {0}"

ldloc.0

ldc.i4.1

callvirt instance !1 class System.Func‘2<int32, int32>::Invoke(!0)

box System.Int32

call void class System.Console::WriteLine(string, object)

ldstr "x is now {0}"

ldloc.0

ldc.i4.1

callvirt instance !1 class System.Func‘2<int32, int32>::Invoke(!0)

box System.Int32

call void class System.Console::WriteLine(string, object)

ldloc.1

ldfld int32 TestLambdaExpressionTree/’<Main>c__AnonStorey0’::x

call void class System.Console::WriteLine(int32)

ret
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} // end of method TestLambdaExpressionTree::Main

.class nested private auto ansi sealed beforefieldinit ’<Main>c__AnonStorey0’

extends System.Object

{

.custom instance void class

System.Runtime.CompilerServices.CompilerGeneratedAttribute::’.ctor’() = (01 00 00 00 )

.field assembly int32 x

.method public hidebysig specialname rtspecialname

instance default void ’.ctor’ () cil managed

{

.maxstack 8

ldarg.0

call instance void object::’.ctor’()

ret

} // end of method <Main>c__AnonStorey0::.ctor

.method assembly hidebysig

instance default int32 ’<>m__0’ (int32 y) cil managed

{

.maxstack 4

.locals init (

int32 V_0)

ldarg.0

ldarg.0

ldfld int32 TestLambdaExpressionTree/’<Main>c__AnonStorey0’::x

ldarg.1

add

dup

stloc.0

stfld int32 TestLambdaExpressionTree/’<Main>c__AnonStorey0’::x

ldloc.0

ret

} // end of method <Main>c__AnonStorey0::<>m__0

} // end of class <Main>c__AnonStorey0

To execute the lambda expression, a new instance of a compiler-generated
class (<Main>c AnonStorey0) is created and then the related method in-
voked.

It is worth noting that the variable x of the Main method has been ac-
tually allocated as a field of the compiler-generated class instead of as local
variable of the method; in this way, both the Main method and the lambda
expression method can access the variable. We will get back on this issue
later in ??.

Lambda expressions have been introduced in C# only in version 3.0,
long after the [a]C# compiler was completed; hence, we will not support the
lambda expression syntax. Nevertheless, later in ??, we will discuss briefly
about how to allow annotations to be declared also inside lambda expressions.
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2.8.1 Expression trees

Another interesting feature of C# 3.0 involving lambda expressions consists
of the compiler’s ability to automatically generate the code to construct a
representation of any lambda expression as an expression tree. An expression
tree is a tree-like data structure holding the lambda expression’s structure
and data which can be accessed by the program itself. Each node of an
expression tree represents a (sub) expression of the lambda expression from
which the tree is derived.

In summary, an expression tree represents a lambda expression as data
instead of as code. In addition, Both the .NET and Mono implementation
provides a standard API to programmatically build an expression tree and
actually execute its related code.

For what concerns [a]C#, it would be easy to modify the compiler to pro-
duce an annotation node representing the annotation’s type and attributes
for each annotation declared inside a lambda expression.

Here is an example where an expression tree is defined:

Listing 2.16: Expression tree example

1 using System ;

2 using System . Linq . Expressions ;

3

4 public class TestLambdaExpressionTree

5 {
6 public stat ic void Main ( string [ ] args )

7 {
8 Expression<Func<int , int , double>> mean = (x , y ) => (x+y ) /

2 . 0 ;

9 }
10 }

Encountering a variable declaration of type “System.Linq.Expressions.-
Expression” assigned to a lambda expression, the compiler will automatically
produce the IL code to instantiate and populate accordingly an expression
tree object representing that lambda expression.

Here follows the key portion of IL code produced by the compiler for the
example above:

IL code of expression tree
.locals init (

class Expressions.Expression‘1

<class System.Func‘3<int32, int32, float64>> V_0,

class Expressions.ParameterExpression V_1,

class Expressions.ParameterExpression V_2)
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ldtoken System.Int32

call class System.Type

class System.Type::GetTypeFromHandle(valuetype System.RuntimeTypeHandle)

ldstr "x"

call class Expressions.ParameterExpression

class Expressions.Expression::Parameter(class System.Type, string)

stloc.1

ldtoken System.Int32

call class System.Type

class System.Type::GetTypeFromHandle(valuetype System.RuntimeTypeHandle)

ldstr "y"

call class Expressions.ParameterExpression

class Expressions.Expression::Parameter(class System.Type, string)

stloc.2

ldloc.1

ldloc.2

call class Expressions.BinaryExpression

class Expressions.Expression::Add(class Expressions.Expression,

class Expressions.Expression)

ldtoken System.Double

call class System.Type

class System.Type::GetTypeFromHandle(valuetype System.RuntimeTypeHandle)

call class Expressions.UnaryExpression

class Expressions.Expression::Convert(class Expressions.Expression, class System.Type)

ldc.r8 2.

box System.Double

ldtoken System.Double

call class System.Type

class System.Type::GetTypeFromHandle(valuetype System.RuntimeTypeHandle)

call class Expressions.ConstantExpression

class Expressions.Expression::Constant(object, class System.Type)

call class Expressions.BinaryExpression

class Expressions.Expression::Divide(class Expressions.Expression,

class Expressions.Expression)

ldc.i4.2

newarr Expressions.ParameterExpression

dup

ldc.i4.0

ldloc.1

stelem.ref

dup

ldc.i4.1

ldloc.2

stelem.ref

call class Expressions.Expression‘1<!!0>

class Expressions.Expression::Lambda<class System.Func‘3<int32,int32,float64>>

(class Expressions.Expression, class Expressions.ParameterExpression[])

stloc.0

ret

As we can see, the compiler simply translates the lambda expression in terms
of a tree-shaped composition of proper classes and methods that are defined
in the standard class library accompanying the compiler itself.

2.9 Mono

Mono [?] is the UNIX version of the Microsoft .NET platform.
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Mono is an open source development initiative aiming to enable UNIX
developers build and deploy cross-platform .NET applications.

The Mono runtime implements the ECMA [?] Common Language Infras-
tructure.

Mono is essentially made up on the following components:

• A Common Language Infrastructure (CLI) virtual machine that con-
tains a class loader, Just-in-time compiler, and a garbage collecting
runtime.

• A class library that can work with any language which works on the
CLR. Both .NET compatible class libraries as well as Mono-provided
class libraries are included.

• A compiler for the C# language. In the future it is supposed to work
on other compilers that target the CLR.

Its runtime engine provides a Just-in-Time compiler (JIT ), an Ahead-
of-Time compiler (AOT ), a library loader, the garbage collector (Boehm [?]
conservative garbage collector), a threading system and interoperability func-
tionality.

Mono has support for both 32 and 64 bit systems on a number of archi-
tectures as well as a number of operating systems.

Mono has both an optimizing just-in-time (JIT) runtime and a interpreter
runtime. The interpreter runtime is far less complex and is primarily used in
the early stages before a JIT version for that architecture is constructed. The
interpreter is not supported on architectures where the JIT has been ported.

On the beginning of 2010, Mono supports the platforms and architectures
listed on the table ??.

Mono aims to support as many programming languages as possible; as of
2010 the situation is summarized in table ??.

The Mono open source project started in 2001, but the first stable release, 1.0,
was issued in 2004, as an effort to implement the Microsoft’s .NET Frame-
work [?] to Unix, to bring both the new programming model based on the
Common Language Infrastructure (CLI [?]) and C# as well as helping peo-
ple migrate their existing knowledge and applications to Unix. In November
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Supported Architec-
tures

Runtime Operating system

s390, s390x (32 and 64 bits) JIT Linux
SPARC (32 and 64 bits) JIT Solaris, Linux
PowerPC JIT Linux, Mac OSX,

Nintendo Wii, Sony
PlayStation 3

x86 JIT Linux, FreeBSD,
OpenBSD, NetBSD,
Microsoft Windows,
Solaris, OSX

x86-64: AMD64 and
EM64T (64 bit)

JIT Linux

IA64 Itanium2 (64 bit) JIT Linux
ARM: little and big endian JIT Linux
HP-PA JIT HP-UX
Alpha JIT Linux

Table 2.1: Mono’s supported architectures

Supported languages Under development
C#, Java, Boo, Nemerle,
Visual Basic.NET, Python,
JScript, Oberon, Object
Pascal, LUA, PHP, Ruby,
Cobra

C, Ruby, ADA, Kylyx,
Tachy

Table 2.2: Mono’s supported languages
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2009, the 2.6 version was released which supports almost all the C# 3.0 lan-
guage features. The work was initiated by Ximian, which was further bought
by Novell9, and based upon the Microsoft’s Rotor (SSCLI [?]).

The Mono Project has also sparked a lot of interest in developing C#-
based components, libraries and frameworks. The most important ones, some
of which were developed by the Mono team, are:

• Gtk#10: Bindings for the popular Gtk+ GUI toolkit for UNIX and
Windows systems. Other bindings are available: Diacanvas-Sharp and
MrProject.

• #ZipLib (http://www.icsharpcode.net/OpenSource/SharpZipLib/
Default.aspx): A library to manipulate various kinds of compressed
files and archives (Zip and tar).

• Tao Framework: bindings for OpenGL

• Mono.Directory.LDAP / Novell.Directory.LDAP: LDAP access for .NET
apps.

• Mono.Data: support for PostgreSQL, MySql, Sybase, DB2, SqlLite, Tds
(SQL server protocol) and Oracle databases.

• Mono.Cairo: Bindings for the Cairo (http://www.cairographics.org/)
rendering engine.

• Mono.Posix / Mono.UNIX: Bindings for building POSIX applications
using C#.

• Mono.Remoting.Channels.Unix: Unix socket based remoting

• Mono.Security: Enhanced security and crypto framework

• Mono.Math: BigInteger and Prime number generation

• Mono.Http: Support for creating custom, embedded HTTP servers and
common HTTP handlers for applications.

• Mono.XML: Extended support for XML

9http://www.novell.com/
10Gtk# (http://gtk-sharp.sf.net/) is a .Net language binding for the Gtk+ (http:

//www.gtk.org/) toolkit and other assorted GNOME libraries.
Gtk+ is a multi-platform toolkit for creating graphical user interfaces.
It was initially developed for the GIMP, the GNU Image Manipulation Program.
Today GTK+ is used by GNOME and a large number of applications.
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• Managed.Windows.Forms (aka System.Windows.Forms): A complete
and cross platform, System.Drawing based WinForms implementation.

• Remoting.CORBA (http://remoting-corba.sourceforge.net/): A
CORBA implementation for Mono.

• Ginzu: An implementation on top of Remoting for the ICE (http:
//www.zeroc.com/) stack

Finally, it worth considering that Mono, after almost 10 years of develop-
ment, with millions of lines of code and still growing, seems to be a promising
software plaftorm well suited both for academic and commercial use.
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Chapter 3

Manipulating annotations

“While farmers generally allow one rooster for ten hens, ten men are scarcely sufficient
to service one woman.”

Giovanni Boccaccio, Decameron.

We will show a technique for manipulating at runtime a method’s IL code,
based on annotations of the same method, in order to obtain a new method.
The semantic of this new method will depend on a set of operations that
are applied to a set of original method’s annotated code fragments. Allowed
operations together with their meanings will be described on Section ??.

The fundamental reasons beneath this effort is that such a feature, for a
programming language, is sufficiently general to:

• Give an additional way to hide implementaion details without avoiding
code reuse. Some proving examples will be provided on Chapter ??.

• Promote and simplify code specialization.

• Enable the user to explicit a code fragments’ semantic, thus simplifying
both writing and reading of source code.

Moreover, this thesis represents a new proof of how runtime metaprogram-
ming can be exploited to allow creation of new programs without actually
writing their source code.

3.1 Annotated code fragment

In Section ?? we have seen how to delimit a portion of a method’s source
code using [a]C# annotations. The boundaries of the delimited portion can
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be thought to be the opening and the closing brackets; from a technical point
of view they actually are, as it will be shown later on.

When no confusion can arise, in the following we will use the term “code
fragment” to mean a portion of a method source code or the corresponding
IL code, depending on the context.

Not surprisingly, we will refer to the portion of a method’s code enclosed
by an annotation as an “annotated code fragment”.

Now we have to give some definitions that will be used in the following.
We call:

• annotation’s free variables all those variables that are visible in the an-
notated code fragment, according to scoping rules of the language (see
[?]), and are not declared inside the fragment. Annotation’s free vari-
ables are also any method’s arguments that are referred in the annno-
tated fragment.

• annotation’s local variables all those variables that are declared inside
the annotated code fragment.

Of course, the [a]C# runtime will have to be capable of inferring what are
both the free and locals variables of any given annotation. Full details of this
really important matter are presented on Section ??.

3.2 Extending [a]C#

Despite [a]C# annotations seeming to be naturally suited to our purpose,
their use is not very natural from a programmer’s point of view. Indeed, they
lack a way to explicitly declare what we can consider to be the annotation’s
signature, as to say the annotation’s free variables bindings with respect to
the external environment.

In fact, though it is possible to automatically infer which are the annota-
tion’s free variables through source code parsing or IL code analysis, we are
interested on the order of the binding because we are going to provide an
operation whose semantic will depend on it.

Therefore, we have to extend annotation’s syntax to optionally include
these binding declarations.

Adding such a feature to [a]C# required to extend language’s grammar,
source-to-source compiler and runtime support.
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3.3 Transforming a fragment in a brick

So far we introduced all those elements needed to perform the “real job” this
thesis is focused on.

We can start to go further inside the matter.

3.3.1 Annotated fragment’s signature

We need to add a syntactical construct enabling the user to specify annota-
tion’s signature.

The best way is to exploit the standard C# attribute specification.
We have chosen to give the user a chance to specify annotation’s sig-

nature (or bindings in case we are considering the inclusion operation) as
normal attribute’s positional arguments except for some special characters
to distinguish among free variables and return variable.

On Section ?? all relevant details are shown.
Of course, the new [a]C# grammar will have to allow the user to use this

feature only on an attribute declaration that is part of an [a]C# annotated
block, not just in any attribute declaration.

However, the annotated fragment’s signature specification in the attribute
declaration will be always optional. Rather an exception will be thrown, at
runtime, whenever a signature declaration was needed to perform a particular
operation but none was specified.

Whereas the user is allowed to specify whatever signature for an anno-
tated fragment, a signature must considered invalid when any of the following
conditions holds

• declared signature parameters count is not equal to actual annotated
fragment’s free variables count.

• declared signature parameters type is not compatible with actual an-
notation’s free variables types.

Both conditions could be checked by a static analysis of the source code
that is while parsing the [a]C# source.

Anyway, not to increase parser’s complexity we preferred to check them at
runtime that is whenever an operation is requested on the annotation itself.

As said, when performing the manipulation of an annotation whose de-
clared signature has been found to be invalid, a runtime error will be signaled
by simply throwing an exception.

Instead, it will be the C# compiler to stop compilation in case the user
specifies an unknown variable or a variable that is out of scope.
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3.4 Operations on annotations

We have defined four different operations, for a total of six variants, on an-
notated code fragments; their informal description follows:

• Removal : annotated code fragment is removed from main method. Al-
though useful, this is the most simple operation, at least for what con-
cerns its implementation.

• Extrusion: annotated code fragment becomes a new method, more pre-
cisely a brick, whose signature depends on fragment’s free variables (see
Section ??).

• Pre-Inclusion: a code fragment is injected inside another (or the same)
method’s code before one of its annotations.

• Post-Inclusion: a code fragment is injected inside another (or the same)
method’s code after one of its annotations.

• Pre-Copy : annotated code fragment is copied before another annotation
of the same method.

• Post-Copy : annotated code fragment is copied after another annotation
of the same method.

More formally:

AnnotM =
⋃

annotations ∈M

∀A ∈ AnnotM , BA(M) = PreA ⊕BeginA ⊕ InA ⊕ EndA ⊕ PostA (3.1)

RemoveA(M) = PreA ⊕ PostA (3.2)

ExtrudeA(M) = InA (3.3)

PreIncludeA(M,C) = PreA ⊕ C ⊕BeginA ⊕ InA ⊕ EndA ⊕ PostA (3.4)

PostIncludeA(M,C) = PreA ⊕BeginA ⊕ InA ⊕ EndA ⊕ C ⊕ PostA (3.5)
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PreCopyA(M,A′) = InA′ ⊕ PreA ⊕BeginA ⊕ InA ⊕ EndA ⊕ PostA (3.6)

PostCopyA(M,A′) = PreA ⊕BeginA ⊕ InA ⊕EndA ⊕ PostA ⊕ InA′ (3.7)

Generated code correctness

To guarantee the correctness of the code generated by the application of the
operations above, we have to deal with, at least, the following issues:

• Jump offsets relocation: both inclusion and removal operations requires
for any jump instruction’s offset, belonging to the input method, to be
adjusted accordingly.

• Max stack (see Section ??): the stack behaviour of the method result-
ing from an inclusion operation can be different from that of the input
method’s one. Since the IL code generation framework requires to spec-
ify the method maximum stack height we should infer the new value of
this parameter. For simplicity, our implementation will just calculate
this new value as sum of the input method’s max stack height and the
included code fragment’s max stack height. Both these stack heights
are already known.

Other issues related to generated code correctness will be discussed on next
Sections.

3.4.1 Removal

The removal operation allows to generate a method whose body will be
composed of all the instructions contained in the original method, except for
all the instructions contained inside the specified annotated fragment.

What we have to do is discarding IL code belonging to a specified anno-
tation, that is all the IL instructions enclosed between the two calls to the
annotation boundaries placeholders.

We are just going to make a cut-and-sew-operation, so its implementa-
tion is straightforward. Besides, this implementation could be optimized as
explained on Section ??.

In order to grant resulting method validity, that is to guarantee generated
IL code correctness, the following conditions must be fulfilled:
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• correct jump addresses: in the case that we remove an annotated frag-
ment targeted by a branch instruction placed outside the fragment
itself, then the resulting method will contain a jump to an invalid lo-
cation.

Fortunately C# semantics assures that this condition never occurs.
Indeed the C# language forbids the usage of a goto instruction whose
target label is contained inside an inner statement (see [?]) or, more
formally, the label referenced by a goto instruction must be declared
in the same scope of that instruction.

• return value: if the input method returns a value (the method’s return
type is not void) and we remove an annotated fragment containing a
return instruction, then we could possibly1 generate an invalid method.

The condition mentioned above could be verified by analyzing the stack
behaviour of the generated method. To simplify, our implementation
will not perform the check, leaving it to the user.

The next figure shows the main steps of the removal process.

Figure 3.1: Removal flow chart

1In fact, the removed fragment could contain all original method’s return instruc-
tions, or for the resulting method there could be some execution flows lacking a return

instruction.
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3.4.2 Extrusion

Extrusion is the operation allowing to transform an annotated fragment in
a new method, that is to create, on the fly, a method whose signature and
body will be the same of the annotated fragment’s ones.

Once we have obtained the annotation’s signature and local variables,
the extrusion can be carried out by emitting all necessary preliminary IL
instructions and by declaring local variables. The System.Reflection.Emit
namespace contains classes and methods suited to this purpose.

Furthermore, we have to insert instructions performing the storage of
the method’s arguments value that will be present on the stack, on method
invocation, to the respective annotation’s free variables. In other words, for
each annotation’s free variable will be emitted two IL instructions: the first
will load an argument’s value from the stack and the second will store that
value on the the respective method’s local variable.

Then all the instructions belonging to the annotated code fragment will
be emitted to form the method’s body.

Finally, a ret instruction must be emitted to conclude the method’s body.

headN = ∅

∀vi ∈ free, headN = headN ⊕ load(argi)⊕ store(vi)

B(N) = headN ⊕ InA ⊕ ret

As for the removal operation, we must be sure to generate a valid method
when applying the extrusion operation too. For this reason, the next condi-
tions must be respected:

• consistent variables indexes: the method resulting from the application
of the extrusion operation could have a number of local variables that is
different from that of the original one. In this case, it would be necessary
to adjust variable indexes (to reindex them).

Our implementation will avoid this problem simply by retaining all the
original method’s local variables (see also Section??).

• correct jump addresses: if we would extrude an annotated fragment
containing a branch instruction whose target address is outside the
annotated fragment, then we will generate an invalid method.

Our implementation checks for the existence of this condition and sig-
nals it to the user by throwing a runtime exception.

The main steps of the extrusion algorithm are presented on the next
figure.

55



3.4. Operations on annotations Chapter 3. Manipulation

Figure 3.2: Extrusion flow chart

When building a new “Code” object by performing an extrusion operation
on any method’s annotations, we produce a new method that could return a
value, just like any other method.

However the whole thing turns to be a little more complicated because
of the next problem.

The return value problem

It could be possible for an annotated code fragment to behave just like a
function2 if it would be possible for the fragment itself to return a value.

This matter raises a non-trivial question whose solution brings to different
choices and further problems.

The problem concerns the return value and it is plain to see that we have
at least three alternatives to consider:

1. A variable specified on the annotation signature.

2Here function denotes the common prorgramming languages’ concept of procedure
returning a value rather than the more general mathematical notion.
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2. What actually the annotation returns, considering real “return” in-
structions contained inside the annotated fragment, if there are any.

3. No return value (void).

Being the most intuitive choice, we decided to choose the second option,
that is to generate - as result of an extrusion operation - a method which
returns a value whenever the extruded annotated fragment contains one or
more return instruction. Among other things, implementing this feature has
requested to solve the problem described on Section ??.

Obviously, such an operation is possible because the annotated fragment’s
return value is always known: it is equal to the container method’s return
value.

Anyhow, an annotated fragment containing return instructions could lead
to the generation of an incorrect method, at least from a semantic point of
view. In fact, it would be possible for the user to annotate a portion of code
whose execution’s flows do not always return a value.

For instance, consider the following method:

1 public stat ic bool harmless ( ) {
2 int i = SomeValue ( ) ;

3 [ Code ] {
4 i f (i == 0)

5 return true ;

6 }
7 return fa l se ;

8 }

Extruding the annotation contained in the method above would bring to
the generation of an invalid method; in fact, for any values of the generated
method’s argument different from 0, the method would return no values at
all.

Anyway, this detail is left to the programmer, who will be always able to
decide whether an annotation can be safely extruded or not.

Furthermore, an automatic tool could retrieve this information from an-
notation’s user-provided attribute data.

3.4.3 Inclusion

The inclusion operation allows to inject (to insert) the IL code produced by
any “Code” object3 before or after a specified annotation provided that its

3Since we are able to build a Code object out of an annotation, we actually allows to
include an annotation too. Anyway, the Code object can be obtained otherwise, increasing
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signature is compatible with that specified by the annotation itself.
For both options to work, if the Code value that we want to include

has any parameters, then the “target” annotation must have a compatible
signature, otherwise the operation must be aborted notifying the user about
the error (see again ??).

As already said, we must decide where the code will be included and, as
a matter of fact, there are only four different places:

• Before annotation’s begin: the specified Code’s IL code will be inserted
starting after the last instruction before the call to the annotation’s
begin placeholder.

• After annotation’s begin: the specified Code’s IL code will be inserted
starting after the call to the annotation’s begin placeholder.

• Before annotation’s end: the specified Code’s IL code will be inserted
starting after the last instruction before the call to the annotation’s
end placeholder.

• After annotation’s end: the specified Code’s IL code will be inserted
starting after the call to the annotation’s end placeholder.

Anyway, both the second and the third option ...
There could be another option, that is to include a Code’s IL code both

before and after an annotation at the same time, but this could be accom-
plished otherwise by mean of annotations composition (see Section ??).

Of course, the implementation must provide the user - and actually does
it - with a way to choose one of the remaining two alternatives.

On the next figure a flow diagram of a simplified inclusion algorithm is
shown.

Local variables belonging to the included code fragment must become
input method’s local variables, therefore they must be added to the list of
the input method’s local variables. Obviously, in this way their index will
change, thus it will be necessary to update the parameter of any load or store
instructions, belonging to the included code fragment, with a new correct
index.

To assure inclusion operation’s correctness we must also check the com-
patibility of the included Code’s signature and the annotation’s signature. If
they are not compatibles, then we have to abort the operation and notify the
user by throwing an exception.

inclusion genericity and power.
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Figure 3.3: Inclusion flow chart

For the two signatures to be compatible they must have the same number
of arguments and each argument’s type of a signature must be compatible
with the respective other’s one.

Nevertheless, granted the validity of the Code object’s IL code that is
being included, the method built by the inclusion operation will always be
valid too.

For simplicity, we analyze the type compatibility problem related to the
signature’s return value only whereas the real implementation will handle the
whole signature. Furthermore, the solution described applies to both issues.

Types compatibility and types conversion

As already said above, we have to check type-compatibility of annotation’s
and inclusion’s signature. We must face the same problem when we are going
to include a method which returns a value, because we should specify which
variables to assign the return value itself. Either situations can lead to a
type conflict or, better said, a type compatibility problem. For example, let
us suppose the user has specified a variable whose type is float to hold
the included method’s return value whose type is string: this is an user’s
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mistake and we have to notify him about it.

But there are more subtle cases that should not be considered user’s
mistakes. Indeed, if in the previous example the returned value’s type was
int instead of string then there were no compatibility problems because an
int value can be directly assigned to a float variable.

We must recognize situations like these and handle them accordingly;
when necessary, the implementation will generate code realizing any neces-
sary type conversion. For a more detailed discussion about types and conver-
sions see Chapter 8, Part I of [?].

3.4.4 Copy

The copy operation permits to copy (to duplicate) an annotated code frag-
ment of a method M before or after another annotated code fragment of the
same method M.

For what concerns the implementation of this operation, it is very similar
to that of the inclusion, though more simple since there is no need to check for
equal numbers of variables and compatibility of types (compatible signature).
Indeed, being the annotation belonging to the same method, we can safely
duplicate the code fragment without any particular care. As always, of course,
the semantic of the generated code is leaved to the programmer.

An example of use of the copy operation can be found in ??.

On the next figure a flow diagram of a simplified copy algorithm is shown.

3.5 Possible optimizations

An effective improvement could be obtained by removing all calls to annota-
tions’ boundaries placeholders (Annotation.Begin() and Annotation.End())
at the cost of disallowing any feasible successive operations on the resulting
method because, obviously, we would lose any information about annotations’
boundaries.

For such a reason, in the implementation we have decided to discard only
the placeholders belonging to the particular annotation interested by an op-
eration, conserving calls to placeholders belonging to any other annotations.
Besides, this is an implementation detail and it will be also feasible to let the
user decide whether to remove or to keep the placeholders.

For the removal operations there is another chance to perform an opti-
mization regarding emitted IL code.
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Figure 3.4: Copy flow chart

Indeed, removal implementation could be refined to discard unused local
variables, if there are any, to produce an optimized IL code; actually, it could
be possible for one or more method’s variables to be referenced inside an
annotated fragment only, therefore a method resulting from the removal of
such a fragment would not need anymore that variables, so they could be
discarded safely.

Anyway, there would not be any execution speed increase, rather we would
get just a slightly smaller code size. Concerning the implementation, we do
not remove useless local variables.

3.6 Composing annotations

One of the most remarkable results of our work is a chance to compose an-
notations that is applying an arbitrary numbers of consecutive operations on
an annotated method.

For instance, we could be interested to realize a transformation such as
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the following:

methodB = ExtrudeX(PreIncludeY (RemoveZ(methodA)));

Of course, the semantics of the final method resulting from a composition
of operations like the above will depend by their order.

Actually, our implementation will be capable of performing this kind of
transformation, allowing the user to specify a list of operations to be carried
out sequentially on the same method.

However - just to make things easier - our implementation will not allow
all feasible combination of operations; more precisely, though the user will
be allowed to specify more than one extrusion operation, only the first one
of them in the order will be actually realized. Furthermore -excepted for the
copy operation- the order of the annotations involved in an operation must
be increasing; more formally, called op an operation and an an annotation:

valid operations list = {op0(ani), . . . , opn−1(anj), opn(ank)} | i ≤ j ≤ k

This last constraint is due only to implementation choices and could be
dropped in future.

Composition could be effectively used as a way to realize the weaving (see
Section ??) step of the compiler of an aspect oriented programming language.

Nevertheless, we think that annotation composition is a very interesting
subject deserving further research and we will talk again about this argument
on Section ??.

3.7 Transforming a fragment in a method

Although we have chosen CodeBricks as a mean to create a method from
a compositions of annotated code fragments, there can be other ways to
accomplish the same task.

As a proof of concept, now we want to outline such an alternative ap-
proach which is based on lambda expressions.

We have shown on ?? that a lambda expression is actually an anonymous
method contained in a compiler-generated class; the purpose of the class is
to hold all the variables of the calling method (i.e. the method where the
lambda expression has been defined) that are shared with the anonymous
method (i.e. the lambda expression).

This same strategy is well suited for our goal too; indeed, taking advantage
of a library such as Cecil or maybe CodeBricks again, we could bake at
runtime a class containing:
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• the method resulting from the compositions of annotated code frag-
ments, as an instance method

• each variables that is not a local of a code fragment, as a class’ field
(variable lifting)

Then, to call the generated method, we could mimic the .NET and Mono
implementation which produce a class derived from System.MulticastDelegate
which is responsible to actually invoke the generated method.

System.MulticastDelegate is a special class that can be derived only by
the compiler or other IL-level tools, just like ours.

This solution would be quite elegant and would also remove the current
limitation to static methods of CodeBricks.

Unfortunately, there would be a little complication due to the need for
some native code (platform dependent code) mainly dealing with class in-
stances and method pointers. Hence, in the interest of maximum portability
between different implementations of the runtime, and on different architec-
tures, we have opted not to pursue this approach.
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Chapter 4

Implementation

“The greatest way to live with honor in this world is to be what we pretend to be.”

Socrates

4.1 Target framework and platform

Both [a]C# and CodeBricks have been developed using the .NET framework
which is available on the Microsoft Windows platform only.

On the other hand, for any programming language or framework, in par-
ticular a standardized one, it should be a fundamental feature to be as much
independent as possible from any vendor-specific platform or operating sys-
tem.

For such a reason, we would have preferred to concretize our work on a
environment different from the Windows one.

Fortunately, in the last few years, the Mono project brought an implemen-
tation of the ECMA-335 standard on many other platforms, mainly UNIX-
like systems.

The most famous and widespread UNIX-like operating system is Linux,
which comes in a plethora of -often slightly- different distributions1.

Therefore, we have chosen to develop an implementation of this thesis’
idea using Mono in a Linux environment.

Now, let us spend some more words about this choice.

1A Linux distribution is basically a Linux kernel together with an amount of programs
just like those forming the graphical user interface (Gnome, KDE, ICEwm and so on) and
the most common system utilities. Different distributions differ mainly on their own kernel
configuration details and bundled software packages.
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4.1.1 About Open Source

In the last few years the so-called “Open Source” community has become
wider and wider by an enthusiastic crowd of people which is constantly con-
tributing to the design and development of a big variety of software, whose
complexity ranges from that of a simple text editor to that of a huge appli-
cation server, such as the Apache Web Server2.

It could be quite easy to find a number of major drawbacks related to the
kind of development process mentioned above.

However, we would like to focus attention instead on what -as a matter
of fact- the open source may have revealed to have a significant impact on
future software development:

• sharing ideas is a great chance to get improvements and stability faster
whereas hiding ideas (closed source) could be difficult if not quite im-
possible.

• although design and planning are two undoubtable crucial things, it is
often highly preferable to have a not optimal and still incomplete but
working code than just nothing.

• professional developers deeply appreciate to have more control on what
is running on a computer. Also normal users prefer to choose among
different softwares of the same typology, rather than just being coerced
to buy the only available one, even when it is a good one.

According to these considerations, together with an interest for testing new
promising technologies, we have decided to work on open source platforms
and tools.

A summary of the main open source softwares that have been used
throughout this thesis is shown in table ??.

4.1.2 Motivation

There are mainly two reasons that drove us to choose Linux [?] as implemen-
tation platform and consequently to work on porting CodeBricks to Mono:

• Giving a real proof about platform independence and generality of the
concepts involved in this thesis.

2The Apache HTTP Server Project is an open-source HTTP server for modern oper-
ating systems including UNIX and Windows NT. Apache has been the most popular web
server on the Internet since April 1996
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Mono A free open source Unix im-
plementation of the .NET
framework

MonoDevelop An on-going effort to pro-
duce a complete IDE for
Mono and Gnome

Coco A powerful and easy to use
compiler compiler

Gentoo Linux A special flavour of the
Linux operating system
tuned on performance

Gnome A free, usable, stable, acces-
sible desktop environments
for the Unix-like family of
operating systems

Table 4.1: Exploited Open Source software
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• Abstracting as much as possible from language and operating system
specific issues in order to let us focus our attention on all possible
applications of this work.

Interoperability and customization are two relevant aspects of modern soft-
ware design -impacting on both quality and efficiency- where metaprogram-
ming can be used effectively. So if our strategy were limited to a specific
language or architecture, it would lose much of its effectiveness and applica-
bility.

Despite using a dialect of C# to develop our idea, we have to point out
that it has been an arbitrary choice based on opportunity reasons such as
simplicity, popularity and widespread of that language, thus the main con-
cept discussed on this thesis is independent from any particular language or
platform. Actually, we could have used any other .NET language, granted
that the language supports annotations, without needing to introduce any
significant design differences. Moreover, as an extreme example, it could even
be feasible to design a C compiler supporting annotations and a library per-
forming annotation-based code compositions.

Besides, last but not least from a technical point of view, we had a good
chance to experiment with a real open source GNU3 implementation of the
ECMA-335 standard and test its real usability on a non trivial case study.

4.2 Porting CodeBricks to Linux

Here we like to show the steps that have been necessary to accomplish the
porting of CodeBricks on the Linux/Mono platform.

CodeBricks, though written in C#, has been developed on the .NET
framework which is currently available on the Microsoft Windows platform
only.

Moreover, CodeBricks’ implementation takes advantage of Windows-specific
operating system’s memory mapping functionalities to read and to modify
both assemblies’ code and data. For such a reason, we had to write a small
amount of new C# code to provide the same functionalities on the Linux
platform too; anyway, after we started this thesis, the Mono project provided
these low-level functionalities in their standard APIs. This work is described
in the next sections and it is all that is needed to allow the compilation of
the CodeBricks library on the Linux/Mono platform.

3GNU is a so-called “recursive acronym” standing for “GNU is Not Unix”; GNU is the
name of the most common and used free software license in the world.
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Furthermore, we fixed some minor bugs which were related to IL code
analysis and generation.

4.2.1 CLIFileRW

As said above, CodeBricks needs to read assembly’s content primarily in order
to retrieve methods’ IL code streams as well as their associated metadata.

.NET (and Mono) assemblies are stored on a PE4 [?] format file. Decoding
information stored on a PE format is quite complex but, fortunately, we can
rely on an tool already available to accomplish the task that is CLIFileRW.

CLIFileRW [?] is a library written in C# capable of reading the raw
format of a binary CLI file which is a collection of compiled types.

As for fast access to binary data is a key requirement, especially for what
concerns CodeBricks’ purposes, it uses the MapView (see paragrah ??) class
to obtain a memory mapping of the file, this way enabling top-speed scanning
of IL instructions streams.

Besides adding conditional directives to support correct CLIFileRW com-
pilation on Mono, we also fixed two small bugs located in method “ILIn-
struction.Normalize”; one was related to the lack of the stloc S instruc-
tion’s handling, simply consisting of a lack of trivial code. The other was
due to a detail of reflection implementation (System.Reflection namespace):
any method’s reference is represented by an instance of the MethodInfo class,
with the only exception of constructors which are represented by an instance
of the ConstructorInfo class; the latter case was simply missing.

We have been pleased noting that also Mono provides a library, although
it is no more actively maintained (latest release on October 2007), named
Cecil which is thought to enable generation and inspection of programs and
libraries in the ECMA CIL format. With Cecil, it is possible to load existing
managed assemblies, browse all the contained types, modify them on the
fly and save back to the disk the modified assembly. Cecil has support for
extracting the CIL bytecode and does not need to load the assembly or have
compatible assemblies to introspect the images.

Unfortunately, at the time this thesis is written, Cecil is at an early stage
of development thus it is still incomplete.

Furthermore, because of the tight interaction between CodeBricks and
CLIFileRW, we preferred to port CLIFileRW on Linux/Mono too, this way
avoiding a great amount of work on CodeBricks to adapt it to use Cecil.

4Portable Executable, a executable file format, introduced by Microsoft WindowsNT
operating system, which is intended to be architecture-independent.
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4.2.2 Unix Memory Mapping

Current CodeBricks implementation uses the CLIFileRW library which, in
turn, has a memory mapped approach for reading of CLI files’ binary data
format.

Memory mapping is a well-known technique to achieve best performance
when it is needed to read an arbitrary size of contiguous data such as database
table or a big matrix, a task that usually involves many sequential or random
access to disk which would be, obviously, very expensive in terms of time,
therefore greatly degrading performances.

Memory mapping is sometimes used also to realize Interprocess Com-
munication (IPC), being possible for a memory mapped area to be shared
among different concurrent processes.

The POSIX5 standard, part of which are implemented on the Linux oper-
ating system, offers the mmap() system call which permits to map a device or
a file (either the whole file or a portion of it) into memory; the file is mapped
in multiples of the operating system’s page size that, in turn, is obtained
through the getpagesize() system call.

The munmap system call, the natural companion of mmap, releases the
memory mapped area as well as any other OS’ resources allocated to support
this kind of service.

As we will see next, in order to be able to perform a few minimal tests
and debugging, it has been useful to have the perror() system call too, that
prints a message describing an eventual error encountered during the last call
to a system or library function.

An example of how memory mapping works it is provided by the C listing
below

Listing 4.1: Unix Memory Mapping example

1 #include <syscall . h>

2 #include <fcntl . h>

3 #include <unistd . h>

4 #include <sys/types . h>

5 #include <sys/stat . h>

6 #include <sys/mman . h>

7 #include <strings . h>

8

9 #define FILE_PATH "./test.txt"

10 #define TEST_STRING "hello world!"

5POSIX (http://www.opengroup.org/onlinepubs/9699919799/) is a set of related
standards specified by the IEEE

70

http://www.opengroup.org/onlinepubs/9699919799/


Chapter 4. Implementation 4.2. Porting CodeBricks to Linux

11

12 int main ( )

13 {
14 int pagesize = getpagesize ( ) ;

15 printf ("Page size is %i\n" , pagesize ) ;

16 int fd = open ( FILE_PATH , O_RDWR ) ;

17 int length = pagesize ∗ 1 ;

18 void∗ mmf = mmap (0 , length , PROT_READ | PROT_WRITE , MAP_SHARED

, fd , 0) ;

19 perror ( NULL ) ;

20 close (fd ) ;

21 memcpy (mmf , TEST_STRING , strlen ( TEST_STRING ) ) ;

22 msync (0 , length , MS_SYNC ) ;

23 munmap (mmf , length ) ;

24 return 0 ;

25 }

A pointer to a text file is retrieved and then used to get a memory mapping of
the file’s content. After closing the file and disposing the file pointer, mapped
memory is directly overwritten with a simple string.

Finally, mapped memory is released and the actual file’s content is mod-
ified as expected.

Every system calls cited above are used:

• Line 14: we get the system dependent memory mapping unit size

• Line 16: retrieving file’s descriptor with write access using open

• Line 18: we ask the system to map the first page of the file’s content
calling mmap

• Line 19: perror is invoked to check for any errors

• Line 20: closing file with close

• Line 21: overwriting memory (file’s content) using memcpy

• Line 22: with msync the current memory content is writed back on
actual file

• Line 23: munmap to release the memory mapped area
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4.2.3 PInvoke

The platform invoke mechanism is used in VES when it is necessary to exe-
cute native or, generally speaking, any compiled code whose source it is not
available for direct compilation.

The .NET (and Mono of course) framework provides the Platform Invoke
(or PInvoke) features with the DllImport attribute to allow calling functions
packaged inside DLLs.

This attribute, which takes the name of the DLL as its first argument, is
placed before a function declaration for each DLL entry point that will be
used.

The signature of the function must match the name of a function exported
by the DLL but we can perform some (correct) implicit type conversion by
defining the DllImport declarations in terms of “our” language types.

The result is a managed entry point for each native DLL function that
contains the necessary transition code (that is called thunk) and data con-
versions.

We can then call the external functions defined into the DLL through
these entry points.

The reserved keyword unsafe is required because invoking an external
function causes the virtual machine to execute native code that cannot be
verified (unmanaged).

All of this work was necessary because at the time we started to port
CodeBricks to Linux these features were still not directly available through
Mono’s classes; not surprisingly, now Mono exposes these functionalities, as
many other Unix services, in the Mono.Unix and Mono.Unix.Native names-
paces.

4.2.4 MapView

The MapView class provides access to a memory mapped file. It contains
a number of functions to speed up both reading and generation of IL code.
The original version was able to work on the Win32 6 platform only, because
it took advantage of native Win32 memory mapping functions. To make it
usable on the Unix platform too, we have done some little adjustments to
introduce Unix memory mapping support shown in the previous Sections.

Cross platform compilation and compatibility has been obtained making
use of standard preprocessor directives such as #IF, #ELIF and #ENDIF check-

6Win32 is a common name standing for the common API used in Microsoft’s operating
systems architecture.
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ing for a symbol defined at compile-time. It is possible to see their usage on
listing ??.

There is a slight difference between Win32 and Linux memory mapping
implementation; on Win32 we must use two system calls, CreateFileMap-
ping() and MapViewOfFile(). The former creates or opens a named or un-
named file-mapping object for the specified file, whereas the latter actually
maps a view of a file into the address space of the calling process.

On the other hand, on Linux a call to mmap() only is requested to map
a file in memory.

Of course, also for releasing resources when memory mapping is no more
needed, the same difference holds: a call to UnMapViewOfFile() and then a
call to CloseHandle() on Win32 whereas munmap() only is enough on Linux.

4.2.5 Putting it together

The libraries containing all the functions mentioned above are:

• libm.so7 for mmap(), munmap()

• libc.so for perror(), getpagesize()

In the end, we have written the following code:

Listing 4.2: PInvoke: using external “native” functions

1 [ DllImport ("libc" , CharSet=CharSet . Auto , SetLastError=true ) ]

2 public stat ic unsafe extern int getpagesize ( ) ;

3

4 [ DllImport ("libm" , CharSet=CharSet . Auto , SetLastError=true ) ]

5 public stat ic unsafe extern IntPtr mmap ( IntPtr start , int length

,

6 int prot , int flags ,

7 int fd , int offset ) ;

8

9 [ DllImport ("libm" , CharSet=CharSet . Auto , SetLastError=true ) ]

10 public stat ic unsafe extern int munmap ( IntPtr start , int length )

;

11

12 [ DllImport ("libc" , CharSet=CharSet . Auto , SetLastError=true ) ]

13 public stat ic unsafe extern int perror ( IntPtr s ) ;

7On the Linux operating system, dynamic linked libraries (“DLL”) are called libraries
and the extension for the related binary files is “.so” (shared object) instead of “.dll”; the
binary format of these files is ELF [?]
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Of course, it is a very small chunk of code besides it is crucial to actually
build a working port of CodeBricks on Mono.

4.3 Extending [a]C#

4.3.1 Our Goal

At this time, we have prepared all the necessary base components to start
describing the main task which is, in a few words, enabling the programmer
to perform -at runtime- some operations on a method based on the knowledge
of its internal annotations only.

At first, we tried to get a minimal running implementation of the idea,
leaving any feasible optimization to a successive moment. This initial version
has served as a test bench to find errors and possible refinements.

First of all, we tried to imagine the easiest way to store, at IL level,
informations about bindings specified by the user at language level: it turned
out to be a further use of “dummy” methods (placeholders) with an ad-hoc
signature.

Initially, we adopted two different methods:

• A placeholder to keep trace of bounded variables.

• A placeholder to retrieve which variable has to hold an inclusion’s re-
turn value.

The first working implementation was actually based upon these two
methods even if, though being effective, it needed to be refined.

Once obtained an initial working version of the code, we started to think
about possible enhancements regarding two different questions:

• Can we avoid to insert two different placeholders ?

• Is there any way to optimize emitted IL code ?

The answer is positive for both questions even though, especially for the
latter issue, we have been always more focused on effectiveness rather than
on performance, so the optimizations will be far from being definitive.

4.3.2 Modifying language grammar

The original [a]C# compiler has been implemented writing an attributed
grammar 8 to be parsed by Coco/R [?].

8An attribute grammar is a collection of productions whose right sides are enriched
with explicit actions written in a general purpose language such as C or Java.
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Coco/R is a compiler generator (a compiler compiler), which takes an
attributed grammar (from now on ATG) of a source language and generates
a scanner and a parser for this language.

The scanner works as a deterministic finite automaton.
The parser uses recursive descent and LL(1) conflicts can be resolved by

a multi-symbol lookahead or by semantic checks, thus the class of accepted
grammars is LL(k) for an arbitrary k.

A main change to the grammar was necessary to allow bindings specifi-
cation on an annotation declaration.

Writing an ATG is a quite frustrating task because the unavoidable mix-
ing of grammar production and C# code quickly turns to be hardly under-
standable. Moreover, we were forced to keep an eye focused on backward
compatibility because, obviously, we did not want to break validity of any
existing [a]C# code.

We chose the following convention for signature specification:

• an asterisk mark (*) before each variable.

• an ampersand mark (&) to designate the variable used to hold an in-
clusion’s return value.

Here’s an example

Listing 4.3: Annotation’s signature specification

1 [ Code ("normal argument" , ∗a , ∗b , &c ) ] {
2 // some code . . .

3 }

Another modification will be described in full details on Section ??.
To view the complete [a]C# ATG including all the changes that have

been introduced, see listing [??] in the appendix.

4.3.3 Annotations inside lambda expressions

In Section ??, we have introduced the lambda expression syntax and we have
claimed the feasibility of supporting annotation declarations inside lambda’s
body. Actually, there would not be any particular difficulties in modifying the
C# 3.0 ATG accordingly. Not even the lambda’s bytecode parsing to retrieve
annotations would be very much complicated, since as we have seen in Section
??, we are still dealing with normal methods; the only real issue could likely
be related to a particular compiler’s (Mono’s, .NET’s, etc.) implementation
of things such as name mangling or hidden class details.
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Rather, we simply argue that in most cases annotating a lambda expres-
sion would not be very useful since:

• by their very nature, lambda expressions tend to be very short and
concise whilst annotations can be used profitably especially in long
and complex methods.

• lambda expressions -in C# 3.0, at least- are only a programming style
so we would not be adding anything really different or new to this
thesis’ results.

• handling all conceivable forms of code annotation in a C# code is
beyond our scope.

For these reasons, we did not implemented neither the syntactic nor the
runtime support to annotations inside lambda expressions.

4.3.4 Extending language runtime support

After modifying language grammar, it is indispensable to ensure that lan-
guage runtime will correctly support all the new features that have been
introduced.

Consequently, there are two different things to deal with:

• To enable the runtime to infer annotation’s free variables (or annota-
tion’s signature) as well as annotation’s local variables.

• To provide any necessary enhancements for supporting the interactions
with CodeBricks that will be needed to allow constructing bricks from
annotations.

4.3.5 Retrieving annotated fragment signature

The first indispensable thing to do is inferring the annotated fragment sig-
nature: we must know what are free and local variables (see Section ??) used
within the fragment.

As seen, for what concerns an annotation, there are two distinct cases to
analyze:

• variables declared outside the annotated fragment that are visible and
accessed inside it, together with any method’s arguments referred inside
the fragment: annotation’s free variables.
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• variables declared inside the annotated fragment: annotation’s local
variables.

To find out which of the two sets an annotation fragment’s variable be-
longs to, we have to describe how method’s variables are defined at IL level.

When a method’s source code is compiled, information about where a
variable has been declared is lost, being not, by any means, relevant for
compiled code execution. Instead, the compiled method is composed of a
preamble where, among other things, there is a list of pairs (index, data-
type) and each of them corresponds to one of method’s local variables.

Method’s arguments can be located looking at the instructions that load
their values on the stack: ldarg.

Therefore we must rely on an analysis of any load and store instructions
(such as ldloc or stloc) to get back the information about variables decla-
ration. Indeed, the following is a property we can exploit during the analysis.

Using the notation of Section ??:

v ∈ locals↔ ∃storev ∈ InA ∧ ¬(∃loadv ∈ PreA ∨ ∃storev ∈ PreA) (4.1)

v ∈ free↔ v /∈ locals ∨ (v ∈ args ∧ ∃ldargv ∈ InA) (4.2)

Using this property, we can write a program to retrieve both local and
free annotation’s variables by scanning a method’s IL code.

See the next (quite silly) example

Listing 4.4: Annotation’s variables

1 public stat ic double GoldenRatio ( ) {
2 double g = 0 ;

3 [ Code ] {
4 int a = 1 ;

5 int b = 5 ;

6 int c = 2 ;

7 g = (a + Math . Sqrt (b ) ) / c ;

8 }
9 return g ;

10 }

and relative IL code; we remind that obviously it is not the real assembly
content but just a more human-readable form, produced by the disassembler
(monodis.exe), of the actual IL’s bytes stream.
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GoldenRatio’s IL
.maxstack 5

.locals init (

float64 V_0,

int32 V_1,

int32 V_2,

int32 V_3)

IL_0000: ldc.r8 0.

IL_0009: stloc.0

IL_000a: ldc.i4.0

IL_000b: call void class ACS.Annotation::Begin(int32)

IL_0010: ldc.i4.1

IL_0011: stloc.1

IL_0012: ldc.i4.5

IL_0013: stloc.2

IL_0014: ldc.i4.2

IL_0015: stloc.3

IL_0016: ldloc.1

IL_0017: conv.r8

IL_0018: ldloc.2

IL_0019: conv.r8

IL_001a: call float64 class System.Math::Sqrt(float64)

IL_001f: add

IL_0020: ldloc.3

IL_0021: conv.r8

IL_0022: div

IL_0023: stloc.0

IL_0024: ldc.i4.0

IL_0025: call void class ACS.Annotation::End(int32)

IL_002a: ldloc.0

IL_002b: ret

Reading the IL, instruction labelled IL 0011 (stloc.1) is the first store
instruction on variable V 1 and that instruction is placed after the anno-
tation’s begin placeholder (IL 000b) so we can deduce that V 1 is an an-
notation’s local variable whilst variable V 0 is an annotation’s free variable
because there is one store instruction before the annotation’s begin place-
holder (IL 0009, stloc.0).

See method AnnotationTree.GetAnnotationSignature() (??) for actual
implementation of the analysis.

78



Chapter 4. Implementation 4.3. Extending [a]C#

The next picture shows basic steps of the algorithm that has been imple-
mented.

Figure 4.1: Annotation’s signature retrieval

4.3.6 Retrieving the annotated fragment

We have defined an override of Annotation.Begin() which has a richer signa-
ture intended to solve the problems described on Section ??:

public stat ic void Begin ( object [ ] p , object r , int idx ) {}

The first parameter is used to hold the annotation’s bindings. The [a]C# com-
piler collects variables named on the signature specification and uses them as
the elements of the array. This way, a static analysis of the final IL code, gen-
erated by the C# compiler, will be able to retrieve, at runtime, the indexes of
the mentioned variables. In fact, we can look at the LdLoc instructions placed
between the array creation instructions and the call to Annotation.Begin();
the arguments of these LdLoc instructions are the indexes we are searching
for.

The second argument - r - will hold annotation’s return variable.

The last argument - idx - is the same of the original Annotation.Begin(int32)
that is the annotation’s index.
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Of course, a call to this new version of Annotation.Begin() will be in-
serted by [a]C# compiler only when a signature has been actually specified,
otherwise the compiler will insert the old Annotation.Begin(int32) call.

Now we provide an example of the whole process, starting from an [a]C#
source code to the final IL code.

Here is an hypothetic method containing an [a]C# annotation:

Listing 4.5: The new Begin()

1 public stat ic double e ( int prec ) {
2 int n = prec ;

3 double r = 0 ;

4 [ Code (∗n , &r ) ] {
5 double i = 1 + (1 / n ) ;

6 r = Math . Pow (i , n ) ;

7 }
8 return r ;

9 }

On line 3 we have specified a binding for the annotated fragment’s n
variable.

The following is the previous method translated in standard C#:

Listing 4.6: New Begin at work

1 [ Code ( ACSIndex=0) ]

2 public stat ic double e ( int prec ) {
3 int n = prec ;

4 double r = 0 ;

5 ACS . Annotation . BeginMeta ( ) ;

6 ACS . Annotation . Begin (new object [ ] { n} , r , 0) ;

7 {
8 double i = 1+(1/n ) ;

9 r=Math . Pow (i , n ) ;

10 }
11 ACS . Annotation . End (0 ) ;

12 return r ;

13 }

Lines 5 and 6 are responsible for producing “metadata” IL code: the first
argument of Annotation.Begin() is an array of one element and that element
is the n variable.

Next box shows IL code that would be produced for the method above
by the C# compiler:
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Begin in IL
.maxstack 6

.locals init (

int32 V_0,

float64 V_1,

float64 V_2)

IL_0000: ldarg.0

IL_0001: stloc.0

IL_0002: ldc.r8 0.

IL_000b: stloc.1

IL_000c: call void class ACS.Annotation::BeginMeta()

IL_0011: ldc.i4.1

IL_0012: newarr [mscorlib]System.Object

IL_0017: dup

IL_0018: ldc.i4.0

IL_0019: ldloc.0

IL_001a: box [mscorlib]System.Int32

IL_001f: stelem.ref

IL_0020: ldloc.1

IL_0021: box [mscorlib]System.Double

IL_0026: ldc.i4.0

IL_0027: call void class ACS.Annotation::Begin(object[], object, int32)

IL_002c: ldc.i4.1

IL_002d: ldc.i4.1

IL_002e: ldloc.0

IL_002f: div

IL_0030: add

IL_0031: conv.r8

IL_0032: stloc.2

IL_0033: ldloc.2

IL_0034: ldloc.0

IL_0035: conv.r8

IL_0036: call float64 class System.Math::Pow(float64, float64)

IL_003b: stloc.1

IL_003c: ldc.i4.0

IL_003d: call void class ACS.Annotation::End(int32)

IL_0042: ldloc.1

IL_0043: ret

All instructions from IL 000c to IL 0027 are the metadata we are inter-
ested on. More precisely, the analysis of this portion of code will discover the
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index of variable n, which has been specified on annotation’s signature (∗n),
by reading instruction IL 0019’s argument (ldloc) which is 0.

Instead, the index corresponding to the variable r, specified as return
(&r), is retrieved by reading the argument’s value (1) of the last ldloc in-
struction before the Annotation.Begin() invocation (IL 0020).

Annotation.BeginMeta()

If the fragment’s annotation declaration includes any binding specification,
we need to store information about the binding. At this purpose we introduce
another method - Annotation.BeginMeta() - call to delimit the portion of IL
code “holding” this kind of data.

Indeed, as suggested by its name, the Annotation.BeginMeta() method
is a placeholder used to mark the starting of an IL code section that we
can consider to be metadata. The ending of this portion of code will be
marked by Annotation.Begin(). For such a reason, our version of the [a]C#
compiler produces a call to Annotation.BeginMeta() just before the call to
Annotation.Begin().

This way, when analyzing IL code resulting from compilation of an [a]C#
source, we will be able to easily distinguish among “real” IL code and the
IL code that will be generated to load on the stack Annotation.Begin()’s
arguments, as shown on the preceding Section.

Undoubtfully, we could avoid to use this marker, relaying on different
information to locate this “metadata” portion of IL code, but such a strategy
would require multiple scans of IL (together with an even more complex
implementation of Code.FillMethodBody(), see Section ??), slowing down
analysis and code generation. This is the reason why we preferred to introduce
this new placeholder.

4.3.7 Patching AnnotationTree.GetCustomAttributes()

We implemented a conservative extension of the AnnotationTree.GetCustomAttributes()
method to make it able to retrieve correct annotation trees of methods’ body
that contains annotated fragments which have been written using both the
original and new [a]C# grammar.

The first step was to replace the following line

i f ( param . Equals ( BEGIN ) ) {

with this

i f ( param . Equals ( BEGIN ) | | param . Equals ( BEGINEX ) ) {
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this way allowing AnnotationTree.GetCustomAttributes() to recognize the
new annotation placeholder too.

The BEGIN and BEGINEX are two constants holding a reference to the orig-
inal Annotation.Begin(int32) and the new Annotation.Begin(object[], object,
int32) respectively.

The or condition was necessary because, though having the same name,
the two methods are completely different so they have different references
too.

As an intermediate step, we have to show a problem related to the [a]C#
source-to-source compiler that we have discovered while developing this the-
sis. Fixing of this bug has required another much more consistent update to
Annotation.GetCustomAttributes() which is described on the next Section.

4.3.8 The unreachable code problem

After having described what modifications were needed to apply to the [a]C#
parser, we want to show a small though subtle [a]C# bug that was, as any
other respectable one, a little hard to identify.

Let us consider the case one wants to write a method such as the following
that, by the way, it is not so unlikely:

Listing 4.7: [a]C# bug

1 public bool check ( int i ) {
2 [ Code ] {
3 i f (i > 0)

4 return true ;

5 else

6 return fa l se ;

7 }
8 }

Compiling it, [a]C# correctly produces the method below

Listing 4.8: [a]C# bug fixed

1 public bool check ( int i ) {
2 ACS . Annotation . Begin (0 ) ;

3 {
4 i f (i>0)

5 return true ;

6 else

7 return fa l se ;

8 }
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9 ACS . Annotation . End (0 ) ;

10 }

This as simple as harmless method will be affected by an [a]C# bug;
it is possible to discover it -as we did actually- just looking to the IL code
generated by the C# compiler for the check(int32) method.

We have to remind that [a]C# is a source-to-source compiler which relies
on the standard C# compiler to produce final IL code.

IL code for ‘‘check’’
IL_0000: ldc.i4.0

IL_0001: call void class ACS.Annotation::Begin(int32)

IL_0006: ldarg.1

IL_0007: ldc.i4.0

IL_0008: ble IL_000f

IL_000d: ldc.i4.1

IL_000e: ret

IL_000f: ldc.i4.0

IL_0010: ret

It is immediately evident the lack of the placeholder method marking anno-
tation’s end.

The reason why the ACS.Annotation.End(int32) call is missing appears to
be quite simple: the effect shown is due to a C# compiler trivial optimization
known as dead code elimination9.

Actually, when compiling the method above (listing ??), the C# compiler
prints a warning message notifying the presence of “unreachable” code, that
is to say a portion of code that a static analisys has recognized as never
executable. Indeed, as one can see, either branches of the if construct bring
to a return instruction which causes an immediate jump out of the method
thus avoiding the last Annotation.End(0) call to be ever reached by the
execution flow. This is the reason why the compiler does not emit any IL
instructions corresponding to that last portion of code; therefore it reduces
IL code size simply discarding the unreachable code. Unfortunately, doing
so, it wastes the correct functioning of [a]C# runtime support which is no
more able to find the annotation’s end marker thus it becomes impossible
for it to correctly recover the method’s annotations tree; in a few words, in
such a situation, the [a]C# runtime fails when asked to retrieve the method’s
annotation tree.

9Dead code elimination is an optimization technique consisting on the removal of any
piece of code that can never be executed.
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Although this bug is related to [a]C# only, implementing the feature
described on Section ?? required to fix the bug.

Furthermore, the particular solution of this problem that is provided by
this thesis does not involve any change to the algorithms presented on Sec-
tions ??, ??, ?? and ??.

Being too complex to check for unreachable code sections originated by
return instructions directly from the ATG, we chose an alternative solution,
based on adding “preventing” calls to a special placeholder method in the
generated C# source wherever they are needed.

In fact, the only reasonable way to avoid the compiler’s optimizer to
remove a call to Annotation.End() preceding a return instruction is to move
the call itself before the return instruction. Of course, an annotated fragment
may contain an arbitrary numbers of return instructions, so it is necessary
to insert a call to a new special placeholder before each of them.

The new special placeholder, Annotation.EndEx(), is the following:

public stat ic void EndEx ( int idx ) {}

The method differs from Annotation.End() only by the name. Anyway,
the meaning of this new placeholder is different from that of Annotation.End();
each call to Annotation.EndEx(i), for a given i, means that, in case we will
not found a call to Annotation.End(i) matching a previous call to Annota-
tion.Begin(i), the annotation’s end has to be considered the first ret instruc-
tion following the last call to Annotation.EndEx(i).

All of this can be done directly adding a new small patch to the ATG
and by modifying the annotations retrieval algorithm.

In fact, an adjustment of the ATG is needed for the generation of proper
calls to Annotation.EndEx(), but we must also adapt the [a]C# runtime to
make it aware of this change, otherwise the absence of any Annotation.End(i)
would break the annotated fragments retrieval algorithm correctness used by
the method Annotation.GetCustomAttributes() of the “Annotation” class,
which is crucial to the whole system we are talking about; as a result, what we
must ensure is that the algorithm will check all the calls to Annotation.EndEx(i)
and will act consequently.

We accomplished the task through the mean of a conservative modifica-
tion to the behaviour of the method mentioned above.

To get more clarity, let us observe how was the original algorithm flow

1. for each method’s IL instructions:

• if the current instruction is a call to Annotation.Begin(i) then a
new annotation object is pushed on a stack and inserted on the
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annotations tree structure. The annotation’s starting position is
set.

• if the current instruction is a call to Annotation.End(i), the an-
notation object on the top of the stack is updated with the anno-
tation’s ending position. The object is removed from the stack.

2. annotations tree is returned.

With our patch, now the algorithm becomes the following:

1. for each method’s IL instructions:

• if the current instruction is a call to Annotation.Begin(i) then a
new annotation object is pushed on a stack and inserted on the
annotations tree structure. The annotation’s starting position is
set.

• if the current instruction is a call to Annotation.End(i):

– if α is null or the index in the annotation object stored in α is
not equals to i, the annotation object on the top of the stack
is updated with the annotation’s ending position, the object
is removed from the stack and a reference to the object is
stored in α.

– otherwise the annotation object stored in α is updated with
the annotation’s ending position.

• if the current instruction is a call to Annotation.EndEx(i)

– search for the position of the first ret instruction that is the
possible annotation’s ending position.

– if α is null then the annotation object on the top of the stack
is updated with the annotation’s ending position and removed
from the stack. A reference to the object is stored in α.

– otherwise if the annotation index i it is the same of that stored
in α then that annotation object is updated. If not, we search
the stack for the corresponding annotation object: if found it
is updated, removed from the stack and a reference to it is
stored in α.

2. annotations tree is returned.

The figure below shows the main steps of the algorithm:
Now we can see how the new version of the [a]C# compiler will actually

translate the example ??:
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Figure 4.2: Annotations’ retrieval

New C# code for ‘‘check’’
public bool check (int i){

ACS.Annotation.Begin(0);

{

if (i>0)

{

ACS.Annotation.EndEx(0);

return true;

}

else

{

ACS.Annotation.EndEx(0);

return false;

}

ACS.Annotation.End(0);

}

and its compiled version

87



4.4. Extending CodeBricks Chapter 4. Implementation

New IL code for ‘‘check’’
IL_0000: ldc.i4.0

IL_0001: call void class ACS.Annotation::Begin(int32)

IL_0006: ldarg.1

IL_0007: ldc.i4.0

IL_0008: ble IL_0015

IL_000d: ldc.i4.0

IL_000e: call void class ACS.Annotation::EndEx(int32)

IL_0013: ldc.i4.1

IL_0014: ret

IL_0015: ldc.i4.0

IL_0016: call void class ACS.Annotation::EndEx(int32)

IL_001b: ldc.i4.0

IL_001c: ret

The last (third) call to Annotation.End(0) is still missing, but we now
have two new calls - those on IL 000e and IL 0016 - that allows to infer
the real annotation’s ending position. Indeed, the algorithm described above
will correctly set the annotation’s ending position as the instruction number
IL 001c.

4.3.9 Handling errors

A good programming practice suggests to define a new type of exception
for each new kind of possible error arising from program usages; following
this simple principle we have defined the OperationException (see listing
??) that extends the System.Exception class and provide two convenient
constructors override, allowing to specify an error message as well as the
particular annotation object causing the error.

It will be shown on next Sections which situations require to throw an
instance of these exceptions.

4.4 Extending CodeBricks

The hardest part of the development work related to this thesis consisted in
extending the CodeBricks library.

Indeed, all the operations on annotated code fragments described in this
thesis are performed by the CodeBricks’ class Code.

We have defined a new constructor for this class and we have enhanced
its IL code generation algorithm.
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4.4.1 A new constructor for Code

The class Code is the real core of CodeBricks. An instance of Code represents
a code value which is a piece of executable code.

In the original version, a new Code instance can be created by passing to
its constructor a descriptor of a method (an instance of System.Reflection.MethodInfo).

We have extended the Code class adding a new constructor:

public Code ( MethodInfo m , Operation [ ] operations )

The constructor allows to specify a list whose each element is one of the
operations that have been described in this thesis; these operations will be
applied sequentially to the method m (see again Section ??).

The Operation class is a representation of any one of such operations.
The Operation constructors have three different signatures:

• The following constructor is used when defining either an extrusion or
an removal operation of the annotation at.

public Operation ( AnnotationTree at , CodeAttribute . Operations

operation )

• The constructor below is used to define an inclusion operation. The
last parameter represents the code to be included.

public Operation ( AnnotationTree at , CodeAttribute . Operations

operation , Code code )

• This last constructor is used to define a copy operation. The second
parameter is the annotation to be copied.

public Operation ( AnnotationTree at , AnnotationTree copy ,

CodeAttribute . Operations operation )

All constructors, of course, allow to specify an annotation as first argu-
ment as well as the operation to be performed. More precisely - because
annotations can be nested - the first argument is an instance of the class
AnnotationTree which is a tree where each node is an annotation; the con-
structors operate on the annotation corresponding to the root node only.

The new constructors initialize a new Code instance by carrying out the
following tasks:

• Retrieval of both annotated fragment’s free variables (parameters) and
local variables.
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• In case of extrusion, initialization of data related to the annotation’s
signature to allow method generation.

• In case of inclusion, check of signatures compatibility (see Section ??). If
bindings specified on target annotation are invalid then the constructor
will raise an exception.

If no errors are detected, the new Code instance will represent the code
value deriving from the applied operations. However, it will be still possible
for errors to be detected at actual code generation time, that is when the
Code.FillMethodBody() method will be invoked. We have to remind that
CodeBricks adopts a lazy approach so IL code generation is delayed until the
user really needs to execute the method represented by the Code object.

4.4.2 IL code generation

The System.Reflection.Emit namespace, contained in the standard Mono
(and .NET) framework, provides all necessary classes to realize runtime code
generation. These classes are used throughout CodeBricks to generate at
runtime methods related to code values.

The most important class is ILGenerator which enables to emit a stream
of IL instructions forming the method’s body and handles many low level
issues such as instruction coding; its usage can be noted in the source code
of the Code.FillMethodBody() method (Section ??).

4.4.3 Enhacing Code.FillMethodBody method

As said, a Code object is a runnable piece of code. To allow execution,
the Code class generates a method using the facilities provided by Sys-
tem.Reflection.Emit namespace.

The method generation final process is carried out by FillMethodBody(),
which produces the actual IL code forming the method’s body.

In a few words, FillMethodBody() scans the input method’s IL stream
instruction by instruction, modifies instruction’s arguments when needed and
then and re-emits the instruction in a new stream. The new stream will be
the new method’s body.

Because we want to manipulate the input method’s IL stream by applying
the operations described in this thesis, the FillMethodBody() method is the
place where to put the actual implementation of these operations. For such
a reason, almost all the relevant source code that has been written for this
thesis is located here.
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Most of our efforts have been dedicated to keep the IL code generation’s
cost linear in terms of IL instructions and to minimize memory usage.

Describing the FillMethodBody() new behaviour is quite complex so we
will imagine it to be composed of four parts:

1. all necessary IL instructions related to local variables declarations are
emitted.

2. original method’s instructions are analyzed one by one.

3. depending on the kind of the current operation, we check if it is time
to perform the operation.

4. if the execution flow reaches this part, then the current instruction of
the input method’s IL stream is re-emitted in the new method’s

In part 1 in particular, we had to add the code dealing with an aspect of
the extrusion operation: we are going to produce a method with a different
signature from the input method’s one, so we have to emit proper instructions
to load and store new method’s arguments. Therefore, here are emitted the
instructions to load each “extruded” method’s arguments and to store their
value on the respective local variables.

In part 2, given the annotation interested by the current operation - we
remind that FillMethodBody() must perform a list of operations - we search
for the annotation’s begin placeholder and retrieve the associated metadata,
if any, that are relative to annotation’s bindings.

This is done by searching for annotations’ placeholders Annotation.BeginMeta()
and Annotation.Begin(), and by analyzing the IL instructions between these
two method calls.

Part 3, in summary, performs one of the the following possible actions:

• removal : IL instructions enclosed by the annotation are discarded.

• inclusion: the IL instructions of the included Code object are emitted.

• extrusion: the IL instructions enclosed by the annotation are emitted.

The inclusion operation requires various tasks to be accomplished:

• any Ldarg instruction (load of a method’s parameter) is replaced by a
Ldloc with proper local variable’s index.

• any Ldloc, Ldloca, Stloc instructions’ parameters are replaced with
proper local variable’s index.
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• any ret (return) requires to solve the type compatibility problem (see
??) and therefore to emit necessary additional IL code instructions or
to throw a runtime exception.

Part 4 simply reads the instruction on the input IL stream and re-emit
it on the new IL stream; in this part we have corrected the jump relocation
code that now takes advantage of the right label mechanism instead of the
previous what was based on absolute offsets.

This was a fundamental adjustment to allow any code manipulation, in
particular any insertion and removal of IL instructions; actually, the ILGen-
erator class, that is used to produce IL code, must be considered as an input
to the just-in-time (JIT) compiler which performs, at runtime, some opti-
mizations on the IL code produced by ILGenerator, just like code motion10

or loop unrolling11. At this purpose, when emitting branch instructions, it is
required to specify labels instead of absolute offsets, to facilitate JIT’s duty.

Another correction consisted in a bug fix: the old FillMethodyBody() did
not handle correctly a .NET implementation detail related to constructors.

However, the real method execution flow is not, by any means, so linear.
Indeed, to avoid a complete re-writing of Code.FillMethodBody(), we intro-
duced our modifications inside the original main while statement which scans
the input method’s instructions.

Furthermore, we added the code dealing with details like type casting and
exceptions throwing.

It is interesting to note that the code we developed is executed only when
an operation on an annotation is actually required, thus it does not produce
any feasible side-effects on previous Codebricks’ behaviour.

4.4.4 Implementing type casting

As for the inclusion operation, we have seen how it is possible for the user
to specify an annotation’s signature, allowing to declare desired bindings
between annotation’s free variables and the external environment.

The problem is that the types of bound variables can be different from
that of respective annotation’s free variables.

Obviously, for the inclusion operation to be correct, it is necessary for each
annotation free variables’ type to be assignment-compatible with the bound

10Loop-invariant code motion is a technique consisting on moving a piece of code, that
is contained inside a loop, before or after the loop itself, without affecting the program’s
semantics.

11Loop unrolling is a technique which duplicates the body of a loop multiple times, in
order to decrease the number of times the loop condition is tested and the number of
jumps.
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variable’s type; if not, we must abort the operation throwing an exception to
notify the user about a type-incompatibility problem.

In both cases, first of all we have to discover whether these two types
are type-compatible or, more precisely, whether it is permitted to assign a
value, whose type is that of the value returned by the included method, to
the user-specified variable whose type may be different. For full details see
Chapter 8, Part I of [?].

To inspect variable’s types, the implementation must deal with both ob-
ject types and value types.

Neither Mono nor .NET gives any direct support to decide whether two
value types are compatible or not.

That is the reason why value types compatibility problem has been solved
simply using an hard-coded conversion table.

Here is a representation of the conversion table as extracted from [?].

Figure 4.3: Value types of C#

When the two types interested by the conversion are object types, then the
problem is easily resolved by Type.IsAssignableFrom(Type from), provided
by the System namespace, which simply check the class’ hierarchy for the
relation above to hold.

Anyway, when we deal with an object type and a value type, the case is
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more complex because it requires to check for the existence of two special
methods belonging to the class whose value is to be assigned:

• op Explicit(R): it represents an explicit cast operator.

• op Implicit(R): it represents an implicit cast operator.

To find these methods, we need once again to take advantage of reflection
to introspect a class; to this purpose we have developed the code listed below:

Listing 4.9: Finding custom cast operators

1 private stat ic MethodInfo ExistsCustomCast ( Type from , Type to ,

bool _explicit ) {
2 String name = "op_Implicit" ;

3 i f ( _explicit )

4 name = "op_Explicit" ;

5 MethodInfo cast = from . GetMethod (name , new Type [ ] { from }) ;

6 i f ( cast != null )

7 i f ( cast . ReturnType . Equals (to ) )

8 return cast ;

9 return null ;

10 }

The method searches the “from” class type for a method named either
op Implicit or op Explicit with the correct signature that is a signature con-
sisting of one only argument of type “to”: see line number 5. If actually found,
a reference to that method is returned for IL generation purposes.

4.4.5 Considerations about performances

Another reason that has been motivating the choice for CodeBricks as im-
plementation base was its remarkable performances both on IL code analysis
and generation.

The algorithm performing the operations on annotations has a linear cost
in terms of the number of method’s IL instruction (O(n) where n is the sum of
all the input method’s IL instructions and all possible other included code’s
IL instructions). As a result, we do not have introduced any performance
worsening.

Furthermore, for what concerns generated IL code, we tried to follow
as much as possible ECMA’s [?] guidelines and suggestions to improve IL
execution speed.

Finally, the small IL code size increase due to the insertion of meta-
data and dummy methods performed by the [a]C# compiler is not relevant.
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Moreover an [a]C#’s annotations-aware JIT could easily discard this kind of
“useless” method calls.

4.5 Difficulties experienced

Working on a fresh open-source project is not always a so simple task. What
follows is just a brief summary of the main problems we had to face through-
out the development of this thesis:

• We adopted Monodevelop [?] as IDE 12 though, as by now, it is not much
more than an editor; actually, it lacks many common development tools
just like assisted code refactoring or source code navigation.

• Mono documentation, as many other open source products, is far away
from being complete and exhaustive.

• As a matter of fact, we were not able to exploit any debugging tool
though, whilst we was writing this thesis, a Mono’s debugger project
was already started. On the other hand, Monodevelop’s integrated de-
bugger was still missing.

• At the time we started developing this thesis, Mono’s support to .NET
2.0 framework (therefore things like generics13 and generic collections
implementation) was still incomplete. We initially forced Monodelevop
to use gmcs.exe instead of mcs.exe compiler though this was not en-
couraged by the Mono team; fortunately, since its version 0.11, it is
possible to choose the compilation’s target runtime version.

• there was no documentation on the existing CodeBricks, CLIFileRW
and [a]C# source code except for some comments.

In summary, the whole thing turned to be an exciting programming effort.
Nevertheless, we still think open source philosophy is a wonderful example

of what can be done through collaboration on a worldwide community.

12Integrated Development Environment
13Generics are a language feature very similar to C++ template programming.
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Chapter 5

Test drive

“But, in case signals can be neither be seen or perfectly understood, no captain can do
very wrong if he places his ship alongside that of the enemy.”

Vice Admiral Horatio Nelson

5.1 Examples

To bring a proof of real on-field runtime annotation manipulation usability,
we present a few examples exploiting the technique that has been described
in this thesis in three different application areas. The first one is about code
reuse whereas the second example shows a demonstrative implementation of
a minimal runtime aspect oriented programming system. The last example
demonstrates annotation manipulation’s effectiveness when the technique is
applied to code specialization.

5.1.1 From interactive to batch

As an example of metaprogramming realized through the means of anno-
tations, we show a transformation which, given an interactive (in terms of
its input and output) program, produces an equivalent “batch”1 program
whose input has been replaced with constant values or values produced au-
tomatically, and whose output has been redirected to one or more desired
targets.

To realize such transformation, our program will rely on the following
property: all input program’s source code sections dealing with input, output
and debug have been annotated with well-known attributes.

Well-know attributes has been defined as follows:

1Batch processing is the execution of a series of programs (”jobs”) on a computer
without human interaction, when possible.
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Listing 5.1: Input/Output Attributes

1 using System ;

2 using ACS ;

3

4 public class IOAttribute : CodeAttribute

5 {
6

7 public enum Redirection

8 {
9 CONSOLE ,

10 FILE ,

11 LOG

12 }
13

14 public Redirection Redirect ;

15

16 }
17

18 [ AttributeUsage ( AttributeTargets . Method , AllowMultiple=true ) ]

19 public class InputAttribute : IOAttribute

20 {
21

22 }
23

24 [ AttributeUsage ( AttributeTargets . Method , AllowMultiple=true ) ]

25 public class OutputAttribute : IOAttribute

26 {
27

28 }

Attribute’s name should be self-explanatory.
In this example, the input program asks the user for a string and prints

out an SHA-5122 encoding of the supplied string, together with information
about total time spent in encoding. The program terminates when the user
enters the “exit” string.

Here is the source:

Listing 5.2: Input program

1 using System ;

2 using ACS ;

2The SHA (Secure Hash Algorithm) family is a set of related cryptographic hash
functions.
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3 using System . IO ;

4 using System . Text ;

5 using System . Security . Cryptography ;

6

7 public class Interactive {
8

9 public stat ic HashAlgorithm hash = SHA512 . Create ( ) ;

10 public stat ic string EXIT = "exit" ;

11

12 public stat ic string Encrypt ( string str )

13 {
14 MemoryStream ms = new MemoryStream ( ) ;

15 byte [ ] buf = Encoding . UTF8 . GetBytes ( str ) ;

16 ms . Write (buf , 0 , buf . Length ) ;

17 Decoder dec = Encoding . UTF8 . GetDecoder ( ) ;

18 int n = dec . GetCharCount (buf , 0 , buf . Length ) ;

19 char [ ] chars = new char [ n ] ;

20 dec . GetChars ( hash . ComputeHash (ms ) , 0 , buf . Length , chars , 0) ;

21 return new String ( chars ) ;

22 }
23

24 public stat ic void Main ( ) {
25 string input = null ;

26 do {
27 [ Input (∗input , &input ) ]

28 {
29 Console . WriteLine ("Type a string to encrypt or ’exit’ to

quit: " ) ;

30 input = Console . ReadLine ( ) ;

31 }
32

33 DateTime start = DateTime . Now ;

34 string output = Encrypt ( input ) ;

35 TimeSpan timeElapsed = DateTime . Now − start ;

36 string elapsed = timeElapsed . ToString ( ) ;

37

38 [ Output ( Redirect = OutputAttribute . Redirection . LOG , ∗
elapsed ) ]

39 {
40 Console . WriteLine ( String . Format ("Elapsed time: {0}" ,

elapsed ) ) ;

41 }
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42

43 [ Output ( Redirect = OutputAttribute . Redirection . FILE , ∗
output ) ] {

44 Console . WriteLine ( String . Format ("Encrypted string is

’{0}’" , output ) ) ;

45 }
46 } while ( ! input . Equals ( EXIT ) ) ;

47 }
48

49 }

As we can see, Main() methods contains three annotated fragments: the first
fragment has been annotated with an Input attribute whereas the second
and third have been annotated with Output attributes. Anyway, these two
annotations differ on their Redirect named parameter: one has been set to
the “Log” constant’s value while the other to the “FILE” constant’s value.

Apart from these annotations, the Interactive’s Main() is a normal method
with a standard input/output behaviour. Now we want it to be transformed,
at runtime, in a batch program (without user interaction) whose input will
consist on a sequence of random3 numbers and whose output will be stored
on a “output.sha512” file. Furthermore, the program’s log output will be
stored on a “log.txt” file.

The program performing the transformation is quite simple, its key con-
cept being the definition of three methods:

• GenerateString which returns a string composed by random characters.

• Log which writes its string argument to a predefined log file.

• Output which writes its string argument to a predefined text file.

Here follow the transformer program’s source code:

Listing 5.3: Transformer program

1 using System ;

2 using System . Reflection ;

3 using System . Collections ;

4 using System . Text ;

5 using System . IO ;

6 using ACS ;

7

3these numbers will be pseudo-random numbers, of course.
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8 public class Batch {
9

10 public stat ic string GenerateString ( )

11 {
12 Random rand = new Random ( ) ;

13 string s = rand . Next (1000) . ToString ( ) ;

14 i f (s . Equals ("999" ) )

15 s = Interactive . EXIT ;

16 return s ;

17 }
18

19 public stat ic void Log ( string s )

20 {
21 StreamWriter log = new StreamWriter (new FileStream ("log.txt"

, FileMode . Append ) ) ;

22 log . WriteLine (s ) ;

23 log . Close ( ) ;

24 }
25

26 public stat ic void Output ( string s )

27 {
28 StreamWriter output = new StreamWriter (new FileStream ("

output.sha512" , FileMode . Append ) ) ;

29 output . WriteLine (s ) ;

30 output . Close ( ) ;

31 }
32

33 delegate void Void ( ) ;

34 delegate void Str ( string i ) ;

35

36 public stat ic void Main ( string [ ] args )

37 {
38 Assembly asm = Assembly . GetExecutingAssembly ( ) ;

39 Type program = asm . GetType ("Interactive" ) ;

40 MethodInfo main = program . GetMethod ("Main" ) ;

41 Code In = new Code ( typeof ( Batch ) . GetMethod ("GenerateString" )

) ;

42 Code Out = new Code ( typeof ( Batch ) . GetMethod ("Output" ) ) ;

43 Code Log = new Code ( typeof ( Batch ) . GetMethod ("Log" ) ) ;

44 AnnotationTree [ ] io = Annotation . GetCustomAttributes ( main ) ;

45 ArrayList operations = new ArrayList ( ) ;

46
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47 foreach ( AnnotationTree annot in io )

48 {
49 i f ( annot . Node [ 0 ] is InputAttribute )

50 {
51 operations . Add (new Operation ( annot ,

52 CodeAttribute . Operations . INCLUDE_BEFORE , In ) ) ;

53 operations . Add (new Operation ( annot , CodeAttribute .

Operations . REMOVE ) ) ;

54 } else i f ( annot . Node [ 0 ] is OutputAttribute )

55 i f ( ( ( IOAttribute ) annot . Node [ 0 ] ) . Redirect == IOAttribute

. Redirection . FILE )

56 {
57 operations . Add (new Operation ( annot ,

58 CodeAttribute . Operations . INCLUDE_BEFORE , Out ) ) ;

59 operations . Add (new Operation ( annot , CodeAttribute .

Operations . REMOVE ) ) ;

60 } else i f ( ( ( IOAttribute ) annot . Node [ 0 ] ) . Redirect ==

IOAttribute . Redirection . LOG )

61 {
62 operations . Add (new Operation ( annot ,

63 CodeAttribute . Operations . INCLUDE_BEFORE , Log ) ) ;

64 operations . Add (new Operation ( annot , CodeAttribute .

Operations . REMOVE ) ) ;

65 }
66 }
67

68 Console . WriteLine ("operations # = {0}" , operations . Count ) ;

69 Code batch = new Code (main ,

70 ( Operation [ ] ) operations . ToArray ( typeof ( Operation ) ) ) ;

71 Delegate batchMain = batch . MakeDelegate ( typeof ( Void ) , "boh.

dll" ) ;

72 batchMain . DynamicInvoke ( null ) ;

73 }
74

75 }

As first, lines from 0 to 0, the program loads the input program’s assem-
bly to retrieve a reference to its main method. Then this method is inspected
to retrieve the annotated fragments that are supposed to have been defined
inside it. At this time, on line 0 the program creates three new Code in-
stances bound to the methods discussed above. After this necessary setup,
the program scans all retrieved annotations to build a list of operation on
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the annotations, applying the following rules (lines from 0 to 0):

• if the annotation type is Input, then the annotation must be replaced
with the Code instance bound to GenerateString.

• if the annotation type is Output, then the annotation must be replaced
with the Code instance bound to Output or to Log according to the
“Redirect” annotation’s property value.

Finally, the program creates a new Code instance bound to the input
program’s main method but, this time, the computed operations list is passed
to the the Code constructor too. As a result, we will get a new Main() whose
interactive portions have been replaced by different non-interactive ones.

As last, the resulting code is executed by dynamically invoking the method
that will be generated by the call to MakeDelegate().

5.1.2 Runtime AOP

As discussed on ??, AOP is now widely used as a means to insert arbitrary
cross-cutting source code into another existing source code. Indeed, all AOP
system just like AspectJ [?] [?], perform their actions at compile time and
they do not allow to inject code inside method’s bodies.

Instead, here we present a simple example proving how it is possible to
use annotation’s manipulation to realize AOP at runtime and, at the same
time, to remove the above restraint.

We start by defining an “AOP” attribute:

Listing 5.4: AOP Attribute

1 using System ;

2 using ACS ;

3

4 [ AttributeUsage ( AttributeTargets . Method , AllowMultiple=true ) ]

5 public class AOPAttribute : CodeAttribute {
6

7 public enum Advices

8 {
9 PRE ,

10 POST ,

11 AROUND ,

12 SWEEP

13 }
14

15 public Advices Advice ;
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16 public String Id ;

17 public String Group ;

18

19 }

The Advice property has to be considered as an hint for the AOP runtime
engine on applying an AOP strategy. Property’s value intuitive meaning is
as follows:

• SWEEP : the annotated fragment could be removed. This is the case
of any debugging-related or even logging-related code. It worth noting
that this particular feature is not allowed by AspectJ.

• PRE : an advice should be inserted immediately before the annotated
fragment. This resembles the AspectJ’s before advice modifier.

• POST : an advice should be inserted immediately after the annotated
fragment. This resembles the AspectJ’s after advice modifier.

• AROUND : an advice should be inserted immediately after the anno-
tated fragment. This resembles the AspectJ’s around advice modifier.

Then, supposed we a have a method executing the following (silly) com-
putation,

Listing 5.5: Not-annotated DoSomething

1 public stat ic void DoSomething ( )

2 {
3 int v = rnd . Next (0 , 100) ;

4 string s ;

5 Console . WriteLine ("v = {0}" , v ) ;

6 v ∗= v ;

7 v += 1 ;

8 v = v \% 2 ;

9 s = v == 0 ? "even" : "odd" ;

10 Console . WriteLine ("v is {0}" , s ) ;

11 }

we can decorate some method’s statements with our newly defined AOP
attribute:

Listing 5.6: AOP-annotated DoSomething

1 public stat ic void DoSomething ( )

2 {
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3 int v = rnd . Next (0 , 100) ;

4 string s ;

5

6 [ AOP ( Advice = AOPAttribute . Advices . SWEEP , Group = "debug" ) ]

7 {
8 Console . WriteLine ("v = {0}" , v ) ;

9 }
10

11 [ AOP ( Advice = AOPAttribute . Advices . POST , Id = "square" ) ]

12 {
13 v ∗= v ;

14 }
15

16 [ AOP ( Advice = AOPAttribute . Advices . AROUND , Id = "increment" ) ]

17 {
18 v += 1 ;

19 }
20

21 v = v \% 2 ;

22

23 [ AOP ( Advice = AOPAttribute . Advices . PRE , Group = "debug" , Id =

"parity" ) ]

24 {
25 s = v == 0 ? "even" : "odd" ;

26 }
27

28 [ AOP ( Advice = AOPAttribute . Advices . SWEEP , Group = "debug" ) ]

29 {
30 Console . WriteLine ("v is {0}" , s ) ;

31 }
32 }

Doing so, we enable a runtime AOP system, to be discussed later, to
apply transformations to the method; in other words, the engine will be able
to retrieve all necessary information to perform AOP weaving at runtime.

We have written a simple Gtk# GUI program encapsulating a very min-
imal runtime AOP system suited for a quick demonstration. The program
simply starts a thread continuously executing the above method. The pro-
gram’s GUI allows the user switch on and off the AOP engine and see its
effects. Moreover, the GUI also allows to choose an AOP strategy different
from that “hard-coded” on the annotations; this is to remark runtime AOP’s
benefits with respect to common compile-time AOP.
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Our minimalistic AOP engine will be capable of:

• injecting advices according to the hints coded in annotation attribute’s
properties.

• injecting advices before, after or around any annotation whose “Id”
property has a value chosen by the user.

• removing any annotation whose annotation’s “Group” property has a
value chosen by the user.

Of course, it would be feasible -and necessary- for a real AOP engine
to perform much more operations. Anyway, the operations listed above are
enough to show runtime AOP’s promising features.

The program’s main thread simply loops on a call to a delegate; at pro-
gram’s startup, that delegate (handler) points to the original DoSomething()
method. When the user presses on the “Turn on AOP” GUI’s button, the
AOP engine creates a new Code instance by applying different annotation’s
operations on DoSomething(), then it set the handler to the new delegate
returned by the usual Code.MakeDelegate(). On the contrary, when the user
clicks on the “Turn off AOP” button, the handler is set to DoSomething()
again, therefore the original program’s behaviour is restored.

We provided this example to focus attention on AOP’s most important
features:

• enabling the user to switch, at runtime, that is without re-compilation,
between AOPized and non AOPized program’s behaviour.

• allowing the user to dynamically change both aspects and advices, at
any time, still avoiding program’s restart or re-compilation.

As said, the AOP engine implemented in the example is quite trivial but,
on the other hand, only a few lines of code has been necessary to build it,
further proving fragments’ annotation usefulness.

Our AOP engine’s core implementation is presented below:

Listing 5.7: AOP-annotated DoSomething

1 Code advice = new Code ( typeof ( RuntimeAOP ) . GetMethod ("Advice" ) ) ;

2 MethodInfo mi = ( ( Handler ) RuntimeAOP . DoSomething ) . Method ;

3 AnnotationTree [ ] annotations = Annotation . GetCustomAttributes (mi

) ;

4 ArrayList operations = new ArrayList ( ) ;

5 foreach ( AnnotationTree annot in annotations )

6 {
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7 i f ( annot . Node [ 0 ] is AOPAttribute )

8 {
9 AOPAttribute aopa = annot . Node [ 0 ] as AOPAttribute ;

10 i f ( choice . ActiveText . Equals ( HARD_CODED ) )

11 switch ( aopa . Advice )

12 {
13 case AOPAttribute . Advices . PRE :

14 operations . Add (new Operation ( annot ,

15 CodeAttribute . Operations . INCLUDE_BEFORE , advice ) ) ;

16 break ;

17 case AOPAttribute . Advices . POST :

18 operations . Add (new Operation ( annot ,

19 CodeAttribute . Operations . INCLUDE_AFTER , advice ) ) ;

20 break ;

21 case AOPAttribute . Advices . AROUND :

22 operations . Add (new Operation ( annot ,

23 CodeAttribute . Operations . INCLUDE_BEFORE , advice ) ) ;

24 operations . Add (new Operation ( annot ,

25 CodeAttribute . Operations . INCLUDE_AFTER , advice ) ) ;

26 break ;

27 case AOPAttribute . Advices . SWEEP :

28 operations . Add (new Operation ( annot ,

29 CodeAttribute . Operations . REMOVE ) ) ;

30 break ;

31 }
32 else i f ( choice . ActiveText . Equals ( ADD_BEFORE + aopa . Id ) )

33 operations . Add (new Operation ( annot ,

34 CodeAttribute . Operations . INCLUDE_BEFORE , advice ) ) ;

35 else i f ( choice . ActiveText . Equals ( ADD_AFTER + aopa . Id ) )

36 operations . Add (new Operation ( annot ,

37 CodeAttribute . Operations . INCLUDE_AFTER , advice ) ) ;

38 else i f ( choice . ActiveText . Equals ( REMOVE_GROUP + aopa . Group )

)

39 operations . Add (new Operation ( annot ,

40 CodeAttribute . Operations . REMOVE ) ) ;

41 else i f ( choice . ActiveText . Equals ( ADD_AROUND + aopa . Id ) )

42 {
43 operations . Add (new Operation ( annot ,

44 CodeAttribute . Operations . INCLUDE_BEFORE , advice ) ) ;

45 operations . Add (new Operation ( annot ,

46 CodeAttribute . Operations . INCLUDE_AFTER , advice ) ) ;

47 }
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48 }
49 }
50 Code aopized = new Code (mi , ( Operation [ ] ) operations . ToArray (

typeof ( Operation ) ) ) ;

51 AOPHandler = aopized . MakeDelegate ( typeof ( Handler ) ) as Handler ;

On line 1 the Code instance bound to the Advice() method is retrieved
(Advice() standing for the common AOP’s advice concept, indeed it could
be whatever else methods, given an annotation’s compatible signature).

Lines 2 and 3 retrieve DoSomething (but we could use any other body-
annotated method) annotation’s.

From lines 5 to 49, the program builds different annotation’s operations,
depending on user settings exposed by program’s GUI.

Finally, line 50 creates the new Code instance representing the AOPized
DoSomething() and line 51 produces related delegate (and IL code, of course).
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A screenshot of the annotation based demo application is shown on figure
??. On that figure, we can see the effect of the runtime weaving operation,

Figure 5.1: Annotation-based AOP demo

which is selected in the user interface.

5.1.3 SVG Rendering

Usually, graphics rendering of any complex object, like a 2D vectorial image
or 3D model, requires the program to store in memory a data structure
representing the object itself (in most cases, some kind of tree), then to access
the data structure as many times as needed to draw the object on screen.
Although this approach can have acceptable performance when the data-
structure is relatively small, that is the object is quite simple, it becomes
even more inefficient as object’s complexity increases, because of memory
consumption and memory access delays.

Using runtime metaprogramming, we can compile, at runtime, a code
(a method, in the end) which can render the object without accessing any
object’s data structure; the object data structure is virtually compiled in, as
if it was hard-coded by the user.

Unfortunately, runtime code generation is a quite complex and bug-prone
task.
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For such a reason, here we show how annotations manipulation can be
used to hide those complexity, demanding all runtime code generations details
to the annotation manipulation’s API.

The example consists of a simple renderer for a dummy SVG4-like vecto-
rial image description language. Our example-targeted ESVG simply allows
to declare only two different 2D objects, that is rectangles and circles; each
of them has attributes describing their position, dimensions and color.

Here is an ESVG example:

Listing 5.8: ESVG sample

1 <?xml v e r s i o n=” 1 .0 ”?>

2 <esvg>

3 <r e c t a n g l e x=”35” y=”77” width=”11” he ight=”29” c o l o r=”1” />

4 <c i r c l e x=”48” y=”96” width=”27” he ight=”6” c o l o r=”1” />

5 </esvg>

The example program builds a simple GTK# GUI which is composed by:

• a main drawing area, where the ESVG’s content is displayed

• one button to let the user choose the ESVG file to be opened

• a drop-down list to change among three different rendering styles

• a button allowing to switch between the standard iterative drawing
algorithm and the “compiled” one

When the user chooses an ESVG file, the program parses file’s content and
draws its representation on the rendering area, using one of the above ap-
proaches depending on the related button’s state.

A screenshot of the demo program’s window is shown on figure ??.
Now we can proceed to analyze how the compiled drawing code can be

automatically generated by the program, exploiting the annotations manip-
ulation runtime support.

We have created two classes responsible for drawing respectively a rect-
angle and a circle based on these parameters:

• x, y : cartesian coordinates of the upper left corner or the rectangle or
the center of the circle

• w, h: width and height of the rectangle or the bounding rectangle for
the case of the circle

4SVG is a language for describing two-dimensional graphics and graphical applications
in XML. SVG 1.1 is a W3C Recommendation.
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Figure 5.2: The SVG-like viewer

• color: index of the color to be used

• opt: the drawing style to be applied (outline, dashed, filled)

In each of these classes, the key portions of the respective method per-
forming the actual drawing have been annotated using a custom attribute
(“DrawAttribute”). Having a look to the DrawRect drawing method (the
circle’s one DrawCircle is almost identical), we can notice how the various
fragments have been annotated. It is worth to remark that -notwithstanding
the presence of the annotations- the flow of the method is quite natural and
straightforward.

Listing 5.9: Annotated DrawRect

1 public stat ic void DrawRect ( int x , int y , int w , int h , int

color , int opt )

2 {
3 int lx = ( int ) (x / 100 .0 ∗ window . VisibleRegion . Clipbox . Width

) ;

4 int ly = ( int ) (y / 100 .0 ∗ window . VisibleRegion . Clipbox .

Height ) ;

5 int lw = ( int ) (w / 100 .0 ∗ window . VisibleRegion . Clipbox . Width

) ;
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6 int lh = ( int ) (h / 100 .0 ∗ window . VisibleRegion . Clipbox .

Height ) ;

7 [ Draw ]

8 {
9 i f ( opt == ( int ) DrawAttribute . Options . DASHED )

10 {
11 [ Draw ( option=DrawAttribute . Options . DASHED ) ]

12 {
13 gc . SetDashes (0 , new sbyte [ ] { 1 , 2} , 2) ;

14 gc . SetLineAttributes (1 , LineStyle . OnOffDash , CapStyle .

Butt , JoinStyle . Miter ) ;

15 gc . Foreground = Render . COLORS [ color ] ;

16 window . DrawRectangle (gc , false , lx , ly , lw , lh ) ;

17 }
18 }
19 else i f ( opt == ( int ) DrawAttribute . Options . FILL )

20 {
21 [ Draw ( option=DrawAttribute . Options . FILL ) ]

22 {
23 gc . Foreground = Render . COLORS [ color ] ;

24 window . DrawRectangle (gc , true , lx , ly , lw , lh ) ;

25 }
26 }
27 else i f ( opt == ( int ) DrawAttribute . Options . OUTLINE )

28 {
29 [ Draw ( option=DrawAttribute . Options . OUTLINE ) ]

30 {
31 gc . Foreground = Render . COLORS [ color ] ;

32 window . DrawRectangle (gc , false , lx , ly , lw , lh ) ;

33 }
34 }
35 }
36 }

The option property of the custom annotation class DrawAttribute is
used to mark the fragments of code that performs the three different draw-
ing styles. The two remaining outer annotations have not been marked for
simplicity but they could have been decorated properly, of course. For the
ease of the explanation, let we call:

• R the outer annotation of the method DrawRect

• rdashed, rfill, routline the three inner annotations of R, respectively
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• C the outer annotation of the method DrawCircle

• cdashed, cfill, coutline the three inner annotations of C, respectively

To obtain at runtime a method ables to draw an ESVG content as if it
was hard-coded, the main program performs the following steps once during
the initialization:

1. ∀ri|i ∈ {dashed, fill, outline} creates a new “Code” object Mri by
applying two operations on DrawRect : copy of ri before R and then
removal of R

2. ∀ci|i ∈ {dashed, fill, outline} creates a new “Code” object Mci by
applying two operations on DrawCircle: copy of ci before C and then
removal of C

then, when the user opens an ESVG file:

1. creates the list of operations on annotations L

2. for each shape encountered in the ESVG file:

• if the shape is :

– a rectangle, then a new “Code” object Nri is created by ap-
plying the operator Bind (see ??) to ri where i is the currently
user-selected drawing style

– a circle, then a new “Code” object Nci is created by applying
the operator Bind (see ??) to ci where i is the currently user-
selected drawing style

Each time, the arguments passed to the CodeBrick’s binding op-
erator are the parameters (position, dimensions and color) of the
shape. The effect of the binding is that Nri or Nci represent frag-
ments of code with no free variables, since the arguments of Nri

or Nci (Ldarg instructions) have been substituted with constants
(Ldc instructions).

• add Nri or Nci to L

3. creates a new “Code” object O by applying the list of operations L to
the method “CompiledDraw” of the program’s main class. This method
is only a placeholder, or better a container where the runtime generated
code can be injected.
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In the end, the delegate produced by O is used to draw the ESVG content.
As we can imagine, the IL code of this delegate will not contain any branch
instructions and the parameters of the various rectangle and circle elements
will be loaded as constants, thus avoiding direct memory accesses to the
elements’ data structures.

We have run the program on two different platform: .NET 3.5 on Mi-
crosoft Windows XP and Mono 2.4.2.3 on Ubuntu Linux 9.10. Both systems
were actually hosted in a virtual machine created by VirtualBox 3.1.45 for
MacOSX 10.6.26 running on an Intel Core Duo 2 @2.53GHz / 4GB RAM
computer. Here follows the experimental results:

Table 5.1: Performance comparison of the ESVG example on different plat-
forms

Compiled Generated
Iterations 10 100 1000 10 100 1000

Mono 2.4 on Ubuntu 9.10 0.384 5.316 41.566 0.370 4.338 38.400

.NET 3.5 on Windows XP 0.951 10.208 94.711 0.941 9.630 89.510

The performance gain of the generated code with respect to the code
compiled from source is little but significant. In such a regard, we remind
that the speed-up -though slight- has been achieved only by exploiting the
annotation manipulation support. Since we do not ever made any particular
attempt to optimize the code produced by the annotation manipulation sup-
port, we believe that further improvements are feasible and likely to improve
both efficiency and speed of the generated code.

5http://www.virtualbox.org/
6http://www.apple.com/it/macosx/what-is-macosx/

114

http://www.virtualbox.org/
http://www.apple.com/it/macosx/what-is-macosx/


Chapter 6

Conclusion

“The whole problem with the world is that fools and fanatics are always so certain of
themselves, and wiser people so full of doubts.”

Sir Bertrand Russell

6.1 Results

We have developed a metaprogramming technique exploiting annotations
that are placed inside methods’ body by the programmer. We recall that we
use the term annotation to denote the metadata used to mark a block of
instructions -a statement- that we call annotated fragment.

Although suited for the [a]C# language, the technique could be easily
implemented also to target other virtual machine-based languages, such as
Java [?] (for which a library to manipulate bytecode is already available:
BCEL1), since it is always possible to extend their grammar and runtime
support.

The technique permits to carry out a few types of operations on a method’s
body, producing another method having a different semantic. The primitive
operations available are:

• inclusion of the instructions of a method before or after another method’s
annotation.

• extrusion of the instructions of an annotated fragment to produce a
new method.

• removal of the instructions of an annotated fragment from the body of
the method which the fragment belongs to.

1BCEL is library to manipulate Java binary class files (http://jakarta.apache.org/
bcel/)

http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
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• copy of the instructions of an annotated fragment before or after an
annotation of the method which the fragment belongs to.

The primitives listed above can be composed to perform more complex
operations. For instance, we can generate a new method by applying an
inclusion and then a removal of two different annotated fragments in a single
step.

As stated before, since our technique works on the IL level, it can be
implemented on virtually all the languages supported by the Mono or .NET
platforms.

We have showed an example of application of the technique to each one
of the following software engineering areas:

• code reuse: the example demonstrates how to programmatically trans-
form a program which need a user-provided input, into a batch program
which takes its input from another source, such as a file.

• code specialization: the application shows how it is possible to automat-
ically produce -at runtime- a specialized code performing a certain task;
in this case, the example exploits the technique to render an SVG-like
content on screen. Also, a performance comparison of the hand-written
code versus the specialized code has been presented.

• aspect oriented programming: the example program performs the fun-
damentals code-weaving operations on itself, at runtime. The program
shows how the technique can be used to build a generic runtime aspect-
oriented programming support.

We have extended the [a]C# annotations syntax and runtime support to
enable the user specify an annotated fragment’s signature, that is the binding
of the fragment’s free variables with respect to an external environment.

Furthermore, we have enriched [a]C# runtime support making it able to
retrieve both annotated fragment’s free and local variables.

In addition, we have realized a porting of the CodeBricks and CLIFileRW
libraries to the Linux/Mono platform. We are currently engaged on porting
these libraries and the present work on the MacOSX/Mono platform too.

Whilst our main aim was to develop our technique on the Linux/Mono
platform, we have been successfully able to run it on the Windows/.NET
platform.

Finally, we have fixed some minor bugs that we have discovered in [a]C#
compiler as well as in the CLIFileRW and CodeBricks libraries.
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6.2 Future works

The [a]C# [?] language is an extension of the C# language designed to allow
the programmer to insert metadata -in the form of annotated statements-
into the body of methods.

We have realized an extension to the [a]C# runtime support which allows
to perform metaprogramming operations on annotated [a]C# methods.

Anyway, the implementation developed in this thesis, though being actu-
ally usable, is still incomplete. Primarily lacks are:

• as by now, CodeBricks’ Code class works only on static methods. As
a consequence, our work inherited this limitation. Further efforts on
CodeBricks are needed to handle instance methods too.

• some C# language features such as out parameters should be treated
correctly and there are some aspects, just like IL code analysis, that
would probably deserve more attention.

• although all the test presented in this thesis run as expected, we nei-
ther have conducted an exhaustive test suite nor we have a formal
correctness proof.

Additionally, it would be useful allowing to remove or not the placehold-
ers related to a given operation, at least. Besides, a further option could be
provided to remove any placeholders. Besides, there are some feasible opti-
mizations -such as those presented on Section ??- that could be applied to
the existing algorithms.

Finally, it could be interesting to study the behavior of the JIT optimizer,
in order to produce a bytecode better suited to JIT optimizations.

However, we are confident that the runtime code manipulation technique
presented in this thesis could be integrated in any virtual machine based and
annotation-capable programming language as an effective metaprogramming
tool.
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Appendix

“Appear weak when you are strong, and strong when you are weak.”
Sun Tzu

7.1 Sources

7.1.1 [a]C# Runtime

The listing below is the complete source code of the [a]C# runtime.
We have added the method AnnotationTree.GetAnnotationSignature()

which is responsible for inferring an annotated fragment’s free and local vari-
ables.

We have created the TypesConversion class too, which contains the defini-
tion of an hash-table representing all legal conversions among C# language’s
value-types.

Other modifications affected mainly the Annotation.GetCustomAttributes()
method; the method builds a tree whose each node is a representation of one
of the annotated fragments contained inside the method passed as argument.

Listing 7.1: [a C#]Runtime
1 // //////////////////////////////////////////////////////////////

2 ///

3 /// Modi f i ed by : N ico l a Giordani ( n i c o l a@d i n o s o f t . i t )

4 ///

5 /// Added some code to a l l ow b u i l d i n g a Code

6 /// out o f an [ a ]C# anno ta t i on

7 ///

8 // //////////////////////////////////////////////////////////////

9

10 u s i n g S y s t e m ;

11 u s i n g S y s t e m . R e f l e c t i o n ;

12 u s i n g S y s t e m . R e f l e c t i o n . E m i t ;

13 u s i n g S y s t e m . C o l l e c t i o n s ;

14 #i f U N I X

15 u s i n g S y s t e m . C o l l e c t i o n s . G e n e r i c ;
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16 #e n d i f

17 u s i n g C L I F i l e ;

18

19 n a m e s p a c e ACS {
20 [ A t t r i b u t e U s a g e ( A t t r i b u t e T a r g e t s . Method , A l l o w M u l t i p l e=true , I n h e r i t e d=true ) ]

21 public c lass C o d e A t t r i b u t e : A t t r i b u t e {
22

23 private int idx ;

24 i n t e r n a l I L C u r s o r . S t a t e beg ;

25 i n t e r n a l long end ;

26 i n t e r n a l b o o l r e t u r n s = fa l se ;

27 i n t e r n a l long m e t a = −1;

28

29 public int A C S I n d e x {
30 get { return idx ; }
31 set { idx = v a l u e ; }
32 }
33

34 public I L C u r s o r I L I n s t r u c t i o n s {
35 get {
36 return I L C u r s o r . R e s t o r e C u r s o r ( beg ) ;

37 }
38 }
39

40 public long B e g i n P o s i t i o n {
41 get {
42 return beg . pos ;

43 }
44 }
45

46 public long E n d P o s i t i o n {
47 get {
48 return end ;

49 }
50 }
51

52 public long S t a r t ( ) {
53 i f ( m e t a == −1)

54 return beg . pos − 1 ;

55 else

56 return m e t a ;

57 }
58

59 public long M e t a P o s i t i o n {
60 get {
61 return m e t a ;

62 }
63 set {
64 m e t a = v a l u e ;

65 }
66 }
67

68 public b o o l R e t u r n s {
69 get {
70 return r e t u r n s ;

71 }
72 }
73

74 public int M e t a L e n g t h ( ) {
75 i f ( m e t a == −1)

76 // l d l o c + c a l l = 6

77 return 12 ;

78 else

79 return ( int ) ( beg . pos − m e t a ) + 5 + 5 + 1 ;

80 }
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81

82 public int L e n g t h ( ) {
83 return S i z e ( ) + M e t a L e n g t h ( ) ;

84 }
85

86 public int S i z e ( ) {
87 return ( int ) ( end − beg . pos ) − 5 ;

88 }
89

90 public e n u m O p e r a t i o n s {
91 I N C L U D E _ B E F O R E ,

92 I N C L U D E _ A F T E R ,

93 EXTRUDE ,

94 REMOVE ,

95 C O P Y _ B E F O R E ,

96 C O P Y _ A F T E R

97 }
98

99 }
100

101 public d e l e g a t e void T r e e V i s i t o r ( A n n o t a t i o n T r e e t , int v s i t e d C h i l d ) ;

102

103 public s e a l e d class A n n o t a t i o n T r e e : I E n u m e r a b l e {
104 i n t e r n a l C o d e A t t r i b u t e [ ] n o d e ;

105 i n t e r n a l A n n o t a t i o n T r e e [ ] c h i l d r e n ;

106

107 private o b j e c t [ ] [ ] s i g n a t u r e ;

108

109 i n t e r n a l A n n o t a t i o n T r e e ( ) {
110 }
111

112 public C o d e A t t r i b u t e [ ] N o d e {
113 get { return n o d e ; }
114 }
115

116 public A n n o t a t i o n T r e e [ ] C h i l d r e n {
117 get { return c h i l d r e n ; }
118 }
119

120 public A n n o t a t i o n T r e e this [ int idx ] {
121 get { return c h i l d r e n [ idx ] ; }
122 }
123

124 public void V i s i t ( T r e e V i s i t o r v ) {
125 I n t e r n a l V i s i t ( this , v ) ;

126 }
127

128 public C o d e A t t r i b u t e [ ] G e t A t t r i b u t e s ( T y p e t ) {
129 A r r a y L i s t a = new A r r a y L i s t ( ) ;

130 f o r e a c h ( C o d e A t t r i b u t e c in n o d e )

131 i f ( c . G e t T y p e ( ) == t )

132 a . Add ( c ) ;

133 return ( C o d e A t t r i b u t e [ ] ) a . T o A r r a y ( t ) ;

134 }
135

136 public s t r u c t I n p u t A r g u m e n t {
137 public b o o l I s L o c a l ;

138 public int Num ;

139 public b o o l B y R e f ;

140 public b o o l R e a d O n l y ;

141 public I n p u t A r g u m e n t ( b o o l loc , int n , b o o l byref , b o o l ro ) {
142 I s L o c a l = loc ;

143 Num = n ;

144 B y R e f = b y r e f ;

145 R e a d O n l y = ro ;
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146 }
147 }
148

149 public I n p u t A r g u m e n t [ ] B l o c k S i g n a t u r e ( ) {
150 I L C u r s o r ilc = n o d e [ 0 ] . I L I n s t r u c t i o n s ;

151 A r r a y L i s t ret = new A r r a y L i s t ( ) ;

152 // This map i s used i d −> r e t i d , l o c a l s are −i d .

153 H a s h t a b l e map = new H a s h t a b l e ( ) ;

154 while ( ilc . P o s i t i o n < n o d e [ 0 ] . end ) {
155 // FIXME: Check t h e s t a c k b e ha v i o r

156 I L I n s t r u c t i o n il = I L I n s t r u c t i o n . N o r m a l i z e ( ilc . I n s t r ) ;

157 i f ( il . op . E q u a l s ( O p C o d e s . L d a r g ) ) {
158 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

159

160 i f ( map . C o n t a i n s K e y ( il . par . iv ) ) {
161 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [ il . par . iv ] ] ;

162 } else {
163 inp = new I n p u t A r g u m e n t ( false , il . par . iv , false , true ) ;

164 map [ il . par . iv ] = ret . Add ( inp ) ;

165 }
166 }
167

168 i f ( il . op . E q u a l s ( O p C o d e s . L d a r g a ) ) {
169 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

170

171 i f ( map . C o n t a i n s K e y ( il . par . iv ) ) {
172 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [ il . par . iv ] ] ;

173 inp . B y R e f = true ;

174 inp . R e a d O n l y = fa l se ;

175 ret [ ( int ) map [ il . par . iv ] ] = inp ;

176 } else {
177 inp = new I n p u t A r g u m e n t ( false , il . par . iv , true , fa l se ) ;

178 map [ il . par . iv ] = ret . Add ( inp ) ;

179 }
180 }
181

182 i f ( il . op . E q u a l s ( O p C o d e s . S t a r g ) ) {
183 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

184

185 i f ( map . C o n t a i n s K e y ( il . par . iv ) ) {
186 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [ il . par . iv ] ] ;

187 inp . R e a d O n l y = fa l se ;

188 ret [ ( int ) map [ il . par . iv ] ] = inp ;

189 } else {
190 inp = new I n p u t A r g u m e n t ( false , il . par . iv , false , fa l se ) ;

191 map [ il . par . iv ] = ret . Add ( inp ) ;

192 }
193 }
194

195 i f ( il . op . E q u a l s ( O p C o d e s . L d l o c ) ) {
196 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

197

198 i f ( map . C o n t a i n s K e y (−il . par . iv ) ) {
199 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [− il . par . iv ] ] ;

200 } else {
201 inp = new I n p u t A r g u m e n t ( true , il . par . iv , false , true ) ;

202 map [− il . par . iv ] = ret . Add ( inp ) ;

203 }
204 }
205

206 i f ( il . op . E q u a l s ( O p C o d e s . L d l o c a ) ) {
207 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

208

209 i f ( map . C o n t a i n s K e y (−il . par . iv ) ) {
210 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [− il . par . iv ] ] ;
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211 inp . B y R e f = true ;

212 inp . R e a d O n l y = fa l se ;

213 ret [ ( int ) map [− il . par . iv ] ] = inp ;

214 } else {
215 inp = new I n p u t A r g u m e n t ( true , il . par . iv , true , fa l se ) ;

216 map [− il . par . iv ] = ret . Add ( inp ) ;

217 }
218 }
219

220 i f ( il . op . E q u a l s ( O p C o d e s . S t l o c ) ) {
221 I n p u t A r g u m e n t inp = new I n p u t A r g u m e n t ( ) ;

222

223 i f ( map . C o n t a i n s K e y (−il . par . iv ) ) {
224 inp = ( I n p u t A r g u m e n t ) ret [ ( int ) map [− il . par . iv ] ] ;

225 inp . R e a d O n l y = fa l se ;

226 ret [ ( int ) map [− il . par . iv ] ] = inp ;

227 } else {
228 inp = new I n p u t A r g u m e n t ( true , il . par . iv , false , fa l se ) ;

229 map [− il . par . iv ] = ret . Add ( inp ) ;

230 }
231 }
232 ilc . N e x t ( ) ;

233 }
234 return ( I n p u t A r g u m e n t [ ] ) ret . T o A r r a y ( t y p e o f ( I n p u t A r g u m e n t ) ) ;

235 }
236

237 public o b j e c t [ ] [ ] G e t A n n o t a t i o n S i g n a t u r e ( M e t h o d I n f o mi ) {
238 M e t h o d T a b l e C u r s o r mc = C L I F i l e R e a d e r . F i n d M e t h o d ( mi ) ;

239 mc . G o t o ( mi . M e t a d a t a T o k e n & 0 x F F F F F F ) ;

240 I L C u r s o r m i l c = mc . M e t h o d B o d y . I L I n s t r u c t i o n s ;

241

242 long b l o c k b e g i n = n o d e [ 0 ] . beg . pos ;

243 long b l o c k e n d = n o d e [ 0 ] . end ;

244

245 IList<int> idx = new List<int >() ;

246 A r r a y L i s t r e a l p a r a m e t e r s = new A r r a y L i s t ( ) ;

247 A r r a y L i s t p a r a m e t e r s = new A r r a y L i s t ( ) ;

248 A r r a y L i s t l o c a l s = new A r r a y L i s t ( ) ;

249

250 P a r a m e t e r I n f o [ ] mp = mi . G e t P a r a m e t e r s ( ) ;

251 IList<L o c a l V a r i a b l e I n f o> lvi = mi . G e t M e t h o d B o d y ( ) . L o c a l V a r i a b l e s ;

252 D i c t i o n a r y<int , L o c a l V a r i a b l e I n f o> d l v i = new D i c t i o n a r y<int , L o c a l V a r i a b l e I n f o >()

;

253

254 f o r e a c h ( L o c a l V a r i a b l e I n f o v in lvi )

255 d l v i . Add ( v . L o c a l I n d e x , v ) ;

256

257 b o o l m o r e = true ;

258 while ( m i l c . P o s i t i o n < b l o c k e n d && m o r e ) {
259 I L I n s t r u c t i o n il = I L I n s t r u c t i o n . N o r m a l i z e ( m i l c . I n s t r ) ;

260 i f ( il . op . E q u a l s ( O p C o d e s . L d l o c ) | |
261 il . op . E q u a l s ( O p C o d e s . L d l o c a ) | |
262 il . op . E q u a l s ( O p C o d e s . S t l o c ) ) {
263 i f ( m i l c . P o s i t i o n < b l o c k b e g i n ) {
264 i f ( ! idx . C o n t a i n s ( il . par . iv ) )

265 idx . Add ( il . par . iv ) ;

266 } else {
267 L o c a l V a r i a b l e I n f o v = d l v i [ il . par . iv ] ;

268 i f ( idx . C o n t a i n s ( il . par . iv ) ) {
269 i f ( v != null )

270 i f ( ! p a r a m e t e r s . C o n t a i n s ( v ) )

271 p a r a m e t e r s . Add ( v ) ;

272 } else

273 l o c a l s . Add ( v ) ;

274 }
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275 } else i f ( m i l c . P o s i t i o n > b l o c k b e g i n ) {
276 i f ( il . op . E q u a l s ( O p C o d e s . L d a r g ) | |
277 il . op . E q u a l s ( O p C o d e s . L d a r g a ) | |
278 il . op . E q u a l s ( O p C o d e s . S t a r g ) )

279 i f ( ! r e a l p a r a m e t e r s . C o n t a i n s ( mp [ il . par . iv ] ) )

280 r e a l p a r a m e t e r s . Add ( mp [ il . par . iv ] ) ;

281 }
282 m o r e = m i l c . N e x t ( ) ;

283 }
284 o b j e c t [ ] [ ] r = new o b j e c t [ 3 ] [ ] ;

285 r [ 0 ] = p a r a m e t e r s . T o A r r a y ( t y p e o f ( L o c a l V a r i a b l e I n f o ) ) as L o c a l V a r i a b l e I n f o [ ] ;

286 r [ 1 ] = l o c a l s . T o A r r a y ( t y p e o f ( L o c a l V a r i a b l e I n f o ) ) as L o c a l V a r i a b l e I n f o [ ] ;

287 r [ 2 ] = r e a l p a r a m e t e r s . T o A r r a y ( t y p e o f ( P a r a m e t e r I n f o ) ) as P a r a m e t e r I n f o [ ] ;

288 return r ;

289 }
290

291 public L o c a l V a r i a b l e I n f o [ ] A n n o t a t i o n P a r a m e t e r s ( M e t h o d I n f o m ) {
292 i f ( s i g n a t u r e == null )

293 s i g n a t u r e = G e t A n n o t a t i o n S i g n a t u r e ( m ) ;

294 return s i g n a t u r e [ 0 ] as L o c a l V a r i a b l e I n f o [ ] ;

295 }
296

297 public P a r a m e t e r I n f o [ ] A n n o t a t i o n R e a l P a r a m e t e r s ( M e t h o d I n f o m ) {
298 i f ( s i g n a t u r e == null )

299 s i g n a t u r e = G e t A n n o t a t i o n S i g n a t u r e ( m ) ;

300 return s i g n a t u r e [ 2 ] as P a r a m e t e r I n f o [ ] ;

301 }
302

303 public L o c a l V a r i a b l e I n f o [ ] A n n o t a t i o n L o c a l s ( M e t h o d I n f o m ) {
304 i f ( s i g n a t u r e == null )

305 s i g n a t u r e = G e t A n n o t a t i o n S i g n a t u r e ( m ) ;

306 return s i g n a t u r e [ 1 ] as L o c a l V a r i a b l e I n f o [ ] ;

307 }
308

309 public void G e n e r a t e M e t h o d B o d y ( I n p u t A r g u m e n t [ ] args , I L G e n e r a t o r ilg ) {
310 /∗ ILCursor i l c = node [ 0 ] . I L I n s t r u c t i o n s ;

311 Hash ta b l e l a b e l s = new Hash t ab l e ( ) ;

312

313 Hash ta b l e map = new Hash ta b l e ( ) ;

314 f o r ( i n t i = 0 ; i < arg s . Length ; i++)

315 map [ arg s [ i ] . I sLo ca l ? −arg s [ i ] .Num : arg s [ i ] .Num] = i ;

316

317 wh i l e ( i l c . Po s i t i o n < node [ 0 ] . end ) {
318 // FIXME: Check t h e s t a c k b e ha v i o r

319 I L I n s t r u c t i o n i l = IL I n s t r u c t i o n . Normal ize ( i l c . I n s t r ) ;

320 i f ( i l . op . Equa l s (OpCodes . Ldarg ) ) {
321 }
322

323 i f ( i l . op . Equa l s (OpCodes . Ldarga ) ) {
324 InputArgument inp = new InputArgument ( ) ;

325

326 i f (map . ContainsKey ( i l . par . i v ) ) {
327 inp = ( InputArgument ) r e t [ ( i n t )map [ i l . par . i v ] ] ;

328 inp . ByRef = t ru e ;

329 inp . ReadOnly = f a l s e ;

330 r e t [ ( i n t )map [ i l . par . i v ] ] = inp ;

331 } e l s e {
332 inp = new InputArgument ( f a l s e , i l . par . iv , t rue , f a l s e ) ;

333 map [ i l . par . i v ] = r e t . Add( inp ) ;

334 }
335 }
336

337 i f ( i l . op . Equa l s (OpCodes . S ta r g ) ) {
338 InputArgument inp = new InputArgument ( ) ;

339
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340 i f (map . ContainsKey ( i l . par . i v ) ) {
341 inp = ( InputArgument ) r e t [ ( i n t )map [ i l . par . i v ] ] ;

342 inp . ReadOnly = f a l s e ;

343 r e t [ ( i n t )map [ i l . par . i v ] ] = inp ;

344 } e l s e {
345 inp = new InputArgument ( f a l s e , i l . par . iv , f a l s e , f a l s e ) ;

346 map [ i l . par . i v ] = r e t . Add( inp ) ;

347 }
348 }
349

350 i f ( i l . op . Equa l s (OpCodes . Ld loc ) ) {
351 InputArgument inp = new InputArgument ( ) ;

352

353 i f (map . ContainsKey(− i l . par . i v ) ) {
354 inp = ( InputArgument ) r e t [ ( i n t )map[− i l . par . i v ] ] ;

355 } e l s e {
356 inp = new InputArgument ( t rue , i l . par . iv , f a l s e , t r u e ) ;

357 map[− i l . par . i v ] = r e t . Add( inp ) ;

358 }
359 }
360

361 i f ( i l . op . Equa l s (OpCodes . Ld loca ) ) {
362 InputArgument inp = new InputArgument ( ) ;

363

364 i f (map . ContainsKey(− i l . par . i v ) ) {
365 inp = ( InputArgument ) r e t [ ( i n t )map[− i l . par . i v ] ] ;

366 inp . ByRef = t ru e ;

367 inp . ReadOnly = f a l s e ;

368 r e t [ ( i n t )map[− i l . par . i v ] ] = inp ;

369 } e l s e {
370 inp = new InputArgument ( t rue , i l . par . iv , t rue , f a l s e ) ;

371 map[− i l . par . i v ] = r e t . Add( inp ) ;

372 }
373 }
374

375 i f ( i l . op . Equa l s (OpCodes . S t l o c ) ) {
376 InputArgument inp = new InputArgument ( ) ;

377

378 i f (map . ContainsKey(− i l . par . i v ) ) {
379 inp = ( InputArgument ) r e t [ ( i n t )map[− i l . par . i v ] ] ;

380 inp . ReadOnly = f a l s e ;

381 r e t [ ( i n t )map[− i l . par . i v ] ] = inp ;

382 } e l s e {
383 inp = new InputArgument ( t rue , i l . par . iv , f a l s e , f a l s e ) ;

384 map[− i l . par . i v ] = r e t . Add( inp ) ;

385 }
386 }
387 }
388 ∗/
389 }
390

391 private stat ic void I n t e r n a l V i s i t ( A n n o t a t i o n T r e e t , T r e e V i s i t o r v ) {
392 /∗ i f ( ! v ( t , −1))

393 r e t u rn ;

394

395 f o r ( i n t i = 0 ; i < t . c h i l d r e n . Length ; i++) {
396 I n t e r n a l V i s i t ( t , v ) ;

397 v ( t , i ) ;

398 }
399 ∗/
400 }
401

402 #r e g i o n I E n u m e r a b l e M e m b e r s

403

404 public S y s t e m . C o l l e c t i o n s . I E n u m e r a t o r G e t E n u m e r a t o r ( ) {
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405 return c h i l d r e n . G e t E n u m e r a t o r ( ) ;

406 }
407

408 #e n d r e g i o n

409 }
410

411 public c lass A n n o t a t i o n {
412

413 public stat ic void B e g i n ( int idx ) {}
414 public stat ic void B e g i n ( o b j e c t [ ] p , o b j e c t r , int idx ) {}
415 public stat ic void End ( int idx ) {}
416 public stat ic void E n d E x ( int idx ) {}
417 public stat ic void B e g i n M e t a ( ) {}
418

419 private class I n t e r m e d i a t e N o d e {
420 i n t e r n a l A n n o t a t i o n T r e e n o d e = new A n n o t a t i o n T r e e ( ) ;

421 i n t e r n a l A r r a y L i s t c h i l d r e n = new A r r a y L i s t ( ) ;

422 i n t e r n a l int idx ;

423 }
424

425 // we g e t a r e f e r e n c e to p l a c e h o l d e r methods : t h e f i r s t two d i f f e r s on l y

426 // on parameters so we have to s p e c i f y t h e i r s i g n a t u r e s

427 private stat ic M e t h o d I n f o B E G I N = t y p e o f ( ACS . A n n o t a t i o n ) . G e t M e t h o d ( " B e g i n " ,

B i n d i n g F l a g s . S t a t i c | B i n d i n g F l a g s . Public ,

428 null , new T y p e [ 1 ] { t y p e o f ( int ) } , null ) ;

429 private stat ic M e t h o d I n f o B E G I N E X = t y p e o f ( ACS . A n n o t a t i o n ) . G e t M e t h o d ( " B e g i n " ,

B i n d i n g F l a g s . S t a t i c | B i n d i n g F l a g s . Public ,

430 null , new T y p e [ 3 ] { t y p e o f ( o b j e c t [ ] ) , t y p e o f ( o b j e c t ) , t y p e o f ( int ) } , null ) ;

431 private stat ic M e t h o d I n f o B E G I N M E T A = t y p e o f ( ACS . A n n o t a t i o n ) . G e t M e t h o d ( " B e g i n M e t a " ,

B i n d i n g F l a g s . S t a t i c | B i n d i n g F l a g s . P u b l i c ) ;

432 private stat ic M e t h o d I n f o END = t y p e o f ( ACS . A n n o t a t i o n ) . G e t M e t h o d ( " End " , B i n d i n g F l a g s

. S t a t i c | B i n d i n g F l a g s . P u b l i c ) ;

433 private stat ic M e t h o d I n f o E N D E X = t y p e o f ( ACS . A n n o t a t i o n ) . G e t M e t h o d ( " E n d E x " ,

B i n d i n g F l a g s . S t a t i c | B i n d i n g F l a g s . P u b l i c ) ;

434

435 public e n u m A C S M e t h o d s {
436 BEGIN ,

437 BEGINEX ,

438 B E G I N M E T A ,

439 N O N E

440 }
441

442 public stat ic A n n o t a t i o n T r e e [ ] G e t C u s t o m A t t r i b u t e s ( M e t h o d I n f o m ) {
443 return G e t C u s t o m A t t r i b u t e s ( m , null ) ;

444 }
445

446 public stat ic A n n o t a t i o n T r e e [ ] G e t C u s t o m A t t r i b u t e s ( M e t h o d I n f o m , b o o l r e c u r s e ) {
447 return G e t C u s t o m A t t r i b u t e s ( m , r e c u r s e ? new H a s h t a b l e ( ) : null ) ;

448 }
449

450 private stat ic A n n o t a t i o n T r e e [ ] G e t C u s t o m A t t r i b u t e s ( M e t h o d I n f o m , H a s h t a b l e env ) {
451 i f ( env != null && env . C o n t a i n s K e y ( m ) )

452 return env [ m ] as A n n o t a t i o n T r e e [ ] ;

453

454 C o d e A t t r i b u t e [ ] tmp = ( C o d e A t t r i b u t e [ ] ) m . G e t C u s t o m A t t r i b u t e s ( t y p e o f ( C o d e A t t r i b u t e )

, true ) ;

455 i f ( tmp == null | | tmp . L e n g t h == 0)

456 return new A n n o t a t i o n T r e e [ ] { } ;
457

458 C L I F i l e . M e t h o d B o d y mb = C L I F i l e R e a d e r . F i n d M e t h o d ( m ) . M e t h o d B o d y ;

459 I L C u r s o r ilc = mb . I L I n s t r u c t i o n s ;

460 S t a c k s = new S t a c k ( ) ;

461 s . P u s h (new I n t e r m e d i a t e N o d e ( ) ) ;

462 A r r a y L i s t [ ] a t t r i b s = new A r r a y L i s t [ tmp . L e n g t h ] ;

463 // Assumptions : s e q u e n t i a l index ing , d u p l i c a t e s i n d i c a t e groups
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464 f o r e a c h ( C o d e A t t r i b u t e c in tmp ) {
465 i f ( a t t r i b s [ c . A C S I n d e x ] == null )

466 a t t r i b s [ c . A C S I n d e x ] = new A r r a y L i s t ( ) ;

467 a t t r i b s [ c . A C S I n d e x ] . Add ( c ) ;

468 }
469

470 I n t e r m e d i a t e N o d e p r e v = null ;

471

472 while ( ilc . N e x t ( ) ) {
473 int par ;

474

475 i f ( O p C o d e s . L d c _ I 4 _ M 1 . V a l u e <= ilc . I n s t r . op . V a l u e && ilc . I n s t r . op . V a l u e <=

O p C o d e s . L d c _ I 4 _ 8 . V a l u e ) {
476 par = ilc . I n s t r . op . V a l u e − O p C o d e s . L d c _ I 4 _ 0 . V a l u e ;

477 } else i f ( ilc . I n s t r . op . E q u a l s ( O p C o d e s . L d c _ I 4 _ S ) ) {
478 par = ilc . I n s t r . par . sv ;

479 } else i f ( ilc . I n s t r . op . E q u a l s ( O p C o d e s . L d c _ I 4 ) ) {
480 par = ilc . I n s t r . par . iv ;

481 } else i f ( env != null && ( ilc . I n s t r . op . E q u a l s ( O p C o d e s . C a l l ) | | ilc . I n s t r . op .

E q u a l s ( O p C o d e s . C a l l v i r t ) ) ) {
482 o b j e c t p a r a m = ilc . I n s t r . R e s o l v e P a r a m e t e r ( ilc . F i l e R e a d e r ) ;

483 i f ( p a r a m is M e t h o d I n f o ) {
484 A n n o t a t i o n T r e e [ ] ann = G e t C u s t o m A t t r i b u t e s ( p a r a m as M e t h o d I n f o , env ) ;

485 i f ( ann != null && ann . L e n g t h > 0)

486 ( ( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) . c h i l d r e n . A d d R a n g e ( ann ) ;

487 }
488 continue ;

489 } else continue ;

490

491 // Check f o r a Ca l l o f Begin and End

492 ilc . P u s h S t a t e ( ) ;

493 i f ( ilc . N e x t ( ) )

494 i f ( ilc . I n s t r . op . E q u a l s ( O p C o d e s . C a l l ) ) {
495 o b j e c t p a r a m = ilc . I n s t r . R e s o l v e P a r a m e t e r ( ilc . F i l e R e a d e r ) ;

496 ilc . P o p S t a t e ( ) ;

497 i f ( p a r a m is M e t h o d I n f o ) {
498 i f ( p a r a m . E q u a l s ( B E G I N ) | | p a r a m . E q u a l s ( B E G I N E X ) ) {
499 ilc . N e x t ( ) ;

500 f o r e a c h ( C o d e A t t r i b u t e c in a t t r i b s [ par ] ) {
501 c . beg = ilc . C u r s o r S t a t e ;

502 }
503 I n t e r m e d i a t e N o d e n o d e = new I n t e r m e d i a t e N o d e ( ) ;

504 ( ( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) . c h i l d r e n . Add ( n o d e . n o d e ) ;

505 n o d e . n o d e . n o d e = ( C o d e A t t r i b u t e [ ] ) a t t r i b s [ par ] . T o A r r a y ( t y p e o f (

C o d e A t t r i b u t e ) ) ;

506 n o d e . idx = par ;

507 s . P u s h ( n o d e ) ;

508 } else i f ( p a r a m . E q u a l s ( END ) ) {
509 I n t e r m e d i a t e N o d e n ;

510 i f ( p r e v != null )

511 i f ( par == p r e v . idx )

512 n = p r e v ;

513 else

514 n = ( I n t e r m e d i a t e N o d e ) s . Pop ( ) ;

515 else

516 n = ( I n t e r m e d i a t e N o d e ) s . Pop ( ) ;

517 i f ( n . idx != par ) { // Look f o r i t : i t i s an i n t e r s e c t i o n !

518 S t a c k s a v e = new S t a c k ( ) ;

519 s a v e . P u s h ( n ) ;

520 while ( s . C o u n t > 0 && (( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) . idx != par ) s a v e .

P u s h ( s . Pop ( ) ) ;

521 i f ( s . C o u n t == 0) throw new E x c e p t i o n ( " I n t e r n a l ACS e r r o r ! " ) ;

522 n = ( I n t e r m e d i a t e N o d e ) s . Pop ( ) ;

523 while ( s a v e . C o u n t > 0) s . P u s h ( s a v e . Pop ( ) ) ;

524 }
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525 f o r e a c h ( C o d e A t t r i b u t e c in n . n o d e . n o d e )

526 i f ( c . end == 0)

527 c . end = ilc . P o s i t i o n ;

528 n . n o d e . c h i l d r e n = ( A n n o t a t i o n T r e e [ ] ) n . c h i l d r e n . T o A r r a y ( t y p e o f (

A n n o t a t i o n T r e e ) ) ;

529 ilc . N e x t ( ) ;

530 } else i f ( p a r a m . E q u a l s ( E N D E X ) ) {
531 do {
532 ilc . N e x t ( ) ;

533 } while ( ! ilc . I n s t r . op . E q u a l s ( O p C o d e s . Ret ) ) ;

534 I n t e r m e d i a t e N o d e n ;

535 i f ( p r e v == null ) {
536 n = ( I n t e r m e d i a t e N o d e ) s . Pop ( ) ;

537 p r e v = n ;

538 } else i f ( p r e v . idx != par ) {
539 while ( ( n = ( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) . idx != par )

540 s . Pop ( ) ;

541 p r e v = n ;

542 } else

543 n = p r e v ;

544 f o r e a c h ( C o d e A t t r i b u t e c in n . n o d e . n o d e ) {
545 c . end = ilc . P o s i t i o n ;

546 c . r e t u r n s = true ;

547 }
548 n . n o d e . c h i l d r e n = ( A n n o t a t i o n T r e e [ ] ) n . c h i l d r e n . T o A r r a y ( t y p e o f (

A n n o t a t i o n T r e e ) ) ;

549 i f ( ilc . EOF && (( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) == n )

550 s . Pop ( ) ;

551 }
552 }
553 }
554 }
555 i f ( s . C o u n t != 1 | | ( ( I n t e r m e d i a t e N o d e ) s . P e e k ( ) ) . n o d e . n o d e != null )

556 throw new E x c e p t i o n ( " I n t e r n a l e r r o r in ACS ! " ) ;

557 A n n o t a t i o n T r e e [ ] ret = ( A n n o t a t i o n T r e e [ ] ) ( ( ( I n t e r m e d i a t e N o d e ) s . Pop ( ) ) . c h i l d r e n .

T o A r r a y ( t y p e o f ( A n n o t a t i o n T r e e ) ) ) ;

558 i f ( env != null )

559 env [ m ] = ret ;

560 return ret ;

561 }
562

563 public stat ic A C S M e t h o d s C h e c k M e t h o d ( I L C u r s o r c ) {
564 i f ( c . I n s t r . op . E q u a l s ( O p C o d e s . C a l l ) ) {
565 o b j e c t p a r a m = c . I n s t r . R e s o l v e P a r a m e t e r ( c . F i l e R e a d e r ) ;

566 i f ( p a r a m is M e t h o d I n f o )

567 i f ( p a r a m . E q u a l s ( B E G I N ) )

568 return A C S M e t h o d s . B E G I N ;

569 else i f ( p a r a m . E q u a l s ( B E G I N E X ) )

570 return A C S M e t h o d s . B E G I N E X ;

571 else i f ( p a r a m . E q u a l s ( B E G I N M E T A ) )

572 return A C S M e t h o d s . B E G I N M E T A ;

573 else

574 return A C S M e t h o d s . N O N E ;

575 else

576 return A C S M e t h o d s . N O N E ;

577 } else

578 return A C S M e t h o d s . N O N E ;

579 }
580

581 }
582

583 public c lass T y p e s C o n v e r s i o n {
584

585 private stat ic H a s h t a b l e t y p e s ;

586
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587 stat ic T y p e s C o n v e r s i o n ( ) {
588 t y p e s = new H a s h t a b l e ( ) ;

589

590 t y p e s . Add ( t y p e o f ( char ) , new T y p e [ ] { t y p e o f ( u s h o r t ) ,

591 t y p e o f ( int ) ,

592 t y p e o f ( u i n t ) ,

593 t y p e o f ( long ) ,

594 t y p e o f ( u l o n g ) ,

595 t y p e o f ( f loat ) ,

596 t y p e o f (double ) ,

597 t y p e o f ( d e c i m a l ) }) ;

598

599 t y p e s . Add ( t y p e o f ( s b y t e ) , new T y p e [ ] { t y p e o f ( short ) ,

600 t y p e o f ( int ) ,

601 t y p e o f ( long ) ,

602 t y p e o f ( f loat ) ,

603 t y p e o f (double ) ,

604 t y p e o f ( d e c i m a l ) }) ;

605

606 t y p e s . Add ( t y p e o f ( short ) , new T y p e [ ] { t y p e o f ( int ) ,

607 t y p e o f ( long ) ,

608 t y p e o f ( f loat ) ,

609 t y p e o f (double ) ,

610 t y p e o f ( d e c i m a l ) }) ;

611

612 t y p e s . Add ( t y p e o f ( int ) , new T y p e [ ] { t y p e o f ( long ) ,

613 t y p e o f ( f loat ) ,

614 t y p e o f (double ) ,

615 t y p e o f ( d e c i m a l ) }) ;

616

617 t y p e s . Add ( t y p e o f ( long ) , new T y p e [ ] { t y p e o f ( d e c i m a l ) ,

618 t y p e o f ( f loat ) ,

619 t y p e o f (double ) }) ;

620

621 t y p e s . Add ( t y p e o f ( f loat ) , new T y p e [ ] { t y p e o f (double ) }) ;

622

623 t y p e s . Add ( t y p e o f (double ) , new T y p e [ ] { } ) ;

624

625 t y p e s . Add ( t y p e o f (byte ) , new T y p e [ ] { t y p e o f ( u s h o r t ) ,

626 t y p e o f ( u i n t ) ,

627 t y p e o f ( u l o n g ) ,

628 t y p e o f ( short ) ,

629 t y p e o f ( int ) ,

630 t y p e o f ( long ) ,

631 t y p e o f ( f loat ) ,

632 t y p e o f (double ) ,

633 t y p e o f ( d e c i m a l ) }) ;

634

635 t y p e s . Add ( t y p e o f ( u s h o r t ) , new T y p e [ ] { t y p e o f ( u i n t ) ,

636 t y p e o f ( u l o n g ) ,

637 t y p e o f ( int ) ,

638 t y p e o f ( long ) ,

639 t y p e o f ( f loat ) ,

640 t y p e o f (double ) ,

641 t y p e o f ( d e c i m a l ) }) ;

642

643 t y p e s . Add ( t y p e o f ( u i n t ) , new T y p e [ ] { t y p e o f ( u l o n g ) ,

644 t y p e o f ( long ) ,

645 t y p e o f ( f loat ) ,

646 t y p e o f (double ) ,

647 t y p e o f ( d e c i m a l ) }) ;

648

649

650 t y p e s . Add ( t y p e o f ( u l o n g ) , new T y p e [ ] { t y p e o f ( f loat ) ,

651 t y p e o f (double ) ,
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652 t y p e o f ( d e c i m a l ) }) ;

653

654 t y p e s . Add ( t y p e o f ( d e c i m a l ) , new T y p e [ ] { } ) ;

655 }
656

657 public stat ic b o o l C a n C o n v e r t ( T y p e from , T y p e to ) {
658 i f ( t y p e s . C o n t a i n s K e y ( f r o m ) )

659 f o r e a c h ( T y p e t in t y p e s [ f r o m ] as T y p e [ ] )

660 i f ( t . E q u a l s ( to ) )

661 return true ;

662 return fa l se ;

663 }
664

665 private stat ic M e t h o d I n f o E x i s t s C u s t o m C a s t ( T y p e from , T y p e to , b o o l _ e x p l i c i t ) {
666 S t r i n g n a m e = " o p _ I m p l i c i t " ;

667 i f ( _ e x p l i c i t )

668 n a m e = " o p _ E x p l i c i t " ;

669 M e t h o d I n f o c a s t = f r o m . G e t M e t h o d ( name , new T y p e [ ] { f r o m }) ;

670 i f ( c a s t != null )

671 i f ( c a s t . R e t u r n T y p e . E q u a l s ( to ) )

672 return c a s t ;

673 return null ;

674 }
675

676 public stat ic M e t h o d I n f o E x i s t s C u s t o m I m p l i c i t C a s t ( T y p e from , T y p e to ) {
677 return E x i s t s C u s t o m C a s t ( from , to , fa l se ) ;

678 }
679

680 public stat ic M e t h o d I n f o E x i s t s C u s t o m E x p l i c i t C a s t ( T y p e from , T y p e to ) {
681 return E x i s t s C u s t o m C a s t ( from , to , true ) ;

682 }
683

684 }
685

686 }

7.1.2 Code’s new constructors

Here follows a part of the CodeBricks source code which contains the defini-
tion of the Code class’ constructors implemented in this thesis.

Listing 7.2: Code’s new constructors
1 public C o d e ( M e t h o d I n f o m , A n n o t a t i o n T r e e a n n o t a t i o n , C o d e A t t r i b u t e . O p e r a t i o n s o p e r a t i o n ,

C o d e c o d e ) :

2 this ( m , new O p e r a t i o n [ 1 ] { new O p e r a t i o n ( a n n o t a t i o n , o p e r a t i o n , c o d e ) }) { }
3

4 public C o d e ( M e t h o d I n f o m , O p e r a t i o n o p e r a t i o n ) :

5 this ( m , new O p e r a t i o n [ 1 ] { o p e r a t i o n }) { }
6

7 public C o d e ( M e t h o d I n f o m , A n n o t a t i o n T r e e a n n o t a t i o n , C o d e A t t r i b u t e . O p e r a t i o n s o p e r a t i o n )

:

8 this ( m , a n n o t a t i o n , o p e r a t i o n , null ) { }
9

10 public C o d e ( M e t h o d I n f o m , O p e r a t i o n [ ] o p e r a t i o n s ) : this ( m )

11 {
12 i n f o . r e t T y p e = t y p e o f (void ) ;

13 this . o p e r a t i o n s = o p e r a t i o n s ;

14 A r r a y L i s t n e w l o c a l s = new A r r a y L i s t ( ) ;

15 n e w l o c a l s . A d d R a n g e ( i n f o . l o c a l s ) ;

16 f o r e a c h ( O p e r a t i o n op in o p e r a t i o n s )
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17 {
18 op . f r a g m e n t L o c a l s = op . a n n o t a t i o n . A n n o t a t i o n L o c a l s ( m ) ;

19 P a r a m e t e r I n f o [ ] r e a l p a r a m e t e r s = op . a n n o t a t i o n . A n n o t a t i o n R e a l P a r a m e t e r s ( m ) ;

20 op . f r a g m e n t R e a l P a r a m e t e r s = r e a l p a r a m e t e r s . L e n g t h ;

21 L o c a l V a r i a b l e I n f o [ ] lvi = op . a n n o t a t i o n . A n n o t a t i o n P a r a m e t e r s ( m ) ;

22 op . f r a g m e n t P a r a m e t e r s = lvi . L e n g t h ;

23 C o d e P a r a m e t e r I n f o [ ] p a r a m e t e r s = null ;

24 i f ( op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . E X T R U D E )

25 {
26 p a r a m e t e r s = new C o d e P a r a m e t e r I n f o [ op . f r a g m e n t P a r a m e t e r s + r e a l p a r a m e t e r s . L e n g t h ] ;

27 for ( int i = 0; i < p a r a m e t e r s . L e n g t h ; i++)

28 i f ( i >= r e a l p a r a m e t e r s . L e n g t h )

29 p a r a m e t e r s [ i ] = new C o d e P a r a m e t e r I n f o ( C o d e . free , lvi [ i − r e a l p a r a m e t e r s . L e n g t h ] .

L o c a l T y p e , i ) ;

30 else

31 p a r a m e t e r s [ i ] = new C o d e P a r a m e t e r I n f o ( C o d e . free , r e a l p a r a m e t e r s [ i ] . P a r a m e t e r T y p e , i

) ;

32 ( ( M e t h o d R e a d e r ) this . B u i l d e r ) . i n f o . p a r a m e t e r s = p a r a m e t e r s ;

33 i n f o . p a r a m e t e r s = p a r a m e t e r s ;

34 i f ( op . f r a g m e n t . R e t u r n s )

35 i n f o . r e t T y p e = m . R e t u r n T y p e ;

36 break ;

37 }
38 else i f ( op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ A F T E R | |
39 op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E )

40 {
41 i f ( op . c o d e == null )

42 throw new A r g u m e n t E x c e p t i o n ( " C o d e p a r a m e t e r c a n n o t be n u l l w h e n i n c l u d i n g ! " ) ;

43 else i f ( op . c o d e . A r i t y > 0 && op . c o d e . A r i t y != op . f r a g m e n t P a r a m e t e r s && op . c o n s t a n t s

. L e n g t h == 0)

44 throw new O p e r a t i o n E x c e p t i o n ( " A n n o t a t i o n p a r a m e t e r s c o u n t ( "

45 + op . f r a g m e n t P a r a m e t e r s + " ) d i f f e r s f r o m

i n c l u s i o n p a r a m e t e r s c o u n t ( "

46 + op . c o d e . A r i t y + " ) ! " , op ) ;

47 else

48 {
49 i n f o . m a x S t a c k += op . c o d e . M a x S t a c k ;

50 op . r e l o c = n e w l o c a l s . C o u n t ;

51 f o r e a c h ( C o d e L o c a l I n f o cli in op . c o d e . i n f o . l o c a l s )

52 n e w l o c a l s . Add (new C o d e L o c a l I n f o ( cli . T y p e ) ) ;

53 }
54 } else i f ( op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . C O P Y _ B E F O R E | |
55 op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . C O P Y _ A F T E R )

56 {
57 }
58 }
59 i n f o . l o c a l s = n e w l o c a l s . T o A r r a y ( t y p e o f ( C o d e L o c a l I n f o ) ) as C o d e L o c a l I n f o [ ] ;

60 }

7.1.3 Code’s new “Code.FillMethodBody”

The source code presented here shows the implementation of the whole
Code.FillMethodBody() method. The method implements the algorithms dis-
cussed in this thesis. In particular, it is possible to see the implementation
of the operations on annotations: extrusion, removal and inclusion.

Listing 7.3: Code’s new “FillMethodBody”
1 public void F i l l M e t h o d B o d y ( I L G e n e r a t o r ilg )

2 {
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3 // Dec lare l o c a l s

4 L o c a l B u i l d e r [ ] l o c a l s = new L o c a l B u i l d e r [ i n f o . l o c a l s . L e n g t h ] ;

5 for ( int i = 0; i < i n f o . l o c a l s . L e n g t h ; i++)

6 l o c a l s [ i ] = ilg . D e c l a r e L o c a l ( i n f o . l o c a l s [ i ] . T y p e ) ;

7 //mtb . CreateMethodBody ( i l s . ILStream , i l s . Length ) ;

8

9 A s s e m b l y I L S t o r e ils = new A s s e m b l y I L S t o r e ( this ) ;

10 I L C u r s o r c = ils . I L C u r s o r ;

11 c . T r a c k T a r g e t s ( ) ;

12 H a s h t a b l e l a b e l s = new H a s h t a b l e ( c . T a r g e t s . L e n g t h ) ;

13 H a s h t a b l e i l a b e l s = new H a s h t a b l e ( ) ;

14 H a s h t a b l e p o s l a b e l s = new H a s h t a b l e ( c . T a r g e t s . L e n g t h ) ;

15 H a s h t a b l e i p o s l a b e l s = new H a s h t a b l e ( ) ;

16 f o r e a c h ( T a r g e t t in c . T a r g e t s )

17 {
18 l a b e l s . Add ( t , ilg . D e f i n e L a b e l ( ) ) ;

19 p o s l a b e l s . Add ( t . P o s i t i o n , l a b e l s [ t ] ) ;

20 }
21

22 A r r a y L i s t j u m p s = new A r r a y L i s t ( ) ;

23 i f ( o p e r a t i o n s != null )

24 {
25 f o r e a c h ( O p e r a t i o n op in o p e r a t i o n s )

26 i f ( op . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . E X T R U D E )

27 {
28 i f ( op . f r a g m e n t R e a l P a r a m e t e r s > 0)

29 {
30 for ( int i = op . f r a g m e n t R e a l P a r a m e t e r s ; i < i n f o . p a r a m e t e r s .

L e n g t h ; i++)

31 switch ( i )

32 {
33 case 1 :

34 ilg . E m i t ( O p C o d e s . L d a r g _ 1 ) ;

35 ilg . E m i t ( O p C o d e s . Stloc , i − op .

f r a g m e n t R e a l P a r a m e t e r s ) ;

36 break ;

37 case 2 :

38 ilg . E m i t ( O p C o d e s . L d a r g _ 2 ) ;

39 ilg . E m i t ( O p C o d e s . Stloc , i − op .

f r a g m e n t R e a l P a r a m e t e r s ) ;

40 break ;

41 case 3 :

42 ilg . E m i t ( O p C o d e s . L d a r g _ 3 ) ;

43 ilg . E m i t ( O p C o d e s . Stloc , i − op .

f r a g m e n t R e a l P a r a m e t e r s ) ;

44 break ;

45 default :

46 i f ( i < 256)

47 {
48 ilg . E m i t ( O p C o d e s . Ldarg_S , (byte ) i ) ;

49 ilg . E m i t ( O p C o d e s . Stloc_S , (byte ) ( i − op .

f r a g m e n t R e a l P a r a m e t e r s ) ) ;

50 }
51 else

52 {
53 ilg . E m i t ( O p C o d e s . Ldarg , i ) ;

54 ilg . E m i t ( O p C o d e s . Stloc , i − op .

f r a g m e n t R e a l P a r a m e t e r s ) ;

55 }
56 break ;

57 }
58 }
59 else

60 {
61 for ( int i = 0; i < i n f o . p a r a m e t e r s . L e n g t h ; i++)
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62 switch ( i )

63 {
64 case 0 :

65 ilg . E m i t ( O p C o d e s . L d a r g _ 0 ) ;

66 ilg . E m i t ( O p C o d e s . S t l o c _ 0 ) ;

67 break ;

68 case 1 :

69 ilg . E m i t ( O p C o d e s . L d a r g _ 1 ) ;

70 ilg . E m i t ( O p C o d e s . S t l o c _ 1 ) ;

71 break ;

72 case 2 :

73 ilg . E m i t ( O p C o d e s . L d a r g _ 2 ) ;

74 ilg . E m i t ( O p C o d e s . S t l o c _ 2 ) ;

75 break ;

76 case 3 :

77 ilg . E m i t ( O p C o d e s . L d a r g _ 3 ) ;

78 ilg . E m i t ( O p C o d e s . S t l o c _ 3 ) ;

79 break ;

80 default :

81 i f ( i < 256)

82 {
83 ilg . E m i t ( O p C o d e s . Ldarg_S , (byte ) i ) ;

84 ilg . E m i t ( O p C o d e s . Stloc_S , (byte ) i ) ;

85 }
86 else

87 {
88 ilg . E m i t ( O p C o d e s . Ldarg , i ) ;

89 ilg . E m i t ( O p C o d e s . Stloc , i ) ;

90 }
91 break ;

92 }
93 }
94 }
95 }
96

97 b o o l d o n e = true ;

98 int c u r r e n t = 0;

99 O p e r a t i o n o p e r a t i o n = null ;

100 int b = 0;

101 int b r T a r g e t = 0;

102 long d e l E n d = −2;

103 int idx = −1;

104 int i n s t n u m = 0;

105 while ( c . N e x t ( ) )

106 {
107

108 i f ( c . L a b e l != null )

109 {
110 i f ( o p e r a t i o n != null && o p e r a t i o n . i n c l u d i n g )

111 ilg . M a r k L a b e l ( ( L a b e l ) i l a b e l s [ c . L a b e l ] ) ;

112 else

113 ilg . M a r k L a b e l ( ( L a b e l ) l a b e l s [ c . L a b e l ] ) ;

114 }
115

116 i f ( o p e r a t i o n s != null )

117 i f ( d o n e )

118 {
119 O p e r a t i o n o l d O p = o p e r a t i o n ;

120 i f ( c u r r e n t < o p e r a t i o n s . L e n g t h )

121 {
122 o p e r a t i o n = o p e r a t i o n s [ c u r r e n t ] ;

123 }
124 i f ( o l d O p != null )

125 {
126 i f ( o p e r a t i o n . f r a g m e n t . A C S I n d e x == o l d O p . f r a g m e n t . A C S I n d e x )

133



7.1. Sources Chapter 7. Appendix

127 {
128 o p e r a t i o n . b i n d i n g s = o l d O p . b i n d i n g s ;

129 i f ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

I N C L U D E _ B E F O R E | |
130 o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

I N C L U D E _ A F T E R | |
131 o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

C O P Y _ B E F O R E | |
132 o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

C O P Y _ A F T E R )

133 c . P o p S t a t e ( ) ;

134 }
135 }
136 i f ( c u r r e n t < o p e r a t i o n s . L e n g t h )

137 c u r r e n t++;

138 else

139 o p e r a t i o n = null ;

140 d o n e = fa l se ;

141 b = 0;

142 }
143

144 i f ( o p e r a t i o n != null )

145 {
146 I L I n s t r u c t i o n ni = I L I n s t r u c t i o n . N o r m a l i z e ( c . I n s t r ) ;

147

148 A n n o t a t i o n . A C S M e t h o d s a c s M e t h o d = A n n o t a t i o n . C h e c k M e t h o d ( c ) ;

149 i f ( a c s M e t h o d == A n n o t a t i o n . A C S M e t h o d s . B E G I N M E T A )

150 {
151 f o r e a c h ( O p e r a t i o n o in o p e r a t i o n s )

152 i f ( o . f r a g m e n t . A C S I n d e x − 1 == idx )

153 {
154 o . f r a g m e n t . M e t a P o s i t i o n = c . P o s i t i o n ;

155 break ;

156 }
157 }
158 else i f ( a c s M e t h o d == A n n o t a t i o n . A C S M e t h o d s . B E G I N | |
159 a c s M e t h o d == A n n o t a t i o n . A C S M e t h o d s . B E G I N E X )

160 idx++;

161

162 i f ( a c s M e t h o d != A n n o t a t i o n . A C S M e t h o d s . N O N E )

163 i f ( c . L a b e l != null )

164 {
165 for ( int no = c u r r e n t ; no < o p e r a t i o n s . L e n g t h ; no++)

166 i f ( o p e r a t i o n s [ no ] . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

R E M O V E )

167 {
168 ilg . E m i t ( O p C o d e s . Nop ) ;

169 try

170 {
171 ilg . M a r k L a b e l ( ( L a b e l ) l a b e l s [ c . L a b e l ] ) ;

172 }
173 catch ( E x c e p t i o n e ) { }
174 break ;

175 }
176 }
177

178 i f ( ! o p e r a t i o n . i n c l u d i n g )

179 {
180

181 i f ( o p e r a t i o n . f r a g m e n t . M e t a P o s i t i o n != −1)

182 i f ( c . P o s i t i o n < o p e r a t i o n . f r a g m e n t . B e g i n P o s i t i o n )

183 {
184 i f ( c . P o s i t i o n > o p e r a t i o n . f r a g m e n t . M e t a P o s i t i o n )

185 {
186
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187 i f ( o p e r a t i o n . b i n d i n g s == null )

188 {
189 i f ( ni . op . E q u a l s ( O p C o d e s . L d c _ I 4 ) )

190 i f ( ni . par . iv != o p e r a t i o n . f r a g m e n t P a r a m e t e r s )

191 throw new O p e r a t i o n E x c e p t i o n (

192 S t r i n g . F o r m a t ( " W r o n g a n n o t a t i o n b i n d i n g s

d e c l a r a t i o n ! ( { 0 } != { 1 } ) " ,

193 ni . par . iv , o p e r a t i o n .

f r a g m e n t P a r a m e t e r s ) ,

194 o p e r a t i o n ) ;

195 else

196 o p e r a t i o n . b i n d i n g s = new int [ ni . par . iv ] ;

197 }
198

199 i f ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

I N C L U D E _ B E F O R E | |
200 o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

I N C L U D E _ A F T E R )

201 i f ( ni . op . E q u a l s ( O p C o d e s . L d l o c ) )

202 {
203 i f ( b < o p e r a t i o n . f r a g m e n t P a r a m e t e r s )

204 o p e r a t i o n . b i n d i n g s [ b++] = ni . par . iv ;

205 else

206 {
207 o p e r a t i o n . a n n o t a t i o n R e t u r n L o c a l = ni . par . iv ;

208 o p e r a t i o n . a n n o t a t i o n R e t u r n T y p e = l o c a l s [ ni .

par . iv ] . L o c a l T y p e ;

209 }
210 }
211 }
212 }
213 }
214

215 i f ( o p e r a t i o n . i n c l u d i n g )

216 {
217 i f ( ni . op . E q u a l s ( O p C o d e s . L d a r g ) )

218 {
219 i f ( o p e r a t i o n . c o n s t a n t s . L e n g t h > 0)

220 {
221 C o n s o l e . W r i t e L i n e ( " h a c k {0} {1} " , ni . par . iv , o p e r a t i o n .

c o n s t a n t s . L e n g t h ) ;

222 ilg . E m i t ( O p C o d e s . Ldc_I4 , o p e r a t i o n . c o n s t a n t s [ ni . par . iv ] ) ;

223 }
224 else

225 {
226 int loc ;

227 try

228 {
229 loc = o p e r a t i o n . b i n d i n g s [ ni . par . iv ] ;

230 }
231 catch ( N u l l R e f e r e n c e E x c e p t i o n e )

232 {
233 loc = ni . par . iv ;

234 }
235

236 // i n t l o c = ope ra t i on . b i n d i n g s [ n i . par . i v ] ;

237 i f ( ! E m i t C a s t C o d e ( ilg , this . i n f o . l o c a l s [ loc ] . Type , o p e r a t i o n

. c o d e . i n f o . p a r a m e t e r s [ ni . par . iv ] . P a r a m e t e r T y p e ) )

238 throw new O p e r a t i o n E x c e p t i o n ( " I n c o m p a t i b l e t y p e s ! " ,

o p e r a t i o n , new I n v a l i d C a s t E x c e p t i o n ( " L o c a l v a r i a b l e

t y p e ( "

239 +

this

.
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i n f o

.

l o c a l s

[

loc

] .

T y p e

240 +

"

)

is

not

c o m p a t i b l e

w i t h

i n c l u s i o n

’

s

p a r a m e t e r

t y p e

(

"

241 +

o p e r a t i o n

.

c o d e

.

i n f o

.

p a r a m e t e r s

[

ni

.

par

.

iv

] .

P a r a m e t e r T y p e

+

"

)

"

)

)

;

242 C o n s o l e . W r i t e L i n e ( " {2} , {0} {1} " , ni . par . iv , loc , ni . op ) ;

243 i f ( loc == 0)

244 ilg . E m i t ( O p C o d e s . L d l o c _ 0 ) ;

245 else i f ( loc == 1)

246 ilg . E m i t ( O p C o d e s . L d l o c _ 1 ) ;

247 else i f ( loc == 2)
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248 ilg . E m i t ( O p C o d e s . L d l o c _ 2 ) ;

249 else i f ( loc == 3)

250 ilg . E m i t ( O p C o d e s . L d l o c _ 3 ) ;

251 else i f ( loc <= 255)

252 ilg . E m i t ( O p C o d e s . Ldloc_S , ( s b y t e ) loc ) ;

253 else

254 ilg . E m i t ( O p C o d e s . Ldloc , loc ) ;

255 }
256 continue ;

257 }
258 else i f ( ni . op . E q u a l s ( O p C o d e s . L d a r g a ) )

259 {
260 int loc = o p e r a t i o n . b i n d i n g s [ ni . par . iv ] ;

261 C o n s o l e . W r i t e L i n e ( " {2} , {0} {1} " , ni . par . iv , loc , ni . op ) ;

262 i f ( loc <= 255)

263 ilg . E m i t ( O p C o d e s . L d l o c a _ S , ( s b y t e ) loc ) ;

264 else

265 ilg . E m i t ( O p C o d e s . Ldloca , loc ) ;

266 continue ;

267 }
268 else i f ( ni . op . E q u a l s ( O p C o d e s . L d l o c ) )

269 {
270 int loc = ni . par . iv + o p e r a t i o n . r e l o c ;

271 C o n s o l e . W r i t e L i n e ( " {2} , {0} {1} " , ni . par . iv , loc , ni . op ) ;

272 i f ( loc == 0)

273 ilg . E m i t ( O p C o d e s . L d l o c _ 0 ) ;

274 else i f ( loc == 1)

275 ilg . E m i t ( O p C o d e s . L d l o c _ 1 ) ;

276 else i f ( loc == 2)

277 ilg . E m i t ( O p C o d e s . L d l o c _ 2 ) ;

278 else i f ( loc == 3)

279 ilg . E m i t ( O p C o d e s . L d l o c _ 3 ) ;

280 else i f ( loc <= 255)

281 ilg . E m i t ( O p C o d e s . Ldloc_S , ( s b y t e ) loc ) ;

282 else

283 ilg . E m i t ( O p C o d e s . Ldloc , loc ) ;

284 continue ;

285 }
286 else i f ( ni . op . E q u a l s ( O p C o d e s . L d l o c a ) )

287 {
288 int loc = ni . par . iv + o p e r a t i o n . r e l o c ;

289 C o n s o l e . W r i t e L i n e ( " {2} , {0} {1} " , ni . par . iv , loc , ni . op ) ;

290 i f ( loc <= 255)

291 ilg . E m i t ( O p C o d e s . L d l o c a _ S , ( s b y t e ) loc ) ;

292 else

293 ilg . E m i t ( O p C o d e s . Ldloca , loc ) ;

294 continue ;

295 }
296 else i f ( ni . op . E q u a l s ( O p C o d e s . S t l o c ) )

297 {
298 int loc = ni . par . iv + o p e r a t i o n . r e l o c ;

299 C o n s o l e . W r i t e L i n e ( " {2} , {0} {1} " , ni . par . iv , loc , ni . op ) ;

300 i f ( loc == 0)

301 ilg . E m i t ( O p C o d e s . S t l o c _ 0 ) ;

302 else i f ( loc == 1)

303 ilg . E m i t ( O p C o d e s . S t l o c _ 1 ) ;

304 else i f ( loc == 2)

305 ilg . E m i t ( O p C o d e s . S t l o c _ 2 ) ;

306 else i f ( loc == 3)

307 ilg . E m i t ( O p C o d e s . S t l o c _ 3 ) ;

308 else i f ( loc <= 255)

309 ilg . E m i t ( O p C o d e s . Stloc_S , ( s b y t e ) loc ) ;

310 else

311 ilg . E m i t ( O p C o d e s . Stloc , loc ) ;

312 continue ;
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313 }
314 else i f ( ni . op . O p e r a n d T y p e == O p e r a n d T y p e . I n l i n e B r T a r g e t )

315 {
316 C o n s o l e . W r i t e L i n e ( " {0} , {1} " , c . I n s t r . op , ni . par . iv ) ;

317 ilg . E m i t ( c . I n s t r . op , ( L a b e l ) i p o s l a b e l s [ ( long ) ( c . P o s i t i o n + 5 +

ni . par . iv ) ] ) ;

318 continue ;

319 }
320 else i f ( ni . op . O p e r a n d T y p e == O p e r a n d T y p e . S h o r t I n l i n e B r T a r g e t )

321 {
322 C o n s o l e . W r i t e L i n e ( " {0} , {1} " , c . I n s t r . op , ni . par . sbv ) ;

323 ilg . E m i t ( c . I n s t r . op , ( L a b e l ) i p o s l a b e l s [ ( long ) ( c . P o s i t i o n + 5 +

ni . par . sbv ) ] ) ;

324 continue ;

325 }
326 else i f ( ni . op . E q u a l s ( O p C o d e s . Ret ) )

327 {
328 i f ( o p e r a t i o n . c o d e . R e t u r n T y p e != t y p e o f (void ) )

329 i f ( o p e r a t i o n . a n n o t a t i o n R e t u r n T y p e == null )

330 ilg . E m i t ( O p C o d e s . Pop ) ;

331 else

332 i f ( E m i t C a s t C o d e ( ilg , o p e r a t i o n . c o d e . R e t u r n T y p e ,

o p e r a t i o n . a n n o t a t i o n R e t u r n T y p e ) )

333 {
334 C o n s o l e . W r i t e L i n e ( " S t l o c {0} " , o p e r a t i o n .

a n n o t a t i o n R e t u r n L o c a l ) ;

335 ilg . E m i t ( O p C o d e s . Stloc , o p e r a t i o n .

a n n o t a t i o n R e t u r n L o c a l ) ;

336 }
337 else

338 throw new O p e r a t i o n E x c e p t i o n ( " I n c o m p a t i b l e s i g n a t u r e

! " , o p e r a t i o n , new I n v a l i d C a s t E x c e p t i o n ( " L o c a l

v a r i a b l e t y p e ( "

339 +

o p e r a t i o n

.

a n n o t a t i o n R e t u r n T y p e

340 +

"

)

is

not

c o m p a t i b l e

w i t h

i n c l u d e d

r e t u r n

t y p e

(

"

341 +

o p e r a t i o n

.
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c o d e

.

R e t u r n T y p e

+

"

)

"

)

)

;

342 }
343

344 i f ( c . EOF )

345 {
346 o p e r a t i o n . i n c l u d i n g = fa l se ;

347 c = o p e r a t i o n . t m p c ;

348 o p e r a t i o n . t m p c = null ;

349 d o n e = true ;

350 }
351

352 }
353 else i f ( o p e r a t i o n . c o p y i n g )

354 {
355

356 i f ( c . P o s i t i o n == o p e r a t i o n . c o p y . E n d P o s i t i o n )

357 {
358 o p e r a t i o n . c o p y i n g = fa l se ;

359 d o n e = true ;

360 continue ;

361 }
362

363 }
364 else i f ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E )

365 {
366

367 i f ( c . P o s i t i o n >= o p e r a t i o n . f r a g m e n t P o s i t i o n )

368 i f ( c . P o s i t i o n <= o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n + 1)

369 continue ;

370 else i f ( c . P o s i t i o n == o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n + 1)

371 {
372 d o n e = true ;

373 continue ;

374 }
375

376 }
377 else i f ( ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E

378 && c . P o s i t i o n == o p e r a t i o n . f r a g m e n t P o s i t i o n + 1) | |
379 ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s .

I N C L U D E _ A F T E R

380 && c . P o s i t i o n == o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n ) )

381 {
382

383 c . P u s h S t a t e ( ) ;

384 d e l E n d = o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n ;

385 o p e r a t i o n . t m p c = c ;

386 c = new A s s e m b l y I L S t o r e ( o p e r a t i o n . c o d e ) . I L C u r s o r ;

387

388 c . T r a c k T a r g e t s ( ) ;

389 i l a b e l s . C l e a r ( ) ;

390 i p o s l a b e l s . C l e a r ( ) ;

391 f o r e a c h ( T a r g e t t in c . T a r g e t s )

392 {
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393 i l a b e l s . Add ( t , ilg . D e f i n e L a b e l ( ) ) ;

394 i f ( ! i p o s l a b e l s . C o n t a i n s ( t . P o s i t i o n ) )

395 i p o s l a b e l s . Add ( t . P o s i t i o n , i l a b e l s [ t ] ) ;

396 }
397 /∗
398 wh i l e ( c . Next ( ) )

399 {
400 Conso le . WriteLine (” s k i p p i n g {0} . .{1} {2}” , c . Pos i t i on ,

op e r a t i on . code . e x t ru s i onBeg in , c . I n s t r . op ) ;

401 i f ( c . Po s i t i o n >= ope ra t i on . code . e x t r u s i onBeg i n )

402 break ;

403 }
404 ∗/
405 o p e r a t i o n . i n c l u d i n g = true ;

406 continue ;

407

408 }
409 else i f ( ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . C O P Y _ B E F O R E

410 && c . P o s i t i o n == o p e r a t i o n . f r a g m e n t P o s i t i o n ) | |
411 ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . C O P Y _ A F T E R

412 && c . P o s i t i o n == o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n ) && o p e r a t i o n .

c o p y i n g == fa l se )

413 {
414

415 c . P u s h S t a t e ( ) ;

416 // delEnd = ope ra t i on . f ragment . EndPos i t ion ;

417 c . R e s e t ( ) ;

418 c . N e x t ( ) ;

419 while ( c . P o s i t i o n <= o p e r a t i o n . c o p y . B e g i n P o s i t i o n )

420 c . N e x t ( ) ;

421 o p e r a t i o n . c o p y i n g = true ;

422 // con t inue ;

423

424 }
425 else i f ( o p e r a t i o n . o p e r a t i o n == C o d e A t t r i b u t e . O p e r a t i o n s . E X T R U D E )

426 {
427

428 i f ( c . P o s i t i o n >= o p e r a t i o n . f r a g m e n t . E n d P o s i t i o n )

429 {
430 i f ( c . P o s i t i o n > b r T a r g e t )

431 {
432 i f ( ! ni . op . E q u a l s ( O p C o d e s . Ret ) )

433 ilg . E m i t ( O p C o d e s . Ret ) ;

434 break ;

435 }
436 }
437 else i f ( c . P o s i t i o n <= o p e r a t i o n . f r a g m e n t P o s i t i o n + 1)

438 {
439 continue ;

440 }
441 else

442 {
443 i f ( ni . op . E q u a l s ( O p C o d e s . Br ) )

444 i f ( ( c . P o s i t i o n + ni . par . iv ) >= o p e r a t i o n . f r a g m e n t .

E n d P o s i t i o n )

445 throw new O p e r a t i o n E x c e p t i o n ( " The a n n o t a t i o n c o n t a i n s a

j u m p o u t s i d e of it ! " , o p e r a t i o n ) ;

446 }
447 }
448

449 i f ( ! o p e r a t i o n . i n c l u d i n g )

450 {
451 i f ( o p e r a t i o n . f r a g m e n t . M e t a P o s i t i o n != −1)

452 {
453 i f ( c . P o s i t i o n >= o p e r a t i o n . f r a g m e n t . M e t a P o s i t i o n )
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454 i f ( c . P o s i t i o n <= o p e r a t i o n . f r a g m e n t . B e g i n P o s i t i o n )

455 continue ;

456 }
457 else

458 {
459 i f ( c . P o s i t i o n >= o p e r a t i o n . f r a g m e n t P o s i t i o n )

460 i f ( c . P o s i t i o n <= o p e r a t i o n . f r a g m e n t . B e g i n P o s i t i o n )

461 continue ;

462 }
463 }
464

465 }
466

467 i f ( ( o p e r a t i o n != null && ! o p e r a t i o n . i n c l u d i n g )

468 | | o p e r a t i o n == null )

469 i f ( c . P o s i t i o n == d e l E n d | |
470 c . P o s i t i o n == d e l E n d + 1)

471 continue ;

472

473 ++i n s t n u m ;

474 /∗
475 i f ( c . Labe l != n u l l )

476 i l g . MarkLabel ( ( Labe l ) l a b e l s [ c . Labe l ] ) ;

477 ∗/
478 /∗
479 i f ( c . Labe l != n u l l ) {
480 i f ( ! l a b e l s . ContainsKey ( c . Labe l ) )

481 l a b e l s . Add( c . Labe l , i l g . De f i neLabe l ( ) ) ;

482 i l g . MarkLabel ( ( Labe l ) l a b e l s [ c . Labe l ] ) ;

483 }
484 ∗/
485 o b j e c t par ;

486 i f ( o p e r a t i o n != null )

487 i f ( o p e r a t i o n . i n c l u d i n g )

488 par = c . I n s t r . R e s o l v e P a r a m e t e r ( o p e r a t i o n . c o d e . i n f o . A s s e m b l y R e a d e r ) ;

489 else

490 par = c . I n s t r . R e s o l v e P a r a m e t e r ( this . i n f o . A s s e m b l y R e a d e r ) ;

491 else

492 par = c . I n s t r . R e s o l v e P a r a m e t e r ( this . i n f o . A s s e m b l y R e a d e r ) ;

493 /∗
494 i f ( par i s Target ) {
495 i f ( ! l a b e l s . ContainsKey ( par ) )

496 l a b e l s . Add( par , i l g . De f in eLabe l ( ) ) ;

497 par = l a b e l s [ par ] ;

498 } e l s e i f ( par i s Target [ ] ) {
499 Target [ ] t = par as Target [ ] ;

500 Labe l [ ] a = new Labe l [ t . Length ] ;

501 f o r ( i n t i = 0 ; i < a . Length ; i++) {
502 i f ( ! l a b e l s . ContainsKey ( t [ i ] ) )

503 l a b e l s . Add( t [ i ] , i l g . De f i n eLabe l ( ) ) ;

504 a [ i ] = ( Labe l ) l a b e l s [ t [ i ] ] ;

505 }
506 par = a ;

507 }
508 ∗/
509

510 #i f D E B U G

511 C o n s o l e . W r i t e L i n e ( c . P o s i t i o n + " : " + c . I n s t r . op + " " + par ) ;

512 #e n d i f

513 switch ( c . I n s t r . op . O p e r a n d T y p e )

514 {
515 case O p e r a n d T y p e . I n l i n e B r T a r g e t :

516 b r T a r g e t = c . I n s t r . par . iv ;

517 ilg . E m i t ( c . I n s t r . op , ( L a b e l ) p o s l a b e l s [ ( long ) ( c . P o s i t i o n + 5 + c .

I n s t r . par . iv ) ] ) ;
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518 break ;

519 case O p e r a n d T y p e . S h o r t I n l i n e B r T a r g e t :

520 b r T a r g e t = c . I n s t r . par . sbv ;

521 ilg . E m i t ( c . I n s t r . op , ( L a b e l ) p o s l a b e l s [ ( long ) ( c . P o s i t i o n + 5 + c .

I n s t r . par . sbv ) ] ) ;

522 break ;

523 case O p e r a n d T y p e . I n l i n e I :

524 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . iv ) ;

525 break ;

526 case O p e r a n d T y p e . I n l i n e F i e l d :

527 ilg . E m i t ( c . I n s t r . op , ( F i e l d I n f o ) par ) ;

528 break ;

529 case O p e r a n d T y p e . I n l i n e I 8 :

530 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . lv ) ;

531 break ;

532 case O p e r a n d T y p e . I n l i n e M e t h o d :

533 i f ( par is M e t h o d I n f o )

534 ilg . E m i t ( c . I n s t r . op , ( M e t h o d I n f o ) par ) ;

535 else

536 ilg . E m i t ( c . I n s t r . op , ( C o n s t r u c t o r I n f o ) par ) ;

537 break ;

538 case O p e r a n d T y p e . I n l i n e N o n e :

539 ilg . E m i t ( c . I n s t r . op ) ;

540 break ;

541 /∗
542 case OperandType . I n l i n ePh i :

543 throw new Excep t ion (” Unsupported ”) ;

544 ∗/
545 case O p e r a n d T y p e . I n l i n e R :

546 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . dv ) ;

547 break ;

548 case O p e r a n d T y p e . I n l i n e S i g :

549 throw new E x c e p t i o n ( " U n s u p p o r t e d " ) ;

550 case O p e r a n d T y p e . I n l i n e S t r i n g :

551 ilg . E m i t ( c . I n s t r . op , ( s t r i n g ) par ) ;

552 break ;

553 case O p e r a n d T y p e . I n l i n e S w i t c h :

554 {
555 L a b e l [ ] lab = new L a b e l [ c . I n s t r . par . iv ] ;

556 o b j e c t [ ] sw = ( o b j e c t [ ] ) par ;

557 for ( int i = 0; i < lab . L e n g t h ; i++)

558 lab [ i ] = ( L a b e l ) l a b e l s [ sw [ i ] ] ;

559 ilg . E m i t ( c . I n s t r . op , lab ) ;

560 break ;

561 }
562 case O p e r a n d T y p e . I n l i n e T o k :

563 i f ( par is T y p e ) ilg . E m i t ( c . I n s t r . op , ( T y p e ) par ) ;

564 else i f ( par is M e t h o d I n f o ) ilg . E m i t ( c . I n s t r . op , ( M e t h o d I n f o ) par ) ;

565 else i f ( par is F i e l d I n f o ) ilg . E m i t ( c . I n s t r . op , ( F i e l d I n f o ) par ) ;

566 else throw new E x c e p t i o n ( " U n s u p p o r t e d " ) ;

567 break ;

568 case O p e r a n d T y p e . I n l i n e T y p e :

569 ilg . E m i t ( c . I n s t r . op , ( T y p e ) par ) ;

570 break ;

571 case O p e r a n d T y p e . I n l i n e V a r :

572 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . sv ) ;

573 break ;

574 case O p e r a n d T y p e . S h o r t I n l i n e I :

575 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . sbv ) ;

576 break ;

577 case O p e r a n d T y p e . S h o r t I n l i n e R :

578 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . fv ) ;

579 break ;

580 case O p e r a n d T y p e . S h o r t I n l i n e V a r :

581 ilg . E m i t ( c . I n s t r . op , c . I n s t r . par . bv ) ;
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582 break ;

583 }
584 }
585 #i f D E B U G

586 C o n s o l e . W r i t e L i n e ( " I n s t . num : {0} " , i n s t n u m ) ;

587 #e n d i f

588 }

7.1.4 Unix Memory Mapping

The following is the source code which is responsible for exposing to the
Mono environment the Linux OS’ low level memory mapping functions; these
functions were needed to port the CLIFileRW and CodeBricks library on the
Linux/Mono platform.

Listing 7.4: Unix Memory Mapping
1 // //////////////////////////////////////////////////////////////////////////////

2 // Author : N ico l a Giordani ( n i c o l a@d i n o s o f t . i t )

3 //

4 // This i s t o suppor t memory mapping o f f i l e s on the unix p l a t f o rm

5 // I t u se s t h e mmap( ) , msync ( ) and munmap( ) f u n c t i o n s p rov i d ed by l i bm and

6 // the g e t p a g e s i z e ( ) f u n c t i o n p rov i d ed by l i b c to g e t os ’ page a l l o c a t i o n s i z e

7 // //////////////////////////////////////////////////////////////////////////////

8

9 #i f U N I X

10

11 u s i n g S y s t e m ;

12 u s i n g S y s t e m . R u n t i m e . I n t e r o p S e r v i c e s ;

13

14 n a m e s p a c e M a p p e d V i e w {
15

16 public e n u m M M a p F l a g s {
17 P R O T _ R E A D = 0 x1 , /∗ Page can be read . ∗/
18 P R O T _ W R I T E = 0 x2 , /∗ Page can be w r i t t e n . ∗/
19 P R O T _ E X E C = 0 x4 , /∗ Page can be e x e cu t ed . ∗/
20 /∗ Shar ing t y p e s (must choose one and on l y one o f t h e s e ) . ∗/
21 M A P _ S H A R E D = 0 x01 , /∗ Share changes . ∗/
22 M A P _ P R I V A T E = 0 x02 , /∗ Changes are p r i v a t e . ∗/
23 M S _ A S Y N C = 1 , /∗ Sync memory asynchronous l y . ∗/
24 M S _ S Y N C = 4 /∗ Synchronous memory sync . ∗/
25 }
26

27 public u n s a f e class U n i x M a p p i n g {
28

29 public stat ic r e a d o n l y int A l l o c a t i o n G r a n u l a r i t y = 0;

30 public stat ic r e a d o n l y long M a s k B a s e = 0;

31 public stat ic r e a d o n l y long M a s k O f f s e t = 0;

32

33 stat ic U n i x M a p p i n g ( ) {
34 A l l o c a t i o n G r a n u l a r i t y = ( int ) M a t h . Log ( g e t p a g e s i z e ( ) , 2) ;

35 // Assume a power o f 2 !

36 M a s k B a s e = (1 << A l l o c a t i o n G r a n u l a r i t y ) − 1 ;

37 M a s k O f f s e t = ˜ M a s k B a s e ;

38 }
39

40 [ D l l I m p o r t ( " l i b c " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

41 public stat ic u n s a f e e x t e r n int f o p e n ( char∗ file , char∗ m ) ;

42

43 [ D l l I m p o r t ( " l i b c " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]
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44 public stat ic u n s a f e e x t e r n int p e r r o r ( I n t P t r s ) ;

45

46 [ D l l I m p o r t ( " l i b c " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

47 public stat ic u n s a f e e x t e r n int m e m c p y ( I n t P t r dest ,

48 I n t P t r src ,

49 int n ) ;

50

51 [ D l l I m p o r t ( " l i b c " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

52 public stat ic u n s a f e e x t e r n int g e t p a g e s i z e ( ) ;

53

54 [ D l l I m p o r t ( " l i b m " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

55 public stat ic u n s a f e e x t e r n I n t P t r m m a p ( I n t P t r start ,

56 int length ,

57 int prot ,

58 int flags ,

59 int fd ,

60 int o f f s e t ) ;

61

62 [ D l l I m p o r t ( " l i b m " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

63 public stat ic u n s a f e e x t e r n int m u n m a p ( I n t P t r start ,

64 int l e n g t h ) ;

65

66 [ D l l I m p o r t ( " l i b m " , C h a r S e t=C h a r S e t . Auto , S e t L a s t E r r o r=true ) ]

67 public stat ic u n s a f e e x t e r n int m s y n c ( I n t P t r start ,

68 int length ,

69 int f l a g s ) ;

70

71 }
72

73 }
74

75 #e n d i f
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7.2 Examples sources

7.2.1 From Interactive To Batch

Listing 7.5: IOAttribute
1 u s i n g S y s t e m ;

2 u s i n g ACS ;

3

4 public class I O A t t r i b u t e : C o d e A t t r i b u t e

5 {
6

7 public e n u m R e d i r e c t i o n

8 {
9 CONSOLE ,

10 FILE ,

11 LOG

12 }
13

14 public R e d i r e c t i o n R e d i r e c t ;

15

16 }
17

18 [ A t t r i b u t e U s a g e ( A t t r i b u t e T a r g e t s . Method , A l l o w M u l t i p l e=true ) ]

19 public class I n p u t A t t r i b u t e : I O A t t r i b u t e

20 {
21

22 }
23

24 [ A t t r i b u t e U s a g e ( A t t r i b u t e T a r g e t s . Method , A l l o w M u l t i p l e=true ) ]

25 public class O u t p u t A t t r i b u t e : I O A t t r i b u t e

26 {
27

28 }
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Listing 7.6: Interactive
1 u s i n g S y s t e m ;

2 u s i n g ACS ;

3 u s i n g S y s t e m . IO ;

4 u s i n g S y s t e m . T e x t ;

5 u s i n g S y s t e m . S e c u r i t y . C r y p t o g r a p h y ;

6

7 public c lass I n t e r a c t i v e {
8

9 public stat ic H a s h A l g o r i t h m h a s h = S H A 5 1 2 . C r e a t e ( ) ;

10 public stat ic s t r i n g E X I T = " e x i t " ;

11

12 public stat ic s t r i n g E n c r y p t ( s t r i n g str )

13 {
14 M e m o r y S t r e a m ms = new M e m o r y S t r e a m ( ) ;

15 byte [ ] buf = E n c o d i n g . U T F 8 . G e t B y t e s ( str ) ;

16 ms . W r i t e ( buf , 0 , buf . L e n g t h ) ;

17 D e c o d e r dec = E n c o d i n g . U T F 8 . G e t D e c o d e r ( ) ;

18 int n = dec . G e t C h a r C o u n t ( buf , 0 , buf . L e n g t h ) ;

19 char [ ] c h a r s = new char [ n ] ;

20 dec . G e t C h a r s ( h a s h . C o m p u t e H a s h ( ms ) , 0 , buf . Length , chars , 0) ;

21 return new S t r i n g ( c h a r s ) ;

22 }
23

24 public stat ic void M a i n ( ) {
25 s t r i n g i n p u t = null ;

26 do {
27 [ I n p u t (∗ input , &i n p u t ) ]

28 {
29 C o n s o l e . W r i t e L i n e ( " T y p e a s t r i n g to e n c r y p t or ’ e x i t ’ to q u i t : " ) ;

30 i n p u t = C o n s o l e . R e a d L i n e ( ) ;

31 }
32

33 D a t e T i m e s t a r t = D a t e T i m e . Now ;

34 s t r i n g o u t p u t = E n c r y p t ( i n p u t ) ;

35 T i m e S p a n t i m e E l a p s e d = D a t e T i m e . Now − s t a r t ;

36 s t r i n g e l a p s e d = t i m e E l a p s e d . T o S t r i n g ( ) ;

37

38 [ O u t p u t ( R e d i r e c t = O u t p u t A t t r i b u t e . R e d i r e c t i o n . LOG , ∗ e l a p s e d ) ]

39 {
40 C o n s o l e . W r i t e L i n e ( S t r i n g . F o r m a t ( " E l a p s e d t i m e : {0} " , e l a p s e d ) ) ;

41 }
42

43 [ O u t p u t ( R e d i r e c t = O u t p u t A t t r i b u t e . R e d i r e c t i o n . FILE , ∗ o u t p u t ) ] {
44 C o n s o l e . W r i t e L i n e ( S t r i n g . F o r m a t ( " E n c r y p t e d s t r i n g is ’{0} ’ " , o u t p u t ) ) ;

45 }
46 } while ( ! i n p u t . E q u a l s ( E X I T ) ) ;

47 }
48

49 }
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Listing 7.7: Batch
1 u s i n g S y s t e m ;

2 u s i n g S y s t e m . R e f l e c t i o n ;

3 u s i n g S y s t e m . C o l l e c t i o n s ;

4 u s i n g S y s t e m . T e x t ;

5 u s i n g S y s t e m . IO ;

6 u s i n g ACS ;

7

8 public class B a t c h {
9

10 public stat ic s t r i n g G e n e r a t e S t r i n g ( )

11 {
12 R a n d o m r a n d = new R a n d o m ( ) ;

13 s t r i n g s = r a n d . N e x t (1000) . T o S t r i n g ( ) ;

14 i f ( s . E q u a l s ( " 999 " ) )

15 s = I n t e r a c t i v e . E X I T ;

16 return s ;

17 }
18

19 public stat ic void Log ( s t r i n g s )

20 {
21 S t r e a m W r i t e r log = new S t r e a m W r i t e r (new F i l e S t r e a m ( " log . txt " , F i l e M o d e . A p p e n d ) ) ;

22 log . W r i t e L i n e ( s ) ;

23 log . C l o s e ( ) ;

24 }
25

26 public stat ic void O u t p u t ( s t r i n g s )

27 {
28 S t r e a m W r i t e r o u t p u t = new S t r e a m W r i t e r (new F i l e S t r e a m ( " o u t p u t . s h a 5 1 2 " , F i l e M o d e .

A p p e n d ) ) ;

29 o u t p u t . W r i t e L i n e ( s ) ;

30 o u t p u t . C l o s e ( ) ;

31 }
32

33 d e l e g a t e void V o i d ( ) ;

34 d e l e g a t e void Str ( s t r i n g i ) ;

35

36 public stat ic void M a i n ( s t r i n g [ ] a r g s )

37 {
38 A s s e m b l y asm = A s s e m b l y . G e t E x e c u t i n g A s s e m b l y ( ) ;

39 T y p e p r o g r a m = asm . G e t T y p e ( " I n t e r a c t i v e " ) ;

40 M e t h o d I n f o m a i n = p r o g r a m . G e t M e t h o d ( " M a i n " ) ;

41 C o d e In = new C o d e ( t y p e o f ( B a t c h ) . G e t M e t h o d ( " G e n e r a t e S t r i n g " ) ) ;

42 C o d e Out = new C o d e ( t y p e o f ( B a t c h ) . G e t M e t h o d ( " O u t p u t " ) ) ;

43 C o d e Log = new C o d e ( t y p e o f ( B a t c h ) . G e t M e t h o d ( " Log " ) ) ;

44 A n n o t a t i o n T r e e [ ] io = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( m a i n ) ;

45 A r r a y L i s t o p e r a t i o n s = new A r r a y L i s t ( ) ;

46

47 f o r e a c h ( A n n o t a t i o n T r e e a n n o t in io )

48 {
49 i f ( a n n o t . N o d e [ 0 ] is I n p u t A t t r i b u t e )

50 {
51 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

52 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , In ) ) ;

53 o p e r a t i o n s . Add (new O p e r a t i o n ( annot , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

54 } else i f ( a n n o t . N o d e [ 0 ] is O u t p u t A t t r i b u t e )

55 i f ( ( ( I O A t t r i b u t e ) a n n o t . N o d e [ 0 ] ) . R e d i r e c t == I O A t t r i b u t e . R e d i r e c t i o n . F I L E )

56 {
57 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

58 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , Out ) ) ;

59 o p e r a t i o n s . Add (new O p e r a t i o n ( annot , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

60 } else i f ( ( ( I O A t t r i b u t e ) a n n o t . N o d e [ 0 ] ) . R e d i r e c t == I O A t t r i b u t e . R e d i r e c t i o n . LOG )

61 {
62 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

63 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , Log ) ) ;
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64 o p e r a t i o n s . Add (new O p e r a t i o n ( annot , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

65 }
66 }
67

68 C o n s o l e . W r i t e L i n e ( " o p e r a t i o n s # = {0} " , o p e r a t i o n s . C o u n t ) ;

69 C o d e b a t c h = new C o d e ( main ,

70 ( O p e r a t i o n [ ] ) o p e r a t i o n s . T o A r r a y ( t y p e o f ( O p e r a t i o n ) ) ) ;

71 D e l e g a t e b a t c h M a i n = b a t c h . M a k e D e l e g a t e ( t y p e o f ( V o i d ) , " boh . dll " ) ;

72 b a t c h M a i n . D y n a m i c I n v o k e ( null ) ;

73 }
74

75 }
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7.2.2 Runtime AOP

Listing 7.8: AOPAttribute
1 u s i n g S y s t e m ;

2 u s i n g ACS ;

3

4 [ A t t r i b u t e U s a g e ( A t t r i b u t e T a r g e t s . Method , A l l o w M u l t i p l e=true ) ]

5 public class A O P A t t r i b u t e : C o d e A t t r i b u t e {
6

7 public e n u m A d v i c e s

8 {
9 PRE ,

10 POST ,

11 AROUND ,

12 S W E E P

13 }
14

15 public A d v i c e s A d v i c e ;

16 public S t r i n g Id ;

17 public S t r i n g G r o u p ;

18

19 }
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Listing 7.9: RuntimeAOP
1 u s i n g S y s t e m ;

2 u s i n g S y s t e m . C o l l e c t i o n s ;

3 u s i n g S y s t e m . T h r e a d i n g ;

4 u s i n g S y s t e m . R e f l e c t i o n ;

5 u s i n g ACS ;

6 u s i n g Gtk ;

7

8 public c lass R u n t i m e A O P

9 {
10

11 public stat ic r e a d o n l y s t r i n g H A R D _ C O D E D = " Hard - c o d e d " ;

12 public stat ic r e a d o n l y s t r i n g A D D _ B E F O R E = " Add a d v i c e b e f o r e " ;

13 public stat ic r e a d o n l y s t r i n g A D D _ A F T E R = " Add a d v i c e a f t e r " ;

14 public stat ic r e a d o n l y s t r i n g A D D _ A R O U N D = " Add a d v i c e a r o u n d " ;

15 public stat ic r e a d o n l y s t r i n g R E M O V E _ G R O U P = " R e m o v e g r o u p " ;

16

17 public stat ic b o o l a l i v e ;

18 public stat ic W i n d o w app ;

19 public d e l e g a t e void H a n d l e r ( ) ;

20 public stat ic H a n d l e r h a n d l e r ;

21 public stat ic H a n d l e r A O P H a n d l e r ;

22 public stat ic T h r e a d t h r e a d ;

23 public stat ic R a n d o m rnd = new R a n d o m ( ) ;

24

25 public stat ic B u t t o n on ;

26 public stat ic B u t t o n off ;

27 public stat ic C o m b o B o x c h o i c e ;

28

29 public stat ic void M a i n ( )

30 {
31 A p p l i c a t i o n . I n i t ( ) ;

32 new R u n t i m e A O P ( ) ;

33 A p p l i c a t i o n . Run ( ) ;

34 t h r e a d . J o i n ( ) ;

35 }
36

37 public R u n t i m e A O P ( )

38 {
39 app = new W i n d o w ( " R u n t i m e AOP " ) ;

40 H B o x hb = new H B o x ( true , 2) ;

41 on = new B u t t o n ( " T u r n on AOP " ) ;

42 on . S e n s i t i v e = fa l se ;

43 on . C l i c k e d += new E v e n t H a n d l e r ( A O P o n ) ;

44 off = new B u t t o n ( " T u r n off AOP " ) ;

45 off . C l i c k e d += new E v e n t H a n d l e r ( A O P o f f ) ;

46 off . S e n s i t i v e = fa l se ;

47 hb . P a c k S t a r t ( on ) ;

48 hb . P a c k E n d ( off ) ;

49 V B o x vb = new V B o x ( true , 3) ;

50 vb . P a c k S t a r t ( hb ) ;

51

52 A n n o t a t i o n T r e e [ ] a n n o t a t i o n s = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( t y p e o f ( R u n t i m e A O P ) .

G e t M e t h o d ( " D o S o m e t h i n g " ) ) ;

53 A r r a y L i s t i t e m s = new A r r a y L i s t ( ) ;

54 i t e m s . Add ( H A R D _ C O D E D ) ;

55 f o r e a c h ( A n n o t a t i o n T r e e a n n o t in a n n o t a t i o n s )

56 i f ( a n n o t . N o d e [ 0 ] is A O P A t t r i b u t e )

57 {
58 A O P A t t r i b u t e a o p a = a n n o t . N o d e [ 0 ] as A O P A t t r i b u t e ;

59 i f ( a o p a . G r o u p != null )

60 {
61 S t r i n g s = R E M O V E _ G R O U P + a o p a . G r o u p ;

62 i f ( ! i t e m s . C o n t a i n s ( s ) )

63 i t e m s . Add ( s ) ;
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64 }
65 i f ( a o p a . Id != null )

66 {
67 i t e m s . Add ( A D D _ B E F O R E + a o p a . Id ) ;

68 i t e m s . Add ( A D D _ A F T E R + a o p a . Id ) ;

69 i t e m s . Add ( A D D _ A R O U N D + a o p a . Id ) ;

70 }
71 }
72 c h o i c e = new C o m b o B o x ( ( s t r i n g [ ] ) i t e m s . T o A r r a y ( t y p e o f ( s t r i n g ) ) ) ;

73 c h o i c e . C h a n g e d += new E v e n t H a n d l e r ( s e t A O P ) ;

74 c h o i c e . A c t i v e = 0;

75 vb . P a c k S t a r t (new L a b e l ( " C h o o s e an AOP s t r a t e g y ... " ) ) ;

76 vb . P a c k E n d ( c h o i c e ) ;

77 app . Add ( vb ) ;

78 app . S e t D e f a u l t S i z e (200 , 75) ;

79 app . D e l e t e E v e n t += new D e l e t e E v e n t H a n d l e r ( O n A p p D e l e t e ) ;

80 app . S h o w A l l ( ) ;

81

82 T h r e a d S t a r t ts = new T h r e a d S t a r t ( R u n t i m e A O P . Run ) ;

83 t h r e a d = new T h r e a d ( ts ) ;

84 a l i v e = true ;

85 h a n d l e r = R u n t i m e A O P . D o S o m e t h i n g ;

86 t h r e a d . S t a r t ( ) ;

87 }
88

89 stat ic void A O P o n ( o b j e c t obj , E v e n t A r g s a r g s )

90 {
91 h a n d l e r = A O P H a n d l e r ;

92 on . S e n s i t i v e = fa l se ;

93 off . S e n s i t i v e = true ;

94 }
95

96 stat ic void A O P o f f ( o b j e c t obj , E v e n t A r g s a r g s )

97 {
98 h a n d l e r = R u n t i m e A O P . D o S o m e t h i n g ;

99 on . S e n s i t i v e = true ;

100 off . S e n s i t i v e = fa l se ;

101 }
102

103 stat ic void s e t A O P ( o b j e c t obj , E v e n t A r g s a r g s )

104 {
105 on . S e n s i t i v e = true ;

106 C o d e a d v i c e = new C o d e ( t y p e o f ( R u n t i m e A O P ) . G e t M e t h o d ( " A d v i c e " ) ) ;

107 M e t h o d I n f o mi = (( H a n d l e r ) R u n t i m e A O P . D o S o m e t h i n g ) . M e t h o d ;

108 A n n o t a t i o n T r e e [ ] a n n o t a t i o n s = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( mi ) ;

109 A r r a y L i s t o p e r a t i o n s = new A r r a y L i s t ( ) ;

110 f o r e a c h ( A n n o t a t i o n T r e e a n n o t in a n n o t a t i o n s )

111 {
112 i f ( a n n o t . N o d e [ 0 ] is A O P A t t r i b u t e )

113 {
114 A O P A t t r i b u t e a o p a = a n n o t . N o d e [ 0 ] as A O P A t t r i b u t e ;

115 i f ( c h o i c e . A c t i v e T e x t . E q u a l s ( H A R D _ C O D E D ) )

116 switch ( a o p a . A d v i c e )

117 {
118 case A O P A t t r i b u t e . A d v i c e s . PRE :

119 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

120 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , a d v i c e ) ) ;

121 break ;

122 case A O P A t t r i b u t e . A d v i c e s . P O S T :

123 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

124 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ A F T E R , a d v i c e ) ) ;

125 break ;

126 case A O P A t t r i b u t e . A d v i c e s . A R O U N D :

127 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

128 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , a d v i c e ) ) ;
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129 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

130 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ A F T E R , a d v i c e ) ) ;

131 break ;

132 case A O P A t t r i b u t e . A d v i c e s . S W E E P :

133 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

134 C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

135 break ;

136 }
137 else i f ( c h o i c e . A c t i v e T e x t . E q u a l s ( A D D _ B E F O R E + a o p a . Id ) )

138 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

139 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , a d v i c e ) ) ;

140 else i f ( c h o i c e . A c t i v e T e x t . E q u a l s ( A D D _ A F T E R + a o p a . Id ) )

141 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

142 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ A F T E R , a d v i c e ) ) ;

143 else i f ( c h o i c e . A c t i v e T e x t . E q u a l s ( R E M O V E _ G R O U P + a o p a . G r o u p ) )

144 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

145 C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

146 else i f ( c h o i c e . A c t i v e T e x t . E q u a l s ( A D D _ A R O U N D + a o p a . Id ) )

147 {
148 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

149 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E , a d v i c e ) ) ;

150 o p e r a t i o n s . Add (new O p e r a t i o n ( annot ,

151 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ A F T E R , a d v i c e ) ) ;

152 }
153 }
154 }
155 C o d e a o p i z e d = new C o d e ( mi , ( O p e r a t i o n [ ] ) o p e r a t i o n s . T o A r r a y ( t y p e o f ( O p e r a t i o n ) ) ) ;

156 A O P H a n d l e r = a o p i z e d . M a k e D e l e g a t e ( t y p e o f ( H a n d l e r ) ) as H a n d l e r ;

157 }
158

159 void O n A p p D e l e t e ( o b j e c t o , D e l e t e E v e n t A r g s a r g s )

160 {
161 a l i v e = fa l se ;

162 A p p l i c a t i o n . Q u i t ( ) ;

163 }
164

165 public stat ic void A d v i c e ( int arg )

166 {
167 C o n s o l e . W r i t e L i n e ( " AOP a d v i c e : v is {0} " , arg ) ;

168 }
169

170 public stat ic void Run ( )

171 {
172 while ( a l i v e )

173 {
174 h a n d l e r ( ) ;

175 T h r e a d . S l e e p (1000) ;

176 }
177 }
178

179 public stat ic void D o S o m e t h i n g ( )

180 {
181 int v = rnd . N e x t (0 , 100) ;

182 s t r i n g s ;

183

184 [ AOP ( A d v i c e = A O P A t t r i b u t e . A d v i c e s . SWEEP , G r o u p = " d e b u g " ) ]

185 {
186 C o n s o l e . W r i t e L i n e ( " v = {0} " , v ) ;

187 }
188

189 [ AOP ( A d v i c e = A O P A t t r i b u t e . A d v i c e s . POST , Id = " s q u a r e " ) ]

190 {
191 v ∗= v ;

192 }
193
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194 [ AOP ( A d v i c e = A O P A t t r i b u t e . A d v i c e s . AROUND , Id = " i n c r e m e n t " ) ]

195 {
196 v += 1;

197 }
198

199 v = v % 2;

200

201 [ AOP ( A d v i c e = A O P A t t r i b u t e . A d v i c e s . PRE , G r o u p = " d e b u g " , Id = " p a r i t y " ) ]

202 {
203 s = v == 0 ? " e v e n " : " odd " ;

204 }
205

206 [ AOP ( A d v i c e = A O P A t t r i b u t e . A d v i c e s . SWEEP , G r o u p = " d e b u g " ) ]

207 {
208 C o n s o l e . W r i t e L i n e ( " v is {0} " , s ) ;

209 }
210 }
211

212 }

7.2.3 SVG Rendering

Listing 7.10: Render
1 u s i n g S y s t e m ;

2 u s i n g S y s t e m . C o l l e c t i o n s ;

3 u s i n g S y s t e m . Xml ;

4 u s i n g S y s t e m . R e f l e c t i o n ;

5 u s i n g ACS ;

6 u s i n g Gtk ;

7 u s i n g Gdk ;

8

9 public class R e n d e r

10 {
11

12 private stat ic r e a d o n l y s t r i n g X = " x " ;

13 private stat ic r e a d o n l y s t r i n g Y = " y " ;

14 private stat ic r e a d o n l y s t r i n g W I D T H = " w i d t h " ;

15 private stat ic r e a d o n l y s t r i n g H E I G H T = " h e i g h t " ;

16 private stat ic r e a d o n l y s t r i n g C O L O R = " c o l o r " ;

17 private stat ic r e a d o n l y s t r i n g R E C T = " r e c t a n g l e " ;

18 private stat ic r e a d o n l y s t r i n g C I R C L E = " c i r c l e " ;

19 private stat ic r e a d o n l y s t r i n g C O M P I L E D = " S w i t c h to c o m p i l e d d r a w i n g " ;

20 private stat ic r e a d o n l y s t r i n g I T E R A T I V E = " S w i t c h to i t e r a t i v e d r a w i n g " ;

21 public stat ic Gdk . C o l o r [ ] C O L O R S ;

22 private stat ic Gdk . C o l o r w h i t e ;

23

24 public d e l e g a t e void D r a w e r ( ) ;

25 public stat ic D r a w e r D r a w ;

26 public stat ic D r a w e r c o m p i l e d ;

27 private D r a w i n g A r e a da ;

28 private Gtk . W i n d o w win ;

29 private B u t t o n c o m p ;

30 private L a b e l msg ;

31 private C o m b o B o x o p t i o n s ;

32 private A r r a y L i s t s h a p e s ;

33 private int opt = ( int ) D r a w A t t r i b u t e . O p t i o n s . O U T L I N E ;

34

35 private M e t h o d I n f o c o m p i l e d d r a w ;

36 private A n n o t a t i o n T r e e e m p t y ;

37 private M e t h o d I n f o m r e c t ;
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38 private A n n o t a t i o n T r e e r e x t ;

39 private A n n o t a t i o n T r e e [ ] r i n t ;

40 private C o d e r e c t O u t l i n e ;

41 private C o d e r e c t F i l l ;

42 private C o d e r e c t D a s h e d ;

43 private M e t h o d I n f o m c i r c l e ;

44 private A n n o t a t i o n T r e e c e x t ;

45 private A n n o t a t i o n T r e e [ ] c i n t ;

46 private C o d e c i r c l e O u t l i n e ;

47 private C o d e c i r c l e F i l l ;

48 private C o d e c i r c l e D a s h e d ;

49

50 private d e l e g a t e void E x t r u d e d R e c t ( int i , int j , int k , int l , int m , int n ) ;

51 private d e l e g a t e void E x t r u d e d R e c t 2 ( int i , int j , int k , int l , int m , int n ) ;

52 private d e l e g a t e void E x t r u d e d C i r c l e ( int i , int j , int k , int l ) ;

53 private d e l e g a t e void E x t r u d e d C i r c l e 2 ( int i , int j , int k , int l , int m , int n ) ;

54 private d e l e g a t e void N o A r g s ( ) ;

55

56 public stat ic void M a i n ( )

57 {
58 A p p l i c a t i o n . I n i t ( ) ;

59 new R e n d e r ( ) ;

60 A p p l i c a t i o n . Run ( ) ;

61 }
62

63 public R e n d e r ( )

64 {
65 win = new Gtk . W i n d o w ( " E S V G D e m o " ) ;

66 da = new D r a w i n g A r e a ( ) ;

67 msg = new L a b e l ( ) ;

68 B u t t o n op = new B u t t o n ( " O p e n an E S V G f i l e ... " ) ;

69 op . C l i c k e d += O p e n S V G ;

70 c o m p = new B u t t o n ( C O M P I L E D ) ;

71 c o m p . S e n s i t i v e = fa l se ;

72 c o m p . C l i c k e d += S w i t c h e r ;

73 V B o x vb = new V B o x ( false , 0) ;

74 o p t i o n s = C o m b o B o x . N e w T e x t ( ) ;

75 o p t i o n s . A p p e n d T e x t ( " O u t l i n e " ) ;

76 o p t i o n s . A p p e n d T e x t ( " F i l l e d " ) ;

77 o p t i o n s . A p p e n d T e x t ( " D a s h e d " ) ;

78 o p t i o n s . A c t i v e = 0;

79 o p t i o n s . C h a n g e d += O p t i o n ;

80 vb . P a c k S t a r t ( da ) ;

81 vb . P a c k E n d ( msg , false , false , 0) ;

82 vb . P a c k E n d ( comp , false , false , 0) ;

83 vb . P a c k E n d ( options , false , false , 0) ;

84 vb . P a c k E n d ( op , false , false , 0) ;

85 win . Add ( vb ) ;

86 win . S e t D e f a u l t S i z e (400 , 300) ;

87 win . D e l e t e E v e n t += O n W i n D e l e t e ;

88 da . E x p o s e E v e n t += O n E x p o s e d ;

89 win . S h o w A l l ( ) ;

90

91 C o l o r m a p c o l o r m a p = C o l o r m a p . S y s t e m ;

92 C O L O R S = new C o l o r [ 6 ] ;

93 C O L O R S [ 0 ] = new Gdk . C o l o r (255 , 0 , 0) ;

94 C O L O R S [ 1 ] = new Gdk . C o l o r (0 , 255 , 0) ;

95 C O L O R S [ 2 ] = new Gdk . C o l o r (0 , 0 , 255) ;

96 C O L O R S [ 3 ] = new Gdk . C o l o r (0 , 255 , 255) ;

97 C O L O R S [ 4 ] = new Gdk . C o l o r (255 , 0 , 255) ;

98 C O L O R S [ 5 ] = new Gdk . C o l o r (255 , 255 , 0) ;

99 w h i t e = new Gdk . C o l o r (255 , 255 , 255) ;

100 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 0 ] , true , true ) ;

101 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 1 ] , true , true ) ;

102 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 2 ] , true , true ) ;
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103 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 3 ] , true , true ) ;

104 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 4 ] , true , true ) ;

105 c o l o r m a p . A l l o c C o l o r ( ref C O L O R S [ 5 ] , true , true ) ;

106 c o l o r m a p . A l l o c C o l o r ( ref white , true , true ) ;

107

108 S h a p e . w i n d o w = da . G d k W i n d o w ;

109 S h a p e . w i n d o w . B a c k g r o u n d = w h i t e ;

110 S h a p e . gc = new Gdk . GC ( da . G d k W i n d o w ) ;

111

112 s h a p e s = new A r r a y L i s t ( ) ;

113 D r a w = I t e r a t i v e D r a w ;

114

115 c o m p i l e d d r a w = t y p e o f ( R e n d e r ) . G e t M e t h o d ( " C o m p i l e d D r a w " ) ;

116 e m p t y = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( c o m p i l e d d r a w ) [ 0 ] ;

117

118 m r e c t = t y p e o f ( R e c t a n g l e ) . G e t M e t h o d ( " D r a w R e c t " ) ;

119 r e x t = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( m r e c t ) [ 0 ] ;

120 r i n t = r e x t . C h i l d r e n ;

121 f o r e a c h ( A n n o t a t i o n T r e e at in r i n t )

122 {
123 D r a w A t t r i b u t e d = at . N o d e [ 0 ] as D r a w A t t r i b u t e ;

124 s t r i n g f i l e = " r e c t _ " + d . o p t i o n + " . dll " ;

125

126 C o d e r = new C o d e ( mrect , new O p e r a t i o n [ ] {new O p e r a t i o n ( rext , at , C o d e A t t r i b u t e .

O p e r a t i o n s . C O P Y _ B E F O R E ) , new O p e r a t i o n ( rext , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E )

}) ;

127 r . M a k e D e l e g a t e E x ( t y p e o f ( E x t r u d e d R e c t ) , f i l e ) ;

128 r = C o d e . F r o m A s s e m b l y ( f i l e ) ;

129

130 i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . D A S H E D )

131 r e c t D a s h e d = r ;

132 else i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . F I L L )

133 r e c t F i l l = r ;

134 else i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . O U T L I N E )

135 r e c t O u t l i n e = r ;

136 }
137

138 m c i r c l e = t y p e o f ( C i r c l e ) . G e t M e t h o d ( " D r a w C i r c l e " ) ;

139 c e x t = A n n o t a t i o n . G e t C u s t o m A t t r i b u t e s ( m c i r c l e ) [ 0 ] ;

140 c i n t = c e x t . C h i l d r e n ;

141 f o r e a c h ( A n n o t a t i o n T r e e at in c i n t )

142 {
143 D r a w A t t r i b u t e d = at . N o d e [ 0 ] as D r a w A t t r i b u t e ;

144 s t r i n g f i l e = " c i r c l e _ " + d . o p t i o n + " . dll " ;

145

146 C o d e c = new C o d e ( mcircle , new O p e r a t i o n [ ] {new O p e r a t i o n ( cext , at , C o d e A t t r i b u t e .

O p e r a t i o n s . C O P Y _ B E F O R E ) , new O p e r a t i o n ( cext , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E )

}) ;

147 c . M a k e D e l e g a t e E x ( t y p e o f ( E x t r u d e d R e c t ) , f i l e ) ;

148 c = C o d e . F r o m A s s e m b l y ( f i l e ) ;

149

150 i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . D A S H E D )

151 c i r c l e D a s h e d = c ;

152 i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . F I L L )

153 c i r c l e F i l l = c ;

154 i f ( d . o p t i o n == D r a w A t t r i b u t e . O p t i o n s . O U T L I N E )

155 c i r c l e O u t l i n e = c ;

156 }
157

158 // why we need t h i s ?

159 C o d e r e n d e r = new C o d e ( c o m p i l e d d r a w ) ;

160 }
161

162 private void O p e n S V G ( o b j e c t obj , E v e n t A r g s a r g s )

163 {
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164 F i l e C h o o s e r D i a l o g fc = new F i l e C h o o s e r D i a l o g ( " O p e n SVG f i l e " ,

165 win ,

166 F i l e C h o o s e r A c t i o n . Open ,

167 " C a n c e l " , R e s p o n s e T y p e . Cancel ,

168 " O p e n " , R e s p o n s e T y p e . A c c e p t ) ;

169 i f ( fc . Run ( ) == ( int ) R e s p o n s e T y p e . A c c e p t )

170 {
171 s h a p e s . C l e a r ( ) ;

172 X m l T e x t R e a d e r xml = new X m l T e x t R e a d e r ( fc . F i l e n a m e ) ;

173 while ( xml . R e a d ( ) )

174 {
175 i f ( xml . I s E m p t y E l e m e n t ) {
176 int x = I n t 3 2 . P a r s e ( xml [ X ] ) ;

177 int y = I n t 3 2 . P a r s e ( xml [ Y ] ) ;

178 int w = I n t 3 2 . P a r s e ( xml [ W I D T H ] ) ;

179 int h = I n t 3 2 . P a r s e ( xml [ H E I G H T ] ) ;

180 int c = I n t 3 2 . P a r s e ( xml [ C O L O R ] ) ;

181 i f ( xml . N a m e . E q u a l s ( R E C T ) )

182 s h a p e s . Add (new R e c t a n g l e ( x , y , w , h , c ) ) ;

183 else i f ( xml . N a m e . E q u a l s ( C I R C L E ) )

184 s h a p e s . Add (new C i r c l e ( x , y , w , h , c ) ) ;

185 }
186 }
187 xml . C l o s e ( ) ;

188 c o m p . S e n s i t i v e = true ;

189 }
190 fc . D e s t r o y ( ) ;

191 }
192

193 public D r a w e r C o m p i l e ( A r r a y L i s t l i s t )

194 {
195 C o d e cr , cc ;

196

197 i f ( o p t i o n s . A c t i v e == 1)

198 {
199 cr = r e c t F i l l ;

200 cc = c i r c l e F i l l ;

201 } else i f ( o p t i o n s . A c t i v e == 2)

202 {
203 cr = r e c t D a s h e d ;

204 cc = c i r c l e D a s h e d ;

205 } else

206 {
207 cr = r e c t O u t l i n e ;

208 cc = c i r c l e O u t l i n e ;

209 }
210

211 A r r a y L i s t o p e r a t i o n s = new A r r a y L i s t ( ) ;

212 f o r e a c h ( S h a p e s in l i s t )

213 {
214 i f ( s is R e c t a n g l e )

215 {
216 R e c t a n g l e r = s as R e c t a n g l e ;

217 o p e r a t i o n s . Add (new O p e r a t i o n ( empty ,

218 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E ,

219 cr . B i n d ( r . x , r . y , r . width , r . height , r . color , 0) ) ) ;

220

221 } else i f ( s is C i r c l e )

222 {
223 C i r c l e c = s as C i r c l e ;

224 o p e r a t i o n s . Add (new O p e r a t i o n ( empty ,

225 C o d e A t t r i b u t e . O p e r a t i o n s . I N C L U D E _ B E F O R E ,

226 cc . B i n d ( c . x , c . y , c . width , c . height , c . color , 0) ) ) ;

227 }
228 }
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229 o p e r a t i o n s . Add (new O p e r a t i o n ( empty , C o d e A t t r i b u t e . O p e r a t i o n s . R E M O V E ) ) ;

230 C o d e r e n d e r = new C o d e ( c o m p i l e d d r a w , ( O p e r a t i o n [ ] ) o p e r a t i o n s . T o A r r a y ( t y p e o f (

O p e r a t i o n ) ) ) ;

231 return r e n d e r . M a k e D e l e g a t e ( t y p e o f ( D r a w e r ) ) as D r a w e r ;

232 // r e t u rn render . MakeDelegateEx ( t y p e o f ( Drawer ) , ” drawer . d l l ”) as Drawer ;

233 // r e t u rn render . MakeDelegate ( t y p e o f ( Drawer ) ) as Drawer ;

234 }
235

236 private void S w i t c h e r ( o b j e c t obj , E v e n t A r g s a r g s )

237 {
238 i f ( ( obj as B u t t o n ) . L a b e l . E q u a l s ( C O M P I L E D ) )

239 {
240 ( obj as B u t t o n ) . L a b e l = I T E R A T I V E ;

241

242 c o m p i l e d = C o m p i l e ( s h a p e s ) ;

243 D r a w = c o m p i l e d ;

244 D a t e T i m e s t a r t = D a t e T i m e . Now ;

245 for ( int i=0; i<1000; i++)

246 D r a w ( ) ;

247 T i m e S p a n t i m e E l a p s e d = D a t e T i m e . Now − s t a r t ;

248 C o n s o l e . W r i t e L i n e ( " C o m p i l e d r a w = {0} " , t i m e E l a p s e d . T o S t r i n g ( ) ) ;

249

250 D r a w = I t e r a t i v e D r a w ;

251 s t a r t = D a t e T i m e . Now ;

252 for ( int i=0; i<1000; i++)

253 D r a w ( ) ;

254 t i m e E l a p s e d = D a t e T i m e . Now − s t a r t ;

255 C o n s o l e . W r i t e L i n e ( " I t e r a t i v e D r a w = {0} " , t i m e E l a p s e d . T o S t r i n g ( ) ) ;

256

257 D r a w = c o m p i l e d ;

258 }
259 else

260 {
261 D r a w = I t e r a t i v e D r a w ;

262 ( obj as B u t t o n ) . L a b e l = C O M P I L E D ;

263 }
264 }
265

266 private void O p t i o n ( o b j e c t obj , E v e n t A r g s a r g s )

267 {
268 i f ( o p t i o n s . A c t i v e == 1)

269 opt = ( int ) D r a w A t t r i b u t e . O p t i o n s . F I L L ;

270 else i f ( o p t i o n s . A c t i v e == 2)

271 opt = ( int ) D r a w A t t r i b u t e . O p t i o n s . D A S H E D ;

272 else

273 opt = ( int ) D r a w A t t r i b u t e . O p t i o n s . O U T L I N E ;

274 D r a w = C o m p i l e ( s h a p e s ) ;

275 win . Q u e u e D r a w ( ) ;

276 }
277

278 public void I t e r a t i v e D r a w ( )

279 {
280 f o r e a c h ( S h a p e s in s h a p e s )

281 s . D r a w ( opt ) ;

282 }
283

284 public stat ic void C o m p i l e d D r a w ( )

285 {
286 [ D r a w ]

287 {
288 C o n s o l e . W r i t e L i n e ( " d e b u g " ) ;

289 }
290 }
291

292 public void O n E x p o s e d ( o b j e c t o , E x p o s e E v e n t A r g s a r g s )
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293 {
294 D a t e T i m e s t a r t = D a t e T i m e . Now ;

295 D r a w ( ) ;

296 T i m e S p a n t i m e E l a p s e d = D a t e T i m e . Now − s t a r t ;

297 msg . T e x t = t i m e E l a p s e d . T o S t r i n g ( ) ;

298 }
299

300 private void O n W i n D e l e t e ( o b j e c t o , D e l e t e E v e n t A r g s a r g s )

301 {
302 A p p l i c a t i o n . Q u i t ( ) ;

303 }
304

305 }
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Listing 7.11: DrawAttribute
1 u s i n g S y s t e m ;

2 u s i n g ACS ;

3

4 [ A t t r i b u t e U s a g e ( A t t r i b u t e T a r g e t s . Method , A l l o w M u l t i p l e=true ) ]

5 public class D r a w A t t r i b u t e : C o d e A t t r i b u t e

6 {
7

8 public e n u m O p t i o n s : int

9 {
10 D A S H E D = 1 ,

11 C O L O R = 2 ,

12 O U T L I N E = 4 ,

13 F I L L = 8

14 }
15

16 public O p t i o n s o p t i o n ;

17

18 }

Listing 7.12: Shape
1 u s i n g Gdk ;

2

3 public abstract class S h a p e

4 {
5

6 public stat ic W i n d o w w i n d o w ;

7 public stat ic Gdk . GC gc ;

8

9 public int x ;

10 public int y ;

11 public int w i d t h ;

12 public int h e i g h t ;

13 public int c o l o r ;

14

15 public S h a p e ( int x , int y , int width , int height , int c o l o r )

16 {
17 this . x = x ;

18 this . y = y ;

19 this . w i d t h = w i d t h ;

20 this . h e i g h t = h e i g h t ;

21 this . c o l o r = c o l o r ;

22 }
23

24 public abstract void D r a w ( int opt ) ;

25

26 }
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Listing 7.13: Rectangle
1 u s i n g S y s t e m ;

2 u s i n g Gdk ;

3

4 public c lass R e c t a n g l e : S h a p e

5 {
6

7 public R e c t a n g l e ( int x , int y , int w , int h , int c o l o r ) : b a s e ( x , y , w , h , c o l o r ) {}
8

9 public o v e r r i d e void D r a w ( int opt )

10 {
11 D r a w R e c t ( x , y , width , height , color , opt ) ;

12 }
13

14 public stat ic void D r a w R e c t ( int x , int y , int w , int h , int color , int opt )

15 {
16 int lx = ( int ) ( x / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . W i d t h ) ;

17 int ly = ( int ) ( y / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . H e i g h t ) ;

18 int lw = ( int ) ( w / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . W i d t h ) ;

19 int lh = ( int ) ( h / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . H e i g h t ) ;

20 [ D r a w ]

21 {
22 i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . D A S H E D )

23 {
24 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . D A S H E D ) ]

25 {
26 gc . S e t D a s h e s (0 , new s b y t e [ ] { 1 , 2} , 2) ;

27 gc . S e t L i n e A t t r i b u t e s (1 , L i n e S t y l e . O n O f f D a s h , C a p S t y l e . Butt , J o i n S t y l e . M i t e r ) ;

28 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ;

29 w i n d o w . D r a w R e c t a n g l e ( gc , false , lx , ly , lw , lh ) ;

30 }
31 }
32 else i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . F I L L )

33 {
34 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . F I L L ) ]

35 {
36 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ;

37 w i n d o w . D r a w R e c t a n g l e ( gc , true , lx , ly , lw , lh ) ;

38 }
39 }
40 else i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . O U T L I N E )

41 {
42 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . O U T L I N E ) ]

43 {
44 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ;

45 w i n d o w . D r a w R e c t a n g l e ( gc , false , lx , ly , lw , lh ) ;

46 }
47 }
48 }
49 }
50

51 }
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Listing 7.14: Circle
1 u s i n g S y s t e m ;

2 u s i n g Gdk ;

3

4 public class C i r c l e : S h a p e

5 {
6

7 public C i r c l e ( int x , int y , int w , int h , int c o l o r ) : b a s e ( x , y , w , h , c o l o r )

8 {
9

10 }
11

12 public o v e r r i d e void D r a w ( int opt )

13 {
14 D r a w C i r c l e ( x , y , width , height , color , opt ) ;

15 }
16

17 public stat ic void D r a w C i r c l e ( int x , int y , int w , int h , int color , int opt )

18 {
19

20 int lx = ( int ) ( x / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . W i d t h ) ;

21 int ly = ( int ) ( y / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . H e i g h t ) ;

22 int lw = ( int ) ( w / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . W i d t h ) ;

23 int lh = ( int ) ( h / 100 .0 ∗ w i n d o w . V i s i b l e R e g i o n . C l i p b o x . H e i g h t ) ;

24 [ D r a w ]

25 {
26 i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . D A S H E D )

27 {
28 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . D A S H E D ) ]

29 {
30 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ; gc . S e t D a s h e s (0 , new s b y t e [ ] { 1 ,

2} , 2) ;

31 gc . S e t L i n e A t t r i b u t e s (1 , L i n e S t y l e . O n O f f D a s h , C a p S t y l e . Butt , J o i n S t y l e . M i t e r )

;

32 w i n d o w . D r a w A r c ( gc , false , lx , ly , lw , lh , 0 , 360∗64) ;

33 }
34 }
35 i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . F I L L )

36 {
37 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . F I L L ) ]

38 {
39 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ;

40 w i n d o w . D r a w A r c ( gc , true , lx , ly , lw , lh , 0 , 360∗64) ;

41 }
42 }
43 i f ( opt == ( int ) D r a w A t t r i b u t e . O p t i o n s . O U T L I N E )

44 {
45 [ D r a w ( o p t i o n=D r a w A t t r i b u t e . O p t i o n s . O U T L I N E ) ]

46 {
47 gc . F o r e g r o u n d = R e n d e r . C O L O R S [ c o l o r ] ;

48 w i n d o w . D r a w A r c ( gc , false , lx , ly , lw , lh , 0 , 360∗64) ;

49 }
50 }
51 }
52 }
53

54

55 }

161





Bibliography

[1] Cisternino, A. Multi-stage and Meta-programming sup-
port in strongly typed execution environments. PhD
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